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Foreword

Security in computer systems has been a serious issue for decades. This past decade’s 
explosion in the dependence on networks and the computers connected to them has raised 
the issue to stratospheric levels. When Java was fi rst designed, dealing with security was a 
key component. And in the years since then, all of the various standard libraries, 
frameworks, and containers that have been built have had to deal with security too. In the 
Java world, security is not viewed as an add-on feature. It is a pervasive way of thinking. 
Those who forget to think in a secure mindset end up in trouble. 

But just because the facilities are there doesn’t mean that security is assured automati-
cally. A set of standard practices has evolved over the years.  The CERT® Oracle® Secure 
 Coding Standard for Java™ is a compendium of these practices. These are not theoretical 
research papers or product marketing blurbs. This is all serious, mission-critical, 
battle-tested, enterprise-scale stuff. 

James Gosling 
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Preface

An essential element of secure coding in the Java programming language is a well- 
documented and enforceable coding standard. The CERT Oracle Secure Coding Standard 
for Java provides rules for secure coding in the Java programming language. The goal of 
these rules is to eliminate insecure coding practices that can lead to exploitable vulnerabili-
ties. The application of the secure coding standard leads to higher quality systems that are 
safe, secure, reliable, dependable, robust, resilient, available, and maintainable and can be 
used as a metric to evaluate source code for these properties (using manual or automated 
processes). 

This coding standard affects a wide range of software systems developed in the Java 
programming language. 

■ Scope

The CERT Oracle Secure Coding Standard for Java focuses on the Java Standard Edition 6 
Platform (Java SE 6) environment and includes rules for secure coding using the Java pro-
gramming language and libraries. The Java Language Specifi cation, 3 rd  edition [JLS 2005] 
prescribes the behavior of the Java programming language and served as the primary refer-
ence for the development of this standard. This coding standard also addresses new features 
of the Java SE 7 Platform. Primarily, these features provide alternative compliant solutions 
to secure coding problems that exist in both the Java SE 6 and Java SE 7 platforms. 

xix



xx Preface

Languages such as C and C++ allow undefi ned, unspecifi ed, or implementation-defi ned 
behaviors, which can lead to vulnerabilities when a programmer makes incorrect assump-
tions about the underlying behavior of an API or language construct. The Java Language 
Specifi cation goes further to standardize language requirements because Java is designed to 
be a “write once, run anywhere” language. Even then, certain behaviors are left to the 
discretion of the implementor of the Java Virtual Machine (JVM) or the Java compiler. This 
standard identifi es such language peculiarities and demonstrates secure coding  practices to 
avoid them. 

Focusing only on language issues does not translate to writing secure software. Design 
fl aws in Java application programming interfaces (APIs) sometimes lead to their depreca-
tion. At other times, the APIs or the relevant documentation may be interpreted incorrectly 
by the programming community. This standard identifi es such problematic APIs and high-
lights their correct use. Examples of commonly used faulty design patterns (anti-patterns) 
and idioms are also included. 

The Java language, its core and extension APIs, and the JVM provide security 
features such as the security manager, access controller, cryptography, automatic 
memory management, strong type checking, and bytecode verifi cation. These features 
provide suffi cient security for most applications, but their proper use is of paramount 
importance. This standard highlights the pitfalls and caveats associated with the secu-
rity architecture and stresses its correct implementation. Adherence to this standard 
safeguards the confi dentiality, integrity, and availability (CIA) of trusted programs and 
helps eliminate exploitable security fl aws that can result in denial-of-service attacks, 
time-of-check-to-time-of-use attacks, information leaks, erroneous computations, and 
privilege escalation. 

Software that complies with this standard provides its users the ability to defi ne 
fi ne-grained security policies and safely execute trusted mobile code on untrusted systems 
or untrusted mobile code on trusted systems. 

Included Libraries 
This secure coding standard addresses security issues primarily applicable to the  lang
and util libraries, as well as to the Collections, Concurrency Utilities, Logging, 
Management, Refl ection, Regular Expressions, Zip, I/O, JMX, JNI, Math, Serialization, 
and XML JAXP libraries. This standard avoids the inclusion of open bugs that have 
already been fi xed or those that lack security ramifi cations. A functional bug is 
included only when it is likely that it occurs with high frequency, causes considerable 
security concerns, or affects most Java technologies that rely on the core platform. This 
standard is not limited to security issues specifi c to the Core API but also includes  important 
security concerns pertaining to the standard extension APIs ( javax package).  
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Issues Not Addressed 
The following issues are not addressed by this standard: 

■ Design and Architecture. This standard assumes that the design and architecture of 
the product is secure—that is, that the product is free of design-level vulnerabilities 
that would otherwise compromise its security. 

■ Content. This coding standard does not address concerns specifi c to only one Java-
based platform but applies broadly to all platforms. For example, rules that are 
applicable to Java Micro Edition (ME) or Java Enterprise Edition (EE) alone and not 
to Java SE are typically not included. Within Java SE, APIs that deal with the user 
interface (User Interface Toolkits) or with the web interface for providing features 
such as sound, graphical rendering, user account access control, session management, 
authentication, and authorization are beyond the scope of this standard. However, this 
does not preclude the standard from discussing networked Java systems given the 
risks associated with improper input validation and injection fl aws and suggesting 
appropriate mitigation strategies. 

■ Coding Style. Coding style issues are subjective; it has proven impossible to develop a 
consensus on appropriate style rules. Consequently,  The CERT® Oracle® Secure Coding 
Standard for Java™ recommends  only that the user defi ne style rules and apply those 
rules consistently; requirements that mandate use of any particular coding style are 
deliberately omitted. The easiest way to consistently apply a coding style is with the 
use of a code formatting tool. Many integrated development environments (IDEs) 
provide such capabilities. 

■ Tools. As a federally funded research and development center (FFRDC), the Software 
Engineering Institute (SEI) is not in a position to recommend particular vendors or 
tools to enforce the restrictions adopted. Users of this document are free to choose 
tools; vendors are encouraged to provide tools to enforce these rules. 

■ Controversial Rules. In general, the CERT secure coding standards try to avoid the 
inclusion of controversial rules that lack a broad consensus. 

■ Audience

The CERT® Oracle® Secure Coding Standard for Java™ is primarily intended for developers of 
Java language programs. While this standard focuses on the Java Platform SE 6, it should 
also be informative (although incomplete) for Java developers working with Java ME or 
Java EE and other Java language versions. 
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While primarily designed for secure systems, this standard is also useful for achieving 
other quality attributes such as safety, reliability, dependability, robustness, resiliency, avail-
ability, and maintainability. 

This standard may also be used by 

■ Developers of analyzer tools who wish to diagnose insecure or nonconforming Java 
language programs 

■ Software development managers, software acquirers, or other software development 
and acquisition specialists to establish a proscriptive set of secure coding standards 

■ Educators as a primary or secondary text for software security courses that teach 
secure coding in Java 

The rules in this standard may be extended with organization-specifi c rules. However, a 
program must comply with existing rules to be considered conforming to the standard. 

Training may be developed to educate software professionals regarding the appropriate 
application of secure coding standards. After passing an examination, these trained program-
mers may also be certifi ed as secure coding professionals. 

■ Contents and  O rganization

The standard is organized into an introductory chapter and 17 chapters containing rules 
in specifi c topic areas. Each of the rule chapters contains a list of rules in that section, 
and a risk assessment summary for the rules. There is also a common glossary and bibli-
ography. This preface is meant to be read fi rst, followed by the introductory chapter. The 
rule chapters may be read in any order or used as reference material as appropriate. The 
rules are loosely organized in each chapter but, in general, may also be read in any order. 

Rules have a consistent structure. Each rule has a unique identifi er, which is included 
in the title. The title of the rules and the introductory paragraphs defi ne the conformance 
requirements. This is typically followed by one or more sets of noncompliant code exam-
ples and corresponding compliant solutions. Each rule also includes a risk assessment and 
bibliographical references specifi c to that rule. When applicable, rules also list related vul-
nerabilities and related guidelines from the following sources: 

■  The CERT® C Secure Coding Standard  [ Seacord 2008 ]

■  The CERT® C++ Secure Coding Standard  [ CERT 2011 ]

■ ISO/IEC TR 24772. Information Technology—Programming Languages—Guidance 
to Avoiding Vulnerabilities in Programming Languages through Language Selection 
and Use [ ISO/IEC TR 24772:2010 ]

■ MITRE CWE  [ MITRE 2011 ]
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■ Secure Coding Rules for the Java Programming Language, version 3.0 [ SCG 2009 ]

■ The Elements of Java™ Style [ Rogue 2000 ]

Identifi ers 
Each rule has a unique identifi er, consisting of three parts: 

■ A three-letter mnemonic, representing the section of the standard, is used to group 
similar rules and make them easier to fi nd. 

■ A two-digit numeric value in the range of 00 to 99, which ensures each rule has a 
unique identifi er. 

■ The letter J, which indicates that this is a Java language rule and is included to prevent 
ambiguity with similar rules in CERT secure coding standards for other languages. 

Identifi ers may be used by static analysis tools to reference a particular rule in a diag-
nostic message or otherwise used as shorthand for the rule title. 

■ System Q ualities

Security is one of many system attributes that must be considered in the selection and appli-
cation of a coding standard. Other attributes of interest include safety, portability, reliability, 
availability, maintainability, readability, and performance. 

Many of these attributes are interrelated in interesting ways. For example, readability is 
an attribute of maintainability; both are important for limiting the introduction of defects 
during maintenance that can result in  security fl aws  or reliability issues. In addition, read-
ability facilitates code inspection by safety offi cers. Reliability and availability require 
proper resource management, which also contributes to the safety and security of the sys-
tem. System attributes such as performance and security are often in confl ict, requiring 
tradeoffs to be made. 

The purpose of the secure coding standard is to promote software security. However, 
because of the relationship between security and other system attributes, the coding stan-
dards may include requirements and recommendations that deal primarily with other sys-
tem attributes that also have a signifi cant impact on security. 

