
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321808226
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321808226
https://plusone.google.com/share?url=http://www.informit.com/title/9780321808226
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321808226
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321808226/Free-Sample-Chapter

The Incremental Commitment Spiral Model: Phased View

Feasibility Evidence Description Content
Evidence provided by the developer and validated by independent experts that, if
the system is built to the specified architecture, it will:

hh Satisfy the requirements: capability, interface, level of service, and evolution

hh Support the operational concept

hh Be buildable within the budgets and schedules in the plan

hh Generate a viable return on investment

hh Generate satisfactory outcomes for all of the success-critical stakeholders

hh Resolve all major risks by treating shortfalls in evidence as risks and
covering them by risk management plans

hh Serve as a basis for stakeholders’ commitment to proceed

ICSM Life-Cycle
Phases

Activities
Concurrent risk- and
opportunity-driven
growth of system
understanding and
definition

Initial scoping Concept
definition

Investment
analysis

System life-cycle
architecture and
ops concept

Build-to
increment plans
and specifications

NDI, outsource
partner selections

Increment 1
Development

Increment 2
Foundations
rebaseline

Increment 1
Operations and
Production

Increment 2
Development

Increment 3
Foundations
rebaseline

...

...

...

...

Acceptable

Negligible

Adjust scope, priorities, or discontinue

Feasibility
Evidence

High, but
addressable
Too high,
unaddressable

Evaluation of evidence
of feasibility to proceed

Stakeholder review
and commitment

ECR =
Exploration
Commitment
Review

VCR =
Valuation
Commitment
Review

FCR =
Foundations
Commitment
Review

OCRn =
Operations
Commitment
Reviewn

DCRn =
Development
Commitment
Reviewn

ICSM Anchor
Points

ECR

Stage I: Incremental Definition
Stage II:
Incremental Development,
Operations and Production

Exploration

Valuation

Foundations

Development 1

Foundations 2
Operations

and Production 1

(O&P) 1

Development 2

Foundations 3

VCR FCR DCR1
OCR1
DCR2

Risk? Risk? Risk? Risk? Risk?

Reprinted with permission from Human-System Integration in the System Development
Process, 2007 by the National Academy of Sciences, Courtesy of the National Academies
Press, Washington, D.C.

Principles Trump Diagrams
The Four ICSM Principles

1.	 Stakeholder value-based guidance.
2.	 Incremental commitment and accountability.
3.	 Concurrent multi-discipline engineering
4.	 Evidence and risk-based decisions.

Risk Meta-Principle of Balance: Balancing the risk of doing too little and the risk
of doing too much will generally find a middle course sweet spot that is about the
best you can do.

Theory W (Win-Win) Success Theorem: A system will succeed if and only if it
makes winners of its success-critical stakeholders.

System Success Realization Theorem: Making winners of your success-critical
stakeholders requires:

1.	 Identifying all of the success-critical stakeholders.
2.	 Understanding how each stakeholder wants to win.
3.	 Having the success-critical stakeholders negotiate among themselves a win-

win set of product and process plans.
4.	 Controlling progress toward the negotiated win-win realization, including

adapting it to change.

The Incremental Commitment Spiral Model
Cumulative Level of Understanding, Product and Process
Detail (Risk-Driven)

Evidence-Based Review Content
- A first-class deliverable
- Independent expert review
- Shortfalls are uncertainties and risks

Risk-Based Decisions

Negligible
Acceptable

Too High,
Unaddressable

Risk

High, But
Addressable

1 Exploration Commitment Review

Foundations Commitment Review

Development Commitment Review

Operations2 and Development3
Commitment Review

Operations1 and Development2
Commitment Review

Valuation Commitment Review2

3

4

5

6

6 5 4 3 2 1

RISK-BASED
STAKEHOLDER
COMMITMENT
REVIEW
POINTS:

Concurrent
Engineering of
Products and
Processes

Opportunities to
proceed, merge
phases,
backtrack or
terminate

 F

O

UNDATIONS

EXPLORATION

D
E

VE
LO

PM

ENT 1
 FOUNDATIONS

2

O
P

E
R

AT
IO

N 1
 D

EV
ELO

PMENT 2
FOUNDATIONS

3

O
P

E
R

AT
IO

N 2
 D

EVELO
PMENT 3

FOUNDATIONS4

VA

LUATION

Reprinted with permission from Human-System Integration in the System Development
Process, 2007 by the National Academy of Sciences, Courtesy of the National Academies
Press, Washington, D.C.

Principles Trump Diagrams

Feasibility Evidence Description Content
Evidence provided by the developer and validated by independent experts that, if
the system is built to the specified architecture, it will:

hh Satisfy the requirements: capability, interface, level of service, and evolution

hh Support the operational concept

hh Be buildable within the budgets and schedules in the plan

hh Generate a viable return on investment

hh Generate satisfactory outcomes for all of the success-critical stakeholders

hh Resolve all major risks by treating shortfalls in evidence as risks and
covering them by risk management plans

hh Serve as a basis for stakeholders’ commitment to proceed

ICSM Life-Cycle
Phases

Activities
Concurrent risk- and
opportunity-driven
growth of system
understanding and
definition

Initial scoping Concept
definition

Investment
analysis

System life-cycle
architecture and
ops concept

Build-to
increment plans
and specifications

NDI, outsource
partner selections

Increment 1
Development

Increment 2
Foundations
rebaseline

Increment 1
Operations and
Production

Increment 2
Development

Increment 3
Foundations
rebaseline

...

...

...

...

Acceptable

Negligible

Adjust scope, priorities, or discontinue

Feasibility
Evidence

High, but
addressable
Too high,
unaddressable

Evaluation of evidence
of feasibility to proceed

Stakeholder review
and commitment

ECR =
Exploration
Commitment
Review

VCR =
Valuation
Commitment
Review

FCR =
Foundations
Commitment
Review

OCRn =
Operations
Commitment
Reviewn

DCRn =
Development
Commitment
Reviewn

ICSM Anchor
Points

ECR

Stage I: Incremental Definition
Stage II:
Incremental Development,
Operations and Production

Exploration

Valuation

Foundations

Development 1

Foundations 2
Operations

and Production 1

(O&P) 1

Development 2

Foundations 3

VCR FCR DCR1
OCR1
DCR2

Risk? Risk? Risk? Risk? Risk?

Reprinted with permission from Human-System Integration in the System Development
Process, 2007 by the National Academy of Sciences, Courtesy of the National Academies
Press, Washington, D.C.

This page intentionally left blank

Praise for The Incremental Commitment
Spiral Model

“The Incremental Commitment Spiral Model is an extraordinary work. Boehm and
his colleagues have succeeded in creating a readable, practical, and eminently usable
resource for the practicing systems engineer. . . . ICSM embodies systems thinking and
engineering principles and best practices using real-life examples from many different
application domains. This is exactly the kind of treatment that an engineer needs to
translate the book’s considerable wisdom into practical on-the-job solutions.”

—George Rebovich, Jr., Director, Systems Engineering Practice Office, The MITRE
Corporation

“One might think of this new book as an update of the old (1988) Spiral Model, but it
is actually much more than that. It is a ground-breaking treatment that expertly blends
together four specific and key principles, risk–opportunity management, the use of exist-
ing assets and processes, and lessons learned from both success and failure examples
and case studies. This extraordinary treatise will very likely lead to improvements in
many of the current software development approaches and achieve the authors’ intent
‘to better integrate the hardware, software, and human factors aspects of such systems,
to provide value to the users as quickly as possible, and to handle the increasingly rapid
pace of change.’ If one is looking for specific ways to move ahead, use this book and its
well-articulated advancements in the state-of-the-art.”

—Dr. Howard Eisner, Professor Emeritus and Distinguished Research Professor, George
Washington University

“Dr. Boehm and his coauthors have integrated a wealth of field experience in many
domains and created a new kind of life cycle, one that you have to construct based on
the constraints and objectives of the project. It is based on actively trading off risks and
demonstrating progress by showing actual products, not paper substitutes. And the
model applies to everything we build, not just software and conceptual systems, but also
to hardware, buildings, and garden plots. We have long needed this experience-based
critical thinking, this summative and original work, that will help us avoid chronic sys-
tems development problems (late, over-budget, doesn’t work) and instead build new life
cycles matched to the circumstances of the real world.”

—Stan Rifkin, Principal, Master Systems

“Barry Boehm and his colleagues have created a practical methodology built upon the
one fundamental truth that runs through all competitive strategies: The organization
with the clearest view of cold, brutal reality wins. Uniquely, their methodology at every
stage incorporates the coldest reality of them all—the customer’s willingness to continue
paying, given where the project is today and where it is likely ever to be.”

—Chet Richards, author of Certain to Win: The Strategy of John Boyd Applied to
Business

“I really like the concept of the ICSM and have been using some of the principles in my
work over the past few years. This book has the potential to be a winner!”

—Hillary Sillito, INCOSE Fellow, Visiting Professor University of Bristol, formerly Thales
UK Director of Systems Engineering

“The Incremental Commitment Spiral Model deftly combines aspects of the formerly
isolated major systems approaches of systems engineering, lean, and agile. It also
addresses perhaps the widest span of system sizes and time scales yet. Two kinds of
systems enterprises especially need this capability: those at the ‘heavy’ end where lean
and agile have had little impact to date, and those that deal with a wide span of system
scales. Both will find in the ICSM’s combination of systems approaches a productive and
quality advantage that using any one approach in isolation cannot touch.”

—James Maxwell Sutton, President, Lean Systems Society and Shingo Prize winner

“The potential impact of this book cannot be overstressed. Software-intensive systems
that are not adequately engineered and managed do not adequately evolve over the
systems life cycle. The beauty of this book is that it describes an incremental capability
decision path for being successful in developing and acquiring complex systems that are
effective, resilient, and affordable with respect to meeting stakeholders’ needs. I highly
recommend this book as a ‘must read’ for people directly involved in the development,
acquisition, and management of software-intensive systems.”

—Dr. Kenneth E. Nidiffer, Director of Strategic Plans for Government Programs, Software
Engineering Institute, Carnegie Mellon University

“This text provides a significant advance in the continuing work of the authors to evolve
the spiral model by integrating it with the incremental definition and the incremental
development and evolution life-cycle stages. Case studies illustrate how application of
the four principles and the Fundamental Systems Success Theorem provides a framework
that advances previous work. Emphasis is placed throughout on risk-based analysis and
decision making. The text concludes with guidance for applying ICSM in your organiza-
tion plus some helpful appendices. We concur with the authors’ statement: ‘we are con-
fident that this incarnation of the spiral model will be useful for a long time to come.’”

—Dick Fairley, PhD, Software and Systems Engineering Associates (S2EA)

“This book nicely integrates the different refinements of the spiral model and the vari-
ous additions made over the years. . . . the book contains great material for classes
on software engineering in general and software processes in particular. I have been
teaching the spiral model and its invariants for more than 10 years now, and I will use
material from this book in the years to come.”

—Paul Grünbacher, Associate Professor, Johannes Kepler University Linz, Head of the
Christian Doppler Lab for Monitoring and Evolution of Very-Large-Scale Software Systems

“What I found most useful in The Incremental Commitment Spiral Model were the
stories of where we have gone wrong in the past, and how using the four key ICSM
principles articulated by Barry and his co-authors could have helped these failed
efforts maintain a course to success. ICSM is not a new method. It does not ask you to
discard what has proved useful in the past and start over. Rather, it provides a set of
guideposts that can help any organization facing increasingly challenging endeavors
make more timely evidence-based decisions. We have been hearing about the ‘what’
for many years, this book gives you the needed ‘how’ and, more importantly, the
needed ‘how much’ guidance that has been sorely missing.”

—Paul E. McMahon, author of Integrating CMMI and Agile Development

“The authors are uniquely qualified to bring together a historical context and a modern
problem: successful development of engineered systems with ever greater complexity
and richer than ever functionality, enabled by software. They do not disappoint!”

