

Programming in
CoffeeScript

informit.com/devlibrary

Developer’s
Library

Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful
for other programmers.

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-672-32938-8

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32862-6

Programming in Objective-C
Stephen G. Kochan
ISBN-13: 978-0-321-56615-7

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well as
by subscription from Safari Books Online at safari.informit.com

EssEntial rEfErEncEs for programming profEssionals

Developer’s Library

Key titles include some of the best, most widely acclaimed books within their
topic areas:

Programming in
CoffeeScript

Mark Bates

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

programming in coffeescript
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-32-182010-5
ISBN-10: 0-32-182010-X

Library of Congress Cataloging-in-Publication Data is on file

trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales. For more information, please contact

U.s. corporate and government sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

international sales
international@pearsoned.com

Editor-in-chief
Mark Taub

acquisitions Editor
Debra Williams
Cauley

senior
Development
Editor
Chris Zahn

managing Editor
Kristy Hart

project Editor
Andy Beaster

Copy Editor
Barbara Hacha

indexer
Tim Wright

proofreader
Debbie Williams

technical Editors
Stuart Garner
Dan Pickett

publishing
coordinator
Olivia Basegio

Book Designer
Gary Adair

compositor
Nonie Ratcliff

v

Rachel, Dylan, and Leo: My life for you.

v

contents at a glance

 Preface xv

part i: core coffeescript

 1 Getting Started 3

 2 The Basics 13

 3 Control Structures 33

 4 Functions and Arguments 65

 5 Collections and Iterations 81

 6 Classes 123

part ii: coffeescript in practice

 7 Cake and Cakefiles 161

 8 Testing with Jasmine 171

 9 Intro to Node.js 193

 10 Example: Todo List Part 1 (Server-side) 217

 11 Example: Todo List Part 2 (Client-side
w/ jQuery) 237

 12 Example: Todo List Part 3 (Client-side
w/ Backbone.js) 255

 Index 277

table of contents

 Dedication v

 acknowledgments xii

 about the author xiv

 preface xv
What Is CoffeeScript? xvii
Who Is This Book For? xix
How to Read This Book xix
How This Book Is Organized xxi
 Part I: Core CoffeeScript xxii
 Part II: CoffeeScript in Practice xxii
Installing CoffeeScript xxiii
How to Run the Examples xxiii
Notes xxiv

part i: core coffeescript

 1 getting started 3
The CoffeeScript REPL 3
In-Browser Compilation 6
Caveats 7
Command-Line Compilation 7

The compile Flag 7
The CoffeeScript CLI 8

The output Flag 9
The bare Flag 9
The print Flag 10
The watch Flag 10
Executing CoffeeScript Files 11
Other Options 11

Wrapping Up 12
Notes 12

 2 the Basics 13
Syntax 13

Significant Whitespace 14
Function Keyword 16
Parentheses 16

Scope and Variables 18
Variable Scope in JavaScript 18
Variable Scope in CoffeeScript 19
The Anonymous Wrapper Function 20

Interpolation 23
String Interpolation 23
Interpolated Strings 23
Literal Strings 25
Heredocs 28
Comments 29
Inline Comments 29
Block Comments 30

Extended Regular Expressions 31
Wrapping Up 31
Notes 32

 3 control structures 33
Operators and Aliases 33

Arithmetic 33
Assignment 35
Comparison 39
String 42
The Existential Operator 43
Aliases 46
The is and isnt Aliases 47
The not Alias 48
The and and or Aliases 49
The Boolean Aliases 50
The @ Alias 51

If/Unless 52
The if Statement 53
The if/else Statement 54
The if/else if Statement 56
The unless Statement 58
Inline Conditionals 60

Switch/Case Statements 60
Wrapping Up 63
Notes 63

viii Programming in CoffeeScript

ixContents

 4 functions and arguments 65
Function Basics 68
Arguments 70
Default Arguments 72
Splats... 75
Wrapping Up 79
Notes 79

 5 collections and iterations 81
Arrays 81

Testing Inclusion 83

Swapping Assignment 85

Multiple Assignment aka Destructing Assignment 86

Ranges 90

Slicing Arrays 92

Replacing Array Values 94

Injecting Values 95

Objects/Hashes 96

Getting/Setting Attributes 101

Destructuring Assignment 103

Loops and Iteration 105

Iterating Arrays 105

The by Keyword 106

The when Keyword 107

Iterating Objects 108

The by Keyword 109

The when Keyword 109

The own Keyword 110

while Loops 113

until Loops 114

Comprehensions 116

The do Keyword 119

Wrapping Up 120
Notes 121

 6 classes 123
Defining Classes 123
Defining Functions 125

The constructor Function 126

Scope in Classes 127
Extending Classes 137
Class-Level Functions 145
Prototype Functions 150
Binding (-> Versus =>) 151
Wrapping Up 158
Notes 158

part ii: coffeescript in practice

 7 cake and cakefiles 161
Getting Started 161
Creating Cake Tasks 162
Running Cake Tasks 163
Using Options 163
Invoking Other Tasks 167
Wrapping Up 169
Notes 170

 8 testing with Jasmine 171
Installing Jasmine 172
Setting Up Jasmine 172
Introduction to Jasmine 175
Unit Testing 176
Before and After 181
Custom Matchers 187
Wrapping Up 190
Notes 191

 9 intro to node.js 193
What Is Node.js? 193
Installing Node 194
Getting Started 195
Streaming Responses 197
Building a CoffeeScript Server 199
Trying Out the Server 214
Wrapping Up 215
Notes 215

x Programming in CoffeeScript

 10 Example: todo list part 1 (server-side) 217
Installing and Setting Up Express 218
Setting Up MongoDB Using Mongoose 222
Writing the Todo API 225
Querying with Mongoose 226

Finding All Todos 227
Creating New Todos 228
Getting, Updating, and Destroying a Todo 230
Cleaning Up the Controller 232

Wrapping Up 236
Notes 236

 11 Example: todo list part 2 (client-side w/ jQuery) 237
Priming the HTML with Twitter Bootstrap 237
Interacting with jQuery 240
Hooking Up the New Todo Form 242

Cleaning Up the Todo List with Underscore.js
Templates 244

Listing Existing Todos 247
Updating Todos 248
Deleting Todos 252
Wrapping Up 253
Notes 253

 12 Example: todo list part 3 (client-side w/
Backbone.js) 255
What Is Backbone.js? 255

Cleaning Up 256
Setting Up Backbone.js 256
Writing our Todo Model and Collection 260
Listing Todos Using a View 263
Creating New Todos 265
A View per Todo 268

Updating and Validating Models from Views 270
Validation 272

Deleting Models from Views 273
Wrapping Up 275
Notes 275

 index 277

xiContents

acknowledgments1

I said it in my first book, and I’ll say it again here: Writing a book is incredibly hard work!
Please make sure no one ever tells you differently. If they do, they are either an incredible liar
or Stephen King. Fortunately for me I fall somewhere in the middle.

