

Praise for
Designing Silverlight® Business Applications

“Jeremy’s writing style and approach to this broad subject has produced a very readable
book. Beginners won’t be lost or discouraged, and there’s plenty of serious content for
the experienced developer. This book will be open on your desk for reference while
you’re coding.”

—Dave Campbell, SilverlightCream.com

“I strongly recommend this book to anyone seriously interested in developing
applications with Silverlight. The book is written in an easy-to-read style and answers
those tough questions that you would normally spend hours searching the Net for.”

—Michael Crump, Microsoft MVP, michaelcrump.net

“Jeremy explores Silverlight well beyond the basics, while maintaining crystal clarity
about each subject. Should be on every Silverlight developer’s bookshelf.”

—Jesse Liberty, Developer Evangelist, Telerik

“What’s cooking in Jeremy’s kitchen? Silverlight delicacies that will benefit every
Silverlight developer, regardless of experience level. And worth the price for the
information on MVVM and MEF alone.”

—Jeff Prosise, Cofounder, Wintellect

“This book is a must-read for anyone writing business applications using Silverlight.
Jeremy has combined his clear and precise writing style with great code examples in a
book that is both instructive and enjoyable to read.”

—Beatriz Stollnitz, President, Zag Studio

“This book is a great companion for any Silverlight developer building or looking to build
enterprise applications. Jeremy does a great job covering Silverlight concepts and
techniques, but the application to real business scenarios based on Jeremy’s extensive
experience is where the book really shines.”

—Daniel Vaughan, Cofounder Outcoder, MVP Client App Dev,
danielvaughan.org

“If you’re already familiar with Silverlight, get this book to understand when and how to
use proven best practices in your Silverlight line-of-business applications.”

—Jim Wooley, author, LINQ in Action

This page intentionally left blank

Designing Silverlight®

Business Applications

This page intentionally left blank

Jeremy Likness

Designing
Silverlight®

Business
Applications

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers
and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in
this book, and the publisher was aware of a trade-
mark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in
connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this
book when ordered in quantity for bulk purchases
or special sales, which may include electronic ver-
sions and/or custom covers and content particular
to your business, training goals, marketing focus,
and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication
Data is on file.

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of
America. This publication is protected by copyright,
and permission must be obtained from the pub-
lisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. To obtain permission to
use material from this work, please submit a written
request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to
(201) 236-3290.

The .NET logo is either a registered trademark or
trademark of Microsoft Corporation in the United
States and/or other countries and is used under
license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and
Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A.
and/or other countries/regions.

ISBN-13: 978-0-321-81041-0
ISBN-10: 0-321-81041-4

Text printed in the United States on recycled paper
at Edwards Brothers in Ann Arbor, Michigan.

First printing March 2012

To my family—Gordon, Lizzie, and Doreen—
for all of the support, love, encouragement,

and patience you’ve given me to pursue my dreams.

This page intentionally left blank

ix

Contents

Foreword . xviii
Preface . xx
Acknowledgments . xxx
About the Author . xxxii

Chapter 1 Silverlight . 1
The Common Language Runtime (CLR) . 1

The Base Class Library (BCL) . 2

The Presentation Core . 3

The Presentation Framework . 3

Communications . 4

Data . 4

Key Differences from the Full CLR . 5
Silverlight First . 6
WPF and Silverlight . 7
HTML5 . 8

HTML5 Is Not Ready for Line of Business . 10

HTML5 Won’t Keep Pace . 11

HTML5 Isn’t Just Markup . 12

HTML5 Is Not Native . 12

HTML5 Is the Perfect Technology . 14

Which Client Technology Is Right for You? . 14
Use What You Know . 15

Listen to the Customer . 15

Consider the Development Team . 16

Analyze Third-party Dependencies . 17

LOB Applications . 18
Summary . 19

Chapter 2 Getting Started . 21
Setting Up Your Environment . 21

Silverlight 5 SDK and Visual Studio Tools . 22

Expression Blend SDK . 22

Silverlight Toolkit . 24

Open Source Projects . 25

Hello, Silverlight . 26
Creating the Silverlight Application . 27

Class Libraries . 29

Application Services . 32

Creating the Extension XAP . 41

Sharing between Silverlight and the Core Framework 48

What about Those Templates? . 53

The Standard Solution . 55
Web Host . 55

The Silverlight Project . 59

Anatomy of a XAP File . 61

Summary . 64

Chapter 3 Extensible Application Markup Language (Xaml) . . . 67
Markup and Class Instantiation . 68
Dependency Objects and Properties . 70

Dependency Properties . 71

Attached Properties . 75

Value Precedence . 76

Markup Extensions . 76
Type Converters . 81
Value Converters . 84
Styles . 86

Contentsx

Storyboards . 91
Layout . 95

Measure and Arrange . 96

Canvas . 96

Grid . 97

StackPanel . 101

VirtualizingPanel and VirtualizingStackPanel . 103

Containers . 104
ContentControl . 104

ItemsControl . 105

ScrollViewer . 105

ViewBox . 106

Basic Controls . 108
Summary . 111

Chapter 4 Advanced Xaml . 113
Working with Text . 114

Rich Text . 114

Character Spacing . 120

Line Height . 121

Parts, States, and Templates . 123
Parts . 123

States . 127

Data Templates . 128
Design-time Extensions . 132
Interactivity with Behaviors and Triggers . 141

Behaviors . 141

Triggers . 147

Natural User Interface (NUI) . 149
Resource Dictionaries and Isolating Themes . 151
Embedding and Distributing Fonts . 155
Tips for XAP Extensions . 157
Summary . 159

Contents xi

Chapter 5 The Visual State Manager . 161
Introduction to the VSM . 162

Groups . 162

States . 165

Transitions . 170

The Visual State Manager Workflow . 171
Advanced Troubleshooting and Events . 172
Custom Visual State Managers . 176
The Visual State Manager in Blend . 177
The Visual State Aggregator . 185
Summary . 194

Chapter 6 Data-Binding . 195
Data-Binding Basics . 196
Data-Binding Debugging . 200
Data-Binding within Styles . 203
Synchronizing Lists . 208
Commands . 218
Validation . 220

Validation with Exceptions . 224

Validation Using Data Error Info . 226

Asynchronous Validation . 230

Fluent Validation . 232

Summary . 244

Chapter 7 Model-View-ViewModel (MVVM) 245
UI Design Patterns . 246
The Model-View-ViewModel Pattern . 251

The Model . 255

The View . 262

The View Model . 264

Binding the View Model to the View . 265
View Model Locators . 265

Controllers . 269

Contentsxii

Design-Time View Models . 271

Custom Markup Extensions . 272

View-Model-First Approach Versus View-First Approach 274

Lists and Data Elements . 275
Summary . 276

Chapter 8 The Managed Extensibility Framework (MEF) 279
Discovery . 281

Imports . 281

Exports . 284

Parts . 286

Catalogs . 287

Containers . 288

Composition Initializer and Host . 289

Lifetime Management . 291
Extensibility . 295

Recomposition . 297

Deployment Catalog . 301

Discovering XAP Files . 303

Offline Catalog . 305

Metadata . 306
Weakly Typed Metadata . 306

Strongly Typed Metadata . 309

Lazy<T,TMetadata> . 312

Troubleshooting . 313
Understanding Stable Composition . 314

Import Parameters . 315

The MEF Debugger . 316

Jounce, an MVVM with MEF Framework . 318
Summary . 319

Chapter 9 Testing . 321
Why Test? . 322

Testing Eliminates Assumptions . 323

Testing Kills Bugs at the Source . 324

Contents xiii

Testing Helps Document Code . 324

Testing Makes Extending and Maintaining Applications Easier 325

Testing Improves Architecture and Design . 326

Testing Makes Better Developers . 326

Conclusion: You Should Test . 327

Unit Tests . 327
Silverlight Unit Testing Framework . 332

Linked Classes and Shared Testing . 338

Automated Testing . 343

Mocking and MEF . 345

View Model Tests . 352

Testing Xaml . 359

Coded UI Tests . 364
Challenges . 366

Automation Peers . 367

Summary . 371

Chapter 10 Navigation . 373
The Silverlight Navigation Framework . 374

Basics of Navigation Using the Framework . 375

Choosing Page-Based Navigation . 377

Custom Navigation . 378

Manual Navigation . 379
Containers . 379

Navigation Events . 384

Region Management . 391

Summary . 398

Chapter 11 The Service Layer . 399
Domain Data and Behaviors . 400
Strategies for Sharing Domain Objects between the

Client and Server . 401

Contentsxiv

DOM Interop and ASP.NET Callbacks . 402
The Updated To-Do List . 402

DOM Interoperability . 404

Another Example: Callbacks . 407

Communication . 412
Representational State Transfer (REST) . 412

Plain Old XML (POX) and JavaScript Object Notation (JSON) 423

Windows Communication Foundation (WCF) . 424

WCF RIA Services . 431

Local Messages . 435

Sockets . 436

Mapping and Transformation . 443
Mapping Versus Exposing the Model . 443

Dynamic Types . 448

The Custom Type Provider . 450

Asynchronous Techniques . 452
Events Versus the Asynchronous Programming Model (APM) 452

Lambda Expressions and Method Chaining . 455

Action and Callbacks . 456

Reactive Extensions (Rx) . 459

IWorkflow . 460

Tasks and await . 463

Summary . 465

Chapter 12 Persistence and State Management 467
The To-Do List Application . 468

WCF RIA Services . 468

Filters and Sorts . 471

Navigation Parameters . 472

Persisting Preferences with Settings . 473
Folders and Files in Isolated Storage . 476

Managing Isolated Storage Access and Quotas . 478

Accessing Folders and Files . 482

Finding Isolated Storage . 484

Contents xv

Contentsxvi

Iterating the File System . 485

Signing Files . 491

Encrypting Files in Silverlight . 494

Sterling in Silverlight . 498
Summary . 514

Chapter 13 Out of Browser Applications . 515
Getting Started . 516

Checking for Updates . 523

Elevated Trust . 526
Application Signing . 528

File System Access . 530

Toast Notifications . 531

Child Windows . 535

COM Interop and Script Host . 540

Native Silverlight Extensions . 546

p/Invoke . 547

Elevated Trust in the Browser . 552

Distribution and Installation . 553
Installation . 553

Execution . 554

Uninstalling Your OOB Application . 555

Summary . 556

Chapter 14 Line of Business Features . 557
Designer/Developer Workflow . 559
Printing . 561
Localization . 571
Modularity and Extensibility . 576
Scalability . 578

Extremely Large Data Sets . 578

Concurrency . 590

Synchronization . 593

Proof of Concept . 594
Summary . 596

Chapter 15 Debugging and Performance Optimization 597
Debugging Silverlight Applications . 598

Debug Symbols . 600

Debugging Tips . 602

Debugging Applications Already Launched . 608

WinDbg . 611

Logging and Tracing . 616
Client Logging and Tracing . 617

WCF Tracing . 619

Profiling Applications with Visual Studio . 622
Fiddler . 625
Silverlight Spy . 626
Summary . 627

Glossary . 629

Index . 653

Contents xvii

Foreword

When I was first approached to write the foreword for Jeremy’s book, I
thought of many snarky things to say…but at the end of the day I think it
is most accurate to say that I was honored. As someone who has talked,
written, and taught a lot about Silverlight, I’ve been watching Jeremy’s love
of the entire XAML stack.

As he and I share a love of both XAML and a geographic area, it was
hard not to run into his presentations on a variety of subjects germane to
this book. He has that key pairing of passion for the subject and technical
prowess to see the big picture of best practices. These skills are obvious to
anyone who has seen him talk or used his excellent Silverlight open source
community contributions. It seems like a natural next step for him to tackle
a book. And completely unsurprisingly, he didn’t take a light subject but
tackled the difficult problem of architecture and Silverlight. And I suspect
you wouldn’t be surprised to know he handled it with much aplomb.

Silverlight is a natural solution for the enterprise space as it combines a
web-delivered deployment story and marries it with a rich-client, easy-to-
develop solution. The challenge is that creating large, scalable, and main-
tainable applications using Silverlight requires forethought. While it’s
expected that any Silverlight book will cover crucial topics like XAML, data
binding, and such, to build enterprise applications, other skills are
required. These include architectural patterns (for example, MVVM), com-
position patterns (for example, inversion of control), testability, and the dif-
ficult problem of data. Jeremy tackles these topics by ensuring that you, the

reader, know how important it is to think of these topics as more than after-
thoughts, but the core of designing mission-critical, line-of-business appli-
cations. I, for one, think he has succeeded.

—Shawn Wildermuth, http://wildermuth.com, AgiliTrain

Foreword xix

http://wildermuth.com

Preface

It was 2006 when Silverlight made its debut with the confusing acronym
WPF/E, for Windows Presentation Foundation/Everywhere. Like many
other developers at the time, my first reaction was to dismiss the technol-
ogy as yet another plug-in. Silverlight struggled in its early days to prove
its identity as something more powerful than just another media player.
Through an extremely rapid release cycle, Version 3.0 became available in
2009 and .NET developers began to take notice.

At the time I was working on an extremely large web-based enterprise
application that provided a desktop-like experience using HTML and
JavaScript. Our developers had to become experts not only in multiple lan-
guages—switching between XML, JavaScript, C#, and CSS—but also with
the nuances of the multiple browser implementations that existed at the
time. We were spending more time testing for cross-browser compatibility
and hacking JavaScript and CSS than we were building core business func-
tionality.

