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Flight Simulation
A Case Study in Architecture 
for Integrability

The striking conclusion that one draws . . . is that the information
processing capacity of [flight simulation computation] has been

increasing approximately exponentially for nearly thirty years. There
is at this time no clear indication that the trend is changing.

— Laurence Fogarty [Fogarty 67]

Modern flight simulators are among the most sophisticated software systems in
existence. They are highly distributed, have rigorous timing requirements, and
must be amenable to frequent updates to maintain high fidelity with the vehicles
and environment they are simulating. The creation and maintenance of these
large systems present a substantial software development challenge: for perfor-
mance, for integrability, and for modifiability. Scalability, a particular form of
modifiability, is needed to grow these systems so that they can simulate more and
more of the real world and further improve the fidelity of the simulation. 

This chapter will discuss some of the challenges of flight simulation and
introduce a new architectural style created to address them. The style is called a
structural model, and it emphasizes the following:

■ Simplicity and similarity of the system’s substructures
■ Decoupling of data and control passing strategies from computation
■ Minimization of types of components
■ A small number of systemwide coordination strategies
■ Transparency of design

These principles result in an architectural style that, as we will see, features a high
degree of component integrability as well as the other quality attributes necessary
for flight simulation. 
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304 CHAPTER 14 Flight Simulation

14.1 Relationship to the Architecture Business Cycle

The segment of the archtecture business cycle (ABC) that connects desired quali-
ties to architecture is the subject of this case study. Figure 14.1 shows the ABC
for structural-model-based flight simulators. Flight simulators are acquired by
the U.S. Air Force. The end users of the systems are pilots and crews for the par-
ticular aircraft being simulated. The flight simulators are used for pilot training in
the operation of the aircraft, for crew training in the operation of the various
weapons systems on board, and for mission training for particular missions for
the aircraft. Some of these simulators are intended for stand-alone use, but more
and more they are intended to train multiple crews simultaneously for coopera-
tive missions.

The flight simulators are constructed by a contractor selected as a result of a
competitive bidding process. Sometimes the contractor is a prime contractor, and
portions of the flight simulator are constructed by specialized subcontractors.
The flight simulator systems are large (some as large as 1.5 million lines of
code), have long lifetimes (the aircraft being simulated often have lifetimes of 40
years or longer), and have stringent real-time and fidelity requirements (the simu-
lated aircraft must behave exactly as the real aircraft in various situations).

The beginning of the structural model design dates from 1987 when the U.S.
Air Force began to investigate the application of object-oriented design techniques.

FIGURE 14.1 Initial stages of the ABC for the flight simulator.
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Requirements and Qualities 305

Electronic flight simulators have been in existence since the 1960s and so explo-
ration into new design techniques was motivated by the existing designs and the
problems associated with them. The problems observed in existing flight simula-
tors included construction problems (the integration phase of development was
increasing exponentially with the size and complexity of the systems) and life
cycle problems (the cost of some modifications was exceeding the cost of the
original system). Structural models have been used in the development of the B-2
Weapons System Trainer, the C-17 Aircrew Training System, and the Special
Operations Forces family of trainers, among others.

14.2 Requirements and Qualities

Flight simulation has always been an application that needed to be distributed in
order to be computable at all. Although examples of single-processor flight simu-
lators exist, they are typically of low fidelity, often games. True flight simulation
has extremely high-fidelity demands: The virtual environment that the simulator
creates must be as lifelike as possible in order to train the aircrew as effectively as
possible. 

Even in simulators created 30 years ago, distribution was used [Perry 66]:

Linear computing operations, such as summation, integration and sign
changing, are performed by d.c. operational amplifiers, consisting of
high gain drift correct amplifiers with appropriate resistive or capacitive
feedback networks. There are 150 such operational amplifiers. . . . The
non-linear part of the computing equipment consists of servo-multipliers,
electronic time-division multipliers, and diode function generators. In
addition, forty-eight high gain amplifiers are available for special com-
puting circuits which may be built up for each simulation. . . . The indi-
vidual computing amplifiers, potentiometers, multipliers, etc. are connected
together to form the overall computation network by means of a central
patching panel, having over 2300 terminations.

Although the effects produced by such a simulator are primitive by today’s standards,
many of the principles behind the system’s architecture have not changed. A sin-
gle computer typically cannot provide the raw computation power to serve a
flight simulator, or if it could, it would be horrendously expensive. This situation
is not likely to change: As computer power increases, so do our demands and so
does the complexity of the air vehicles being simulated. Thus, a number of com-
puters were hooked together through a patch panel 30 years ago in order to create
a flight simulator; today, they would typically be connected through a fiber-optic
network.

Flight simulation is characterized by the following six properties:

1. Real-time performance constraints. Flight simulators must execute at
fixed frame rates that are high enough to ensure fidelity. For instance, the simu-
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306 CHAPTER 14 Flight Simulation

lated aircraft must respond to control inputs as quickly as the real aircraft would.
Different senses require different frame rates. Within a frequency class—say, 30 Hz
or 60 Hz—all simulations must be able to execute to completion within the base
time frame—one-thirtieth or one-sixtieth of a second.

All portions of a simulator run at an integral factor of the base rate. If the
base rate is 60 Hz, slower portions of the simulation may run at 30 Hz, 20 Hz, 15 Hz,
or 12 Hz, and so on. They may not run at a nonintegral factor of the base rate,
such as 25 Hz. One reason for this restriction is that the sensory inputs provided
by a flight simulator for the crew being trained must be strictly coordinated. It
would not do to have the pilot execute a turn but not begin to see the change visually
or feel the change for even a small period of time (say, one-tenth of a second). Even
for delays so small that they are not consciously detectable, a lack of coordination
may be a problem. Such delays may result in a phenomenon known as simulator
sickness, a purely physiological reaction to imperfectly coordinated sensory inputs.