Writing a book is simultaneously a very independent and solitary activity, as well as a team
effort. After I put the kids to bed, I head down to my office, crack open a few Guinesses (is the
plural Guinei?), crank up the tunes, and work, by myself, into the wee hours of the morning.
When I finish a chapter, I send it off to my editor, who then sends it off to a bunch of people
who take what I have written and improve it in ways that I didn’t know possible. Whether
it’s as simple as correcting grammar or spelling mistakes, to something more complex such as
helping to improve the flow of the book, or point out where example code could be improved
to further clarify a point. So, while the writing may be done alone in a dark room by yours
truly, the final product is the culmination of many people’s hard work.

In this section of the book, I get the chance to say thank you to those who help shape, define,
and otherwise ensure that the book you are currently holding (or downloading) is of the
highest quality it can be. So without further adieu I’m going to thank people Academy Awards
style, knowing that I’m sure I’ve left someone off the list, for which I am incredibly sorry.

First and foremost I have to thank my beautiful wife, Rachel. Rachel is one of the most support-
ive and strong people I have ever met. Each night I get to crawl into bed beside her and each
morning I get the joy of waking up next to her. I have the pleasure of staring into her eyes and
seeing unconditional love there. I also get the encouragement to write books, start my own
business, and to do whatever it is that will make me happiest in life. She gave me two hand-
some sons and in return I’ve given her bad jokes and my used cell phones. I clearly got the
better end of the bargain in this marriage, and for that I am eternally grateful.

Next, I would like to thank my sons, Dylan and Leo. While neither of them directly contrib-
uted to this book, they do make life worth living and they give my life an energy and excite-
ment that only children can. I love you boys both so very much.

Before moving off the subject of my family, I would like to thank my parents (especially you
Mom!) and the rest of my family for always being there to both simultaneously support me and
cut me down to size. I love you all.

Next I have to thank Debra Williams Cauley. Debra was my editor, handler, and psychiatrist on
my first book, Distributed Programming with Ruby. I can only hope that other authors have the
fortune to work with an editor as good as Debra. She truly has the patience of a saint.

1 Many at my publishing house thought that my acknowledgments section, as well as other parts of this
book, were a bit risqué, so the original has been edited down to what you see here. I apologize if you
are offended by anything I wrote, that was never my intention. Apparently, I’ve been told, my sense of
humor is not appreciated by all. If you do like bad fart jokes, then please follow me on Twitter
@markbates.

xiiiAcknowledgments

I hope that should I ever write another book, Debra will be right there with me. I can’t imagine
writing a book without her. Thank you, Debra.

When writing a technical book, there are people that are very important to the process; they
are the technical reviewers. A technical reviewer’s job is to read each chapter and critique it
from a technical standpoint, as well as answer the question, “Does it make sense to learn this
here?” These reviewers are there to act as your audience. They are technically minded and
know their subject. Therefore, the feedback that you get from them is incredibly important.
On this book there have a been a few technical reviewers. But the two I really want to call out
are Stuart Garner and Dan Pickett. Stuart and Dan went way above the call of duty on this
book and were by no means afraid of telling me when I did or said something boneheaded.
They received frantic phone calls and emails from me at all hours of the day and night and
responded with amazing feedback. If I didn’t want all those sweet royalty checks all to myself
I might’ve been tempted to cut them in. (Don’t worry, they got paid for their work. They each
received a coupon for one free hour of “Mark” time.) Thank you Dan and Stuart, and the rest of
the technical reviewers, for all of your hard work.

There are people who contribute to a book like this in different ways. Someone has to design
the cover, index the book, write the language (CoffeeScript), or do any of the other countless
jobs involved in something like this. Here is a list of some of those people (that I know about),
in no particular order: Jeremey Ashkenas, Trevor Burnham, Dan Fishman, Chris Zahn, Gregg
Pollack, Gary Adair, Sandra Schroeder, Obie Fernandez, Kristy Hart, Andy Beaster, Barbara
Hacha, Tim Wright, Debbie Williams, Brian France, Vanessa Evans, Dan Scherf, Gary Adair,
Nonie Ratcliff, and Kim Boedigheimer.

I would also like to thank everyone I have seen since I first starting writing this book who
have heard me blather on for hours about it. I know it’s not that interesting to most people,
but damn, do I love to hear the sound of my voice. Thank you all for not punching me in the
mouth, like I probably deserve.

Finally, I would like to say thank you to you, the reader. Thank you for purchasing this book
and helping to support people such as myself who, at the end of the day, really just want to
help out our fellow developers by sharing the knowledge we have with the rest of the world.
It’s for you that I have put the countless hours of work and toil into this book. I hope that by
the time you close the cover, you will have gained a better understanding of CoffeeScript and
how it can impact your development. Good luck.

about the author
Mark Bates is the founder and chief architect of the Boston-based consulting company Meta42
Labs. Mark spends his days focusing on new application development and consulting for his
clients. At night he writes books, raises kids, and occasionally he forms a band and “tries to
make it.”

Mark has been writing web applications, in one form or another, since 1996. His career
started as a UI developer writing HTML and JavaScript applications before moving toward the
middle(ware) with Java and Ruby. Nowadays, Mark spends his days cheating on Ruby with his
new mistress, CoffeeScript.

Always wanting to share his wisdom, or more correctly just wanting to hear the sound of
his own voice, Mark has spoken at several high-profile conferences, including RubyConf,
RailsConf, and jQueryConf. Mark has also taught classes on Ruby and Ruby on Rails. In 2009
Mark’s first (surprisingly not his last!) book, Distributed Programming with Ruby, was published
by Addison-Wesley.

Mark lives just outside of Boston with his wife, Rachel, and their two sons, Dylan and Leo.
Mark can be found on the web at: http://www.markbates.com, http://twitter.com/markbates,
and http://github.com/markbates.

http://www.markbates.com
http://twitter.com/markbates
http://github.com/markbates

preface

I started my professional development career in 1999, when I first was paid a salary to be a
developer. (I don’t count the few years before that when I was just having fun playing around
on the Web.) In 1999 the Web was a scary place. HTML files were loaded down with font
and table tags. CSS was just coming on the scene. JavaScript1 was only a few years old, and a
battlefield of various implementations existed across the major browsers. Sure, you could write
some JavaScript to do something in one browser, but would it work in another browser? Prob-
ably not. Because of that, JavaScript got a bad name in the early 2000s.

In the middle of the 2000s two important things happened that helped improve JavaScript in
the eyes of web developers. The first was AJAX.2 AJAX enabled developers to make web pages
more interactive, and faster, by making remote calls back to the server in the background
without end users having to refresh their browsers.

The second was the popularity of JavaScript libraries, such as Prototype,3 that made writing
cross-browser JavaScript much simpler. You could use AJAX to make your applications more
responsive and easier to use and a library like Prototype to make sure it worked across major
browsers.

In 2010, and certainly in 2011, the Web started evolving into “single page” applications. These
applications were driven through the use of JavaScript frameworks, such as Backbone.js.4 These
frameworks allowed the use of an MVC5 design pattern using JavaScript. Whole applications
would be built in JavaScript and then downloaded and executed in the end user’s browser. This
all made for incredibly responsive and rich client-side applications.

On the developer’s side, however, things weren’t all roses. Although the frameworks and tools
made writing these sorts of applications easier, JavaScript itself proved to be the pain point.
JavaScript is at times both an incredibly powerful language and an incredibly frustrating one. It
is full of paradoxes and design traps that can quickly make your code unmanageable and bug
ridden.

