A-7E Avionics System

A Case Study in Utilizing
Architectural Structures

An object-oriented program’s runtime structure often bears
little resemblance to its code structure. The code structure
is frozen at compile-time; it consists of classes

in fixed inheritance relationships.

A program’s runtime structure consists of rapidly changing
networks of communicating objects. In fact, the two
structures are largely independent. Trying to

[understand] one from the other is like

trying to understand the dynamism

of living ecosystems from the static

taxonomy of plants and animals,

and vice versa.

— E. Gamma, R. Helms, R. Johnson,

and J. Vlissides [Gamma 95]

In Chapter 2, we stated that software architecture describes elements of a system
and the relations among them. We also emphasized that every system has many
kinds of elements and that different architectural structures are useful, even nec-
essary, to present a complete picture of the architecture of a system. Each struc-
ture concentrates on one aspect of the architecture.

This chapter will present a case study of an architecture designed by engi-
neering and specifying three specific architectural structures: module decomposi-
tion, uses, and process. We will see how these structures complement each other
to provide a complete picture of how the system works, and we will see how cer-
tain qualities of the system are affected by each one. Table 3.1 summarizes the
three structures we will discuss.

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

48 Part One Envisioning Architecture

TABLE 3.1 The A-7E’s Architecural Structures

3—A-7E Avionics System

Structure Elements

Relation among
Elements

Has Influence Over

Module Modules (implemen-
Decomposition tation units)

Uses Procedures

Process Processes; thread
of procedures

Is a submodule of;
shares a secret with

Requires the correct
presence of

Synchronizes with;
shares CPU with;
excludes

Ease of change

Ability to field subsets
and develop incremen-
tally

Schedulability; achiev-
ing performance goals
through parallelism

3.1 Relationship to the Architecture Business Cycle

Figure 3.1 shows the ABC as it pertains to the A-7E avionics system described in
this chapter. The system was constructed beginning in 1977 for the naval aviators who
flew the A-7E aircraft and was paid for by the U.S. Navy. The developing organi-
zation was the software engineering group at the U.S. Naval Research Laboratory.
The developers were creating the software to test their belief that certain software

Architect’s Influences

Stakeholders
Naval Aviators j» Requi_rgments
Developing Organization (Qualities)

Modifiability
U.S. Naval Research
Laboratory Performance

Technical Environment
Information Hiding
Cooperating Sequential Processes

Architect’s Experience
Academic
Access to Other Systems

Architect(s)

Architecture
Module Structure
Uses Structure
Process Structure

System
A-7E
Avionics

FIGURE 3.1 The ABC as it relates to the A-7E avionics systems

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Requirements and Qualities 49

engineering strategies (in this case, information hiding and cooperating sequential
processes) were appropriate for high-performance embedded real-time systems.

The architects included one of the authors of this book and one of the lead-
ers in the development of software engineering principles, but the architects had
little experience in the avionics domain, although they did have access to other
avionics systems and to experts in avionics. There was no compiler available for
the target platform.

We will start by explaining the application, what the system does, which
qualities were important to achieve, and the software’s role in performing the sys-
tem’s task.

3.2 Requirements and Qualities

Figure 3.2 shows the A-7E Corsair II. It is a single-seat, carrier-based attack air-
craft used by the U.S. Navy throughout the 1960s, 1970s, and 1980s. An earlier
version, the A-7C, was among the very first production aircraft in the world to be
equipped with an onboard computer to help the pilot with navigation and
“weapon delivery” (the military euphemism for attacking a ground target).

The A-7E’s onboard computer is a small, special-purpose IBM machine for
which no compiler exists; programming is in assembly language only. The com-
puter has special registers connected to analog-to-digital and digital-to-analog
converters that let it receive and send data to almost two dozen devices in the air-
craft’s avionics suite.

In broad terms, the A-7E software is responsible for reading sensors and
updating cockpit displays that help the pilot drop weapons on a target. The A-7E
software does not actually fly the aircraft, as more modern avionics systems do.

FIGURE 3.2 An A-7E Corsair ll. Used with permission and under copyright of
Squadron/Signal Publications, Inc.

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

50

Part One Envisioning Architecture 3—A-7E Avionics System

The following are the primary sensors the software reads and manages:

= An air probe that measures barometric pressure and air speed.

A forward-looking radar that can be aimed in azimuth and elevation and
returns the straight-line range to the point on the ground at which it is pointed.
= A Doppler radar that reports ground speed and drift angle (the difference
between the direction in which the aircraft’s nose is pointed and the direc-
tion in which it is moving over the ground).

An inertial measurement set (IMS) that reports accelerations along each of
three orthogonal axes. The software must read these accelerations in a
timely manner and integrate them over time to derive velocities, and it must
integrate the velocities over time to derive the aircraft’s current position in
the physical world. It also must manage the alignment and compensate for
the drift of the axes to keep them pointed north, east, and vertical, respec-
tively, so that the measurements accurately correspond to the aircraft’s
frame of reference.

An interface to the aircraft carrier’s inertial measurement system, through
which the aircraft can compute its current position while on board a ship.
Sensors that report which of the A-7E’s six underwing bomb racks hold
weapons and which of more than 100 kinds of weapons in the aircraft’s rep-
ertoire they are. The software stores large tables of the parameters for each
weapon type, which let it compute how that weapon moves through the
atmosphere in a free-fall ballistic trajectory.

= A radar altimeter that measures the distance to the ground.

The cockpit display devices managed by the software include some that are dis-
play only and some by which the pilot communicates with the software, as follows:

= A map display that always shows the aircraft’s current location by moving a
back-lit filmstrip as the aircraft travels. The pilot can choose the map’s orienta-
tion so that the top corresponds either to the current heading or to true north.