■ Priority and  L evels

Each rule has an assigned priority. Priorities are assigned using a metric based on Failure 
Mode, Effects, and Criticality Analysis (FMECA) [ IEC 60812 ]. Three values are assigned 
for each rule on a scale of 1 to 3 for 
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■ Severity—How serious are the consequences of the rule being ignored: 

 1 = low (denial-of-service attack, abnormal termination) 

 2 = medium (data integrity violation, unintentional information disclosure) 

 3 = high (run arbitrary code, privilege escalation) 

■ Likelihood—How likely is it that a fl aw  introduced by violating the rule could lead to 
an exploitable vulnerability: 

 1 = unlikely 

 2 = probable 

 3 = likely 

■ Remediation cost—How expensive is it to remediate existing code to comply with the 
rule:

 1 = high (manual detection and correction) 

 2 = medium (automatic detection and manual correction) 

 3 = low (automatic detection and correction) 

The three values are multiplied together for each rule. This product provides a measure 
that can be used in prioritizing the application of the rules. These products range from 1 to 
27. Rules with a priority in the range of 1 to 4 are level 3 rules, 6 to 9 are level 2, and 12 to 27 
are level 1. As a result, it is possible to claim level 1, level 2, or complete compliance (level 3) 
with a standard by implementing all rules in a level, as shown in Figure P–1. 

High severity,
likely, inexpensive
to repair flaws L1 P12-P27

Low severity,
unlikely, expensive
to repair flaws

L2 P6-P9

L3 P1-P4

Med severity,
probable, med cost
to repair flaws

Figure P–1. Levels and priority ranges 
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The metric is designed primarily for remediation projects and does not apply to new 
development efforts that are implemented to the standard. 

■ Conformance T esting

Software systems can be validated as conforming to The CERT® Oracle® Secure Coding 
 Standard for Java™.

Normative vs. Nonnormative Text 
Portions of this coding standard are intended to be normative; other portions are intended 
as good advice. The normative statements in these rules are the requirements for confor-
mance with the standard. Normative statements use imperative language such as “must,” 
“shall,” and “require.” Normative portions of each rule must be analyzable, although 
automated analysis is infeasible for some rules and not required. 

The nonnormative portions of a rule describe good practices or useful advice. 
Nonnormative statements do not establish conformance requirements. Nonnormative 
statements use verbs such as “should” or phrases such as “is recommended” or “is good 
practice.” Nonnormative portions of rules may be inappropriate for automated checking 
because such checking would likely report excessive false positives when applied to exist-
ing code. Automated checkers for these nonnormative portions might be useful when 
analyzing new code (that is, code that has been developed to this coding standard). 

All of the rules in this standard have a normative component. Nonnormative 
recommendations are provided only when 

■ there is well-known good practice to follow 

■ the rule describes an approach that, if universally followed, would avoid violations 
where the normative part of the rule applies and would also be harmless when applied 
to code where the normative part of the rule is inapplicable 

Entirely nonnormative guidelines are excluded from this coding standard. However, 
the authors of this book are planning a follow-on effort to publish these guidelines. 

■ Automated A nalysis

To ensure that the source code conforms to this secure coding standard, it is necessary to 
check for rule violations. The most effective means of checking is to use one or more analy-
sis tools (analyzers). When a rule cannot be checked by a tool, manual review is required. 
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Many of the rules in this standard provide some indication as to whether or not existing 
analyzers can diagnose violations of the rule or even how amenable the rule is to automated 
analysis. This information is necessarily transitory because existing analyzers evolve and 
new analyzers are developed. 

When choosing a source code analysis tool, it is clearly desirable that the tool be able to 
enforce as many of the rules in this document as possible. Not all rules are enforceable by 
automated analysis tools; some will require manual inspection. 

■ Completeness and  S oundness

To the greatest extent possible, an analyzer should be both complete and sound with respect 
to enforceable rules. An analyzer is considered sound (with respect to a specifi c rule) if it 
does not give a false-negative result, meaning it is able to fi nd all violations of a rule within 
the entire program. An analyzer is considered complete if it does not issue false-positive 
results, or false alarms. The possibilities for a given rule are outlined in Table P–1. 

Tools with a high false-positive rate cause developers to waste their time, and they can 
lose interest in the results and consequently fail to realize value from the true bugs that are 
lost in the noise. Tools with a high number of false-negatives miss many defects that should 
be found and can foster a false sense of security. In practice, tools need to strike a balance 
between the two. 

There are many tradeoffs in minimizing false-positives and false-negatives. It is obvi-
ously better to minimize both, and there are many techniques and algorithms that do both 
to some degree. 

Analyzers are trusted processes, meaning that reliance is placed on the output of the 
tools. Consequently, developers must ensure that this trust is warranted. Ideally, this should 
be achieved by the tool supplier running appropriate validation tests. While it is possible to 
use a validation suite to test an analyzer, no formal validation scheme exists at this time. 

False Positives

Y N

N Sound with false positives Complete and sound

Y Unsound with false positives Unsound

Table P–1. Soundness and completeness
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■ CERT S ource  C ode A nalysis L aboratory 

CERT has created the Source Code Analysis Laboratory (SCALe), which offers confor-
mance testing of software systems to CERT secure coding standards, including The CERT 
Oracle Secure Coding Standard for Java. 

SCALe evaluates client source code using multiple analyzers, including static analysis 
tools, dynamic analysis tools, and fuzz testing. CERT reports any violations of the secure 
coding rules to the developer. The developer may repair and resubmit the software for 
reevaluation. 

After the developer has addressed these fi ndings and the SCALe team determines that 
the product version tested conforms to the standard, CERT issues the developer a certifi cate 
and lists the system in a registry of conforming systems. 

Successful conformance testing of a software system indicates that the SCALe analysis 
was unable to detect violations of rules defi ned by a CERT secure coding standard. Success-
ful conformance testing does not provide any guarantees that these rules are not violated or 
that the software is entirely and permanently secure. SCALe does not test for unknown 
code-related vulnerabilities, high-level design and architectural fl aws, the code’s opera-
tional environment, or the code’s portability. Conforming software systems can still be inse-
cure, for example, if the software implements an insecure design or architecture. 

Some rules in this standard include enumerated exceptions with discussion of the condi-
tions under which each exception applies. When developers invoke an enumerated exception 
as a reason for deviating from a rule, they must document the relevant exception in the code at 
or near the point of deviation. A minimally acceptable form of documentation is a stylized 
comment containing the identifi er of the exception being claimed, as in this example: 

// MET12-EX0 applies here 

The authors are currently developing a set of Java annotations that will permit pro-
grammers to indicate such exceptions in a form that is both human-readable and accessible 
to static analysis tools. For conformance testing purposes, determination of whether an 
exception applies in any particular case is made by the SCALe analyst. 

Third-Party Libraries 
Static analysis tools, such as FindBugs that analyze Java bytecode, can frequently discover 
violations of this secure coding standard in third-party libraries in addition to custom code. 
Violations of secure coding rules in third-party libraries are treated in the same manner as if 
they appeared in custom code. 

Unfortunately, developers are not always in a position to modify third-party library 
code or perhaps even to convince the vendor to modify the code. This means that the  system
cannot pass conformance testing unless the problem is eliminated (possibly by replacing 



xxviii Preface

the library with another library or custom-developed code) or by documenting a deviation. 
The deviation procedure for third-party library code is the same as for custom code—that 
is, the developer must show that the violation does not cause a vulnerability. However, the 
costs may be different. For custom code, it may be more economical to repair the  problem, 
whereas for third-party libraries, it might be easier to document a deviation. 

Conformance Testing Process 
For each secure coding standard, the source code is found to be provably nonconforming, 
conforming, or provably conforming against each rule in the standard. 

■ Provably nonconforming. The code is provably nonconforming if one or more viola-
tions of a rule are discovered for which no deviation has been allowed. 

■ Conforming. The code is conforming if no violations of a rule are identifi ed. 

■ Provably conforming. The code is provably conforming if the code has been verifi ed to 
adhere to the rule in all possible cases. 

Deviation Procedure 
Strict adherence to all rules is unlikely; consequently, deviations associated with specifi c 
rule violations are necessary. Deviations can be used in cases where a true positive fi nding is 
uncontested as a rule violation but the code is nonetheless determined to be secure. This 
may be the result of a design or architecture feature of the software or because the particular 
violation occurs for a valid reason that was unanticipated by the secure coding standard. In 
this respect, the deviation procedure allows for the possibility that secure coding rules are 
overly strict. Deviations cannot be used for reasons of performance, usability, or to achieve 
other nonsecurity attributes in the system. A software system that successfully passes con-
formance testing must not present known vulnerabilities resulting from coding errors. 

Deviation requests are evaluated by the lead assessor; if the developer can provide suf-
fi cient evidence that deviation does not introduce a vulnerability, the deviation request is 
accepted. Deviations should be used infrequently because it is almost always easier to fi x a 
coding error than it is to prove that the coding error does not result in a vulnerability. 

Once the evaluation process has been completed, a report detailing the conformance or 
nonconformance of the code to the corresponding rules in the secure coding standard is 
provided to the developer. 

CERT SCALe Seal 
Developers of software that has been determined by CERT to conform to a secure coding 
standard may use the seal shown in Figure P–2 to describe the conforming software on the 
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developer’s website. The seal must be specifi cally tied to the software passing conformance 
testing and not applied to untested products, the company, or the organization. 

Figure P-2 . CERT SCALe Seal

Except for patches that meet the following criteria, any modifi cation of software after it 
is designated as conforming voids the conformance designation. Until such software is 
retested and determined to be conforming, the new software cannot be associated with the 
CERT SCALe Seal. 

Patches that meet all three of the following criteria do not void the conformance 
designation:

■ The patch is necessary to fi x a vulnerability in the code or is necessary for the mainte-
nance of the software. 