—Dinesh Verma, PhD, Professor and Dean, School of Systems and Enterprises, Stevens
Institute of Technology

This page intentionally left blank

The Incremental
Commitment Spiral
Model

This page intentionally left blank

The Incremental
Commitment Spiral
Model
Principles and Practices for Successful
Systems and Software

Barry Boehm

Jo Ann Lane

Supannika Koolmanojwong

Richard Turner

Upper Saddle River, NJ  Boston  Indianapolis  San Francisco
New York  Toronto  Montreal  London  Munich  Paris  Madrid
Capetown  Sydney  Tokyo  Singapore  Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Boehm, Barry W.
 The incremental commitment spiral model : principles and practices for successful systems and
software / Barry Boehm, Jo Ann Lane, Supannika Koolmanojwong, Richard Turner.
 pages  cm
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-80822-6 (pbk. : alk. paper)
 ISBN-10: 0-321-80822-3 (pbk. : alk. paper)
 1. Computer software—Development. 2. Continuous improvement process. I. Koolmanojwong,
Supannika II. Lane, Jo Ann. III. Turner, Richard, 1954 August 18-. IV. Title.
 QA76.76.D47B635 2014
 005.1—dc23	 2014006606

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-80822-6
ISBN-10: 0-321-80822-3
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2014

ix

Contents

Foreword  xiii
Preface  xv
About the Authors  xxi

Prologue  3

Chapter 0	 Introduction  7
0.1  A World of Change  7
0.2  Creating Successful 21st-Century Systems  9
0.3  ICSM Distilled  16
0.4  Using the ICSM  25
0.5  Incremental ICSM Adoption Approaches  28
0.6  Examples of ICSM Use  29
0.7  �How ICSM Might Have Helped a Complex Government Acquisition

(healthcare.gov)  30
References  32

Part I	 The Four ICSM Principles  35
Chapter 1	 The First Principle: Stakeholder Value-Based Guidance  37

1.1  Failure Story: The Too-Good Road Surface Assessment Robot  38
1.2  Success Story: The Hospira Next-Generation Intravenous Medical

Pump  42
1.3  The Fundamental System Success Theorem and Its

Implications  47
1.4  The System Success Realization Theorem and Its

Implications  49
References  55

x   Contents

Chapter 2	 The Second Principle: Incremental Commitment and
Accountability  57
2.1  A Failed Total-Commitment Project: Bank of America’s

MasterNet  59
2.2  A Successful Incremental-Commitment Project: The TRW Software

Productivity System  63
2.3  The Two Cones of Uncertainty and the ICSM Stages I and II  69
2.4  Alternative Incremental and Evolutionary Development Models  71
2.5  Development as C2ISR  75
References  78

Chapter 3	 The Third Principle: Concurrent Multidiscipline Engineering  81
3.1  Failure Story: Sequential RPV Systems Engineering and

Development  84
3.2  Success Story: Concurrent Competitive-Prototyping RPV Systems

Development  86
3.3  Concurrent Development and Evolution Engineering  89
3.4  Concurrent Engineering of Hardware, Software,

and Human Factors Aspects  92
3.5  Concurrent Requirements and Solutions Engineering  94
References  96

Chapter 4	 The Fourth Principle: Evidence- and Risk-Based
Decisions  97
4.1  Failure Story: The Unaffordable Requirement  99
4.2  Success Story: CCPDS-R  101
4.3  Feasibility Evidence as a First-Class Deliverable  104
4.4  How Much of Anything Is Enough?  107
4.5  Summing Up the Principles  108
References  109

Part II	 ICSM Life Cycle and Stage I: Incremental
Definition  113

Chapter 5	 The ICSM Life Cycle  115
5.1  ICSM Life Cycle  115
5.2  Comparison of ICSM to Other Life-Cycle Models  115
5.3  Stage I: Deciding Why, What, When, Who, Where, How,

and How Much  119
5.4  ICSM Case Study  120

Chapter 6	 Exploration Phase  123
6.1  What Is the Exploration Phase?  123
6.2  What Are the Potential Pitfalls during Exploration?  126
6.3  Potential Major Risks to Watch for at the End of Exploration  127

Contents   xi

6.4  How Exploration Scales from Small to Large,
Complex Systems  128

6.5  Role of Principles in Exploration Activities  128
6.6  Exploration for the MedFRS Initiative  129

Chapter 7	 Valuation Phase  133
7.1  What Is the Valuation Phase?  133
7.2  What Are the Potential Pitfalls during Valuation?  135
7.3  Major Risks to Watch for at End of Valuation  136
7.4  How Valuation Scales from Small to Large, Complex Systems  137
7.5  Role of Principles in Valuation Activities  138
7.6  Valuation for the MedFRS Initiative  139

Chapter 8	 Foundations Phase  143
8.1  What Is the Foundations Phase?  143
8.2  What Are the Potential Pitfalls during Foundations?  146
8.3  Major Risks to Watch for at the End of Foundations  146
8.4 � How Foundations Effort Scales from Small to Large,

Complex Systems  147
8.5  Role of Principles in Foundations Activities  149
8.6  Foundations for the MedFRS System of Systems  150
8.7  Stage I Summary  152
Reference  152

Part III	 Stage II: Incremental Development and
Evolution  155

Chapter 9	 Development Phase  157
9.1  What Is the Development Phase?  157
9.2  Ready to Release?  169
9.3  What Are the Potential Pitfalls during Development?  171
9.4  Major Risks to Watch for during Development  171
9.5  How Development Scales from Small to Large, Complex Systems  172
9.6  Role of Principles in Development Activities  174
9.7  MedFRS Development  174
Reference  178

Chapter 10	 System Production and Operations  179
10.1  What Is “Production”?  179
10.2  What Are the Potential Pitfalls during Production?  180
10.3  Major Risks to Watch for during Production  181
10.4  What Is the Systems Operations Phase?  181
10.5  What Are the Potential Pitfalls during Operations?  183
10.6  Major Risks to Watch for during Operations  183
10.7  Production and Operations for the MedFRS Initiative  184
10.8  Stage II Summary  185

xii   Contents

Part IV	 Applying ICSM to Your Organization  189
Chapter 11	 ICSM Patterns and Common Cases  191

11.1  ICSM Patterns  192
11.2  ICSM Common Cases  194
11.3  Common Case Examples  201
11.4  Summary: The ICSM Common Cases Overview  204
References  204

Chapter 12	 ICSM and Your Organization  205
12.1  Leveraging Your Current Process Investments  205
12.2  Maximizing the Value of Your Organizational Knowledge  208
12.3  Where the Impact Is  208
References  210

Chapter 13	 Evidence-Based Life-Cycle Management  211
13.1  Motivation and Context  211
13.2  Commitment Review Process Overview  212
13.3  Feasibility Evidence Description Development Process  213
13.4  Evaluation Framework for the FED  217
13.5  Example of Use  218
13.6  Applicability Outside ICSM  221
References  222

Chapter 14	 Cost and Schedule Evidence Development  223
14.1  A Review of Primary Methods for Cost and Schedule Estimation  225
14.2  Estimations and the ICSM  228
14.3  The Bottom Line  233
References  233

Chapter 15	 Risk–Opportunity Assessment and Control  235
15.1  The Duality of Risks and Opportunities  235
15.2  Fundamentals of Risk-Opportunity Management  236
15.3  Risk Management within ICSM  244
15.4  Risk and Opportunity Management Tools  245
15.5  Using Risk to Determine How Much Evidence Is Enough  247
References  247

Afterword  249

Appendix A: Evidence Evaluation Framework  253

Appendix B: Mapping between ICSM and Other Standards  261

Appendix C: A Value-Based Theory of Systems Engineering  277

Index  299

xiii

Foreword

Developers, thinkers, and writers have wrestled since the 1960s with process
models for building software, including my own 1975 simple-minded “Plan

to throw one away; you will anyhow.” Practitioners in the software development
discipline early learned that a patterned development is more likely to succeed
than a chaotic one, at any size. Hence, the emergence of process models.

I am firmly convinced that the model set forth in this book is by far the best
anyone has developed. First proposed by Boehm in 1988, it was even then the fruit
of much thought and a rich trove of practical experience. In the almost 30 years
since its introduction, the Incremental Commitment Spiral Model has grown and
evolved through actual use in many projects, and through systematic thought. It
has been extended from software to systems, and to the larger life cycle.

The most important augmentation of the original spiral model has been the
addition of formal, cold-eyed assessments of risk at the various checkpoints. A
second important addition is the explicit prescription that the stakeholders regu-
larly and boldly consider abandoning the project. To paraphrase this dictate: “Plan
to consider throwing the project away; you may need to consider that anyhow.”
The Preface lists other ways the model has grown.

The work presented in this book demands and repays careful study. The Intro-
duction sets forth the basic concepts of the model and the experienced-based moti-
vations for each refinement. Since what is treated is not itself a model but a model
generator, it can be flexibly adapted for projects large and small, long and short.
Such adaptation requires thinking, of course.

The organization of the book into individual, self-contained parts suggests the
mode of study. Students with no project experience can manage the Introduction
and profit from it. The more sophisticated later parts will come to life for those

xiv   Foreword

practitioners who have experienced both successful and unsuccessful projects, and
who want to ensure that their subsequent ventures are successful ones. They may
want to ponder each part as a chunk, fleshing out and coloring the ideas and rec-
ommendations with their own experiences.

—Frederick P. Brooks, Jr.
author, The Design of Design

xv

Preface

This book describes a way to be successful in an increasingly challenging
endeavor: developing systems that are effective, resilient, and affordable with

respect to meeting stakeholders’ needs. Most people would prefer to be part of cre-
ating a successful system. Rumor has it, however, that some people would rather
deliver an unsuccessful system so that they can continue being paid to make it
successful; rumor also doubts those people will read this book.

We have been studying and experimenting with approaches for creating suc-
cessful systems for many years and have seen constant evolution in system capa-
bility, content, and context. The systems we worked on were initially hardware
items such as radios, power supplies, airplanes, and rockets. As time went on,
the systems became more software intensive. For example, in some classes of air-
planes, the functionality performed by software grew from 8% in 1960 to 80% in
2000. Both now and for the foreseeable future, most systems must interact with
other independently evolving systems to help provide additional functionality and
flexibility. Even more important, precisely because it has often been overlooked,
is the increasing role that humans are playing as system elements, as the enter-
prise is viewed as a holistic interdisciplinary entity. Perhaps the farthest-reaching
change is that so many traditional stand-alone hardware devices need to cope not
only with software, but also with living in an Internet of Things, preserving cyber-
security, and adjudicating among human users and smart autonomous agents.

The Incremental Commitment Spiral Model (ICSM) is the result of our efforts
to better integrate the hardware, software, and human factors aspects of such
systems; to provide value to the users as quickly as possible; and to handle the
increasingly rapid pace of change. While the ICSM’s pedigree lies in Barry’s spiral
concept first articulated in 1988, this new version draws on more than 20 years
of experience helping people deal with the fact that the original version was too

xvi   Preface

easy to misinterpret. The ICSM is both more general and more specific than the
original spiral. It covers more of the life cycle, addresses not only software projects
but also cyber–physical–human systems and enterprises, and is adaptable to most
development endeavors. At the same time, it is much more specific about how to
implement the principles and activities.

The ICSM is not a single, one-size-fits-all process. It is actually a process gen-
erator that steers your process in different directions, depending on your particular
circumstances. In this way, it can help you adapt your life-cycle strategies and pro-
cesses to your sources of change. It also supports more rapid system development
and evolution through concurrent engineering, enabling you to develop and evolve
systems more rapidly and to avoid obsolescence.

If things aren’t changing much in your domain, and you already have a way
to create successful systems, you should keep on using it. But you will be in a
shrinking minority as the 21st-century pace of change accelerates. When you find
that your processes are out of step with your needs, we believe you will find the
ICSM helpful.

Who Can Benefit from Reading This Book?
The book’s contents can help you if you face one or more of the following situations:

hh Your projects frequently overrun their budgets and schedule.

hh Your projects have a lot of late rework or technical debt.

hh Your delivered systems are hard to maintain.

hh Your organization uses a one-size-fits all process for a variety of systems.

hh Your systems need to succeed in situations involving rapid change,
emergent requirements, high levels of assurance, or some combination of
those.

hh Your systems must operate with other complex, networked systems.

Managers and executives stuck in one-size-fits-all decision sequences will
find new possibilities and begin to understand their new roles in successful
21st-century development. Practitioners of all development-related disciplines will
find a unified way to approach a broad variety of projects, improve their collabora-
tion, respond more agilely to the changing needs of stakeholders, and better quan-
tify and demonstrate progress to managers and executives. Academics will gain a
source of information to replace or enhance the way they educate developers and
managers, as well as fertile areas for research and study.

As one-step, total-makeover corporate process changes can be risky, this book
provides a way for organizations or projects to incrementally experiment with the
ICSM’s key practices and to evolve toward process models better suited to their
needs and competitive environment.

Preface   xvii

An Electronic Process Guide (EPG), available on the book’s companion website
(http://csse.usc.edu/ICSM), contains guidelines, subprocesses, and templates that
facilitate ICSM adoption. The EPG also supports this volume’s use as a textbook
for a capstone project course in systems or software engineering. USC has offered
such a course since 1995, spanning and evolving across more than 200 real-client
projects and 2000 students.

How Is the Book Organized?
The book generally flows from why, moves to what, and then on to how, with a
bit of how much in between. It begins with a Prologue—a cautionary tale drawn
from ancient mythology, but highly relevant to 21st-century system developers.

Once suitably enlightened, the reader will find a one-chapter Introduction
describing our rationale for constructing the ICSM and a high-level, self-contained
overview of ICSM fundamentals and use. System development stakeholders (e.g.,
users, developers, acquirers), executives, and managers may obtain a big-picture
understanding of the ICSM, and find the summary to be food for thought and
action in managing the uncertainties of modern complex product or system devel-
opment. Readers who would prefer to start by exploring a particular aspect of the
ICSM can generally use the Contents list or Index to find and address it in detail,
but will often find it useful to refer back to the Introduction for overall context.

Part I provides detailed discussions of the four key ICSM principles and
explains why they are critical. Each chapter in Part I begins with a failure story and
a success story, illustrating the need for and application of the principle, followed
by its key underlying practices. Part I completes the why part of the book begun in
the Prologue and continued in the early part of the Introduction.

Parts II and III explain the phases and stages that provide the framework for
ICSM’s process generation. They introduce the case study that we use to illustrate
how the stages and phases of the ICSM support success. This case study uses a next-
generation medical device—an example of an advanced cyber–physical–human
system with the inherent challenges of assuring safety, usability, and interoper-
ability with other devices and systems—to lead the reader (and the medical device
team) through the individual stages and phases of the ICSM. Parts II and III contain
the majority of the what information, and a bit of the how.