= A heads-up display—a device that projects digital and iconographic infor-
mation on a clear window between the pilot and the windscreen. Since the
pilot’s head position is assumed fixed and known, the display can be used to
overlay information about the real world, such as the position of the target or
a line showing the aircraft’s direction of travel.

= A keypad and a trio of small alphanumeric display windows. With the key-
pad, the pilot can request approximately a hundred kinds of digital informa-
tion from the computer. A bank of switches on the computer control panel
allows the pilot to choose the desired navigation and weapon delivery
modes.

= Various lights and dials and an audible signal.

The pilot communicates the location of a ground target (or a navigational way-
point) to the software in a number of ways, including the following:

= Keying in its latitude and longitude via the keypad

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Requirements and Qualities 51

= Slewing the map using a joystick until its coordinates are under the center
crosshairs and then “designating” it by pushing a special button on the con-
trol stick

= Aiming the forward-looking radar to the point and designating it

= Slewing a special symbol on the heads-up display until it overlays the point
of interest on the ground and then designating it

The software then provides navigational information (direction, distance, time to
go) and directional cues on the heads-up display that take the aircraft to the des-
ignated location.

The pilot can choose from over two dozen navigation modes, based on
which sensors are most reliable under the conditions of the moment. The soft-
ware has at least five direct and indirect ways to calculate the aircraft’s current
altitude, including a trigonometric scheme using the range and elevation angle of
the forward-looking radar as components of a triangle (see Figure 3.3). There are
more than 20 weapon delivery modes, all demanding in terms of the real-time
calculations (repeated 25 times every second) necessary to maintain the A-7E’s
bombing accuracy.

A-TEs were retired from active duty in the late 1980s, but current-generation
fighters feature a heads-up display and weapon delivery and navigation modes
that show heavy influence from the Corsair.

o = elevation angle of
Forward Looking Radar
Altitude above sea level @-------f------ooeeeeaee 90-ar
based on vertical inertial
accelerations double-
integrated over time
Altitude above sea level ®
based on barometric altitude

Altitude above ground level e
from radar altimeter

Altitude above ground level @--}--------cooooeeeeeee -

from Forward Looking
/\\/y\,

d cos(90-a)

Radar pointing angle

Ground Level

Sea Level

FIGURE 3.3 Calculation of altitude for the A-7E

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

52 Part One Envisioning Architecture 3—A-7E Avionics System

The architecture we will present in this chapter is not the architecture for the
original software but that for a redesign project launched by Navy software engi-
neers using the A-7E as a demonstration project for their ideas (see the sidebar
About the A-7 Project). The qualities that the software system was expected to
have included real-time performance and modifiability for expected changes.
Specifically, the performance requirements were stated in terms of updates per
second of the A7-E’s displays and weapon delivery calculations. The modifiabil-
ity requirements dealt with making changes to the weaponry, the platform, the
symbology on the display, and the addition of new input through the keypad.

About the A-7 Project

“In the mid-1970s, it was clear to computer scientists at the Naval Research
Laboratory (NRL) in Washington, D.C., that much of the computer science
technology being developed in academia and laboratories was not being
used by the developers of software for Navy systems.” So began a typical
description of the Navy’s Software Cost Reduction (SCR) project, or, as it
was more popularly known, the A-7 project. Most descriptions went on to say
that NRLs response was to choose a high-fidelity, challenging Navy program
(the software for the A-7E aircraft) and then redesign and reimplement it
using that under-utilized technology. The point was to create a convincing
demonstration of the technology’s value in real-world applications.

Between the lines, however, was the fact that those scientists had some
very specific computer science technology in mind: primarily, the use of infor-
mation hiding as the design strategy. This is not surprising, because the
impetus behind the A-7 project was the man who first wrote about information
hiding as a design technique, David Parnas. Parnas wanted to find out
whether his ideas (and others, such as cooperating sequential processes)
could be used in a system with inflexible requirements, demanding memory
constraints, and tight time budgets. If not, he wanted to find out why not and
how to improve his ideas so that they could work. Vague methods demon-
strated only on toy problems were clearly not enough. The idea behind the
A-7 project was to leave a complete engineering model—documentation,
design, code, methodology, principles—that others could emulate, all
reported in the open literature.

The project started in 1977 with a couple of people working part-time. It soon
chose the demonstration application: The software for the A-7E was a hard
real-time system (meaning it absolutely had to meet its timing requirements),
it was embedded (having to interface with all sorts of esoteric hardware devices),
it was absolutely authentic, and it was very tightly constrained by the com-
puter’s tiny memory capacity: only 32,000 16-bit words. If the new techniques
succeeded in duplicating this program, they would succeed anywhere.

The first product was a requirements specification for the software. It
hadn’t been intended, but when Parnas asked the Navy if he could obtain the
A-7’s requirements document, the response was “What requirements docu-
ment?” Realizing that they had to have a standard against which to test and
judge when they were done, the software engineers at the NRL reluctantly

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Requirements and Qualities 53

set about documenting the requirements for the software. The team not only
produced a requirements document but, more important, produced a method
for producing it. SCR-style requirements documents are now widely used for
real-time embedded software systems.

Then the small team concentrated on designing the interfaces to all of the
modules. The few people working on the project were pioneering what would
today be called object-based design. In designing to accommodate future
changes, they were also building what would today be called a domain
model. In creating a standard, re-usable design, they were building what
would today be called a reference architecture (see Chapter 12). They had to
balance their time among inventing new software engineering approaches,
learning the avionics domain, writing papers to get the word out and, last but
hardly least, producing the software.

