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The Incremental Commitment Spiral Model: Phased View

Feasibility Evidence Description Content
Evidence provided by the developer and validated by independent experts that, if 
the system is built to the specified architecture, it will:

hh Satisfy the requirements: capability, interface, level of service, and evolution

hh Support the operational concept

hh Be buildable within the budgets and schedules in the plan

hh Generate a viable return on investment

hh Generate satisfactory outcomes for all of the success-critical stakeholders

hh Resolve all major risks by treating shortfalls in evidence as risks and 
covering them by risk management plans

hh Serve as a basis for stakeholders’ commitment to proceed
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Principles Trump Diagrams
The Four ICSM Principles

1.	 Stakeholder value-based guidance. 
2.	 Incremental commitment and accountability.  
3.	 Concurrent multi-discipline engineering
4.	 Evidence and risk-based decisions.   

Risk Meta-Principle of Balance: Balancing the risk of doing too little and the risk 
of doing too much will generally find a middle course sweet spot that is about the 
best you can do.

Theory W (Win-Win) Success Theorem: A system will succeed if and only if it 
makes winners of its success-critical stakeholders.

System Success Realization Theorem: Making winners of your success-critical 
stakeholders requires:

1.	 Identifying all of the success-critical stakeholders.
2.	 Understanding how each stakeholder wants to win.
3.	 Having the success-critical stakeholders negotiate among themselves a win-

win set of product and process plans.
4.	 Controlling progress toward the negotiated win-win realization, including 

adapting it to change.

The Incremental Commitment Spiral Model
Cumulative Level of Understanding, Product and Process
Detail (Risk-Driven)

Evidence-Based Review Content
- A first-class deliverable
- Independent expert review
- Shortfalls are uncertainties and risks
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Principles Trump Diagrams
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Praise for The Incremental Commitment 
Spiral Model

“The Incremental Commitment Spiral Model is an extraordinary work. Boehm and 
his colleagues have succeeded in creating a readable, practical, and eminently usable 
resource for the practicing systems engineer. . . . ICSM embodies systems thinking and 
engineering principles and best practices using real-life examples from many different 
application domains. This is exactly the kind of treatment that an engineer needs to 
translate the book’s considerable wisdom into practical on-the-job solutions.”

—George Rebovich, Jr., Director, Systems Engineering Practice Office, The MITRE  
Corporation

“One might think of this new book as an update of the old (1988) Spiral Model, but it 
is actually much more than that. It is a ground-breaking treatment that expertly blends 
together four specific and key principles, risk–opportunity management, the use of exist-
ing assets and processes, and lessons learned from both success and failure examples 
and case studies. This extraordinary treatise will very likely lead to improvements in 
many of the current software development approaches and achieve the authors’ intent 
‘to better integrate the hardware, software, and human factors aspects of such systems, 
to provide value to the users as quickly as possible, and to handle the increasingly rapid 
pace of change.’ If one is looking for specific ways to move ahead, use this book and its 
well-articulated advancements in the state-of-the-art.”

—Dr. Howard Eisner, Professor Emeritus and Distinguished Research Professor, George 
Washington University

“Dr. Boehm and his coauthors have integrated a wealth of field experience in many 
domains and created a new kind of life cycle, one that you have to construct based on 
the constraints and objectives of the project. It is based on actively trading off risks and 
demonstrating progress by showing actual products, not paper substitutes. And the 
model applies to everything we build, not just software and conceptual systems, but also 
to hardware, buildings, and garden plots. We have long needed this experience-based 
critical thinking, this summative and original work, that will help us avoid chronic sys-
tems development problems (late, over-budget, doesn’t work) and instead build new life 
cycles matched to the circumstances of the real world.”

—Stan Rifkin, Principal, Master Systems 



“Barry Boehm and his colleagues have created a practical methodology built upon the 
one fundamental truth that runs through all competitive strategies: The organization 
with the clearest view of cold, brutal reality wins. Uniquely, their methodology at every 
stage incorporates the coldest reality of them all—the customer’s willingness to continue 
paying, given where the project is today and where it is likely ever to be.”

—Chet Richards, author of Certain to Win: The Strategy of John Boyd Applied to 
Business

“I really like the concept of the ICSM and have been using some of the principles in my 
work over the past few years. This book has the potential to be a winner!”

—Hillary Sillito, INCOSE Fellow, Visiting Professor University of Bristol, formerly Thales 
UK Director of Systems Engineering

“The Incremental Commitment Spiral Model deftly combines aspects of the formerly 
isolated major systems approaches of systems engineering, lean, and agile. It also 
addresses perhaps the widest span of system sizes and time scales yet. Two kinds of 
systems enterprises especially need this capability: those at the ‘heavy’ end where lean 
and agile have had little impact to date, and those that deal with a wide span of system 
scales. Both will find in the ICSM’s combination of systems approaches a productive and 
quality advantage that using any one approach in isolation cannot touch.”

—James Maxwell Sutton, President, Lean Systems Society and Shingo Prize winner

“The potential impact of this book cannot be overstressed. Software-intensive systems 
that are not adequately engineered and managed do not adequately evolve over the 
systems life cycle. The beauty of this book is that it describes an incremental capability 
decision path for being successful in developing and acquiring complex systems that are 
effective, resilient, and affordable with respect to meeting stakeholders’ needs. I highly 
recommend this book as a ‘must read’ for people directly involved in the development, 
acquisition, and management of software-intensive systems.”

—Dr. Kenneth E. Nidiffer, Director of Strategic Plans for Government Programs, Software 
Engineering Institute, Carnegie Mellon University

“This text provides a significant advance in the continuing work of the authors to evolve 
the spiral model by integrating it with the incremental definition and the incremental 
development and evolution life-cycle stages. Case studies illustrate how application of 
the four principles and the Fundamental Systems Success Theorem provides a framework 
that advances previous work. Emphasis is placed throughout on risk-based analysis and 
decision making. The text concludes with guidance for applying ICSM in your organiza-
tion plus some helpful appendices. We concur with the authors’ statement: ‘we are con-
fident that this incarnation of the spiral model will be useful for a long time to come.’”

—Dick Fairley, PhD, Software and Systems Engineering Associates (S2EA)



“This book nicely integrates the different refinements of the spiral model and the vari-
ous additions made over the years. . . . the book contains great material for classes 
on software engineering in general and software processes in particular. I have been 
teaching the spiral model and its invariants for more than 10 years now, and I will use 
material from this book in the years to come.”

—Paul Grünbacher, Associate Professor, Johannes Kepler University Linz, Head of the 
Christian Doppler Lab for Monitoring and Evolution of Very-Large-Scale Software Systems

“What I found most useful in The Incremental Commitment Spiral Model were the 
stories of where we have gone wrong in the past, and how using the four key ICSM 
principles articulated by Barry and his co-authors could have helped these failed 
efforts maintain a course to success. ICSM is not a new method. It does not ask you to 
discard what has proved useful in the past and start over. Rather, it provides a set of 
guideposts that can help any organization facing increasingly challenging endeavors 
make more timely evidence-based decisions. We have been hearing about the ‘what’ 
for many years, this book gives you the needed ‘how’ and, more importantly, the 
needed ‘how much’ guidance that has been sorely missing.”

