

369

15

CelsiusTech

A Case Study in Product
Line Development

with Lisa Brownsword

We trained hard, but it seemed that every time we were beginning to form
up into teams, we would be reorganized. I was to learn later in life that

we tend to meet any new situation by reorganizing; and a wonderful
method it can be for creating the illusion of progress while

producing confusion, inefficiency, and demoralization.

— Petronius Arbiter, 210

B

.

C

.

This chapter relates the experience of CelsiusTech AB, a Swedish naval defense
contractor that successfully adopted a product line approach to building complex
software-intensive systems. Called Ship System 2000 (SS2000), their product
line consists of shipboard command-and-control systems for Scandinavian, Mid-
dle Eastern, and South Pacific navies.

This case study illustrates the entire Architecture Business Cycle (ABC), but
especially shows how a product line architecture led CelsiusTech to new business
opportunities. Figure 15.1 shows the roles of the ABC stakeholders in the
CelsiusTech experience.

Note:

Lisa Brownsword is a member of the technical staff at the Software Engineering
Institute, Carnegie Mellon University.

Bass.book Page 369 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

370

Part Four From One System to Many 15

—CelsiusTech

15.1 Relationship to the Architecture Business Cycle

CelsiusTech has long been known as a leading supplier of command-and-control
systems within Sweden’s largest, and one of Europe’s leading, defense industry
groups, which also includes Bofors, Kockums, FFV Aerotech, and Telub. At the
time they developed the systems that are the subject of this chapter, CelsiusTech
was composed of three companies: CelsiusTech Systems (advanced software sys-
tems), CelsiusTech Electronics (defense electronics), and CelsiusTech IT (infor-
mation technology systems). It employed approximately 2,000 people and had
annual sales of 300 million U.S. dollars. Their main site is near Stockholm, with
subsidiaries located in Singapore, New Zealand, and Australia.

This study focuses on CelsiusTech Systems (CelsiusTech for short), whose
focus includes command, control, and communication (C3) systems, fire control
systems,

1

 and electronic warfare systems for navy, army, and air force applications.
The organization has undergone several changes in ownership and name since
1985 (see Figure 15.2). Originally Philips Elektronikindustrier AB, the division
was sold to Bofors Electronics AB in 1989 and reorganized into NobelTech AB

FIGURE 15.1

The ABC as applied to CelsiusTech

1

The term

fire control

 refers to firing a gun at a moving target, from a platform that is
itself moving with 6 degrees of freedom and flexing as well.

Requirements
(Qualities)
Fault Tolerance
Tailorability
Asset Re-use
Time to Market

Architect’s Influences

Stakeholders
Various Navies

Developing Organization
CeliusTech

Technical Environment
Ada
Object Orientation
Iterative Development

Architect’s Experience
Real-time Embedded C3I

Architect(s)

System
SS2000 Products

Architecture

Bass.book Page 370 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Relationship to the Architecture Business Cycle

371

in 1991. It was purchased by CelsiusTech in 1993. Although senior management
changed with each transaction, most of the mid- and lower-level management
and the technical staff remained, thus providing continuity and stability.

THE SHIP SYSTEM 2000 NAVAL PRODUCT LINE

CelsiusTech’s naval product line, known as Ship System 2000 (internally as
Mk3), provides an integrated system that unifies all weapons, command-and-
control, and communication systems on a warship. Typical system configurations
include 1 million to 1.5 million lines of Ada code distributed on a local area net-
work (LAN) with 30 to 70 microprocessors.

A wide variety of naval systems, both surface and submarine, have been or
are being built from the same product line. These include the weapons, com-
mand-and-control, and communications portions of the following:

�

Swedish Göteborg class coastal corvettes (KKV) (380 tons)

�

Danish SF300 class multi-role patrol vessels (300 tons)

�

Finnish Rauma class fast attack craft (FAC) (200 tons)

�

Australian/New Zealand ANZAC frigates (3,225 tons)

�

Danish Thetis class ocean patrol vessels (2,700 tons)

�

Swedish Gotland class A19 submarines (1,330 tons)

�

Pakistani Type 21 class frigates

�

Republic of Oman patrol vessels

�

Danish Niels Juel class corvettes

The Naval Systems division has sold more than 50 of its Mk3 naval systems to
seven countries.

Figure 15.3 shows a Royal Swedish Navy multi-role corvette of the Göteborg
class during a visit to Stockholm harbor. On top is the C/X-band antenna of the
surveillance and target indication radar. Forward and aft of this, on top of the

FIGURE 15.2

CelsiusTech Systems’ corporate evolution

1989 1991 1993
Philips Bofors NobelTech CelsiusTech
Elektronikindustrier Electronics AB
AB AB

Bass.book Page 371 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

372

Part Four From One System to Many 15

—CelsiusTech

superstructure, are the two fully equipped fire control radar and optronic directors
from CelsiusTech.

Systems built from the product line vary greatly in size, function, and arma-
ments. Each country requires its own operator displays on different hardware and
in different presentation languages. Sensors and weapons systems, and their interfaces

FIGURE 15.3

Swedish multi-role Corvette of the Göteborg class featuring
a CelsiusTech command-and-control system.

Photo from Studio FJK; reproduced
with permission

.

Bass.book Page 372 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Relationship to the Architecture Business Cycle

373

to the software, also vary. Submarines have different requirements than surface
vessels. Computers in the product line include 68020, 68040, RS/6000, and DEC
Alpha platforms. Operating systems include OS2000 (a CelsiusTech product),
IBM’s AIX, POSIX, Digital’s Ultrix, and others. The SS2000 product line sup-
ports this range of possible systems through a single architecture, a single core
asset base, and a single organization.

ECONOMICS OF PRODUCT LINES: AN OVERVIEW
OF CELSIUSTECH’S RESULTS

In this section we discuss CelsiusTech’s results in building complex software-
intense systems.

Shrinking Schedules.

Figure 15.4 shows the status and schedules for later
systems under development from the CelsiusTech product line. Ships A and B
were contracted for at the same time and, as we will see, caused CelsiusTech to
move to a product line approach. System A is the basis of the product line. Cus-
tomer project A ran almost nine years, although functional releases were running
on the designated ship by late 1989. System B, the second of the two original
projects, required approximately seven years to complete and is similar to the
previous non-product-line Mk2.5 system. It was built in parallel with system A,
validating the product line. While neither system individually showed greater

FIGURE 15.4

Product schedules

A

1986 1988 1990 1992 1994 1996

B

C

D

E

F

G

Ships

Bass.book Page 373 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

374

Part Four From One System to Many 15

—CelsiusTech

productivity, CelsiusTech was able to build both (and the product line) with
roughly the same number of staff as for a single project.