So what were developers to do? They want to build these great new applications, but the only
universally accepted browser language is JavaScript. They could certainly write these applica-
tions in Flash,6 but that would require plug-ins, and it won’t work on some platforms, such as
iOS7 devices.

I first discovered CoffeeScript8 in October 2010. CoffeeScript promised to help tame
JavaScript and to expose the best parts of the quirky language that is JavaScript. It presented
a cleaner syntax, like forgoing most punctuation in favor of significant whitespace and protec-
tion from those design traps that awaited JavaScript developers at every turn, such as poor
scoping and misuse of the comparison operators. Best of all, it did all this while compiling to
standard JavaScript that could then be executed in any browser or other JavaScript runtime
environment.

When I first used CoffeeScript, the language was still very rough around the edges, even at
version 0.9.4. I used it on a project for a client to try it out to see whether it was worth the

xvi Programming in CoffeeScript

little bit of hype I was hearing. Unfortunately, at the time two things caused me to push it
aside. The first was that it was still not quite ready for prime time. There were too many bugs
and missing features.

The second reason why I didn’t use CoffeeScript was because the app I was trying it out on
wasn’t a very JavaScript-heavy application. I was mostly doing a few validation checks and an
occasional bit of AJAX, which Ruby on Rails9 helped me do with very little, if any, JavaScript
code.

So what made me come back to CoffeeScript? Some six months after I had tried out Coffee-
Script for the first time, it was announced10 that Rails 3.1 would ship with CoffeeScript as the
default JavaScript engine. Like most developers I was taken aback by this. I had tried Coffee-
Script and didn’t think it was that great. What were they thinking?

Unlike a lot of my fellow developers, I took the time to have another look at CoffeeScript. Six
months is a very long time in the development of any project. CoffeeScript had come a long,
long way. I decided to try it again, this time on an application that had some pretty heavy
JavaScript. Within a few days of using CoffeeScript again, I became not just a convert but an
advocate of the language.

I’m not going to tell you exactly what it was that converted me, or try to tell you why I love it.
I want you to form your own opinion. Over the course of this book I hope to both convert you
and make you an advocate of this wonderful little language for reasons that are all your own.
But I will give you a little sneak peak at what’s to come. Here’s a bit of CoffeeScript, from an
actual application, followed by its equivalent JavaScript. Enjoy!

Example: (source: sneak_peak.coffee)

@updateAvatars = ->
 names = $('.avatar[data-name]').map -> $(this).data('name')
 Utils.findAvatar(name) for name in $.unique(names)

Example: (source: sneak_peak.js)

(function() {

 this.updateAvatars = function() {
 var name, names, _i, _len, _ref, _results;
 names = $('.avatar[data-name]').map(function() {
 return $(this).data('name');
 });
 _ref = $.unique(names);
 _results = [];
 for (_i = 0, _len = _ref.length; _i < _len; _i++) {
 name = _ref[_i];
 _results.push(Utils.findAvatar(name));

xviiPreface

 }
 return _results;
 };

}).call(this);

What is coffeescript?
CoffeeScript is a language that compiles down to JavaScript. Not very informative, I know,
but it’s what it does. CoffeeScript was developed to closely resemble languages such as Ruby11
and Python.12 It was designed to help developers write their JavaScript more efficiently. By
removing unnecessary punctuation like braces, semicolons, and so on, and by using significant
whitespace to replace those characters, you can quickly focus on the code at hand—and not on
making sure you have all your curly braces closed.

Chances are you would write the following JavaScript like this:

Example: (source: punctuation.js)

(function() {

 if (something === something_else) {
 console.log('do something');
 } else {
 console.log('do something else');
 }

}).call(this);

So why not write it like this:

Example: (source: punctuation.coffee)

if something is something_else
 console.log 'do something'
else
 console.log 'do something else'

CoffeeScript also gives you several shortcuts to write rather complicated sections of JavaScript
with just a short code snippet. Take, for example, this code that lets you loop through the
values in an array, without worrying about their indices:

xviii Programming in CoffeeScriptxviii

Example: (source: array.coffee)

for name in array
 console.log name

Example: (source: array.js)

(function() {
 var name, _i, _len;

 for (_i = 0, _len = array.length; _i < _len; _i++) {
 name = array[_i];
 console.log(name);
 }

}).call(this);

In addition to the sugary sweet syntax improvements CoffeeScript gives you, it also helps you
write better JavaScript code by doing things such as helping you scope your variables and
classes appropriately, making sure you use the appropriate comparison operators, and much
more, as you’ll see during the course of reading this book.

CoffeeScript, Ruby, and Python often get mentioned together in the same breath, and for good
reason. CoffeeScript was directly modeled on the terseness and the simple syntax that these
languages have to offer. Because of this, CoffeeScript has a much more modern “feel” than
JavaScript does, which was modeled on languages such as Java13 and C++.14 Like JavaScript,
CoffeeScript can be used in any programming environment. Whether you are writing your
application using Ruby, Python, PHP,15 Java, or .Net,16 it doesn’t matter. The compiled JavaS-
cript will work with them all.

Because CoffeeScript compiles down to JavaScript, you can still use any and all of the JavaScript
libraries you currently use. You can use jQuery,17 Zepto,18 Backbone,19 Jasmine,20 and the like,
and they’ll all just work. You don’t hear that too often when talking about new languages.

This all sounds great, I hear you saying, but what are the downsides of using CoffeeScript over
just plain old JavaScript? This is a great question. The answer is, not much. First, although
CoffeeScript is a really nice way to write your JavaScript, it does not let you do anything you
couldn’t already do with JavaScript. I still can’t, for example, create a JavaScript version of
Ruby’s famous method_missing.21 The biggest downside would have to be that it’s another
language for you or the members of your team to learn. Fortunately, this is easily rectified. As
you’ll see, CoffeeScript is incredibly easy to learn.

Finally, should CoffeeScript, for whatever reason, not be right for you or your project, you
can take the generated JavaScript and work from there. So really, you have nothing to lose by
giving CoffeeScript a try in your next project, or even in your current project (CoffeeScript and
JavaScript play very well with each other).

xixPreface

Who is this Book for?
This book is for intermediate- to advanced-level JavaScript developers. There are several reasons
why I don’t think this book is good for those unfamiliar with JavaScript, or for those who only
have a passing acquaintance.

First, this book is not going to teach you about JavaScript. This is a book about CoffeeScript.
Along the way you are certainly going to learn a few bits and bobs about JavaScript (and
CoffeeScript has a knack for making you learn more about JavaScript), but we are not going to
start at the beginning of JavaScript and work our way up.

Example: What does this code do? (source: example.js)

(function() {
 var array, index, _i, _len;

 array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 for (_i = 0, _len = array.length; _i < _len; _i++) {
 index = array[_i];
 console.log(index);
 }

}).call(this);

If you don’t know what the preceding code example does, I recommend that you stop reading
here. Don’t worry, I really want you to come back and keep reading. I just think that you will
get the most out of this book if you already have a good understanding of JavaScript. I will
be covering certain basic areas of JavaScript as we go along, usually to help illustrate a point
or help you to better understand what CoffeeScript is doing. Despite covering certain areas of
JavaScript for clarity, it really is important that you have a fundamental grasp of JavaScript
before we continue. So please, go find a good book on JavaScript (there are plenty out there),
read it, and then join me along our journey to become CoffeeScript gurus.