I decided to take Silverlight for a spin and started with a simple proof
of concept. I found that because Silverlight used a smaller version of the
core .NET Framework and could be written in my language of choice (C#),
it was very easy to learn. I was extremely impressed with the Xaml layout
engine and was able to produce a prototype quickly to show our CEO. He
gave me the green light to use Silverlight in our project and we started right
away.

It was soon apparent to the team that Silverlight was an easier way to
build web-based applications. We were able to provide an amazing, rich

user experience with complex features in a very short span of time and
were able to provide a consistent application across multiple browsers and
platforms. I estimated that our team was able to produce software about
four times faster using Silverlight than traditional web-based technologies.

Since then I’ve used Silverlight to build enterprise applications for a
variety of customers across multiple verticals. From a backend server
health monitoring system to online cable grid listings, a SharePoint-based
risk management system to a large and complex social media monitoring
application, Silverlight has made writing usable and scalable software an
amazing and rewarding experience.

I’ve spent the past decade focused on highly scalable web-based enter-
prise applications, with the last several years working almost exclusively
with Silverlight. This experience has helped me design, code, test, debug,
and implement Line of Business (LOB) solutions for dozens of customers
using Silverlight. I’ve done my best to take those various experiences and
use them to provide you with powerful and reusable solutions in this book.

What This Book Is About

The purpose of this book is to explain how to write Silverlight applications
that target enterprises and commercial customers as opposed to end users
and consumers. This is the heart of what LOB is about. I intend to focus on
advanced features of Silverlight that directly relate to the specific business
problems that the framework is capable of solving in that context. I will
concentrate on the areas and themes that have come up time and time again
from my own experience.

This book is not an introduction to Silverlight. I’m assuming you either
have prior Silverlight experience or have experience building LOB appli-
cations using other client technologies such as Windows Presentation
Foundation or ASP.NET. I’m also assuming you are at least familiar with
the concept of design patterns and the notion of decoupled code. Both of
these ideas have been core to the success of the applications I’ve helped
build and will be used as the foundations for the concepts presented in this
book.

Preface xxi

Whether you’re a Silverlight LOB developer looking to improve an
existing application, or an experienced client technologies developer who
is transitioning to Silverlight for the first time, this book will give you the
guidance and proven patterns and practices you’ll need to build scalable,
maintainable, and highly professional applications that run equally well on
multiple platforms and browsers.

This version of the book specifically addresses Silverlight 5 using Visual
Studio 2010 SP1. Silverlight runs perfectly well as a standalone client tech-
nology with no dependencies on a specific backend. It can be hosted from
any type of web server, including a Unix-based Apache server. Examples in
this book that involve the server are assumed to be running .NET Frame-
work 4.0, where applicable. This book does not address the Windows
Phone version of Silverlight, although many of the concepts are shared
between the different versions of the runtime.

How to Use This Book

The aim of this book is to enable you to write Silverlight applications that
target the enterprise. Each chapter is designed to help you discover what
features are available in that area of the framework and how they are
applied in a LOB setting. Code examples are provided that demonstrate the
features and best practices for programming them using C#. Although dif-
ferent chapters may relate to various parts of a comprehensive project, the
individual code samples are designed to stand on their own.

Each chapter is similarly structured. The chapters begin with an intro-
duction to a topic and an inventory of the capabilities that topic provides.
This is followed by relevant case studies from existing projects and includes
code samples to demonstrate its application. The code samples are
explained in detail and the topic is summarized to highlight the specific
information that is most important for you to consider.

I suggest you start by reading the book from start to finish, regardless
of your existing situation. Inexperienced Silverlight developers will find
that their understanding grows as they read each chapter and concepts are

Prefacexxii

introduced, reinforced, and tied together. Experienced Silverlight develop-
ers will gain insights into areas they might not have considered or had to
deal with in the past, or simply didn’t factor into their software lifecycles.
After you’ve read the book in its entirety, you will then be able to keep it
as a reference guide and refer to specific chapters any time you require clar-
ification about a particular topic.

About the Author

My first computer program was written in BASIC on a TI-99/4A. From
there I programmed assembly language for the Commodore 64, learned C
and C++ on Unix-based systems, and later wrote supply chain manage-
ment software on the midrange AS/400 computer (now known as iSeries).
For the past 15 years, my primary focus has been developing scalable,
highly concurrent web-based enterprise applications.

I started my work with Silverlight right before the 3.0 release. At the
time, I led a team of 12 developers working on an ASP.NET mobile device
management platform that relied heavily on AJAX to provide a desktop-
like user experience. When it was evident that the team was spending more
time learning various web technologies, such as CSS and JavaScript, and
testing the application on multiple browsers and platforms than focusing
on the core business value, I began researching alternative solutions and
determined that Silverlight was the key our team was looking for.

Since that transition I have worked almost exclusively on Silverlight
applications in the enterprise. In addition to the mobile device management
software, I helped build the health monitoring system for the backend data
centers that provided video streams (live and on demand) during the 2010
Vancouver Winter Olympics. I worked on a major social media analytics
project that used Silverlight to present data that was mined from social net-
works and analyzed to provide brand sentiment. I worked with a team that
built a slate-based sales interface for field agents to close sales and integrate
with their point of sale system. I was on the team that produced the

Preface xxiii

Silverlight version of a major e-book reading platform designed for acces-
sibility and customized to provide interactive experiences and audio for
children.

All of this work has been with the company Wintellect, founded by well-
known .NET luminaries Jeffrey Richter, Jeff Prosise, and John Robbins. All
three have produced countless books about the Microsoft stack, .NET
Framework, and Core Language Runtime (CLR). They have trained thou-
sands of Microsoft employees (some teams at Microsoft are required to take
their courses as a prerequisite to working on their projects) and contributed
to the runtime itself by writing and designing portions of the framework.
The company has provided me with unique access to industry leaders and
architects and their best practices and solutions for creating successful
enterprise applications.

I am a certified Microsoft Silverlight developer (MCTS) and was recog-
nized as a Microsoft Most Valuable Professional (MVP) for Silverlight in
July of 2010. This was due mostly to my efforts to blog, tweet, and speak
about Silverlight at various user group meetings and conferences around
the country. It is this depth of experience working with Silverlight, under-
standing how to build server and web-based software, and migrating exist-
ing applications to Silverlight that has provided me with valuable insights
into how Silverlight works within the enterprise.

About Silverlight

Silverlight is a unique platform that has transformed over the years. Orig-
inally intended to be a vehicle to provide Xaml technologies everywhere—
from Windows to OS X, Linux, and even smartphones—it has matured to
become a choice platform for writing LOB applications. Microsoft summa-
rizes Silverlight on their website with this statement:

Silverlight is a powerful development platform for creating engaging,
interactive user experiences for Web, desktop, and mobile applications
when online or offline. (Source: http://www.silverlight.net)

Prefacexxiv

http://www.silverlight.net

That simple statement covers a lot of ground. Silverlight is a develop-
ment platform that should be familiar to most shops that already produce
.NET code, regardless of whether that code is written in C#, Visual Basic,
IronPython, or any other language that can sit on top of the Common
Language Runtime (CLR). The layout and rendering engine, along with
animations, provide the engaging and interactive experience, whereas the
reach of the platform allows for the web, desktop, and mobile targets
(although right now the mobile is mostly limited to Windows Phone 7).

An important aspect of Silverlight that sets it apart from other web plug-
ins is the ability to run offline, or with an Out of Browser (OOB) experience,
even when the user is disconnected from the Internet. This experience is
consistent between Windows and OS X (Macintosh) platforms when a spe-
cific subset of features is used. The ability to easily deliver this experience
over the Web is why many customers have chosen to adopt Silverlight.

If you asked me to summarize Silverlight in a single statement, it would
be this:

Silverlight is a cross-browser, cross-platform, Xaml-based runtime that
allows developers to leverage the power of the Visual Studio and Expres-
sion Blend tools and a choice of .NET languages to provide rich, interac-
tive experiences that integrate easily with existing data and services.

This statement captures the essence of what I believe Silverlight offers.
It is familiar to C# and VB.NET developers because it uses familiar tools
and is also accessible to those who prefer F#, IronPython, and other lan-
guages. Although Silverlight can be developed using completely free
development tools, the addition of the licensed Blend product provides a
design experience that can be used to create incredible user interfaces.

Another major benefit of Silverlight as a web-based tool is the ability to
integrate directly with existing web services and objects. It enables you to
share data and business logic between type definitions that exist on both
the client and the server. Silverlight readily consumes WCF-based services
as well as REST endpoints and can serialize and deserialize data in binary,
XML, ATOM, RSS, and JSON formats. The ability to seamlessly integrate
with existing services, data structures, and even class behaviors makes it
ideal for LOB applications.

Preface xxv

Brief History

Silverlight was first released in 2007. The first version was Xaml based and
exposed the programming interface through an API that relied on
JavaScript in the browser. The layout engine used HTML controls and
DOM interoperability with the Silverlight runtime to function. Silverlight
also provided media features such as video and audio playback. This led
many developers to believe it was a direct challenge to Flash and designed
as “another movie player plug-in.”

The second version, initially 1.1 and renamed to 2.0, was released just a
year later in 2008. This version really opened the door for serious develop-
ers because it provided a full runtime in the form of a stripped-down ver-
sion of .NET Framework 3.0. This allowed programs for Silverlight to be
compiled in any language supported by .NET. The version also provided
a lightweight Base Class Library (BCL) that included canned controls, net-
work APIs, and even access to Language Integrated Query, or LINQ.

Another well-known feature added at this time came from the project
code-named Seadragon that was released as DeepZoom. The technology
provides a way to take extremely large images (or collections of images)
and scale them to allow the user to pan and zoom without having to wait
for the entire image to download. It pixelates the zoomed image and slowly
increases the resolution as more information is available because the image
is turned into slices and tiles of varying resolutions. Many companies used
this feature to provide collages of images that could be easily browsed but
then zoomed to full resolution. You can view an example of DeepZoom at
http://www.wintellect.com/silverlight/deepzoom/.

In November of 2008, the Silverlight Toolkit was originally released. The
toolkit is designed to provide the developer community with new compo-
nents and functionality for product development. It is released out of band
with the runtime and includes features such as drag-and-drop behaviors,
enhanced validation, and special input controls. Some of the toolkit con-
trols, such as the popular Viewbox for automatically sizing content, were
eventually migrated into the core runtime.

Silverlight 3.0 was released during the summer in 2009. It added quite
a few controls to the toolbox that developers could use to build their

Prefacexxvi

http://www.wintellect.com/silverlight/deepzoom/

applications, including the popular DataGrid, which is capable of auto-
matically generating columns and rows from a data source. It provided a
rich navigation framework that allows for deep-linking into the application
using URLs. The media support was extended significantly.

The most significant features, however, were the catalyst for heavy
adoption of Silverlight in the enterprise. The ability to provide Silverlight
as an OOB application was extremely significant because it allowed an
offline experience for the first time. Users could now use the application
even when disconnected from the Internet. This was unique because it
enabled companies to provide an application that could run disconnected,
was delivered easily over the Internet, yet would run on Mac OS X as well
as Windows-based machines.

In addition, a local communications API was provided to allow Sil-
verlight applications running on the same machine to message each other.
An update mechanism was introduced that allows applications to check the
server from which they were installed for updates and then to update auto-
matically when one is available. For the first time, Silverlight could provide
a full application experience that could be delivered and managed from a
central location with an easy installation process over the Web.

With heavier adoption in the enterprise, Silverlight users began to com-
plain about LOB features that were missing. These included the following:

• Integration of a web camera and microphone for video and audio
capture

• Printing support

• Advanced features users of the Windows Presentation Foundation
(WPF) frequently utilized

This all changed with the release of Version 4.0 in 2010, which closed a
critical gap for LOB applications by providing raster-based printing sup-
port directly from the Silverlight application. The user interface improved
dramatically with the ability to send toasts or notifications that could be
displayed by the host operating system (whether Windows, OS X, or oth-
ers). Applications could take advantage of online content by hosting web
controls capable of rendering HTML. Silverlight was extended to provide

Preface xxvii

Prefacexxviii

access to COM components on Windows machines. The Managed Exten-
sibility Framework (MEF) was integrated with the runtime to provide dis-
covery, lifetime management, extensibility, and metadata services. This
release represented huge strides forward.

While Silverlight continued to gain momentum in the enterprise, it also
encountered its first major hurdles between 2009 and 2010. Silverlight was
originally thought of as a development platform that would eventually run
everywhere, but the iPhone presented an obstacle too steep to overcome.
Apple simply would not allow the Silverlight runtime to exist on their
phone. At the same time, the iPad was released and became a literal
overnight success. Using the same operating system as the phones, it, too,
would not allow the Silverlight plug-in. This presented a tangible barrier
and caused executives to begin to question what technology made more
sense and had farther reach. Many heads turned to the rapidly emerging
HTML5 specification as the holy grail of write once, run anywhere.

The result of this was a shift in focus from the idea that Silverlight would
run anywhere to a revised notion that it was ideal for rich desktop-based
applications (Windows and OS X) but not something that would end up on
all smartphones. One smartphone was released that embraced Silverlight
out of the box: the Windows Phone 7 series. Using an enhanced 3.0 version
of Silverlight with extensions specific to the phone, it introduced a whole
new wave of developers to the platform while existing Silverlight devel-
opers suddenly found themselves with unprecedented access to the mobile
market. The current 7.1 version of the SDK supports an enhanced Sil-
verlight 4.0 runtime on the Windows Phone 7.5 OS that is code-named
Mango.

The general development community also reacted strongly when news
of the Windows 8 operating system included demonstrations of a pro-
gramming experience based on HTML5 and JavaScript. None of the
announcements spoke to Silverlight or WPF. This caused concern over
whether support for the two popular Xaml-based technologies would even
exist in the next version. Where would Silverlight fit into this scenario?