2. Continuous development and modification. Simulators exist for only one
purpose: to train users when the equivalent training on the actual vehicle would be
much more expensive or dangerous. In order to provide a realistic training experi-
ence, a flight simulator must be faithful to the actual air vehicle. However, air
vehicles, whether civilian or military, are continually being modified and updated.
The simulator software is, therefore, almost constantly modified and updated in
order to maintain verisimilitude. Furthermore, the training for which the simulators
are used is continually extended to encompass new types of problems (malfunc-
tions) that might occur to the aircraft.

3. Large size and high complexity. Flight simulators typically comprise
from tens of thousands of lines of code for the simplest training simulation to
over a million lines of code for complex, multiperson trainers. Furthermore, the
complexity of flight simulators, mapped over a 30-year period, has shown expo-
nential growth.

4. Developed in geographically distributed areas. Military flight simula-
tors are typically developed in a distributed fashion for two reasons, one technical
and one political. The technical reason is that different portions of the develop-
ment require different expertise, and so it is common practice for the general con-
tractor to subcontract portions of the work to specialists. The political reason is
that high-technology jobs such as simulator development are political plums, and
so many politicians fight to have a piece of the work in their jurisdiction. In either
case, the integrability of the simulator—already problematic because of the size
and complexity of the code—is made more difficult because the paths of commu-
nication are long.

5. Very expensive debugging, testing, and modification. The complexity
of flight simulation software, its real-time nature, and its tendency to be modified
regularly all contribute to making the costs of testing, integrating, and modifying
the software usually exceed the cost of development.

6. Unclear mapping between software structure and aircraft structure. Flight
simulators have traditionally been built with runtime efficiency as their primary
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quality goal. This is not surprising given their performance and fidelity requirements
and given that simulators were initially built on platforms with extremely limited,
by today’s standards, memory and processing power. 

Traditional design of flight simulator software was based on following con-
trol loops through a cycle. These, in turn, were motivated by the tasks that caused
the loop to be activated. For example, suppose the pilot turns the aircraft left. The
pilot moves the rudder and aileron controls and this in turn moves the control sur-
faces, which affects the aerodynamics and causes the aircraft to turn. In the simu-
lator, there is a model that reflects the relationship between the controls, the
surfaces, the aerodynamics, and the orientation of the aircraft. In the original
flight simulator architecture, this model was contained in a module that might be
called Turn. There might be a similar module for level flight, another for takeoff
and landing, and so forth. The basic decomposition strategy is based on examin-
ing the tasks that the pilot and crew perform, modeling the components that actu-
ally perform the task, and keeping all calculations as local as possible. 

This strategy maximizes performance since any task is modeled in a single
module (or a small collection of modules) and thus the data movement necessary
to perform the calculations is minimized. The problem with this architecture is
that the same physical component is represented in multiple models and hence in
multiple modules. The extensive interactions among modules causes problems
with both modifiability and integration. If the module controlling turning is being
integrated with the module controlling level flight and a problem is discovered in
the data being provided to the turning module, that same data are probably being
accessed by the level flight module, and so there were many coupling effects to
be considered during integration and maintenance.

The growth in complexity (and its associated growth in cost) caused the U.S.
Air Force organization that is responsible for the acquisition of flight simulators
to begin to emphasize the software qualities of integrability and modifiability. This
new emphasis was in addition to the requirement for high-fidelity performance.

By integrability we mean the ability to reconcile different portions of the
system during the integration phase of initial development. One of the conse-
quences of the growth in complexity was the growth of the cost of integration.
With a new system under development that was projected to be 50 percent larger
than the largest prior system (1.7 million lines of code), the integration phase
alone would break the project’s budgets for time and cost.

14.3 Architectural Approach

To manage the numerous challenges that flight simulation posed for its software
designers, a new culture of software design for flight simulation needed to be cre-
ated. This design framework, called structural modeling, will be discussed for the
remainder of this chapter. In brief, the design framework consists of an object-
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308 CHAPTER 14 Flight Simulation

oriented design to model the subsystems and components of the air vehicle and
real-time scheduling to control the execution order of the simulation’s subsystems
so that fidelity could be guaranteed. To expand slightly on what we said in the
introduction, the main tenets of structural modeling are as follows: 

■ Simplicity and similarity of the architecture’s substructures so that the archi-
tecture is easy to understand and, hence, modify.

■ Small number of systemwide coordination strategies, which simplifies the 
complex performance and scheduling issues in making a high-fidelity real-
time system.

■ Indirect data relationships so that passing data between subsystems is done 
through intermediary components. In this way subsystems do not need to 
directly know of each others’ existence or the details of where data come 
from and go to. This greatly simplifies the integrability and modifiability of 
the architecture.

■ Separation of computation from decisions about how data and control are 
passed.

■ Transparency of design (making the objects in the flight simulator directly 
analogous to physical parts of the air vehicle being modeled). This makes 
the flight simulator easier to design, modify, and maintain over time.

The driving design goals and the techniques that allowed these goals to be met
are summarized in Table 14.1.

14.4 Architectural Solution

Logically, flight training simulators have three interactive roles. The first role is that
of training the pilot and crew. They sit inside a motion platform, surrounded by
instruments intended to replicate exactly the aircraft being simulated, and look at
visuals that provide a representation of what would be seen outside of an actual air-
craft. We are not going to describe the specifics of either the motion platform or the
visual display generator. These are driven by special-purpose processors and are

TABLE 14.1 How the Structural Modeling Paradigm Achieves Its Quality Goals

Goal How achieved

Performance Small number of systemwide coordination strategies and periodic 
scheduling strategy

Integrability Separation of computation from coordination and indirect data 
relationships

Modifiability Transparency of design, simplicity and similarity of substructures, and 
indirect data relationships
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outside the scope of the architecture we describe here. The purpose of a flight sim-
ulator is to instruct the pilot and crew in how to operate a particular aircraft, how to
perform maneuvers such as mid-air refueling, and how to respond to situations
such as an attack on the aircraft. The fidelity of the simulation is an important ele-
ment in the training. For example, the feel of the controls when particular maneu-
vers are performed must be captured correctly in the simulation. Otherwise, the
pilot and crew are being trained incorrectly and the training may actually be coun-
terproductive. Figure 14.2 shows a collection of modern flight simulators.

