

401

16

J2EE/EJB

A Case Study of an Industry-Standard
Computing Infrastructure

with Anna Liu

Write Once, Run Everywhere

—Sun Microsystems’s mantra for Java

Write Once, Test Everywhere

—Cynical Java programmers

This chapter presents an overview of Sun Microsystems’s Java 2 Enterprise Edi-
tion (J2EE) architecture specification, as well as an important portion of that
specification, Enterprise JavaBeans (EJB). J2EE provides a standard description
of how distributed object-oriented programs written in Java should be designed
and developed and how the various Java components can communicate and inter-
act. EJB describes a server-side component-based programming model. Taken as
a whole, J2EE also describes various enterprise-wide services, including naming,
transactions, component life cycle, and persistence, and how these services
should be uniformly provided and accessed. Finally, it describes how vendors
need to provide infrastructure services for application builders so that, as long as
conformance to the standard is achieved, the resultant application will be portable
to all J2EE platforms.

J2EE/EJB is one approach to building distributed object-oriented systems.
There are, of course, others. People have been building distributed object-oriented
systems using the Object Management Group’s (OMG) Common Object Request

Note:

 Anna Liu is a senior research engineer at the Software Architecture and Technologies
Group, CSIRO, Sydney, Australia. She is also an adjunct senior academic at the University
of Sydney.

Bass.book Page 401 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

402

Part Four From One System to Many 16

—J2EE/EJB

Broker Architecture (CORBA) during the last decade. In the CORBA model, an
object request broker (ORB) allows objects to publish their interfaces and allows
client programs (and perhaps other objects) to locate these remote objects any-
where on the computer network and to request services from them. Microsoft,
too, has a technology, .NET, for building distributed systems. The .NET architec-
ture has similar provisions for building distributed object systems for Windows-
based platforms.

We will start the chapter by looking at the business drivers that led to the
creation of an industry standard architecture for distributed systems. Then we
will discuss how the J2EE/EJB architecture addresses such needs. We will look
at the typical quality requirements of Web-based applications and see how the
J2EE/EJB architecture fulfills them.

16.1 Relationship to the Architecture Business Cycle

In the 1980s, the price/performance ratio for personal computers was gradually
dovetailing with that of high-end workstations and “servers.” This newly avail-
able computing power and fast network technology enabled the widespread use
of distributed computing.

However, rival computer vendors kept producing competing hardware, oper-
ating systems, and network protocols. To an end-user organization, such product
differentiation presented problems in distributed computing. Typically, organiza-
tions invested in a variety of computing platforms and had difficulty building dis-
tributed systems on top of such a heterogeneous environment.

The Object Management Group’s Common Object Request Broker Archi-
tecture was developed in the early 1990s to counter this problem. The CORBA
model provided a standard software platform on which distributed objects could
communicate and interact with each other seamlessly and transparently. In this
case, an ORB allows objects to publish their interfaces, and it allows client pro-
grams to locate them anywhere on the computer network and to request services
from them.

However, CORBA was not the only viable distributed object technology for
very long. Sun Microsystems soon pushed the Java programming language,
which supports remote method invocation (RMI) and so, in effect, builds Java-
specific object request broker functionality into every Java Virtual Machine
(JVM). Java has the appeal of portability. Once a Java application is developed,
its code is portable across all JVMs, which have implementations on most major
hardware platforms.

Sun Microsystems did not stop with Java. J2EE was developed in the late
1990s using Java RMI as an underlying communication infrastructure. It became
an industry-standard specification for the software community to more easily
build distributed object systems using the Java programming language. J2EE soon

Bass.book Page 402 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Requirements and Qualities

403

gathered momentum as software vendors rushed to implement it; Java program-
mers around the world showed great enthusiasm in developing e-commerce
applications in “Internet time” using the J2EE framework. J2EE thus competed
directly against CORBA as well as against the proprietary Microsoft technologies.

The ABC for J2EE/EJB is shown in Figure 16.1.

16.2 Requirements and Qualities

What are some of the goals of Sun Microsystems in developing the J2EE/EJB spec-
ification? How are these goals reflected in the qualities of the J2EE/EJB architecture?

THE WEB AND J2EE

In response to the increasing demands of Internet-enabled business systems, more
and more enterprise information systems are constructed using distributed object
technology. These systems require scalability, high performance, portability, and
security. They need to handle large volumes of requests generated by the Internet
community and must be able to respond to these requests in a timely fashion.

FIGURE 16.1

The ABC as it pertains to Sun Microsystems and J2EE/EJB

Requirements
(Qualities)
Portability
Transparency
Evolvability
Interoperability
Extensibility

Architect’s Influences

Stakeholders
Software Community

Developing Organization
Software Vendors

Technical Environment
OO Paradigm
Distributed Computing
Java Programming

Architect’s Experience
Varied

Architect(s)
Sun

Microsystems

System

Architecture
J2EE/EJB

Language

Bass.book Page 403 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

404

Part Four From One System to Many 16

—J2EE/EJB

For many e-business organizations, the most challenging thing right now is a
successful Web site. Successful sites attract large volumes of hits, and large vol-
umes of hits stress the site software, as mentioned in Chapter 13. On the Internet,
it is not uncommon for sites to receive millions or many millions of accesses
daily. Such numbers might not be too frightening if user requests are spread out
evenly during the day, but this is often not the case. Requests often arrive in
bursts, which place greater demands on Web site software.

In fact, industry folklore is rife with stories of e-business sites failing under
unexpected client surges. For example, the Wimbledon Tennis tournament expe-
rienced almost 1 billion Web accesses in 1999, with 420,000 hits per minute
(7,000 per second) during one match. Bear in mind, that the Internet is currently
used by only a small portion of the globe’s population; things have just started.