Fortunately, Version 5.0 was announced in late 2010 and the beta
released in May of 2011. The release of the version at the end of 2011

xxixPreface

demonstrates Microsoft’s commitment to Silverlight as a platform, and the
features show how it continues to power LOB experiences. This significant
release managed to pack some of the most important features to date,
including the following:

• Various text enhancements allowing for more control over text lay-
out and flow, character spacing, pixel-snapping, and ClearType tech-
nology

• Performance enhancements ranging from an improved networking
stack to the introduction of a composition thread that allows anima-
tions to run in the background without blocking (or being blocked
by) the primary UI thread

• Click counting and text type-ahead for improved user interaction
and use of mouse, touch, and the keyboard

• Vector (PostScript) based printing for improved fidelity and
improved per-formance with printing

• Enhanced data-binding that has more parity with WPF and enables
data-binding debugging

• Custom markup extensions to provide more control over Xaml

• Improved trust scenarios, expanded access to the file system, and
child windows for OOB applications

• The introduction of Platform Invoke, or p/Invoke (a Windows-
specific feature), to access unmanaged code directly from Silverlight
applications

• A powerful XNA-based 3D engine that renders vertices with
texture-mapped surfaces, shading, lighting, backface culling, and
bump maps as well as provides dynamic camera angles

These features are likely to drive increased Silverlight adoption by
removing previous barriers to entry and providing a new set of tools for
LOB developers to quickly and efficiently build enterprise applications.

Acknowledgments

No book is possible without a team of passionate individuals who work
together to deliver a quality product. I am grateful for my superhuman edi-
tor, Joan Murray, who helped pull so many things together in the time we
had and continuously provided her support and guidance throughout the
process. Chris Zahn provided me with excellent technical support. I had the
pleasure of collaborating with an incredible team of development editors,
Christopher Cleveland and Eleanor Bru, who have done an amazing job of
helping me transform my initial thoughts and ramblings into a polished,
professional piece of work, along with the copyedit team of Anne Goebel
and Bart Reed.

I also had the privilege of working with an amazing team of technical
editors. Thank you, Dave Baskin and John Garland, for the countless hours
you put into pouring over my initial drafts. Dave and John not only gave
me valuable insights into better ways to organize and introduce concepts,
but also closely inspected the veracity of the text, provided valuable refer-
ences and corrections when needed, and made many recommendations
and suggestions that helped this book better convey what it means to build
quality Silverlight applications.

Many thanks to Wintellect founders Jeff Prosise, Jeffrey Richter, John
Robbins, and Lewis Frazer for their inspiration, encouragement, and
incredible advice based on their own experience producing some of the best
known books in the .NET world as well as building the top training and
consulting practice in the field. I appreciate the support of my colleagues

Todd Fine and Steve Porter, who understood the effort this would take and
worked with me to balance those demands with my daily responsibilities.

A special note goes to Charles, Tom, Dan, Adam, and John in Portland,
Oregon for their unique contributions to Chapter 13.

Thanks to my wife and daughter who provided their constant support
and encouragement. I appreciate their patience and understanding when-
ever I asked to retreat into my office to disappear for a few thousand words.

I am thankful for the global Silverlight community of individuals who
blog, tweet, speak, and write about this amazing platform that has trans-
formed so many businesses. It was this community that encouraged me to
write this book.

Finally, thank you! I appreciate my readers.

Acknowledgments xxxi

About the Author

Jeremy Likness is a multiyear Microsoft MVP for Silverlight. A Senior Con-
sultant and Technical Project Manager for Wintellect with 15 years of expe-
rience developing enterprise applications, he has worked with software in
multiple verticals, ranging from insurance, health and wellness, supply
chain management, and mobility. His primary focus for the past decade has
been building highly scalable web-based solutions using the Microsoft
technology stack. Jeremy has been building enterprise Line of Business
applications with Silverlight since version 2.0.

Prior to Wintellect, Jeremy was Director of Information Technology and
served as development manager and architect for AirWatch, LLC, where he
helped the company grow and solidify its position as one of the leading
wireless technology solution providers in the United States by managing
the development of their product portfolio, which includes public hot-spot
solutions and a management console for enterprise-grade wireless net-
works, mobile devices, and their consumers. A fluent Spanish speaker,
Jeremy served as Director of Information Technology for Hispanicare,
where he architected a multilingual content management system for the
company’s Hispanic-focused online diet program. Jeremy accepted his role
there after serving as Development Manager for Manhattan Associates, a
software company that provides supply chain management solutions.

7
Model-View-ViewModel
(MVVM)

MO D E L-V I E W-V I E W M O D E L I S A N E L E G A N T WAY TO S I M P L I F Y

Silverlight development, making it fast and easy; unfortunately,
many developers mistakenly believe it is an incredibly complex pattern. A
discrepancy exists because developers can’t seem to agree on what MVVM
is, often confusing frameworks that utilize MVVM with the pattern itself.
Add to the mix over-engineered and overly complex applications, and you
have the ingredients for a controversial soup of opinions about MVVM.

In my experience, the proper use of MVVM makes it easier to build
applications, especially when you have larger teams or separate teams of
designers and developers. The ability to incorporate unit tests also helps
reduce the rate of customer-initiated incidents because bugs are caught ear-
lier in the process. Unit tests make it easier to extend and refactor applica-
tions, and the MVVM pattern itself allows for what I call refactoring isolation,
or the ability to make modifications to areas of the application without hav-
ing to visit and update every module as a side effect of the change.

In this chapter, you learn about design patterns and why they are impor-
tant. I share with you a brief history of patterns, what their authors
intended, and how this led to the creation of the MVVM pattern. Sections

245

cover each element of the MVVM triad, followed by some of the key fea-
tures and benefits that MVVM provides. MVVM itself is not a framework,
although there are many frameworks that provide implementations of the
pattern; MVVM is a UI design pattern.

UI Design Patterns

In medieval times, guilds were groups of individuals with common goals.
There were different types of guilds, including the craft guilds, whose
members were artisans of specific occupations such as baking and stone-
cutting. Guilds might have to provide a stamp of approval for items before
they were sold to the common market in order to maintain the quality and
integrity of the product. More importantly, guilds would identify the mas-
ter craftsmen or experts who would then take on apprentices. An appren-
tice wouldn’t have to figure out everything on his own; instead his master
would share the “tricks of the trade” and provide the best practices to get
the job done.

In the guild of software development, the master craftsmen use design
patterns as their tools of choice. These are simply repeatable solutions for
recurring problems that have evolved over time. Sometimes the solutions
were discovered by specific individuals, but more often than not, patterns
were established independently to solve similar problems and emerged as
a common solution when groups of developers shared their ideas.
Although every software application is unique, it is often composed of dis-
tinct sets of challenges that have already been solved.

There’s a good chance you’ve worked with established patterns even if
you didn’t call them by name. Have you created a method that uses an
existing object as the template to create a new object? That’s called the pro-
totype pattern. Have you written a data-access layer that uses a generic
interface with load, save, and delete methods and then maps those actions
to more specific APIs exposed by ADO.NET, LINQ-to-SQL, or some other
data provider? That’s called an adapter. Have you ever used a foreach loop
in C#? That’s an iterator.

As you can see, there are many existing patterns to solve common prob-
lems. Learning patterns isn’t an exercise in hypothetical programming and

CHAPTER 7: Model-View-ViewModel (MVVM)246

doesn’t automatically make you a software architect, but it does provide a
vocabulary you can use to construct software applications. Just like learn-
ing more words helps us communicate better, learning patterns will make
it easier to solve existing problems by tapping into proven solutions that
have already been tested in the field. This is extremely important in LOB
applications when the development teams are larger and members come
and go. Ramping up should involve focusing on the business domain more
than the general software itself.

Some user interface (UI) design patterns have evolved to solve the prob-
lem of maintaining the presentation layer of your application independ-
ently of the underlying business logic, services, and data. Some of the
problems being solved include the following:

• Fluidity of the user interface—Often there can be significant
changes to look, feel, and interaction over time. A well-defined and
properly implemented UI design pattern can help insulate those
changes to minimize impact on the core business logic and data con-
cerns.

• Parallel development and design—Often the design team is sepa-
rate from the development team, with different skillsets and involv-
ing multiple designers. UI design patterns can maximize the
efficiency of this workflow by providing the separation necessary to
allow the developers and designers to work in parallel with minimal
conflicts.

• Decoupling of presentation logic—There are common patterns in
the presentation layer, such as providing a list of items and allowing
the user to select a single item, that can be solved in multiple ways
(combo box, grid, list box, and so on). UI design patterns help
decouple data elements from the presentation implementation so the
core functionality can remain the same regardless of how the pattern
is presented.

• View-logic testing—Complex view logic is often the domain of
developers. Testing the logic is made easier by not requiring a full-
blown UI. An example is dependent or cascading lists: Selecting an

UI Design Patterns 247

item in the first list determines the content of the second list. Ideally,
you should be able to implement this behavior and test it without
having to draw a corresponding combo box control and process
click events.

The problem of effectively developing, testing, and integrating the pres-
entation layer has been around since the earliest days of computer pro-
gramming. The first UI design patterns can be traced back to the late 1970s
when a scientist named Trygve Reenskaug visited Xerox’s Palo Alto
Research Center (PARC) and wrote a series of reports in an effort to “sim-
plify the problem of users controlling a large and complex data set.”
(http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf).

The solution he described eventually came to be referred to as Model-
View-Controller, or MVC for short. The same pattern is popular and used
today for web-based applications (Microsoft even named their latest frame-
work for web development after the pattern). It defined a separation of con-
cerns between the visual element on the display, the logic to interact with
that element, and the rest of the application that represents its perception of
the real world through a domain model.

The initial title of the first paper was actually “thing-model-view-edi-
tor,” because out of the model comes a thing that needs to be viewed and
edited. The essence of the pattern was a separation that looked something
like Figure 7.1.

The model represents everything in the system that doesn’t involve user
input or presenting any type of view to the user. The controller works with
the model and coordinates views as well as processes input from the user.
The idea is that the view doesn’t ever interact directly with input, but sim-
ply receives commands from the controller. The view can also observe the
model and present information from the model.

The key to the pattern lies in his description of the controller: “a view
should never know about user input, such as mouse operations and key-
strokes. It should always be possible to write a method in a controller that
sends messages to views which exactly reproduce any sequence of user
commands” (http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf).

CHAPTER 7: Model-View-ViewModel (MVVM)248

http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf
http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf

Figure 7.1: The Model-View-Controller (MVC) pattern

To summarize, a few simple rules drive the MVC pattern:

• The model is completely ignorant of the UI (view/controller).

• The controller handles the user input.

• The view handles the output by inspecting the model.

• Together, the view and controller provide a reusable control with
encapsulated behavior, as shown in Figure 7.1.

Although the MVC pattern achieved a certain level of separation, it does
have some limitations. In the original pattern, the view would display val-
ues based on observations of the model. The model might represent data
in the form of integers. The view, however, might display a bubble chart
with various diameters based on the value. In that case, something has to be
responsible for taking an integer value and determining what diameter it
maps to. The model really shouldn’t be concerned with that task because
it is supposed to be ignorant of the UI and the concept of a circle with a spe-
cific diameter.

The solution is to introduce a special type of model referred to as the
presentation model. This is part of the application tasked specifically with
translating information of the model and formatting it into the correct val-
ues for the view. It is the presentation model that can take an integer and

UI Design Patterns 249

Model-View-Controller

View

Control

Controller

Model

map it to a diameter. It is still independent of the view in the sense that it
does not know how to draw a circle, but it forms a sort of buffer between
the pure model and the pure view to provide what is referred to as view
logic or presentation logic.

The pattern that uses the presentation model is called the Model-View-
Presenter (MVP) pattern. The term was popularized in a paper published
in 1996 by Mike Potel (http://www.wildcrest.com/Potel/Portfolio/
mvp.pdf). In this pattern, the dependencies and flow were more formal, as
visualized in Figure 7.2.

CHAPTER 7: Model-View-ViewModel (MVVM)250

Model-View-Presenter

View

Presenter

Model

Figure 7.2: The Model-View-Presenter (MVP) pattern

The MVP pattern introduced a few significant changes. First, the inputs
(referred to as interactions) are handled by the view. The view observes the
model directly to display information, but when the user provides inputs,
those inputs are raised as events to the presenter. The presenter then
processes those events and sends them as commands to the model.

Although there are several variations of both the MVC and MVP pat-
terns, they are widely recognized patterns that have been used for decades
to separate presentation logic from the internal business logic and data that
drives applications. It is these patterns that also laid the foundation for the
pattern you will learn about in this chapter, the Model-View-ViewModel
pattern. This pattern was created and popularized for Windows Presenta-
tion Foundation (WPF) but was quickly carried over to Silverlight.

http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

The Model-View-ViewModel Pattern

In 2005, a developer named John Gossman working on WPF—which at the
time was code-named Avalon—published a blog post that would ultimately
introduce the MVVM pattern to the world (http://blogs.msdn.com/b/
johngossman/archive/2005/10/08/478683.aspx). In his post he described
“a variation of Model/View/Controller (MVC) that is tailored for modern
UI development platforms where the View is the responsibility of a
designer rather than a classic developer.”

The introduction to his post provides valuable insight into one of the
original motivations for the pattern: the designer/developer workflow. His
post further explains that the view is defined declaratively (a reference to
Xaml) and is responsible for inputs, keyboard shortcuts, visual elements,
and more. The view model is responsible for tasks that are too specific for
the general model to handle (such as complex UI operations), for main-
taining the view state, and for projecting the model to the view, especially
when the model contains data types that won’t map directly to controls.