—Paul E. McMahon, author of Integrating CMMI and Agile Development

“The authors are uniquely qualified to bring together a historical context and a modern 
problem: successful development of engineered systems with ever greater complexity 
and richer than ever functionality, enabled by software. They do not disappoint!”

—Dinesh Verma, PhD, Professor and Dean, School of Systems and Enterprises, Stevens 
Institute of Technology
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Foreword

Developers, thinkers, and writers have wrestled since the 1960s with process 
models for building software, including my own 1975 simple-minded “Plan 

to throw one away; you will anyhow.” Practitioners in the software development 
discipline early learned that a patterned development is more likely to succeed 
than a chaotic one, at any size. Hence, the emergence of process models.

I am firmly convinced that the model set forth in this book is by far the best 
anyone has developed. First proposed by Boehm in 1988, it was even then the fruit 
of much thought and a rich trove of practical experience. In the almost 30 years 
since its introduction, the Incremental Commitment Spiral Model has grown and 
evolved through actual use in many projects, and through systematic thought. It 
has been extended from software to systems, and to the larger life cycle.

The most important augmentation of the original spiral model has been the 
addition of formal, cold-eyed assessments of risk at the various checkpoints. A 
second important addition is the explicit prescription that the stakeholders regu-
larly and boldly consider abandoning the project. To paraphrase this dictate: “Plan 
to consider throwing the project away; you may need to consider that anyhow.” 
The Preface lists other ways the model has grown.

The work presented in this book demands and repays careful study. The Intro-
duction sets forth the basic concepts of the model and the experienced-based moti-
vations for each refinement. Since what is treated is not itself a model but a model 
generator, it can be flexibly adapted for projects large and small, long and short. 
Such adaptation requires thinking, of course.

The organization of the book into individual, self-contained parts suggests the 
mode of study. Students with no project experience can manage the Introduction 
and profit from it. The more sophisticated later parts will come to life for those 
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practitioners who have experienced both successful and unsuccessful projects, and 
who want to ensure that their subsequent ventures are successful ones. They may 
want to ponder each part as a chunk, fleshing out and coloring the ideas and rec-
ommendations with their own experiences.

—Frederick P. Brooks, Jr.
author, The Design of Design



xv

Preface

This book describes a way to be successful in an increasingly challenging 
endeavor: developing systems that are effective, resilient, and affordable with 

respect to meeting stakeholders’ needs. Most people would prefer to be part of cre-
ating a successful system. Rumor has it, however, that some people would rather 
deliver an unsuccessful system so that they can continue being paid to make it 
successful; rumor also doubts those people will read this book.

We have been studying and experimenting with approaches for creating suc-
cessful systems for many years and have seen constant evolution in system capa-
bility, content, and context. The systems we worked on were initially hardware 
items such as radios, power supplies, airplanes, and rockets. As time went on, 
the systems became more software intensive. For example, in some classes of air-
planes, the functionality performed by software grew from 8% in 1960 to 80% in 
2000. Both now and for the foreseeable future, most systems must interact with 
other independently evolving systems to help provide additional functionality and 
flexibility. Even more important, precisely because it has often been overlooked, 
is the increasing role that humans are playing as system elements, as the enter-
prise is viewed as a holistic interdisciplinary entity. Perhaps the farthest-reaching 
change is that so many traditional stand-alone hardware devices need to cope not 
only with software, but also with living in an Internet of Things, preserving cyber-
security, and adjudicating among human users and smart autonomous agents.

The Incremental Commitment Spiral Model (ICSM) is the result of our efforts 
to better integrate the hardware, software, and human factors aspects of such 
systems; to provide value to the users as quickly as possible; and to handle the 
increasingly rapid pace of change. While the ICSM’s pedigree lies in Barry’s spiral 
concept first articulated in 1988, this new version draws on more than 20 years 
of experience helping people deal with the fact that the original version was too 
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easy to misinterpret. The ICSM is both more general and more specific than the 
original spiral. It covers more of the life cycle, addresses not only software projects 
but also cyber–physical–human systems and enterprises, and is adaptable to most 
development endeavors. At the same time, it is much more specific about how to 
implement the principles and activities.

The ICSM is not a single, one-size-fits-all process. It is actually a process gen-
erator that steers your process in different directions, depending on your particular 
circumstances. In this way, it can help you adapt your life-cycle strategies and pro-
cesses to your sources of change. It also supports more rapid system development 
and evolution through concurrent engineering, enabling you to develop and evolve 
systems more rapidly and to avoid obsolescence.

If things aren’t changing much in your domain, and you already have a way 
to create successful systems, you should keep on using it. But you will be in a 
shrinking minority as the 21st-century pace of change accelerates. When you find 
that your processes are out of step with your needs, we believe you will find the 
ICSM helpful.

Who Can Benefit from Reading This Book?
The book’s contents can help you if you face one or more of the following situations:

hh Your projects frequently overrun their budgets and schedule.

hh Your projects have a lot of late rework or technical debt.

hh Your delivered systems are hard to maintain.

hh Your organization uses a one-size-fits all process for a variety of systems.

hh Your systems need to succeed in situations involving rapid change, 
emergent requirements, high levels of assurance, or some combination of 
those.

hh Your systems must operate with other complex, networked systems.

Managers and executives stuck in one-size-fits-all decision sequences will 
find new possibilities and begin to understand their new roles in successful 
21st-century development. Practitioners of all development-related disciplines will 
find a unified way to approach a broad variety of projects, improve their collabora-
tion, respond more agilely to the changing needs of stakeholders, and better quan-
tify and demonstrate progress to managers and executives. Academics will gain a 
source of information to replace or enhance the way they educate developers and 
managers, as well as fertile areas for research and study.

As one-step, total-makeover corporate process changes can be risky, this book 
provides a way for organizations or projects to incrementally experiment with the 
ICSM’s key practices and to evolve toward process models better suited to their 
needs and competitive environment.
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An Electronic Process Guide (EPG), available on the book’s companion website 
(http://csse.usc.edu/ICSM), contains guidelines, subprocesses, and templates that 
facilitate ICSM adoption. The EPG also supports this volume’s use as a textbook 
for a capstone project course in systems or software engineering. USC has offered 
such a course since 1995, spanning and evolving across more than 200 real-client 
projects and 2000 students.

How Is the Book Organized?
The book generally flows from why, moves to what, and then on to how, with a 
bit of how much in between. It begins with a Prologue—a cautionary tale drawn 
from ancient mythology, but highly relevant to 21st-century system developers.

Once suitably enlightened, the reader will find a one-chapter Introduction 
describing our rationale for constructing the ICSM and a high-level, self-contained 
overview of ICSM fundamentals and use. System development stakeholders (e.g., 
users, developers, acquirers), executives, and managers may obtain a big-picture 
understanding of the ICSM, and find the summary to be food for thought and 
action in managing the uncertainties of modern complex product or system devel-
opment. Readers who would prefer to start by exploring a particular aspect of the 
ICSM can generally use the Contents list or Index to find and address it in detail, 
but will often find it useful to refer back to the Introduction for overall context.

Part I provides detailed discussions of the four key ICSM principles and 
explains why they are critical. Each chapter in Part I begins with a failure story and 
a success story, illustrating the need for and application of the principle, followed 
by its key underlying practices. Part I completes the why part of the book begun in 
the Prologue and continued in the early part of the Introduction.