Systems C and D were started after much of the product line existed, with a
correspondingly shortened completion time. Systems E and F show a dramatic
schedule reduction because they are fully leveraging the product line assets. Celsius-
Tech reports that the last three ship systems were all

predictably

 on schedule.

Code Re-use.

While the production schedules show time to market for a prod-
uct, they do not indicate how well the systems use a common asset base. Figure
15.5 shows the degree of commonality across the CelsiusTech naval systems. On
average, 70% to 80% consist of elements used verbatim (i.e., checked out of a
configuration control library and inserted without code modification).

Using Core Assets to Expand the Business Area.

CelsiusTech has expanded
its business into a related area that takes advantage of the architecture and other
core assets that were originally developed for naval uses. STRIC, a new air defense
system for the Swedish Air Force, embraces the abstraction that a ground plat-
form is a ship whose location does not change very often and whose pitch and
roll are constantly zero. Because of the flexibility (amenability to change) of the
SS2000 architecture and product line, CelsiusTech was able to quickly build STRIC,
lifting 40% of its elements directly from the SS2000 asset base. (See the sidebar
Mastering Abstraction at CelsiusTech.) This demonstrates one of the feedback
links in the ABC: The existence of the SS2000 product line and its architecture
enabled new business opportunities.

FIGURE 15.5

Commonality across CelsiusTech naval systems

Ships
A B C D E

Unique application National application

Re-usable application

Modified

Common (verbatim)

140

120

100

80

60

40

20

0

N
um

be
r

of
 S

ys
te

m
 M

od
ul

es

Bass.book Page 374 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Relationship to the Architecture Business Cycle

375

Mastering Abstraction at CelsiusTech

Studying software product lines holds two particular fascinations for me. The
first is discovering what all successful product line organizations have in com-
mon. Early in our study of product lines, the list of what I thought was
required to be successful was fairly long. As we discovered and analyzed
more examples, each brought with it a new dimension of experience and
each seemed to whittle away at my list of organizational must-haves.

One common aspect still remains, however, and that is a product line
mindset. A successful product line organization considers its business to be
the care, nurturing, and growth of its software product line,

singular

, particu-
larly its core asset base. This is in stark contrast to immature or unsuccessful
product line organizations that see their enterprise as churning out a set of
products,

plural

, that have some things in common.
The distinction is subtle but palpable. A product-based organization talks

about its products and subjugates long-term product line goals to satisfy
short-term product deadlines. Such an organization will, for example, reward
workers for heroic measures to get a product out the door, even if it means
performing a late night clone-and-own on a core asset. In contrast, a product-
line-based organization talks about the product line and its health almost as if
individual members of the family are coincidental byproducts. This singular
mindset helps a product-line-based organization make strategic moves
quickly and nimbly and as a unified whole.

The second fascination for me is what a successful product line organiza-
tion can do, at the enterprise level, with this powerful capability. With an innate
understanding of the product line’s scope—that is, an articulated definition of
what systems are within the product line’s capability to build and what sys-
tems are not—an enterprise can make a conscious decision to “drive” its
capability around the neighborhood and pick up business in nearby under-
utilized markets.

At CelsiusTech, both of these points were made eloquently by a cartoon I
saw on a developer’s bulletin board during our visit to gather information for
this chapter. I wish I had asked for a photocopy of it, but it looked something
like this:

Bass.book Page 375 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

376

Part Four From One System to Many 15

—CelsiusTech

WHAT MOTIVATED CELSIUSTECH?

To understand why CelsiusTech made the decision to develop a product line and
what actions were required, it is important to know where it began. Prior to 1986,
the company developed more than 100 systems, in 25 configurations, ranging in
size from 30,000 to 700,000 source lines of code (SLOC) in the fire control
domain.

From 1975 to 1980, CelsiusTech shifted its technology base from analog to
16-bit digital, creating the so-called Mk2 systems. These tended to be small, real-
time, and embedded. The company progressively expanded both system func-
tionality and expertise with real-time applications in the course of building and
delivering 15 systems.

From 1980 to 1985, customer requirements were shifting toward the integra-
tion of fire control and weapons with command and control, thus increasing the
size and complexity of delivered systems. The Mk2 architecture was expanded to
provide for multiple autonomous processing nodes on point-to-point links, result-
ing in Mk2.5. Mk2.5 systems were substantially larger, in both delivered code (up
to 700,000 SLOC) and number of developers (300 engineer-years over 7 years).

Conventional development approaches were used for Mk2.5. These had
served the company well on the smaller Mk2 systems, but difficulties in predict-
able and timely integration, cost overruns, and schedule slippage resulted. Such
experiences were painful, but they were important lessons for CelsiusTech. The
company gained useful experience in the elementary distribution of real-time pro-
cesses onto autonomous links and in the use of a high-level, real-time program-
ming language (in this case, the Pascal-like RTL/2). Figure 15.6 shows the systems
built by CelsiusTech prior to 1985.

In 1985, a defining event for CelsiusTech (then Philips) occurred. The company
was awarded two major contracts simultaneously—one for the Swedish Navy

At about the time of our visit, CelsiusTech had announced a new project to
build a product line of air defense systems—that is, ground-based anti-aircraft
guns. The company estimated that on the day they made the announcement,
fully 40% of the new product family was in place because it was based on
Ship System 2000.

The developer’s cartoon made the point that an air defense system is just a
simplified ship on land that does not pitch or roll much and stays stationary
most of the time. It told me that the CelsiusTech staff had a firm grasp of the
concept of abstraction, but it also told me that they had the product line mind-
set. This cartoon was not about the production of an air defense system but a
celebration of what their beloved product line was about to become. It suc-
cinctly depicted the company’s enterprise-level foray into a whole new busi-
ness area via its product line capability. That cartoon was a magnificent
exhibition of one organization’s product line sophistication.

— PCC

Bass.book Page 376 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Relationship to the Architecture Business Cycle

377

and one for the Danish Navy. Requirements for both ships indicated the need for
systems larger and more sophisticated than the Mk2.5s, which had suffered from
schedule and budget difficulties. Having to build two even larger systems, let
alone in parallel, presented management and senior technical staff with a severe
dilemma. Clearly, the development technologies and practices applied on the
Mk2.5 system would not be sufficient to produce the new systems with any rea-
sonable certainty of schedule, cost, and required functionality. Staffing require-
ments alone would have been prohibitive.

This situation provided the genesis of a new business strategy that recog-
nized the potential

business

 opportunity of selling and building a series, or fam-
ily, of related systems rather than some number of specific systems. Thus began
the SS2000 product line. Another business driver was the recognition of a 20- to
30-year lifespan for naval systems. During that time, changes in threat require-
ments and in technology advances would have to be addressed. The more flexible
and extensible the product line, the greater the business opportunities. These
business drivers or requirements forged the technical strategy.