The second role associated with a flight simulator is that of the environment.
Typically, the environment is a computer model rather than individuals operating
in the environment, although with multiaircraft training exercises the environment
can include individuals other than the pilot and crew we have been discussing.
The environment includes the atmosphere, threats, weapons, and other aircraft.
For example, if the purpose of the training is to practice refueling, the (simulated)
refueling aircraft introduces turbulence into the (modeled) atmosphere.

The third role associated with a flight training simulator is that of instructor
for the simulation. Usually, a training session has a very specific purpose, and
specific circumstances will occur during the training. During the training exer-
cise, the instructor is responsible for monitoring the performance of the pilot and
crew and for initiating training situations. Sometimes these situations are scripted

FIGURE 14.2 Modern flight simulators. Courtesy of the Boeing Company.
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310 CHAPTER 14 Flight Simulation

in advance, and other times the instructor introduces them. Typical situations
include malfunctions of equipment (e.g., landing gear that does not deploy correctly
during landing), attacks on the aircraft from foes, and weather conditions such as
turbulence caused by thunderstorms. The instructor has a separate console that is
used both to monitor the activities of the crew and to inject malfunctions into the
aircraft and control the environment.

Figure 14.3 shows a reference model for a flight simulator. Typically, the
instructor is hosted on a different hardware platform from the air vehicle model.
The environment model may be hosted either on a separate hardware platform or
on the instructor station.

The division between the instructor station and the other two portions is
clear from a real-time execution perspective. The instructor station is typically
scheduled on an event basis—those events that emanate from the instructor’s
interactions—and the air vehicle model is scheduled by using a periodic schedul-
ing procedure. The environment model can be scheduled using either regime,
depending on the complexity and richness of the environment being modeled.
This requirement to coordinate and match two different scheduling paradigms
will be revisited when we discuss the details of the structural model.

FIGURE 14.3 Reference model for a flight simulator.
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The division between the instructor station and the other two portions is not
as clean. For example, if an aircraft launches a weapon, it is logically a portion of
the air vehicle until it leaves the air vehicle, at which point it becomes a portion
of the environment. On firing, however, the aerodynamics of the weapon will be
influenced initally by the proximity of the aircraft. Thus, any modeling of it must
remain, at least initially, tightly coupled to the air vehicle. If the weapon is always
considered a portion of the environment, the modeling of the weapon involves
tight coordination between the air vehicle and the environment. If it is modeled as
a portion of the air vehicle and then handed off to the environment when fired,
control of the weapon needs to be handed from one scheduling regime to another.
Even if the environment is scheduled using a periodic scheduling regime, it is
likely to operate on a different granularity from that of the environment model.

The simulated behavior of the air vehicle is not calculated from first physi-
cal principles. Such simulations are used during the engineering process and are
called engineering simulations, but they cannot yet be done within the constraints
that real-time processing impose. Consequently, the simulations are performed
using models supplemented with empirical data. For example, the thrust of an
engine might be measured using the whole engine, but the impact of an individ-
ual rotor is not measured. Thus, if a rotor is replaced, keeping the simulation cor-
rect can be difficult.

For the rest of this section we focus primarily on the architecture of the air
vehicle model. But before we can do that, we need a basic understanding of the
ways in which time is treated in this domain.

TREATMENT OF TIME IN A FLIGHT SIMULATOR

Time and how it is managed is a critical consideration in the development of a
flight simulator. Time is important because a flight simulator is supposed to re-
flect the real world, and it does this by creating time-based behaviors as they
would occur in the real world. Thus, when the pilot in a simulator pushes on the
flight control, the simulator must provide the same response in the same time as
the actual aircraft would. “In the same time” means both within an upper bound of
duration after the event and also within a lower bound of duration. Reacting too
quickly is as bad for the quality of the simulation as reacting too slowly.

There are two fundamentally different ways of managing time in a flight
simulator: periodic and event-based.

Periodic Time Management. A periodic time-management scheme has a fixed
(simulated) time quantum that is the basis of scheduling the system processes. It
typically uses a nonpreemptive cyclic scheduling discipline. The scheduler pro-
ceeds by iterating through the following loop:

■ Set initial simulated time.
■ Iterate next two steps until the session is complete.
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■ Invoke each of the processes for a fixed (real) quantum. Each of the invoked 
processes calculates its internal state based on the current simulated time 
and reports its internal state based on the next period of simulated time. 
Each invoked process guarantees to complete its computation within its real-
time quantum.

■ Increment simulated time by quantum.

A simulation based on the periodic management of time will be able to keep the
simulated time and the real time in synchronization as long as each individual
process is able to advance its state to the next period within the time quantum that
it has been allocated.

Typically, this is managed by adjusting the responsibilities of the individual
processes so that they are small enough to be computed in the allocated quantum
and then using multiple processors, if necessary, to ensure enough computation
power to enable all of the processes to receive their quantum of computation.

A periodic simulator scheduling scheme is used when many activities are
happening in parallel in simulated time. Thus, for example, when the simulation is
based on the simultaneous solution of a collection of differential equations, a solu-
tion technique based on finite differences leads to a periodic scheduling strategy.

Event-Based Time Management. An event-based time-management scheme
is similar to interrupt-based scheduling used in many operating systems. The
schedule proceeds by iterating through the following loop:

■ Add initial simulated event to the event queue.
■ While there are events remaining in the event queue:

– Choose event in event queue with smallest (i.e., soonest) simulated time.