The project implementation phase was staged by deploying a tiny subset
of the software to demonstrate the ability to generate executable code, and
then deploying two successively larger subsets, and finally the entire system.
The uses structure, one of the three architectural structures highlighted in the
case study, allowed them to define these subsets quickly and easily to meet
their needs. By the time the second of the three subsets was under way;, it
was clear to project management that most of what they had set out to learn
had been learned and that slogging through to the complete reimplementa-
tion was not going to be practical given the small staff size, small budget, and
still infantile expertise in the avionics domain. In 1987, the project demon-
strated the successful completion of the second subset and was completed.
The subset was carefully chosen to include part of every second-level mod-
ule and to perform a useful and nontrivial navigation function.

The team concluded that information hiding is not only compatible with
real-time embedded systems but in many ways ideal for it. Careful attention
to module interfaces and module interface specifications paid off in essentially
eliminating integration as a project phase: There were practically no errors of
the type usually associated with the integration step. The software was able
to meet its timing deadlines but could not compete with years of handcrafted
assembly code in terms of memory efficiency. It is hoped that memory effi-
ciency is now and will remain less of a concern than it was in 1977.

The architecture we present in this case study is that of the completed
design, the one that led to the subset of 1987. There is no reason to believe
that it would not have also led, unchanged, to the full reimplementation of the
system. In any case, it is a very good example of paying attention to different
architectural structures or views in order to achieve particular goals, and we
present it in that light.

Why, after all this time, is the A-7E still interesting? Because it holds two
lessons. One is that information hiding is a viable and prudent design disci-
pline—a lesson that has been well heeded by the community. The second is
that carefully engineering different structures of an architecture yields payoffs
in terms of achievable qualities—a lesson not so well heeded, and so we
repeat it in the context of the current interest in software architecture in the
hope that, through repetition, the lesson will be better absorbed.

— PCC

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

54 Part One Envisioning Architecture 3—A-7E Avionics System

3.3 Architecture for the A-7E Avionics System

The architecture for the A-7E avionics system is centered around three architec-
tural structures discussed in Chapter 2:

= Decomposition, a structure of modules
= Uses, a structure of modules
= Process, a structure of components and connectors

We will discuss each in turn.

DECOMPOSITION STRUCTURE

Unless a program is small enough to be produced by a single programmer, we
must think how the work will be divided into units that can be implemented sepa-
rately and how those modules will interact. The unit of the decomposition struc-
ture is, of course, the module. A module may be thought of as defining a group of
procedures, some public and some private, plus a set of private data structures.
The relation among modules in the decomposition structure is “is-a-submodule-
of” or “shares-a-secret-with.”

Prior to 1977, performance was the overriding goal of embedded (as well as
most other) systems. The goal of the A-7E designers was to balance performance
with modifiability and demonstrate that it was possible to achieve modifiability
without compromising performance.

Information Hiding. The A-7E module decomposition is based on informa-
tion hiding. An architectural tactic we will revisit in Chapter 5, information hid-
ing works by encapsulating system details that are likely to change independently
in different modules. The interface of a module reveals only those aspects consid-
ered unlikely to change; the details hidden by the module interface are the mod-
ule’s secrets.

For instance, if a device such as an aircraft altitude sensor is likely to be
replaced over the life of an avionics program, the information-hiding principle
makes the details of interacting with that device the secret of one module. The
interface to the module provides an abstraction of the sensor, consisting perhaps
of a single program that returns the most recent value measured by the sensor,
because all replacement sensors probably share this capability. If the sensor is
ever replaced, only the internal parts of that module need to change; the rest of
the software is unaffected.

Information hiding is enforced by requiring that modules interact only via a
defined set of public facilities—their interfaces. Each module provides a set of
access procedures, which may be called by any other module in the system. The
access procedures provide the only inter-module means for interacting with
information encapsulated in a module.

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architecture for the A-7E Avionics System 55

Of course, this is the philosophy underlying object-based design, with a key
difference: Whereas objects are created from the physical objects inherent in the
application, or conjured up from intuitive insights about the system, information-
hiding modules are derived by cataloging the changes to the software that are
perceived to be likely over the system’s lifetime.

A module may consist of submodules, or it may be considered a single
implementation unit. If it contains submodules, a guide to its substructure is pro-
vided. The decomposition into submodules and their design is continued until
each module is small enough to be discarded and begun again if the programmer
assigned to it leaves the project.

Specific goals of module decomposition are as follows:

Each module’s structure should be simple enough to be understood fully.

It should be possible to change the implementation of one module without

knowledge of the implementation of other modules and without affecting

the behavior of other modules.

= The ease of making a change in the design should bear a reasonable rela-
tionship to the likelihood of the change being needed; it should be possible
to make likely changes without changing any module interfaces; less likely
changes may involve interface changes but only for modules that are small
and not widely used. Only very unlikely changes should require changes in
the interfaces of widely used modules.

= It should be possible to make a major software change as a set of indepen-

dent changes to individual modules (i.e., except for interface changes, pro-

grammers changing the individual modules should not need to

communicate). If the module interfaces are not revised, it should be possible

to run and test any combination of old and new module versions.

The documentation of the decomposition structure is sometimes called a module
guide. It defines the responsibilities of each of the modules by stating the design
decisions that will be encapsulated by it. Its purpose is to avoid duplication and
gaps, to achieve separation of concerns, and, most of all, to help a maintainer find
out which modules are affected by a problem report or change request.