In this sense, then, the Internet has forever changed the requirements for
enterprise software systems. The very nature of the Internet brings new pressures
to bear on applications that are not commonly experienced by traditional net-
worked information systems. The impact of quality attribute requirements, such
as manageability, scalability, security, and availability, are radically increased
when applications are exposed to potentially limitless numbers of concurrent
users. Table 16.1 describes the quality requirements that any Web-based applica-
tion must fulfill.

Sun Microsystems, in developing J2EE, aimed to provide a basis for tech-
nology that supports the construction of such systems. In particular, as part of the
J2EE specification, EJB aims to

�

provide a component-based architecture for building distributed object-
oriented business applications in Java. EJBs make it possible to build dis-
tributed applications by combining components developed with tools from
different vendors.

�

make it easier to write applications. Application developers do not have to
deal with low-level details of transaction and state management, multi-
threading, and resource pooling.

TABLE 16.1

Typical Web-Based Application Quality Attribute Requirements

Quality

Requirement

Scalability System should support variations in load without human intervention

Availability/
Reliability

System should provide 24/7 availability with very small downtime periods

Security System should authenticate users and protect against unauthorized
access to data

Usability Different users should be able to access different content in different forms

Performance

Users should be provided with responsive systems

Bass.book Page 404 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Requirements and Qualities

405

More specifically, the EJB architecture does the following:

�

Addresses the development, deployment, and runtime aspects of an enter-
prise application’s life cycle

�

Defines the contracts that enable tools from multiple vendors to develop and
deploy components that can interoperate at runtime

�

Interoperates with other Java APIs

�

Provides interoperability between enterprise beans and non-Java
applications

�

Interoperates with CORBA

J2EE makes it possible to re-use Java components in a server-side infra-
structure. With appropriate component assembly and deployment tools, the aim is
to bring the ease of programming associated with GUI-builder tools (like Visual
Basic) to building server applications. And, by providing a standard framework
for J2EE products based on a single language (Java), J2EE component-based
solutions are, in theory at least, product independent and portable between the
J2EE platforms provided by various vendors.

Thus, in addition to the core requirements given in Table 16.1, Sun added a
set of requirements that address the activities of a programming team. These
additional quality attribute requirements are listed in Table 16.2.

TABLE 16.2

Sun’s Quality Attribute Requirements for J2EE

Quality Attribute

Requirement

Portability J2EE should be able to be implemented with minimal work on a
variety of computing platforms

Buildability Application developers should be provided with facilities to man-
age common services such as transactions, name services, and
security

Balanced
Specificity

Detailed enough to provide meaningful standard for component
developers, vendors, and integrators, but general enough to allow
vendor-specific features and optimizations

Implementation
Transparency

Provide complete transparency of implementation details so that
client programs can be independent of object implementation
details (server-side component location, operating system, ven-
dor, etc.)

Interoperability Support interoperation of server-side components implemented
on different vendor implementations; allow bridges for interoper-
ability of the J2EE platform to other technologies such as
CORBA and Microsoft component technology

Evolvability Allow developers to incrementally adopt different technologies

Extensibility Allow incorporation of relevant new technologies as they are

developed

Bass.book Page 405 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

406

Part Four From One System to Many 16

—J2EE/EJB

16.3 Architectural Solution

Sun Microsystem’s approach to satisfying the quality attributes discussed in the
previous section is through the specification of two major architectures: J2EE and
the EJB. J2EE describes the overall multi-tier architecture for designing, devel-
oping, and deploying component-based, enterprise-wide applications. EJB is a
key part of J2EE technology, reflecting the deeper technical requirements of
buildability, extensibility, and interoperability. Both J2EE and EJB reflect bal-
anced specificity—that is, the ability for competitors to develop differentiation on
the offerings while building them on a common base.

The major features of the J2EE platform are

�

A multi-tiered distributed application model

�

A server-side component model

�

Built-in transaction control

A simple deployment view of the J2EE multi-tier model is given in Figure 16.2.
The elements of this architecture are further described in Table 16.3.

FIGURE 16.2

 Deployment view of the J2EE multi-tier architecture

Browser-Based
Client
Applications
(HTML,
applets,
DHTML/
Scripting)

Application
Components

EJBs

ERPs

Mainframe
TP System

Container
Services
Components
(e.g., JTS,

EIS TierBusiness
Component TierClient Tier

CRMs

RDBMS

Windows/
COM Client
Applications

Java Client
Applications

Web Tier

RMIHTTP

Java RMI

CAS COM Bridge,
RMI over IIOP

Servlets
JSPs

Web
Server

JDBC

Key: UML

 JMS)

Bass.book Page 406 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution

407

The role of each tier is as follows.

�

Client tier.

In a Web application, the client tier comprises an Internet browser
that submits HTTP requests and downloads HTML pages from a Web server.
In an application not deployed using a browser, standalone Java clients or
applets can be used; these communicate directly with the business compo-
nent tier. (See Chapter 17 for an example of using J2EE without a browser.)

�

Web tier.

The Web tier runs a Web server to handle client requests and
responds to these requests by invoking J2EE servlets or JavaServer Pages

TABLE 16.3

Summary of J2EE Technology Components and Services

Component/Service

Description

Enterprise JavaBeans
(EJB) Architecture

Specification defines an API that allows developers to create,
deploy, and manage enterprise-strength server-side compo-
nent-based applications

JavaServer Pages (JSP) Provides a method for creating dynamic Web content

Java Servlet Provides Web application developers with a mechanism for
extending the functionality of a Web server

Java Messaging Service
(JMS)

Provides J2EE applications with support for asynchronous
messaging using either point-to-point (one-to-one) or publish-
subscribe (many to many) styles of interaction; messages
can be configured to have various qualities of service associ-
ated with them, ranging from best effort to transactional

Java Naming and
Directory Interface
(JNDI)

J2EE’s directory service allows Java client and Web-tier serv-
lets to retrieve references to user-defined objects such as EJBs
and environment entries (e.g., location of a JDBC driver)