– Set current simulated time to time of chosen event.

– Invoke process that processes the chosen event. This process may add 
events to the event queue.

In this case, simulated time advances by the invoked processes placing events on
the event queue and the scheduler choosing the next event to process. There is no
guarantee about the relationship of simulated time to real time and no guarantee
about the amount of resources consumed by each process that is invoked. 

Event-based simulations assume that the management of the event queue is
not a major drain on resources. That is, the number of events occurring at a single
instant of simulated time is small compared to the effort of managing those events. 

Mixed-Time Systems. Flight simulators must marry periodic time simulation
(such as in the air vehicle model) with event-based simulation (such as in the
environment model, in some cases) and with other event based activities that are
not predictable (such as an interaction with the instructor station or the pilot set-
ting a switch). Many scheduling policies are possible in such a marriage. 
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A simple policy states that periodic processing occurs immediately after the
synchronization interval and is completed before any aperiodic processing. Ape-
riodic processing then proceeds within a bounded interval, during which as many
messages as possible will be retrieved and processed. Those not processed during
a given interval must be deferred to subsequent intervals, with the requirement
that all messages be processed in the order received from a single source.

Given this understanding of the issues involved in managing time in a flight
simulator, we can now present the architectural style that manages this complexity.

THE STRUCTURAL MODEL ARCHITECTURAL STYLE

The structural model is an architectural style as we defined it in section 2.2. That
is, it consists of a collection of component configurations and a description of
how these configurations coordinate at runtime. In this section, we present the
structural model and discuss the considerations that led to its design. The struc-
tural model we present here is focused on the air vehicle model. One aspect to
keep in mind is that the air vehicle model may itself be spread over several pro-
cessors. Thus, the elements of the air vehicle structural model must coordinate
internally as well as coordinate with the environment model and the instructor
portions of the simulation. 

A flight simulator can execute in several states including the following:

■ Operate corresponds to the normal functioning of the simulator as a 
training tool. 

■ Configure is used when modifications must be made to a current training 
session. For example, suppose the crew has been training in an environment 
in which they have been flying in a single-aircraft exercise, and then the 
instructor wishes to train them for a mid-air refueling exercise. The simula-
tor is then placed into a configure state.

■ Halt stops the current simulation.
■ Replay uses a journal to move through the simulation without crew interac-

tion. Replay is used, among other functions, to demonstrate to the crew what 
they have just done because the crew may get caught up in the operating of 
the aircraft and not reflect on their actions.

The structural modeling architectural style is divided, at the coarsest level, into
two parts: executive and application.

The executive part handles coordination issues: real-time scheduling of sub-
systems, synchronization between processors, event management from the
instructor–operator station, data sharing, and data integrity. 

The application part handles the actual computation of the flight simulation:
modeling the air vehicle. The application’s functions are implemented by subsys-
tems and their constituent components. First we will discuss the executive style
in detail and then return to a discussion of the application style.
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COMPONENT CONFIGURATIONS FOR AIR VEHICLE 
MODEL EXECUTIVE 

Figure 14.4 shows the air vehicle structural model with the executive component
configurations given in detail. These are the timeline synchronizer, the periodic se-
quencer, the event handler, and the surrogates for other portions of the simulator.

Timeline Synchronizer. The timeline synchronizer is the base scheduling
mechanism for the air vehicle model. It also maintains the simulation’s internal
notion of time. The other three elements of the executive—the periodic sequencer,
the event handler, and the surrogates—all must be allocated processor resources.
The timeline synchronizer also maintains the current state of the simulation. 

The timeline synchronizer passes both data and control to the other three
elements and receives data and control from them. It is also responsible for coordi-
nating time with other portions of the simulator. This can include other processors
responsible for a portion of the air vehicle model, which also have their own time-
line synchronizers. Finally, the timeline synchronizer implements a scheduling

FIGURE 14.4 The structural model style of an air vehicle system processor with 
focus on the executive.
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policy for coordinating both periodic and aperiodic processing. For the sake of
continuity, precedence is given to the periodic processing.

Periodic Sequencer. The periodic sequencer is used to conduct all periodic
processing performed by the simulation’s subsystems. This involves invoking the
subsystems to perform periodic operations according to fixed schedules.

The periodic sequencer provides two operations to the timeline synchronizer.
The import operation is used to request the periodic sequencer to invoke sub-
systems to perform their import operation. The update operation requests
that the periodic sequencer invoke the update operations of the subsystems.

To conduct its processing, the periodic sequencer requires two capabilities.
The first is to organize knowledge of a schedule. By schedule we mean the patterns
of constituent invocations that represent the orders and rates at which changes are
propagated through the simulation algorithms realized by the constituents. The
enactment of these patterns essentially represents the passage of time within the
air vehicle simulation in its various operating states. The second capability is to
actually invoke the subsystems through their periodic operations by means of
some dispatching mechanism.

Event Handler. The event-handler element is used to orchestrate all aperiodic
processing performed by subsystems. This involves invoking the subsystems by
aperiodic operations appropriate to the current system operating state.

The event handler provides four kinds of operations to the timeline syn-
chronizer: configure (used to start a new training mission, for example),
constituent_event (used when an event is targeted for a particular
instance of a component), get_outbound_msg (used by the timeline synchro-
nizer to conduct aperiodic processing while in system operating states, such as
operate, that are predominantly periodic), and send (used by subsystem con-
trollers to send events to other subsystem controllers and messages to other systems).

To perform its processing, the event handler requires two capabilities. The
first is a capability to determine which subsystem controller receives an event,
using knowledge of a mapping between event identifiers and instances. The sec-
ond is a capability to invoke the subsystems and to extract required parameters
from events before invocation.