Part IV completes the how and how much information. It supports implemen-
tation of the ICSM through phase-combining patterns and a set of common cases
encountered in applying the risk-based phase decisions. There is information on
adapting the ICSM to a specific project or environment, and an exploration of how
its risk-driven, adaptive framework acts as a unifying element to support the effec-
tive application of existing practices. Part IV also provides guidance on applying
some key practices that must be adapted somewhat for ICSM, and ends with an
afterword that describes how we intend to evolve the ICSM with help from you,
the reader.

http://csse.usc.edu/ICSM

xviii   Preface

The Appendices provide additional information on the tools developed spe-
cifically for ICSM activities, mappings of the ICSM to widely used process model
and standards, and a comprehensive bibliography.

As stated earlier, the Companion Website to the book (http://csse.usc.edu/
ICSM) provides the EPG and other automated tools, along with updates, examples,
discussions, and useful classroom materials. The website is the primary place
to find up-to-date information concerning the ICSM and its use, including white
papers and guides for ICSM application in particular domains. While most of the
material on the site is free, on occasion there may be material for sale. For those
cases, the site is linked to and supported by Addison-Wesley and InformIT to pro-
vide an easy means to purchase those materials as well as other books of interest
to the readers.

Who Helped Us Write the Book?
The organization and content of the ICSM have benefited significantly from our
participation in three major efforts to provide improved guidelines for systems and
software practice and education:

hh The U.S. National Research Council’s Human–System Integration in the
System Development Process study

hh The international efforts to define educational and practice guidelines that
better integrate software, hardware, and human systems engineering—the
Graduate Software Engineering Reference Curriculum

hh The Systems Engineering Body of Knowledge and Graduate Reference
Curriculum for Systems Engineering

These not only helped improve the ICSM, but also established its compatibility with
these reference guidelines, along with co-evolving guidelines such as the IEEE-
CS and ISO/IEC’s Software Engineering Body of Knowledge and INCOSE Systems
Engineering Handbook.

Funding for much of the initial work on the ICSM was provided through the
Systems Engineering Research Center—a U.S. Department of Defense university-
affiliated research center. In particular, Kristen Baldwin, Principal Deputy in the
Office of the Deputy Assistant Secretary of Defense for Systems Engineering, pro-
vided early vision, guidance, and resources to the authors.

The following reviewers provided excellent advice and feedback on early ver-
sions of the book: Ove Armbrust, Tom DeMarco, Donald Firesmith, Tom Gilb, Paul
Grünbacher, Liguo Huang, DeWitt Latimer IV, Bud Lawson, Jürgen Münch, George
Rebovich, Jr., Neil Siegel, Hillary Sillitto, Qing Wang, Da Yang, and Wen Zhang.

http://csse.usc.edu/ICSM
http://csse.usc.edu/ICSM

Preface   xix

The authors have gained numerous insights from collaborations and work-
shops with our Industrial Affiliate members, including:

Aerospace Corporation: Wanda Austin, Kirstie Bellman, Myron Hecht, Judy
Kerner, Eberhardt Rechtin Marilee Wheaton

Agile Alliance: Kent Beck, Alistair Cockburn, Jim Highsmith, Ken Schwaber

AgileTek: John Manzo

AT&T: Larry Bernstein

BAE Systems: Jim Cain, Gan Wang

Bellcore: Stuart Glickman

Boeing: Ray Carnes, Marilynn Goo, Tim Peters, Shawn Rahmani, Bill
Schoening, David Sharp

C-Bridge: Charles Leinbach

Cisco: Sunita Chulani, Steve Fraser

CMU-SEI: Roger Bate, Paul Clements, Steve Cross, Bill Curtis, Larry Druffel,
John Goodenough, Watts Humphrey, Paul Nielsen

Construx, Inc.: Steve McConnell

Cubic Corporation: Mike Elcan

EDS: Mike Sweeney

Fraunhofer-IESE: Dieter Rombach

Fraunhofer-Maryland: Vic Basili, Forrest Shull, Marvin Zelkowitz

Galorath: Dan Galorath, Denton Tarbet

GE Systems: Paul Rook

General Dynamics: Michael Diaz

Group Systems: Bob Briggs

Hughes: Elliot Axelband

IBM/Rational: Tim Bohn, Grady Booch, Peter Haumer, Ivar Jacobson, Per
Kroll, Bruce McIsaac, Philippe Kruchten, Walker Royce

Intelligent Systems: Azad Madni

ISCAS: Mingshu Li, Qing Wang, Ye Yang

ITT/Quanterion: Tom McGibbon

JPL: Jairus Hihn, Kenneth Meyer, Robert Tausworthe

Lockheed Martin: Sandy Friedenthal, John Gaffney, Gary Hafen, Garry
Roedler

Master Systems: Stan Rifkin

Microsoft: Apurva Jain

xx   Preface

MITRE: Judith Dahmann, George Rebovich

Motorola: Dave Dorenbos, Nancy Eickelmann, Arnold Pittler, Allan Willey

Naval Postgraduate School: Ray Madachy

NICTA: Ross Jeffery

Northrop Grumman/TRW: Frank Belz, George Friedman, Rick Hefner, Steve
Jacobs, Alan Levin, Fred Manthey, Maria Penedo, Winston Royce, Rick
Selby, Neil Siegel

OGR Systems: Kevin Forsberg

Price Systems: Arlene Minkiewicz, David Seaver

Raytheon: Anthony Peterson, Quentin Redman, John Rieff, Gary Thomas

RCI: Don Reifer

SAIC: Dick Fitzer, Tony Jordano, Beverly Kitaoka, Gabriel Lengua, Dick
Stutzke

San Diego State University: Teresa Larsen

Softstar Systems: Dan Ligett

Software Metrics: Betsy Clark, Brad Clark

Stevens Institute: Art Pyster

Teledyne Brown Engineering: Douglas Smith

University of Massachusetts: Lori Clarke, Lee Osterweil

University of Texas: Dewayne Perry

University of Virginia: Kevin Sullivan

Wellpoint: Adam Kohl

Xerox: Peter Hantos, Jason Ho

Finally, the authors are grateful for the support of their partners in life, who
put up with working weekends, late nights, unexpected travel, and all of the
household inconveniences that writing books entail. To Sharla, Mike, Sohrab, and
Jo—our best friends, greatest inspirations, sharpest critics, and truest loves—our
heartfelt thanks. We love you.

xxi

About the Authors

Barry Boehm developed a conceptual version of the spiral model at TRW in 1978,
but only in 1981 was he able to employ it successfully, leading the development of a
corporate TRW software development environment. Since the formal publication of
this model in 1988, he and his colleagues have devoted extensive efforts to clarify-
ing and evolving it through several intermediate versions into the ICSM. Dr. Boehm
is the USC Distinguished Professor of Computer Sciences, Industrial and Systems
Engineering, and Astronautics; the TRW Professor of Software Engineering; the
Chief Scientist of the DoD–Stevens–USC Systems Engineering Research Center; and
the Founding Director of the USC Center for Systems and Software Engineering.
He was director of DARPA-ISTO for 1989–1992, at TRW for 1973–1989, at Rand
Corporation for 1959–1973, and at General Dynamics for 1955–1959. Dr. Boehm
is a Fellow of the primary professional societies in computing (ACM), aerospace
(AIAA), electronics (IEEE), systems engineering (INCOSE), and lean and agile
development (LSS), and a member of the U.S. National Academy of Engineering.

Jo Ann Lane is currently the systems engineering Co-Director of the University
of Southern California Center for Systems and Software Engineering, a member of
the Systems Engineering Research Center (SERC) Research Council representing the
system of systems research area, and emeritus professor of computer science at San
Diego State University. Her current areas of research include system of systems
engineering, system affordability, expediting systems engineering, balancing lean
and agile techniques with technical debt, and innovation in systems engineering.
Previous publications include more than 50 journal articles and conference papers.
In addition, Dr. Lane was co-author of the 2008 Department of Defense’s Systems
Engineering Guide for Systems of Systems and a contributor to the Systems Engi-
neering Body of Knowledge (SEBoK). Prior to her current work in academia, she was
a Vice President in SAIC’s Healthcare and Software and Systems Integration groups.

xxii   About the Authors

Supannika Koolmanojwong is a faculty member and researcher at the University
of Southern California Center for Systems and Software Engineering. Her primary
research areas are systems and software process modeling, software process
improvement, software process quality assurance, software metrics and measure-
ment, agile and lean software development and expediting systems engineering.
She is a certified ScrumMaster and a certified Product Owner. Prior to joining USC,
Dr. Koolmanojwong was a software engineer and a RUP/OpenUp Content Devel-
oper at IBM RationalSoftware Group.

Richard Turner has more than 30 years of experience in systems, software, and
acquisition engineering. He is currently a Distinguished Service Professor at the
Stevens Institute of Technology in Hoboken, New Jersey, and a Principal Investiga-
tor with the Systems Engineering Research Center. Although on the author team
for CMMI, Dr. Turner is now active in the agile, lean, and Kanban communities. He
is currently studying agility and lean approaches as a means to solve large-sys-
tems issues. Dr. Turner is a member of the Executive Committee of the NDIA/AFEI
Agile for Defense Adoption Proponent Team, is a member of the INCOSE Agile SE
Working Group, and was an author of the groundbreaking IEEE Computer Society/
PMI Software Extension for the Guide to the PMBOK that spans the gap between
traditional and agile approaches. He is a Fellow of the Lean Systems Society, a
Golden Core awardee of the IEEE Computer Society, and co-author of three other
books: Balancing Agility and Discipline: A Guide for the Perplexed, co-written
with Barry Boehm; CMMI Survival Guide: Just Enough Process Improvement,
co-authored with Suzanne Garcia; and CMMI Distilled.

This page intentionally left blank

The Mythical Bed of Procrustes (with Tailoring Tools)

3

Prologue

A Cautionary Tale: The Bed of Procrustes
In the ancient world of the Greeks, there were gods and goddesses, demi-gods and
heroes. The normal Greeks were quite entertained by the antics of these divine and
semi-divine creatures, and followed them in their spare time (when they weren’t
creating democracy, mathematics, astronomy, history, and all manner of interest-
ing things we occasionally use and appreciate today). There is a wealth of litera-
ture on the gods and goddesses, but we are interested in only one minor miscreant,
who provides a wonderful metaphor for one of the main reasons this book was
written.

His name was Procrustes, and he was a son of Poseidon, the god of the sea,
among other things. Procrustes, although trained as a smith, made his living as
an innkeeper cum bandit, having a nice hostelry on one of the mountains that
happened to be on the way between two fairly important towns in ancient Greece.
Of course, Procrustes wasn’t your usual, run-of-the-mill bandit. Think of him as
an early incarnation of a cross between Lizzy Borden and Norman Bates. While
not someone you would want your sister to marry, he was creative in the way he
relieved unlucky travelers of their goods. This creativity buys him a bit of mytho-
logical slack, as well as provides our metaphor.

Procrustes liked things to fit nicely into specified buckets—very much like
many of the program managers and executives we have met along the way. He had
an iron bed that he believed was the perfect length. In fact, he thought it should
fit everyone. Procrustes did not have a therapist, so we’ll probably never know
the reason he was so enamored by the bed. Instead, we’ll simply assume there are
deep-seated reasons for his fixation, feel sorry for his affliction, and get on with
the story.

4   Prologue

His hostelry offered a night’s rest for those who traveled the road across Mount
Korydallos on the way between Athens and Eleusis. The stories are not clear as to
how Procrustes selected his victims, but he would invite them in, show them his
cherished bed, and offer it to them for the night, claiming, not unlike modern mat-
tress salespeople, that it was magical and would perfectly fit whoever slept in it.

As statisticians and human factors experts will tell you, humans, even in the
time of the ancient Greeks, generally varied in height and weight according to a
normal distribution. And, of course, the iron bed was not created to adjust easily
for such a distribution. In fact, it was a very precise length and width. It should be
clear that the odds of having a person perfectly fit this bed, while not impossible,
were probabilistically small. Ignoring the odds, or perhaps depending on them, Pro-
crustes was nearly always presented with a person who did not fit the bed.*

Procrustes would bind the person to the bed, quickly realize that the guest did
not fit it perfectly, reach for his smith’s tools, and then carefully tailor the person
to fit it—less magically, and more messily. If the unfortunate guest was too tall or
too wide, he would simply lop off the offending parts. If too short or too narrow,
then he would forcefully stretch the individual out until he fit. Needless to say, this
generally proved fatal to the guest. Having assured himself of the perfection of the
bed, and shaking his head at the imperfection of this particular human, Procrustes
would gather the now-deceased’s valuables into his hoard and begin the task of
cleaning the room for his next guest.

Procrustes, whose name, ironically or mythically, meant “he who stretches,”
continued this endeavor until he mistakenly invited the hero Theseus to stay the
night. Theseus turned the tables (or the bed, as it were) on Procrustes and did
some tailoring of his own. While the disposition of Procrustes’s famous bed is not
reported, the concept of “one size fits all” has found its way down through the
centuries.

The Point of the Story
Many organizations today find that their previous world of relatively stable busi-
nesses, products, processes, personnel, and technology is changing at an increas-
ingly rapid pace. They find their investments in one-size-fits-all corporate and
development processes are functioning like a Procrustean bed when applied to
engineer and develop an increasing diversity of system types. They encounter
problems with emergent and rapidly changing requirements and different balances
of needs for agility, assurance, or both. The need for personnel with different
skills, motivations, and lifestyles surfaces. Their rapidly evolving information and
communication infrastructures are increasingly penetrating physical systems via
three-dimensional printing and Internets of Things.

*  In fact, some writers suggest that there were two beds, giving Procrustes even better odds.