For those of you who are already JavaScript rock stars, let’s step up your game. This book is
going to teach you how to write cleaner, more succinct, and better JavaScript using the sweet
sugary goodness that is CoffeeScript.

How to read this Book
I have to tried to present the material in this book to help you form building blocks to learning
CoffeeScript. The chapters, in Part I, should be read in order because each chapter will build on
the concepts that we have learned in previous chapters—so please, no jumping around.

As we go through each chapter, you’ll notice a few things at work.

xx Programming in CoffeeScript

First, whenever I introduce some outside library, idea, or concept, I include a footnote to a
website where you can learn further information about that subject. Although I would love to
be able to talk your ear off about things like Ruby, there is not enough space in this book to do
that. So if I mention something and you want to find out more about it before continuing, go
to the bookmarked site, quench your thirst for knowledge, and come back to the book.

Second, as we go through each chapter I will sometimes walk you through the wrong solu-
tion to a problem first. After you see the wrong way to do something, we can then examine it,
understand it, and then work out the correct solution to the problem at hand. A great example
of this is in Chapter 1, “Getting Started,” when we talk about the different ways to compile
your CoffeeScript to JavaScript.

At some points in the book you will come across something like this:

tip some helpful tip here.
These are little tips and tricks that I think might be of value to you.

Finally, throughout the book I will present you with two or three code blocks at a time. I will
first give you the CoffeeScript example followed by the compiled (JavaScript) version of the
same example. If there is any output from the example (and if I think it’s worth showing) I will
include the output from the example, as well. Here’s what that looks like:

Example: (source: example.coffee)

array = [1..10]

for index in array
 console.log index

Example: (source: example.js)

(function() {
 var array, index, _i, _len;

 array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

 for (_i = 0, _len = array.length; _i < _len; _i++) {
 index = array[_i];
 console.log(index);
 }

}).call(this);

xxiPreface

Output: (source: example.coffee)

1
2
3
4
5
6
7
8
9
10

Sometimes there are errors that I want to show you. Here is an example:

Example: (source: oops.coffee)

array = [1..10]

oops! index in array
 console.log index

Output: (source: oops.coffee)

Error: In content/preface/oops.coffee, Parse error on line 3: Unexpected 'UNARY'
 at Object.parseError (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥parser.js:470:11)
 at Object.parse (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥parser.js:546:22)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/coffee-script.
➥js:40:22
 at Object.run (/usr/local/lib/node_modules/coffee-script/lib/coffee-script/
➥coffee-script.js:68:34)
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:135:29
 at /usr/local/lib/node_modules/coffee-script/lib/coffee-script/command.js:110:18
 at [object Object].<anonymous> (fs.js:114:5)
 at [object Object].emit (events.js:64:17)
 at afterRead (fs.js:1081:12)
 at Object.wrapper [as oncomplete] (fs.js:252:17)

How this Book is organized
In an effort to help you get the most from this book, I have split it into two distinct parts.

xxii Programming in CoffeeScript

part i: core coffeescript
The first part of this book is designed to cover the entire CoffeeScript language from top to
bottom. By the end of this part of the book, you should be fully armed to attack any Coffee-
Script project that comes your way, including those in the second part of this book.

Chapter 1, “Getting Started,” introduces the various ways CoffeeScript can be compiled and
run. It also introduces the powerful coffee command-line utility and REPL that ships with
CoffeeScript.

In Chapter 2, “The Basics,” we start to explore what makes CoffeeScript different from
JavaScript. Talk of syntax, variables, scope, and more will lay a strong foundation for the rest
of the book.

Chapter 3, “Control Structures,” focuses on an important part of any language, control struc-
tures such as if and else. You will also learn the differences between some operators in
CoffeeScript and those in JavaScript.

Chapter 4, “Functions and Arguments,” covers the ins and outs of functions in CoffeeScript.
We’ll talk about defining functions, calling functions, and a few extras such as default argu-
ments and splats.

From arrays to objects, Chapter 5, “Collections and Iterations,” shows you how to use, manipu-
late, and iterate over collection objects in CoffeeScript.

Chapter 6, “Classes,” ends the first part of the book by covering classes in CoffeeScript. Define
new classes, extend existing classes, override functions in super classes, and more.

part ii: coffeescript in practice
The second part of this book focuses on using CoffeeScript in practical examples. Through
learning about some of the ecosystem that surrounds CoffeeScript, as well as building a full
application, by the end of Part II your CoffeeScript skills should be well honed.

Chapter 7, “Cake and Cakefiles,” covers the Cake tool that ships with CoffeeScript. You can
use this little tool for creating build scripts, test scripts, and more. We’ll cover all that it has to
offer.

Testing is a very important part of software development, and Chapter 8, “Testing with
Jasmine,” gives a quick tour through one of the more popular CoffeeScript/JavaScript testing
libraries, Jasmine. This chapter will exercise the popular pattern of test-driven development by
writing tests first for a calculator class.

Chapter 9, “Intro to Node.js,” is a quick introduction to the event-driven server-side frame-
work, Node.js. In this chapter we will use CoffeeScript to build a simple HTTP server that will
automatically compile CoffeeScript files into JavaScript files as they are requested by the web
browser.

xxiiiPreface

In Chapter 10, “Example: Todo List Part 1 (Server-side),” we will be building the server-side part
of a todo list application. Building on Chapter 9, we will build an API using the Express.js web
framework and the Mongoose ORM for MongoDB.

In Chapter 11, “Example: Todo List Part 2 (Client-side w/ jQuery),” we will build a client for
the todo list API we built in Chapter 10 using the popular jQuery libary.

Finally, in Chapter 12, “Example: Todo List Part 3 (Client-side w/ Backbone.js),” we will rebuild
the client for the todo list application, this time forsaking jQuery in favor of the client-side
framework, Backbone.js.

installing coffeescript
I am not a big fan of having installation instructions in books, mostly because by the time
the book hits the shelf, the installation instructions are out of date. However, people—and by
people, I mean those who publish books—believe that there should be an installation section
for books. So this is mine.

Installing CoffeeScript is pretty easy. The easiest way to install it is to go to
http://www.coffeescript.org and look at the installation instructions there.

I believe the maintainers of projects like CoffeeScript and Node22 are the best people to keep
the installation instructions up to date for their projects, and their websites are a great place to
find those instructions.

At the time of writing, CoffeeScript was at version: 1.2.0. All examples in this book should work
on that version.

How to run the Examples
You will be able to find and download all the original source code for this book at https://
github.com/markbates/Programming-In-CoffeeScript. As you’ll see, all the examples tell you
which example file to look to. The example files will be in a folder relevant to their respective
chapter.