Although MVVM is most often compared to MVC, it actually makes
more sense to think of it as a specialized flavor of MVP that uses data-
binding and the Visual State Manager (VSM). Instead of raising events, the
view drives the view model through data-binding—whether it is by updat-
ing a value that in turn synchronizes to a property on the view model, or by
mapping an event to a command that fires on the view model. The input
aspects of the controller have been absorbed into the view, while the pres-
entation logic is distributed between the view model and the view. Presen-
tation logic in the view takes the form of behaviors, triggers, visual states,
and value converters.

Like other patterns, MVVM is a solution to common problems. When
implemented correctly, it should make the job of building a Silverlight
application easier. Unfortunately, the pattern can be abused and end up
slowing down projects and making them more complex than necessary.
I’ve built dozens of large enterprise Silverlight applications. Not all
applications followed the MVVM pattern, and in many cases my company
was called in to rescue a failing project by refactoring the application to use

The Model-View-ViewModel Pattern 251

http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx
http://blogs.msdn.com/b/johngossman/archive/2005/10/08/478683.aspx

MVVM. Although the pattern is now over six years old, there are many lin-
gering misconceptions. Table 7.1 lists some of these misconceptions and the
truth that addresses them.

Table 7.1: Common MVVM Misconceptions

Misconception Truth

MVVM is extremely MVVM can be incredibly simple when implemented
complex. correctly.

Code-behind isn’t Code-behind is simply an extension of the declarative
allowed in MVVM. Xaml for the view. The view is responsible for managing

the user interface, including user inputs, and there is no
reason the code-behind cannot deal with events and inter-
actions.

MVVM is hard to Many frameworks exist that can enable you to have your
implement. project up and running in minutes. I recorded a video to

demonstrate building a feed reader from scratch using
MVVM in just 30 minutes (http://vimeo.com/17926625).

MVVM eliminates the Value converters are reusable, testable pieces of code that
need for value converters. can map data from the model to the view, and there is no

reason to eliminate them when using the MVVM pattern.

MVVM reduces the The improper implementation of any pattern can create
performance of the performance issues. Proper use of MVVM facilitates unit
application. tests that can help tweak and improve performance.

MVVM is only good A good MVVM framework coupled with solid
for very large projects. understanding is just as suitable for small projects as it is

big ones.

MVVM is about commands MVVM simply specifies the responsibilities of various
and messaging systems. modules within the code. Commands, messaging frame-

works, and other constructs are just helpers and building
blocks.

MVVM is hard to MVVM is no more difficult to understand than data-
understand. binding and the Visual State Manager, because it really is

just a pattern that describes how best to use these features.

In the rest of this chapter you’ll learn about the various parts of MVVM
and how to apply it. If you’ve read the previous chapters in this book and
followed the examples, you already have an understanding of MVVM
because you’ve created specific classes that implement property-change

CHAPTER 7: Model-View-ViewModel (MVVM)252

http://vimeo.com/17926625

notification to facilitate data-binding. Those classes can actually be thought
of as your view models.

Contrary to the misconceptions about MVVM, there are many advan-
tages the pattern provides above and beyond the separation of design from
development. In my experience, these are the top ten benefits you may
receive by using MVVM in your applications:

1. A clean separation of concerns (decoupling)—MVVM follows best
practices for software architecture.

2. Designer/developer workflow—MVVM enables parallel develop-
ment and design by multiple team members working on the same
project.

3. Unit testing—You will learn more about testing in Chapter 9,
“Testing.”

4. Use of data-binding—MVVM takes direct advantage of the rich and
powerful data-binding system in Silverlight.

5. Improved code reuse—View models can be used to power multiple
views, and various helpers and scaffolding can be reused through-
out your project and across various products in your organization.

6. Modularity—MVVM encourages a modular design that makes it
easy to modify parts of the application independently of each other.

7. Refactoring containment—Through the clean separation of con-
cerns, MVVM minimizes the impact to other areas of the application
from refactoring.

8. Extensibility—A well-designed MVVM framework makes it easy
to extend the application by adding new screens, modules, and
plug-ins.

9. Tools support—Various tools, such as Expression Blend and the
designer, are built in to Visual Studio that can take direct advantage
of MVVM.

10. Pattern vocabulary

The final item, pattern vocabulary, requires some additional explana-
tion. When you are learning how to read, there is a strong correlation

The Model-View-ViewModel Pattern 253

between the size of your vocabulary and your ability to comprehend what
you are reading. This should not be surprising because vocabulary pro-
vides the building blocks for the text you are trying to comprehend, and not
understanding those blocks can lead to confusing conclusions and misin-
terpretations of the text. Although there is a strong correlation, vocabulary
certainly doesn’t guarantee comprehension because you must be able to
piece the words together and derive their meaning as a whole.

Developing software is an exercise that also involves a vocabulary. You
start with the vocabulary of the language you are developing in. Programs
have their own syntax and grammar, and comprehension relies on your
ability to interpret the keywords correctly and understand them in context.
Patterns provide a higher level vocabulary that can describe entire subrou-
tines and components within the system. As with vocabulary, knowing a
pattern isn’t the same thing as comprehending how it best fits into a soft-
ware application (or whether it belongs at all).

The more you are able to understand and integrate patterns, the more
you will be able to build your vocabulary and better comprehend complex
software systems. Although I am not aware of any scientific studies that
definitively support this conclusion, it is based on years of working in the
software industry with individuals of varying degrees of skill and experi-
ence. I’ve found the developers who are involved in the most successful
projects and who have tackled the most complex systems also tend to have
a strong pattern vocabulary. They are not only aware of many patterns that
exist in software development, but also understand when and where they
make sense.

I believe MVVM is popular because it has been so successful at provid-
ing the benefits listed earlier when implemented correctly. MVVM is an
important pattern to learn and understand for Silverlight LOB applica-
tions—even if only to articulate why it doesn’t make sense for a particular
project. Like all patterns, it is a tool and must be used for the right job. In the
next few sections I’ll cover MVVM in more detail to help you learn the pat-
tern and determine when it makes sense to use it in your applications. I’ll
start by examining the components that make up MVVM.

CHAPTER 7: Model-View-ViewModel (MVVM)254

The Model
The model is often confused with a “data model,” which is far too specific.
A better definition is the application’s model of the world. It is the model
that encompasses everything that must happen in order to solve the busi-
ness problem without defining a specific user interface or presentation of
data. Some like to call this the domain model, but a domain model is a con-
ceptual representation, whereas the model in MVVM is an actual imple-
mentation.

To provide a simple example, a banking system might contain cus-
tomers and accounts. The representations of customers and accounts are
part of the model. The model describes how they are related: A customer
has one or many accounts. It describes state (an account is open or closed)
and provides behaviors (an account accrues interest). To make the model
work requires implementations of classes with properties, a database to
store the information, and loads of APIs to fetch data, transfer it, and apply
various algorithms.

When built correctly, the model should expose only the parts needed by
the application. For example, the presentation layer shouldn’t have to
worry about how the data is stored (is it in a database or in an XML file?)
or how the data is retrieved (was it parsed and passed as a binary object
over a TCP/IP socket or sent over a REST service?). A model that is too
open will create unnecessary dependencies and overcomplicate the code.

Regardless of whether you are a junior developer learning how to build
applications or a seasoned architect who has worked on massive enterprise
software projects, I believe it is important to know some key fundamentals
of software design. As I stated before, I can’t point to a scientific study that
states you must follow these principles to build quality software, but I can
certainly point to my experience that developers who follow these princi-
ples tend to write code that ships with fewer defects, is easier to under-
stand, can be readily maintained, and is produced more quickly than code
written by developers who ignore them. These principles will assist you
with building the model portion of your MVVM application correctly.

The Model-View-ViewModel Pattern 255

Don’t Repeat Yourself

The first principle to follow is called D.R.Y., which stands for Don’t Repeat
Yourself. This is an easy principle to follow. As you are writing your soft-
ware, you will find there are certain blocks of code and algorithms that
repeat themselves. An experienced developer is able to quickly identify
those patterns and refactor them into a single class or method. Not only
does this save time by not repeating the pattern over and over, it also places
the pattern in a single location to make it easier to change the algorithm
when it becomes necessary. Finally, it protects other developers by giving
them less opportunity to write bad code—it’s a lot easier to introduce bugs
in a ten-line block of code than it is calling a simple API.

I recently came across an example of D.R.Y. for a customer project. I was
writing a web service interface and quickly noticed a common pattern.
Consider the following method that represents a completed web service
call:

private static void ClientGetWidgetCompleted(object sender,
GetWidgetCompletedEventArgs e)

{
if (e.Error != null)
{

throw e.Error;
}

var callback = e.UserState as Action<Widget>;

if (callback != null)
{

callback(e.Result);
}

}

Now look at a similar method that returns a list of related widget items:

private static void ClientGetWidgetItemsCompleted(object sender,
GetWidgetItemsCompletedEventArgs e)

{
if (e.Error != null)
{

throw e.Error;
}

CHAPTER 7: Model-View-ViewModel (MVVM)256

var callback = e.UserState as Action<IEnumerable<WidgetItem>>;

if (callback != null)
{

callback(e.Result);
}

}

The second method introduced what is referred to as code smell or the
symptom of a deeper problem. In this case, the problem wasn’t a bug or
defect with how the application runs, but instead a level of complexity that
just isn’t necessary. Each time the method is implemented, the developer
must remember to check for an error and throw it, then cast the state to get
the callback, and finally invoke the callback. Forgetting just one simple
step, such as invoking the callback, could result in application defects—in
this case, one that would be hard to find because the code will simply wait
for a result that never comes.

By looking at the methods and deciding that I did not want to repeat
myself, I was able to create an extension method to simplify things. The
method uses generics to abstract the part of the formula that changes—in
this case the return type—while implementing the rest of the pattern in a
single place.

public static class ServiceExtensions
{

public static Action<T> GetCallback<T>(
this AsyncCompletedEventArgs args)

{
if (args.Error != null)
{

throw args.Error;
}

var callback =
args.UserState as Action<T> ??
(obj =>

{
throw new Exception();

});

return callback;
}

}

The Model-View-ViewModel Pattern 257

Now the previous service calls can be simplified to the following—
notice how the code does not repeat the pattern, but instead focuses on the
parts that are unique to each method:

private static void ClientGetWidgetCompleted(object sender,
GetWidgetCompletedEventArgs e)

{
e.GetCallback<Widget>()(e.Result);

}

private static void ClientGetWidgetItemsCompleted(object sender,
GetWidgetItemsCompletedEventArgs e)

{
e.GetCallback<IEnumerable<WidgetItem>>()(e.Result);

}

The pattern here worked for the specific application, but I wouldn’t nec-
essarily build it upfront in every project. There is always the possibility that
another project will handle service calls completely differently and not use
the same type of mechanism to abstract calls. This brings me to the next
principle.

You Aren’t Going to Need It

You Aren’t Going to Need It—or Y.A.G.N.I—is one of the most difficult
principles to follow. Some software architects tend to dislike this principle
because it keeps them from working on really fun, complex systems by
introducing all sorts of frameworks and patterns. Instead, it forces them to
design simple, straightforward solutions that are written so cleverly that
adding additional features when they are actually needed is not a problem.
I’ve watched many systems collapse under the burden of features that were
piled on “just in case” and then never used. The understanding of what
may be needed often fails to meet the future requirement, and results in
having to rip out the initial “guess” and extra refactoring to supply the
more appropriate solution.

One example of this is the Enterprise Library, a library of implementa-
tions that is released by Microsoft’s own Patterns and Practices Team. I was
asked by someone how excited I was when a build of this was released for
Silverlight, and this person was surprised when I said I may not use it.

CHAPTER 7: Model-View-ViewModel (MVVM)258

Don’t get me wrong—there are a lot of great features in the library and
I’ve used it in many projects. The key, however, is to identify the parts you’ll
need and use rather than plugging in the entire system and using only a
fraction of it. A really common exercise is to load the Exception Handling
Application Block because it allows dynamic configuration of your excep-
tion policies. Want to change where they are logged? Great—it handles that
for you. Want to write certain exceptions to the database, swallow other
exceptions, and write yet a third class to a rolling trace file? Not a problem!
It’s a very flexible system.

What often ends up happening is the system is put in place, the config-
uration files are tinkered with until they are working, and then the appli-
cation goes to production… and that’s it. The policies are never tweaked,
there is no swapping of targets or sources, and often there is not a segrega-
tion of exception types. Essentially, a big piece of plumbing is put into place
when a simple logging mechanism would have sufficed. It gets worse
because then when someone does want to log or trace a certain set of
events, they have to wade through reams of configuration to finally get the
output they are looking for.

It is a much more straightforward approach to assume you aren’t going
to need it, but build the code so that it is easy to add later on. In the case of
exceptions, you can always provide a consistent pattern of exception blocks
that are processed by a common interface, and start with an implementa-
tion that sends them to the event log. If you find a real need to enforce a spe-
cific set of policies, you can implement the Exception Handling Application
Block in your single class and introduce the policies without having to
touch the rest of the application.

Another example of Y.A.G.N.I. is caches. Despite there being no metrics
to support it, many developers feel that a cache is needed. I’ve often heard,
“We’re moving data, we need a cache.” But usually the overhead of
synchronizing the cache for thread safety and applying various cache-
expiration policies can make it slower than fetching the data directly from
the database! There is no rule of thumb, and you must be prepared to ana-
lyze performance and obtain metrics in order to determine if there truly is
a benefit.