■ The patch does not introduce new features or functionality. 

■ The patch does not introduce a violation of any of the rules in the secure coding 
standard to which the software has been determined to conform. 

Use of the CERT SCALe Seal is contingent upon the organization entering into a service 
agreement with Carnegie Mellon University and upon the software being designated by 
CERT as conforming. For more information, email  securecoding@cert.org .
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Chapter 2
Input Validation and Data 
Sanitization (IDS) 

■ Rules

Rule Page

IDS00-J. Sanitize untrusted data passed across a trust boundary 24

IDS01-J. Normalize strings before validating them 34

IDS02-J. Canonicalize path names before validating them 36

IDS03-J. Do not log unsanitized user input 41

IDS04-J. Limit the size of fi les passed to ZipInputStream 43

IDS05-J. Use a subset of ASCII for fi le and path names 46

IDS06-J. Exclude user input from format strings 48

IDS07-J. Do not pass untrusted, unsanitized data to the Runtime.exec() method 50

IDS08-J. Sanitize untrusted data passed to a regex 54

IDS09-J. Do not use locale-dependent methods on locale-dependent data without specifying 
the appropriate locale

59

IDS10-J. Do not split characters between two data structures 60

IDS11-J. Eliminate noncharacter code points before validation 66

IDS12-J. Perform lossless conversion of String data between differing character encodings 68

IDS13-J. Use compatible encodings on both sides of fi le or network I/O 71
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■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

IDS00-J high probable medium P12 L1

IDS01-J high probable medium P12 L1

IDS02-J medium unlikely medium P4 L3

IDS03-J medium probable medium P8 L2

IDS04-J low probable high P2 L3

IDS05-J medium unlikely medium P4 L3

IDS06-J medium unlikely medium P4 L3

IDS07-J high probable medium P12 L1

IDS08-J medium unlikely medium P4 L3

IDS09-J medium probable medium P8 L2

IDS10-J low unlikely medium P2 L3

IDS11-J high probable medium P12 L1

IDS12-J low probable medium P4 L3

IDS13-J low unlikely medium P2 L3

■ IDS00-J. S anitize untrusted data passed across a trust boundary 

Many programs accept untrusted data originating from unvalidated users, network connec-
tions, and other untrusted sources and then pass the (modifi ed or unmodifi ed) data across a 
trust boundary to a different trusted domain. Frequently the data is in the form of a string 
with some internal syntactic structure, which the subsystem must parse. Such data must be 
sanitized both because the subsystem may be unprepared to handle the malformed input 
and because unsanitized input may include an injection attack. 

In particular, programs must sanitize all string data that is passed to command inter-
preters or parsers so that the resulting string is innocuous in the context in which it is 
parsed or interpreted. 

Many command interpreters and parsers provide their own sanitization and validation 
methods. When available, their use is preferred over custom sanitization techniques because 
custom developed sanitization can often neglect special cases or hidden complexities in the 
parser. Another problem with custom sanitization code is that it may not be adequately main-
tained when new capabilities are added to the command interpreter or parser software. 
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SQL Injection 
A SQL injection vulnerability arises when the original SQL query can be altered to form an 
altogether different query. Execution of this altered query may result in information leaks or 
data modifi cation. The primary means of preventing SQL injection are sanitizing and vali-
dating untrusted input and parameterizing queries. 

Suppose a database contains user names and passwords used to authenticate users of the 
system. The user names have a string size limit of 8. The passwords have a size limit of 20. 

A SQL command to authenticate a user might take the form: 

SELECT * FROM db_user WHERE username='<USERNAME>' AND 
                                  password='<PASSWORD>' 

If it returns any records, the user name and password are valid. 
However, if an attacker can substitute arbitrary strings for  <USERNAME> and  <PASSWORD>,

they can perform a SQL injection by using the following string for  <USERNAME>:

validuser' OR '1'='1 

When injected into the command, the command becomes: 

SELECT * FROM db_user WHERE username='validuser' OR '1'='1' AND 
password=<PASSWORD>

If validuser is a valid user name, this  SELECT statement selects the  validuser record in the 
table. The password is never checked because  username='validuser' is true; consequently 
the items after the OR are not tested. As long as the components after the  OR generate a 
syntactically correct SQL expression, the attacker is granted the access of  validuser.

Likewise, an attacker could supply a string for <PASSWORD> such as: 

' OR '1'='1 

This would yield the following command: 

SELECT * FROM db_user WHERE username='' AND password='' OR '1'='1' 

This time, the '1'='1' tautology disables both user name and password validation, and the 
attacker is falsely logged in without a correct login ID or password. 

Noncompliant Code Example 
This noncompliant code example shows JDBC code to authenticate a user to a system. The 
password is passed as a  char array, the database connection is created, and then the 
passwords are hashed. 



26 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Unfortunately, this code example permits a SQL injection attack because the SQL 
statement sqlString accepts unsanitized input arguments. The attack scenario outlined 
previously would work as described. 

class Login {
  public Connection getConnection() throws SQLException {
    DriverManager.registerDriver(new
            com.microsoft.sqlserver.jdbc.SQLServerDriver());
    String dbConnection = 
      PropertyManager.getProperty("db.connection");
    // can hold some value like
    // "jdbc:microsoft:sqlserver://<HOST>:1433,<UID>,<PWD>"
    return DriverManager.getConnection(dbConnection);
  }

  String hashPassword(char[] password) {
    // create hash of password
  }

  public void doPrivilegedAction( String username, char[] password)
throws SQLException {

    Connection connection = getConnection();
    if (connection == null) {
      // handle error
    }
    try {
      String pwd = hashPassword(password);

      String sqlString = "SELECT * FROM db_user WHERE username = '" 
                             + username +
                             "' AND password = '" + pwd + "'";
      Statement stmt = connection.createStatement();
      ResultSet rs = stmt.executeQuery(sqlString);

      if (!rs.next()) {
        throw new SecurityException(
          "User name or password incorrect"
        );
      }

      // Authenticated; proceed
    } finally {
      try {
        connection.close();
      } catch (SQLException x) {
        // forward to handler
      }
    }
  }
}
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Compliant Solution ( PreparedStatement)
Fortunately, the JDBC library provides an API for building SQL commands that sanitize 
untrusted data. The java.sql.PreparedStatement class properly escapes input strings, pre-
venting SQL injection when used properly. This is an example of component-based  sanitization. 

This compliant solution modifi es the  doPrivilegedAction() method to use a  Pre-
paredStatement instead of  java.sql.Statement. This code also validates the length of the 
username argument, preventing an attacker from submitting an arbitrarily long user name.

public void doPrivilegedAction(
  String username, char[] password
) throws SQLException {
  Connection connection = getConnection();
  if (connection == null) {
    // Handle error
  }
  try {
    String pwd = hashPassword(password);

    // Ensure that the length of user name is legitimate
    if ((username.length() > 8) {
      // Handle error
    }

    String sqlString = 
      "select * from db_user where username=? and password=?";
    PreparedStatement stmt = connection.prepareStatement(sqlString);
    stmt.setString(1, username);
    stmt.setString(2, pwd);
    ResultSet rs = stmt.executeQuery();
    if (!rs.next()) {
      throw new SecurityException("User name or password incorrect");
    }

    // Authenticated, proceed
  } finally {
    try {
      connection.close();
    } catch (SQLException x) {
      // forward to handler
    }
  }
}

Use the set*() methods of the  PreparedStatement class to enforce strong type check-
ing. This mitigates the SQL injection vulnerability because the input is properly escaped by 
automatic entrapment within double quotes. Note that prepared statements must be used 
even with queries that insert data into the database. 



28 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

XML Injection 
Because of its platform independence, fl exibility, and relative simplicity, the extensible 
markup language (XML) has found use in applications ranging from remote procedure calls 
to systematic storage, exchange, and retrieval of data. However, because of its versatility, 
XML is vulnerable to a wide spectrum of attacks. One such attack is called XML injection.

A user who has the ability to provide structured XML as input can override the contents 
of an XML document by injecting XML tags in data fi elds. These tags are interpreted and 
classifi ed by an XML parser as executable content and, as a result, may cause certain data 
members to be overridden. 

Consider the following XML code snippet from an online store application, designed 
primarily to query a back-end database. The user has the ability to specify the quantity of an 
item available for purchase. 

<item>
  <description>Widget</description> 
  <price>500.0</price> 
  <quantity>1</quantity>
</item>

A malicious user might input the following string instead of a simple number in the 
quantity fi eld. 

1</quantity><price>1.0</price><quantity>1

Consequently, the XML resolves to the following block: 

<item>
  <description>Widget</description> 
  <price>500.0</price> 
  <quantity>1</quantity><price>1.0</price><quantity>1</quantity> 
</item>

A Simple API for XML (SAX) parser ( org.xml.sax and  javax.xml.parsers.
SAXParser) interprets the XML such that the second price fi eld overrides the fi rst, leaving 
the price of the item as $1. Even when it is not possible to perform such an attack, the 
attacker may be able to inject special characters, such as comment blocks and CDATA

delimiters, which corrupt the meaning of the XML. 