The technical strategy would need to provide a flexible and robust set of
building blocks to populate the product line from which new systems could be
assembled with relative ease. As new system requirements arose, new building
blocks could be added to the product line to sustain its business viability.

In defining the technical strategy, an assessment of the Mk2.5 technology
infrastructure indicated serious limitations. A strategic decision was made to cre-
ate a new-generation system (the Mk3) that would include new hardware and
software and a new supporting development approach. This would serve as the
infrastructure for new systems development for the next decade or two.

FIGURE 15.6

Systems built by CelsiusTech prior to 1985

1970–1980: Mk2 Systems 1980–1985: Mk2.5 Systems

Kind of System Real-time embedded fire control; Real-time embedded C3; RTL/2
Assembly language and RTL/2

Size 30–100K SLOC 700K SLOC; 300 engineer-years
over 7 years

Platforms Analog and 16-bit digital Multi-processors,
systems minicomputers,

point-to-point links

Bass.book Page 377 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

378

Part Four From One System to Many 15

—CelsiusTech

EVERYTHING WAS NEW

CelsiusTech’s decision to convert its business strategy to a product line approach
coincided with a time of high technology flux. This meant that, to implement the
technical strategy for the SS2000 product line, virtually all aspects of the hard-
ware, the software, and development support would have to change. Thus, the
hardware shifted from VAX/VMS minicomputers to Motorola 68000-series micro-
computers. Whereas the Mk2.5 systems consisted of a small number of proces-
sors on point-to-point links, the SS2000 products have a large number of highly
distributed processors with fault-tolerant requirements. The software life-cycle
approach shifted from RTL/2-based structured analysis/design and waterfall
development to Ada83 with more object-based and iterative development pro-
cesses. Development support migrated from custom, locally created and main-
tained development tools to a large, commercially supplied environment. The
major technical differences are summarized in Figure 15.7.

ANALYSIS OF THE BUSINESS CONTEXT

The CelsiusTech experience reveals several factors that played an important role
in the establishment of the SS2000 product line, some of which were advantages,
some inhibitors.

Ownership Changes.

While it is routine to buy, sell, and restructure compa-
nies, the impact on an organization attempting to adopt significantly different

FIGURE 15.7

Changing technical infrastructures

Prior to 1986 1986
Previous Technical Infrastructure New Technical Infrastructure
• Minicomputers • Microcomputers

• Few processors on point-to-point links • Many processors on commercial LAN

• No fault tolerance • Fault tolerant, redundant

• RTL/2 • Ada83

• Waterfall life cycle, early attempts at • Prototyping, iterative, incremental
incremental development development

• Structured analysis and design • Domain analysis, object-based
analysis and design

• Locally developed support tools • Rational development environment

Bass.book Page 378 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Relationship to the Architecture Business Cycle

379

business and technical strategies can be devastating. Typically, management
changes associated with company ownership transactions are sufficient to stop
any transition or improvement efforts under way (as observed by Petronius Arbi-
ter over two millennia ago). That this did not happen at CelsiusTech can be attrib-
uted either to strong and far-sighted top management or to top management’s
preoccupation with the other issues. Since CelsiusTech changed hands several
times during this period, the latter explanation is more likely. It is clear that mid-
dle management had a strong commitment to a product line and were allowed to
proceed unfettered by top management, who might otherwise have been hesitant
to approve the necessary upfront investments. Normally a reorganization disrupts
the entire organization. In the CelsiusTech case, the effects of the reorganizations
and changes of ownership were buffered by middle management.

Necessity.

The award of two major naval contracts in 1986, ostensibly a reason
for celebration, was regarded as a crisis by CelsiusTech. Management immediately
realized that they had neither the technical means nor the personnel resources to
simultaneously pursue two large development efforts, each pioneering new tech-
nologies and application areas. Since all CelsiusTech contracts are fixed price,
large-scale failure meant large-scale disaster. Indeed, less challenging systems
had been over budget, past schedule, hard to integrate, and impossible to predict.

CelsiusTech was driven to the product line approach by circumstances; they
were compelled to attempt it because their viability was clearly at stake. The fact
that this period was also one of major technological change made it much more
difficult to separate the costs associated with product line changes from those
associated with adopting new technology.

Technology Changes.

In 1986, all the chosen technologies were immature,
with limited use in large industrial settings. Big, real-time, distributed systems
making extensive use of Ada tasks and generics were envisioned but at the time
were unprecedented. Moreover, object-based development for Ada was still a the-
oretical discussion. From 1986 to 1989, then, CelsiusTech was coping with the
following:

�

The maturation of technologies, such as Ada and object technology

�

The maturation of supporting technology, such as networking and distribution

�

The maturation of infrastructure technology, such as development environ-
ments and tools to assist in the automation of development processes

�

The learning curve of the company, both technical and managerial, in the
use of new technologies and processes inherent in the product line approach

�

The learning curve of customers, who did not fully understand the contrac-
tual, technical, and business approaches of product lines

�

The management of similar requirements across several customers

These maturation issues significantly increased the time required to create
the product line. An organization making the same development paradigm shift

Bass.book Page 379 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

380

Part Four From One System to Many 15

—CelsiusTech

today would be in a much better position, with microcomputers, networks, porta-
ble operating systems, open systems standards, object-based development meth-
ods, Ada (or other programming languages appropriate to the domain and
platforms), performance engineering, distributed systems technology, real-time
operating systems, real-time analysis tools, large-project support environments,
and large-project process assistants. These technologies are all either mature or at
least usable and readily available. Also, much more is known about building and
fielding software product lines (see Chapter 14). CelsiusTech estimates that up to
one-third of its initial technology investment was spent building assets that can
now be purchased commercially.

CELSIUSTECH’S ORGANIZATIONAL STRUCTURE

CelsiusTech’s organizational structure and practices did not remain constant over
the ten-year period covered here, but migrated through several distinct structures.
The kind of knowledge and skills required of the staff also changed.

Project Organization Prior to 1986.

The naval command-and-control sys-
tem (Mk2.5) development was headed by a project manager who used the ser-
vices of various functional areas, such as weapons or C3, to develop major
segments of system capability. Figure 15.8 shows the organizational structure for
the Mk2.5 project. Each functional area (command-and-control, tracking, etc.)
was led by a project manager who had direct authority for staff resources and for
all system development activities through release to system integration.