Surrogate. Surrogates are responsible for system-to-system communication
between the air vehicle model and the environment model or the instructor sta-
tion. Surrogates are aware of the physical details of the system with which they
communicate and are responsible for issues such as representation, communica-
tion protocol, and so forth. 

For example, the instructor station monitors state data from the air vehicle
model and displays the data to the instructor. The surrogate gathers the correct
data when it gets control of the processor and sends that data to the instructor sta-
tion. In the other direction, the instructor may wish to set a particular state for the
crew. This is an event that is received by the surrogate and passed to the event
processor for dispatching to the appropriate subsystems.
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This use of surrogates means that both the periodic scheduler and the event
handler can be kept ignorant of the details of the instructor station or the platform
on which the environment model is operating. All of the system-specific knowl-
edge is embedded in the surrogate. Any change to these platforms will not propa-
gate further than the surrogate in the air vehicle model system.

COMPONENT CONFIGURATIONS FOR AIR 
VEHICLE MODEL APPLICATION

Figure 14.5 shows the component configurations that exist in the application sub-
part of the air vehicle srtuctural model. There are only two of them: the subsystem
controller and its components. The term component, as used in the structural
model, refers to a specific component type. This terminological ambiguity is
restricted to this section, and we hope it will not cause confusion. Subsystem
controllers pass data to and from other subsystem controller instances but only to
their child components. Components will pass data only to and from their parents
and not to any other component. They will also receive control only from their
parents and return it only to their parents. These restrictions on data and control
passing preclude a component from passing data or control even to a sibling com-
ponent. The rationale for these restrictions is to assist in integration and modifi-
ability by eliminating any coupling of a component instance with anything other
than its parent. Any effect of modification or integration is mediated by the par-
ent subsystem controller.

Subsystem Controller. Subsystem controllers are used to interconnect a set
of functionally related components to do the following:

■ Achieve the simulation of a subsystem as a whole
■ Mediate control and aperiodic communication between the system and 

subsystems

They are also responsible for determining how to use the capabilities of their
components to satisfy trainer-specific functionality such as malfunctions and the
setting of parameters.

A subsystem controller must provide the capability to make logical connections
between its components and those of other subsystems. Inbound connections
supply inputs produced outside of the subsystem that the subsystem’s compo-
nents need for their simulation algorithms. Outbound connections satisfy similar
needs of other subsystems and of surrogates. These connections appear as sets of
names by which a subsystem controller internally refers to data considered to be
outside of itself. When such a name is read or written, the appropriate connec-
tions are assumed to be made. How the connections are actually made is deter-
mined later in the detailed design.

Subsystem controllers must both order the update operations of their com-
ponents and interconnect their inputs and outputs. This achieves the desired prop-
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agation of changes through the components and satisfies the subsystem’s
outbound connections. The subsystem controller synthesizes, from its components,
a simulation algorithm for the subsystem as a whole. In addition to updating
components, the controller may be responsible for making intermediate computa-
tions as well as data transformations and conversions.

As we mentioned, a flight simulator can be in one of several states. This is
translated through the executive to particular executive states. The executive then
informs the subsystem controller of its current state. The two states that are rele-
vant here are operate and stabilize. The operate state instructs the subsystem con-
troller to perform its normal computations relevant to advancing the state of the
simulation. The stabilize state informs the subsystem controller to terminate its
current computation in a controlled fashion (to prevent the motion platform from
harming the crew through uncontrolled motion), as follows:

■ Retrieve and locally store the values of inbound connections under the direct 
control of an executive. Such a capability is provided to address issues of 
data consistency and time coherence.

■ Stabilize the simulation algorithms of its components under the control of 
executive instances and report whether it considers the subsystem as a whole 
to be currently stable.

Subsystem controllers must be able to do the following: 

■ Initialize themselves and each of their components to a set of initial condi-
tions in response to an event

■ Route requests for malfunctions and the setting of simulation parameters to 
their components based on knowledge of component capabilities

FIGURE 14.5 The application component configurations.
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318 CHAPTER 14 Flight Simulation

Finally, subsystem controllers may support the reconfiguration of mission
parameters such as armaments, cargo loads, the starting location of a training
mission, and so forth. Subsystem controllers realize these capabilities through
periodic and aperiodic operations made available to the periodic sequencer and
event handler, respectively. 

There are two periodic operations provided by system controllers: update
and import. 

The update operation causes the subsystem controller to perform periodic
processing appropriate to the current system operating state, which is provided as
an input parameter. In the operate state, the update operation causes the sub-
system controller to retrieve inputs needed by its components by means of
inbound connections, execute operations of its components in some logical order
so that changes can be propagated through them, and retrieve their outputs for use
in satisfying another’s inputs or the subsystem’s outbound connections. More
than just a sequencer, this algorithm provides logical “glue” that cements the
components into some coherent, aggregate simulation. This glue may include
computations as well as data transformations and conversions.

In the stabilize state, the update operation is used to request the subsystem
controller to perform one iteration of its stabilization algorithm and determine
whether locally defined stability criteria are satisfied. The update operation pro-
vides one output parameter, indicating whether the subsystem controller consid-
ers the subsystem to be currently stable. This makes the assumption that such a
determination can be made locally, which may not be valid in all circumstances.
Subsystem controllers may provide the capability to do the following tasks.

The import operation is used to request the subsystem controller to complete
certain of its inbound connections by reading their values and locally store their
values for use in a subsequent update operation. There are two aperiodic opera-
tions provided by subsystem controllers: process_event and configure. 

The process_event operation is used in operating states that are pre-
dominantly periodic, such as operate, to ask the subsystem controller to respond
to an event. A characteristic of this operation is that effects of servicing the event
are reflected only in the subsystem’s periodic outputs, which are not made available
until the next update operation. The event is provided by an input parameter to the
operation. Several events from the instructor–operator station fall into this category,
such as process_malfunction, set_parameter, and hold_parameter. 