The guide states the criteria used to assign a particular responsibility to a
module and arranges the modules in such a way that we can find the necessary
information without searching through unrelated documentation. It reflects the
tree structure of the decomposition structure, dividing the system into a small num-
ber of modules and treating each one in the same way until all of them are quite
small. Each nonleaf node in the tree represents a module composed of the modules
represented by its descendants. The guide does not describe any runtime relation-
ship among the modules: It doesn’t talk about how modules interact with each other
while the system is executing; rather, it simply describes a design-time relation-
ship among the implementation units that constitute the design phase of a project.

Applying this principle is not always easy. It is an attempt to lower the expected
cost of software by anticipating likely changes. Such estimates are necessarily

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

56 Part One Envisioning Architecture 3—A-7E Avionics System

TABLE 3.2 How the A-7E Module Decomposition Structure Achieves Quality Goals

Goal How Achieved

Ease of change to: weapons, Information hiding

platform, symbology, input

Understand anticipated changes Formal evaluation procedure to take advantage of
experience of domain experts

Assign work teams so that their Modules structured as a hierarchy; each work team

interactions were minimized assigned to a second-level module and all of its
descendants

based on experience, knowledge of the application area, and an understanding of
hardware and software technology. Because a designer might not have had all of
the relevant experience, formal evaluation procedures were used that were
designed to take advantage of the experience of others. Table 3.2 summarizes the
role of the module structure in the A-7E architecture.

A-7E Module Decomposition Structure. To describe the A-7E module
decomposition structure, and to give an example of how a module structure is
documented, we provide the following excerpts from the A-7E software module
guide. The decomposition tree is described beginning with the three highest-level
modules. These are motivated by the observation that, in systems like the A-7E,
changes tend to come from three areas: the hardware with which the software
must interact, the required externally visible behavior of the system, and a deci-
sion solely under the jurisdiction of a project’s software designer.

Hardware-Hiding Module. The Hardware-Hiding Module includes the proce-
dures that need to be changed if any part of the hardware is replaced by a new
unit with a different hardware/software interface but with the same general
capabilities. This module implements virtual hardware, or a set of abstract
devices that are used by the rest of the software. The primary secrets of this
module are the hardware/software interfaces. The secondary secrets of this
module are the data structures and algorithms used to implement the virtual
hardware. One of the submodules of the Hardware-Hiding Module is the
Extended Computer Module that hides the details of the processor.

Behavior-Hiding Module. The Behavior-Hiding Module includes procedures
that need to be changed if there are changes in requirements affecting the
required behavior. Those requirements are the primary secret of this module.
These procedures determine the values to be sent to the virtual output devices
provided by the Hardware-Hiding Module.

Software Decision Module. The Software Decision Module hides software design
decisions that are based on mathematical theorems, physical facts, and pro-
gramming considerations such as algorithmic efficiency and accuracy. The
secrets of this module are not described in the requirements document. This

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architecture for the A-7E Avionics System 57

module differs from the other modules in that both the secrets and the inter-
faces are determined by software designers. Changes in these modules are
more likely to be motivated by a desire to improve performance or accuracy
than by externally imposed changes.

The module guide goes on to explain how conflicts among these categories
(e.g., is a required algorithm part of the behavior or a software decision?) are
arbitrated by a complete and unambiguous requirements specification and then
provides the second-level decomposition. The following sections describe how
the Software Decision Module is decomposed.

Application Data Type Module—The Application Data Type Module supple-
ments the data types provided by the Extended Computer Module with data
types that are useful for avionics applications and do not require a computer-
dependent implementation. Examples of types include distance (useful for alti-
tude), time intervals, and angles (useful for latitude and longitude). These data
types are implemented using the basic numeric data types provided by the
Extended Computer; variables of those types are used just as if the types were
built into the Extended Computer.

The secrets of the Application Data Type Module are the data representa-
tion used in the variables and the procedures used to implement operations on
those variables. Units of measurement (such as feet, seconds, or radians) are
part of the representation and are hidden. Where necessary, the modules pro-
vide conversion operators that deliver or accept real values in specified units.

Data Banker Module—Most data are produced by one module and consumed
by another. In most cases, the consumers should receive a value that is as up
to date as practical. The time at which a datum should be recalculated is deter-
mined both by properties of its consumer (e.g., accuracy requirements) and by
properties of its producer (e.g., cost of calculation, rate of change of value).
The Data Banker Module acts as a “middleman” and determines when new val-
ues for these data are computed.

The Data Banker Module obtains values from producer procedures; consumer
procedures obtain data from Data Banker access procedures. The producer
and consumers of a particular datum can be written without knowing when a
stored value is updated. In most cases, neither the producer nor the consumer
need be modified if the updating policy changes.

The Data Banker provides values for all data that report on the internal state
of a module or on the state of the aircraft. The Data Banker also signals events
involving changes in the values that it supplies. The Data Banker is used as
long as consumer and producer are separate modules, even when they are
both submodules of a larger module. The Data Banker is not used if consumers
require specific members of the sequence of values computed by the producer
or if a produced value is solely a function of the values of input parameters
given to the producing procedure, such as sin(x)."

' The Data Banker Module is an example of the use of the blackboard architectural pattern
(see Chapter 5, Achieving Qualities).

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

58 Part One Envisioning Architecture 3—A-7E Avionics System

The choice among updating policies should be based on the consumers’
accuracy requirements, how often consumers require the value, the maximum
wait that consumers can accept, how rapidly the value changes, and the cost
of producing a new value. This information is part of the specification given to
the implementor of the Data Banker Module.