Parts II and III explain the phases and stages that provide the framework for 
ICSM’s process generation. They introduce the case study that we use to illustrate 
how the stages and phases of the ICSM support success. This case study uses a next-
generation medical device—an example of an advanced cyber–physical–human 
system with the inherent challenges of assuring safety, usability, and interoper-
ability with other devices and systems—to lead the reader (and the medical device 
team) through the individual stages and phases of the ICSM. Parts II and III contain 
the majority of the what information, and a bit of the how.

Part IV completes the how and how much information. It supports implemen-
tation of the ICSM through phase-combining patterns and a set of common cases 
encountered in applying the risk-based phase decisions. There is information on 
adapting the ICSM to a specific project or environment, and an exploration of how 
its risk-driven, adaptive framework acts as a unifying element to support the effec-
tive application of existing practices. Part IV also provides guidance on applying 
some key practices that must be adapted somewhat for ICSM, and ends with an 
afterword that describes how we intend to evolve the ICSM with help from you, 
the reader.

http://csse.usc.edu/ICSM
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The Appendices provide additional information on the tools developed spe-
cifically for ICSM activities, mappings of the ICSM to widely used process model 
and standards, and a comprehensive bibliography.

As stated earlier, the Companion Website to the book (http://csse.usc.edu/
ICSM) provides the EPG and other automated tools, along with updates, examples, 
discussions, and useful classroom materials. The website is the primary place 
to find up-to-date information concerning the ICSM and its use, including white 
papers and guides for ICSM application in particular domains. While most of the 
material on the site is free, on occasion there may be material for sale. For those 
cases, the site is linked to and supported by Addison-Wesley and InformIT to pro-
vide an easy means to purchase those materials as well as other books of interest 
to the readers.

Who Helped Us Write the Book?
The organization and content of the ICSM have benefited significantly from our 
participation in three major efforts to provide improved guidelines for systems and 
software practice and education:

hh The U.S. National Research Council’s Human–System Integration in the 
System Development Process study

hh The international efforts to define educational and practice guidelines that 
better integrate software, hardware, and human systems engineering—the 
Graduate Software Engineering Reference Curriculum

hh The Systems Engineering Body of Knowledge and Graduate Reference 
Curriculum for Systems Engineering

These not only helped improve the ICSM, but also established its compatibility with 
these reference guidelines, along with co-evolving guidelines such as the IEEE-
CS and ISO/IEC’s Software Engineering Body of Knowledge and INCOSE Systems 
Engineering Handbook.

Funding for much of the initial work on the ICSM was provided through the 
Systems Engineering Research Center—a U.S. Department of Defense university-
affiliated research center. In particular, Kristen Baldwin, Principal Deputy in the 
Office of the Deputy Assistant Secretary of Defense for Systems Engineering, pro-
vided early vision, guidance, and resources to the authors.

The following reviewers provided excellent advice and feedback on early ver-
sions of the book: Ove Armbrust, Tom DeMarco, Donald Firesmith, Tom Gilb, Paul 
Grünbacher, Liguo Huang, DeWitt Latimer IV, Bud Lawson, Jürgen Münch, George 
Rebovich, Jr., Neil Siegel, Hillary Sillitto, Qing Wang, Da Yang, and Wen Zhang.

http://csse.usc.edu/ICSM
http://csse.usc.edu/ICSM
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Boeing: Ray Carnes, Marilynn Goo, Tim Peters, Shawn Rahmani, Bill 
Schoening, David Sharp

C-Bridge: Charles Leinbach

Cisco: Sunita Chulani, Steve Fraser

CMU-SEI: Roger Bate, Paul Clements, Steve Cross, Bill Curtis, Larry Druffel, 
John Goodenough, Watts Humphrey, Paul Nielsen

Construx, Inc.: Steve McConnell

Cubic Corporation: Mike Elcan

EDS: Mike Sweeney

Fraunhofer-IESE: Dieter Rombach

Fraunhofer-Maryland: Vic Basili, Forrest Shull, Marvin Zelkowitz

Galorath: Dan Galorath, Denton Tarbet

GE Systems: Paul Rook

General Dynamics: Michael Diaz

Group Systems: Bob Briggs

Hughes: Elliot Axelband

IBM/Rational: Tim Bohn, Grady Booch, Peter Haumer, Ivar Jacobson, Per 
Kroll, Bruce McIsaac, Philippe Kruchten, Walker Royce

Intelligent Systems: Azad Madni

ISCAS: Mingshu Li, Qing Wang, Ye Yang

ITT/Quanterion: Tom McGibbon

JPL: Jairus Hihn, Kenneth Meyer, Robert Tausworthe

Lockheed Martin: Sandy Friedenthal, John Gaffney, Gary Hafen, Garry 
Roedler

Master Systems: Stan Rifkin

Microsoft: Apurva Jain
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MITRE: Judith Dahmann, George Rebovich

Motorola: Dave Dorenbos, Nancy Eickelmann, Arnold Pittler, Allan Willey

Naval Postgraduate School: Ray Madachy

NICTA: Ross Jeffery

Northrop Grumman/TRW: Frank Belz, George Friedman, Rick Hefner, Steve 
Jacobs, Alan Levin, Fred Manthey, Maria Penedo, Winston Royce, Rick 
Selby, Neil Siegel

OGR Systems: Kevin Forsberg

Price Systems: Arlene Minkiewicz, David Seaver

Raytheon: Anthony Peterson, Quentin Redman, John Rieff, Gary Thomas

RCI: Don Reifer

SAIC: Dick Fitzer, Tony Jordano, Beverly Kitaoka, Gabriel Lengua, Dick 
Stutzke

San Diego State University: Teresa Larsen

Softstar Systems: Dan Ligett
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Stevens Institute: Art Pyster

Teledyne Brown Engineering: Douglas Smith

University of Massachusetts: Lori Clarke, Lee Osterweil
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Wellpoint: Adam Kohl

Xerox: Peter Hantos, Jason Ho

Finally, the authors are grateful for the support of their partners in life, who 
put up with working weekends, late nights, unexpected travel, and all of the 
household inconveniences that writing books entail. To Sharla, Mike, Sohrab, and 
Jo—our best friends, greatest inspirations, sharpest critics, and truest loves—our 
heartfelt thanks. We love you.
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Prologue

A Cautionary Tale: The Bed of Procrustes
In the ancient world of the Greeks, there were gods and goddesses, demi-gods and 
heroes. The normal Greeks were quite entertained by the antics of these divine and 
semi-divine creatures, and followed them in their spare time (when they weren’t 
creating democracy, mathematics, astronomy, history, and all manner of interest-
ing things we occasionally use and appreciate today). There is a wealth of litera-
ture on the gods and goddesses, but we are interested in only one minor miscreant, 
who provides a wonderful metaphor for one of the main reasons this book was 
written.

His name was Procrustes, and he was a son of Poseidon, the god of the sea, 
among other things. Procrustes, although trained as a smith, made his living as 
an innkeeper cum bandit, having a nice hostelry on one of the mountains that 
happened to be on the way between two fairly important towns in ancient Greece. 
Of course, Procrustes wasn’t your usual, run-of-the-mill bandit. Think of him as 
an early incarnation of a cross between Lizzy Borden and Norman Bates. While 
not someone you would want your sister to marry, he was creative in the way he 
relieved unlucky travelers of their goods. This creativity buys him a bit of mytho-
logical slack, as well as provides our metaphor.