Unless otherwise indicated, you should be able to run the examples in your terminal, like so:

> coffee example.coffee

So now that you know how to run the examples in this book, as soon as you have CoffeeScript
installed, why don’t you meet me at Chapter 1 and we can get started? See you there.

http://www.coffeescript.org
https://github.com/markbates/Programming-In-CoffeeScript
https://github.com/markbates/Programming-In-CoffeeScript

xxiv Programming in CoffeeScript

notes
 1. http://en.wikipedia.org/wiki/JavaScript

 2. http://en.wikipedia.org/wiki/Ajax_(programming)

 3. http://www.prototypejs.org/

 4. http://documentcloud.github.com/backbone/

 5. http://en.wikipedia.org/wiki/Model–view–controller

 6. http://www.adobe.com/

 7. http://www.apple.com/ios/

 8. http://www.coffeescript.org

 9. http://www.rubyonrails.org

 10. http://www.rubyinside.com/rails-3-1-adopts-coffeescript-jquery-sass-and-
controversy-4669.html

 11. http://en.wikipedia.org/wiki/Ruby_(programming_language)

 12. http://en.wikipedia.org/wiki/Python_(programming_language)

 13. http://en.wikipedia.org/wiki/Java_(programming_language)

 14. http://en.wikipedia.org/wiki/C%2B%2B

 15. http://en.wikipedia.org/wiki/Php

 16. http://en.wikipedia.org/wiki/.NET_Framework

 17. http://www.jquery.com

 18. https://github.com/madrobby/zepto

 19. http://documentcloud.github.com/backbone

 20. http://pivotal.github.com/jasmine/

 21. http://ruby-doc.org/docs/ProgrammingRuby/html/ref_c_object.html#Object.method_
missing

 22. http://nodejs.org

http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Ajax_(programming)
http://www.prototypejs.org/
http://documentcloud.github.com/backbone/
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://www.adobe.com/
http://www.apple.com/ios/
http://www.coffeescript.org
http://www.rubyonrails.org
http://www.rubyinside.com/rails-3-1-adopts-coffeescript-jquery-sass-and-controversy-4669.html
http://www.rubyinside.com/rails-3-1-adopts-coffeescript-jquery-sass-and-controversy-4669.html
http://en.wikipedia.org/wiki/Ruby_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Php
http://en.wikipedia.org/wiki/.NET_Framework
http://www.jquery.com
https://github.com/madrobby/zepto
http://documentcloud.github.com/backbone
http://pivotal.github.com/jasmine/
http://ruby-doc.org/docs/ProgrammingRuby/html/ref_c_object.html#Object.method_missing
http://ruby-doc.org/docs/ProgrammingRuby/html/ref_c_object.html#Object.method_missing
http://nodejs.org

4
Functions and Arguments

In this chapter we are going to look at one of the most essential parts of any language, the
function. Functions allow us to encapsulate reusable and discrete code blocks. Without func-
tions our code would be one long, unreadable, and unmaintainable mess.

I wanted to give you an example of what JavaScript would look like if we were not able to
use or write functions, but I was unable to. Even the simplest example of taking a string and
making it lowercase requires the use of functions in JavaScript.

Because I can’t show you an example devoid of functions, I’ll show you an example of some
CoffeeScript code that could use the help of a function or two, so you can see how important
functions are to helping you keep your code manageable.

Example: (source: no_functions_example.coffee)

tax_rate = 0.0625

val = 100
console.log "What is the total of $#{val} worth of shopping?"
tax = val * tax_rate
total = val + tax
console.log "The total is #{total}"

val = 200
console.log "What is the total of $#{val} worth of shopping?"
tax = val * tax_rate
total = val + tax
console.log "The total is #{total}"

66 Chapter 4 Functions and Arguments

Example: (source: no_functions_example.js)

(function() {
 var tax, tax_rate, total, val;

 tax_rate = 0.0625;

 val = 100;

 console.log("What is the total of $" + val + " worth of shopping?");

 tax = val * tax_rate;

 total = val + tax;

 console.log("The total is " + total);

 val = 200;

 console.log("What is the total of $" + val + " worth of shopping?");

 tax = val * tax_rate;

 total = val + tax;

 console.log("The total is " + total);

}).call(this);

Output: (source: no_functions_example.coffee)

What is the total of $100 worth of shopping?
The total is 106.25
What is the total of $200 worth of shopping?
The total is 212.5

In our example, we are calculating the total value of goods purchased in-state with certain sales
tax. Apart from the banality of the example, you can see that we are repeating our code to
calculate the total value with tax several times.

Let’s refactor our code a bit, add some functions, and try to clean it up.

67 Functions and Arguments

Example: (source: with_functions_example.coffee)

default_tax_rate = 0.0625

calculateTotal = (sub_total, rate = default_tax_rate) ->
 tax = sub_total * rate
 sub_total + tax

val = 100
console.log "What is the total of $#{val} worth of shopping?"
console.log "The total is #{calculateTotal(val)}"

val = 200
console.log "What is the total of $#{val} worth of shopping?"
console.log "The total is #{calculateTotal(val)}"

Example: (source: with_functions_example.js)

(function() {
 var calculateTotal, default_tax_rate, val;

 default_tax_rate = 0.0625;

 calculateTotal = function(sub_total, rate) {
 var tax;
 if (rate == null) rate = default_tax_rate;
 tax = sub_total * rate;
 return sub_total + tax;
 };

 val = 100;

 console.log("What is the total of $" + val + " worth of shopping?");

 console.log("The total is " + (calculateTotal(val)));

 val = 200;

 console.log("What is the total of $" + val + " worth of shopping?");

 console.log("The total is " + (calculateTotal(val)));

}).call(this);

68 Chapter 4 Functions and Arguments

Output: (source: with_functions_example.coffee)

What is the total of $100 worth of shopping?
The total is 106.25
What is the total of $200 worth of shopping?
The total is 212.5

You probably don’t understand everything we just did there, but don’t worry, that’s what this
chapter is for. However, even without knowing the specifics of how functions are defined, and
work, in CoffeeScript, you can see how much cleaner our code is between the two examples.
In the refactored code, we are even able to pass in a different tax rate, should we need to. This
also helps us keep our code DRY1: Don’t Repeat Yourself. Not repeating your code makes for an
easier-to-manage code base with, hopefully, fewer bugs.

Function Basics
We’ll start with the very basics on how to define a function in CoffeeScript. The anatomy of a
very simple function looks like this:

Example: (source: simple_function.coffee)

myFunction = ()->
 console.log "do some work here"

myFunction()

Example: (source: simple_function.js)

(function() {
 var myFunction;

 myFunction = function() {
 return console.log("do some work here");
 };

 myFunction();

}).call(this);

In that example we gave the function a name, myFunction, and a code block to go with it.
The body of the function is the code that is indented below the ->, following the significant
whitespace rules we learned about in Chapter 2, “The Basics.”

The function does not accept any arguments. We know that by the empty parentheses prior to
the ->. When calling a function in CoffeeScript that has no arguments, we are required to use
parentheses, myFunction().

69Function Basics

Because our function has no arguments, we can drop the parentheses entirely when defining it,
like so:

Example: (source: simple_function_no_parens.coffee)

myFunction = ->
 console.log "do some work here"

myFunction()

Example: (source: simple_function_no_parens.js)

(function() {
 var myFunction;

 myFunction = function() {
 return console.log("do some work here");
 };

 myFunction();

}).call(this);

There is one more way we can write this simple function. Because the body of our function is
on only one line, we can collapse the whole function definition to one, like this:

Example: (source: simple_function_one_line.coffee)

myFunction = -> console.log "do some work here"

myFunction()

Example: (source: simple_function_one_line.js)

(function() {
 var myFunction;

 myFunction = function() {
 return console.log("do some work here");
 };

 myFunction();

}).call(this);

All three of the previous code examples produce the same JavaScript and are called in the
same way.