FIGURE 15.8

Mk2.5 project organization, 1980–1985

Project
Manager

Mk2.5 Project
Family Manager

Command
and

Control

Tracking Communications Operator’s
Console

Base
System

Systems
Integration

Project
Manager

Project
Manager

Project
Manager

Project
Manager

D I ID

Project
Manager

D IIDD IID

Development Team Integration TeamD I

Bass.book Page 380 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Relationship to the Architecture Business Cycle

381

CelsiusTech found that this compartmentalized arrangement fostered a mode
of development characterized by the following:

�

Assignment of major system segments to their respective functional areas as
part of system analysis

�

Requirements and interfaces allocated and described in documents, with
limited communication across functional area boundaries, resulting in indi-
vidual interpretation of requirements and interfaces throughout design,
implementation, and test

�

Interface incompatibilities typically not discovered until system integration,
resulting in time wasted in assigning responsibility and protracted, difficult
integration and installation

�

Functional area managers with little understanding of areas other than
their own

�

Functional area managers with limited incentives to work as a team to
resolve program-level issues

SS2000 Organization Late 1986 to 1991.

With the introduction of the SS2000
product line in late 1986 came a number of organizational changes from the Mk2.5
project organization. Figure 15.9 shows the organizational structure CelsiusTech
used from late 1986 until 1991. A general program manager designated to lead

FIGURE 15.9

SS2000 organization, 1987–1991

C3

SS2000 General
Program Manager Marketing

Architecture
Team

• Authority, responsibility
 for product line
 architecture, definition,
 integrity, evolution
• Small (<10), technically
 focused

Customer Project
Management

• Manages individual
 customer products built
 from the product line

Intergration
and CM Team

• Drives iterations
• Manages asset integrity,
 and consistency across
 product line and customer
 projects

HCI
Weapons

Fundamental
Services

Product Line Software Development Teams

Bass.book Page 381 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

382

Part Four From One System to Many 15

—CelsiusTech

the program was responsible for both creation of the product line and delivery of
customer systems built from it. CelsiusTech sought to remedy the problems asso-
ciated with the compartmentalized structure of the past by creating a strong man-
agement team focused on product line development as a company asset rather
than on “empire building.” To this end, functional area managers now reported
directly to the general program manager. Developers were assigned to functional
areas—weapons, C3, or human–computer interface (HCI), common services
(used by the functional areas), and the interface to the various hardware and oper-
ating systems (called the Base System).

A small, technically focused architecture team with total ownership and con-
trol was created, reporting directly to the general program manager. CelsiusTech
determined that the success of a product line hinged on a stable yet flexible archi-
tecture, one that was visible throughout the organization and vested with authority
from the highest levels of management.

In this way, the company reorganized itself
to take advantage of the ABC: Architecture had to be at the heart of their new
approach, and the architecture in turn changed important aspects of the organization.

The coordinated definition and management of multiple releases was central
to the creation of a product line

.

To better support their release management,
CelsiusTech combined software system integration and configuration manage-
ment into a new group, reporting directly to the general program manager. Both
the architecture team and the integration–configuration management group were
novel approaches for CelsiusTech and were instrumental in the creation of the
SS2000 product line.

The architecture team was responsible for the initial development and contin-
ued ownership and control of the product line architecture. This ensured design
consistency and design interpretation across

all

 functional areas. Specifically, the
architecture team had responsibility and authority for the following:

�

Creation of product line concepts and principles

�

Identification of layers and their exported interfaces

�

Interface definition, integrity, and controlled evolution

�

Allocation of system functions to layers

�

Identification of common mechanisms or services

�

Definition, prototyping, and enforcement of common mechanisms such as
error handling and interprocess communication protocols

�

Communication to the project staff of the product line concepts and
principles

The first iteration of the architecture was produced in two weeks by two
senior engineers with extensive domain experience. It remains the framework for
the existing product line, containing organizing concepts, layer definition, identi-
fication of approximately 125 system functions (out of the current 200 or so) and
their allocation to specified layers, and the principal distribution and communica-
tion mechanisms. After completion of the first iteration, the architecture team
took on the lead designers from each of the functional areas. The full team, now

Bass.book Page 382 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Relationship to the Architecture Business Cycle

383

comprising ten senior engineers, continued to expand and refine the architecture.
This was in sharp contrast to the past, when functional area leaders had autonomy
for the design and interfaces for their respective areas.

The combined integration and configuration management team was respon-
sible for the following:

�

Development of test strategies, plans, and test cases beyond unit test

�

Coordination of all test runs

�

Development of incremental build schedules (in conjunction with the archi-
tecture team)

�

Integration and release of valid subsystems
� Configuration management of development and release libraries
� Creation of the software delivery medium

SS2000 Organization 1992 to 1998. From 1992 to 1994, CelsiusTech’s empha-
sis increasingly shifted from the development of the architecture and product line
elements to the composition of new customer systems from the product line. This
trend increased the size and responsibilities of the customer project management
group. CelsiusTech modified its organizational structure to assign the develop-
ment staff to one of the following:

� Component projects that develop, integrate, and manage product line
elements. The production was distributed across component project areas
consisting of the functional areas (weapons, C3, and HCI), common ser-
vices, and the operating system and network elements. Component project
managers were rotated regularly, providing middle management with a
broader understanding of the product line. The elements were provided to
the customer projects.

� Customer projects responsible for all financial, scheduling and planning,
and requirements analysis through system integration/test/delivery. Each
customer system built from the product line was assigned a project manager
responsible for all interactions and negotiations with the customer.

As CelsiusTech completed the basic product line and gained further experi-
ence using it, it looked for more efficient ways to produce systems and evolve the
product line to take advantage of newer technology and changing customer
needs. This was a feedback effect of the ABC, where the architecture caused the
organization to continually reinvent itself, resulting in the organizational struc-
ture shown in Figure 15.10.

Each major application domain (naval and air defense) became its own busi-
ness unit with its own manager. Each business unit had a marketing group, a pro-
posal group, a customer projects group, and a systems definition group. The
business unit was responsible for its software elements and its customer project
managers. Each unit’s operations were guided by a Marketing Plan, a Product
Plan, and a Technical–Architecture Plan. The marketing group was responsible
for the Marketing Plan that assessed the opportunities and value of each market

Bass.book Page 383 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

384 Part Four From One System to Many 15—CelsiusTech

segment. The Product Plan described the products the business unit sold and was
owned by the proposal group. The Product Plan implemented the Marketing
Plan. The system definition group was responsible for the Technical–Architecture
Plan for their business unit. In turn the Technical–Architecture Plan implemented
the Product Plan, outlining the evolution of the business unit’s architecture. New
project proposals took into account the business unit’s Product and Technical–
Architecture Plans. This approach kept the projects aligned with the product line.