Procrustes liked things to fit nicely into specified buckets—very much like 
many of the program managers and executives we have met along the way. He had 
an iron bed that he believed was the perfect length. In fact, he thought it should 
fit everyone. Procrustes did not have a therapist, so we’ll probably never know 
the reason he was so enamored by the bed. Instead, we’ll simply assume there are 
deep-seated reasons for his fixation, feel sorry for his affliction, and get on with 
the story.
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His hostelry offered a night’s rest for those who traveled the road across Mount 
Korydallos on the way between Athens and Eleusis. The stories are not clear as to 
how Procrustes selected his victims, but he would invite them in, show them his 
cherished bed, and offer it to them for the night, claiming, not unlike modern mat-
tress salespeople, that it was magical and would perfectly fit whoever slept in it.

As statisticians and human factors experts will tell you, humans, even in the 
time of the ancient Greeks, generally varied in height and weight according to a 
normal distribution. And, of course, the iron bed was not created to adjust easily 
for such a distribution. In fact, it was a very precise length and width. It should be 
clear that the odds of having a person perfectly fit this bed, while not impossible, 
were probabilistically small. Ignoring the odds, or perhaps depending on them, Pro-
crustes was nearly always presented with a person who did not fit the bed.*

Procrustes would bind the person to the bed, quickly realize that the guest did 
not fit it perfectly, reach for his smith’s tools, and then carefully tailor the person 
to fit it—less magically, and more messily. If the unfortunate guest was too tall or 
too wide, he would simply lop off the offending parts. If too short or too narrow, 
then he would forcefully stretch the individual out until he fit. Needless to say, this 
generally proved fatal to the guest. Having assured himself of the perfection of the 
bed, and shaking his head at the imperfection of this particular human, Procrustes 
would gather the now-deceased’s valuables into his hoard and begin the task of 
cleaning the room for his next guest.

Procrustes, whose name, ironically or mythically, meant “he who stretches,” 
continued this endeavor until he mistakenly invited the hero Theseus to stay the 
night. Theseus turned the tables (or the bed, as it were) on Procrustes and did 
some tailoring of his own. While the disposition of Procrustes’s famous bed is not 
reported, the concept of “one size fits all” has found its way down through the 
centuries.

The Point of the Story
Many organizations today find that their previous world of relatively stable busi-
nesses, products, processes, personnel, and technology is changing at an increas-
ingly rapid pace. They find their investments in one-size-fits-all corporate and 
development processes are functioning like a Procrustean bed when applied to 
engineer and develop an increasing diversity of system types. They encounter 
problems with emergent and rapidly changing requirements and different balances 
of needs for agility, assurance, or both. The need for personnel with different 
skills, motivations, and lifestyles surfaces. Their rapidly evolving information and 
communication infrastructures are increasingly penetrating physical systems via 
three-dimensional printing and Internets of Things.

*  In fact, some writers suggest that there were two beds, giving Procrustes even better odds.
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Unfortunately, trying to escape from their Procrustean bed is difficult. There 
are conflicts between their impatient, change-oriented technical people and their 
settled, THWADI (“That’s How We’ve Always Done It”) administrators, each of 
whom has little understanding of the others’ world. Employees working in single 
domains where one size is enough feel that their solutions ought to work for 
everybody else. It is even challenging to identify criteria for selecting alternative 
processes. The organization may have tried changing everyone to a new method 
and found that it is yet just another Procrustean bed.

We have gone through these difficulties ourselves during our periods in indus-
try, government, and academia: trying to undo overenthusiastic corporate commit-
ments made using the waterfall model; trying to get flexible acquisition standards 
approved by inflexible standards administrators; and trying to evolve best prac-
tices to teach students and have them apply in real-client project courses. The 
Incremental Commitment Spiral Model is the best approach we have found so far, 
and our applications of it across a wide range of project sizes and domains have 
worked out better than the project stakeholders’ previous experiences. As we learn 
more, this model continues to evolve. We have also found that it is better to adopt 
its changes to organizations’ current practices incrementally, and have identified 
practices that can be adopted incrementally, based on understanding organiza-
tions’ strongest needs and opportunities.

We are not alone recognizing the problems. Other initiatives are making prog
ress in moving people and organizations away from their previous one-size-fits-
all processes. Several of our University of Southern California (USC) industrial 
affiliates have developed criteria for selecting alternative process models. Per Kroll 
and Philippe Kruchten’s book, The Rational Unified Process Made Easy, sepa-
rates its guidance into four tracks: Projects Deimos, Ganymede, Mars, and Jupiter. 
Frank Kendall’s reorganization of the previously Procrustean U.S. Department of 
Defense Instruction 5000.02 into six different system acquisition swim lanes is 
another major step forward. We hope that this book and its website can benefit 
your organization and enable it to avoid having future projects stretched or lopped 
to fit Procrustean beds.
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3
The Third Principle: Concurrent 
Multidiscipline Engineering

“Do everything in parallel, with frequent synchronizations.”

—Michael Cusumano and Richard Selby, Microsoft Secrets, 1995

“As the correct solution of any problem depends primarily on a true understanding 
of what the problem really is, and wherein lies its difficulty, we may profitably 
pause upon the threshold of our subject to consider first, in a more general way, 
its real nature: the causes which impede sound practice; the conditions on which 
success or failure depends; the directions in which error is most to be feared. Thus 
we shall attain that great perspective for success in any work—a clear mental 
perspective, saving us from confusing the obvious with the important, and the 
obscure and remote with the unimportant.”

—Arthur M. Wellington, The Economic Theory of the Location of Railroads, 1887

The first flowering of systems engineering as a formal discipline focused on the 
engineering of complex physical systems such as ships, aircraft, transportation 

systems, and logistics systems. The physical behavior of the systems could be well 
analyzed by mathematical techniques, with passengers treated along with baggage 
and merchandise as a class of logistical objects with average sizes, weights, and 
quantities. Such mathematical models were very good in analyzing the physical 
performance tradeoffs of complex system alternatives. They also served as the 
basis for the development of elegant mathematical theories of systems engineering.

The physical systems were generally stable, and were expected to have long 
useful lifetimes. Major fixes or recalls of fielded systems were very expensive, so it 
was worth investing significant up-front effort in getting their requirements to be 
complete, consistent, traceable, and testable, particularly if the development was 
to be contracted out to a choice of competing suppliers. It was important not to 
overly constrain the solution space, so the requirements were not to include design 
choices, and the design could not begin until the requirements were fully specified.

Various sequential process models were developed to support this approach, 
such as the diagonal waterfall model, the V-model (a waterfall with a bend upward 
in the middle), and the two-leg model (an inverted V-model). These were effective 
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in developing numerous complex physical systems, and were codified into gov-
ernment and standards-body process standards. The manufacturing process of 
assembling physical components into subassemblies, assemblies, subsystems, and 
system products was reflected in functional-hierarchy design standards, integra-
tion and test standards, and work breakdown structure standards as the way to 
organize and manage the system definition and development.