70 Chapter 4 Functions and Arguments

Tip
Although you can write function definitions on one line, I prefer not to. Personally, I don’t find
it that much cleaner or easier to read. Also, by keeping the body of the function on a separate
line, you make it easier to later augment your function with more code.

You should also notice that the last line of each function contains a return keyword.
CoffeeScript adds this automatically for you. Whatever the last line of your function is, that will
be the function’s return value. This is similar to languages such as Ruby. Because CoffeeScript
will automatically add the return for you in the compiled JavaScript, the use of the return
keyword in your CoffeeScript is optional.

Tip
I find that adding the return keyword can sometimes help make the meaning of your code a
bit clearer. Use it where you find it will help make your code easier to read and understand.

Tip
If you want your functions to not return the last line of the function, you’ll have to explicitly give
it a new last line to return. Something like return null or return undefined will do the
trick nicely.

Arguments
Just like in JavaScript, functions in CoffeeScript can also take arguments. Arguments let us pass
objects into the function so that the function can then perform calculations, data manipula-
tion, or whatever our little hearts desire.

In CoffeeScript, defining a function that takes arguments is not much different than in
JavaScript. Inside our parentheses we define a comma-separated list of the names of the argu-
ments we want the function to accept.

Example: (source: function_with_args.coffee)

calculateTotal = (sub_total, rate) ->
 tax = sub_total * rate
 sub_total + tax

console.log calculateTotal(100, 0.0625)

71Arguments

Example: (source: function_with_args.js)

(function() {
 var calculateTotal;

 calculateTotal = function(sub_total, rate) {
 var tax;
 tax = sub_total * rate;
 return sub_total + tax;
 };

 console.log(calculateTotal(100, 0.0625));

}).call(this);

Output: (source: function_with_args.coffee)

106.25

As you can see in our example, we defined our function to take in two arguments and to do
some math with them to calculate a total value. When we called the function, we passed in the
two values we wanted it to use.

In Chapter 2 we discussed briefly the rules around parentheses in CoffeeScript. I want to reiter-
ate one of those rules. Because our function takes arguments, we are allowed to omit the paren-
theses when calling the function. This means we could also write our example like this:

Example: (source: function_with_args_no_parens.coffee)

calculateTotal = (sub_total, rate) ->
 tax = sub_total * rate
 sub_total + tax

console.log calculateTotal 100, 0.0625

Example: (source: function_with_args_no_parens.js)

(function() {
 var calculateTotal;

 calculateTotal = function(sub_total, rate) {
 var tax;
 tax = sub_total * rate;
 return sub_total + tax;
 };

72 Chapter 4 Functions and Arguments

 console.log(calculateTotal(100, 0.0625));

}).call(this);

Output: (source: function_with_args_no_parens.coffee)

106.25

As you can see, CoffeeScript correctly compiled the JavaScript for us, putting those parentheses
back where they are needed.

Tip
The use of parentheses when calling functions is hotly contested in the CoffeeScript world.
Personally, I tend to use them. I think it helps make my code a bit more readable, and it cuts
down on potential bugs where parentheses were misplaced by the compiler. When in doubt,
use parentheses. You won’t regret it.

Default Arguments
In some languages, such as Ruby, it is possible to assign default values to arguments. This
means that if you do not pass in some arguments, for whatever reason, then reasonable default
values can be used in their place.

Let’s revisit our calculator example again. We’ll write it so that the tax rate is set to a default
value should one not be passed in:

Example: (source: default_args.coffee)

calculateTotal = (sub_total, rate = 0.05) ->
 tax = sub_total * rate
 sub_total + tax

console.log calculateTotal 100, 0.0625
console.log calculateTotal 100

Example: (source: default_args.js)

(function() {
 var calculateTotal;

 calculateTotal = function(sub_total, rate) {
 var tax;

73Default Arguments

 if (rate == null) rate = 0.05;
 tax = sub_total * rate;
 return sub_total + tax;
 };

 console.log(calculateTotal(100, 0.0625));

 console.log(calculateTotal(100));

}).call(this);

Output: (source: default_args.coffee)

106.25
105

When defining our function, we told CoffeeScript to set the default value of the tax_rate
argument equal to 0.05. When we first call the calculateTotal function, we pass in a tax_
rate argument of 0.0625; the second time we omit the tax_rate argument altogether, and
the code does the appropriate thing and uses 0.05 in its place.

We can take default arguments a step further and have them refer to other arguments. Consider
this example:

Example: (source: default_args_referring.coffee)

href = (text, url = text) ->
 html = "#{text}"
 return html

console.log href("Click Here", "http://www.example.com")
console.log href("http://www.example.com")

Example: (source: default_args_referring.js)

(function() {
 var href;

 href = function(text, url) {
 var html;
 if (url == null) url = text;
 html = "" + text + "";
 return html;
 };

74 Chapter 4 Functions and Arguments

 console.log(href("Click Here", "http://www.example.com"));

 console.log(href("http://www.example.com"));

}).call(this);

Output: (source: default_args_referring.coffee)

Click Here
http://www.example.com

Should no one pass in the url argument in our example, we will set it equal to the text argu-
ment that was passed in.

It is also possible to use functions as default values in the argument list. Because the default
value will be called only if there is no argument passed in, there is no performance concern.

Example: (source: default_args_with_function.coffee)

defaultRate = -> 0.05

calculateTotal = (sub_total, rate = defaultRate()) ->
 tax = sub_total * rate
 sub_total + tax

console.log calculateTotal 100, 0.0625
console.log calculateTotal 100

Example: (source: default_args_with_function.js)

(function() {
 var calculateTotal, defaultRate;

 defaultRate = function() {
 return 0.05;
 };

 calculateTotal = function(sub_total, rate) {
 var tax;
 if (rate == null) rate = defaultRate();
 tax = sub_total * rate;
 return sub_total + tax;
 };

75Splats...

 console.log(calculateTotal(100, 0.0625));

 console.log(calculateTotal(100));

}).call(this);

Output: (source: default_args_with_function.coffee)

106.25
105

Tip
When using default arguments it is important to note that they must be at the end of the argu-
ment list. It is okay to have multiple arguments with defaults, but they all must be at the end.

Splats...
Sometimes when developing a function, we are not sure just how many arguments we are
going to need. Sometimes we might get one argument; other times we might get a hundred. To
help us easily solve this problem, CoffeeScript gives us the option of using splats when defining
the argument list for a function. Splatted arguments are denoted by placing an ellipsis (...)
after the method definition.

Tip
A great way to remember how to use splats is to treat the ... suffix as if you were saying
etc... Not only is that easy to remember, but if you use etc... in your code, you’ll look cool.

When would you use splats? Splats can be used whenever your function will be taking in a vari-
able number of arguments. Before we take a look at a detailed example, let’s look quickly at a
simple function that takes a splatted argument:

Example: (source: splats.coffee)

splatter = (etc...) ->
 console.log "Length: #{etc.length}, Values: #{etc.join(', ')}"

splatter()
splatter("a", "b", "c")

76 Chapter 4 Functions and Arguments

Example: (source: splats.js)

(function() {
 var splatter,
 __slice = Array.prototype.slice;

 splatter = function() {
 var etc;
 etc = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
 return console.log("Length: " + etc.length + ", Values: " + (etc.join(', ')));
 };

 splatter();

 splatter("a", "b", "c");

}).call(this);

Output: (source: splats.coffee)

Length: 0, Values:
Length: 3, Values: a, b, c

As you can see, whatever arguments we pass into our function automatically get put into an
array, and should we not send any arguments we get an empty array.