Java Transaction
Service (JTS)

Makes it possible for EJBs and their clients to participate in
transactions; updates can be made to a number of beans in
an application, and JTS makes sure all changes commit or
abort at the end of the transaction; relies on JDBC-2 drivers
for support of the XA protocol and hence the ability to perform
distributed transactions with one or more resource managers

J2EE Connector
Architecture (JCA)

Defines a standard architecture for connecting the J2EE plat-
form to heterogeneous Enterprise Information Systems,
including packaged applications such as Enterprise Resource
Planning (ERP) and Customer Relationship Management
(CRM) systems

Client Access Services
COM Bridge

Allows integration between COM and J2EE applications
across a network; allows access to J2EE server-side compo-
nents by COM-enabled client applications

RMI over IIOP Provides developers with an implementation of Java RMI API
over the OMG’s industry-standard Internet Inter-ORB Proto-
col (IIOP); developers can write remote interfaces between
clients and servers and implement them using Java technol-
ogy and the Java RMI APIs

Java Database

Connectivity (JDBC)
Provides programmers with a uniform interface to a wide
range of relational databases and provides a common base

on which higher-level tools and interfaces can be built

Bass.book Page 407 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

408

Part Four From One System to Many 16

—J2EE/EJB

(JSPs). Servlets are invoked by the server depending on the type of user
request. They query the business logic tier for the required information to
satisfy the request and then format the information for return to the user via
the server. JSPs are static HTML pages that contain snippets of servlet code.
The code is invoked by the JSP mechanism and takes responsibility for for-
matting the dynamic portion of the page.

�

Business component tier.

The business components comprise the core busi-
ness logic for the application. They are realized by EJBs (the software com-
ponent model supported by J2EE). EJBs receive requests from servlets in
the Web tier, satisfy them usually by accessing some data sources, and
return the results to the servlet. EJB components are hosted by a J2EE envi-
ronment known as the EJB container, which supplies a number of services
to the EJBs it hosts including transaction and life-cycle management, state
management, security, multi-threading, and resource pooling. EJBs simply
specify the type of behavior they require from the container at runtime and
then rely on the container to provide the services. This frees the application
programmer from cluttering the business logic with code to handle system
and environmental issues.

�

Enterprise information systems tier.

This typically consists of one or more
databases and back-end applications like mainframes and other legacy systems,
which EJBs must query to process requests. JDBC drivers are typically used
for databases, which are most often Relational Database Management Sys-
tems (RDBMS).

THE EJB ARCHITECTURAL APPROACH

The remainder of this chapter focuses on the Enterprise JavaBeans architecture,
which defines a standard programming model for constructing distributed object-
oriented server-side Java applications. Because this programming model is stan-
dard, many beans that prepackage useful functionality can be (and have been)
written. The EJB programmer’s job is to bundle these packages with any applica-
tion-specific functionality to create a complete application.

Not unlike J2EE, EJBs aim at realizing one of Java’s major design princi-
ples—the oft-quoted “Write Once, Run Anywhere” mantra. The JVM allows a
Java application to run on any operating system. However, server components
require additional services that are not supplied directly by the JVM, such as
transaction and security services. In J2EE and EJB, these services are supplied
through a set of standard vendor-independent interfaces that provide access to the
additional supporting infrastructure, which together form the services available in
an application server.

A J2EE-compliant application server provides an EJB

container

to manage
the execution of application components. In practical terms, a container provides
an operating system process that hosts one or (usually) more EJB components.

Bass.book Page 408 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution

409

Figure 16.3 shows the relationship between an application server, a container,
and the services provided. In brief, when a client invokes a server component the
container automatically allocates a thread and invokes an instance of the compo-
nent. The container manages all resources on the component’s behalf and man-
ages all interactions between the component and the external systems.

The EJB component model

defines the basic architecture of an EJB compo-
nent, specifying the structure of its interfaces and the mechanisms by which it
interacts with its container and other components. The model also provides guide-
lines for developing components that can work together to form a larger application.

The EJB version 1.1 specification defines two main types of components:

session beans

and

entity beans

.

�

Session beans

 typically contain business logic and provide services for cli-
ents. The two types of session bean are known as

stateless

 and

stateful

.
– A

stateless session bean

 is defined as not being

conversational

 with
respect to its calling process. This means that it does not keep any state
information on behalf of any client. A client will get a reference to a state-
less session bean in a container and can use it to make many calls on an
instance of the bean. However, between each successive service invoca-
tion, a client is not guaranteed to bind to any particular stateless session
bean instance. The EJB container delegates client calls to stateless session
beans

as needed

, so the client can never be certain which bean instance it

FIGURE 16.3

Example deployment view of the EJB architecture

J2EE Application Server

<<EJB>>

<<EJB>>

<<EJB>>

JNDI

Client Database

Home

Remote

EJB Container

Key: UML

Bass.book Page 409 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

410

Part Four From One System to Many 16

—J2EE/EJB

will actually talk to. This makes it meaningless to store client-related state
in a stateless session bean.

– A

stateful session bean

 is said to be conversational with respect to its call-
ing process and therefore can maintain state information about the con-
versation. Once a client gets a reference to a stateful session bean, all
subsequent calls to the bean using this reference are guaranteed to go to
the same bean instance. The container creates a new, dedicated stateful
session bean for each client that creates a bean instance. Thus, clients can
store any state information they wish in the bean and can be assured that it
will still be there the next time they access that bean. EJB containers
assume responsibility for managing the life cycle of stateful session
beans. The container writes out a bean’s state to disk if it has not been
used for a while and automatically restores the state when the client
makes a subsequent call on the bean. This mechanism is known as

passi-
vation

and

activation

 of the stateful bean. We will discuss passivation in
more detail later.