Noncompliant Code Example 
In this noncompliant code example, a client method uses simple string concatenation to 
build an XML query to send to a server. XML injection is possible because the method 
performs no input validation. 
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private void createXMLStream(BufferedOutputStream outStream, 
                                   String quantity) throws IOException {
  String xmlString;
  xmlString = "<item>\n<description>Widget</description>\n" +

"<price>500.0</price>\n" +
"<quantity>" + quantity + "</quantity></item>";

  outStream.write(xmlString.getBytes());
  outStream.flush();
}

Compliant Solution (Whitelisting) 
Depending on the specifi c data and command interpreter or parser to which data is being 
sent, appropriate methods must be used to sanitize untrusted user input. This compliant 
solution uses whitelisting to sanitize the input. In this compliant solution, the method 
requires that the quantity fi eld must be a number between 0 and 9.

private void createXMLStream(BufferedOutputStream outStream, 
String quantity) throws IOException {

  // Write XML string if quantity contains numbers only.
  // Blacklisting of invalid characters can be performed 
  // in conjunction.

  if (!Pattern.matches("[0-9]+", quantity)) {
    // Format violation
  }

  String xmlString = "<item>\n<description>Widget</description>\n" +
                         "<price>500</price>\n" +
                         "<quantity>" + quantity + "</quantity></item>";
  outStream.write(xmlString.getBytes());
  outStream.flush();
}

Compliant Solution (XML Schema) 
A more general mechanism for checking XML for attempted injection is to validate it using 
a Document Type Defi nition (DTD) or schema. The schema must be rigidly defi ned to pre-
vent injections from being mistaken for valid XML. Here is a suitable schema for validating 
our XML snippet: 

<xs:schema xmlns:xs=" http://www.w3.org/2001/XMLSchema">
<xs:element name="item"> 
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  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="description" type="xs:string"/> 
      <xs:element name="price" type="xs:decimal"/> 
      <xs:element name="quantity" type="xs:integer"/>
    </xs:sequence> 
  </xs:complexType> 
</xs:element>
</xs:schema>

The schema is available as the fi le  schema.xsd. This compliant solution employs this 
schema to prevent XML injection from succeeding. It also relies on the  CustomResolver
class to prevent XXE attacks. This class, as well as XXE attacks, are described in the subse-
quent code examples.

private void createXMLStream(BufferedOutputStream outStream,
                                    String quantity) throws IOException {
  String xmlString;
  xmlString = "<item>\n<description>Widget</description>\n" +

"<price>500.0</price>\n" +
"<quantity>" + quantity + "</quantity></item>";

  InputSource xmlStream = new InputSource(
    new StringReader(xmlString)
  );

  // Build a validating SAX parser using our schema
  SchemaFactory sf
    = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
  DefaultHandler defHandler = new DefaultHandler() {
      public void warning(SAXParseException s)
        throws SAXParseException {throw s;}
      public void error(SAXParseException s)
        throws SAXParseException {throw s;}
      public void fatalError(SAXParseException s)
        throws SAXParseException {throw s;}
    };
  StreamSource ss = new StreamSource(new File("schema.xsd"));
  try {
    Schema schema = sf.newSchema(ss);
    SAXParserFactory spf = SAXParserFactory.newInstance();
    spf.setSchema(schema);
    SAXParser saxParser = spf.newSAXParser();
    // To set the custom entity resolver,
    // an XML reader needs to be created
    XMLReader reader = saxParser.getXMLReader(); 
    reader.setEntityResolver(new CustomResolver());
    saxParser.parse(xmlStream, defHandler);
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  } catch (ParserConfigurationException x) {
    throw new IOException("Unable to validate XML", x);
  } catch (SAXException x) {
    throw new IOException("Invalid quantity", x);
  }

  // Our XML is valid, proceed
  outStream.write(xmlString.getBytes());
  outStream.flush();
}

Using a schema or DTD to validate XML is convenient when receiving XML that may 
have been loaded with unsanitized input. If such an XML string has not yet been built, sani-
tizing input before constructing XML yields better performance. 

XML External Entity Attacks (XXE) 
An XML document can be dynamically constructed from smaller logical blocks called 
entities. Entities can be internal, external, or parameter-based. External entities allow the 
inclusion of XML data from external fi les. 

According to XML W3C Recommendation [ W3C 2008 ], Section 4.4.3, “Included If 
Validating”:

When an XML processor recognizes a reference to a parsed entity, to validate the 
document, the processor MUST include its replacement text. If the entity is exter-
nal, and the processor is not attempting to validate the XML document, the proces-
sor MAY, but need not, include the entity’s replacement text. 

An attacker may attempt to cause denial of service or program crashes by manipulating the 
URI of the entity to refer to special fi les existing on the local fi le system, for example, by 
specifying /dev/random or  /dev/tty as input URIs. This may crash or block the program 
indefi nitely. This is called an XML external entity (XXE) attack. Because inclusion of 
replacement text from an external entity is optional, not all XML processors are vulnerable 
to external entity attacks. 

Noncompliant Code Example 
This noncompliant code example attempts to parse the fi le  evil.xml, reports any errors, 
and exits. However, a SAX or a DOM (Document Object Model) parser will attempt to 
access the URL specifi ed by the  SYSTEM attribute, which means it will attempt to read the 
contents of the local /dev/tty fi le. On POSIX systems, reading this fi le causes the program 
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to block until input data is supplied to the machine’s console. Consequently, an attacker can 
use this malicious XML fi le to cause the program to hang. 

class XXE {
  private static void receiveXMLStream(InputStream inStream,
                                               DefaultHandler defaultHandler)
      throws ParserConfigurationException, SAXException, IOException {
    SAXParserFactory factory = SAXParserFactory.newInstance();
    SAXParser saxParser = factory.newSAXParser();
    saxParser.parse(inStream, defaultHandler);
  }

  public static void main(String[] args)
      throws ParserConfigurationException, SAXException, IOException {
    receiveXMLStream( new FileInputStream("evil.xml"),

new DefaultHandler());
  }
}

This program is subject to a remote XXE attack if the  evil.xml fi le contains the 
following: 

<?xml version="1.0"?>
<!DOCTYPE foo SYSTEM "file:/dev/tty">
<foo>bar</foo>

This noncompliant code example may also violate rule ERR06-J if the information con-
tained in the exceptions is sensitive. 

Compliant Solution ( EntityResolver)
This compliant solution defi nes a  CustomResolver class that implements the interface 
org.xml.sax.EntityResolver. This enables a SAX application to customize handling of 
external entities. The setEntityResolver() method registers the instance with the corre-
sponding SAX driver. The customized handler uses a simple whitelist for external entities. 
The resolveEntity() method returns an empty  InputSource when an input fails to 
resolve to any of the specifi ed, safe entity source paths. Consequently, when parsing mali-
cious input, the empty InputSource returned by the custom resolver causes a  java.net.
MalformedURLException to be thrown. Note that you must create an  XMLReader object on 
which to set the custom entity resolver. 
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This is an example of component-based sanitization. 

class CustomResolver implements EntityResolver {
  public InputSource resolveEntity(String publicId, String systemId)
    throws SAXException, IOException {

    // check for known good entities
    String entityPath = "/home/username/java/xxe/file";
    if (systemId.equals(entityPath)) {
      System.out.println("Resolving entity: " + publicId +
                              " " + systemId);
      return new InputSource(entityPath);
    } else {
      return new InputSource(); // Disallow unknown entities
                                      // by returning a blank path
    }
  }
}

class XXE {
  private static void receiveXMLStream(InputStream inStream,

DefaultHandler defaultHandler)
      throws ParserConfigurationException, SAXException, IOException {
    SAXParserFactory factory = SAXParserFactory.newInstance();
    SAXParser saxParser = factory.newSAXParser();

    // To set the Entity Resolver, an XML reader needs to be created
    XMLReader reader = saxParser.getXMLReader();
    reader.setEntityResolver(new CustomResolver());
    reader.setErrorHandler(defaultHandler);

    InputSource is = new InputSource(inStream);
    reader.parse(is);
  }

  public static void main(String[] args)
      throws ParserConfigurationException, SAXException, IOException {
    receiveXMLStream(new FileInputStream("evil.xml"), 
                         new DefaultHandler());
  }
}

Risk Assessment 
Failure to sanitize user input before processing or storing it can result in injection attacks. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS00-J high probable medium P12 L1
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Related Vulnerabilities CVE-2008-2370 describes a vulnerability in Apache Tomcat 4.1.0 
through 4.1.37, 5.5.0 through 5.5.26, and 6.0.0 through 6.0.16. When a  RequestDispatcher
is used, Tomcat performs path normalization before removing the query string from the 
URI, which allows remote attackers to conduct directory traversal attacks and read arbitrary 
fi les via a .. (dot dot) in a request parameter. 

Related Guidelines 

CERT C Secure Coding Standard STR02-C. Sanitize data passed to complex subsystems

CERT C++ Secure Coding Standard STR02-CPP. Sanitize data passed to complex subsystems

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-116. Improper encoding or escaping of output
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[OWASP 2008] Testing for XML Injection (OWASP-DV-008)
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■ IDS01-J. N ormalize strings before validating them 

Many applications that accept untrusted input strings employ input fi ltering and validation 
mechanisms based on the strings’ character data. 

For example, an application’s strategy for avoiding cross-site scripting (XSS) vulnera-
bilities may include forbidding <script> tags in inputs. Such blacklisting mechanisms are a 
useful part of a security strategy, even though they are insuffi cient for complete input vali-
dation and sanitization. When implemented, this form of validation must be performed 
only after normalizing the input. 

Character information in Java SE 6 is based on the Unicode Standard, version 4.0 [ Uni-
code 2003 ]. Character information in Java SE 7 is based on the Unicode Standard, version 
6.0.0 [ Unicode 2011 ].

According to the Unicode Standard [ Davis 2008a ], annex #15, Unicode Normalization 
Forms:

When implementations keep strings in a normalized form, they can be assured that 
equivalent strings have a unique binary representation. 

Normalization Forms KC and KD must not be blindly applied to arbitrary text. 
Because they erase many formatting distinctions, they will prevent round-trip 
conversion to and from many legacy character sets, and unless supplanted by 
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formatting markup, they may remove distinctions that are important to the seman-
tics of the text. It is best to think of these Normalization Forms as being like upper-
case or lowercase mappings: useful in certain contexts for identifying core meanings, 
but also performing modifi cations to the text that may not always be appropriate. 
They can be applied more freely to domains with restricted character sets. 

Frequently, the most suitable normalization form for performing input validation on arbi-
trarily encoded strings is KC (NFKC) because normalizing to KC transforms the input into an 
equivalent canonical form that can be safely compared with the required input form. 