The fundamental assumptions underlying this set of sequential processes, 
prespecified requirements, and functional-hierarchy product models began 
to be seriously undermined in the 1970s and 1980s. The increasing pace of 
change in technology, competition, organizations, and life in general made 
assumptions about stable, prespecifiable requirements unrealistic. The exis
tence of cost-effective, competitive, incompatible commercial products or other 
reusable non-developmental items (NDIs) made it necessary to evaluate and often 
commit to solution components before finalizing the requirements (the conse-
quences of not doing this will be seen in the failure case study in Chapter 4). 
The emergence of freely available graphic user interface (GUI) generators made 
rapid user interface prototyping feasible, but also made the prespecification of user 
interface requirement details unrealistic. The difficulty of adapting to rapid change 
with brittle, optimized, point-solution architectures generally made optimized 
first-article design to fixed requirements unrealistic.

As shown in the “hump diagram” of Figure 0-5 in the Introduction, the 
ICSM emphasizes the principle of concurrent rather than sequential work for 
understanding needs; envisioning opportunities; system scoping; system objectives 
and requirements determination; architecting and designing of the system and its 
hardware, software, and human elements; life-cycle planning; and development of 
feasibility evidence. Of course, the humps in Figure 0-5 are not a one-size-fits-all 
representation of every project’s effort distribution. In practice, the evidence- and 
risk-based decision criteria discussed in Figures 0-7 and 0-8 in the Introduction 
can determine which specific process model will fit best for which specific situation. 
This includes situations in which the sequential process is still best, as its assump-
tions still hold in some situations. Also, since requirements increasingly emerge 
from use, working on all of the requirements and solutions in advance is not 
feasible—which is where the ICSM Principle 2 of incremental commitment applies.

This establishes the context for the “Do everything in parallel” quote at the 
beginning of this chapter. Even though preferred sequential-engineering situa-
tions still exist in which “Do everything in parallel” does not universally apply, it 
is generally best to apply it during the first ICSM Exploratory phase. By holistically 
and concurrently addressing during this beginning phase all of the system’s hard-
ware, software, human factors, and economic considerations (as described in the 
Wellington quote at the beginning of the chapter), projects will generally be able 
to determine their process drivers and best process approach for the rest of the 
system’s life cycle. Moreover, as discussed previously, the increasing prevalence of 
process drivers such as emergence, dynamism, and NDI support will make concur-
rent approaches increasingly dominant.
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Thus suitably qualified, we can proceed to the main content of Chapter 3. 
Our failure and success case studies are two different sequential and concurrent 
approaches to a representative complex cyber–physical–human government system 
acquisition involving remotely piloted vehicles (RPVs). The remaining sections will 
discuss best practices for concurrent cyber–physical–human factors engineering, 
concurrent requirements and solutions engineering, concurrent development and 
evolution engineering, and support of more rapid concurrent engineering.

An example to illustrate ICSM concurrent-engineering benefits is the unmanned 
aerial system (UAS; i.e., RPV) system enhancement discussed in Chapter 5 of the 
NRC’s Human–System Integration report [1]. These RPVs are airplanes or heli-
copters operated remotely by humans. The systems are designed to keep humans 
out of harm’s way. However, the current RPV systems are human-intensive, often 
requiring two people, and often considerably more, to operate a single vehicle. The 
increase in need to operate numerous RPVs is causing a strong desire to modify 
the 1:2 (one vehicle controlled by two people) ratio to allow for a single operator to 
operate more than one RPV, as shown in Figure 3-1.

A recent advanced technology demonstration of an autonomous-agent–based 
system enabled a single operator to control four RPVs flying in formation to a crisis 
area while compensating for changes in direction to avoid adverse weather condi-
tions or no-fly zones. Often, such demonstrations to high-level decision makers, 
who are typically focused on rapidly getting innovations into the competition 

Figure 3-1  Vision of 4:1 Remotely Piloted Vehicle System (from Pew and Mavor, 2007)
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space, will lead to commitments to major acquisitions before the technical and 
economic implications have been worked out (good examples have been the Iridium 
satellite-based personal telephone system and the London Ambulance System).

Based on our analyses of such failures and complementary successes (e.g., the 
rapid-delivery systems of Federal Express, Amazon, and Walmart), the failure and 
success stories in this chapter illustrate failure and success patterns in the RPV 
domain. In the future, the technical, economic, and safety challenges for similarly 
autonomous air vehicles will become even more complex, as with Amazon’s recent 
concept and prototype of filling the air with tiny, fully autonomous, battery-powered 
helicopters rapidly delivering packages from its warehouse to your front door.

In this chapter, the demonstration of a 4:1 vehicle:controller ratio capability 
highly impressed senior leadership officials viewing the demo, and they established 
a high-priority rapid-development program to acquire and field a common 
agent-based 4:1 RPV control capability for use in battlefield-based, sea-based, and 
home-country–based RPV operations.

3.1  Failure Story: Sequential RPV Systems 
Engineering and Development

This section presents a hypothetical sequential approach representative of several 
recent government acquisition programs, which would use the demo results to cre-
ate the requirements for a proposed program that used the agent-based technology 
to develop a 4:1 ratio system that enabled a single operator to control four RPVs in 
battlefield-based, sea-based, and home-country–based RPV operations. A number 
of assumptions were made to sell the program at an optimistic cost of $1 billion 
and schedule of 40 months. Enthusiasm was such that the program, budget, and 
schedule were established, and a multi-service working group of experienced 
battlefield-based, sea-based, and home-country–based RPV controllers was estab-
lished to develop the requirements for the system.

The resulting requirements included the need to synthesize status information 
from multiple on-board and external sensors; to perform dynamic reallocation of 
RPVs to targets; to perform self-defense functions; to communicate status and obser-
vational information to central commanders and other RPV controllers; to control 
RPVs in the same family but with different releases having somewhat different con-
trols; to avoid harming friendly forces or noncombatants; and to be network-ready 
with respect to self-identification when entering battle zones, establishing security 
credentials and protocols, operating in a publish–subscribe environment, and par-
ticipating in replanning activities based on changing conditions. These requirements 
were included in a request for proposal (RFP) that was sent out to prospective bidders.

The winning bidder provided an even more impressive demo of agent technol-
ogy and a proposal indicating that all of the problems were well understood, that 
a preliminary design review (PDR) could be held in 120 days, and that the cost 
would be only $800 million. The program managers and their upper management 
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were delighted at the prospect of saving $200 million of the taxpayers’ money, and 
they established a fixed-price contract to develop the 4:1 system to the require-
ments in the RFP in 40 months, with a System Functional Requirements Review 
(SFRR) in 60 days and a PDR in 120 days.

At the SFRR, the items reviewed were transcriptions and small elaborations of 
the requirements in the RFP. They did not include any functions for coordinating 
the capabilities, and included only sunny-day operational scenarios. There were 
no capabilities for recovering from outages in the network, from the loss of RPVs, 
or from incompatible sensor data, or for tailoring the controls to battlefield-based, 
sea-based, or home-country–based control equipment. The contractor indicated 
that it had hired some ex-RPV controllers who were busy putting such capabilities 
together.

However, at the PDR, the contractor could not show feasible solutions for 
several critical and commonly occurring scenarios, such as coping with network 
outages, missing RPVs, and inconsistent data; having the individual controllers 
coordinate with each other; performing self-defense functions; tailoring the controls 
to multiple equipment types; and satisfying various network-ready interoperability 
protocols. As has been experienced in practice [2], such capabilities are much 
needed and difficult to achieve.