Filter Behavior Module—The Filter Behavior Module contains digital models of
physical filters. They can be used by other procedures to filter potentially noisy
data. The primary secrets of this module are the models used for the estima-
tion of values based on sample values and error estimates. The secondary
secrets are the computer algorithms and data structures used to implement
those models.

Physical Models Module—The software requires estimates of quantities that
cannot be measured directly but can be computed from observables using math-
ematical models. An example is the time that a ballistic weapon will take to strike
the ground. The primary secrets of the Physical Models Module are the mod-
els; the secondary secrets are the computer implementations of those models.

Software Utility Module—The Software Utility Module contains those utility rou-
tines that would otherwise have to be written by more than one other programmer.
The routines include mathematical functions, resource monitors, and procedures
that signal when all modules have completed their power-up initialization. The
secrets of the module are the data structures and algorithms used to imple-
ment the procedures.

System Generation Module—The primary secrets of the System Generation
Module are decisions that are postponed until system generation time. These
include the values of system-generation parameters and the choice among
alternative implementations of a module. The secondary secrets of the System
Generation Module are the method used to generate a machine-executable
form of the code and the representation of the postponed decisions. The proce-
dures in this module do not run on the onboard computer; they run on the com-
puter used to generate the code for the onboard system.

The module guide describes a third- (and in some cases a fourth-) level decom-
position, but that has been omitted here. Figure 3.4 shows the decomposition
structure of the A-7E architecture down to the third level. Notice that many of the
Device Interface modules have the same names as Function Driver modules. The
difference is that the Device Interface modules are programmed with knowledge
of how the software interfaces with the devices; the Function Driver modules are
programmed with the knowledge of values required to be computed and sent to
those devices. This suggests another architectural relationship that we will explore
shortly: how the software in these modules cooperates to accomplish work.

But the module decomposition view is not yet complete. Recall from Chap-
ter 2 our definition of architecture as including the behavioral specification for
each of the elements. Carefully designed language-independent interfaces are
crucial for maintaining portability and achieving interoperability. Here, each
module must have an interface specified for it. Chapter 9 discusses documenta-
tion for software interfaces.

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architecture for the A-7E Avionics System 59

Hardware-Hiding Module

— Extended Computer Module
Data Module
Input/Output Module
Computer State Module
Parallelism Control Module
Program Module
Virtual Memory Module
Interrupt Handler Module
Timer Module

— Device Interface Module
Air Data Computer Module
Angle of Attack Sensor Module
Audible Signal Device Module
Computer Fail Device Module
Doppler Radar Set Module
Flight Information Displays Module
Forward Looking Radar Module
Head-Up Display Module
Inertial Measurement Set Module
Input/Output Representation Module
Master Function Switch Module
Panel Module
Projected Map Display Set Module
Radar Altimeter Module
Shipboard Inertial Navigation

System Module

Slew Control Module
Switch Bank Module
TACAN Module
Visual Indicators Module
Waypoint Information System Module
Weapon Characteristics Module
Weapon Release System Module
Weight on Gear Module

Behavior-Hiding Module

— Function Driving Module

Air Data Computer Module

Audible Signal Module

Computer Fail Signal Module

Doppler Radar Set Module

Flight Information Display Module

Forward Looking Radar Module

Head-Up Display Module

Inertial Measurement Set Module

Panel Module

Projected Map Display Set Module

Shipboard Inertial Navigation
System Module

Visual Indicator Module

Weapon Release System Module

Ground Test Module

— Shared Services Module
Mode Determination Module
Panel I/0 Support Module
Shared Subroutine Module
Stage Director Module
System Value Module

Software Decision Module

— Application Data Type Module
Numeric Data Type Module
State Transition Event Module

— Data Banker Module
Singular Values Module
Complex Event Module

— Filter Behavior Module

— Physical Models Module
Aircraft Motion Module
Earth Characteristics Module
Human Factors Module
Target Behavior Module
Weapon Behavior Module

— Software Utility Module
Power-Up Initialization Module
Numerical Algorithms Module

— System Generation Module
System Generation Parameter

Module
Support Software Module

FIGURE 3.4 The module decomposition view of the A-7E software architecture

In the previous chapter, we remarked that architectures serve as the blueprint
for the developing project as well as for the software. In the case of the A-7E

architecture, this second-level modul

e decomposition structure became enshrined

in many ways: Design documentation, online configuration-controlled files, test
plans, programming teams, review procedures, and project schedule and mile-
stones all used it as their unit of reference.

Excepted from Bass et al

., Software Architecture in Practice,

Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

60 Part One Envisioning Architecture 3—A-7E Avionics System

USES STRUCTURE

The second major structure of interest in the A-7E architecture is the uses struc-
ture. The decomposition structure carries no information about runtime execution
of the software; you might make an educated guess as to how two procedures in
different modules interact at runtime, but this information is not in fact in the
module decomposition. Rather, the uses structure supplies the authoritative pic-
ture of how the software interacts.

The Uses Relation. The concept behind the uses structure is the uses relation.
Procedure A is said to use procedure B if a correctly functioning procedure B
must be present in order for procedure A to meet its requirements. In practice this
relation is similar to but not quite the same as the calls relation. Procedure A usu-
ally calls procedure B because it uses it. However, here are two cases where uses
and calls are different:

1. Procedure A is simply required to call procedure B in its specification, but
the future computation performed by A will not depend on what B does.
Procedure B must be present in order for procedure A to work, but it need
not be correct. A calls, but does not use, B. B might be an error handler, for
example.