�

Entity beans

 are typically used for representing business data objects. The
data members in an entity bean map directly to some data items stored in an
associated database. Entity beans are usually accessed by a session bean that
provides business-level client services. There are two types of entity bean,

container-managed persistence

 and

bean-managed persistence

. Persistence
in this context refers to the way in which a bean’s data (usually a row in a
relational database table) is read and written.
– With

container-managed persistence entity beans

, the data the bean rep-
resents is mapped automatically to the associated persistent data store
(e.g., a database) by the container. The container is responsible for load-
ing the data to the bean instance and writing changes back to the persis-
tent data storage at appropriate times, such as the start and end of a
transaction. Container-managed persistence relies on container-provided
services and requires no application code—the container in fact generates
the data access code so it is easy to implement.

– With

bean-managed persistence entity beans

, the bean code itself is
responsible for accessing the persistent data it represents, typically using
handcrafted JDBC calls. Bean-managed persistence gives the bean dev-
eloper the flexibility to perform persistence operations that are too com-
plicated for the container or to use a data source not supported by the
container—for example, a custom or legacy database. While bean-managed
persistence requires more programmer effort to implement, it can some-
times provide opportunities to optimize data access and, in such cases,
may provide better performance than container-managed persistence.

Table 16.4 summarizes how the EJB architecture supports Sun’s key quality
attribute requirements for the overall J2EE architecture. An example deployment
view of the J2EE/EJB architecture is illustrated in Figure 16.4.

Bass.book Page 410 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution

411

TABLE 16.4

How EJB Supports Sun’s J2EE Quality Attribute Requirements

Goal

How Achieved

Tactics Used

Availability/
Reliability

J2EE-compliant systems provide ready-to-use
transaction services that enhance availability
and reliability of the application by providing
built-in failure recovery mechanisms

Heartbeat
Transactions
Passive redundancy

Balanced
Specificity

EJB services specified in terms of Java APIs,
effectively defer implementation decisions to
EJB application server implementers; detailed
enough to provide a meaningful standard for
component developers, vendors and integra-
tors, but general enough to allow vendor-
specific features and optimizations

Anticipate expected
changes

Abstract common
services

Hide information

Buildability EJB application servers provide many ready-
to-use services for building server-side Java
applications, including transactions, persis-
tence, threading, and resource management;
developer is thus freed from low-level distribu-
tion details; Sun Microsystems provides a ref-
erence J2EE implementation; application
server vendors also participate in the J2EE
specification process

Abstract common
services

Maintain interfaces
Hide information

Evolvability Specification partitioned into separately evolv-
able subcategories; the Java Community Pro-
cess coordinates Java specification requests
and responses

Semantic coherence
Hide information

Extensibility Component-based approach to the EJB speci-
fication allows for future extensions; message-
driven beans are a feature introduced in later
versions of the EJB specification and workable
with existing EJB systems; J2EE describes sta-
ble core technologies, such as EJB, JMS,
JNDI, JTS, etc., needed by most component
developers; over time, extensions, such as
JCA, are gradually incorporated

Anticipate expected
changes

Implementation
Transparency

Home

 and

Remote

 interface specifications
encourage decoupling of interface specification
and implementation. Implementation decisions
can thus be deferred, and are transparent to
the client; provide complete transparency of
implementation details so that client programs
can be independent of object implementation
details (server-side component location, oper-
ating system, vendor, etc.)

Maintain existing
interfaces

Semantic coherence

Interoperability Supports interoperation of server-side compo-
nents implemented on different vendor imple-
mentations; also allow bridges for interoperabil-
ity of the J2EE platform to other technologies
such as CORBA and Microsoft component
technology

Adherence to defined
protocols

Performance Distributed-component approach to J2EE/EJB
allows performance tuning across multiple
systems

Configuration files
Load balancing
Maintain multiple

copies

(Continued)

Bass.book Page 411 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

412

Part Four From One System to Many 16

—J2EE/EJB

TABLE 16.4

Continued

Goal

How Achieved

Tactics Used

Portability Contracts between EJBs and containers ensure
application components are portable across
different EJB containers; J2EE describes roles
for application component providers, assem-
blers, deployers, EJB server providers, EJB
container providers, and system administra-
tors, as well as precise contracts between
various J2EE components and application
components; application component (in theory)
is thus portable across different J2EE contain-
ers; J2EE is based on a language that contains
its own virtual machine and is available on
most major platforms

Maintain existing
interfaces

Generalize modules
Abstract common

services

Scalability J2EE multi-tiered architecture and component-
based EJB architecture has built-in mecha-
nisms for expanding the number of servers
available in a configuration and to load balance
among servers

Load balancing

Security J2EE-compliant systems provide declarative,
role-based security mechanisms and program-
matic security mechanisms that are ready to use

Authentication
Authorization
Data confidentiality

Usability J2EE-compliant systems provide Java technol-
ogies, such as JSP and servlets, that enable

the rendering of content to suit different users

Separate user

interface

FIGURE 16.4

An example J2EE/EJB-compliant implementation

J2EE Application Server

JDBC Connection
Pool

Java
Client

Database

RMI
ClassesJNDI

HTTP
Services
(Servlets,
JSPs)

EJB
Container

Web
Browser

Key: UML

Bass.book Page 412 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution

413

EJB PROGRAMMING

An EJB depends on its container for all external information. If an EJB needs to
access a JDBC connection or another bean, it uses container services. Accessing
the identity of its caller, obtaining a reference to itself, and accessing properties
are all accomplished through container services. This is an example of an “inter-
mediary” tactic. The bean interacts with its container through one of three mech-
anisms: callback methods, the

EJBContext

 interface, and the Java Naming and
Directory Interface (JNDI).

To create an EJB server-side component, the developer must provide two
interfaces that define a bean’s business methods, plus the actual bean implemen-
tation class. The two interfaces,

remote

 and

home

, are shown in Figure 16.5.
Clients use them to access a bean inside an EJB container. They expose the capa-
bilities of the bean and provide all the methods needed to create the bean and
update, interact with, or delete it.