Because the schedule was tight and the contractor had almost run out of sys-
tems engineering funds, management proposed to address the problems by using 
a “concurrent engineering” approach of having the programmers develop the soft-
ware capabilities while the systems engineers were completing the detailed design 
of the hardware displays and controls. Having no other face-saving alternative to 
declaring the PDR to be a failure, the customers declared the PDR to be passed.

Actually, proceeding into development while completing the design is a per-
nicious misuse of the term “concurrent engineering,” as there is not enough time 
to produce feasibility evidence and to synchronize and stabilize the numerous 
off-nominal approaches taken by the software developers and the hardware-detail 
designers. The situation becomes even worse when portions of the system are 
subcontracted to different organizations, which will often reuse existing assets 
in incompatible ways. The almost-certain result for large systems is one or more 
off-nominal architecture-breakers that require large amounts of rework and 
throwaway software to reconcile the inconsistent architectural decisions made by 
the self-fulfilling “hurry up and code, because we will have a lot of debugging to 
do” programmers. Figure 3-2 shows the results of such approaches for two large 
TRW projects, in which 80% of the rework resulted from the 20% of problem fixes 
resulting from critical off-nominal architecture-breakers [3].

As a result, after 40 months and $800 million in expenditures, some RPV con-
trol components were developed but were experiencing integration problems, and 
even after descoping the performance to a 1:1 operator:RPV ratio, several problems 
were still unresolved. For example, the hardware engineers used their traditional 
approach to defining interfaces in terms of message content (e.g., “The sensor 
data crossing an interface is defined in terms of the following units, dimensions, 
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coordinate systems, precision, frequency, or other characteristics”). They then 
took full earned value credit for defining the system’s interfaces. However, the 
RPVs were operating in a Net-centric system of systems, where interface defini-
tion includes protocols for joining the network, performing security handshakes, 
publishing and subscribing to services, leaving the network, and so on. As there 
was no earned value left for defining these protocols, they remained undefined 
while the earned value system continued to indicate full credit for interface defini-
tion. The resulting rework and overruns could be said to result from off-nominal 
architecture breakers or from shortfalls in the concurrent engineering of the sen-
sor data processing and networking aspects of the system, and from shortfalls in 
accountability for results.

Eventually, the 1:1 capability was achieved and the system delivered, but with 
reduced functionality, a cost of $3 billion, and a schedule of 80 months. Even 
worse, the hasty patching to get the first article delivered left the customer with a 
brittle, poorly documented, poorly tested system that would be the source of many 
expensive years of system ownership and sub-par performance.

3.2  Success Story: Concurrent Competitive-
Prototyping RPV Systems Development

A concurrent incremental-commitment approach to the agent-based RPV control 
opportunity, using the ICSM process and competitive prototyping, would recog-
nize that there were a number of risks and uncertainties involved in going from a 
single-scenario proof-of-principle demo to a fieldable system needing to operate in 
more complex scenarios. It would decide that it would be good to use prototyping 
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as a way of buying information to reduce the risks, and would determine that a 
reasonable first step would be to invest $25 million in an Exploration phase. This 
would initially involve the customer and a set of independent experts developing 
operational scenarios and evaluation criteria from the requirements in Section 3.1 
(to synthesize status information from multiple on-board and external sensors; 
to perform dynamic reallocation of RPVs to targets; to perform self-defense func-
tions; and so on). These would involve not only the sunny-day use cases but also 
selected rainy-day use cases involving communications outages, disabled RPVs, 
and garbled data.

The customer would identify an RPV simulator that would be used in the 
competition, and would send out a request for information to prospective com-
petitors to identify their qualifications to compete. Based on the responses, the 
customer would then select four bidders to develop virtual prototypes address-
ing the requirements, operational scenarios, and evaluation criteria, and providing 
evidence of their proposed agent-based RPV controllers’ level of performance. The 
customer would then have the set of independent experts evaluate the bidders’ 
results. Based on the results, it would perform an evidence- and risk-based Valu-
ation Commitment Review to determine whether the technology was too imma-
ture to merit further current investment as an acquisition program, or whether the 
system performance, cost, and risk were acceptable for investing the next level of 
resources in addressing the problems identified and developing initial prototype 
physical capabilities.

As was discovered much more expensively in the failure case described ear-
lier, the prospects for developing a 4:1 capability were clearly unrealistic. The 
competitors’ desire to succeed led to several innovative approaches, but also to 
indications that having a single controller handle multiple-version RPV controls 
would lead to too many critical errors. Overall, however, the prospects for a 1:1 
capability were sufficiently attractive to merit another level of investment, cor-
responding to a Valuation phase. This phase was funded at $75 million, some of 
the more ambitious key performance parameters were scaled back, the competi-
tors were down-selected to three, and some basic-capability but multiple-version 
physical RPVs were provided for the competitors to control in several physical 
environments.

The evaluation of the resulting prototypes confirmed that the need to control 
multiple versions of the RPVs made anything higher than a 1:1 capability infeasi-
ble. However, the top two competitors provided sufficient evidence of a 1:1 system 
feasibility that a Foundations Commitment Review was passed, and $225 million 
was provided for a Foundations phase: $100 million for each of the top com-
petitors, and $25 million for customer preparation activities and the independent 
experts’ evaluations.

In this phase, the two competitors not only developed operational RPV versions, 
but also provided evidence of their ability to satisfy the key performance parameters 
and scenarios. In addition, they developed an ICSM Development Commitment 
Review package, including the proposed system’s concept of operation, requirements, 
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architecture, and plans, along with a Feasibility Evidence Description providing evi-
dence that a system built to the architecture would satisfy the requirements and 
concept of operation, and be buildable within the budget and schedule in the plan.

The feasibility evidence included a few shortfalls, such as remaining uncer-
tainties in the interface protocols with some interoperating systems, but each of 
these was covered by a risk mitigation plan in the winning competitor’s submis-
sion. The resulting Development Commitment Review was passed, and the win-
ner’s proposed $675 million, 18-month, three-increment Stage II plan to develop 
an initial operational capability (IOC) was adopted. The resulting 1:1 IOC was 
delivered on budget and 2 months later than the original 40-month target, with a 
few lower-priority features deferred to later system increments. Figure 3-3 shows 
the comparative timelines for the Sequential and Concurrent approaches.

Of the $1 billion spent, $15 million was spent on the three discontinued 
Exploration-phase competitors, $40 million was spent on the two discontin-
ued Valuation-phase competitors, and $100 million was spent on the discontinued 
Foundations-phase competitor. Overall, the competitive energy stimulated and the 
early risks avoided made this a good investment. However, the $125 million spent 
on the experience built up by the losing finalist could also be put to good use by 
awarding the finalist with a contract to build and operate a testbed for evaluating 
the RPV system’s performance.

Actually, it would be best to announce such an outcome in advance, and to 
do extensive team building and award fee structuring to make the testbed activity 
constructive rather than adversarial.

While the sequential and concurrent cases were constructed in an RPV context 
from representative projects elsewhere, they show how a premature total commit-
ment without adequate resources for and commitment to early concurrent engi-
neering of the modeling, analysis, and feasibility assessment of the overall system 
will often lead to large overruns in cost and schedule, and performance that is 
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considerably less than initially desired. However, by “buying information” early, 
the concurrent incremental commitment and competitive prototyping approach 
was able to develop a system with much less late rework than the sequential 
total commitment approach, and with much more visibility and control over the 
process.