The Model-View-ViewModel Pattern 259

Following this principle simplifies projects and makes them faster and
easier to deliver. The fear many people have is that it will be too complex
to rip out the code and replace it when a need is identified down the road,
but you can cover those bases as well. As long as you build your code on a
“solid” foundation, you’ll find it’s easy to introduce the features you do
need when you are certain you really need them. That foundation is the
next principle.

The S.O.L.I.D. Principle

I saved this principle for last because it’s the more complex one to learn and
really builds on the first two. I also cheated because S.O.L.I.D. is not a sin-
gle principle, but really a set of five principles that I believe are keys to
building quality code. I include them here because I know firsthand the
impact of applying them can have on the quality of your code. For MVVM
to work well, the model must be done right, and S.O.L.I.D. is the founda-
tion to make that happen.

An entire book could be written (and probably has been) about these
principles, so I’ll only briefly introduce them here and hope you will
explore them further online. S.O.L.I.D. is an acronym for the following
principles:

• Single Responsibility—A class should be responsible for exactly
one thing. A great example is a class that reads and parses a comma-
separated text file. This class has more than one responsibility because
it both reads the file and parses it. A better strategy would be to pro-
vide a class that reads files and a class that parses them. Now you can
easily add a class that retrieves the file from a web service and passes
it along to the parser, or a class that uses the reader to retrieve config-
uration information.

• Open/Closed Principle—A class should be open for extension but
closed for modification. A great example is a class that has the respon-
sibility for logging. It is common to provide a simple API that takes a
message to log. This is fine until you need to specify different places
for messages to go. Now the class has to be opened up to modify it

CHAPTER 7: Model-View-ViewModel (MVVM)260

and the API changed to provide routing information. A more robust
implementation would be a logger that provides a delegate for the call
and allows registration of logging implementations. The class can
now be extended by providing different logging mechanisms, and
does not have to be opened to modify the behavior.

• Liskov Substitution Principle—This principle states that you should
be able to substitute any class for its base class and have it behave the
same way. The classic example of this is a square and a rectangle. If
you derive the square from the rectangle and override the properties
so that setting the width always sets the height, you can no longer
substitute the class for its base class. Casting the square to a rectangle
will provide unexpected behavior because with a rectangle, you
expect to be able to set different widths and heights. A better design is
to create an abstract base rectangle that provides getters and private
setters. The rectangle implementation derives from this and makes the
setters public, whereas the square derives from the same base class
and provides a “length of side” property that sets the width and
height at the same time.

• Interface Segregation Principle—This principle goes hand in hand
with single responsibility and states that interfaces should be fine-
grained and focused on a specific set of related tasks. An example of
this is in the .NET Framework. Most classes have a concept of equality
(what makes two classes the same) and comparability (what order the
classes are in relation to each other in a list). These concepts are used
in different ways at different times. Instead of a single interface for
both concepts, the .NET Framework provides the IComparable inter-
face and the IEquatable interface. If you are only concerned with
equality, you can cast to IEquatable and deal directly with that sim-
ple interface. There is no need to involve any other interfaces that
aren’t being used.

• Dependency Injection/Inversion of Control—This principle goes
hand in hand with the single responsibility. When the class is
required to create an instance of the logger, it is taking control of that
dependency and going beyond its single responsibility. This can lead

The Model-View-ViewModel Pattern 261

to issues if you decide to swap to a different logging implementation
and have to track down all of the places the old logger was created.
Instead, you can simply provide a logging interface that is passed
into the class. Now the class no longer has the responsibility of find-
ing the logger; it simply consumes the interface. The dependency for
the logger was injected and the control inverted to something else.
We’ll discuss this concept in detail in the next chapter, which covers
the Managed Extensibility Framework (MEF).

These principles work together to provide a set of guidelines for writing
flexible, extensible, testable, and maintainable code. When the model of
your application follows these principles, the MVVM pattern can easily
connect to the interfaces and classes that are needed without creating
dependencies on parts of the system that have nothing to do with presen-
tation logic. The model is the “application model” of the real world, but at
some point that model must be presented to the end user. This is done
through output, which in the case of Silverlight is a very rich and power-
ful user interface (UI). The screen that the user is presented with is referred
to as the view.

The View
The view in Silverlight is the easiest part to describe—it is what interacts
with the user. The view itself is the user interface. The user interface is
almost always represented using the declarative Xaml markup. The Xaml
participates in the dependency property system, and the view is able to
present information to the user as well as respond to user inputs. Table 7.2
shows common parts of the views and their function.

Table 7.2: The View in MVVM

Component Description

Xaml Declarative markup to provide layout, controls, and other
components that make up a screen

Value converters Special classes used to transform data to a user element type
and back

CHAPTER 7: Model-View-ViewModel (MVVM)262

Component Description

Data templates Templates that map data elements to controls

Visual state groups Named states that impact the properties of various elements to
provide a physical state based on the logical states of
controls

Storyboards Animations and transitions

Behaviors Reusable algorithms that can be applied to various controls

Triggers Algorithms that can be applied to controls and invoked based
on configured events

Code-behind Extensions of the Xaml markup to perform additional
UI-specific tasks

It should be obvious from Table 7.2 that the view is not completely igno-
rant of presentation logic. Commands map controls to actions on the con-
troller, and data-binding declarations require knowledge of the structure of
the underlying data to bind to. Animations, visual states, templates, behav-
iors, and triggers all represent various components of business logic that
relate to the view.

What may not be as obvious is that all of these components are stateless
with regard to the model of the application. Storyboards maintain a state
(started, stopped, playing, and so on) and visual state groups maintain a
state, but all of these states are related to the UI. Behaviors and triggers also
operate based on events or act on generic controls and should not be
designed with dependencies on the underlying data and business logic.
Even code-behind is typically written to facilitate certain aspects of the UI.
More complex code should go somewhere else—not because there is a rule
that code-behind is not allowed, but because more complicated algorithms
need to be tested, and having a separate and decoupled class makes it eas-
ier to test without having to wire up a full UI.

So where does the bulk of presentation logic go, and what is responsi-
ble for maintaining the business state of the application? This state includes
the data that is being presented as well as the status of various commands
and processes that both drive the UI and respond to user inputs. The

The Model-View-ViewModel Pattern 263

answer is the essence of the MVVM pattern and the one element that makes
it unique: the view model.

The View Model
The view model is what makes MVVM unique. It is simply a class that
holds the responsibility of coordinating the interaction between the view
and the model. The view model is where the bulk of the presentation logic
should reside. In my opinion, a well-written view model can be tested with-
out creating any views and has three main methods for communication
with the view:

• Data-binding

• Visual states

• Commands and/or method calls

With this definition in mind, you’ve already created a view model. In the
previous example using countries and states, the class that held the lists of
states and countries was the view model. View models typically implement
the property-change notification interface and one of the validation inter-
faces, and they also have some type of connection to the Visual State Man-
ager. (I’ve seen some fairly elaborate hacks try to launch storyboards from
view models when a simple visual state transition was all that was needed.)

In the previous examples, you used one of two methods to instantiate
the class that functions as the view model. The first was to declare an
instance in the resources and then use a static reference to bind to the class.
The second was to instantiate the class directly in the data context defini-
tion for the root panel of the control, most often the grid called LayoutRoot.
This approach creates a direct dependency between the view and the view
model. Oftentimes you’ll want to share the same view model between dif-
ferent views (for example, when each view is a different representation of
the same data) or you’ll want to dynamically change the view or view
model based on a condition. It is also popular to use a design-time view
model to represent design data, so the view model may be different dur-
ing design and runtime. What is the best way to resolve this binding?

CHAPTER 7: Model-View-ViewModel (MVVM)264

Binding the View Model to the View

Binding the view model to the view is one of the key problems many
MVVM frameworks try to solve. It can be done various ways, and there is
no preferred method; otherwise, all experienced developers would be
doing it the same way. The most popular method seems to be using a view
model locator, whereas some people prefer to spin up controllers that per-
form the binding. My preferred method is to use the built-in design-time
view model functionality provided by Silverlight using the design-time
extensions. With Silverlight 5, it is also possible to use custom markup
extensions.

In this section, you explore various methods to bind the view model to
the view, and you can decide which method makes the most sense for your
applications. The view model in each case processes a selection from a
drop-down and render a shape.

View Model Locators
View model locators are simply classes that expose the view models as
properties—typically as interfaces. The locator can determine the state of
the application and return the appropriate view model based on whether
it is called during design time or runtime. To see how a view model loca-
tor works, create a new Silverlight Application project called ViewModel-
Locators. Specify a grid with four equally sized quadrants (two rows and
two columns). Provide an interface for the view model:

public interface IViewModelInterface
{

List<string> Shapes { get; }
string SelectedShape { get; }

}

Now implement a design-time view model:

public class DesignViewModel : IViewModelInterface
{

public List<string> Shapes
{

get
{

Binding the View Model to the View 265

return new List<string>
{"Circle", "Square", "Rectangle"};

}
}

public string SelectedShape
{

get { return "Circle"; }
}

}

Create the runtime view model. It will implement the property-change
notification interface and provide a delegate for transitioning the visual
state. The code for the view model is shown in Listing 7.1.

Listing 7.1: The Main View Model

public class ViewModel : IViewModelInterface, INotifyPropertyChanged
{

public ViewModel()
{

GoToVisualState = state => { };
}

private readonly List<string> _shapes
= new List<string>

{
"Circle",
"Square",
"Rectangle"

};

public List<string> Shapes
{

get { return _shapes; }
}

public Action<string> GoToVisualState { get; set; }

private string _selectedShape;
public string SelectedShape
{

get { return _selectedShape; }
set
{

_selectedShape = value;
var handler = PropertyChanged;

CHAPTER 7: Model-View-ViewModel (MVVM)266

if (handler != null)
{

handler(this, new PropertyChangedEventArgs("SelectedShape"));
}

if (!string.IsNullOrEmpty(value))
{

GoToVisualState(value);
}

}
}

public event PropertyChangedEventHandler PropertyChanged;
}

Now you can create the ViewModelLocator class. The locator will simply
determine whether it is being called during design time or runtime and
return the appropriate view model.

public class ViewModelLocator
{

private IViewModelInterface _viewModel;

public IViewModelInterface ViewModel
{

get
{

return _viewModel ??
(_viewModel = DesignerProperties.IsInDesignTool

? (IViewModelInterface)
new DesignViewModel()
: new ViewModel());

}
}

}

Now you can create a control to implement the behavior. The control
will include the view model locator in its resources (the locator is typically
declared at the App.xaml level to make it available to the entire applica-
tion). Add a new control called LocatorControl.xaml and fill it with the fol-
lowing Xaml:

Binding the View Model to the View 267

<UserControl.Resources>
<ViewModelLocators:ViewModelLocator x:Key="Locator"/>

</UserControl.Resources>
<Grid x:Name="LayoutRoot" Background="White"

DataContext="{Binding Source={StaticResource Locator},
Path=ViewModel}">

<Grid.RowDefinitions>
<RowDefinition Height="Auto"/>
<RowDefinition Height="Auto"/>

</Grid.RowDefinitions>
<ComboBox ItemsSource="{Binding Shapes}"

SelectedItem="{Binding SelectedShape,
➥Mode=TwoWay}"/>
</Grid>

Now define the shapes and place them in the second row of the
LocatorControl:

<Ellipse x:Name="CircleShape"
Width="50" Height="50" Fill="Green" Grid.Row="1"/>

<Rectangle x:Name="SquareShape"
Width="50" Height="50" Fill="Blue" Grid.Row="1"/>

<Rectangle x:Name="RectangleShape"
Width="100" Height="50" Fill="Red" Grid.Row="1"/>

Add the visual state groups. Part of the Xaml for the first state is shown
in the following code. Repeat the ObjectAnimationUsingKeyFrames for the
square and the rectangle, but set their visibility to the collapsed state. Next,
copy and paste the visual state twice more for the square state and the
rectangle state and then update which shapes are visible and which shapes
are not.

<VisualStateManager.VisualStateGroups>
<VisualStateGroup x:Name="ShapeGroups">

<VisualStateGroup.States>
<VisualState x:Name="Circle">

<Storyboard>
<ObjectAnimationUsingKeyFrames

Storyboard.TargetName="CircleShape"
Storyboard.TargetProperty="(UIElement

➥.Visibility)">
<DiscreteObjectKeyFrame KeyTime="0:0:0">

<DiscreteObjectKeyFrame.Value>
<Visibility>Visible</Visibility>

</DiscreteObjectKeyFrame.Value>

CHAPTER 7: Model-View-ViewModel (MVVM)268

</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>

</Storyboard>
</VisualState>

</VisualStateGroup.States>
</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

Set the locator control to navigate to a default visual state and set the
delegate for transition states. This is done in the control code-behind:

public LocatorControl()
{

InitializeComponent();

if (DesignerProperties.IsInDesignTool) return;

VisualStateManager.GoToState(this, "Circle", false);

var locator = (ViewModelLocator) Resources["Locator"];
var vm = locator.ViewModel as ViewModel;
vm.GoToVisualState =

state => VisualStateManager.GoToState(this, state, true);
}

The binding to the view model is the side effect of using the locator. You
want to change the visual states from the view model, but the UserControl
implements the functionality. Because of the context it is used in, it is not
possible to get access to the host control and automatically bind the dele-
gate. This must be done in the control itself by passing a delegate for the
GoToState method to the view model.

Now you can declare an instance of the control in the main page in the
upper-left quadrant and run the application. The shapes will swap out each
time you select a new control. You will also see values in the combo box
during design time because the view model locator returns the design-time
view model for you.