2. Procedure B performs its function without being called by procedure A, but
A uses the results. The results might be an updated data store that B leaves
behind. Or B might be an interrupt handler that A assumes exists and func-
tions correctly. A uses, but does not call, B.

The uses relation allows rapid identification of functional subsets. If you
know that procedure A needs to be in the subset, you also know that every proce-
dure that A uses must also be there. The transitive closure of this relation defines
the subset. It therefore pays to engineer this structure, to impose a discipline on it,
so that every subset needn’t consist of the entire system. This means specifying
an allowed-to-use structure for programmers. After implementation is complete,
the actual uses can be cataloged.

The unit of the uses (or allowed-to-use) structure is the access procedure. By
dictating what procedures are allowed to use which other procedures (and, by
implication, what procedures are not allowed to be used by which other proce-
dures), the uses structure is defined.

Although the unit of the uses structure is a procedure, in practice all of the
procedures of a module may share usage restrictions. Hence, the name of a mod-
ule might appear in the uses structure; if so, it is shorthand for all of the access
procedures in that module.

The uses (allowed-to-use) structure is conceptually documented with a binary
matrix; each row and column lists every procedure in the system. Thus, if element
(m,n) is true, then procedure m uses (is allowed to use) procedure n. In practice, this
is too cumbersome, and a shorthand was introduced in which rules for whole mod-
ules (as opposed to individual procedures within each module) were adopted.

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architecture for the A-7E Avionics System 61

Table 3.3 summarizes the role of the uses structure in the A-7E software
architecture.

The A-7E Uses Structure. Recall that the uses structure is first documented
in a specification showing the allowed-to-use relation; actual uses are extracted
after implementation. The allowed-to-use specification for the A-7E architecture
is a seven-page table of which Table 3.4 is a short excerpt. The two-character
preface refers to the second-level modules. The names to the right of the period
refer to submodule names that we have mostly omitted from this chapter.

TABLE 3.3 How the A-7E Uses Structure Achieves Quality Goals

Goal How Achieved

Incrementally build and test system
functions

Create “is-allowed-to-use” structure for program-
mers that limits procedures each can use

Design for platform change Restrict number of procedures that use platform

directly

Produce usage guidance of man-
ageable size

Where appropriate, define uses to be a relation-
ship among modules

TABLE 3.4 Excerpt from the A-7E Allowed-to-Use Specification

Using procedures: A procedure in...

...is allowed to use any procedure in ...

EC: Extended Computer Module
DI: Device Interface Module

ADC: Air Data Computer
IMS: Inertial Measurement Set
FD: Function Driver Module

ADC: Air Data Computer Functions
IMS: IMS Functions
PNL: Panel Functions

SS: Shared Services Module
PNL: Panel I/O Support

AT: Application Data Type Module
NUM: Numeric Data Types
STE: State Transition Events

None

EC.DATA, EC.PGM, EC.IO, EC.PAR, AT.NUM,
AT.STE, SU

PM.ECM
PM.ACM

EC.DATA, EC.PAR, EC.PGM, AT.NUM,
AT.STE, SU, DB.SS.MODE,
DB.SS.PNL.INPUT, DB.SS.SYSVAL, DB.DI

DB.DI.ADC, DI.ADC, FB
DB.DLIMS, DL.IMS

EC.IO, DB.SS.PNL.CONFIG, SS.PNL.
FORMAT, DI.ADC, DL.IMS, DI.PMDS, DI.PNL

EC.DATA, EC.PGM, EC.PAR, AT.NUM,
AT.STE, SU

DB.SS.MODE, DB.DI.PNL, DB.DI.SWB,
SS.PNL.CONFIG, DI.PNL

EC.DATA, EC.PGM
None additional
EC.PAR

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

62 Part One Envisioning Architecture 3—A-7E Avionics System

Notice the pattern that emerges:

No procedure in the Extended Computer Module is allowed to use a procedure

in any other module, but all other modules are allowed to use (portions of) it.

= Procedures in the Application Data Type Module are allowed to use only
procedures in the Extended Computer Module and nothing else.

= Procedures in the Device Interface Module (at least the part shown) are
allowed to use only Extended Computer, Application Data Type, and Physi-
cal Models procedures.

= Function Driver and Shared Services procedures can use Data Banker,
Extended Computer, Application Data Type, and Device Interface procedures.

= No procedure can use any procedure in the Function Driver Module.

= Only a Function Driver procedure can use a Shared Services procedure.

What we have is a picture of a system partitioned into /ayers. The Extended Com-
puter Module is the bottommost layer, and the Application Data Type Module is
built right on top of it. The two form a virtual machine in which a procedure at a
particular level is allowed to use a procedure at the same or any lower level.

At the high end of the layering come the Function Driver and Shared Ser-
vices modules, which have the freedom to use a wide variety of system facilities
to do their jobs. In the middle layers lie the Physical Models, Filter Behavior, and
Data Banker modules. The Software Utilities reside in parallel with this structure
and are allowed to use anything (except the Function Drivers) necessary to
accomplish their individual tasks.

Layered architectures are a well-known architectural pattern and occur in
many of the case studies in this book. Layering emerges from the uses structure,
but is not a substitute for it as layering does not show what subsets are possible.
This is the point of the uses structure—a particular Function Driver Module will
use a particular set of Shared Services, Data Banker, Physical Models, Device
Interface, Application Data Type, and Extended Computer operations. The used
Shared Services in turn use their own set of lower-level procedures, and so forth.
The complete set of procedures derived in this manner constitutes a subset.