Modules were supplied by the Development Group. Any customer-specific
tailoring or development was managed from the business unit customer project
using Development Group resources. The business unit’s Systems Definition
Group was responsible for the architecture. It owned and controlled the evolution
of the architecture and major interfaces and mechanisms. For the Naval Business
Unit, the Systems Definition Group was small (typically six members), consist-
ing of senior engineers with extensive knowledge of the naval product line. It was
responsible for overall arbitration of customer requirements and their impact on
the product line.

The Naval Business Unit sponsored an SS2000 Product Line Users Group to
serve as a forum for shared customer experiences with the product line and to
provide direction for its evolution. The Users Group included representatives
from all SS2000 customers.

FIGURE 15.10 SS2000 organization, 1992–1998

Development

Global Resources to All Business Units

C2

Weapons

HCI

Research and Development
Group

• Reports to vice president of technology

Technical Steering Group
• Chaired by vice president of technology
• Representatives from all business units

Air Defense Business Unit

System Definition
Group

Naval Business Unit

System Definition
Group

Bass.book Page 384 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Relationship to the Architecture Business Cycle 385

The Development Group provided developer resources to all business units.
Integration, configuration management, and quality assurance were also Devel-
opment Group resources, matrixed to the business units as required. To further
optimize creation of new systems from the product line, a Basic SS2000 Config-
uration Project was formed to create a basic, preintegrated core configuration of
approximately 500K SLOC, complete with documentation and test cases that
would become the nucleus of a new customer system.

The Technical Steering Group (TSG) was responsible for identifying, evalu-
ating, and piloting potential new technology beneficial to any of CelsiusTech’s
business areas. It was headed by the vice president of technology and staffed by
senior technical personnel from the naval and air defense business units, the
Development Group, and the R&D Group. The TSG ensured that each Systems
Definition Group created and evolved its architecture and technology plan.

Staffing Late 1986 to 1991. As shown in Figure 15.11, the project staffing lev-
els ranged from an initial 20 to 30 to a peak of more than 200, with an average of
150. During the early stages of the program, while product line concepts and
architecture were being defined, CelsiusTech found the staff levels too high. There
was confusion among developers because concepts and approaches were in a
state of flux.

FIGURE 15.11 Approximate software staff profiles

200

160

140

0

1986

180

120

100

80

60

40

20

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

Bass.book Page 385 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

386 Part Four From One System to Many 15—CelsiusTech

The architecture team was responsible for creating the framework for the
product line. Team members needed solid domain and customer knowledge com-
bined with engineering skills and an ability to find relevant common mechanisms
or product line elements. Communication and teaming skills were also manda-
tory. Developers needed to understand the framework, the building codes, and
how their respective modules should fit. During the product line’s formative
period, the development staff required skills in the use of Ada, object-based
design, and their software development environment, including the target testbed.
In addition, they had to have broad knowledge of product line concepts, SS2000
architecture and mechanisms, creation of re-usable modules, incremental integra-
tion, and at least one functional area domain.

With much of the necessary technology immature, the management team
(and senior technical staff) was operating largely on faith in the achievement of a
shared ultimate capability. A key focus of their responsibilities included “selling”
the business need and the desired future state to their teams.

Organizations that attempt to install immature technology encounter resis-
tance as inevitable problems arise. Key to sustaining the early phases of such
installations is strong, solutions-oriented management. At CelsiusTech, the gen-
eral program manager focused on finding solutions rather than finding fault with
the various immature technologies, their suppliers, or the development team.
Managed experimentation was encouraged, not penalized, and technical innova-
tions were supported. The general program manager thus became a role model
for other managers.

During the formative years of the product line, managers were required to
have extensive knowledge of product line concepts and business motivation. In
addition, they needed strong skills in planning, communication, and innovative
problem solving.

Management also had to cope with the inevitable discontent and resistance
associated with a new business paradigm and its attendant technology. Substan-
tial effort was made to help personnel understand the new business strategy and
rationale. People who did not subscribe to or could not grasp the product line
approach either left the company or found assignments on maintenance or other
projects. This caused a loss of domain knowledge that took time to regain.

Staffing 1992 to 1998. By the end of 1991, four customer systems were under
way, and a sufficient number of re-usable modules not only existed but had been
delivered as part of the original two systems. The core of the product line was
maturing rapidly so that, rather than all new modules, systems were now rou-
tinely composed from existing modules. Designers were needed less and were
reassigned to other projects within the company. Howerer, with the increase in
parallel customer projects, more integrators were needed, although the average of
three to five per customer system remained steady. Because of the increasing
number of projects during this period, the number of management staff did not
decrease.

Bass.book Page 386 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Requirements and Qualities 387

From 1994 to 1998, the staffing profile continued to change. As the product
line and its use matured, CelsiusTech used fewer designers, developers, and inte-
grators for the two latest customer systems in that period. Ever fewer designers
were needed, potentially moving between business units. The downward trend
was most notable in integration, given that CelsiusTech budgeted for an integra-
tion staff of one or two per system. Continuing system composition optimiza-
tions, such as the Basic SS2000 Configuration project, were expected to further
reduce development-related staff levels. With the continued increase in parallel
customer projects, the number of management staff remained constant.

With greater emphasis on the composition of systems from the product line,
developers needed stronger domain and SS2000 knowledge than during product
line creation. The use of Ada, object technology, and their development environ-
ment had become more routine. The integration group’s focus turned to the inte-
gration and release management of many parallel systems. Increasing emphasis
was placed on re-using test plans and data sets across customer systems.

The architecture team needed to maintain a solid knowledge of the product
line and factor in growing current and approaching customer needs. Communica-
tion with customer project managers (for negotiation of multiple customer needs)
and developers (desiring to optimize major interfaces and mechanisms) contin-
ued to be extremely important. Engineering skill to balance new needs yet pre-
serve overall architectural integrity was vital for team members as they
continually evolved the architecture and its major interfaces and mechanisms.
The architecture team was involved in technical evaluations, prototype develop-
ment of new interfaces (both for the external user and for application developers),
and assessing the impact of the new technologies on the product line.

Less emphasis on technology maturation and training was required of man-
agement as more of the product line became available. With a larger set of cus-
tomer systems existing, coordination of changing customer requirements across
multiple customers emerged as a major management priority. Requirements
negotiation involved not only customers but also other customer project manag-
ers and the product line architecture team. Customer project managers required
increasing skill in negotiation and greater knowledge of the existing and antici-
pated future directions of the product line.