Controllers
One of the less-common methods for binding the view model to the view
is by using a controller. Contrary to popular belief, there is no law that
MVVM cannot be mixed with other patterns. The controller pattern

Binding the View Model to the View 269

involves creating a class specifically tied to the view it is managing and
then using the controller to spin up the view model and wire the logic.

First, create a new control called ControllerControl.xaml and copy the
contents of the locator control. Remove the resources collection that refer-
ences the view model locator, and remove the data context attribute on
the grid that uses the locator resource. Next, create a new class called
Controller and provide it with a constructor, like this:

public class Controller
{

private readonly IViewModelInterface _vm;

public Controller(Control control)
{

if (DesignerProperties.IsInDesignTool)
{

_vm = new DesignViewModel();
}
else
{

_vm = new ViewModel
{

GoToVisualState =
state => VisualStateManager.GoToState(

control, state, true)
};

VisualStateManager.GoToState(
control, "Circle", false);

}
control.DataContext = _vm;

}
}

Note that for testing, the element passed in would normally be an inter-
face that includes the data context element. This would allow the controller
to be tested without passing an actual control, as is done here to keep the
example simple. Now that the controller is defined, it simply needs to be
created in the code-behind of the control:

public partial class ControllerControl
{

public Controller Controller { get; set; }

CHAPTER 7: Model-View-ViewModel (MVVM)270

public ControllerControl()
{

InitializeComponent();
Controller = new Controller(this);

}
}

Create an instance of the control in the upper-right quadrant of the main
page and compile the application. You’ll see design-time data in the main
page, and when you run the application you’ll be able to swap the shapes
in the control in the upper right.

Design-Time View Models
My favorite method to use because it works directly with the attributes sup-
plied by the runtime is the use of design-time view models. In this
approach, the design-time data is supplied using the design-time exten-
sions. The runtime binding is done using an external mechanism. You’ll
learn a more elegant way to perform the binding in Chapter 8, “The Man-
aged Extensibility Framework (MEF).” For now, a simple class will perform
the necessary wiring.

Create a new control called DesignControl and copy the contents of the
controller control (basically everything from the main grid down). Add the
following attribute to the LayoutRoot grid to specify the design-time view
model:

d:DataContext="{d:DesignInstance Type=
➥ViewModelLocators:DesignViewModel, IsDesignTimeCreatable=True}"

Listing 7.2 shows what the binder might look like—although there is
only one entry in the dictionary, you can see how it would be easy to add
additional entries mapping the control type to the view type. The diction-
ary could also reference instances of the view models to share the same one
between views, and the wiring of the delegate can be made generic by
implementing a common view model interface that specifies the delegate.

Binding the View Model to the View 271

Listing 7.2: A View Model Binder

public class Binder
{

private readonly Dictionary<Type, Type> _bindings =
new Dictionary<Type, Type>

{
{ typeof(DesignControl), typeof(ViewModel) }

};

public void Bind(Control control)
{

if (!_bindings.ContainsKey(control.GetType()))
{

return;
}

var vm = Activator
.CreateInstance(

_bindings[control.GetType()]);

((ViewModel) vm).GoToVisualState =
state => VisualStateManager

.GoToState(control, state, true);

control.DataContext = vm;
}

}

The control can then call the binder and set the default state, like this:

public DesignControl()
{

InitializeComponent();
new Binder().Bind(this);
VisualStateManager.GoToState(this, "Circle", false);

}

Declare an instance of this control in the lower-left quadrant and run the
application.

Custom Markup Extensions
Custom markup extensions can extend the Xaml model to include your
own tags and properties. View model binding is a perfect example of how
custom extensions can be used. First, create a control called MarkupControl

CHAPTER 7: Model-View-ViewModel (MVVM)272

and copy the content of the controller control (should be just the grid and
so on, with no resources and no data context). In the code-behind, just set
the default visual state:

public MarkupControl()
{

InitializeComponent();
VisualStateManager.GoToState(this, "Circle", false);

}

Now create a custom markup extension. You can revisit Chapter 3,
“Extensible Application Markup Language (Xaml),” to learn more about
how to create the extensions. This extension grabs the object root to get a
reference to the control that is hosting it. See Listing 7.3 for the full exten-
sion. It spins up the view model based on the type of the control, binds the
visual state transitions, and returns the view model (in design time, it just
returns a new instance of the design view model).

Listing 7.3: A Custom Markup Extension for View Model Binding

public class ViewModelBinderExtension : MarkupExtension
{

public override object ProvideValue(
IServiceProvider serviceProvider)

{
var targetProvider

= serviceProvider
.GetService(typeof (IRootObjectProvider))

as IRootObjectProvider;

if (targetProvider == null) return null;

var targetControl = targetProvider.RootObject
as UserControl;

if (targetControl == null) return null;

if (targetControl is MarkupControl)
{

if (DesignerProperties.IsInDesignTool)
{

return new DesignViewModel();
}

Binding the View Model to the View 273

var vm
= new ViewModel

{
GoToVisualState =

state =>
VisualStateManager.GoToState(

targetControl, state, true)
};

return vm;
}
return null;

}
}

With the extension created, you can add a namespace reference in the
control:

xmlns:local="clr-namespace:ViewModelLocators"

Then set the data context of the grid using the extension. It will return
the design-time view model in the designer and resolve the runtime view
model when you run the application.

<Grid x:Name="LayoutRoot" Background="White"
DataContext="{local:ViewModelBinder}">

Add the control to the lower-right quadrant of the main page and run
the application. You will now have four separate controls that perform the
same thing using the MVVM pattern. The view model is the same in each
case; the only difference is how it is bound to the control.

View-Model-First Approach Versus View-First Approach
All of the examples in this chapter have focused on what is referred to as a
view-first approach. The view is instantiated and then the view model is
found and bound to the view. I believe this makes sense because most users
operate by moving through screens and most developers comprehend their
applications in terms of screens. It’s important to note that this is not the
only way to manage the application.

CHAPTER 7: Model-View-ViewModel (MVVM)274

Some frameworks such as Caliburn.Micro (http://caliburnmicro.
codeplex.com/) follow what is known as a view-model-first approach. In this
approach, the application logic spins up view models and the view mod-
els determine what views are provided. In a sense the binding is more
straightforward because you can use a convention-based approach to map
the view to the view model. (Convention-based simply means the bindings
can be made based on how you name your classes, so a view is always
named SomethingView and a view model is always named SomethingView-
Model. Therefore, the Something in common creates the binding.)

The disadvantage to this approach is that it is often not design-time
friendly. It is difficult to design the application in Visual Studio or Blend
because the designer doesn’t know the right way to spin up views based on
the view models. The designers are inherently view-first because you navi-
gate to a Xaml view in order to render the view in the designer.

Although I strongly prefer the view-first approach, the view-model-first
frameworks are very popular and have been used in many applications.
Proponents of this approach highly prefer it over the view-first approach.
It’s not a question of one approach being correct but more a style prefer-
ence. It makes sense to follow the model that not only is easiest for you to
understand, but will also be easy for your team to follow and maintain.

Lists and Data Elements

One situation you might find confusing when using the MVVM model is
how to handle lists. Although it’s clear that you may have a view model for
a list of contacts that provides a list of contact items, it’s not as clear how
to manage displaying those contacts in an editable grid. Do you have to cre-
ate a view model for each contact? Is it a violation of MVVM if the contacts
implement property-change notification directly?

These questions are really a matter of splitting hairs rather than solving
the problem. The answer is to define the solution that makes the most
sense. In most cases, implementing property-change notification on the
individual items is fine. The overhead of wrapping each item in a view
model doesn’t make sense when so much logic is duplicated. By default,

Lists and Data Elements 275

http://caliburnmicro.codeplex.com/
http://caliburnmicro.codeplex.com/

Silverlight client proxies for web services will implement property-change
notification for complex data types. You can also specify a shared assem-
bly to define the type directly, and inherit from a simple base type to imple-
ment the property-change notification.

Each item can then be tracked for edits. When common commands can
be performed, such as a delete command, the item can be passed to a com-
mand on the parent view model so the logic is maintained in one central
place. This keeps the overall approach simple and straightforward. If you
end up implementing a detail screen that has a dedicated view model, you
can refactor the grid to use the same view model if it makes sense.

The Silverlight framework provides the ObservableCollection class
for managing lists that may change. This special collection will raise a
collection-change notification. This can be used by UI elements to refresh
their contents and by your code to respond to changes in the list. If each
individual item also has significant presentation logic, you may end up pro-
jecting the list to a collection of view model items.

There are no hard-and-fast rules. MVVM is about making it easier to
develop applications by taking advantage of code reuse and the built-in
data-binding system that Silverlight uses. If you find that using MVVM is
making your project more complex and difficult to maintain, you’re likely
doing it wrong and should take a step back to reevaluate your approach.
The next few chapters will cover some ways to make sure you’re reaping
the benefits of MVVM.

Summary

In this chapter, you learned about the Model-View-ViewModel pattern and
how it may benefit you when building Silverlight LOB applications. You
learned that the model represents the application in general and should fol-
low best practices around decoupled code. You learned about the D.R.Y.,
Y.A.G.N.I., and S.O.L.I.D. principles as cornerstones for quality software
development. You learned about the role of the view and how the view
model is designed to coordinate and synchronize state between the view
and the underlying application model. The view model essentially encap-
sulates what is referred to as presentation logic.

CHAPTER 7: Model-View-ViewModel (MVVM)276

In the next chapter, you will learn about a framework that works hand
in hand with MVVM to help you create modular and extendable applica-
tions. The Managed Extensibility Framework (MEF) provides services that
help you manage decoupled code and create extension points in your
application so it is easy and straightforward to extend at both compile-time
and runtime. You will learn about lifetime management and metadata as
tools to create a framework for building large LOB applications.

Summary 277

This page intentionally left blank

Index

653

A
access, isolated storage, 478-482
accessing files and folders

isolated storage, 482-484
actions, asynchronous techniques,

456-458
ActivateVm, 522
adapters, 246

region management, 395-396
AndThat method, 242
animation behaviors, Expression Blend

SDK, 23
animations, 94
Apache, XAP files, 58
APM (Asynchronous Programming

Model), 452
versus events, 452-455

application lifecycle, 33-36
application services, 32-33

application lifecycle, 33-36
sample XAP download service, 37-41

application signing, elevated trust,
528-530

applications
maintaining, reasons for testing,

325-326
profiling with Visual Studio, 622-625

architecture, 2
BCL (Base Class Library), 2
CLR (Common Language Runtime), 1
Communications, 4
data, 4
improving, reasons for testing, 326
presentation core, 3
presentation framework, 3

arrange, layout (Xaml), 96
ASP.NET callbacks, 402, 407-412
assemblies, XAP files (standard

solution), 63-64
assumptions, eliminating, 323
Asynchronous Programming Model

(APM), 452
asynchronous techniques, 452

actions and callbacks, 456-458
events versus APM, 452-455
lambda expressions and method

chaining, 455-456

Rx (Reactive Extensions), 459-463
tasks and await, 463-465

asynchronous validation, 230-232
atomicity, 590
attached properties, 71, 75
attributes, validation, 223
AutoCompleteBox, 110
automated testing, 343-345
automation peers, testing, 367-371
await, asynchronous techniques,

463-465

B
backing properties, 72
Base Class Library (BCL), 2
basic controls, Xaml, 108-109
Baskin, Dave, 615
BCL (Base Class Library), 2
behaviors, 141-145, 400-401
binding

markup extensions, 77
view model to the view, MVVM,

265-275
binding objects, parameters, 196
bitmap print, forcing, 570
bootstrappers, 281
Border, 108
bounce ease, 95
browsers, elevated trust, 552-553
bugs, 597

killing at the source, reasons for
testing, 324

Button, 108
button groups, states and, 163

C
Calendar, 110
callbacks

ASP.NET, 407-412
asynchronous techniques, 456-458

CanExecute method, 218
canvas, layout (Xaml), 96
case studies

Fluent and Fast, 243
regions through the looking glass, 395

catalogs, discovery (MEF), 287-288
chain extension methods, 241
challenges, testing, 366
character spacing, text (Xaml), 120-121
CheckBox, 108
checking for updates, OOB apps,

523-526
child windows, elevated trust, 535-540
ChildWindow, 110
choosing

client technologies, 14
analyze third-party dependencies,

17-18
consider the development team,

16-17
listen to the customer, 15-16
use what you know, 15

page-based navigation, 377-378
Cider, 132
circle ease, 95
class instantiation, Xaml, 68-70
class libraries, 29-32
classes, linked classes, 338-343

INDEX654

client logging, 617-619
client technologies, choosing, 14

analyzing third-party dependencies,
17-18

consider the development team, 16-17
listen to the customer, 15-16
use what you know, 15

client tracing, 617-619
clientaccesspolicy.xml, 57
clients, sharing domain objects between

clients and servers, 401-402
CLR (Common Language Runtime), 1

key differences from the full CLR, 5
code, documenting (reasons for testing),

324-325
code smell, 257
coded UI tests, 364-366
ColorAnimation, 94
COM interop, elevated trust, 540-546
ComboBox, 108
commands, data-binding, 218-220
commercial profilers, 616
Common Language Runtime (CLR),

key differences from the full CLR, 5
communication, 4, 412

local messaging, 435-436
POX (plain old XML), 423-424
REST (Representational State

Transfer), 412-413
consuming REST services, 421-423
repository pattern, 416-418
securing the website, 418-421
Sterling, 414
Sterling database definition, 414-416

sockets, 436-443

WCF (Windows Communication
Foundation), 424

SOAP, 425-431
WCF RIA Services, 431-435

composition initializer, discovery
(MEF), 289-291

composition step, 577
concurrency, 590-593
conditional behaviors, Expression Blend