Noncompliant Code Example 
This noncompliant code example attempts to validate the String before performing nor-
malization. Consequently, the validation logic fails to detect inputs that should be rejected 
because the check for angle brackets fails to detect alternative Unicode representations.

// String s may be user controllable
// \uFE64 is normalized to < and \uFE65 is normalized to > using NFKC
String s = "\uFE64" + "script" + "\uFE65";

// Validate
Pattern pattern = Pattern.compile("[<>]"); // Check for angle brackets
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
  // Found black listed tag
  throw new IllegalStateException();
} else {
  // . ..
}

// Normalize
s = Normalizer.normalize(s, Form.NFKC);

The normalize() method transforms Unicode text into an equivalent composed or 
decomposed form, allowing for easier searching of text. The normalize method supports 
the standard normalization forms described in  Unicode Standard Annex #15—Unicode 
Normalization Forms .

Compliant Solution 
This compliant solution normalizes the string before validating it. Alternative representa-
tions of the string are normalized to the canonical angle brackets. Consequently, input 
validation correctly detects the malicious input and throws an  IllegalStateException.
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String s = "\uFE64" + "script" + "\uFE65";

// Normalize
s = Normalizer.normalize(s, Form.NFKC);

// Validate
Pattern pattern = Pattern.compile("[<>]");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
  // Found black listed tag
  throw new IllegalStateException();
} else {
  // . ..
}

Risk Assessment 
Validating input before normalization affords attackers the opportunity to bypass fi lters 
and other security mechanisms. This can result in the execution of arbitrary code. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS01-J high probable medium P12 L1

Related Guidelines 

ISO/IEC TR 24772:2010 Cross-site scripting [XYT]

MITRE CWE CWE-289. Authentication bypass by alternate name

CWE-180. Incorrect behavior order: Validate before canonicalize

Bibliography
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[Davis 2008a]

[Weber 2009]

■ IDS02-J. C anonicalize path names before validating them 

According to the Java API [ API 2006 ] for class java.io.File:

A path name, whether abstract or in string form, may be either absolute or relative. 
An absolute path name is complete in that no other information is required to 
locate the fi le that it denotes. A relative path name, in contrast, must be interpreted 
in terms of information taken from some other path name. 
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Absolute or relative path names may contain fi le links such as symbolic (soft) links, 
hard links, shortcuts, shadows, aliases, and junctions. These fi le links must be fully resolved 
before any fi le validation operations are performed. For example, the fi nal target of a sym-
bolic link called trace might be the path name  /home/system/trace. Path names may also 
contain special fi le names that make validation diffi cult: 

1. “.” refers to the directory itself. 

2. Inside a directory, the special fi le name “..” refers to the directory’s parent directory. 

In addition to these specifi c issues, there are a wide variety of operating system–specifi c 
and fi le system–specifi c naming conventions that make validation diffi cult. 

The process of canonicalizing fi le names makes it easier to validate a path name. More 
than one path name can refer to a single directory or fi le. Further, the textual representation of 
a path name may yield little or no information regarding the directory or fi le to which it refers. 
Consequently, all path names must be fully resolved or  canonicalized before validation. 

Validation may be necessary, for example, when attempting to restrict user access to 
fi les within a particular directory or otherwise make security decisions based on the name 
of a fi le name or path name. Frequently, these restrictions can be circumvented by an 
attacker by exploiting a directory traversal or  path equivalence vulnerability. A directory 
traversal vulnerability allows an I/O operation to escape a specifi ed operating directory. A 
path equivalence vulnerability occurs when an attacker provides a different but equivalent 
name for a resource to bypass security checks. 

Canonicalization contains an inherent race window between the time the program 
obtains the canonical path name and the time it opens the fi le. While the canonical path 
name is being validated, the fi le system may have been modifi ed and the canonical path 
name may no longer reference the original valid fi le. Fortunately, this race condition can be 
easily mitigated. The canonical path name can be used to determine whether the referenced 
fi le name is in a secure directory (see rule FIO00-J for more information). If the referenced 
fi le is in a secure directory, then, by defi nition, an attacker cannot tamper with it and cannot 
exploit the race condition.

This rule is a specifi c instance of rule  IDS01-J.

Noncompliant Code Example 
This noncompliant code example accepts a fi le path as a command-line argument and 
uses the File.getAbsolutePath() method to obtain the absolute fi le path. It also uses 
the isInSecureDir() method defi ned in rule  FIO00-J to ensure that the fi le is in a secure 
directory. However, it neither resolves fi le links nor eliminates equivalence errors.

public static void main(String[] args) {
  File f = new File(System.getProperty(“user.home”) + 
  System.getProperty(“file.separator”) + args[0]);
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  String absPath = f.getAbsolutePath();

  if (!isInSecureDir(Paths.get(absPath))) {
    throw new IllegalArgumentException();
  }
  if (!validate(absPath)) { // Validation
    throw new IllegalArgumentException();
  }
}

The application intends to restrict the user from operating on fi les outside of their home 
directory. The  validate() method attempts to ensure that the path name resides within 
this directory, but can be easily circumvented. For example, a user can create a link in their 
home directory that refers to a directory or fi le outside of their home directory. The path 
name of the link might appear to the validate() method to reside in their home directory 
and consequently pass validation, but the operation will actually be performed on the fi nal 
target of the link, which resides outside the intended directory. 

Note that File.getAbsolutePath() does resolve symbolic links, aliases, and short cuts 
on Windows and Macintosh platforms. Nevertheless, the  Java Language Specifi cation (JLS) 
lacks any guarantee that this behavior is present on  all platforms or that it will continue in 
future implementations. 

Compliant Solution ( getCanonicalPath())
This compliant solution uses the getCanonicalPath() method, introduced in Java 2, 
because it resolves all aliases, shortcuts, and symbolic links consistently across all plat-
forms. Special fi le names such as dot dot ( ..) are also removed so that the input is reduced 
to a canonicalized form before validation is carried out. An attacker cannot use  ../
sequences to break out of the specifi ed directory when the  validate() method is present.

public static void main(String[] args) throws IOException {
File f = new File(System.getProperty(“user.home”) + 
System.getProperty(“file.separator”)+ args[0]);

  String canonicalPath = f.getCanonicalPath();

  if (!isInSecureDir(Paths.get(canonicalPath))) {
    throw new IllegalArgumentException();
  }
  if (!validate(canonicalPath)) { // Validation
   throw new IllegalArgumentException();
  }
}
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The getCanonicalPath() method throws a security exception when used within applets 
because it reveals too much information about the host machine. The  getCanonicalFile()
method behaves like getCanonicalPath() but returns a new  File object instead of a  String.

Compliant Solution (Security Manager) 
A comprehensive way of handling this issue is to grant the application the permissions to 
operate only on fi les present within the intended directory—the user’s home directory in 
this example. This compliant solution specifi es the absolute path of the program in its secu-
rity policy fi le and grants  java.io.FilePermission with target  ${user.home}/* and 
actions read and  write.

grant codeBase "file:/home/programpath/" {
  permission java.io.FilePermission "${user.home}/*", "read, write";
};

This solution requires that the user’s home directory is a secure directory  as described 
in rule FIO00-J. 

Noncompliant Code Example 
This noncompliant code example allows the user to specify the absolute path of a fi le name 
on which to operate. The user can specify fi les outside the intended directory ( /img in this 
example) by entering an argument that contains  ../ sequences and consequently violate 
the intended security policies of the program.

FileOutputStream fis =
  new FileOutputStream(new File("/img/" + args[0]));
// . ..

Noncompliant Code Example 
This noncompliant code example attempts to mitigate the issue by using the File.getCa-

nonicalPath() method, which fully resolves the argument and constructs a canonicalized 
path. For example, the path/img/../etc/passwd resolves to  /etc/passwd.Canonicalization
without validation is insuffi cient because an attacker can specify fi les outside the intended 
directory.

File f = new File("/img/" + args[0]);
String canonicalPath = f.getCanonicalPath();
FileOutputStream fis = new FileOutputStream(f);
// . ..
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Compliant Solution 
This compliant solution obtains the fi le name from the untrusted user input, canonicalizes 
it, and then validates it against a list of benign path names. It operates on the specifi ed fi le 
only when validation succeeds; that is, only if the fi le is one of the two valid fi les  file1.txt
or file2.txt in  /img/java.

File f = new File("/img/" + args[0]);
String canonicalPath = f.getCanonicalPath();

if (!canonicalPath.equals("/img/java/file1.txt") &&
     !canonicalPath.equals("/img/java/file2.txt")) {
   // Invalid file; handle error
}

FileInputStream fis = new FileInputStream(f);

The /img/java directory must be secure to eliminate any race condition. 

Compliant Solution (Security Manager) 
This compliant solution grants the application the permissions to read only the intended 
fi les or directories. For example, read permission is granted by specifying the absolute path 
of the program in the security policy fi le and granting  java.io.FilePermission with the 
canonicalized absolute path of the fi le or directory as the target name and with the action set 
to read.

// All files in /img/java can be read
grant codeBase "file:/home/programpath/" {
  permission java.io.FilePermission "/img/java", "read";
};

Risk Assessment 
Using path names from untrusted sources without fi rst canonicalizing them and then vali-
dating them can result in directory traversal and path equivalence vulnerabilities. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS02-J medium unlikely medium P4 L3
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Related Vulnerabilities CVE-2005-0789 describes a directory traversal vulnerability in 
LimeWire 3.9.6 through 4.6.0 that allows remote attackers to read arbitrary fi les via a  ..
(dot dot) in a magnet request. 

CVE-2008-5518 describes multiple directory traversal vulnerabilities in the web 
administration console in Apache Geronimo Application Server 2.1 through 2.1.3 on 
Windows that allow remote attackers to upload fi les to arbitrary directories. 