15.2 Requirements and Qualities

For new products to be derived from an organizational repository, they must be
structured so that they can share modules. As we discussed in Chapter 14, this
means that there must be a standard set of modules, with agreements about indi-
vidual module’s responsibility, behavior, performance, interface, locality of func-
tion, communication and coordination mechanisms, and other properties. This

Bass.book Page 387 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

388 Part Four From One System to Many 15—CelsiusTech

familywide structure, the modules it comprises, and the properties about each
that are constant across all members of the product line constitute the product
line architecture.

As we have seen throughout this book, the primary purpose of an architec-
ture is to acheive a system that meets its behavioral and quality requirements. The
architecture for each SS2000 product line member was no exception. The most
important of these requirements were:

� Performance. Command-and-control systems must respond in real time to
continuously arriving sensor inputs and be able to control weapons under
tight deadlines.

� Modifiability. The architecture needs to be robust with respect to computing
platforms, operating systems, addition or replacement of sensor and weapon
systems, human–computer interface requirements, communication proto-
cols, and the like.

� Safety, reliability, and availability. The system must be available when
needed, provide the correct data and commands to weapon systems, and fire
only under the correct conditions.

� Testability. Each system must be integrable and testable so that errors (if
any) are quickly found, isolated, and corrected.

Besides these single-system requirements, the SS2000 architecture carried
the additional burden of application to an entire class of systems. Thus its
requirements included the ability to replace one module with another tailored to a
particular system without disrupting the rest of the architecture.

OPERATING ENVIRONMENT AND PHYSICAL ARCHITECTURE

The requirements of modern shipboard systems influence design solutions in pro-
found ways. Sensors and weapons systems are deployed all over the ship; crew
members interact with them via a multitude of separately housed workstations.
The HCI must be highly tuned to facilitate rapid information flow and command
acceptance and must be tailored to the operational mission of the vessel and the
cultural idiosyncrasies of its crew. The likelihood of component failure dictates a
fault-tolerant design.

Figure 15.12 is a physical view of a typical system. A redundant LAN is the
communications backbone, connecting from 30 to 70 different, cooperating pro-
cessors. Nodes on the LAN can total around 30. A node is the end of a communi-
cation run and may correspond to a crew station, a weapons platform, or a sensor
suite, all located in various parts of the ship and widely dispersed. It may host up
to six processors. The LAN is a dual Ethernet. Device-interface modules send
and receive data to and from the system’s peripherals, primarily sensors, and the
weapons systems being controlled.

Bass.book Page 388 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Requirements and Qualities 389

FIGURE 15.12 Typical physical architecture of an SS2000 product

• • •

• • •

•
•

•

•
•

•

Work
Station n

Work
Station 1

Work
Station 2

Processor 1 Processor 2
• • •

Processor 3

Data
Processor

Data
Processor

Standard
Interface
Unit (ESM,
ECM, ASW)

Video
Switch

Surface-to-
Surface
Missile
Interface

Plot and
Target
Extractor

Communi-
cation
Processor

Surface-to-
Air Missile
Interface

Gun
Processor

Radar
Detector

E/O
Director

Torpedo
Processor

Dual
Ethernet LAN

Key: UML

Bass.book Page 389 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

390 Part Four From One System to Many 15—CelsiusTech

15.3 Architectural Solution

We describe the architecture using three views—the process view so that we can
explain how distribution was accomplished; the layered view as a basis for dis-
cussing how Ship System 2000 achieves a separation of concerns; and a module
decomposition view to show assignment of responsibilities to different large-scale
elements of the system, called system functions and system function groups. After
presenting the architecture in terms of these three views, we discuss some of the
issues that arose at CelsiusTech that are specific to the maintenance and use of a
product line.

THE PROCESS VIEW: MEETING REQUIREMENTS
FOR DISTRIBUTION AND PRODUCT LINE SUPPORT

Each CPU runs a set of Ada programs; each Ada program runs on at most one
processor. A program may consist of several Ada tasks. Systems in the SS2000
product line can consist of up to 300 Ada programs.

The requirement to run on a distributed computing platform has broad
implications for the software architecture. First, it necessitates building the sys-
tem as a set of communicating processes, bringing the process view into play.
Having a process view at all means that the performance tactic “introduce con-
currency” has been applied. Distributed systems also raise issues of deadlock
avoidance, communication protocols, fault tolerance in the case of a failed pro-
cessor or communications link, network management and saturation avoidance,
and performance concerns for coordination among tasks. A number of conven-
tions are used to support the distribution. These respond to the distributed
requirements of the architecture as well as its product line aspects. The tasks and
intercomponent conventions include the following:

� Communication among components is by the passing of strongly typed
messages. The abstract data type and the manipulating programs are pro-
vided by the component passing the message. Strong typing allows compile-
time elimination of whole classes of errors. The message as the primary
interface mechanism between components allows components to be written
independently of each other’s (changeable) implementation details with
respect to data representation.

� Inter-process communication is the protocol for data transport between Ada
applications that supports location independence, allowing communication
between applications regardless of their residence on particular processors.
This “anonymity of processor assignment” allows processes to be migrated
across processors, for pre-runtime performance tuning and runtime recon-
figuration as an approach to fault tolerance, with no accompanying change
in source code.

� Ada task facilities are used to implement the threading model.

Bass.book Page 390 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution 391

A producer of data does its job without knowing who the consumer of that
data is. Data maintenance and update are conceptually separate from data usage.
This is an application of the tactic “introduce an intermediary” to achieve modifi-
ability, which the designers accomplished using a blackboard pattern. The main
consumer of the data is the HCI component. The component that contains the
repository is called the common object manager (COOB).

Figure 15.13 illustrates the role of the COOB at runtime. It shows not only
the data flow that uses the COOB but also the data flows that bypass the COOB
for reasons of performance. Track information (the positional history of a target),
carried in a large data structure, is passed directly between producer and con-
sumer, as is trackball information because of its very high update frequency.

Data-producing conventions include the following:

� Data is sent only when altered. This prevents unnecessary message traffic
from entering the network.

� Data is presented as object-oriented abstractions in order to insulate programs
from changing implementations. Strong typing allows compile-time detec-
tion of variable misuse errors.

� Components own the data they alter and supply access procedures that act as
monitors. This eliminates race conditions because each piece of data is
accessed directly only by the component that owns it.

� Data is accessible to all interested parties at all nodes in a system. Assignment
to a particular node does not affect the data a component can access.

� Data is distributed so that response time to a retrieval request is short.
� Data is kept consistent within the system over the long term. Short-term

inconsistencies are tolerable.

Network-related conventions include the following:

� Network load is kept low by design—that is, considerable design effort goes
into managing the data flow on the network, ensuring that only essential
information is transmitted.