The configure operation is used in system operating states, like initialize, in
which the processing is predominantly aperiodic. The operation is used to establish
a named set of conditions such as some training device configuration or training
mission. The information that the subsystem controller needs to establish the
condition may be provided as an input parameter on the operation, as a location
in a memory on secondary storage, or in a database where the information has been
stored for retrieval. To complete the operation, the subsystem controller invokes
operations of its components that cause the components to establish the conditions.

Component. Air vehicle model components can be simulations of real aircraft
components, such as a hydraulic pump, an electrical relay, an engine rotor, a fuel
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tank, and the like. They can support simulator-specific models such as forces and
moments, weights and balances, and the equations of motion. They can be used
to localize the details of cockpit equipment, such as gauges, switches, and dis-
plays. But no matter what specific functionality they are used to simulate, com-
ponents are all considered to be architecturally equivalent. 

In general, components are used to support the simulation of an individual
part, or object, within some functional assembly. Each component provides a sim-
ulation algorithm that determines the state of the component based on the following:

■ Its former state
■ Inputs that represent its connections with logically adjacent components
■ Some elapsed time interval

A component makes this determination as often as it is requested to do so by its
subsystem controller, which provides the required inputs and receives the compo-
nent’s outputs. This capability is called updating.

A component can support the capability to produce abnormal outputs,
reflecting a malfunction condition. In addition to potentially modeling changes in
normal operating conditions that can result in malfunctions over time, such as
wear and tear, components can be told to start and stop malfunctioning by their
subsystem controller.

A component can also support the capability to set a simulation parameter to
a particular value. Simulation parameters are external names for performance
parameters and decision criteria used in its simulation algorithm. Each compo-
nent supports the capability to initialize itself to some known condition. Like the
other capabilities of components, parameter setting and initialization must be
requested by the subsystem controller.

The capabilities of updating and those of malfunctioning, parameter setting,
and initializing differ in the incidence of their use by the subsystem controller.
The component is requested to update on a periodic basis, effecting the passage
of time within the simulation. Requests for the other capabilities are made only
sporadically.

Components support these capabilities through a set of periodic and aperi-
odic operations made available to the subsystem controller. The update opera-
tion is the single periodic operation and is used to control the periodic execution
of the simulation algorithm. The component receives external inputs and returns
its outputs through parameters on the operation. Two aperiodic operations are
provided by the components process_event and configure. 

All logical interactions among components are mediated by the subsystem
controller, which is encoded with knowledge of how to use the component oper-
ations to achieve the simulation requirements allocated to the subsystem as a
whole. This includes the following:

■ Periodically propagating state changes through the components using their 
update operations
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320 CHAPTER 14 Flight Simulation

■ Making logical connections among components using the input and output 
parameters on these operations

■ Making logical connections among components and the rest of the simula-
tion using the subsystem’s inbound and outbound connections

Component malfunctions are assumed to be associated with abnormal oper-
ating conditions of the real-world components being modeled. Therefore, the
presence and identities of component malfunctions are decided by the component
designer and are made known to the subsystem controller designer for use in real-
izing subsystem malfunction requests. Subsystem malfunctions need not corre-
spond directly to those supported by the components, and certain subsystem
malfunctions can be realized as some aggregation of more primitive failures sup-
ported by components. It is the subsystem controller’s responsibility to realize
some mapping between the two.

Likewise, the presence and identities of simulation parameters are decided
by the component designer based on the characteristics of the component’s simu-
lation algorithm. They are made known to the subsystem controller designer for
use in realizing subsystem requests or for other purposes for which they are
intended or are suitable to support.

Skeletal System and Pattern-Based Simplicity. What we have now described
is a skeletal system, as defined in Section 13.2. We have a framework for a flight
simulator, but none of the details—the functionality—have been filled in. In fact,
this framework has also been used for helicopter simulation and even nuclear
reactor simulation. The process of realizing a working simulation consists of
fleshing out this skeleton with subsystems and components, as dictated by the
functional partitioning process, which will be discussed next.

An entire flight simulator, which can easily exceed 1 million lines of code,
can be described completely by six component types: components, subsystem
controllers, timeline synchronizer, periodic sequencer, event handler, and surrogate.
This is an example of pattern-based simplicity, as we discussed in Section 13.3,
and it renders the architecture easier to build, understand, integrate, grow, and
otherwise modify. 

Equally important, with a standard set of fundamental patterns, one can cre-
ate specification forms, code templates, and exemplars that describe those pat-
terns. This allows for consistent analysis. When these patterns are mandated, an
architect can insist that a designer use only the provided building blocks. While
this may sound draconian, a small number of fundamental building blocks can, in
fact, free a designer to concentrate on the functionality, the reason that the system
is being built in the first place.

Both of these architectural approaches—skeletal system framework and pat-
tern-based simplicity—have contributed significantly to the success of the struc-
tural modeling approach. 
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REFERENCE ARCHITECTURE

Now that we have described the architectural style with which the air vehicle
model is built, we still need to discuss how operational functionality is allocated
to instances of that style. That is, we need to define the reference architecture. We
do this by defining instances of the subsystem controllers.

The reference architecture is the place where the specifics of the aircraft to
be simulated are detailed. The actual partitioning depends on the systems on the
aircraft, the complexity of the aircraft, and the types of training for which the
simulator is designed. In this section, we sketch a reference architecture.

We begin with a desire to partition the functionality to components based on
the underlying physical aircraft. To accomplish this we use an object-oriented
decomposition approach. This has a number of virtues, as follows:

■ It maintains a close correspondence between the aircraft partitions and the 
simulator, and this provides us with a set of conceptual models that map 
closely to the real world. Our understanding of how the parts interact in the 
aircraft helps us understand how the parts interact in the simulator. It also 
makes it easier for users and reviewers to understand the simulator. They are 
familiar with the aircraft (problem domain), and they can easily transfer this 
understanding to the simulator (solution domain). 