The two interfaces have different purposes. Home contains the life-cycle
methods of the EJB, which provide clients with services to create, destroy and
find bean instances. In contrast, remote contains the business methods offered
by the bean. These methods are application specific. To use them in the bean’s
remote interface, clients must use the bean’s home interface to obtain a refer-
ence to the remote interface.

A simple home interface is shown in Figure 16.6. It must inherit from
EJBHome and, in this example, contains a method to create an EJB of type
Broker. Figure 16.7 shows the remote interface for the Broker EJB.

Remote interfaces must extend the EJBObject interface, which contains a
number of methods that the container uses to manage an EJB’s creation and life

FIGURE 16.5 EJB package diagram

RemoteInterface
Stub

Remote
Implementation

HomeInterface
Stub

Home
Implementation

Client
Bean
Implementation

Home
Interface

Remote
Interface

Key: UML

Bass.book Page 413 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

414 Part Four From One System to Many 16—J2EE/EJB

cycle. A programmer may wish to provide bean-specific behavior for the EJB, or
may simply accept the default, inherited behavior. The client then uses public
interfaces to create, manipulate, and remove beans from the EJB server. The
implementation class, normally known as the bean class, is instantiated at runtime
and becomes an accessible distributed object. Some sample client code, simpli-
fied, is shown in Figure 16.8.

EJB clients may be standalone applications, servlets, applets, or even other
EJBs, as we will see shortly. All clients use the server bean’s home interface to obtain
a reference to an instance of the server bean. This reference is associated with the
class type of the server bean’s remote interface; so the client interacts with the
server bean entirely through the methods defined in its remote interface.

In this next example, the Broker bean is acting as a stateless session bean
that handles all client requests. Internally, it uses the services of a number of
entity beans to perform the business logic. A sample of one of the Broker meth-
ods, updateAccount, is shown in Figure 16.9.

The updateAccount method uses an entity bean called Account, which
encapsulates all of the detailed manipulation of the application’s data—in this
case, exactly how an account record is updated. The code in updateAccount

FIGURE 16.6 A simple home interface

FIGURE 16.7 The Broker remote interface

public interface BrokerHome extends EJBHome
{
/*
 * This method creates the EJB Object.
 *
 * @return The newly created EJB Object.
 */
Broker create() throws RemoteException, CreateException;
}

public interface Broker extends EJBObject
{
// Return the newly created account number
public int newAccount(String sub_name, String sub_address, int

sub_credit) throws RemoteException, SQLException;
public QueryResult queryStockValueByID(int stock_id)

throws RemoteException, SQLException;
public void buyStock(int sub_accno, int stock_id, int amount)

throws RemoteException, SQLException, TransDenyException;
public void sellStock(int sub_accno, int stock_id, int amount)

throws RemoteException, SQLException, TransDenyException;
public void updateAccount(int sub_accno, int sub_credit)

throws RemoteException, SQLException;
public Vector getHoldingStatement(int sub_accno, int start_

stock_id) throws RemoteException, SQLException;
}

Bass.book Page 414 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution 415

uses an entity bean finder method called findByPrimaryKey, which is pro-
vided by the Account bean in its home interface. This method takes the primary
key for the account and accesses the underlying database. If an account record is
found in the database with this primary key, the EJB container creates an
Account entity bean. The entity bean methods—in this example update—can
then be used to access the data in the account record. The home and remote
interfaces for Account are shown in Figure 16.10.

The bean class for the entity bean implements the remote methods. The code
for the update method is shown in Figure 16.11. It is very simple—in fact, a
single line of executable Java code. This simplicity is due to the entity bean’s use
of container-managed persistence. The EJB container “knows” (we will see how
soon) that there is a correspondence between the data members in the Account
bean and the fields in an account table in the database the application is using.

Using this information, the container tools can generate the SQL queries
needed to implement the finder method, and the queries needed to automati-
cally read/write the data from/to the entity bean at the beginning/end of a transac-
tion. In this example, at the end of the Broker session bean’s updateAccount

FIGURE 16.8 Simplified example EJB client code

FIGURE 16.9 The Broker bean’s updateAccount method

Broker broker = null;

// find the home interface
Object _h = ctx.lookup("EntityStock.BrokerHome");
BrokerHome home = (BrokerHome)

javax.rmi.PortableRemoteObject.narrow(_h, BrokerHome.class);
// Use the home interface to create the Broker EJB Object
broker = home.create();
// execute requests at the broker EJB
broker.updateAccount(accountNo, 200000);
broker.buyStock(accountNo, stockID, 5000);

//we're finished . . .
broker.remove();

public void updateAccount(int sub_accno, int sub_credit)
throws RemoteException
{
try {

Account account = accountHome.findByPrimaryKey
(new AccountPK(sub_accno));

account.update(sub_credit);
}
catch (Exception e) {

throw new RemoteException(e.toString());
}
}

Bass.book Page 415 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

416 Part Four From One System to Many 16—J2EE/EJB

method, the data items in the Account entity bean are written back to the data-
base, making the changes to the sub_credit field persistent. All of this is done
without explicit control from the programmer, which contributes to the buildabil-
ity of EJB-based systems.