Prologue   5

Unfortunately, trying to escape from their Procrustean bed is difficult. There
are conflicts between their impatient, change-oriented technical people and their
settled, THWADI (“That’s How We’ve Always Done It”) administrators, each of
whom has little understanding of the others’ world. Employees working in single
domains where one size is enough feel that their solutions ought to work for
everybody else. It is even challenging to identify criteria for selecting alternative
processes. The organization may have tried changing everyone to a new method
and found that it is yet just another Procrustean bed.

We have gone through these difficulties ourselves during our periods in indus-
try, government, and academia: trying to undo overenthusiastic corporate commit-
ments made using the waterfall model; trying to get flexible acquisition standards
approved by inflexible standards administrators; and trying to evolve best prac-
tices to teach students and have them apply in real-client project courses. The
Incremental Commitment Spiral Model is the best approach we have found so far,
and our applications of it across a wide range of project sizes and domains have
worked out better than the project stakeholders’ previous experiences. As we learn
more, this model continues to evolve. We have also found that it is better to adopt
its changes to organizations’ current practices incrementally, and have identified
practices that can be adopted incrementally, based on understanding organiza-
tions’ strongest needs and opportunities.

We are not alone recognizing the problems. Other initiatives are making prog
ress in moving people and organizations away from their previous one-size-fits-
all processes. Several of our University of Southern California (USC) industrial
affiliates have developed criteria for selecting alternative process models. Per Kroll
and Philippe Kruchten’s book, The Rational Unified Process Made Easy, sepa-
rates its guidance into four tracks: Projects Deimos, Ganymede, Mars, and Jupiter.
Frank Kendall’s reorganization of the previously Procrustean U.S. Department of
Defense Instruction 5000.02 into six different system acquisition swim lanes is
another major step forward. We hope that this book and its website can benefit
your organization and enable it to avoid having future projects stretched or lopped
to fit Procrustean beds.

This page intentionally left blank

81

3
The Third Principle: Concurrent
Multidiscipline Engineering

“Do everything in parallel, with frequent synchronizations.”

—Michael Cusumano and Richard Selby, Microsoft Secrets, 1995

“As the correct solution of any problem depends primarily on a true understanding
of what the problem really is, and wherein lies its difficulty, we may profitably
pause upon the threshold of our subject to consider first, in a more general way,
its real nature: the causes which impede sound practice; the conditions on which
success or failure depends; the directions in which error is most to be feared. Thus
we shall attain that great perspective for success in any work—a clear mental
perspective, saving us from confusing the obvious with the important, and the
obscure and remote with the unimportant.”

—Arthur M. Wellington, The Economic Theory of the Location of Railroads, 1887

The first flowering of systems engineering as a formal discipline focused on the
engineering of complex physical systems such as ships, aircraft, transportation

systems, and logistics systems. The physical behavior of the systems could be well
analyzed by mathematical techniques, with passengers treated along with baggage
and merchandise as a class of logistical objects with average sizes, weights, and
quantities. Such mathematical models were very good in analyzing the physical
performance tradeoffs of complex system alternatives. They also served as the
basis for the development of elegant mathematical theories of systems engineering.

The physical systems were generally stable, and were expected to have long
useful lifetimes. Major fixes or recalls of fielded systems were very expensive, so it
was worth investing significant up-front effort in getting their requirements to be
complete, consistent, traceable, and testable, particularly if the development was
to be contracted out to a choice of competing suppliers. It was important not to
overly constrain the solution space, so the requirements were not to include design
choices, and the design could not begin until the requirements were fully specified.

Various sequential process models were developed to support this approach,
such as the diagonal waterfall model, the V-model (a waterfall with a bend upward
in the middle), and the two-leg model (an inverted V-model). These were effective

82   Chapter 3    The Third Principle: Concurrent Multidiscipline Engineering

in developing numerous complex physical systems, and were codified into gov-
ernment and standards-body process standards. The manufacturing process of
assembling physical components into subassemblies, assemblies, subsystems, and
system products was reflected in functional-hierarchy design standards, integra-
tion and test standards, and work breakdown structure standards as the way to
organize and manage the system definition and development.

The fundamental assumptions underlying this set of sequential processes,
prespecified requirements, and functional-hierarchy product models began
to be seriously undermined in the 1970s and 1980s. The increasing pace of
change in technology, competition, organizations, and life in general made
assumptions about stable, prespecifiable requirements unrealistic. The exis
tence of cost-effective, competitive, incompatible commercial products or other
reusable non-developmental items (NDIs) made it necessary to evaluate and often
commit to solution components before finalizing the requirements (the conse-
quences of not doing this will be seen in the failure case study in Chapter 4).
The emergence of freely available graphic user interface (GUI) generators made
rapid user interface prototyping feasible, but also made the prespecification of user
interface requirement details unrealistic. The difficulty of adapting to rapid change
with brittle, optimized, point-solution architectures generally made optimized
first-article design to fixed requirements unrealistic.

As shown in the “hump diagram” of Figure 0-5 in the Introduction, the
ICSM emphasizes the principle of concurrent rather than sequential work for
understanding needs; envisioning opportunities; system scoping; system objectives
and requirements determination; architecting and designing of the system and its
hardware, software, and human elements; life-cycle planning; and development of
feasibility evidence. Of course, the humps in Figure 0-5 are not a one-size-fits-all
representation of every project’s effort distribution. In practice, the evidence- and
risk-based decision criteria discussed in Figures 0-7 and 0-8 in the Introduction
can determine which specific process model will fit best for which specific situation.
This includes situations in which the sequential process is still best, as its assump-
tions still hold in some situations. Also, since requirements increasingly emerge
from use, working on all of the requirements and solutions in advance is not
feasible—which is where the ICSM Principle 2 of incremental commitment applies.

This establishes the context for the “Do everything in parallel” quote at the
beginning of this chapter. Even though preferred sequential-engineering situa-
tions still exist in which “Do everything in parallel” does not universally apply, it
is generally best to apply it during the first ICSM Exploratory phase. By holistically
and concurrently addressing during this beginning phase all of the system’s hard-
ware, software, human factors, and economic considerations (as described in the
Wellington quote at the beginning of the chapter), projects will generally be able
to determine their process drivers and best process approach for the rest of the
system’s life cycle. Moreover, as discussed previously, the increasing prevalence of
process drivers such as emergence, dynamism, and NDI support will make concur-
rent approaches increasingly dominant.

The Third Principle: Concurrent Multidiscipline Engineering   83

Thus suitably qualified, we can proceed to the main content of Chapter 3.
Our failure and success case studies are two different sequential and concurrent
approaches to a representative complex cyber–physical–human government system
acquisition involving remotely piloted vehicles (RPVs). The remaining sections will
discuss best practices for concurrent cyber–physical–human factors engineering,
concurrent requirements and solutions engineering, concurrent development and
evolution engineering, and support of more rapid concurrent engineering.

An example to illustrate ICSM concurrent-engineering benefits is the unmanned
aerial system (UAS; i.e., RPV) system enhancement discussed in Chapter 5 of the
NRC’s Human–System Integration report [1]. These RPVs are airplanes or heli-
copters operated remotely by humans. The systems are designed to keep humans
out of harm’s way. However, the current RPV systems are human-intensive, often
requiring two people, and often considerably more, to operate a single vehicle. The
increase in need to operate numerous RPVs is causing a strong desire to modify
the 1:2 (one vehicle controlled by two people) ratio to allow for a single operator to
operate more than one RPV, as shown in Figure 3-1.

A recent advanced technology demonstration of an autonomous-agent–based
system enabled a single operator to control four RPVs flying in formation to a crisis
area while compensating for changes in direction to avoid adverse weather condi-
tions or no-fly zones. Often, such demonstrations to high-level decision makers,
who are typically focused on rapidly getting innovations into the competition

Figure 3-1  Vision of 4:1 Remotely Piloted Vehicle System (from Pew and Mavor, 2007)

84   Chapter 3    The Third Principle: Concurrent Multidiscipline Engineering

space, will lead to commitments to major acquisitions before the technical and
economic implications have been worked out (good examples have been the Iridium
satellite-based personal telephone system and the London Ambulance System).

Based on our analyses of such failures and complementary successes (e.g., the
rapid-delivery systems of Federal Express, Amazon, and Walmart), the failure and
success stories in this chapter illustrate failure and success patterns in the RPV
domain. In the future, the technical, economic, and safety challenges for similarly
autonomous air vehicles will become even more complex, as with Amazon’s recent
concept and prototype of filling the air with tiny, fully autonomous, battery-powered
helicopters rapidly delivering packages from its warehouse to your front door.

In this chapter, the demonstration of a 4:1 vehicle:controller ratio capability
highly impressed senior leadership officials viewing the demo, and they established
a high-priority rapid-development program to acquire and field a common
agent-based 4:1 RPV control capability for use in battlefield-based, sea-based, and
home-country–based RPV operations.

3.1  Failure Story: Sequential RPV Systems
Engineering and Development

This section presents a hypothetical sequential approach representative of several
recent government acquisition programs, which would use the demo results to cre-
ate the requirements for a proposed program that used the agent-based technology
to develop a 4:1 ratio system that enabled a single operator to control four RPVs in
battlefield-based, sea-based, and home-country–based RPV operations. A number
of assumptions were made to sell the program at an optimistic cost of $1 billion
and schedule of 40 months. Enthusiasm was such that the program, budget, and
schedule were established, and a multi-service working group of experienced
battlefield-based, sea-based, and home-country–based RPV controllers was estab-
lished to develop the requirements for the system.

The resulting requirements included the need to synthesize status information
from multiple on-board and external sensors; to perform dynamic reallocation of
RPVs to targets; to perform self-defense functions; to communicate status and obser-
vational information to central commanders and other RPV controllers; to control
RPVs in the same family but with different releases having somewhat different con-
trols; to avoid harming friendly forces or noncombatants; and to be network-ready
with respect to self-identification when entering battle zones, establishing security
credentials and protocols, operating in a publish–subscribe environment, and par-
ticipating in replanning activities based on changing conditions. These requirements
were included in a request for proposal (RFP) that was sent out to prospective bidders.

The winning bidder provided an even more impressive demo of agent technol-
ogy and a proposal indicating that all of the problems were well understood, that
a preliminary design review (PDR) could be held in 120 days, and that the cost
would be only $800 million. The program managers and their upper management

3.1  Failure Story: Sequential RPV Systems Engineering and Development   85

were delighted at the prospect of saving $200 million of the taxpayers’ money, and
they established a fixed-price contract to develop the 4:1 system to the require-
ments in the RFP in 40 months, with a System Functional Requirements Review
(SFRR) in 60 days and a PDR in 120 days.

At the SFRR, the items reviewed were transcriptions and small elaborations of
the requirements in the RFP. They did not include any functions for coordinating
the capabilities, and included only sunny-day operational scenarios. There were
no capabilities for recovering from outages in the network, from the loss of RPVs,
or from incompatible sensor data, or for tailoring the controls to battlefield-based,
sea-based, or home-country–based control equipment. The contractor indicated
that it had hired some ex-RPV controllers who were busy putting such capabilities
together.

However, at the PDR, the contractor could not show feasible solutions for
several critical and commonly occurring scenarios, such as coping with network
outages, missing RPVs, and inconsistent data; having the individual controllers
coordinate with each other; performing self-defense functions; tailoring the controls
to multiple equipment types; and satisfying various network-ready interoperability
protocols. As has been experienced in practice [2], such capabilities are much
needed and difficult to achieve.

Because the schedule was tight and the contractor had almost run out of sys-
tems engineering funds, management proposed to address the problems by using
a “concurrent engineering” approach of having the programmers develop the soft-
ware capabilities while the systems engineers were completing the detailed design
of the hardware displays and controls. Having no other face-saving alternative to
declaring the PDR to be a failure, the customers declared the PDR to be passed.

Actually, proceeding into development while completing the design is a per-
nicious misuse of the term “concurrent engineering,” as there is not enough time
to produce feasibility evidence and to synchronize and stabilize the numerous
off-nominal approaches taken by the software developers and the hardware-detail
designers. The situation becomes even worse when portions of the system are
subcontracted to different organizations, which will often reuse existing assets
in incompatible ways. The almost-certain result for large systems is one or more
off-nominal architecture-breakers that require large amounts of rework and
throwaway software to reconcile the inconsistent architectural decisions made by
the self-fulfilling “hurry up and code, because we will have a lot of debugging to
do” programmers. Figure 3-2 shows the results of such approaches for two large
TRW projects, in which 80% of the rework resulted from the 20% of problem fixes
resulting from critical off-nominal architecture-breakers [3].

As a result, after 40 months and $800 million in expenditures, some RPV con-
trol components were developed but were experiencing integration problems, and
even after descoping the performance to a 1:1 operator:RPV ratio, several problems
were still unresolved. For example, the hardware engineers used their traditional
approach to defining interfaces in terms of message content (e.g., “The sensor
data crossing an interface is defined in terms of the following units, dimensions,

86   Chapter 3    The Third Principle: Concurrent Multidiscipline Engineering

coordinate systems, precision, frequency, or other characteristics”). They then
took full earned value credit for defining the system’s interfaces. However, the
RPVs were operating in a Net-centric system of systems, where interface defini-
tion includes protocols for joining the network, performing security handshakes,
publishing and subscribing to services, leaving the network, and so on. As there
was no earned value left for defining these protocols, they remained undefined
while the earned value system continued to indicate full credit for interface defini-
tion. The resulting rework and overruns could be said to result from off-nominal
architecture breakers or from shortfalls in the concurrent engineering of the sen-
sor data processing and networking aspects of the system, and from shortfalls in
accountability for results.