■ Experience with past flight simulators has taught us that a change in the air-
craft is easily identifiable with aircraft partitions. Thus the locus of the change 
in the simulator corresponds to analogous aircraft partitions. This tends to 
keep the simulator changes localized and well defined. It also makes it easier 
to understand how changes in the aircraft affect the simulator, therefore making 
it easier to assess the cost and time required for changes to be implemented. 

■ The number and size of the simulator interfaces are reduced. This derives 
from a strong functional cohesion within partitions, placing the largest inter-
faces within partitions instead of across them. 

■ Localization of malfunctions is also achieved. Malfunctions are associated 
with specific pieces of aircraft equipment. It is easier to analyze the effects 
of malfunctions when dealing with this physical mapping, and the resulting 
implementations exhibit good locality. The effects of malfunctions are readily 
propagated in a natural fashion by the data that the malfunctioning partition 
produces. Higher-order effects are handled the same as first-order effects.

In breaking down the air vehicle modeling problem into more manageable
units, the airframe becomes the focus of attention. Groups exist for the airframe, the
forces on the airframe, those things outside the airframe, and those things inside the
airframe but ancillary to its operation. This results in the following specific groups:

■ Kinetics group. Elements that deal with forces exerted on the airframe
■ Aircraft systems group. Those parts concerned with common systems that 

provide the aircraft with various kinds of power or distribute energy within 
the airframe

Bass_chap14.fm  Page 321  Thursday, August 30, 2012  2:48 PM

Excepted from Bass et al., Software Architecture in Practice,  
First Edition  (ISBN-13: 9780201199307) 
Copyright © 1998 Pearson Education, Inc. Do not redistribute.



322 CHAPTER 14 Flight Simulation

■ Avionics group. Those things that provide some sort of ancillary support to 
the aircraft but are not directly involved in the kinetics of the air vehicle 
model, the vehicle’s control, or operation of the basic flight systems

■ Environment group. Those things associated with the environment in 
which the air vehicle model operates

GROUP DECOMPOSITION

In this section we motivate the coarsest decomposition of the air vehicle model—
the group decomposition. Groups decompose into systems which, in turn, decom-
pose into subsystems. These subsystems provide the instances of the subsystem
controllers. Groups and systems are not directly reflected in the architecture and
exist to rationalize the functionality assigned to the various instances of subsystem
controllers. For now, we begin with groups.

N-Square Charts. One method of presenting information about the interfaces
in a system is provided by n-square charts. We will make use of this presentation
method to illustrate how the partitions we selected relate to each other. Because
some of the factors we consider in making partitioning decisions are based on the
interfaces between the partitions, n-square charts are useful in evaluating the
decisions. They are a good method for illustrating the overall view of interfaces
and can be used to illustrate the abstractions utilized in various parts of the design.

An example n-square chart is shown in Figure 14.6. The boxes on the main
diagonal represent the system partitions. Their inputs are found in the column in
which the partition lies. The outputs from the partition are shown in the row in
which the partition lies. Therefore the full set of inputs to a partition is the union
of all the cell contents of the partition’s column. Conversely, the full set of outputs
is the union of all the cell contents in the row in which the partition resides. The
flow of data from one partition to another is to the right, then down, to the left,
and then up.

FIGURE 14.6 The n-square chart.
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Figure 14.7 shows an n-square chart depicting the interfaces between the
groups we identified above. Interfaces external to the air vehicle model have been
omitted to simplify the chart. The external interfaces terminate in interface sub-
systems.The data elements shown on this chart are aggregate collections of data
to simplify the presentation. The interfaces are not named here, nor are they
typed. As we investigate partitions, looking at more limited sets of elements, the
detail of the information presented increases accordingly. Systems engineers can
use this approach to the point where all of the primitive data objects in the inter-
faces are shown. During detailed design, the interface types and names will be
determined and the structure finalized.

Not all of the air vehicle models will have a correspondence to aircraft struc-
ture. The aerodynamics models are expressions of the underlying physics of the
vehicle’s interaction with the environment. There are few direct analogs to air-
craft parts. Partitioning this area will mean relying on the mathematical models
and physical entities used to describe the vehicle’s dynamics. Partitioning cor-
rectly based on mathematical models that affect the total aircraft is more difficult
to do than partitioning based on the physical structure of the aircraft.

DECOMPOSING GROUPS INTO SYSTEMS

The next step is to refine the groups into systems. A system and a group can be
units of integration: The functionality contained within the system is a relatively
self-contained solution to a set of simulation problems. These units are a conve-
nient focus for testing and validation. Partitions of groups exist as collections of
code modules implemented by one engineer or a small group of engineers. We
can identify systems within the groups we have defined above. We will look
briefly at the kinetics group systems.

FIGURE 14.7 Air vehicle model domain n-square chart for groups.
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Systems in the Kinetics Group. These systems consist of elements concerned
with the kinetics of the vehicle. Included in this group are elements directly
involved in controlling the motion of the vehicle and modeling the interaction of
the vehicle and its control surfaces with the environment. The systems identified
in this group are as follows:

■ Airframe
■ Propulsion
■ Landing gear
■ Flight controls

All of the subsystems in the propulsion system shown in Figure 14.8 deal with
the model of the aircraft’s engines. Multiple engines are handled by creating mul-
tiple sets of state variables and duplicate instances of objects, where appropriate.
This system’s principal purpose is to calculate engine thrust, moments caused by
rotation of engine parts, and the forces and moments caused by mass distribution
of fuel. 