Tip
Splats are a great example of something that can be done in JavaScript but would require a lot
of boilerplate code to implement. Look at the JavaScript output of a CoffeeScript splatted argu-
ment and you’ll agree boilerplate code is no fun to write.

Unlike other languages that support a similar construct, CoffeeScript does not force you to
only use splats as the last argument in the argument list. In fact, splatted arguments can appear
anywhere in your argument list. A small caveat is that you can have only one splatted argu-
ment in the argument list.

To help illustrate how splats can be used in any part of the argument list, let’s write a method
that will take some arguments and spit out a string. When building this string, we make sure
that the first and last arguments are uppercased; any other arguments will be lowercased. Then
we’ll concatenate the string using forward slashes.

77Splats...

Example: (source: splats_arg_join.coffee)

joinArgs = (first, middles..., last) ->
 parts = []

 if first?
 parts.push first.toUpperCase()

 for middle in middles
 parts.push middle.toLowerCase()

 if last?
 parts.push last.toUpperCase()

 parts.join('/')

console.log joinArgs("a")
console.log joinArgs("a", "b")
console.log joinArgs("a", "B", "C", "d")

Example: (source: splats_arg_join.js)

(function() {
 var joinArgs,
 __slice = Array.prototype.slice;

 joinArgs = function() {
 var first, last, middle, middles, parts, _i, _j, _len;
 first = arguments[0], middles = 3 <= arguments.length ? __slice.call(arguments, 1,
➥_i = arguments.length - 1) : (_i = 1, []), last = arguments[_i++];
 parts = [];
 if (first != null) parts.push(first.toUpperCase());
 for (_j = 0, _len = middles.length; _j < _len; _j++) {
 middle = middles[_j];
 parts.push(middle.toLowerCase());
 }
 if (last != null) parts.push(last.toUpperCase());
 return parts.join('/');
 };

 console.log(joinArgs("a"));

 console.log(joinArgs("a", "b"));

 console.log(joinArgs("a", "B", "C", "d"));

}).call(this);

78 Chapter 4 Functions and Arguments

Output: (source: splats_arg_join.coffee)

A
A/B
A/b/c/D

I admit that is a bit of a heavy example, but it illustrates how splats work. When we call the
joinArgs function, the first argument we pass into the function call gets assigned to the first
variable, the last argument we pass in gets assigned to the last variable, and if any other argu-
ments are passed in between the first and the last arguments, those are put into an array and
assigned to the middles variable.

Tip
We could have written our function to just take a splatted argument and extract the first and
last elements from the middles array, but this function definition means we don’t have to write
all that code. Happy days.

Finally, when dealing with splats, you might have an array that you want passed in as indi-
vidual arguments. That is possible.

Let’s take a quick look at an example:

Example: (source: splats_array.coffee)

splatter = (etc...) ->
 console.log "Length: #{etc.length}, Values: #{etc.join(', ')}"

a = ["a", "b", "c"]
splatter(a)
splatter(a...)

Example: (source: splats_array.js)

(function() {
 var a, splatter,
 __slice = Array.prototype.slice;

 splatter = function() {
 var etc;
 etc = 1 <= arguments.length ? __slice.call(arguments, 0) : [];
 return console.log("Length: " + etc.length + ", Values: " + (etc.join(', ')));
 };

 a = ["a", "b", "c"];

79Notes

 splatter(a);

 splatter.apply(null, a);

}).call(this);

Output: (source: splats_array.coffee)

Length: 1, Values: a,b,c
Length: 3, Values: a, b, c

Using our earlier splatter example, we can try first passing in an array, but as you can see,
the splatter function sees the array as a single argument, because that is what it is. However,
if we append ... to the array as we pass it into our function call, the CoffeeScript will split up
the array into separate arguments and pass them into the function.

Wrapping Up
There you have it—everything you’ve ever wanted to know about functions in CoffeeScript!
First we looked at how to define a simple function; in fact, we saw several ways to define a
function in CoffeeScript. We then took a look at how arguments to functions are defined and
how to call a function, including a recap of when and where you do and do not have to use
parentheses when calling a function. We also took a look at default arguments, one of my
favorite features of CoffeeScript.

Finally, we explored splats and how they help us write functions that take variable arguments.

With our nickel tour of functions and arguments over with, we can move on to the next stop,
Chapter 5, “Collections and Iterations.” So go grab a cold one, and we’ll meet there. Ready?