Eventually, the 1:1 capability was achieved and the system delivered, but with
reduced functionality, a cost of $3 billion, and a schedule of 80 months. Even
worse, the hasty patching to get the first article delivered left the customer with a
brittle, poorly documented, poorly tested system that would be the source of many
expensive years of system ownership and sub-par performance.

3.2  Success Story: Concurrent Competitive-
Prototyping RPV Systems Development

A concurrent incremental-commitment approach to the agent-based RPV control
opportunity, using the ICSM process and competitive prototyping, would recog-
nize that there were a number of risks and uncertainties involved in going from a
single-scenario proof-of-principle demo to a fieldable system needing to operate in
more complex scenarios. It would decide that it would be good to use prototyping

100

100

90

90

80

80

70

70

60

60

50

50

40

40

30

30

20

20

10

10
0

0
Percentage of Software Problem Reports (SPRs)

P
er

ce
nt

ag
e

of
 C

os
t t

o
F

ix
 S

P
R

s
TRW Project A
373 SPRs

TRW Project B
1005 SPRs

Major Rework Sources:
Off-Nominal Architecture-Breakers
A—Network Failover
B—Extra-Long Messages

Figure 3-2  Results of Creating or Neglecting Off-Nominal Architecture-Breakers

3.2  Success Story   87

as a way of buying information to reduce the risks, and would determine that a
reasonable first step would be to invest $25 million in an Exploration phase. This
would initially involve the customer and a set of independent experts developing
operational scenarios and evaluation criteria from the requirements in Section 3.1
(to synthesize status information from multiple on-board and external sensors;
to perform dynamic reallocation of RPVs to targets; to perform self-defense func-
tions; and so on). These would involve not only the sunny-day use cases but also
selected rainy-day use cases involving communications outages, disabled RPVs,
and garbled data.

The customer would identify an RPV simulator that would be used in the
competition, and would send out a request for information to prospective com-
petitors to identify their qualifications to compete. Based on the responses, the
customer would then select four bidders to develop virtual prototypes address-
ing the requirements, operational scenarios, and evaluation criteria, and providing
evidence of their proposed agent-based RPV controllers’ level of performance. The
customer would then have the set of independent experts evaluate the bidders’
results. Based on the results, it would perform an evidence- and risk-based Valu-
ation Commitment Review to determine whether the technology was too imma-
ture to merit further current investment as an acquisition program, or whether the
system performance, cost, and risk were acceptable for investing the next level of
resources in addressing the problems identified and developing initial prototype
physical capabilities.

As was discovered much more expensively in the failure case described ear-
lier, the prospects for developing a 4:1 capability were clearly unrealistic. The
competitors’ desire to succeed led to several innovative approaches, but also to
indications that having a single controller handle multiple-version RPV controls
would lead to too many critical errors. Overall, however, the prospects for a 1:1
capability were sufficiently attractive to merit another level of investment, cor-
responding to a Valuation phase. This phase was funded at $75 million, some of
the more ambitious key performance parameters were scaled back, the competi-
tors were down-selected to three, and some basic-capability but multiple-version
physical RPVs were provided for the competitors to control in several physical
environments.

The evaluation of the resulting prototypes confirmed that the need to control
multiple versions of the RPVs made anything higher than a 1:1 capability infeasi-
ble. However, the top two competitors provided sufficient evidence of a 1:1 system
feasibility that a Foundations Commitment Review was passed, and $225 million
was provided for a Foundations phase: $100 million for each of the top com-
petitors, and $25 million for customer preparation activities and the independent
experts’ evaluations.

In this phase, the two competitors not only developed operational RPV versions,
but also provided evidence of their ability to satisfy the key performance parameters
and scenarios. In addition, they developed an ICSM Development Commitment
Review package, including the proposed system’s concept of operation, requirements,

88   Chapter 3    The Third Principle: Concurrent Multidiscipline Engineering

architecture, and plans, along with a Feasibility Evidence Description providing evi-
dence that a system built to the architecture would satisfy the requirements and
concept of operation, and be buildable within the budget and schedule in the plan.

The feasibility evidence included a few shortfalls, such as remaining uncer-
tainties in the interface protocols with some interoperating systems, but each of
these was covered by a risk mitigation plan in the winning competitor’s submis-
sion. The resulting Development Commitment Review was passed, and the win-
ner’s proposed $675 million, 18-month, three-increment Stage II plan to develop
an initial operational capability (IOC) was adopted. The resulting 1:1 IOC was
delivered on budget and 2 months later than the original 40-month target, with a
few lower-priority features deferred to later system increments. Figure 3-3 shows
the comparative timelines for the Sequential and Concurrent approaches.

Of the $1 billion spent, $15 million was spent on the three discontinued
Exploration-phase competitors, $40 million was spent on the two discontin-
ued Valuation-phase competitors, and $100 million was spent on the discontinued
Foundations-phase competitor. Overall, the competitive energy stimulated and the
early risks avoided made this a good investment. However, the $125 million spent
on the experience built up by the losing finalist could also be put to good use by
awarding the finalist with a contract to build and operate a testbed for evaluating
the RPV system’s performance.

Actually, it would be best to announce such an outcome in advance, and to
do extensive team building and award fee structuring to make the testbed activity
constructive rather than adversarial.

While the sequential and concurrent cases were constructed in an RPV context
from representative projects elsewhere, they show how a premature total commit-
ment without adequate resources for and commitment to early concurrent engi-
neering of the modeling, analysis, and feasibility assessment of the overall system
will often lead to large overruns in cost and schedule, and performance that is

0 10 20 30 40 50 60 70 80

PDR CDR IRR FOC

PDR

Devel Integ
 and Test

$1B

Code

Design

$1B

$3B

$25M $75M $225M $675M

4
Protos

3
Protos

2
Flyoff

1
Devel

Reconcile Code
and Design

Integrate, Test, Rework

Sequential Process—Proposed

Sequential Process—Actual

Concurrent Process—
Competitive Prototyping

Months

Figure 3-3  Comparative Timelines

3.3  Concurrent Development and Evolution Engineering   89

considerably less than initially desired. However, by “buying information” early,
the concurrent incremental commitment and competitive prototyping approach
was able to develop a system with much less late rework than the sequential
total commitment approach, and with much more visibility and control over the
process.

The competitive prototyping approach spent about $155 million on unused pro-
totypes, but the overall expenditure was only $1 billion as compared to $3 billion
for the total-commitment approach, and the capability was delivered in 42 versus
80 months, which indicates a strong return on investment. Further, the funding
organizations had realistic expectations of the outcome, so that a 1:1 capability
was a successful realization of an expected outcome, rather than a disappointing
shortfall from a promised 4:1 capability. In addition, the investment in the losing
finalist could be put to good use by capitalizing on its experience to perform an
IV&V role.

Competitive prototyping can lead to strong successes, but it is also impor-
tant to indicate its potential failure modes. These include under-investments in
prototype evaluation, leading to insufficient data for good decision making; extra
expenses in keeping the prototype teams together and productive during often-
overlong evaluation and decision periods; and choosing system developers too
much on prototyping brilliance and too little on ability to systems-engineer and
production-engineer the needed products [4]. These problem areas are easier to
control in competitions among in-house design groups, where they are success-
fully used by a number of large corporations.

3.3  Concurrent Development and
Evolution Engineering

As good as the success story in Section 3.2 appears to be, it could have a fatal flaw
that is shared by many outsourced system acquisitions—namely, its primary focus
on satisfying today’s requirements as quickly and inexpensively as possible. This
may build architectural decisions into the system that make it difficult to adapt
to new opportunities or competitive threats. From an economic standpoint, this
approach neglects the Iron Law of System Evolution:

For every dollar invested in developing a sustained-use system, be
prepared to pay at least two dollars on the system’s evolution.

Data from hardware-intensive systems indicates that the average percentage
of life-cycle cost spent on operations and support (O&S%) is a relatively small 12%
for single-use consumables, but is 60% for ships, 78% for aircraft, and 84% for
ground vehicles [5]. For software-intensive systems, O&S% figures from seven
studies range from 60–70% to more than 90% [6].

90   Chapter 3    The Third Principle: Concurrent Multidiscipline Engineering

Even so, many projects (and some system acquisition guidance documents)
continue to emphasize such practices as “maximizing system performance while
minimizing system acquisition costs.” Such practices generally lead to brittle, point-
solution architectures that overly constrain evolution options and inflate evolution
costs, and to a lack of key system deliverables for reducing operations and support
costs, such as maintenance and diagnostic tools and documentation, test case inputs
and outputs, and latest-release COTS components. (COTS vendors generally support
only their latest three releases. In one maintenance study, we encountered a system
that was delivered with 120 COTS products, 66 of which were on releases that were
no longer supported by the vendors.)

Several good practices for avoiding such situations can be applied in the ini-
tial ICSM Exploration phase. These include early addressing of post-deployment
and aftermarket considerations such as development of a full operations concept
description, including the following considerations:

hh Identification and involvement of key operations and maintenance
stakeholders

hh Agreement on their roles and responsibilities

hh Inclusion of total ownership costs in business case analyses

hh Addressing of post-deployment supply chain management alternatives

hh Identification of development practices and deliverables needed for
successful operations and maintenance

Since operations and maintenance costs can consume 60% to 90% of an enter-
prise’s resources, it is also important to build up a knowledge base on their nature,
and to apply the knowledge to reduce their costs and difficulties. For example,
this was done for the two TRW projects summarized in Figure 3-2. As indicated
in Figure 3-2, their major sources of rework effort were found to be off-nominal
architecture-breakers. This source of risk was added to the TRW risk management
review guidelines for future projects. Also, their additional major sources of life-
cycle change were determined to be hardware–software interfaces, new algorithms,
subcontractor interfaces, user interfaces, external application interfaces, COTS
upgrades, database restructuring, and diagnostic aids, as shown in Table 3-1.

Following Dave Parnas’s information-hiding principles [7], these sources of
change were encapsulated in the architectures of similar projects, and additional
systems engineering effort was devoted to addressing off-nominal architecture
breakers. As detailed in the next chapter, by investing more effort in systems engi-
neering and architecting, the highly successful Command Center Processing and
Display System-Replacement (CCPDS-R) system [8] flattened the usual exponential
growth in cost to make changes even later in the life cycle. The resulting savings
in total cost of ownership are shown in Figure 3-4 [9]. This figure indicates that
the added investment in CCPDS-R was recouped via rework reduction by the end
of the initial development cycle, and generated increasing savings in later cycles.

3.3  Concurrent Development and Evolution Engineering   91

250.00%

200.00%

150.00%

100.00%

50.00%

0.00%
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Project A Project B Project C

Figure 3-4  TOC’s for Projects A, B, and C (CCPDS-R) Relative to Baseline Costs

Table 3-1  Projects A and B Cost-to-Fix Data (Hours)

Category Project A Project B

Extra-long messages 3404 + 626 + 443 + 328 +
244 = 5045

Network failover 2050 + 470 + 360 + 160 = 3040

Hardware-software interface 620 + 200 = 820 1629 + 513 + 289 + 232 +
166 = 2832

Encryption algorithms 1247 + 368 = 1615

Subcontractor interface 1100 + 760 + 200 = 2060

GUI revision 980 + 730 + 420 + 240 + 180 =
2550

Data compression algorithm 910

External applications interface 770 + 330 + 200 + 160 = 1460

COTS upgrades 540 + 380 + 190 = 1110 741 + 302 + 221 + 197 =
1461

Database restructure 690 + 480 + 310 + 210 + 170 =
1860

Routing algorithms 494 + 198 = 692

Diagnostic aids 360 477 + 318 + 184 = 979

Total 13,620 13,531

92   Chapter 3    The Third Principle: Concurrent Multidiscipline Engineering

3.4  Concurrent Engineering of Hardware,
Software, and Human Factors Aspects

Not every system has all three hardware, software, and human factors aspects.
When a system does have more than one of these aspects, however, it is important
to address them concurrently rather than sequentially. A hardware-first approach
will often choose best-of-breed hardware components with incompatible software
or user interfaces; provide inadequate computational support for software growth;
create a late software start and a high risk of a schedule overrun; or commit to
a functional-hierarchy architecture that is incompatible with layered, service-
oriented software and human-factors architectures [10].

Software-first approaches can similarly lead to architectural commitments
or selection of best-of-breed components that are incompatible with preferred
hardware architectures or make it hard to migrate to new hardware platforms
(e.g., multiprocessor hardware components). They may also prompt developers to
choose software-knows-best COTS products that create undesirable human–system
interfaces. Human-factors-first approaches can often lead to the use of hardware–
software packages that initially work well but are difficult to interoperate or scale
to extensive use.

Other problems may arise from assumptions by performers in each of the three
disciplines that their characteristics are alike, when in fact they are often very
different. For systems having limited need or inability to modify the product once
fielded (e.g., sealed batteries, satellites), the major sources of life-cycle cost in a
hardware-intensive system are realized during development and manufacturing.
However, as we noted earlier, hardware maintenance costs dominate (60–84% of
life-cycle costs cited for ships, aircraft, and ground vehicles). For software-intensive
systems, manufacturing costs are essentially zero. For information services, the
range of 60% to 90% of the software life-cycle cost going into post-development
maintenance and upgrades is generally applicable. For software embedded in
hardware systems, the percentages would be more similar to those for ships
and such. For human-intensive systems, the major costs are staffing and train-
ing, particularly for safety-critical systems requiring continuous 24/7 operations.
A primary reason for this difference is indicated in rows 2 and 3 of Table 3-2.
Particularly for widely dispersed hardware such as ships, submarines, satellites,
and ground vehicles, making hardware changes across a fleet can be extremely
difficult and expensive. As a result, many hardware deficiencies are handled via
software or human workarounds that save money overall but shift the life-cycle
costs toward the software and human parts of the system.