FIGURE 16.10 The Account bean’s home and remote interfaces

FIGURE 16.11 The Account bean’s update method

public interface AccountHome extends EJBHome
{
/*
 * This method creates the EJB Object.
 *
 * @param sub_name The name of the subscriber
 * @param sub_address The address of the subscriber
 * @param sub_credit The initial credit of the subscriber
 *
 * @return The newly created EJB Object.
 */
public Account create(String sub_name, String sub_address,

int sub_credit) throws CreateException, RemoteException;
/*
 * Finds an Account by its primary Key (Account ID)
 */
public Account findByPrimaryKey(AccountPK key)

throws FinderException, RemoteException;
}

public interface Account extends EJBObject
{
public void update(int amount) throws RemoteException;
public void deposit(int amount) throws RemoteException;
public int withdraw(int amount) throws AccountException,

RemoteException;
// Getter/setter methods on Entity Bean fields
public int getCredit() throws RemoteException;
public String getSubName() throws RemoteException;
public void setSubName(String name) throws RemoteException;
}

public class AccountBean implements EntityBean
{
// Container-managed state fields
public int sub_accno;
public String sub_name;
public String sub_address;
public int sub_credit;

// lots missing . . .
public void update(int amount)
{

sub_credit = amount;
}
}

Bass.book Page 416 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution 417

DEPLOYMENT DESCRIPTORS

One of the major attractions of the EJB model is the way it achieves a separation
of concerns between the business logic and the infrastructure code, an example of
the “semantic coherence” tactic. This separation refers to the fact that EJBs are
primarily concerned with pure business logic while the EJB container handles
environmental and infrastructure issues such as transactions, bean life-cycle man-
agement, and security. This makes the bean components simpler—they are not
littered with code to handle these additional complexities.

A bean tells the container which of the provided services it requires through
a deployment descriptor. This is an XML document associated with an EJB. When
a bean is deployed in a container, the container reads the deployment descriptor
to find out how transactions, persistence (for entity beans), and access control
should be handled. In this way the descriptor provides a declarative mechanism
for how these issues are handled—an example of the “defer binding time” tactic.

The beauty of this mechanism is that the same EJB component can be
deployed with different descriptors suited to different application environments.
If security is an issue, the component can specify its access control needs. If
security is not an issue, no access control is specified. In both cases the code in
the EJB is identical.

A deployment descriptor has a predefined format that all EJB-compliant
beans must use and that all EJB-compliant servers must know how to read. This
format is specified in an XML Document Type Definition, or DTD. The deploy-
ment descriptor describes the type of bean (session or entity) and the classes used
for remote, home, and the bean class. It also specifies the transactional
attributes of every method in the bean, which security roles can access each
method (access control), and whether persistence in the entity beans is handled
automatically by the container or performed explicitly by the bean code.

The deployment descriptor for the Broker bean shown before is given in
Figure 16.12. In addition to the attributes described, the deployment descriptor
specifies that this is a stateless session bean and that a container-managed trans-
action is required to execute each of its methods (in the figure these attributes are
in boldface for ease of reading). For example, if we simply change the
<session-type> field in the XML to read stateful, the container will man-
age the bean very differently. Figure 16.13 shows the deployment descriptor for
the Account entity bean. As well as the deployment attributes we have already
seen, it tells the container the following:

� That it must manage persistence for beans of this type
� Where to find the JDBC data source for the database
� What primary key and data items must be mapped between the database and

the entity bean

In Table 6.2, we presented Sun’s quality attribute requirements for J2EE. In
Table 16.5, we describe how some of these requirements are achieved by deploy-
ment descriptors.

Bass.book Page 417 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

418 Part Four From One System to Many 16—J2EE/EJB

FIGURE 16.12 Deployment description for the Broker bean

TABLE 16.5 How Deployment Descriptors Support Sun’s J2EE Quality
Attribute Requirements

Goal How Achieved Tactics Used

Portability Common code base can be developed for
multiple target platforms; multiple versions of
deployment descriptor can be configured at
deployment time to suit different target plat-
forms, making the developed application
component portable across multiple target
environments

Semantic coherence,
generalize modules,
configuration files

Buildability Deployment descriptors enable separation of
concerns: development of code and deploy-
ment configuration options

Semantic coherence,
configuration files,
generalize module

Balanced
Specificity

Deployment descriptors in XML format, pro-
viding a meaningful standard format for
encoding configuration options, but gen-
eral enough for vendors to extend deploy-
ment descriptors with vendor-specific
features

Configuration files,
generalize module

Implementation
Transparency

Details of deployment descriptor used by
server-side components are transparent to
the clients of the components

Use an intermediary

<ejb-jar>
<enterprise-beans>

<session>
<ejb-name>EntityStock.BrokerHome</ejb-name>
<home>j2ee.entitystock.BrokerHome</home>
<remote>j2ee.entitystock.Broker</remote>
<ejb-class>j2ee.entitystock.BrokerBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>EntityStock.BrokerHome</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>
</ejb-jar>

Bass.book Page 418 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

System Deployment Decisions 419

16.4 System Deployment Decisions

What we have described thus far is J2EE/EJB as it was created by Sun. However,
when deploying a J2EE/EJB system, there are a number of implementation issues
that the architect needs to consider. The EJB component model is a powerful way
to construct server-side applications. And although the interactions between the
different parts of the code are a little daunting at first, with some exposure and
experience with the model, it becomes relatively straightforward to construct EJB
applications. Still, while code construction is not difficult, a number of complexi-
ties remain, including the following.

FIGURE 16.13 Deployment description for the Account entity bean

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>EntityStock.AccountHome</ejb-name>
<home>j2ee.entitystock.AccountHome</home>
<remote>j2ee.entitystock.Account</remote>
<ejb-class>j2ee.entitystock.AccountBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>j2ee.entitystock.AccountPK</prim-key-class>
<reentrant>False</reentrant>
<cmp-field>

<field-name>sub_accno</field-name>
</cmp-field>
<cmp-field>

<field-name>sub_name</field-name>
</cmp-field>
<cmp-field>

<field-name>sub_address</field-name>
</cmp-field>
<cmp-field>

<field-name>sub_credit</field-name>
</cmp-field>
<resource-ref>

<res-ref-name>jdbc/sqlStock_nkPool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</entity>

</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>EntityStock.AccountHome</ejb-name>
<method-intf>Remote</method-intf>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>
</ejb-jar>

Bass.book Page 419 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

420 Part Four From One System to Many 16—J2EE/EJB

� The EJB model makes it possible to combine components in an application
in many different architectural patterns. Which are the best, and what does
“best” mean in a given application?