The competitive prototyping approach spent about $155 million on unused pro-
totypes, but the overall expenditure was only $1 billion as compared to $3 billion 
for the total-commitment approach, and the capability was delivered in 42 versus 
80 months, which indicates a strong return on investment. Further, the funding 
organizations had realistic expectations of the outcome, so that a 1:1 capability 
was a successful realization of an expected outcome, rather than a disappointing 
shortfall from a promised 4:1 capability. In addition, the investment in the losing 
finalist could be put to good use by capitalizing on its experience to perform an 
IV&V role.

Competitive prototyping can lead to strong successes, but it is also impor-
tant to indicate its potential failure modes. These include under-investments in 
prototype evaluation, leading to insufficient data for good decision making; extra 
expenses in keeping the prototype teams together and productive during often-
overlong evaluation and decision periods; and choosing system developers too 
much on prototyping brilliance and too little on ability to systems-engineer and 
production-engineer the needed products [4]. These problem areas are easier to 
control in competitions among in-house design groups, where they are success-
fully used by a number of large corporations.

3.3  Concurrent Development and  
Evolution Engineering

As good as the success story in Section 3.2 appears to be, it could have a fatal flaw 
that is shared by many outsourced system acquisitions—namely, its primary focus 
on satisfying today’s requirements as quickly and inexpensively as possible. This 
may build architectural decisions into the system that make it difficult to adapt 
to new opportunities or competitive threats. From an economic standpoint, this 
approach neglects the Iron Law of System Evolution:

For every dollar invested in developing a sustained-use system, be 
prepared to pay at least two dollars on the system’s evolution.

Data from hardware-intensive systems indicates that the average percentage 
of life-cycle cost spent on operations and support (O&S%) is a relatively small 12% 
for single-use consumables, but is 60% for ships, 78% for aircraft, and 84% for 
ground vehicles [5]. For software-intensive systems, O&S% figures from seven 
studies range from 60–70% to more than 90% [6].
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Even so, many projects (and some system acquisition guidance documents) 
continue to emphasize such practices as “maximizing system performance while 
minimizing system acquisition costs.” Such practices generally lead to brittle, point-
solution architectures that overly constrain evolution options and inflate evolution 
costs, and to a lack of key system deliverables for reducing operations and support 
costs, such as maintenance and diagnostic tools and documentation, test case inputs 
and outputs, and latest-release COTS components. (COTS vendors generally support 
only their latest three releases. In one maintenance study, we encountered a system 
that was delivered with 120 COTS products, 66 of which were on releases that were 
no longer supported by the vendors.)

Several good practices for avoiding such situations can be applied in the ini-
tial ICSM Exploration phase. These include early addressing of post-deployment 
and aftermarket considerations such as development of a full operations concept 
description, including the following considerations:

hh Identification and involvement of key operations and maintenance 
stakeholders

hh Agreement on their roles and responsibilities

hh Inclusion of total ownership costs in business case analyses

hh Addressing of post-deployment supply chain management alternatives

hh Identification of development practices and deliverables needed for 
successful operations and maintenance

Since operations and maintenance costs can consume 60% to 90% of an enter-
prise’s resources, it is also important to build up a knowledge base on their nature, 
and to apply the knowledge to reduce their costs and difficulties. For example, 
this was done for the two TRW projects summarized in Figure 3-2. As indicated 
in Figure 3-2, their major sources of rework effort were found to be off-nominal 
architecture-breakers. This source of risk was added to the TRW risk management 
review guidelines for future projects. Also, their additional major sources of life-
cycle change were determined to be hardware–software interfaces, new algorithms, 
subcontractor interfaces, user interfaces, external application interfaces, COTS 
upgrades, database restructuring, and diagnostic aids, as shown in Table 3-1.

Following Dave Parnas’s information-hiding principles [7], these sources of 
change were encapsulated in the architectures of similar projects, and additional 
systems engineering effort was devoted to addressing off-nominal architecture 
breakers. As detailed in the next chapter, by investing more effort in systems engi-
neering and architecting, the highly successful Command Center Processing and 
Display System-Replacement (CCPDS-R) system [8] flattened the usual exponential 
growth in cost to make changes even later in the life cycle. The resulting savings 
in total cost of ownership are shown in Figure 3-4 [9]. This figure indicates that 
the added investment in CCPDS-R was recouped via rework reduction by the end 
of the initial development cycle, and generated increasing savings in later cycles.
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Table 3-1  Projects A and B Cost-to-Fix Data (Hours)

Category Project A Project B

Extra-long messages 3404 + 626 + 443 + 328 + 
244 = 5045

Network failover 2050 + 470 + 360 + 160 = 3040

Hardware-software interface 620 + 200 = 820 1629 + 513 + 289 + 232 + 
166 = 2832

Encryption algorithms 1247 + 368 = 1615

Subcontractor interface 1100 + 760 + 200 = 2060

GUI revision 980 + 730 + 420 + 240 + 180 = 
2550

Data compression algorithm 910

External applications interface 770 + 330 + 200 + 160 = 1460

COTS upgrades 540 + 380 + 190 = 1110 741 + 302 + 221 + 197 = 
1461

Database restructure 690 + 480 + 310 + 210 + 170 = 
1860

Routing algorithms 494 + 198 = 692

Diagnostic aids 360 477 + 318 + 184 = 979

Total 13,620 13,531
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3.4  Concurrent Engineering of Hardware,  
Software, and Human Factors Aspects

Not every system has all three hardware, software, and human factors aspects. 
When a system does have more than one of these aspects, however, it is important 
to address them concurrently rather than sequentially. A hardware-first approach 
will often choose best-of-breed hardware components with incompatible software 
or user interfaces; provide inadequate computational support for software growth; 
create a late software start and a high risk of a schedule overrun; or commit to 
a functional-hierarchy architecture that is incompatible with layered, service- 
oriented software and human-factors architectures [10].

Software-first approaches can similarly lead to architectural commitments 
or selection of best-of-breed components that are incompatible with preferred 
hardware architectures or make it hard to migrate to new hardware platforms 
(e.g., multiprocessor hardware components). They may also prompt developers to 
choose software-knows-best COTS products that create undesirable human–system 
interfaces. Human-factors-first approaches can often lead to the use of hardware–
software packages that initially work well but are difficult to interoperate or scale 
to extensive use.

Other problems may arise from assumptions by performers in each of the three 
disciplines that their characteristics are alike, when in fact they are often very 
different. For systems having limited need or inability to modify the product once 
fielded (e.g., sealed batteries, satellites), the major sources of life-cycle cost in a 
hardware-intensive system are realized during development and manufacturing. 
However, as we noted earlier, hardware maintenance costs dominate (60–84% of 
life-cycle costs cited for ships, aircraft, and ground vehicles). For software-intensive 
systems, manufacturing costs are essentially zero. For information services, the 
range of 60% to 90% of the software life-cycle cost going into post-development 
maintenance and upgrades is generally applicable. For software embedded in 
hardware systems, the percentages would be more similar to those for ships 
and such. For human-intensive systems, the major costs are staffing and train-
ing, particularly for safety-critical systems requiring continuous 24/7 operations. 
A primary reason for this difference is indicated in rows 2 and 3 of Table 3-2. 
Particularly for widely dispersed hardware such as ships, submarines, satellites, 
and ground vehicles, making hardware changes across a fleet can be extremely 
difficult and expensive. As a result, many hardware deficiencies are handled via 
software or human workarounds that save money overall but shift the life-cycle 
costs toward the software and human parts of the system.