SDK, 23
consistency, 590
consuming REST services, 421-423
contact class, 239
containers

discovery, MEF, 288-289
navigation, 379

content control, 379-382
custom panels, 382-383
items control, 382

Xaml, 104
ContentControl, 104-105
ItemsControl, 105
ScrollViewer, 105
ViewBox, 106-107

content control, containers, 379-382
ContentControl, containers (Xaml),

104-105
ContentProperty, 68
contracts, 577
control contracts, 123
controllers, MVVM, 269-271
controls

basic controls, 108-109
toolkit controls, 110-111

INDEX 655

Converter, 196
ConverterCulture, 196
ConverterParameter, 196
crictical code, 5
cross-domain considerations, web hosts

(standard solution), 56-58
cross-domain policies, 57
CRUD (Create, Read, Update, and

Delete), 19
custom markup extensions, MVVM,

272-274
custom navigation, 378-379
custom panels, containers, 382-383
custom type providers, mapping and

transformation, 451-452
custom VSM (Visual State Manager),

176-177
CustomValidationAttribute, 223
Cwalina, Kryszstof, 279

D
D.R.Y. (Don’t Repeat Yourself), 256-258
data, 4
Data Annotations, 221
data behaviors, Expression Blend

SDK, 23
data elements, MVVM, 275-276
data error info, validation, 226-230
data paging with MVVM, 586-590
data sets, extremely large

scalability, 578-580
data paging with MVVM, 586-590
OData, 580-583
WCF RIA, 583-585

data templates, Xaml, 128-131

data-binding, 195
commands, 218-220
debugging, 200-203
overview, 196-200
within styles, 203-207
synchronizing lists, 208-218
validation, 220-224

asynchronous validation, 230-232
data error info, 226-230
with exceptions, 224-226
fluent validation, 232-242

database team, 560
DataGrid, 110
DataPager, 110
DataPicker, 110
DataTypeAttribute, 223
debug mode, 314
debug symbols, 600-601
debug tests, 322
debuggers

MEF debugger, 316-318
stopping, 609

debugging
data-binding, 200-203
Fiddler, 625
Silverlight apps, 598-600

debug symbols, 600-601
debugging applications already

launched, 608-611
debugging tips, 602-607
WinDbg, 611-616

Silverlight Spy, 626-627
debugging tips, 602-607
decryption method, 496

INDEX656

dependency injection, 261
dependency properties, 70

Xaml, 70-74
attached properties, 75
value precedence, 76

deployment catalog, extensibility
(MEF), 301-302

DescriptionViewer, 110
design patterns, UI design patterns

model, 255-262
Model-View-ViewModel pattern,

251-254
MVVM, 246-250
view, 262-264
view model, 264

design teams, 560
design-time extensions, Xaml, 132-141
design-time view models, MVVM,

271-272
designer/developer workflow, 559-561
development tests, 322
discovery, MEF, 281

catalogs, 287-288
composition initializer and host,

289-291
containers, 288-289
exports, 284-285
imports, 281-284
parts, 286-287

discovery step, 577
distributing fonts, 155-156
distribution, 553

execution, 554
installation, 553-554

Document Object Model (DOM), 366

documenting code, reasons for testing,
324-325

DOM (Document Object Model), 366
DOM interop, 402

DOM interoperability, 404-407
updated to-do list, 402-404

DOM interoperability, 404-407
domain data, 400-401
domain model, 255
domain objects, sharing between clients

and servers, 401-402
Don’t Repeat Yourself (D.R.Y.), 256-258
DoubleAnimation, 94
downloading XAP, 38
durability, 590
dynamic types, mapping and

transformation, 448-450

E
edit-and-continue debugging, 598
ElementName, 197
elevated trust, 526-527

application signing, 528-530
child windows, 535-540
COM interop and script host, 540-546
file system access, 530-531
in browsers, 552-553
native Silverlight extensions, 546-547
p/Invoke, 547-551
toast notifications, 531-535

eliminating assumptions, reasons for
testing, 323

embedding fonts, 155-156
encrypting files in Silverlight, 494-498
enterprise concerns, 558

INDEX 657

Enterprise Library, 258
entity view model, 353
EnumDataTypeAttribute, 224
environments, setting up, 21

Expression Blend SDK, 22-24
open source projects, 25-26
Silverlight 5 SDK and Visual Studio

tools, 22
Silverlight Toolkit, 25

event aggregators, navigation events,
384-389

event-handler methods, Xaml editor, 89
events

versus APM, 452-455
VSM, 172-175

exceptions, validation, 224-226
Execute method, 218
execution, 554
exports, discovery (MEF), 284-285
exposing the model versus mapping,

443-448
Expression Blend

VSM (Visual State Manager), 177-185
XAP extensions, 157

Expression Blend SDK, 7
setting up environments, 22-23

animation behaviors, 23
conditional behaviors, 23
data behaviors, 23
motion behaviors, 24
triggers, 24
visual state actions, 24

extensibility, 576-577
MEF, 295-297

deployment catalog, 301-302
offline catalog, 305

recomposition, 297-301
XAP files, 303-305

extension methods, 241
extension XAP, creating, 41-47
extensions, native Silverlight extensions

(elevated trust), 546-547
external parts, 63

F
failed updates, 525
FallbackValue, 197
Fiddler, 625
file system access, elevated trust,

530-531
file systems, iterating, 485-490
files

encrypting in Silverlight, 494-498
isolated storage, 476-478

accessing, 482-484
signing files, 491-494

filters, to-do list application, 471-472
finding isolated storage, 484-485
fluent validation, 232-242
fluid layout, 95
folders, isolated storage, 476-478

accessing, 482-484
fonts, embedding and distributing,

155-156
frames, 374

G
Garland, John, 31
Gossman, John, 251
GPU (graphics processing unit), 3
grid, layout (Xaml), 97-101
grid listings, 147
grid sizes, 101

INDEX658

GridLength property, 100
GridSplitter, 110
groups, VSM (Visual State

Management), 162-165

H
happy path, 323
“Hello, Silverlight” application, 26

application services, 32-33
application lifecycle, 33-36
sample XAP download service, 37-41

class libraries, 29-32
creating, 27-28
creating extension XAP, 41-47
sharing between Silverlight and the

core framework, 48-53
templates, 53-55

Hoare, Sir Charles Antony, 557
hosts, discovery (MEF), 289-291
HTML 4.01, 9
HTML5, 8-14

benefits of, 14
limitations of, 11
LOB apps, 10-11

HyperlinkButton, 108

I
IApplicationService, 32
IIS 4.0, XAP files, 58
IIS 5.0, XAP files, 58
IIS 6.0, XAP files, 59
IIS 7.0, XAP files, 59
IL (Intermediate Language), 48
IL disassembler, 48
ildasm.exe, 48

Image, 108
import parameters, MEF, 315-316
imports, discovery (MEF), 281-284
improving architecture, reasons for

testing, 326
InitializeVm method, 520
InkPresenter, 108
INotifyPropertyChanged interface, 45
/install, 553
installation, 553-554
integer range validator, 236
integration tests, 322
interactions, 250
interactivity

behaviors, 141-145
triggers, 141, 147-149

Interface Segregation principle, 261
Intermediate Language (IL), 48
inversion control, 261
IServiceProvider, 79
isolated storage, 467

files and folders, accessing, 482-484
finding, 484-485
folders and files, 476-478
iterating the file system, 485-490
managing access and quotas, 478-482

isolating themes, 151-155
isolation, 590
IsSelected property, 216
items control, containers, 382
ItemsControl, containers (Xaml), 105
iterating file systems, isolated storage,

485-490
iterators, 246

INDEX 659

J-K
JavaScript debugging, 599
JavaScript Object Notation (JSON), 4,

56, 423-424
Jounce, 318-319, 388, 461
journal ownership, 375
journals, 375
JSON (JavaScript Object Notation), 4,

56, 423-424
just-in-time debugging, 598
JustMock, 346

L
Label, 110
lambda expressions, 455-456
Language Integrated Query (LINQ), 4
layout, Xaml, 95-96

arrange, 96
canvas, 96
grid, 97-101
measure, 96
StackPanel, 101-103
VirtualizingPanel, 103

libraries, 5
class libraries, 29-32

lifetime management, MEF, 291-295
line height, text (Xaml), 121-123
linked classes, 338-343
LINQ (Language Integrated Query), 4
LINQ query, 214
Liskov Substitution principle, 261
ListBox, 108
listings

Code to Parse Text and Create a
Highlight Rectangle, 118

Code to Parse the Handler and Create
Deployment Catalogs, 304

Creating a Style Dynamically, 90
Custom Visual State Manager, 176
Debugging the Rectangle Sizes, 100
Detail View Code-Behind, 293
Downloading the XAP File Using

WebClient, 39
Generated Code for the App Class, 60
Grid Set Up to Demonstrate the

ViewBox Control, 107
Grid with Associated States and

Transitions, 188
IL Code for the Constructor of the

WelcomeContainer Class, 49
Main Page with Code to Flip the

Switch, 168
MainPage.xaml Rewritten with Code

Only, 69
MainPage.xaml.cs for the Parts and

Templates Example, 131
Markup Extension that Uses the

IServiceProvider Interface, 80
Modified WelcomeContainer Class, 46
Output from a Sample Run with the

VSM Debugger Behavior, 175
Parsing the MEF Container, 316
Parsing the XAP File Manifest and

Assemblies, 40
Sample clientaccesspolicy.xml File, 57
Sample Debug Output, 312
Shell for the XapDownloadService

Class, 37
Style with a Little Bit of

Everything, 89
Style, Grid, and Rectangle

Definitions, 98

INDEX660

Testing the Addition of a New To-Do
Task, 358

Type Converter for Floats
(Singles), 83

Using RichTextBoxOverflow to Flow
around Images and Create
Columns, 119

Value Converter, 84
Visual State Aggregator, 191
Visual State Subscription, 189
Visual State Subscription Behavior, 192
Xaml for MainPage.xaml, 68
Xaml to Create a Simple Switch, 165
Xaml to Define and Execute an

Animation, 74
lists

MVVM, 275-276
synchronizing, 208-218

LOB (line of business), 558
LOB (line of business) apps, 18-19

HTML5, 10-11
local messaging, 435-436
local tests, 321
localization, 571-575
LocalizeExtension, 573
logging, 616-617

client logging, 617-619
Looking Glass, regions case study, 395

M
maintaining applications, reasons for

testing, 325-326
MainViewModel class, 520

Managed Extensibility Framework
(MEF)

discovery, 281
catalogs, 287-288
composition initializer and host,

289-291
containers, 288-289
exports, 284-285
imports, 281-284
parts, 286-287

extensibility, 295-297
deployment catalog, 301-302
offline catalog, 305
recomposition, 297-301
XAP files, 303-305

Jounce, 318-319
lifetime management, 291-295
metadata, 306

strongly typed metadata, 309-313
weakly typed metadata, 306-309

mocking and, 345-352
troubleshooting, 313-314

import parameters, 315-316
MEF debugger, 316-318
stable composition, 314-315

managing isolated storage access and
quotas, 478-482

manifests, XAP files (standard solution),
62-63

manual navigation, 379
containers, 379

content control, 379-382
custom panels, 382-383
items control, 382

INDEX 661

navigation events, 384
event aggregators, 384-389
navigation journals, 389-391

region management, 391
adapters, 395-396
nested regions views, 397
regions, 391-395
views, 397

mapping
transformation and, 443

custom type providers, 451-452
dynamic types, 448-450

versus exposing the model, 443-448
markup, Xaml, 68-70
markup extensions, Xaml, 76-81
measure, layout (Xaml), 96
MediaElement, 108
MEF (Managed Extensibility

Framework), 279-281
discovery, 281

catalogs, 287-288
composition initializer and host,

289-291
containers, 288-289
exports, 284-285
imports, 281-284
parts, 286-287

extensibility, 295-297
deployment catalog, 301-302
offline catalog, 305
recomposition, 297-301
XAP files, 303-305

Jounce, 318-319
lifetime management, 291-295

metadata, 306
strongly typed metadata, 309-313
weakly typed metadata, 306-309

mocking and, 345-352
troubleshooting, 313-314

import parameters, 315-316
MEF debugger, 316-318
stable composition, 314-315

MEF debugger, 316-318
memory profiling, 622
metadata, MEF, 306

strongly typed metadata, 309-313
weakly typed metadata, 306-309

method chaining, 455-456
Microsoft UI Automation, 367
mixed-mode debugging, 598
mocking, MEF and, 345-352
Mocks, 351
Mode, 197
model, MVVM, 255

D.R.Y. (Don’t Repeat Yourself), 256-258
S.O.L.I.D. principle, 260-262
Y.A.G.N.I. (You Aren’t Going to Need