FIGURE 15.13 Using (and bypassing) the COOB

Updates Updates

Track Information

Track Updates

COOBData-Providing
Application HCI

Requests Requests

Key: UML

Bass.book Page 391 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

392 Part Four From One System to Many 15—CelsiusTech

� Data channels are error resistant. Applications resolve errors internally as
much as possible.

� It is acceptable for an application to “miss” an occasional data update. For
instance, because a ship’s position changes continuously, a position update
may be missed but interpolated from surrounding updates.

Miscellaneous conventions include the following:

� Heavy use is made of Ada generics for re-usability.
� Ada standard exception protocols are used.

Many of these conventions (particularly those regarding abstract data types, IPC,
message passing, and data ownership) allow a module to be written independently of
many changeable aspects over which it has no control. In other words, the modules
are more general and hence more directly usable in different systems.

THE LAYERED VIEW

The architecture for SS2000 is layered, as follows:

� The grouping of modules is roughly based on the type of information they
encapsulate. Modules that must be modified if hardware platform, under-
lying LAN, or internode communication protocols are changed form one
layer. Modules that implement functionality common to all members of the
family form another. Modules specific to a particular customer product form
a layer also.

� The layers are ordered, with hardware-dependent layers at one end of the
relation and application-specific layers at the other.

� The layering is “strict,” meaning that interactions among layers are
restricted. A module residing in one layer can only access modules in its
own or the next lower layer.

In SS2000, the bottom layer is known as Base System 2000; it provides an inter-
face between operating system, hardware, and network on the one hand and
application programs on the other. To applications programmers, Base System
2000 provides a programming interface with which they can perform intercom-
ponent communication and interaction without being sensitive to the particular
underlying computing platforms, network topologies, allocation of functions to
processors, and so on. Figure 15.14 illustrates the architectural layers of SS2000.

THE MODULE DECOMPOSITION VIEW: SYSTEM
FUNCTIONS AND SYSTEM FUNCTION GROUPS

As we mentioned in Chapter 2, an organization often has its own terms for the
modules it introduces in a module decomposition view. CelsiusTech’s modules
were called system functions and system function groups.

Bass.book Page 392 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution 393

FIGURE 15.14 SS2000 layered software architecture

General Applications

ECMFire
Control

Target
Tracking ASC

Operator’s Console

Common Applications

Picture
Compilations

Ships
Information

Common Application

Base System 2000

LAN IPC

OS-2000

Base System Hardware

Fundamentals

Tactical
Configuration

Common
Functions

Fundamentals

DiagnosticsDatabase

Key: UML

Bass.book Page 393 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

394 Part Four From One System to Many 15—CelsiusTech

System functions are the primary element of module decomposition in
SS2000. A system function is a collection of software that implements a logically
connected set of requirements. It is composed of a number of Ada code units. A
system function group comprises a set of system functions and forms the basic
work assignment for a development team. SS2000 consists of about 30 system
function groups, each comprising up to 20 or so system functions. They are clus-
tered around major functional areas, including the following:

� Command, control, and communications
� Weapons control
� Fundamentals—facilities for intrasystem communication and interfacing

with the computing environment
� Human–computer interface

Figure 15.15 illustrates the relationship between the various module types.
System function groups may (and do) contain system functions of more than

one layer. They correspond to bigger pieces of functionality that are more appro-
priately developed by a large team. For example, a separate software require-
ments specification is written for each system function group.

FIGURE 15.15 Units of software in the module decomposition view

System Family

System Function Group

System Function

Ada Unit

System Product

Produces

Bass.book Page 394 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution 395

System functions and system function groups, not the Ada code units, are
the basic units of test and integration for the product line. This is crucial because
it allows a new member of the product line to be treated as the composition of a
few dozen high-quality, high-confidence modules that interact in controlled, pre-
dictable ways, as opposed to thousands of small units that must be regression-
tested with each change. Assembly of large pretested elements was a key to mak-
ing re-use work at CelsiusTech.

APPLYING THE SS2000 ARCHITECTURE

Table 15.2 summarizes the architectural goals for SS2000 and the approaches
and tactics (from Chapter 5) used to achieve them. This section concludes the

TABLE 15.2 SS2000 Requirements and How the Architecture Achieved Them

Requirement How Achieved Related Tactic(s)

Performance Strict network traffic protocols; soft-
ware is written as a set of processes
to maximize concurrency and written
to be location independent, allowing
for relocation to tune performance;
COOB is by-passed for high-data-
volume transactions; otherwise, data
sent only when altered and distrib-
uted so response times are short

Introduce concurrency
Reduce demand
Multiple copies
Increase resources

Reliability,
Availability,
and Safety

Redundant LAN; fault-tolerant soft-
ware; standard Ada exception proto-
cols; software written to be location
independent and hence can be
migrated in case of failure; strict own-
ership of data prevents multi-writer
race conditions

Exceptions
Active redundancy
State resynchronization
Transactions

Modifiability
(including ability
to produce new
members of the
SS2000 family)

Strict use of message-based commu-
nication provides interface isolated
from implementation details; software
written to be location independent;
layering provides portability across
platforms, network topologies, IPC
protocols, etc.; data producers and
consumers unaware of each other
because of COOB; heavy use of Ada
generics; heavy use of element
parameterization; system functions
and system function groups provide
semantic coherence

Semantic coherence
Anticipate expected changes
Generalize modules
Abstract common services
Interface stability
Intermediary
Configuration files
Component replacement
Adherence to defined protocols

Testability Interfaces using strongly typed mes-
sages push a whole class of errors to
compile time; strict data ownership,
semantic coherence of elements,
and strong interface definitions sim-
plify discovery of responsibility

Separate interface from
implementation

Bass.book Page 395 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

396 Part Four From One System to Many 15—CelsiusTech

presentation of the architecture by discussing four important issues that arose in
building and maintaining the architecture and in building a family of systems
from it.

Architecture as the Foundation. Although this case study emphasizes that
technical solutions in a product line are insufficient without taking into account
business and organizational issues as well, it remains a fact that the SS2000
architecture was the means for achieving a product line. Toward this end, abstrac-
tion and layering were vital. Abstraction allowed creation of modules that encap-
sulated changeable decisions within the boundaries of their interfaces. When a
module is used in multiple products, the changeable decisions are instantiated
whenever possible by parameterization. When the modules change across time as
new requirements are accommodated, the changeable decisions held inside the
module ensure that wholesale changes to the asset base are not needed.

The size and complexity of this architecture and the modules that populate it
make clear that a thorough understanding of the application domain is required if
a system is to be partitioned into modules that can be developed independently,
are appropriate for a product line whose products are as widely varied as those in
SS2000, and can accommodate evolution with ease.