As can be seen when buying hardware such as cars or TVs, there is some 
choice of options, but they are generally limited. It is much easier to tailor software 
or human procedures to different classes of people or purposes. It is also much 
easier to deliver useful subsets of most software and human systems, while deliv-
ering a car without braking or steering capabilities is infeasible.
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The science underlying most of hardware engineering involves physics, chem-
istry, and continuous mathematics. This often leads to implicit assumptions about 
continuity, repeatability, and conservation of properties (mass, energy, momen-
tum) that may be true for hardware but not true for software or human counter-
parts. An example is in testing. A hardware test engineer can generally count on 
covering a parameter space by sampling, under the assumption that the responses 
will be a continuous function of the input parameters. A software test engineer will 
have many discrete inputs, for which a successful test run provides no assurance 
that the neighboring test run will succeed. And for humans, the testing needs to 
be done by the operators and not test engineers.

A good example of integrated cyber–physical–human systems design is 
the detailed description of the Hospira medical infusion pump success story in  
Chapter  1. It included increasing risk-driven levels of detail in field studies and 

Difference Area Hardware/ Physical
Software/Cyber/
Informational Human Factors

Major  
life-cycle cost 
sources

Development; manu-
facturing; multilocation 
upgrades

Life-cycle evolution; low-
cost multilocation upgrades

Training and operations 
labor

Nature of 
changes

Generally manual, labor-
intensive, expensive

Generally straightforward 
except for software code 
rot, architecture-breakers

Very good, but dependent 
on performer knowledge 
and skills

Incremental 
development 
constraints

More inflexible lower 
limits

More flexible lower limits Smaller increments easier, 
if infrequent

Underlying 
science

Physics, chemistry, con-
tinuous mathematics

Discrete mathematics, logic, 
linguistics

Physiology, behavioral 
sciences, economics

Testing By test engineers; much 
analytic continuity

By test engineers; little 
analytic continuity

By representative users

Strengths Creation of physi-
cal effects; durability; 
repeatability; speed 
of execution; 24/7 
operation in wide 
range of environments; 
performance monitoring

Low-cost electronic distrib-
uted upgrades; flexibility 
and some adaptability; 
big-data handling, pattern 
recognition; multitasking 
and relocatability

Perceiving new patterns; 
generalization; guiding 
hypothesis formulation 
and test; ambiguity reso-
lution; prioritizing during 
overloads; skills diversity

Weaknesses Limited flexibility and 
adaptability; corro-
sion, wear, stress, 
fatigue; expensive 
distributed upgrades; 
product mismatches; 
human-developer 
shortfalls

Complexity, conformity, 
changeability, invisibility; 
common-sense reasoning; 
stress and fatigue  
effects; product mis-
matches; human-developer 
shortfalls

Relatively slow decision 
making; limited attention, 
concentration, multitask-
ing, memory recall, and 
environmental conditions; 
teaming mismatches

Table 3-2  Differences in Hardware, Software, and Human System Components
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hardware–software–user interface prototyping; task analysis; hardware and soft-
ware component analysis, including usability testing; and hardware–software–
human safety analyses. Example prototypes and simulations included the following:

hh Hardware industrial design mockups

hh Early usability tests of hardware mockups

hh Paper prototypes for GUIs with wireframes consisting of basic shapes for 
boxes, buttons, and other components

hh GUI simulations using Flash animations

hh Early usability tests with hardware mockups and embedded software 
that delivered the Flash animations to a touchscreen interface that was 
integrated into the hardware case

3.5  Concurrent Requirements and  
Solutions Engineering

With respect to the content of the Feasibility Evidence Description view of the ICSM 
in Figure 0-6 in the Introduction, the term “requirements” includes the definition 
of the system’s operational concept and its requirements (the “what” and “how 
well” the system will perform). The term “solutions” includes the definition of the 
system–hardware–software–human factors architecture elements, and the project’s 
plans, budgets, and schedules (the “how” and “how much”).

For decades, and even today, standard definitions of corporate and govern-
ment system development and acquisition processes have stipulated that the 
Requirements activity should produce complete, consistent, traceable, and test-
able requirements before any work was allowed on the solutions. Initially, there 
were some good reasons for this sequential approach. Often, requirements were 
inserted that were really solution choices, thus cutting off other solution choices 
that could have been much better. Or in many situations, developers would gener-
ate solutions before the requirements were fully defined or understood, leading 
to numerous useless features or misguided architectural commitments that led to 
large overruns. At the time, most systems were relatively simple and requirements 
were relatively stable, so that the risk of spending more time specifying them was 
less than the risk of expensive overruns.

However, the sequential requirements-first approach is a poor fit to most 
human approaches to practical problem solving. Figure 3-5 shows a representative 
result from a study of how people work when developing solutions, concurrently 
obtaining insights all the way from operational concepts to low-level solution 
components [11].

For more complex systems, teams of people will be similarly exploring and 
understanding multiple levels of problems and solutions and coordinating their 
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progress, capitalizing on many insights that are not available if they are locked into 
a sequential, reductionist, requirements-first approach. Also, they will have difficul-
ties in developing key evidence such as business cases for the system, which require 
both estimates of system benefits (needing information about the requirements), 
and estimates of costs (needing information about the solutions).

Further, as systems become more complex and human-interactive, users 
become less able to specify their requirements in advance (“Which decision aids 
do I want to see on the computer screen or in the cockpit? I don’t know, but I’ll 
know it when I see it”—the IKIWISI syndrome). Also, as users gain experience 
in interactively using a system, new requirements emerge that may not be sup-
portable by the architecture developed for the initial requirements (e.g., capabili-
ties to cancel or undo commands, produce trend analyses, or decision outcome 
predictions).

Such hard-to-specify or emergent requirements are addressable via prototyp-
ing or solutions exploration, but these are not allowed in literal interpretations of 
sequential, requirements-first approaches, which tend to get ossified by layers of 
regulations, specifications, standards, contracting practices, and maturity models. 
One of the authors (Boehm) found himself in the difficult position of having led 
much of the effort to define the sequential, waterfall-oriented TRW Software Devel-
opment Policies and Standards in the 1970s, along with training courses, review 
criteria, and corporate public relations materials—and then trying to convince proj
ects in the 1980s to use counterculture techniques such as human-interface proto-
typing (“Prototyping is not allowed. It’s developing solutions before we fully define 
the requirements”).
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The ICSM’s principles and practices such as evidence- and risk-driven decision 
making provide ways to evolve to concurrent versus sequential requirements and 
solutions engineering. These considerations will be covered in the next chapter. Also, 
further details such as evidence-based process guidance are covered in Chapter 13. 
In addition, methods, processes, and tools for concurrent-engineering risk assess-
ment and award-fee contracting are provided on the ICSM website at http://csse.usc.
edu/ICSM.
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