Related Guidelines 

The CERT C Secure Coding Standard FIO02-C. Canonicalize path names originating from 
untrusted sources

The CERT C++ Secure Coding Standard FIO02-CPP. Canonicalize path names originating 
from untrusted sources

ISO/IEC TR 24772:2010 Path Traversal [EWR]

MITRE CWE CWE-171. Cleansing, canonicalization, and 
comparison errors

CWE-647. Use of non-canonical URL paths for 
authorization decisions
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[API 2006] Method getCanonicalPath()

[Harold 1999]

■ IDS03-J. D o not log unsanitized user input 

A log injection vulnerability arises when a log entry contains unsanitized user input. A 
malicious user can insert fake log data and consequently deceive system administrators as 
to the system’s behavior [ OWASP 2008 ]. For example, a user might split a legitimate log 
entry into two log entries by entering a carriage return and line feed (CRLF) sequence, 
either of which might be misleading. Log injection attacks can be prevented by sanitizing 
and validating any untrusted input sent to a log. 

Logging unsanitized user input can also result in leaking sensitive data across a trust 
boundary, or storing sensitive data in a manner that violates local law or regulation. For 
example, if a user can inject an unencrypted credit card number into a log fi le, the system 
could violate PCI DSS regulations [PCI 2010]. See rule IDS00-J for more details on input 
sanitization.
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Noncompliant Code Example 
This noncompliant code example logs the user’s login name when an invalid request is 
received. No input sanitization is performed.

if (loginSuccessful) {
  logger.severe("User login succeeded for: " + username);
} else {
  logger.severe("User login failed for: " + username);
}

Without sanitization, a log injection attack is possible. A standard log message when 
username is  david might look like this: 

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log 
SEVERE: User login failed for: david 

If the username that is used in a log message was not  david, but rather a multiline string 
like this: 

david
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log 
SEVERE: User login succeeded for: administrator 

the log would contain the following misleading data: 

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log 
SEVERE: User login failed for: david 
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log 
SEVERE: User login succeeded for: administrator 

Compliant Solution 
This compliant solution sanitizes the username input before logging it, preventing injection 
attacks. Refer to rule IDS00-J for more details on input sanitization.

if (!Pattern.matches("[A-Za-z0-9_]+", username)) {
  // Unsanitized username
  logger.severe("User login failed for unauthorized user");
} else if (loginSuccessful) {
  logger.severe("User login succeeded for: " + username);
} else {
  logger.severe("User login failed for: " + username);
}
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Risk Assessment 
Allowing unvalidated user input to be logged can result in forging of log entries, leaking 
secure information, or storing sensitive data in a manner that violates a local law or 
regulation.  

Rule Severity Likelihood Remediation Cost Priority Level

IDS03-J medium probable medium P8 L2

Related Guidelines 

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-144. Improper neutralization of line delimiters

CWE-150. Improper neutralization of escape, meta, or control 
sequences

Bibliography
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[OWASP 2008]

[PCI DSS Standard]

■ IDS04-J. L imit the size of fi les passed to ZipInputStream

Check inputs to java.util.ZipInputStream for cases that cause consumption of excessive 
system resources. Denial of service can occur when resource usage is disproportionately large in 
comparison to the input data that causes the resource usage. The nature of the zip algorithm 
permits the existence of zip bombs where a small fi le, such as ZIPs, GIFs, or gzip-encoded HTTP 
content consumes excessive resources when uncompressed because of extreme compression. 

The zip algorithm is capable of producing very large compression ratios [ Mahmoud
2002]. Figure 2–1  shows a fi le that was compressed from 148MB to 590KB, a ratio of more 
than 200 to 1. The fi le consists of arbitrarily repeated data: alternating lines of  a characters 
and b characters. Even higher compression ratios can be easily obtained using input data 
that is targeted to the compression algorithm, or using more input data (that is untargeted), 
or other compression methods. 

Any entry in a zip fi le whose uncompressed fi le size is beyond a certain limit must not 
be uncompressed. The actual limit is dependent on the capabilities of the platform. 

This rule is a specifi c instance of the more general rule  MSC07-J.
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Figure 2–1. Very large compression ratios in a Zip fi le.

Noncompliant Code Example 
This noncompliant code fails to check the resource consumption of the fi le that is being 
unzipped. It permits the operation to run to completion or until local resources are exhausted.

static final int BUFFER = 512;
// . ..

// external data source: filename
BufferedOutputStream dest = null;
FileInputStream fis = new FileInputStream(filename);
ZipInputStream zis = new ZipInputStream(new BufferedInputStream(fis));
ZipEntry entry;
while ((entry = zis.getNextEntry()) != null) {
  System.out.println("Extracting: " + entry);
  int count;
  byte data[] = new byte[BUFFER];
  // write the files to the disk
  FileOutputStream fos = new FileOutputStream(entry.getName());
  dest = new BufferedOutputStream(fos, BUFFER);
  while ((count = zis.read(data, 0, BUFFER)) != -1) {
    dest.write(data, 0, count);
  }
  dest.flush();
  dest.close();
}
zis.close();
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Compliant Solution 
In this compliant solution, the code inside the while loop uses the ZipEntry.getSize()

method to fi nd the uncompressed fi le size of each entry in a zip archive before extract-
ing the entry. It throws an exception if the entry to be extracted is too large—100MB in 
this case. 

static final int TOOBIG = 0x6400000; // 100MB

  // . ..

  // write the files to the disk, but only if file is not insanely big
  if (entry.getSize() > TOOBIG) {
    throw new IllegalStateException("File to be unzipped is huge.");
  }
  if (entry.getSize() == -1) {
    throw new IllegalStateException(
                "File to be unzipped might be huge.");
  }
  FileOutputStream fos = new FileOutputStream(entry.getName());
  dest = new BufferedOutputStream(fos, BUFFER);
  while ((count = zis.read(data, 0, BUFFER)) != -1) {
    dest.write(data, 0, count);
  }

Risk Assessment 

Rule Severity Likelihood Remediation Cost Priority Level

IDS04-J low probable high P2 L3

Related Guidelines 

MITRE CWE CWE-409. Improper handling of highly compressed 
data (data amplifi cation)

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 2-5. Check that inputs do not cause 
excessive resource consumption
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■ IDS05-J. U se a subset of  ASCII  for fi le and path names 

File and path names containing particular characters can be troublesome and can cause 
unexpected behavior resulting in vulnerabilities. The following characters and patterns can 
be problematic when used in the construction of a fi le or path name: 

■ Leading dashes: Leading dashes can cause problems when programs are called with 
the fi le name as a parameter because the fi rst character or characters of the fi le name 
might be interpreted as an option switch. 

■ Control characters, such as newlines, carriage returns, and escape: Control characters 
in a fi le name can cause unexpected results from shell scripts and in logging. 

■ Spaces: Spaces can cause problems with scripts and when double quotes aren’t used to 
surround the fi le name. 

■ Invalid character encodings: Character encodings can make it diffi cult to perform 
proper validation of fi le and path names. (See rule  IDS11-J.)

■ Name-space separation characters: Including name-space separation characters in a 
fi le or path name can cause unexpected and potentially insecure behavior. 

■ Command interpreters, scripts, and parsers: Some characters have special meaning 
when processed by a command interpreter, shell, or parser and should consequently 
be avoided. 

As a result of the infl uence of MS-DOS, fi le names of the form  xxxxxxxx.xxx, where  x
denotes an alphanumeric character, are generally supported by modern systems. On some 
platforms, fi le names are case sensitive; while on other platforms, they are case insensitive. 
VU#439395 is an example of a vulnerability in C resulting from a failure to deal appropri-
ately with case sensitivity issues [ VU#439395].

This rule is a specifi c instance of rule  IDS00-J.

Noncompliant Code Example 
In the following noncompliant code example, unsafe characters are used as part of a fi le name.

File f = new File("A\uD8AB");
OutputStream out = new FileOutputStream(f);

A platform is free to defi ne its own mapping of unsafe characters. For example, when 
tested on an Ubuntu Linux distribution, this noncompliant code example resulted in the 
following fi le name: 

A?
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Compliant Solution 
Use a descriptive fi le name containing only the subset of ASCII previously described.

File f = new File("name.ext");
OutputStream out = new FileOutputStream(f);

Noncompliant Code Example 
This noncompliant code example creates a fi le with input from the user without sanitizing 
the input.

public static void main(String[] args) throws Exception {
  if (args.length < 1) {
    // handle error
  }
  File f = new File(args[0]);
  OutputStream out = new FileOutputStream(f);
  // . ..
}

No checks are performed on the fi le name to prevent troublesome characters. If an 
attacker knew this code was in a program used to create or rename fi les that would later be 
used in a script or automated process of some sort, the attacker could choose particular 
characters in the output fi le name to confuse the later process for malicious purposes. 

Compliant Solution 
In this compliant solution, the program uses a whitelist to reject unsafe fi le names.

public static void main(String[] args) throws Exception {
  if (args.length < 1) {
    // handle error
  }
  String filename = args[0];

  Pattern pattern = Pattern.compile("[^A-Za-z0-9%&+,.:=_]");
  Matcher matcher = pattern.matcher(filename);
  if (matcher.find()) {
    // filename contains bad chars, handle error
  }
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  File f = new File(filename);
  OutputStream out = new FileOutputStream(f);
  // . ..
}

All fi le names originating from untrusted sources must be sanitized to ensure they con-
tain only safe characters. 