The allowed-to-use structure also provides an image of how the procedures
of modules interact at runtime to accomplish tasks. Each Function Driver proce-
dure controls the output value associated with one output device, such as the posi-
tion of a displayed symbol. In general, a Function Driver procedure retrieves data
(via Data Banker procedures) from data producers, applies rules for computing
the correct value of its assigned output, and sends that value to the device by call-
ing the appropriate Device Interface procedure. Data may come from one of the
following:

= Device Interface procedures about the state of the world with which the soft-
ware interfaces

= Physical Models procedures that compute predictive measures about the
outside world (such as where a bomb will strike the earth if released now,
given the aircraft’s current position and velocity)

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architecture for the A-7E Avionics System 63

= Shared Services procedures about the current mode, the trustworthiness of
current sensor readings, or what panel operations the pilot has requested

Once the allowed-to-use structure is designed, implementors know what
interfaces they need to be familiar with in order to do their work. After imple-
mentation is complete, the actual uses structure can be documented so that sub-
sets can be fielded. The ability to deploy a subset of a system is an important part
of the Evolutionary Delivery Life Cycle (see Chapter 7, Designing the Architec-
ture). When budgets are cut (or overrun) and schedules slip, delivering a subset is
often the best way to put a positive face on a bad situation. It is probably the case
that more subsets would be delivered (instead of nothing at all) if the architec-
tural structure necessary to achieve them—the uses structure—had been carefully
designed.

PROCESS STRUCTURE

The third structure of architectural importance to the A-7E is the process struc-
ture. Even though the underlying aircraft computer is a uniprocessor, the
Extended Computer Module presents a virtual programming interface that fea-
tures multiprocessing capabilities. This was to plan for if and when the A-7E
computer was replaced with an actual multi-processor. Hence, the software was
implemented as a set of cooperating sequential processes that synchronize with
each other to cooperatively use shared resources. The set was arranged using
offline (pre-runtime) scheduling to produce a single executable thread that is then
loaded onto the host computer.

A process is a set of programming steps that are repeated in response to a
triggering event or to a timing constraint. It has its own thread of control, and it
can suspend itself by waiting for an event (usually by invoking one of the event-
signaling programs on a module’s interface).

Processes are written for two purposes in the A-7E. The first is for the func-
tion drivers to compute the output values of the avionics software. They are
required to run periodically (e.g., to continuously update a symbol position on the
heads-up display) or in response to some triggering event (e.g., when the pilot
presses the weapon release button). It is natural to implement these as processes.
Conceptually, function driver processes are structured as follows:

= Periodic process: do every 40 milliseconds
— Call other modules’ access procedures to gather the values of all relevant
inputs
— Calculate the resulting output value
— Call the appropriate Device Interface procedure to send the output value
to the outside world
= End periodic process
= Demand process
— Await triggering event

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

64 Part One Envisioning Architecture 3—A-7E Avionics System

— Calculate the resulting output outcome
— Call the appropriate Device Interface procedure to trigger the action in the
outside world
= End demand process

Processes also occur, although less frequently, as a way to implement cer-
tain access procedures. If the value returned by an access procedure is expensive
to compute, a programmer might meet the timing requirements by continuously
computing the value in the background and simply returning the most recent
value immediately when the access procedure is called. For example,

= Process: do every 100 milliseconds
— Gather inputs to compute value
— Compute value
— Store in variable most_recent

= End process

= Procedure get_value(pl)
— pl := most_recent.
— return

= End procedure

The process structure, then, consists of the set of processes in the software.
The relation it contains is “synchronizes-with,” which is based on events that one
process signals and one or more processes await. This relation is used as the pri-
mary input to the scheduling activity, which includes deadlock avoidance.

The offline scheduling techniques used in the A-7E software are beyond the
scope of this treatment, but they avoid the overhead of a runtime scheduler, and
they would not have been possible without the information contained in the pro-
cess structure. The process structure also allows an optimization trick: merging two
otherwise unrelated processes, which makes scheduling easier in many circum-
stances and avoids the overhead of context switching when one process suspends
and another resumes. This technique is invisible to programmers, occurring auto-
matically during system construction. Table 3.5 summarizes the role of the pro-
cess structure in the A-7E architecture.

TABLE 3.5 How the A-7E Process Structure Achieves Quality Goals

Goal How Achieved

Map input to output Each process implemented as cycle that samples,
inputs, computes, and presents output

Maintain real-time constraints Identify process through process structure and
then perform offline scheduling

Provide results of time-consuming Perform calculations in background and return

calculations immediately most recent value when queried

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

Architecture for the A-7E Avionics System 65

The process structure emerged after the other structures had been designed.
Function Driver procedures were implemented as processes. Other processes
computed time-consuming calculations in the background so that a value would
always be available.

Two kinds of information were captured in the process structure. The first
documented what procedures were included in the body of each process. This
gave a picture of the threads that ran through the system and also told the imple-
mentors which procedures must be coded to be re-entrant (i.e., able to carry two or
more threads of control simultaneously) by using protected data stores or mutual
exclusion. It also gave designers early insight into which procedures were going
to be invoked most often, suggesting areas where optimization would pay off.

The second kind of information in the process structure documented which
processes (or sequential segments of process threads) could not execute simulta-
neously. The actual regions of mutual exclusion were not finalized until the pro-
cesses were completely coded, but the early “excludes” relation among processes
let the scheduling team understand some of the quantitative requirements of the
offline scheduler and start planning on areas where automation would be most
helpful.

Success or Failure?

Bob Glass, in his editorial in the November 1998 issue of The Journal of Sys-
tems and Software [Glass 98], argues that the A-7E was a failure because
the software described in this chapter never flew. | have a great deal of
respect for Bob, both personally and professionally, but in this case he is mis-
taken. He is evaluating a research system by commercial standards.