The aircraft’s fuel system is grouped here because the primary interface for
the fuel system is to the engines. The fuel system calculates the forces acting on
the airframe from movement of the fuel within the tanks as well as the gravita-
tional effect of the fuel mass. At this point the reference architecture for the pro-
pulsion subsystem is complete. We have identified the division of functionality,
its allocation to subsystems and subsystem controllers, and the connections
among subsystems. 

To complete the architecture, we would need to do the following:

■ Identify the component instances for the propulsion subsystem.
■ Similarly decompose the other groups, their systems, and their subsystems.

This, however, concludes the presentation of the architecture in this case study. 

FIGURE 14.8 Propulsion subsystems.
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14.5 Achievement of Goals

Structural modeling has been an unqualified success. Chastek and Brownsword
describe some of the results achieved through the use of this architectural style
[Chastek 96, 28]:

In a previous data-driven simulator of comparable size (the B-52), 2000–
3000 test descriptions (test problems) were identified during factory
acceptance testing. With their structural modeling project, 600–700 test
descriptions were reported. They found the problems easier to correct;
many resulted from misunderstandings with the documentation. . . . Staff
typically could isolate a reported problem off-line rather than going to a
site. . . . Since the use of structural modeling, defect rates for one project
are half that found on previous data-driven simulators.

At the start of this chapter we identified three quality goals of structural
modeling: performance, integrability, and modifiability for operational requirements.
In this section, we recap how the structural model achieves these quality goals. 

PERFORMANCE

A key quality goal of the structural model is real-time performance. This goal is
achieved primarily through the operation of the executive and the use of a peri-
odic scheduling strategy. Each subsystem that is invoked by the executive has a
time budget, and the hardware for the simulator is sized so that it can accommo-
date the sum of the time budgets of the subsystems. Sometimes this involves a
single processor, other times, multiple processors. Given this scheduling strategy,
the achievement of real-time performance comes from requiring the sum of the
times allocated to the subsystems involved in the control loops to be within one
period of the simulator. Thus, real-time performance is guaranteed by a combina-
tion of architectural style (the executive component configurations) and the func-
tional decomposition (how the instances are invoked).

INTEGRABILITY

In Chapters 4 and 5, we discussed how qualities are embedded into an architecture.
In this chapter, we see an example in which the architectural style is designed to
minimize integration problems. This approach is to minimize the connections
between the various component configurations used in the structural model.

In the structural model, both the data connections and the control connec-
tions between two subsystems are deliberately minimized. First, within a subsys-
tem, the components can neither pass control nor data directly to any sibling
component. Any data or control transfer occurs only through the mediation of the
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subsystem controller. Thus, integrating another component into a subsystem
involves ensuring that the data in the subsystem controller are internally consis-
tent and that the data transferred between the subsystem controller and the com-
ponent are correct. This is a much simpler process than if the new component
communicated with other components because all of them would be involved in
the integration. That is, the integration problem has been reduced to a problem
that is linear, rather than exponential, in the number of components.

When integrating two subsystems, none of their components interact directly
and so the problem is again reduced to ensuring that the two subsystems pass data
consistently. It is possible that the addition of a new subsystem will affect several
other subsystems, but because the number of subsystems is substantially less than
the number of components, this problem is limited in complexity.

In the structural model, therefore, integrability is simplified by deliberately
restricting the number of possible connections. The cost for this restriction is that
the subsystem controllers often act purely as data conduits for the various compo-
nents, and this adds complexity. The benefits of this approach, however, far out-
weigh the cost in practice. Every project that has used structural modeling has
reported easy, smooth integration.

MODIFIABILITY

Modifiability is simplified when there are few base component configurations for
the designer and maintainer to understand and when functionality is localized so
that there are fewer subsystem controllers or components involved in a particular
modification. The technique of using n-square charts begins with the premise of
reducing connections. 

Furthermore, for those subsystems that are physically based, the decomposi-
tion follows the physical structure, and modifications also follow the physical
structure. Those subsystems that are not physically based, such as the equations
of motion, are less likely to be changed. Users of structural modeling reported
that side effects encountered during modifications were rare. 

14.6 Summary

In this chapter we have described an architecture for flight simulators that was
designed to achieve the qualities of performance, integrability, and modifiability.
And projects were able to achieve these results with cost savings. For example,
on-site installation teams were 50 percent of the size previously required because
they could locate and correct faults more easily. The design achieved those quali-
ties by restricting the number of component configurations in the structural
model architectural style, by restricting communication among the components,
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and by decomposing the functionality according to anticipated changes in the
underlying aircraft.

The improvements in these simulators have principally accrued from a bet-
ter understanding of, and adherence to, a well-analyzed and well-documented
software architecture.

14.7 For Further Reading

For an historical introduction to the computation and engineering involved in cre-
ating flight simulators, see [Fogarty 67], [Marsman 85], and [Perry 66].

The structural modeling paradigm has evolved over the past 10 years. Some of
the early writings on this paradigm can be found in [Lee 88], [Rissman 90], and
[Abowd 93b]. A more recent description can be found in [Chastek 96].

The reader interested in more details about the functional decomposition used in
example flight simulators is referred to [ASCYW 94].

14.8 Discussion Questions

1. The strong relationship between the structure of the system being simulated 
and the structure of the simulating software is one of the things that makes 
the structural modeling style so flexible with respect to mirroring the mod-
eled system in the event of change, extension, or contraction. Suppose the 
application domain were something other than simulation. Would structural 
modeling still be a reasonable approach? Why or why not? Under what cir-
cumstances would it or would it not be?

2. Structural modeling is a combination of several of the architectural styles 
described in Chapter 5. What are they and how are they used? Does this use 
conform to the advantages of those styles that we described in Chapter 5?

3. The data and control flow constraints on subsystem controllers and compo-
nents are very stringent. As a component designer and implementor, do you 
think you would welcome these constraints or find them too restrictive?
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