It), 258-260
Model-View Presenter (MVP)

pattern, 250
Model-View-Controller (MVC)

pattern, 249
Model-View-ViewModel pattern,

251-254
Model-View-ViewModel. See MVVM,

245, 279
modularity, 576-577
Moq, 345-346

INDEX662

motion behaviors, Expression Blend
SDK, 24

MultiScaleImage, 108
multiselection class, 214
MVVM (Model-View-ViewModel),

245, 279
binding view model to the view, 265

controllers, 269-271
custom markup extensions, 272-274
design-time view models, 271-272
view model locators, 265-269
view-model-first approach versus

view-first approach, 274-275
data paging, 586-590
Jounce, 318-319
lists and data elements, 275-276
misconceptions, 252
UI design pattern

model, 255-262
Model-View-ViewModel pattern,

251-254
view, 262-264
view model, 264

UI design patterns, 246-250
view model locators, 266

N
native Silverlight extensions

elevated trust, 546-547
p/Invoke, 547-551

natural user interface (NUI), 113,
149-151

navigation, manual navigation, 379
containers, 379-383
navigation events, 384-391
region management, 391-397

navigation events, 384
event aggregators, 384-389
navigation journals, 389-391

navigation framework, 374-375
basics of, 375-377
choosing page-based navigation,

377-378
custom navigation, 378-379

navigation journals, navigation events,
389-391

navigation parameters, to-do list
application, 472-473

navigation template, 54
NavigationContext, 376
nested regions, views and, 397
.NET Framework, libraries, 5
NotifyOnValidationError, 197
NUI (natural user interface), 113,

149-151

O
ObjectAnimationUsingKeyFrames, 94
OData, handling data sets, 580-583
OData (Open Data) protocol, 413
offline catalog, extensibility (MEF), 305
old XML (POX), 412
OOB (Out of Browser) apps, 305,

405, 505
checking for updates, 523-526
distribution and installation, 553-554
elevated trust in browsers, 552
getting started, 516-523
uninstalling, 555

open source projects, setting up
environments, 25-26

Open/Closed Principle, 260

INDEX 663

OpenFileDialog, 109
optimistic concurrency, 591
/origin, 553
Out of Browser (OOB) app, 305, 405
overflow, rich text (Xaml), 119-120
/overwrite, 554

P
p/Invoke, elevated trust, 547-551
Page, 110
page-based navigation, choosing,

377-378
parameters, passed to the binding

object, 196
parsing rich text, Xaml, 116-119
parts

discovery, MEF, 286-287
Xaml, 123-126

parts and states model, 123
PasswordBox, 109
path, 197
PDB files, 599
performance profiling, 622
persistence, 467
persisting preferences with settings,

473-476
pessimistic concurrency, 591
Plain Old CLR Objects (POCOs), 196
Platform Invoke (p/Invoke), 516
POC (proof of concept), 594-595
POCOs (Plain Old CLR Objects), 196
PointAnimation, 94
Popup, 109
portable assemblies, 48

POX (plain old XML), 4, 56, 412, 423-424
presentation core, 3
presentation framework, 3
presentation model, 249
print event, 568
printing, 558, 561-571

bitmap print, forcing, 570
private builds, 599
ProcessPage method, 589
ProcessReport method, 568
profiling, 622

applications with Visual Studio,
622-625

program database file, 599
ProgressBar, 109
proof of concept (POC), 594-595
properties

attached properties, 71, 75
dependency properties, 70
of Timeline class, 91-92

prototype pattern, 246
public builds, 599

Q
QA testing, 322
quotas, isolated storage, 478-482

R
RadioButton, 109
RangeAttribute, 224
Reactive Extensions (Rx), asynchronous

techniques, 459-463
recomposition, extensibility (MEF),

297-301

INDEX664

refactoring isolation, 245
reflection cache, building, 445
region management, 391

manual navigation, 391
adapters, 395-396
nested regions views, 397
regions, 391-395
views, 397

regions
region management, 391-395
super regions, 396

RegularExpressionAttribute, 224
RelativeSource, 197

markup extensions, 78
remote procedural calls (RPC), 412
RepeatButton, 109
repository pattern, 416-418
Representational State Transfer (REST),

412-413
consuming REST services, 421-423
repository pattern, 416-418
securing the website, 418-421
Sterling, 414
Sterling database definition, 414-416

RequiredAttribute, 224
resource dictionaries, 151-155

themes, 203
REST (Representational State Transfer),

412-413
consuming REST services, 421-423
repository pattern, 416-418
securing the website, 418-421

Sterling, 414
Sterling database definition, 414-416

REST services, consuming, 421-423
Rhino Mocks, 346
rich text, Xaml, 114-115

overflow, 119-120
parsing, 116-119

RichTextBox, 109, 114
RichTextBoxOverflow, 109
Robbins, John, 615
rows, width, 100
RPC (remote procedural calls), 412
Rx (Reactive Extensions), asynchronous

techniques, 459-463

S
safe critical code, 5
sample XAP download service, 37-41
SaveFileDialog, 109
scalability, 558, 578

concurrency, 590-593
extremely large data sets, 578-580

data paging with MVVM, 586-590
OData, 580-583
WCF RIA, 583-585

synchronization, 593-594
script host, elevated trust, 540-546
ScrollViewer, containers (Xaml), 105
securing websites, REST, 418-421
separation of concerns, 248
servers, sharing domain objects

between clients and servers, 401-402
service, 399

INDEX 665

service layer, 399
services, web hosts (standard solution),

55-56
services team, 560
shared testing, 338-343
sharing

between Silverlight and the core
framework, 48-53

domain objects, between client and
server, 401-402

/shortcut, 554
signatures, verifying, 492
signing files, 491-494
Silverlight, 6

encrypting files, 494-498
libraries, 5
Sterling, 498-509, 511-514
Unit Testing Framework, 332-338
WPF and, 7-8

Silverlight apps, debugging, 598-600
apps already launched, 608-611
debug symbols, 600-601
debugging tips, 602-607
WinDbg, 611-616

Silverlight development teams, 560
Silverlight project, standard solution,

59-61
Silverlight Spy, 626-627
Silverlight Toolkit, setting up

environments, 25
SilverUnit, 346
single responsibility, 260
SketchFlow, 328
Slider, 109
slow concurrency, 593

SOAP (Simple Object Access Protocol),
425-431

sockets, 436-443
S.O.L.I.D. principle, 260-262
Son of Strike, 611
sorts, to-do list application, 471-472
Source, 197
stable composition, 314

MEF, 314-315
StackPanel, layout (Xaml), 101-103
standard solution, 55

Silverlight project, 59-61
web hosts, 55

cross-domain consideration, 56-58
services, 55-56
XAP files, 58-59

XAP files, 61-62
Assemblies, 63-64
manifests, 62-63

state dictionary, 210
states

button groups and, 163
VSM (Visual State Management),

165-170
Xaml, 123, 127-128

StaticResource, markup extensions, 77
Sterling, 414

database definition, 414-416
Silverlight, 498-514

stopping debuggers, 609
storage, isolated storage, 467
storyboards, Xaml, 91-95
StringFormat, 197
StringLengthAttribute, 224
style-binding, 91

INDEX666

styles
data-binding, 203-207
Xaml, 86-91

super regions, 396
surface areas, 6
synchronization, 593-594
synchronizing lists, 208-218
syndication items, 620
Syslog protocol, 618

T
TabControl, 110
target property, 92
TargetNullValue, 197
Task Parallel Library (TPL), 463-465
tasks, asynchronous techniques, 463-465
TdD (Test during Development), 331
Team Foundation System (TFS), 343
template binding, markup

extensions, 77
templates

data templates, 128-131
“Hello, Silverlight” application, 53-55
Xaml, 123

Test during Development (TdD), 331
test harness, Silverlight Unit Testing

Framework, 332
testing

automated testing, 343-345
automation peers, 367-371
challenges, 366
coded UI tests, 364-366
debug tests, 322
development tests, 322

integration tests, 322
linked classes, 338-343
local tests, 321
mocking and MEF, 345-352
QA testing, 322
reasons for, 322-323, 327

documenting code, 324-325
eliminating assumptions, 323
extending and maintaining

applications, 325-326
improving architecture and

design, 326
killing bugs at the source, 324
making better designers, reasons for

testing, 326
shared testing, 338-343
TdD (Test during Development), 331

Silverlight, 332-338
unit tests, 321, 327-331
view model tests, 352-359
view-logic testing, 247
Xaml, 359-363

text, Xaml, 114
character spacing, 120-121
line height, 121-123
rich text, 114-120

TextBlock, 109
TextBox, 109
TFS (Team Foundation System), 343
theme packs, 152
themes

isolating, 151-155
resource dictionaries, 203

Timeline class, properties of, 91-92

INDEX 667

to-do list application, 468
filters, 471-472
navigation parameters, 472-473
sorts, 471-472
WCF RIA services, 468-470

toast notifications, elevated trust,
531-535

ToDoListItem, 400
toolkit controls, 110-111
ToolTip, 109
TPL (Task Parallel Library), 463-465
trace log levels, 618
tracing, 616-617

client tracing, 617-619
WCF tracing, 619-622

transformation, mapping and, 443
custom type providers, 451-452
dynamic types, 448-450

transitions, VSM (Visual State
Management), 170-171

transparent code, 5
TreeView, 111
triggers, 141, 147-149

Expression Blend SDK, 24
troubleshooting

MEF, 313-314
import parameters, 315-316
MEF debugger, 316-318
stable composition, 314-315

VSM, 172-175
trusted, elevated trust, 526-527

application signing, 528-530
in browsers, 552-553
child windows, 535-540
COM interop and script host, 540-546

file system access, 530-531
native Silverlight extensions, 546-547
p/Invoke, 547-551
toast notifications, 531-535

type converters, Xaml, 81-83

U
UI design patterns, MVVM, 246-250

model, 255-262
Model-View-ViewModel pattern,

251-254
view, 262-264
view model, 264

uninstalling OOB apps, 555
unit of work, 592
Unit Testing Framework, Silverlight,

332-338
unit tests, 321, 327-331
updated to-do lists, 402-404
updates

failed updates, 525
OOB apps, checking for, 523-526

UserControl Tag, 200

V
ValidatesOnDataErrors, 197
ValidatesOnExceptions, 197
ValidatesOnNotifyDataErrors, 197
ValidateThat method, 242
validation, data-binding, 220-224

asynchronous validation, 230-232
data error info, 226-230
fluent validation, 232-242
with exceptions, 224-226

validation attributes, 223
ValidationExtensions, 241

INDEX668

ValidationSummary, 111
value converters, Xaml, 84-86
value precedence, dependency

properties (Xaml), 76
verifying signatures, 492
view, MVVM, 262-264
view model, MVVM, 264

binding to the view, 265-275
view model locators, MVVM, 265-269
view model tests, 352-359
view-first approach versus view-

model-first approach, 274-275
view-logic testing, 247
view-model-first approach versus

view-first approach, 274-275
ViewBox, containers (Xaml), 106-107
ViewModels, 353
views, region management, 397
VirtualizingPanel, layout (Xaml), 103
visual state actions, Expression Blend

SDK, 24
Visual State Aggregator, 185-194
Visual State Manager. See VSM, 7, 127
Visual Studio

installing, 22
profiling applications, 622-625

Visual Studio Test System (VSTS),
16, 322

Visual Studio tools, setting up
environments, 22

visual tree, 381
VSM (Visual State Manager), 7, 127,

161, 251
custom, 176-177
events, 172-175
Expression Blend, 177-185

groups, 162-165
overview, 162
states, 165-170
transitions, 170-171
troubleshooting, 172-175
workflow, 171

VSTS (Visual Studio Test System),
16, 322

W
WCF (Windows Communication

Foundation), 4, 424
services, 55
SOAP, 425-431

WCF RIA, handling data sets, 583-585
WCF RIA Services, 431-435, 468-470
WCF tracing, 619-622
WeakReference class, 385
web hosts, standard solution, 55

cross-domain considerations, 56-58
services, 55-56
XAP files, 58-59

Web Platform Installer. See WPI, 22
web service, 399
websites, securing (REST), 418-421
WelcomeContainer class, 49

Xaml, 69
white box tests, 327
width of rows, 100
Wilcox, Jeff, 332
WinDbg, 611-616
Windows Communication Foundation

(WCF), 4, 424
services, 55
SOAP, 425-431

wireframe, 330

INDEX 669

workflow
designer/developer workflow, 559-561
VSM, 171

WPF, Silverlight and, 7-8
WPI (Web Platform Installer), 22

X
Xaml, 3, 67

basic controls, 108-109
containers, 104

ContentControl, 104-105
ItemsControl, 105
ScrollViewer, 105
ViewBox, 106-107

dependency properties, 70-74
attached properties, 75
value precedence, 76

design-time extensions, 132-141
fonts, embedding and distributing,

155-156
interactivity

behaviors, 141-145
triggers, 141, 147-149

isolating themes, 151-155
layout, 95-96

arrange, 96
canvas, 96
grid, 97-101
measure, 96
StackPanel, 101-103
VirtualizingPanel, 103

markup and class instantiation, 68-70
markup extensions, 76-81
NUI (natural user interface), 149-151
Parts, 123-126
resource dictionaries, 151-155

states, 123, 127-128
storyboards, 91-95
styles, 86-91
templates, 123

data templates, 128-131
testing, 359-363
text, 114

character spacing, 120-121
line height, 121-123
rich text, 114-120

type converters, 81-83
value converters, 84-86

Xaml development, 560
Xaml editor, event-handler methods, 89
XAP

downloading, 38
extension XAP, creating, 41-47

XAP download service, sample, 37-41
XAP extensions, tips for, 157-158

XAP files
extensibility, MEF, 303-305
standard solution, 61-62

assemblies, 63-64
manifests, 62-63

web hosts, standard solution, 58-59

Y-Z
Y.A.G.N.I (You Aren’t Going to Need

It), 258-260

INDEX670

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 7 Model-View-ViewModel (MVVM)
	UI Design Patterns
	The Model-View-ViewModel Pattern
	The Model
	The View
	The View Model

	Binding the View Model to the View
	View Model Locators
	Controllers
	Design-Time View Models
	Custom Markup Extensions
	View-Model-First Approach Versus View-First Approach

	Lists and Data Elements
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