What do | mean by that? The research world and the commercial world
have different cultures and different standards for success. One manifestation
of this difference is how the two worlds “sell” to their customers. The commer-
cial world prides itself on delivering, on time and on budget, what is specified.
You would justifiably be upset if you went to your local automotive dealer to
purchase a car and it wasn’t delivered on time, at the cost you contracted for,
and performing in the fashion you expected.

The research world “sells” on vision. That is, a research proposal specifies
how the world will be different if the funder supports the proposed research.
The funder should be upset if, at the end of the research, what is delivered is
something that could be purchased at a local commercial establishment.
Usually the funder is quite satisfied if the research produces new ideas that
have the potential to change the world.

While these characterizations are admittedly idealized, they are by and
large accurate. Commercial customers frequently want innovation. Research
customers almost always want deliverables. Also, both camps must often
promise deliverables that cannot be delivered as a means of securing sales.
Still, the heart of this characterization is true.

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

66 Part One Envisioning Architecture 3—A-7E Avionics System

The goal of the A-7E project described in this chapter was to demonstrate
to a skeptical world that “object-oriented techniques” (although the terminol-
ogy was different then) could be used to construct real-time high-perfor-
mance software. This is a research objective. The goal was to change the
world as it was seen then. From a research perspective, the success of the
Software Cost Reduction program (of which the A-7E development was a
portion) can be seen in the number of citations it has been given in the
research literature (in the hundreds). It can also be seen in the general
acceptance of much of what was revolutionary at the time in terms of encap-
sulation and information hiding.

So the A-7E was a commercial “failure,” but it was a research success. To
go back to Bob’s argument, the question is Did the Navy get what they were
paying for? This depends on whether the Navy thought it was paying for a
production system or a research effort. Since the effort was housed in the
Naval Research Laboratory, it seems clear that the A-7E was a research
effort and should be judged by research standards.

—LJB

3.4 Summary

This chapter described the architecture of a highly capable avionics system in
terms of three related but quite different structures. A module decomposition struc-
ture describes design-time relations among its components, which are implemen-
tation units that can be assigned to teams. A uses structure describes runtime usage
relations among its components, which are procedures in modules. From it, a pic-
ture of a layered architecture emerges. The process structure describes the paral-
lelism of the system and is the basis for assignment for the physical hardware.

It is critical to design each structure correctly because each is the key to a
different quality attribute: ease of change, ease of extracting a subset, and increased
parallelism and performance. It is also critical to document each structure com-
pletely because the information about each is duplicated in no other place.

Even though the structures are orthogonal, they are related, in that modules
contain procedures, which use each other and are strung together in processes.
Other architectural structures could have been specified for this system. One, a
data flow view (a component-and-connector view additional to those introduced
in Chapter 2), would have looked something like the one in Figure 3.5. All data
comes from the external world via the Device Interface modules and works its
way through computation and storage modules to the Function Driver modules,
which compute output values to send back to the devices. The A-7E designers
never thought data flow views were useful—what quality attribute do they help
achieve that the others do not?—but other designers might feel different. The
point—and the lesson—about architectural views is that they should enhance

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

For Further Reading 67

Pilot,
External World
A

— \

:Device Interfaces

inputs

lsensor

—

:Data Banker
values to _—
display
sensor stored filtered
inputs T lvalues Vi'“} :Filter Behaviors
stored values
values :Shared Services sensor
values
—
computed . ;
Vgluesl inferred :Physical Models
values
—

:Function Drivers

Key: UML

FIGURE 3.5 Coarse-grained data flow view for the A-7E software

understanding of and intellectual control over the system and its attributes. If a
view meets these conditions, it is probably one you will want to pay attention to.

We also presented the architecture in terms of the qualities the designers
wished to achieve: changeability and understandability. This leads us to the thesis
that we explore in the next two chapters: Architectures reflect a set of desired
qualities.

3.5 For Further Reading

The A7-E avionics project has been documented in [Parnas 85a]. The data col-
lected about changes to the system was analyzed and described in [Hager 91] and
[Hager 89]. Much of the material about the module structure was taken from the

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

68 Part One Envisioning Architecture 3—A-7E Avionics System

A-7E module guide, which was written by Kathryn Britton and David Parnas
[Britton 81].

3.6 Discussion Questions

1. Suppose that a version of the A-7E software were to be developed for instal-
lation on a flight trainer version of the aircraft. This aircraft would carry no
weapons, but it would teach pilots how to navigate using the onboard avion-
ics. What structures of the architecture would have to change, and how?

2. Chapter 7 will discuss using the architecture as a basis for incremental devel-
opment: starting small and growing the system but having a working subset
at all times. Propose the smallest subset of the A-7E software that still does
something (correctly, in accordance with requirements) observable by the
pilot. (A good candidate is displaying a value, such as current heading on
some cockpit display.) Which modules do you need and which can you do
without? Now propose three incremental additions to that subset and specify
the development plan (i.e., which modules you need) for those.

3. Suppose that monitors were added to ensure that correct values were being
stored in the Data Banker and computed by the Function Drivers. If the mon-
itors detected a disparity between the stored or computed values and what
they computed as the correct values, they would signal an error. Show how
each of the A-7E’s architectural structures would change to accommodate
this design. If you add modules, state the information-hiding criteria for plac-
ing them in the module hierarchy.

Excepted from Bass et al., Software Architecture in Practice,
Second Edition (ISBN-13: 9780321154958)
Copyright © 2003 Pearson Education, Inc. Do not redistribute.