� The way beans interact with the container is complex and has a significant
effect on the performance of an application. In the same vein, all EJB server
containers are not equal—product selection and product-specific configura-
tion are important aspects of the application development life cycle.

In this final section, we present some of the key design issues involved in
architecting and constructing highly scalable EJB applications.

STATE MANAGEMENT—AN OLD DESIGN ISSUE
IN A NEW CONTEXT

There are two service models that can be adopted in developing the EJB server tier—
stateless and stateful models, implemented by stateless and stateful session beans.

We will take an online bookshop as an example. In the stateful version, an
EJB can be used to remember customer details and to manage the items the cus-
tomer is placing in an online shopping cart. Hence, the EJB stores the state asso-
ciated with the customer’s visit to the site. By maintaining this conversational
state in the bean, the client is relieved from the responsibility of keeping track of
it. The EJB monitors potential purchases and processes them in a batch when a
confirmation method is invoked.

To make better use of limited system memory, stateful session beans are pas-
sivated when not used by the client, meaning that a bean’s conversational state is
written to secondary storage (typically disk) and its instance is removed from
memory. The client’s reference to the bean is not affected by passivation, but
remains alive and usable. When the client invokes a method on a bean that is pas-
sivated, the container activates the bean by instantiating a new instance and popu-
lating its state with the information written to secondary storage.

This passivation strategy has great implications for scalability. If there is a
requirement for large numbers of stateful session bean instances to service indi-
vidual clients, passivation and activation may prove to be too high an overhead in
terms of application performance.

Alternatively, a stateless session bean does not maintain conversational state
on behalf of the client. The client must inform the server of session information,
such as customer details and shopping cart contents, with each service request,
because, for each request, the container may assign a different stateless session
bean instance. This is only possible because of the pure stateless service model.
Figure 16.14 shows usage of both stateful and stateless session beans.

To summarize, the advantages of stateless session beans include the following:

� There is no performance overhead in passivating and activating session
beans that involve expensive disk reads and writes.

Bass.book Page 420 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

System Deployment Decisions 421

� Dynamic request routing means that requests can be routed to the least
loaded server.

� If one session instance goes down, the request can be easily rerouted to
another one.

The only disadvantage to the stateless approach is that more information needs to
be passed between the client and the EJB on each request. Assuming that the

FIGURE 16.14 Clients’ static bindings to stateful session bean instances and
dynamic bindings to stateless session bean instances.

Server

Container

Client 1

Client 2

Client 3

Stateful
Bean
Instance 1

Stateful
Bean
Instance 3

Stateful
Bean
Instance 2

Client 1
State

Client 3
State

Client 2
State

Server

Container

Client 1

Client 2

Client 3

Stateless
Bean
Instance 1

Stateless
Bean
Instance 3

Stateless
Bean
Instance 2

Client 1
State

Client 3
State

Client 2
State

Key: UML

Bass.book Page 421 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

422 Part Four From One System to Many 16—J2EE/EJB

amount of data is not prohibitively large, the stateless session bean will most
likely better support high system scalability.

Entity Beans—To Use or Not to Use? A common EJB design pattern is to
provide a wrapper session bean that exposes services to the client and, at the
same time, accesses the business data encapsulated in the entity bean to fulfill a
client request. This represents a clean object-oriented programming model. Busi-
ness data, usually represented in a relational format in a database, is now encap-
sulated in an object-oriented format (entity beans). The various get and set
methods defined for entity beans make it easy for session beans to access this
data. Additionally, if container-managed persistence is used for entity beans, the
developer need not explicitly develop the database access code.

The risk here is a considerable performance penalty. Testing results show
that, for a typical e-commerce system with an 85% read-only and 15% update
transaction mix, the application architecture using entity beans achieves roughly
half the system throughput compared to an architecture utilizing session beans
only. The performance degradations have the following causes:

� The entity beans introduce an additional indirection layer rather than session
beans directly accessing the business object in the database. Depending on
which container implementation is used, the container may not automati-
cally optimize calls to entity beans (from session beans) to a local call. In
this case, the additional RMI call is expensive.

� The life-cycle management of entity beans in this additional layer can be
expensive. Activation is equivalent to at least a single database/disk-read
operation, and passivation is a database/disk-write operation.

� Additional beans participate in the transaction.

Of course, it is up to the application architect to decide if the benefits of entity
beans outweigh the likely loss in system throughput.

DISTRIBUTION AND SCALING ISSUES

With the popularity of Web-enabled enterprise systems, businesses are finding
their back-end systems unable to cope with the volume of incoming Internet traf-
fic. There are two ways of increasing the processing power in the server tier:

� Scaling up, or “vertical” scaling, refers to the addition of computational and
system resources—for example, adding memory to a single machine. This
form of scaling relies on the application server having no inherent bottle-
necks in its internal architecture. If this is the case, given more system
resources and processor power, the application server software should be
able to fully utilize the additional resources and increase system throughput
as a result.

Bass.book Page 422 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

System Deployment Decisions 423

� Scaling out, or “horizontal” scaling, means that, instead of replacing an
existing machine with a more powerful model, the server application is dis-
tributed across more than one machine. This should increase overall system
resources and processing power by making additional machines available to
the application.

Scaling out is usually regarded as more difficult to implement than scaling
up, because it requires more complex configuration and system management. The
application server must also provide load-balancing mechanisms to make sure
that the additional resources on different machines are fully utilized by clients.

Nevertheless, a system that runs on multiple machines does provide some
benefits over one running a single large machine:

� Increased redundancy. If one machine fails, there are others that can take
over the work. Machines might fail because of power or network outages,
operating system crashes, application server failures, or even bugs in the
application code itself.