As can be seen when buying hardware such as cars or TVs, there is some
choice of options, but they are generally limited. It is much easier to tailor software
or human procedures to different classes of people or purposes. It is also much
easier to deliver useful subsets of most software and human systems, while deliv-
ering a car without braking or steering capabilities is infeasible.

3.4  Concurrent Engineering of Hardware, Software, and Human Factors Aspects   93

The science underlying most of hardware engineering involves physics, chem-
istry, and continuous mathematics. This often leads to implicit assumptions about
continuity, repeatability, and conservation of properties (mass, energy, momen-
tum) that may be true for hardware but not true for software or human counter-
parts. An example is in testing. A hardware test engineer can generally count on
covering a parameter space by sampling, under the assumption that the responses
will be a continuous function of the input parameters. A software test engineer will
have many discrete inputs, for which a successful test run provides no assurance
that the neighboring test run will succeed. And for humans, the testing needs to
be done by the operators and not test engineers.

A good example of integrated cyber–physical–human systems design is
the detailed description of the Hospira medical infusion pump success story in
Chapter 1. It included increasing risk-driven levels of detail in field studies and

Difference Area Hardware/ Physical
Software/Cyber/
Informational Human Factors

Major
life-cycle cost
sources

Development; manu-
facturing; multilocation
upgrades

Life-cycle evolution; low-
cost multilocation upgrades

Training and operations
labor

Nature of
changes

Generally manual, labor-
intensive, expensive

Generally straightforward
except for software code
rot, architecture-breakers

Very good, but dependent
on performer knowledge
and skills

Incremental
development
constraints

More inflexible lower
limits

More flexible lower limits Smaller increments easier,
if infrequent

Underlying
science

Physics, chemistry, con-
tinuous mathematics

Discrete mathematics, logic,
linguistics

Physiology, behavioral
sciences, economics

Testing By test engineers; much
analytic continuity

By test engineers; little
analytic continuity

By representative users

Strengths Creation of physi-
cal effects; durability;
repeatability; speed
of execution; 24/7
operation in wide
range of environments;
performance monitoring

Low-cost electronic distrib-
uted upgrades; flexibility
and some adaptability;
big-data handling, pattern
recognition; multitasking
and relocatability

Perceiving new patterns;
generalization; guiding
hypothesis formulation
and test; ambiguity reso-
lution; prioritizing during
overloads; skills diversity

Weaknesses Limited flexibility and
adaptability; corro-
sion, wear, stress,
fatigue; expensive
distributed upgrades;
product mismatches;
human-developer
shortfalls

Complexity, conformity,
changeability, invisibility;
common-sense reasoning;
stress and fatigue
effects; product mis-
matches; human-developer
shortfalls

Relatively slow decision
making; limited attention,
concentration, multitask-
ing, memory recall, and
environmental conditions;
teaming mismatches

Table 3-2  Differences in Hardware, Software, and Human System Components

94   Chapter 3    The Third Principle: Concurrent Multidiscipline Engineering

hardware–software–user interface prototyping; task analysis; hardware and soft-
ware component analysis, including usability testing; and hardware–software–
human safety analyses. Example prototypes and simulations included the following:

hh Hardware industrial design mockups

hh Early usability tests of hardware mockups

hh Paper prototypes for GUIs with wireframes consisting of basic shapes for
boxes, buttons, and other components

hh GUI simulations using Flash animations

hh Early usability tests with hardware mockups and embedded software
that delivered the Flash animations to a touchscreen interface that was
integrated into the hardware case

3.5  Concurrent Requirements and
Solutions Engineering

With respect to the content of the Feasibility Evidence Description view of the ICSM
in Figure 0-6 in the Introduction, the term “requirements” includes the definition
of the system’s operational concept and its requirements (the “what” and “how
well” the system will perform). The term “solutions” includes the definition of the
system–hardware–software–human factors architecture elements, and the project’s
plans, budgets, and schedules (the “how” and “how much”).

For decades, and even today, standard definitions of corporate and govern-
ment system development and acquisition processes have stipulated that the
Requirements activity should produce complete, consistent, traceable, and test-
able requirements before any work was allowed on the solutions. Initially, there
were some good reasons for this sequential approach. Often, requirements were
inserted that were really solution choices, thus cutting off other solution choices
that could have been much better. Or in many situations, developers would gener-
ate solutions before the requirements were fully defined or understood, leading
to numerous useless features or misguided architectural commitments that led to
large overruns. At the time, most systems were relatively simple and requirements
were relatively stable, so that the risk of spending more time specifying them was
less than the risk of expensive overruns.

However, the sequential requirements-first approach is a poor fit to most
human approaches to practical problem solving. Figure 3-5 shows a representative
result from a study of how people work when developing solutions, concurrently
obtaining insights all the way from operational concepts to low-level solution
components [11].

For more complex systems, teams of people will be similarly exploring and
understanding multiple levels of problems and solutions and coordinating their

3.5  Concurrent Requirements and Solutions Engineering   95

progress, capitalizing on many insights that are not available if they are locked into
a sequential, reductionist, requirements-first approach. Also, they will have difficul-
ties in developing key evidence such as business cases for the system, which require
both estimates of system benefits (needing information about the requirements),
and estimates of costs (needing information about the solutions).

Further, as systems become more complex and human-interactive, users
become less able to specify their requirements in advance (“Which decision aids
do I want to see on the computer screen or in the cockpit? I don’t know, but I’ll
know it when I see it”—the IKIWISI syndrome). Also, as users gain experience
in interactively using a system, new requirements emerge that may not be sup-
portable by the architecture developed for the initial requirements (e.g., capabili-
ties to cancel or undo commands, produce trend analyses, or decision outcome
predictions).

Such hard-to-specify or emergent requirements are addressable via prototyp-
ing or solutions exploration, but these are not allowed in literal interpretations of
sequential, requirements-first approaches, which tend to get ossified by layers of
regulations, specifications, standards, contracting practices, and maturity models.
One of the authors (Boehm) found himself in the difficult position of having led
much of the effort to define the sequential, waterfall-oriented TRW Software Devel-
opment Policies and Standards in the 1970s, along with training courses, review
criteria, and corporate public relations materials—and then trying to convince proj
ects in the 1980s to use counterculture techniques such as human-interface proto-
typing (“Prototyping is not allowed. It’s developing solutions before we fully define
the requirements”).

Lift Scenario

Requirement

Solution High

Solution Medium

Solution Low

15 30 45 7560 90

Time (minutes)

R

D
es

ig
n

A
ct

iv
iti

es

Figure 3-5  Human Problem Understanding and Solving: An Elevator (Lift) System Example

96   Chapter 3    The Third Principle: Concurrent Multidiscipline Engineering

The ICSM’s principles and practices such as evidence- and risk-driven decision
making provide ways to evolve to concurrent versus sequential requirements and
solutions engineering. These considerations will be covered in the next chapter. Also,
further details such as evidence-based process guidance are covered in Chapter 13.
In addition, methods, processes, and tools for concurrent-engineering risk assess-
ment and award-fee contracting are provided on the ICSM website at http://csse.usc.
edu/ICSM.

References
[1]	 Pew, R., and Mavor, A. Human–System Integration in the System Develop-

ment Process. NAS Press, 2007.

[2]	 Beidel, E. “Efforts Under Way to Harden Unpiloted Aircraft for Contested Air-
space.” National Defense. July 2011.

[3]	 Boehm, B., Valerdi, R., and Honour, E. “The ROI of Systems Engineering: Some
Quantitative Results for Software-Intensive Systems.” Systems Engineering.
2008;11(3):221–234.

[4]	 Ingold, D. “Results of a Survey on Competitive Prototyping for Software-
Intensive Systems.” USC-CSSE Technical Report USC-CSSE-2008-841. October
2008. http://csse.usc.edu/csse/TECHRPTS/2008/2008_main.html.

[5]	 Redman, Q. Weapon System Design Using Life Cycle Costs. Raytheon Presen-
tation, NDIA, 2008.

[6]	 Koskinen, J. “Software Maintenance Fundamentals.” In P. Laplante (Ed.),
Encyclopedia of Software Engineering. Taylor & Francis Group, 2009.

[7]	 Parnas, D. “Designing Software for Ease of Extension and Contraction.” IEEE
Transactions in Software Engineering. March 1979;128–137.

[8]	 Royce, W. Software Project Management: A Unified Framework. Reading,
MA: Addison-Wesley Professional, 1998.

[9]	 Boehm, B., Lane, J., and Madachy, R. “Total Ownership Cost Models for Valu-
ing System Flexibility.” Proceedings of CSER 2011. March 2011.

[10]	 Maier, M. “System and Software Architecture Reconciliation.” Systems Engi-
neering. 2006;9(2):146–159.

[11]	 Guindon, R. “Designing the Design Process: Exploring Opportunistic
Thoughts.” Human–Computer Interaction. 1990;5.

http://csse.usc.edu/ICSM
http://csse.usc.edu/ICSM
http://csse.usc.edu/csse/TECHRPTS/2008/2008_main.html

This page intentionally left blank

A
Activities, ICSM, 21, 24
Activity-based cost estimation model,

227–228
Agile COCOMO II, cost estimation

model, 227
Agility, creating successful systems, 13–14
Agreement. See Consensus, reaching.
Algorithmic cost estimation models,

225–226
Analogy cost estimation models, 226–227
Architectural incompatibilities, as risk

source, 239–240
Armacost, Sam, 59–60
AT&T Architecture Review Board, 212

B
Balance

creating successful systems, 14–15
Meta-Principle of Balance, 108–109

Balancing Agility and Discipline, 232
Basili, Vic, 209
Beck, Kent, 17
BoA (Bank of America) (case study), 59–62
Books and publications

Balancing Agility and Discipline, 232
CrossTalk, 29
The Fellowship of the Ring, 5
Getting to Yes, 53, 293
“Human-System Integration in the

System Development Process,” 42, 51
Human-System Integration Report, 29, 83
Managing the Software Process, 57
Patterns of Success in Systems

engineering, 53
The Rational Unified Process Made Easy, 5
Systems Engineering Guide for Systems of

Systems, 166

Bottom-up cost estimation model, 226–227
Bottom-up engineering, 15–16
Brooks’ law, 231
Brownfield modernization case, 200–201,

203–204
Buying information, 243–244

C
C2ISR (command-control-intelligence-

surveillance-reconnaissance), 75–78
CAIV (cost as independent variable)

model, 229
Case studies. See also Common cases;

MedFRS (case study).
CCPDS-R project, 29
effects of objectives on software

development, 40–41
EIR (environmental impact report)

generators, 218–221
FED (Feasibility Evidence Description),

218–221
healthcare.gov, 30–32
QMI (Quantitative Methods, Inc.),

218–221
road surface assessment robot, 38–40, 48
Sierra Mountainbikes, 284–292
stakeholder value-based guidance, 38–40
Top-5 Quality Software Projects, 29–30
University of Southern California

e-Services projects, 29–30
VBTSE (value-based theory of systems

engineering), 284–292
Weinberg-Schulman experiment, 40–41

Case studies, failure
BoA (Bank of America), 59–62
Edison’s vote-counting device, 40
incremental commitment and

accountability, 59–62, 104

Index

299

300   I ndex

Case studies, failure (continued)
information query and analysis system,

99–101
MasterNet project, 59–62, 104
road surface assessment robot, 38–40, 48
unaffordable requirements, 99–101

Case studies, FED (Feasibility Evidence
Description)

CCDPS-R project, 101–103
failure, 99–101
information query and analysis

system, 99–101
QMI (Quantitative Methods, Inc.),

218–221
success, 101–103
unaffordable requirements, 99–101

Case studies, success
CCDPS-R project, 101–103
FED (Feasibility Evidence Description),

101–103
Hospira Symbiq IV Pump, 29, 42–47, 48
incremental commitment and

accountability, 63–69
SPS (Software Productivity System), 63–69

Case studies, unmanned RPV
concurrent competitive prototyping

development, 86–89
failure, 84–86
overview, 83–84
sequential engineering and development,

84–86
success, 86–89

CCPDS-R (Command Center Processing and
Display System Replacement) (case
study), 29, 101–103

CeBASE (Center for Empirically-Based
Software Engineering), 209

Center for Systems and Software
Engineering (CSSE), 251–252

CERs (cost estimating relationships), 225
Change pace, creating successful systems,

13–14
Charette, Robert, 235
Claus, Clyde, 59–60
Clausen, Tom, 60
CMMI 3.1, mapped to ICSM, 268–269
COCOMO II, cost estimation model, 226
COCOTS, cost estimation model, 226

Command-control-intelligence-surveillance-
reconnaissance (C2ISR), 75–78

Commercial off-the-shelf (COTS) products.
See COTS (commercial off-the-shelf)
products.

Commitment reviews
evidence-based, 258–259
process description, 212–213

Commitments, critical elements of, 57–58
Common cases. See also Case studies.

brownfield modernization, 200–201,
203–204

cost estimation models, 226
description, 27–28, 194–195
examples, 201–204
family of systems, 199
hardware platform, 198
MedFRS example, 203–204
product line, 199
software application or system, 196–197
software-intensive device, 197–198
summary of, 195. See also specific cases.
system of systems, 199–200
upgrading legacy systems, 200–201

Complexity of projects, determining. See
also Estimating.