Risk Assessment 
Failing to use only a safe subset of ASCII can result in misinterpreted data. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS05-J medium unlikely medium P4 L3

Related Guidelines 
CERT C Secure Coding Standard MSC09-C. Character encoding—Use subset of ASCII 

for safety

CERT C++ Secure Coding Standard MSC09-CPP. Character encoding—Use subset of ASCII 
for safety

ISO/IEC TR 24772:2010 Choice of fi lenames and other external identifi ers [AJN]

MITRE CWE CWE-116. Improper encoding or escaping of output

Bibliography
ISO/IEC 646-1991 ISO 7-bit coded character set for information interchange

[Kuhn 2006] UTF-8 and Unicode FAQ for UNIX/Linux

[Wheeler 2003] 5.4, File Names

[VU#439395]

■ IDS06-J. E xclude user input from format strings 

Interpretation of Java format strings is stricter than in languages such as C [Seacord 2005]. 
The standard library implementations throw appropriate exceptions when any conversion 
argument fails to match the corresponding format specifi er. This approach reduces oppor-
tunities for malicious exploits. Nevertheless, malicious user input can exploit format strings 
and can cause information leaks or denial of service. As a result, strings from an untrusted 
source should not be incorporated into format strings. 
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Noncompliant Code Example 
This noncompliant code example demonstrates an information leak issue. It accepts a 
credit card expiration date as an input argument and uses it within the format string. 

class Format {
  static Calendar c = 
   new GregorianCalendar(1995, GregorianCalendar.MAY, 23);
  public static void main(String[] args) {  
    // args[0] is the credit card expiration date
    // args[0] can contain either %1$tm, %1$te or %1$tY as malicious
    // arguments
    // First argument prints 05 (May), second prints 23 (day) 
    // and third prints 1995 (year)
    // Perform comparison with c, if it doesn't match print the 
    // following line
    System.out.printf(args[0] + 
    " did not match! HINT: It was issued on %1$terd of some month", c);
  }
}

In the absence of proper input validation, an attacker can determine the date against 
which the input is being verifi ed by supplying an input that includes one of the format 
string arguments  %1$tm, %1$te, or %1$tY.

Compliant Solution 
This compliant solution ensures that user-generated input is excluded from format strings.

class Format {
  static Calendar c = 
    new GregorianCalendar(1995, GregorianCalendar.MAY, 23);
  public static void main(String[] args) {  
    // args[0] is the credit card expiration date
    // Perform comparison with c, 
    // if it doesn't match print the following line
    System.out.printf ("%s did not match! "
         + " HINT: It was issued on %1$terd of some month", args[0], c);
  }
}

Risk Assessment 
Allowing user input to taint a format string may cause information leaks or denial of service. 
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Rule Severity Likelihood Remediation Cost Priority Level

IDS06-J medium unlikely medium P4 L3

Automated Detection Static analysis tools that perform taint analysis can diagnose some 
violations of this rule. 

Related Guidelines 

CERT C Secure Coding Standard FIO30-C. Exclude user input from format strings

CERT C++ Secure Coding Standard FIO30-CPP. Exclude user input from format strings

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-134. Uncontrolled format string

Bibliography

[API 2006] Class Formatter

[Seacord 2005] Chapter 6, Formatted Output

■ IDS07-J. D o not pass untrusted, unsanitized data 
to the Runtime.exec() method

External programs are commonly invoked to perform a function required by the overall sys-
tem. This is a form of reuse and might even be considered a crude form of component-based 
software engineering. Command and argument injection vulnerabilities occur when an 
application fails to sanitize untrusted input and uses it in the execution of external programs. 

Every Java application has a single instance of class Runtime that allows the application 
to interface with the environment in which the application is running. The current runtime 
can be obtained from the  Runtime.getRuntime() method. The semantics of  Runtime.
exec() are poorly defi ned, so it’s best not to rely on its behavior any more than necessary, 
but typically it invokes the command directly without a shell. If you want a shell, you can 
use /bin/sh -c on POSIX or  cmd.exe on Windows. The variants of  exec() that take the 
command line as a single string split it using a StringTokenizer. On Windows, these 
tokens are concatenated back into a single argument string before being  executed.

Consequently, command injection attacks cannot succeed unless a command interpreter 
is explicitly invoked. However, argument injection attacks can occur when arguments have 
spaces, double quotes, and so forth, or start with a  - or  / to indicate a switch. 
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This rule is a specifi c instance of rule  IDS00-J. Any string data that originates from out-
side the program’s trust boundary must be sanitized before being executed as a command 
on the current platform. 

Noncompliant Code Example (Windows) 
This noncompliant code example provides a directory listing using the  dir command. This 
is implemented using Runtime.exec() to invoke the Windows  dir command. 

class DirList {
  public static void main(String[] args) throws Exception {
    String dir = System.getProperty("dir");
    Runtime rt = Runtime.getRuntime();
    Process proc = rt.exec("cmd.exe /C dir " + dir);
    int result = proc.waitFor();
    if (result != 0) {
      System.out.println("process error: " + result);
    }
    InputStream in = (result == 0) ? proc.getInputStream() :
                                           proc.getErrorStream();
    int c;
    while ((c = in.read()) != -1) {
      System.out.print((char) c);
    }
  }
}

Because Runtime.exec() receives unsanitized data originating from the environment, 
this code is susceptible to a command injection attack. 

An attacker can exploit this program using the following command: 

java -Ddir='dummy & echo bad' Java 

The command executed is actually two commands: 

cmd.exe /C dir dummy & echo bad 

which fi rst attempts to list a nonexistent  dummy folder and then prints  bad to the console. 

Noncompliant Code Example (POSIX) 
This noncompliant code example provides the same functionality but uses the POSIX  ls
command. The only difference from the Windows version is the argument passed to 
Runtime.exec().
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class DirList {
  public static void main(String[] args) throws Exception {
    String dir = System.getProperty("dir");
    Runtime rt = Runtime.getRuntime();
    Process proc = rt.exec(new String[] {"sh", "-c", "ls " + dir});
    int result = proc.waitFor();
    if (result != 0) {
      System.out.println("process error: " + result);
    }
    InputStream in = (result == 0) ? proc.getInputStream() :
                                           proc.getErrorStream();
    int c;
    while ((c = in.read()) != -1) {
      System.out.print((char) c);
    }
  }
}

The attacker can supply the same command shown in the previous noncompliant code 
example with similar effects. The command executed is actually: 

sh -c 'ls dummy & echo bad' 

Compliant Solution (Sanitization) 
This compliant solution sanitizes the untrusted user input by permitting only a small group 
of whitelisted characters in the argument that will be passed to  Runtime.exec(); all other 
characters are excluded. 

// . ..
if (!Pattern.matches("[0-9A-Za-z@.]+", dir)) {
  // Handle error
}
// . ..

Although this is a compliant solution, this sanitization approach rejects valid directo-
ries. Also, because the command interpreter invoked is system dependent, it is diffi cult to 
establish that this solution prevents command injections on every platform on which a Java 
program might run. 

Compliant Solution (Restricted User Choice) 
This compliant solution prevents command injection by passing only trusted strings to 
Runtime.exec(). While the user has control over which string is used, the user cannot 
provide string data directly to  Runtime.exec().
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// . ..
String dir = null;
// only allow integer choices
int number = Integer.parseInt(System.getproperty("dir")); 
switch (number) {
  case 1: 
    dir = "data1"
    break; // Option 1
  case 2: 
    dir = "data2"
    break; // Option 2
  default: // invalid
    break; 
}
if (dir == null) {
  // handle error
}

This compliant solution hard codes the directories that may be listed. 
This solution can quickly become unmanageable if you have many available directories. 

A more scalable solution is to read all the permitted directories from a properties fi le into a 
java.util.Properties object. 

Compliant Solution (Avoid  Runtime.exec())
When the task performed by executing a system command can be accomplished by some 
other means, it is almost always advisable to do so. This compliant solution uses the File.
list() method to provide a directory listing, eliminating the possibility of command or 
argument injection attacks. 

import java.io.File;

class DirList {
  public static void main(String[] args) throws Exception {
    File dir = new File(System.getProperty("dir"));
    if (!dir.isDirectory()) {
      System.out.println("Not a directory");
    } else {
      for (String file : dir.list()) {
        System.out.println(file);
      }
    }
  }
}
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Risk Assessment 
Passing untrusted, unsanitized data to the Runtime.exec() method can result in command 
and argument injection attacks. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS07-J high probable medium P12 L1

Related Vulnerabilities 

[CVE-2010-0886] Sun Java Web Start plugin command line argument injection

[CVE-2010-1826] Command injection in updateSharingD’s handling of Mach RPC messages

[T-472] Mac OS X Java command injection fl aw in updateSharingD lets local users 
gain elevated privileges

Related Guidelines 

The CERT C Secure Coding Standard ENV03-C. Sanitize the environment when invoking 
external programs

ENV04-C. Do not call system() if you do not need a 
command processor

The CERT C++ Secure Coding Standard ENV03-CPP. Sanitize the environment when invoking 
external programs

ENV04-CPP. Do not call system() if you do not need a 
command processor

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-78. Improper neutralization of special elements 
used in an OS command (“OS command injection”)

Bibliography

[Chess 2007] Chapter 5, Handling Input, “Command Injection”

[OWASP 2005]

[Permissions 2008]

■ IDS08-J. S anitize untrusted data passed to a regex 

Regular expressions are widely used to match strings of text. For example, the POSIX  grep
utility supports regular expressions for fi nding patterns in the specifi ed text. 
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For introductory information on regular expressions, see the Java Tutorials [ Tutorials 08 ].
The java.util.regex package provides the  Pattern class that encapsulates a compiled 
representation of a regular expression and the  Matcher class, which is an engine that uses a 
Pattern to perform matching operations on a  CharSequence.

Java’s powerful regular expression (regex) facilities must be protected from misuse. An 
attacker may supply a malicious input that modifi es the original regular expression in such 
a way that the regex fails to comply with the program’s specifi cation. This attack vector, 
called a regex injection, might affect control fl ow, cause information leaks, or result in 
denial-of-service (DoS) vulnerabilities. 

Certain constructs and properties of Java regular expressions are susceptible to 
exploitation:

■ Matching fl ags: Untrusted inputs may override matching options that may or may not 
have been passed to the Pattern.compile() method. 

■ Greediness: An untrusted input may attempt to inject a regex that changes the 
original regex to match as much of the string as possible, exposing sensitive 
information.  