� Cost efficiency. A network of smaller machines may have a better price/
performance ratio than a single large machine has.

Many application products provide clustering services to enable the scaling out
of applications. Again, though, clustering products vary considerably, and archi-
tects need to explore these differences carefully.

Distributed Transactions. Many EJB servers can coordinate transactions that
involve multiple objects residing in various processes in a distributed system.
Distributed transaction processing using the two-phase commit protocol is often
essential in building enterprise-wide systems.

An architect designing an EJB system needs to consider carefully whether
distributed transactions are necessary. This is because of the overhead involved
in managing them, which increases as the number of transaction participants
increases. If there is no need to coordinate the transaction across multiple
resource managers (or databases), there is no need for the two-phase commit
protocol.

Further, the transaction coordination and commit processes may involve
several remote calls that pass over the network. These may be between the EJB
server or container and an external transaction management process. If the dis-
tributed transaction implementation provided by the EJB server incurs additional
remote calls in coordinating transactions, using distributed transactions can slow
down an EJB system considerably, inhibiting overall system scalability.

Experience with various object technology management and J2EE implemen-
tations indicates large variations in distributed transaction management perfor-
mance. This makes it important for application architects to fully understand the
configuration and deployment options available with a given transaction service.

Bass.book Page 423 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

424 Part Four From One System to Many 16—J2EE/EJB

RESOURCE POOLING

Application resources, such as database connections and sockets, must be care-
fully managed in a distributed system. Resource pooling exploits the fact that not
all clients need exclusive access to a resource at all times. With EJBs, not every
bean needs a database connection for its exclusive use. It is much more efficient
to configure a system so that database connections can be pooled and re-used for
different client transactions.

When a database connection pool is used, the resulting connections required
will be far less than the number of EJB components in a deployed system.
Because database connections are expensive to create and manage, this architec-
ture increases the overall application scalability. Furthermore, connections to the
databases do not need to be reestablished continuously, thus improving applica-
tion performance.

Resource pooling can be applied to other resources as well, such as socket
connections and threads. Pooling of components simply means that a dedicated
resource for each client is not necessary. Typical configurable parameters include
container threads, session beans instances, entity bean cache size, and database
connection pool size. All of these need to be configured appropriately to exhibit
fast response times and high overall system throughput.

DEPENDENCE ON JAVA VIRTUAL MACHINE PERFORMANCE

In any Java application, the JVM is an important factor in performance tuning.
Hence, to develop and deploy high-performing EJB server-side applications, sev-
eral JVM configuration and performance tuning activities need to be considered.

JVM heap size is one important setting. The heap is a repository for Java
objects and free memory. When the JVM runs out of memory in the heap, all exe-
cution in it ceases while a garbage collection algorithm goes through memory
and frees space that is no longer required. This is an obvious performance hit
because application code blocks during garbage collection. Thus, in an EJB appli-
cation no server-side work can be done.

If heap size is huge, garbage collection will be infrequent; when it does kick
in, however, it will take a much longer time, possibly long enough to disrupt nor-
mal system operations. Garbage collection can slow down (and sometime com-
pletely stop) server processing, giving the impression that the server is slow and
unresponsive.

To appropriately set the JVM heap size, it is necessary to monitor the paging
activities on the server machine. Paging is an expensive performance overhead
and therefore should be avoided on application servers by increasing the JVM
heap size to match the application’s needs. Another way is to watch the garbage
collector by using the -gcverbose compiler option. If incremental garbage col-
lection is an option, it is almost always best to turn it on.

Bass.book Page 424 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Discussion Questions 425

16.5 Summary

The creation of the J2EE multi-tier architecture was motivated by the business
needs of Sun Microsystems. These business needs were influenced by the lessons
of the CORBA model and by the competitive pressures of other proprietary dis-
tributed programming models, such as COM+ from Microsoft. J2EE features a
server-side component framework for building enterprise-strength server-side
Java applications, namely, Enterprise JavaBeans.

The J2EE/EJB specification is constantly expanding. Its ready-to-use ser-
vices currently include transactions, security, naming, persistence, and resource
management. These services enable the J2EE/EJB application programmer to
focus on developing the business logic, thus removing the need to worry about
low-level distribution details. J2EE/EJB achieves portability by using a common,
portable language (Java) and by having precise contracts between components. It
achieves performance and performance scalability via a number of mechanisms,
including distributing applications across many processors (horizontal scaling),
stateless session beans, and resource pools.

Despite the seeming simplicity of the J2EE/EJB programming model, there
are many application-level architectural decisions that need to be carefully made.
The various architectural tradeoffs must be analyzed and compared to derive an
optimal design with respect to application quality requirements.

16.6 For Further Reading

There is an abundance of information about the J2EE/EJB architecture and spec-
ification. This includes Sun Microsystems’s home page (http://java.sun.com/
j2ee), which offers easy-to-follow tutorial material on J2EE, various white
papers, and the J2EE/EJB specification itself. There are also numerous active
forums focusing on the J2EE architecture and technology space, including one
sponsored by The Middleware Company (http://www.theserverside.com).

16.7 Discussion Questions

1. An addition to the EJB component model version 2.0 is “message-driven
beans.” These are enterprise beans that allow J2EE applications to process
messages asynchronously. What are some of the uses of such a component?
What sort of new enterprise architecture possibilities do message-driven
beans open up?

Bass.book Page 425 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

426 Part Four From One System to Many 16—J2EE/EJB

2. The J2EE/EJB specification uses many techniques that are actually just
implementations of the “use an intermediary” tactic. Find as many distinct
realizations of these instances as you can.

3. Consider the CelsiusTech case study presented in Chapter 15. Would J2EE/
EJB be a good infrastructure choice for implementing this system? Justify
your answer.

Bass.book Page 426 Thursday, March 20, 2003 10:29 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