FED general information, 216
Shenhar and Dvir diamond model, 223

Concurrency view, ICSM
activities, 25, 49–50
description, 24–25
Envisioning Opportunities, 49–50
identifying SCSs, 49–50
illustration, 25
System Scoping, 49–50
Understanding Needs, 49–50

Concurrent multidiscipline engineering
case studies. See Unmanned RPV.
concurrent requirements, 94–96
concurrent solutions, 94–96
concurrent vs. sequential work, 82
cost for operations and support, 89–91
description, 17
Development phase, 174–175
at the enterprise level, 209
in the Exploration phase, 129
Foundations phase, 149
hardware-first approach, 92–94

Index    301

healthcare.gov (case study), 31
human factors-first approach, 92–94
Iron Law of System Evolution, 89
overview, 81–84
refining ICSM, 250
software-first approach, 92–94
in Valuation phase, 138

Concurrent vs. sequential work, 82
Cone of Uncertainty, 58
Conflicting stakeholder values, as risk

source, 239
Consensus, reaching

negotiating a win-win state, 51–54,
281–282

satisficing, 14–15
Control theory, 282
Cost as independent variable (CAIV)

model, 229
Cost estimating relationships (CERs), 225
Cost estimation. See Estimating costs.
Cost for operations and support, 89–91
COSYSMO, cost estimation model, 225
COTS (commercial off-the-shelf) products

cost estimation model, 226
creating successful systems, 15–16
Development phase, 162–167

Critical-path analysis, 232
CrossTalk, 29
CSFs (Critical Success Factors), FEDs,

217–218
Cunningham, Ward, 118
Current assets, leveraging, 205–208
Customizing ICSM to your organization

leveraging current assets, 205–208
maximizing organizational knowledge,

208
reducing the cost of failure, 210
role of ICSM principles, 209
tailoring evidence requirements,

214–216, 218–221
Cyber-physical-human systems, 13

D
Decision making. See Evidence-based

decisions; Risk-based decisions.
Decision points, ICSM, 20
Decision theory, 281
Dependency theory, 280–281

Development phase
continuous integration, 167–169
COTS (commercial off-the-shelf)

products, 162–167
description, 157–160
feasibility evidence, 176–177
hardware development, 160–162
Hospira Symbiq IV Pump (case study),

46–47
increments, 164
iterations, 164
key questions, 161, 166–167, 168–169
key risks, 171–172
keys to productivity, 165
in MedFRS case study, 174–178
potential pitfalls, 171
process overview, 159
release into production, 169–170
role of ICSM principles, 174
scaling, 172–174
software development, 162–167
stabilization, 167–169
synchronization, 167–169
for systems of systems, 166
testing, 167–169
three-team evolutionary concurrent

approach, 165–166
versions, 164

Development schedules, estimating,
231–232

Diagonal waterfall model, 81–82
Diamond model of complexity

estimation, 223
Donne, John, 12
Dvir and Shenhar diamond model, 223

E
Earned value management, 289
Edison’s vote-counting device (case

study), 40
EIR (environmental impact report)

generators (case study), 218–221
Engineering, definition, 10
Envisioning Opportunities, 49–50
Estimating costs

activity based, 227–228
Agile COCOMO II model, 227
algorithmic models, 225–226

302   I ndex

Estimating costs (continued)
analogy methods, 226–227
bottom-up, 226–227
CAIV (cost as independent variable)

model, 229
CERs (cost estimating relationships), 225
COCOMO II model, 226
COCOTS model, 226
for common cases, 226
comparison of methods, 226. See also

specific methods.
COSYSMO model, 225
determining system size, 229–231
expert judgment, 226
integrating COTS products, 226
overview, 225
Planning Poker, 226
price-to-win method, 226, 228
risk mitigation, 228–229
SEER-H model, 226
SEER-SEM model, 226
SERs (schedule estimating

relationships), 225
top-down, 226–227
True Planning-Software, 226
TruePlanning model, 226
unit cost method, 226–227
Wideband Delphi method, 226
yesterday’s weather method, 227

Estimating schedules
critical-path analysis, 232
determining system size, 229–231
development schedules, 231–232
hardware development schedules,

231–232
lead time, 232
on-demand scheduling, 232
pull scheduling, 232
SAIV (Schedule As Independent

Variable), 228–229
software development schedules, 231–232

Evidence-based decisions. See also
Feasibility evidence; FED (Feasibility
Evidence Description); Risk-based
decisions.

commitment reviews, 258–259
description, 17
determining sufficient evidence, 247

Development phase, 174–175
at the enterprise level, 209
in the Exploration phase, 129
Foundations phase, 149
healthcare.gov (case study), 31–32
link to risk-based decisions, 98–99
progress monitoring, 258–259
purpose of, 97–99
refining ICSM, 250
in Valuation phase, 138

Evidence-based life-cycle management.
See also Feasibility evidence; FED
(Feasibility Evidence Description).

AT&T Architecture Review Board, 212
commitment review process, 212–213
determining project complexity, 216
overview, 211–212
tailoring evidence requirements,

214–216, 218–221
TRW ADA Process Model, 212

Evolution view, ICSM, 23–24
Evolutionary concurrent model, 73, 75
Evolutionary development, 13–14
Evolutionary opportunistic model, 73, 74
Evolutionary sequential model, 72–73, 74
Evolving needs vs. solution

development, 14
Examples. See Case studies.
Excel-based tool for FEDs, 218
Experience Factory, 209
Expert judgment, cost estimation

model, 226
Exploration phase

description, 123–126
goal of, 123–126
Hospira Symbiq IV Pump (case study),

43–44
incremental commitment and

accountability, 63–65
key questions, 125
key risks, 127–128
MedFRS case study, 129–132
potential pitfalls, 126–127
process overview, 124
proponent types, 125
role of ICSM principles, 128–129
scaling, 128

eXtreme Programming, 17–18

Index    303

F
Failure. See also Case studies, failure.

agile system, 9
reducing the cost of, 210
root causes, 61–62

Family of systems case, 199
Feasibility evidence. See also Evidence-

based decisions; Evidence-based
life-cycle management; FED (Feasibility
Evidence Description).

description, 104–106
Development phase, 176–177
as first-class deliverable, 104–107
gathering enough of, 106–107
MedFRS case study, 140–141, 150
sweet spots, 105–107

FED (Feasibility Evidence Description).
See also Evidence-based decisions;
Evidence-based life-cycle management;
Feasibility evidence.

CSFs (Critical Success Factors), 217–218,
253–259

determining project complexity, 216
development process, 213–217
evaluation framework, 217–218, 253–259
example, 218–221
Excel-based tool for, 218
goals, 217–218, 253–259
questions, 217–218, 253–259
sample, 104
in stabilization reviews, 21
tailoring evidence requirements,

214–216, 218–221
FED (Feasibility Evidence Description)

(case studies)
CCDPS-R project, 101–103
failure, 99–101
information query and analysis system,

99–101
success, 101–103
unaffordable requirements, 99–101

The Fellowship of the Ring, 5
First principle. See Stakeholder value-based

guidance.
Foundations phase

description, 143–146
Hospira Symbiq IV Pump (case study),

45–46

incremental commitment and
accountability, 67–68

key questions, 144–146
key risks, 146–147
in the MedFRS case study,

150–151
potential pitfalls, 146
role of ICSM principles, 149
scaling, 147–148

Four principles. See ICSM principles.
Fourth principle. See Evidence-based

decisions; Risk-based decisions.
Fundamental System Success Theorem.

See also System Success Realization
Theorem.

definition of success, 10–11, 47
in VBTSE, 279–280

G
Gambling as metaphor for ICSM, 17
Getting to Yes, 53, 293
Goal-question-metric approach to

measurement, 209
GOTS (government off-the-shelf)

products, 15–16
GQM + Strategies, 209
Greenfield engineering, 15–16
Gretzky, Wayne, 8

H
The Handbook of Systems Engineering

and Management, 281
Hardware development

Development phase, 160–162
estimating schedules, 231–232

Hardware platform case, 198
Hardware-first approach, 13,

92–94
Healthcare.gov (case study)

concurrent multidisciplinary
engineering, 31

evidence-based decisions, 31–32
incremental commitment and

accountability, 31
risk-based decisions, 31–32
stakeholder value-based

guidance, 30

304   I ndex

Hospira Symbiq IV Pump (case study)
awards won, 29
description, 42–43
Development phase, 46–47
Exploration phase, 43–44
Foundations phase, 45–46
integrated systems design, 93–94
lessons learned, 48
Valuation phase, 44–45

Human factors-first approach, 92–94
“Human-System Integration in the System

Development Process,” 42, 51
Human-System Integration Report,

29, 83
Human-system integration shortfalls, as

risk source, 241
Hump charts, RUP, 24–25, 82
Humphrey, Watts, 57

I
ICSM (Incremental Commitment Spiral

Model). See also Fundamental System
Success Theorem; System Success
Realization Theorem.

in a changing world, 7–9
definition, 16
example paths, 25–27. See also

Common cases.
gambling as metaphor, 17
incremental adoption, 28–29
living together as metaphor, 17
metaphors for, 17–18
website, 96

ICSM, diagrams and views
activities, 21, 24
concurrency view, 24–25
decision points, 20
evolution view, 23–24
FED (Feasibility Evidence

Description), 21
Incremental Definition stage,

21–23
Incremental Development and

Operations stage, 21–23
major stages, 21–23
phased view, 21–23
risk mitigation plans, 20
spiral view, 18–20

ICSM lifecycle. See also Evidence-based
life-cycle management.

case study. See MedFRS (case study).
organization, 255–256
vs. other life-cycle models, 115–118
phases, 116. See also specific phases.
planning, 255–256
staffing, 255–256
stages, overview, 116

ICSM lifecycle, Stage I
contents, 119
duration, 119
phases, 116. See also specific phases.
summary of, 152

ICSM lifecycle, Stage II
evolutionary concurrent model, 73, 75
evolutionary opportunistic model,

73, 74
evolutionary sequential model, 72–73, 74
phases, 116. See also specific phases.
prespecified multistep model, 71–73, 74
prespecified single-step model, 71–73,

73–74
summary of, 185–186

ICSM mapped to
CMMI 3.1, 268–269
ISO/IEC 12207, 264–267
ISO/IEC 15288, 262–263
ITIL, 274–275
PMBOK, 273
SEBOK, 269–271
SWEBOK, 272

ICSM principles
applied to healthcare.gov, 30–32
at the enterprise level, 209
overview, 16–17
refining ICSM, 250
summary of, 108–109. See also specific

principles.
IKIWISI (I’ll know it when I see it)

designs
creating successful systems, 13
specifying requirements, 95

Immature or obsolete processes, as risk
source, 240–241

Immature technology
as risk source, 241–242
technological maturity, determining,

256–258

Index    305

INCOSE (International Council on Systems
Engineering), 10, 37, 277

Incremental adoption of ICSM, 28–29
Incremental commitment and accountability

alternative development models, 71–75
C2ISR metaphor, 75–78
case study, 59–62
Cone of Uncertainty, 58
critical elements of commitments, 57–58
decision table, 73–75
description, 16–17
Development phase, 174–175
at the enterprise level, 209
evolutionary concurrent model, 73, 75
evolutionary opportunistic model, 73, 74
evolutionary sequential model, 72–73, 74
in the Exploration phase, 129
Foundations phase, 149
healthcare.gov (case study), 31
OODA loops, 76
prespecified multistep model, 71–73, 74
prespecified single-step model, 71–73,

73–74
refining ICSM, 250
Valuation phase, 138

Incremental commitment and accountability,
failure (case studies)

BoA (Bank of America), 59–62
MasterNet project, 59–62, 104

Incremental commitment and accountability,
success (case studies)

Exploration phase, 63–65
Foundations phase, 67–68
overall results, 68–69
SPS (Software Productivity System), 63–69
Valuation phase, 65–67

Incremental Commitment Spiral Model
(ICSM). See ICSM (Incremental
Commitment Spiral Model).

Incremental Definition stage, ICSM, 21–23
Incremental Development and Operations

stage, ICSM, 21–23
Incremental development for multiple

increments pattern, 193
Increments, definition, 164
Inflated expectations, as risk source, 238–239
Information hiding, 90
Information query and analysis system

(case study), 99–101

International Council on Systems
Engineering (INCOSE), 10, 37, 277

Iron Law of System Evolution, 89
ISO/IEC 12207, mapped to ICSM,

264–267
ISO/IEC 15288, mapped to ICSM,

262–263
Iterations, definition, 164
ITIL, mapped to ICSM, 274–275
IV pump. See Hospira Symbiq IV Pump

(case study).

K
Katz, Steven, 59–60
Kendall, Frank, 5
Kruchten, Philippe, 5, 24–25

L
Lack of stakeholder involvement, as risk

source, 239
Lead time, schedule estimation, 232
Legacy asset incompatibilities, as risk

source, 241
Legacy systems upgrade, common case for,

200–201
Leveraging current assets, 205–208
Lifecycle. See ICSM lifecycle.
Living together as metaphor for ICSM, 17

M
Managing the Software Process, 57
MasterNet project (case study), 59–62, 104
Maximizing organizational knowledge, 208
Measurement, 209. See also Progress

monitoring.
MedFRS (case study)

common case example, 203–204
Development phase, 174–178
Exploration phase, 129–132
feasibility analysis, 140–141, 150
Foundations phase, 150–151
Operations phase, 184–185
overview, 120–121
Production phase, 184–185
risk mitigation, 243–244
Valuation phase, 139–142

Meta-Principle of Balance, 108–109
Minard, Charles, 154

306   I ndex

N
Napoleon’s Russian campaign, graphic, 154
NDIs (non-developmental items), 15–16
Negotiating. See Consensus, reaching.
New, complex system pattern, 193
No system is an island..., 12
Nonfunctional requirements, as risk

source, 241

O
On-demand scheduling, 232
Online resources

Excel-based tool for FEDs, 218
ICSM website, 96
SAFe (Scaled Agile Framework), 252
SEBOK (Systems Engineering Body of

Knowledge), 251
SEMAT (Software Engineering Method

and Theory), 252
SERC (Systems Engineering Research

Center), 251
USC CSSE (Center for Systems and

Software Engineering), 251–252
OODA (observe, orient, decide, act) loops, 76
Operations phase

description, 181–182
goals, 181
key risks, 183
in the MedFRS case study, 184–185
potential pitfalls, 183
process overview, 182

Opportunity vs. risks. See Risk-opportunity
management.