Maintaining the Asset Base as New Systems Are Produced. As we dis-
cussed, the enduring product at CelsiusTech is not an individual ship for a spe-
cific customer, or even the set of systems deployed so far. Rather, the central task
is viewed as maintaing the product line itself. Maintaining the product line means
maintaining the re-usable assets in such a way that any previous member of the
product line can be regenerated (they change and evolve and grow, after all, as
their requirements change) and future members can be built. In a sense, maintain-
ing the product line means maintaining a capability, the capability to produce
products from the assets. Maintaining this capability means keeping re-usable
modules up to date and general. No product is allowed to evolve in isolation from
the product line. This is one approach to solving the problem, which we identified
in Chapter 14, of keeping the evolution of the product line synchronized with the
evolution of the variants.

Not every module is used in every member of the product line. Cryptologic
and human interface requirements differ so widely across nationalities, for
instance, that it makes more sense to build modules that are used in a few systems
than to attempt a more general solution. In a sense, this yields product lines
within the major product line: a Swedish set of products, a Danish set of prod-
ucts, and so on. Some modules are used only once but even these are maintained
as product line assets, designed and built to be configurable and flexible, in case a
new product is developed that can make use of them.

Externally, CelsiusTech builds ship systems. Internally, they evolve and grow
a common asset base that provides the capability to turn out ship systems. This
mentality—which is what it is—might sound subtle, but it manifests itself in the

Bass.book Page 396 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architectural Solution 397

configuration control policies, the organization of the enterprise, and the way that
new products are marketed.

Maintaining Large Pre-integrated Chunks. In the classic literature on soft-
ware re-use repositories, the unit of re-use is typically either a small fine-grained
module (such as an Ada package, a subroutine, or an object) or a large-scale inde-
pendently executing subsystem (such as a tool or a commercial standalone product).
In the former case, the small modules must be assembled, integrated, configured,
and tested after checking out; in the latter case, the subsystems are typically not
very configurable or flexible.

CelsiusTech took an intermediate approach. Their unit of re-use is a system
function, a thread of related functionality that comprises modules from different
layers in the architecture. System functions are pre-integrated—that is, the mod-
ules they comprise have been assembled, compiled together, tested individually,
and tested as a unit. When the system function is checked out of the asset reposi-
tory, it is ready for use. In this way, CelsiusTech is not only re-using modules but
also re-using the integration and test effort that would otherwise have to be
repeated for each application.

Parameterized modules. Although modules are re-used with no change in
code in most cases, they are not always re-used entirely without change. Many of
the elements are written with symbolic values in place of absolute quantities that
may change from system to system. For example, a computation within some
module may be a function of how many processors there are; however, that num-
ber need not be known when the module is written; therefore, the module may be
written with the number of processors as a symbolic value—a parameter—the
value of which is bound as the system is integrated. The module works correctly
at runtime but can be used without code change in another version of the system
that features a different number of processors.

Parameters are a simple, effective, and time-honored means to achieve mod-
ule re-use. However, in practice they tend to multiply at an alarming rate. Almost
any module can be made more general via parameterization. The modules for
SS2000 feature 3,000 to 5,000 parameters that must be individually tuned for each
customer system built from the product line. CelsiusTech had no way to tell that a
certain combination of parameter values, when instantiated into a running system,
would not lead to some sort of illegal operating state.

The fact that there were so many parameters undermined some of the bene-
fits gained from treating large system functions and system function groups as the
basic units of test and integration. As parameters are tuned for a new version of the
system, they in fact produce a version that has never been tested. Moreover, each
combination of parameter values may theoretically take the system into operating
states that have never been experienced, let alone exhaustively tested.

Only a small proportion of the possible parameter combinations will ever
occur. However, there is a danger that unwillingness to “try out” a new parameter

Bass.book Page 397 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

398 Part Four From One System to Many 15—CelsiusTech

combination could inhibit exploiting the built-in flexibility (configurability) of
the elements.

In practice, the multitude of parameters seems to be mostly a bookkeeping
worry; there has never been any incorrect operation that could be traced back
solely to a set of parameter specifications. Often, a large module is imported with
its parameter set unchanged from its previous utilization.

15.4 Summary

Between 1986 and 1998 CelsiusTech evolved from a defense contractor provid-
ing custom-engineered point solutions to essentially a vendor of commercial off-
the-shelf naval systems. They found the old ways of organizational structure and
management insufficient to support the emerging business model. They also
found that achieving and sustaining an effective product line was not simply a
matter of the right software and system architecture, development environment,
hardware, or network. Organizational structure, management practices, and staff-
ing characteristics were also dramatically affected.

The architecture served as the foundation of the approach, both technically
and culturally. In some sense, it became the tangible thing whose creation and
instantiation were the ultimate goal. Because of its importance, the architecture
was highly visible. A small, elite architecture team had the authority as well as
the responsibility for it. As a consequence, the architecture achieved the “concep-
tual integrity” cited by [Brooks 95] as the key to any quality software venture.

Defining the architecture was only the first step in building a foundation for
a long-term development effort. Validation through prototyping and early use was
also essential. When deficiencies were uncovered, the architecture had to evolve
in a smooth, controlled manner throughout initial development and beyond. To
manage this natural evolution, CelsiusTech’s integration and architecture teams
worked together to prevent any designer or design team from changing critical
interfaces without the architecture team’s explicit approval.

This approach had the full support of project management, and it worked
because of the architecture team’s authority. The team was a centralized design
authority that could not be circumvented, which meant that conceptual integrity
was maintained.

The organization necessary to create a product line is different from that
needed to sustain and evolve it. Management needs to plan for changing person-
nel, management, training, and organizational needs. Architects with extensive
domain knowledge and engineering skill are vital to the creation of viable prod-
uct lines. Domain experts remain in demand as new products are envisioned and
product line evolution is managed.

Bass.book Page 398 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Discussion Questions 399

CelsiusTech’s turnaround from one-at-a-time systems to a product line
involved education and training on the part of management and technicians. All
of these are what we mean by the return cycle of the ABC.

15.5 For Further Reading

There are two reports about CelsiusTech’s conversion to a product line. One is
from the Software Engineering Institute [Brownsword 96] and is the basis for this
chapter. The other is a thesis from Sweden’s Linkoping University [Cederling 92].

15.6 Discussion Questions

1. Could the CelsiusTech architecture have been used for the air traffic control
system of Chapter 6? Could CelsiusTech have used that architecture? What
are the essential differences?

2. CelsiusTech changed management structures several times during its devel-
opment of the SS2000. Consider the implications of these changes, given our
recommendation in Chapter 7 that product structure should mirror project
structure.

Bass.book Page 399 Thursday, March 20, 2003 7:21 PM

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