Notes
 1. http://en.wikipedia.org/wiki/DRY

http://en.wikipedia.org/wiki/DRY

Index

@ alias, 51-52

=> (fat arrow), 154-156

\ (back slashes), 5

/ (forward slashes), 76

A
adding

compilers to browsers, 6-7

form to client-side todo list
application, 242-247

jQuery to client-side todo list
application, 240-241

views to todo list application,
268-273

aliases, 46-47

@ alias, 51-52

and alias, 49-50

Boolean aliases, 50-51

not alias, 48-49

or alias, 49-50

and alias, 49-50

anonymous wrapper function, 20-22

APIs, writing todo API, 225-226

app server

building with Node.js, 199-213

testing with Node.js, 214-215

278 arguments

arguments, 70-72

default arguments, 72-75

splats, 75-79

arithmetic operators, 33-35

arrays, 81-90

destructing assignment, 86-90

iterating, 105-106

slicing, 92-94

swapping assignment, 85-86

testing inclusion, 83-84

values

injecting, 95-96

replacing, 94-95

Ashkenas, Jeremy, 255

assignment operators, 35-39

asynchronous programming, 151-154

attributes, retrieving from objects,
101-103

B
back slashes (\), 5

Backbone, 255-256

configuring for todo list
application, 256-259

todo model, writing, 256-259

todos

creating, 265-268

listing with view, 263-265

bare flag, 9-10

beforeEach function, 181-187

binding, 151-158

block comments, 30

Boolean aliases, 50-51

Bootstrap, building client-side todo list
application, 237-240

browsers, in-browser compilation, 6-7

build task (Cake), 167

building

objects, 96-101

todo list application

client-side, 237-252

controller, cleaning up, 232-236

Express, setting up, 218-222

MongoDB, setting up, 222-225

server-side, 217

todo API, writing, 225-226

by keyword, 106-107

C
Cake, 161

tasks

invoking, 167-169

options, 163-167

running, 163

writing, 162-163

Cakefiles, 161

calling functions, 68-70

classes

defining, 123-124

extending, 137-145

inheritance, 137-145

scope, 127-137

class-level functions, 145-150

clean task (Cake), 167

cleaning up todo list application
controller, 232-236

client-side todo list application, building,
237-252

closing REPL, 5

279Express, building todo list application

code, not repeating, 68

coffee command, 8-9

CoffeeScript, declaring variables, 19-20

collections

arrays

destructing assignment, 86-90

injecting values, 95-96

iterating, 105-106

replacing values, 94-95

slicing, 92-94

swapping assignment, 85-86

testing inclusion, 83-84

ranges, reverse ranges, 91-92

command-line compilation, 7-8

comments, 29-30

block comments, 30

inline comments, 29-30

comparison operators, 39-42

compile flag, 7-8

compiling

command-line compilation, 7-8

in-browser compilation, 6-7

comprehensions, 116-118

concatenation, forward slashes (/), 76

conditional statements

if statement, 53-54

if/else if statement, 56-58

if/else statement, 54-56

inline conditionals, 60

switch case statements, 60-63

unless statement, 58-60

configuring

Backbone for todo list application,
256-259

Jasmine, 172-175

constructor function, 126-127

creating objects, 96-101

custom matchers (Jasmine), defining,
187-190

D
declaring variables

in CoffeeScript, 19-20

in JavaScript, 18-19

default arguments, 72-75

defining

Cake tasks, 162-163

classes, 123-124

functions, 68-70

arguments, 70-72

default arguments, 72-75

parentheses, 72

matchers (Jasmine), 187-190

regular expressions, 31

deleting

models from views (todo list
application), 273-274

todos in client-side todo list
application, 252

“describe” block (Jasmine), writing, 175

destructing assignment, 86-90

do keyword, 119-120

dot notation, 101

E
executing CoffeeScript files, 11

existential operator, 43-46

Express, building todo list application,
218-222

280 extended regular expressions

extended regular expressions, 31

extending classes, 137-145

F
fat arrow (=>), 154-156

flags

bare flag, 9-10

compile flag, 7-8

output flag, 9

print flag, 10

watch flag, 10-11

for loops

by keyword, 106-107

when keyword, 107, 109-110

form, adding to client-side todo list
application, 242-247

function keyword, 16

functions, 65-68

anonymous wrapper function,
20-22

arguments, 70-72

default arguments, 72-75

splats, 75-79

beforeEach, 181-187

binding, 151-158

class-level, 145-150

constructor, 126-127

defining, 68-70, 125-126

overriding, 142-145

prototype functions, 110, 150-151

G-H
Hello World program, Node.js, 195-197

heredocs, 28-29

HTML files in-browser compilation, 6-7

I
if statement, 53-54

if/else if statement, 56-58

if/else statement, 54-56

in-browser compilation, 6-7

inheritance, 137-145

injecting array values, 95-96

inline comments, 29-30

inline conditionals, 60

installing

Jasmine, 172

Node.js, 194-195

interpolation, string interpolation, 23-25

iterating arrays, 105-106

J-K
Jasmine

“describe” block, writing, 175

installing, 172

matchers, defining, 187-190

setting up, 172-175

testing with, 175-176

beforeEach function, 181-187

unit testing, 176-181

281overriding functions

new keyword, 124

Node.js, 193-194

app server

building, 199-213

testing, 214-215

Hello World program, 195-197

installing, 194-195

streaming APIs, writing, 197-199

NPM (Node Package Management), 193

Express, setting up, 218-222

O
objects

attributes, retrieving, 101-103

building, 96-101

destructing assignment, 103-105

iterating, 108-113

operators

aliases, 46-47

@ alias, 51-52

and alias, 49-50

Boolean aliases, 50-51

not alias, 48-49

or alias, 49-50

arithmetic operators, 33-35

assignment operators, 35-39

comparison operators, 39-42

existential operator, 43-46

string operators, 42-43

options for Cake tasks, 163-167

or alias, 49-50

output flag, 9

overriding functions, 142-145

JavaScript

Backbone, 255-256

todo model, writing, 256-259

todos, listing with a view,
263-265

Node.js, 193-194

app server, building, 199-213

app server, testing, 214-215

Hello World program, 195-197

installing, 194-195

streaming APIs, writing, 197-199

variables, declaring, 18-19

jQuery, adding to client-side todo list
application, 240-241

keywords, var, 19

L
listing existing todos in todo list

application, 247-248

literal strings, 25-28

long options, 163

loops

comprehensions, 116-118

do keyword, 119-120

for loops

by keyword, 106-107

when keyword, 107, 109-110

until loops, 114-115

while loops, 113-114

M-N
MongoDB, setting up, 222-225

Mongoose, finding todos in todo list
application, 227-228

282 parentheses

P
parentheses, 16-17

comprehensions, 117

functions, calling, 72

print flag, 10

prototype function, 110

prototype functions, 150-151

Q-R
querying todo list application, 227-228

quitting REPL, 5

ranges, 90-96

reverse ranges, 91-92

regular expressions, extended regular
expressions, 31

REPL, 3-5

\ (back slashes), 5

Node.js, 194

quitting, 5

replacing array values, 94-95

retrieving attributes from objects,
101-103

reverse ranges, 91-92

running Cake tasks, 163

S
scope in classes, 127-137

servers (Node.js), creating, 195-197

server-side, building todo list
application, 217

setting up Jasmine, 172-175

short options, 163

significant whitespace, 14-16

slicing arrays, 92-94

splats, 75-79

streaming APIs, writing with Node.js,
197-199

string interpolation, 23-25

string operators, 42-43

strings

heredocs, 28-29

literal strings, 25-28

switch case statements, 60-63

synchronous programming, 151

syntax

function keyword, 16

parentheses, 16-17

ranges, 90

significant whitespace, 14-16

T
tasks

Cake

invoking, 167-169

options, 163-167

running, 163

writing, 162-163

TDD (test-driven development), 171

terminating REPL, 5

testing

with Jasmine, 175-176

beforeEach function, 181-187

matchers, defining, 187-190

TDD, 171

unit testing, 176-181

testing inclusion, Node.js app server,
214-215

283

U
unit testing with Jasmine, 176-181

unless statement, 58-60

until loops, 114-115

updating

todo list application, 230-232

todos in client-side todo list
application, 248-251

V
var keyword, 19

variables, declaring

in CoffeeScript, 19-20

in JavaScript, 18-19

views

adding to todo list application,
268-273

models, deleting from (todo list
application), 273-274

W-X-Y-Z
watch flag, 10-11

when keyword, 109-110

while loops, 113-114

writing

Cake tasks, 162-163

“describe” block (Jasmine), 175

todo API, 225-226

todo model with Backbone,
256-259

todo list application

Backbone

configuring, 256-259

todos, creating, 265-268

todos, listing with a view,
263-265

client-side

building, 237-252

exisiting todos, listing, 247-248

form, creating, 242-247

jQuery, adding, 240-241

todos, deleting, 252

todos, updating, 248-251

controller, cleaning up, 232-236

server-side

building, 217

todo API, writing, 225-226

todos

creating, 228-230

finding, 227-228

updating, 230-232

views

adding, 268-273

deleting models from, 273-274

todo list application, building

Express, setting up, 218-222

MongoDB, setting up, 222-225

Twitter Bootstrap

todo list application

client-side, building, 237-240

	Table of Contents
	Dedication
	Acknowledgments
	About the Author
	Preface
	What Is CoffeeScript?
	Who Is This Book For?
	How to Read This Book
	How This Book Is Organized
	Part I: Core CoffeeScript
	Part II: CoffeeScript in Practice

	Installing CoffeeScript
	How to Run the Examples
	Notes

	4 Functions and Arguments
	Function Basics
	Arguments
	Default Arguments
	Splats...
	Wrapping Up
	Notes

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M-N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