Organizational knowledge, maximizing, 208
OSS (open-source software), 15–16

P
Packaging. See Production phase.
Parnas, David, 90
Patterns

combining, 193–194
description, 192–194
incremental development for multiple

increments, 193
new, complex system, 193
significant modification of architecture,

193

target solutions available, 193
well-understood modification of

architecture, 193
Patterns of Success in Systems engineering,

53
Personnel shortfalls, as risk source, 240
Phased view, ICSM, 21–23
Phases of ICSM lifecycle, 116. See also

specific phases.
Planning

analyzing risks. See Risk.
collecting evidence. See Evidence-based

decisions; Evidence-based
life-cycle management; FED
(Feasibility Evidence Description).

costs. See Estimating costs.
ICSM phases, 116. See also specific

phases.
ICSM principles, 108–109. See also

specific principles.
schedules. See Estimating schedules.

Planning Poker, cost estimation model, 226
PMBOK, mapped to ICSM, 273
Prespecified multistep model, 71–73, 74
Prespecified single-step model, 71–73,

73–74
Price to win, cost estimation model,

226, 228
Principles of ICSM. See ICSM principles.
Process generation with ICSM, 18, 191,

205. See also Customizing ICSM to your
organization.

Procrustes, 3–5, 8
Product line case, 199
Production phase

description, 179–180
key risks, 181
in the MedFRS case study, 184–185
potential pitfalls, 180–181
process overview, 180

Progress monitoring, 258–259. See also
Measurement.

Project complexity, determining, 216
Prototyping

creating successful systems, 13
RPVs, 86–89
user interface, 287

Pull scheduling, 232

Index    307

Q
QMI (Quantitative Methods, Inc.)

(case study), 218–221
Quality assurance, 14–15

R
Rational Unified Process (RUP), hump

charts, 24–25
The Rational Unified Process Made Easy, 5
Requirements

concurrent, 94–96, 253–254. See also
Evidence-based decisions.

gathering. See Evidence-based decisions;
Evidence-based
life-cycle management; FED
(Feasibility Evidence Description);
ICSM principles.

volatility, as risk source, 240–241
Risk

acceptance, 243–244
assessment, 236–242
avoidance, 243–244
control, 242–244
identification, 236–237
monitoring and corrective action, 243
prioritization, 237–238
reduction, 243–244
transfer, 243–244

Risk, sources of
architectural incompatibilities, 239–240
conflicting stakeholder values, 239
human-system integration shortfalls, 241
immature or obsolete processes, 240–241
immature technology, 241–242
inflated expectations, 238–239
lack of stakeholder involvement, 239
legacy asset incompatibilities, 241
nonfunctional requirements, 241
personnel shortfalls, 240
requirements volatility, 240–241
unbalanced -ilities, 241
underdefined plans and requirements, 239

Risk admiration, 118
Risk analysis

creating successful systems, 13
description, 237
determining sufficient evidence, 247

Risk entrepreneurship, 235–236
Risk mitigation

cost estimation, 228–229
description, 242–243
planning for, 20, 242

Risk-based decisions. See also
Evidence-based decisions.

description, 17
Development phase, 174–175
at the enterprise level, 209
in the Exploration phase, 129
Foundations phase, 149
gathering sufficient evidence, 107–108
healthcare.gov (case study), 31–32
link to evidence-based decisions,

98–99
refining ICSM, 250
in Valuation phase, 138

Risk-opportunity management
balancing risk and opportunity, 235–236
within ICSM, 244–245
risk analysis, 237
risk assessment, 236–242
risk control, 242–244
risk identification, 236–237
risk prioritization, 237–238
top ten critical risks, 247

Risk-opportunity management, common
risk sources

architectural incompatibilities, 239–240
conflicting stakeholder values, 239
human-system integration shortfalls, 241
immature or obsolete processes,

240–241
immature technology, 241–242
inflated expectations, 238–239
lack of stakeholder involvement, 239
legacy asset incompatibilities, 241
nonfunctional requirements, 241
personnel shortfalls, 240
requirements volatility, 240–241
unbalanced -ilities, 241
underdefined plans and requirements, 239

Risk-opportunity management, tools for
EPG (Electronic Process Guide), 247
lean risk management plans, 245–247

Robot, road surface assessment
(case study), 38–40, 48

308   I ndex

RPVs (remotely piloted vehicle systems)
(case study)

concurrent competitive prototyping
development, 86–89

failure, 84–86
overview, 83–84
sequential engineering and development,

84–86
success, 86–89

RUP (Rational Unified Process),
hump charts, 24–25

S
SAFe (Scaled Agile Framework), 252
SAIV (Schedule As Independent Variable),

228–229. See also Timeboxing.
Satisficing, 14–15
Schedule estimating relationships

(SERs), 225
Schedule estimation. See Estimating

schedules.
SCSs (success-critical stakeholders).

See also Stakeholder value-based
guidance.

identifying, 49–50
making winners of, 49
understanding their need to win, 50–51
in VBTSE, 280–282

SEBOK (Systems Engineering Body of
Knowledge)

mapped to ICSM, 269–271
systems engineering, definition, 10
website for, 251

Second principle. See Incremental
commitment and accountability.

SEER-H, cost estimation model, 226
SEER-SEM, cost estimation model, 226
SEMAT (Software Engineering Method and

Theory), 252
Sequential process models, 81–82
SERC (Systems Engineering Research

Center), 251
SERs (schedule estimating relationships),

225
Shenhar and Dvir diamond model, 223
Sierra Mountainbikes (case study),

284–292

Significant modification of architecture
pattern, 193

Simon, Herb, 108
Software application or system case,

196–197
Software development

Development phase, 162–167
effects of objectives (case study), 40–41
estimating schedules, 231–232

Software-first approach, 13, 92–94
Software-intensive device case, 197–198
Solutions, concurrent, 94–96, 253–254
SOUP (software of unknown provenance),

15–16
Spiral view, ICSM, 18–20
SPS (Software Productivity System)

(case study), 63–69
Stabilization, 167–169
Staffing the ICSM lifecycle, 255–256
Stages of ICSM, 21–23, 116. See also ICSM

lifecycle, Stage I; ICSM lifecycle,
Stage II.

Stakeholder value-based guidance. See also
SCSs (success-critical stakeholders).

description, 16
Development phase, 174–175
at the enterprise level, 209
in the Exploration phase, 129
Foundations phase, 149
refining ICSM, 250
in Valuation phase, 138

Stakeholder value-based guidance
(case studies)

healthcare.gov, 30
Hospira Symbiq IV Pump, 42–46
road surface assessment robot, 38–40, 48

Stakeholders. See also SCSs (success-critical
stakeholders).

conflicting values, as risk source, 239
lack of involvement, as risk source, 239

Stand-alone systems, 12–13
Stovepipe systems, 12–13
Success, for engineered systems

definition, 10
Fundamental System Success Theorem,

10–11
increasing difficulty, 11

Index    309

Success-critical stakeholders (SCSs). See
SCSs (success-critical stakeholders).

Successful systems, creating. See also Case
studies, success; Fundamental System
Success Theorem; System Success
Realization Theorem.

agility, 13–14
balance, 14–15
bottom-up engineering, 15–16
COTS (commercial off-the-shelf)

products, 15–16
early risk analysis, 13
evolutionary development, 13–14
evolving needs vs. solution

development, 14
focus on cyber-physical-human

systems, 13
GOTS (government off-the-shelf)

products, 15–16
hardware-first processes, 13
IKIWISI (I’ll know it when I see it)

designs, 13
key challenges, 12
key questions, 9–10
NDIs (non-developmental items), 15–16
No system is an island..., 12
OSS (open-source software), 15–16
prototyping, 13
rapid change, 13–14
satisficing, 14–15
software-first processes, 13
SOUP (software of unknown

provenance), 15–16
stand-alone systems, 12–13
stovepipe systems, 12–13
system quality assurance, 14–15
system-related trends, 12
top-down engineering, 15–16

SWEBOK, mapped to ICSM, 272
Sweet spots, 105–107
Symbiq IV Pump (case study). See Hospira

Symbiq IV Pump (case study).
Synchronization, 167–169
System controllers, 51
System dependents, 51
System of systems case, 199–200
System Scoping, 49–50

System size, estimating, 229–231
System Success Realization Theorem.

See also Fundamental System Success
Theorem.

expanding the options, 54
identifying SCSs, 49–50
prioritizing attributes, 51–52
system controllers, 51
system dependents, 51
understanding SCSs, 50–51
VBTSE, 280

System Success Realization Theorem,
win-win state

adaptation to change, 54–55
controlling progress toward, 54–55
corrective action required, 54–55
maintaining, 11, 49
negotiating, 51–54
techniques for identifying, 54
WinWIn equilibrium model, 53

Systems engineering, definition, 10. See
also Success, for engineered systems.

Systems Engineering Body of Knowledge
(SEBOK). See SEBOK (Systems
Engineering Body of Knowledge).

Systems Engineering Guide for Systems of
Systems, 166

Systems Engineering Research Center
(SERC), 251

Systems of systems, 166

T
Tailoring evidence requirements, 214–216,

218–221
Target solutions available pattern, 193
Technical debt, 118
Testing, 167–169
Theory W, 279–280
Third principle. See Concurrent

multidiscipline engineering.
Three-team evolutionary concurrent

approach, 165–166
Timeboxing, 23–24
Time-certain development. See Timeboxing.
Top-5 Quality Software Projects

(case study), 29–30
Top-down cost estimation model, 226–227

310   I ndex

Top-down engineering, 15–16
True Planning-Software, cost estimation

model, 226
TruePlanning, cost estimation model, 226
TRW ADA Process Model, 212
TRW SPS (Software Productivity System).

See SPS (Software Productivity System).
Two-leg model, 81–82

U
Unaffordable requirements failure, 99–101
Unbalanced -ilities, as risk source, 241
Underdefined plans and requirements, as

risk source, 239
Understanding Needs, 49–50
Unit cost, cost estimation model, 226–227
University of Southern California e-Services

projects (case study), 29–30
Unmanned RPV (case study)

concurrent competitive prototyping
development, 86–89

failure, 84–86
overview, 83–84
sequential engineering and development,

84–86
success, 86–89

Upgrading legacy systems, common case
for, 200–201

URLs of interest. See Online resources.
USC CSSE (Center for Systems and Software

Engineering), 251–252
Utility theory, 281

V
V model, 81–82
Valuation phase

description, 133–135
goals of, 133
Hospira Symbiq IV Pump (case study),

44–45
incremental commitment and

accountability, 65–67
key questions, 134–135
key risks, 136–137
in the MedFRS case study, 139–142

potential pitfalls, 135–136
process overview, 134
role of ICSM principles, 138
scaling, 137

VBTSE (value-based theory of systems
engineering)

4+1 structure, 278–279
conclusions, 294
control theory, 282
decision theory, 281
dependency theory, 280–281
example, 284–292
further research, 294
goodness criteria, 292–293
process framework, 283–292
success-critical stakeholders, 280–282
Theory W, 279–280
utility theory, 281
win-win basis for, 279–282

Versions, definition, 164
Vote-counting device (case study), 40

W
Websites of interest. See Online resources.
Weinberg-Schulman experiment, 40–41
Well-understood modification of

architecture pattern, 193
Wideband Delphi, cost estimation

model, 226
Williams, Bob, 63
WinWin equilibrium model, 53
Win-win state

adaptation to change, 54–55
controlling progress toward, 54–55
corrective action required, 54–55
maintaining, 11
negotiating, 51–54, 281–282
System Success Realization Theorem, 11
techniques for identifying, 54
VBTSE, 279–282
WinWIn equilibrium model, 53

Y
Yesterday’s weather, cost estimation

model, 227

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: ASXKWWA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of The Incremental Commitment Spiral Model includes access to a free online
edition for 45 days through the Safari Books Online subscription service. Nearly every Addison-
Wesley Professional book is available online through Safari Books Online, along with thousands
of books and videos from publishers such as Cisco Press, Exam Cram, IBM Press, O’Reilly Media,
Prentice Hall, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much more.

FREE
Online Edition

3/19/14 10:59 AM

	Contents
	Foreword
	Preface
	About the Authors
	Prologue
	Chapter 3 The Third Principle: Concurrent Multidiscipline Engineering
	3.1 Failure Story: Sequential RPV Systems Engineering and Development
	3.2 Success Story: Concurrent Competitive-Prototyping RPV Systems Development
	3.3 Concurrent Development and Evolution Engineering
	3.4 Concurrent Engineering of Hardware, Software, and Human Factors Aspects
	3.5 Concurrent Requirements and Solutions Engineering
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