■ Grouping: The programmer can enclose parts of a regular expression in parentheses 
to perform some common action on the group. An attacker may be able to change the 
groupings by supplying untrusted input. 

Untrusted input should be sanitized before use to prevent regex injection. When the 
user must specify a regex as input, care must be taken to ensure that the original regex 
cannot be modifi ed without restriction. Whitelisting characters (such as letters and digits) 
before delivering the user-supplied string to the regex parser is a good input sanitization 
strategy. A programmer must provide only a very limited subset of regular expression 
functionality to the user to minimize any chance of misuse. 

Regex Injection Example 
Suppose a system log fi le contains messages output by various system processes. Some 
processes produce public messages and some processes produce sensitive messages marked 
“private.” Here is an example log fi le: 

10:47:03 private[423] Successful logout name: usr1 ssn: 111223333 
10:47:04 public[48964] Failed to resolve network service 
10:47:04 public[1] (public.message[49367]) Exited with exit code: 255 
10:47:43 private[423] Successful login name: usr2 ssn: 444556666 
10:48:08 public[48964] Backup failed with error: 19 
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A user wishes to search the log fi le for interesting messages but must be prevented from 
seeing the private messages. A program might accomplish this by permitting the user to 
provide search text that becomes part of the following regex: 

(.*? +public\[\d+\] +.*<SEARCHTEXT>.*) 

However, if an attacker can substitute any string for  <SEARCHTEXT>, he can perform 
a regex injection with the following text: 

.*)|(.*

When injected into the regex, the regex becomes: 

(.*? +public\[\d+\] +.*.*)|(.*.*) 

This regex will match any line in the log fi le, including the private ones. 

Noncompliant Code Example 
This noncompliant code example periodically loads the log fi le into memory and allows 
clients to obtain keyword search suggestions by passing the keyword as an argument to 
suggestSearches().

public class Keywords {
  private static ScheduledExecutorService scheduler
      = Executors.newSingleThreadScheduledExecutor();
  private static CharBuffer log;
  private static final Object lock = new Object();

  // Map log file into memory, and periodically reload
  static
    try {
      FileChannel channel = new FileInputStream(
          "path").getChannel();

      // Get the file's size and map it into memory
      int size = (int) channel.size();
      final MappedByteBuffer mappedBuffer = channel.map(
          FileChannel.MapMode.READ_ONLY, 0, size);

      Charset charset = Charset.forName("ISO-8859-15");
      final CharsetDecoder decoder = charset.newDecoder();

     log = decoder.decode(mappedBuffer); // Read file into char buffer
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      Runnable periodicLogRead = new Runnable() {
        @Override public void run() {
          synchronized(lock) { 
            try {
              log = decoder.decode(mappedBuffer);
            } catch (CharacterCodingException e) {
              // Forward to handler 
            } 
          }
        }
      };
      scheduler.scheduleAtFixedRate(periodicLogRead, 

  0, 5, TimeUnit.SECONDS);
    } catch (Throwable t) {
      // Forward to handler
    }
  }

  public static Set<String> suggestSearches(String search) {
    synchronized(lock) {
      Set<String> searches = new HashSet<String>();

      // Construct regex dynamically from user string
      String regex = "(.*? +public\\[\\d+\\] +.*" + search + ".*)";

      Pattern keywordPattern = Pattern.compile(regex);
      Matcher logMatcher = keywordPattern.matcher(log);
      while (logMatcher.find()) {
        String found = logMatcher.group(1);
        searches.add(found);
      }
      return searches;
    }  
  }

}

This code permits a trusted user to search for public log messages such as “error.”  However, 
it also allows a malicious attacker to perform the regex injection previously described. 

Compliant Solution (Whitelisting) 
This compliant solution fi lters out nonalphanumeric characters (except space and single 
quote) from the search string, which prevents regex injection previously described. 
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public class Keywords {
  // . ..
  public static Set<String> suggestSearches(String search) {
    synchronized(lock) {
      Set<String> searches = new HashSet<String>();

      StringBuilder sb = new StringBuilder(search.length());
      for (int i = 0; i < search.length(); ++i) {
        char ch = search.charAt(i);
        if (Character.isLetterOrDigit(ch) ||
            ch == ' ' ||
            ch == '\'') {
          sb.append(ch);
        }
      }
      search = sb.toString();

      // Construct regex dynamically from user string
      String regex = "(.*? +public\\[\\d+\\] +.*" + search + ".*)";
      // . ..
    }
  }
}

This solution also limits the set of valid search terms. For instance, a user may no  longer
search for “name =” because the  = character would be sanitized out of the regex. 

Compliant Solution 
Another method of mitigating this vulnerability is to fi lter out the sensitive information 
prior to matching. Such a solution would require the fi ltering to be done every time the log 
fi le is periodically refreshed, incurring extra complexity and a performance penalty. 
Sensitive information may still be exposed if the log format changes but the class is not also 
refactored to accommodate these changes. 

Risk Assessment 
Failing to sanitize untrusted data included as part of a regular expression can result in the 
disclosure of sensitive information. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS08-J medium unlikely medium P4 L3
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Related Guidelines 

MITRE CWE CWE-625. Permissive regular expression

Bibliography

[Tutorials 08] Regular Expressions

[CVE 05] CVE-2005-1949

■ IDS09-J. D o not use locale-dependent methods on
locale-dependent data without specifying the appropriate locale 

Using locale-dependent methods on locale-dependent data can produce unexpected results 
when the locale is unspecifi ed. Programming language identifi ers, protocol keys, and 
HTML tags are often specifi ed in a particular locale, usually  Locale.ENGLISH. It may even 
be possible to bypass input fi lters by changing the default locale, which can alter the behav-
ior of locale-dependent methods. For example, when a string is converted to uppercase, it 
may be declared valid; however, changing the string back to lowercase during subsequent 
execution may result in a blacklisted string. 

Any program which invokes locale-dependent methods on untrusted data must explicitly 
specify the locale to use with these methods. 

Noncompliant Code Example 
This noncompliant code example uses the locale-dependent String.toUpperCase() method 
to convert an HTML tag to uppercase. While the English locale would convert “title” to 
“TITLE,” the Turkish locale will convert “title” to “T?TLE,” where “?” is the Latin capital 
letter “I” with a dot above the character [ API 2006 ].

"title".toUpperCase();

Compliant Solution (Explicit Locale) 
This compliant solution explicitly sets the locale to English to avoid unexpected results. 

"title".toUpperCase(Locale.ENGLISH);

This rule also applies to the String.equalsIgnoreCase() method. 
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Compliant Solution (Default Locale) 
This compliant solution sets the default locale to English before proceeding with string 
operations.

Locale.setDefault(Locale.ENGLISH);
"title".toUpperCase();

Risk Assessment 
Failure to specify the appropriate locale when using locale-dependent methods on locale-
dependent data may result in unexpected behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS09-J medium probable medium P8 L2
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■ IDS10-J. Do not split characters between two data structures 

Legacy software frequently assumes that every character in a string occupies 8 bits (a Java 
byte). The Java language assumes that every character in a string occupies 16 bits (a Java 
char). Unfortunately, neither the Java  byte nor Java  char data types can represent all possi-
ble Unicode characters. Many strings are stored or communicated using encodings such as 
UTF-8 that support characters with varying sizes. 

While Java strings are stored as an array of characters and can be represented as an array 
of bytes, a single character in the string might be represented by two or more consecutive 
elements of type byte or of type  char. Splitting a char or  byte array risks splitting a 
multibyte character. 

Ignoring the possibility of supplementary characters, multibyte characters, or combining 
characters (characters that modify other characters) may allow an attacker to bypass input 
validation checks. Consequently, characters must not be split between two data structures. 

Multibyte Characters 
Multibyte encodings are used for character sets that require more than one byte to uniquely 
identify each constituent character. For example, the Japanese encoding Shift-JIS (shown 
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below) supports multibyte encoding where the maximum character length is two bytes 
(one leading and one trailing byte). 

Byte Type Range

single-byte 0x00 through 0x7F and 0xA0 through 0xDF

lead-byte 0x81 through 0x9F and 0xE0 through 0xFC

trailing-byte 0x40-0x7E and 0x80-0xFC

The trailing byte ranges overlap the range of both the single-byte and lead-byte charac-
ters. When a multibyte character is separated across a buffer boundary, it can be interpreted 
differently than if it were not separated across the buffer boundary; this difference arises 
because of the ambiguity of its composing bytes [ Phillips 2005 ].

Supplementary Characters 
According to the Java API [ API 2006 ] class Character documentation (Unicode Character 
Representations):

The char data type (and consequently the value that a  Character object 
encapsulates) are based on the original Unicode specifi cation, which defi ned 
characters as fi xed-width 16-bit entities. The Unicode standard has since been 
changed to allow for characters whose representation requires more than 16 bits. 
The range of legal code points is now \u0000 to  \u10FFFF, known as Unicode 
scalar value.  

The Java 2 platform uses the UTF-16 representation in  char arrays and in the 
String and  StringBuffer classes. In this representation, supplementary charac-
ters are represented as a pair of  char values, the fi rst from the high-surrogates 
range, ( \uD800-\uDBFF), the second from the low-surrogates range ( \uDC00-\
uDFFF).

An int value represents all Unicode code points, including supplementary 
code points. The lower (least signifi cant) 21 bits of  int are used to represent Uni-
code code points, and the upper (most signifi cant) 11 bits must be zero. Unless 
otherwise specifi ed, the behavior with respect to supplementary characters and 
surrogate char values is as follows: 

■ The methods that only accept a char value cannot support supplementary 
characters. They treat  char values from the surrogate ranges as undefi ned 
characters. For example, Character.isLetter('\uD840') returns  false, even 
though this specifi c value if followed by any low-surrogate value in a string 
would represent a letter. 
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■ The methods that accept an int value support all Unicode characters, including 
supplementary characters. For example, Character.isLetter(0x2F81A)
returns  true because the code point value represents a letter (a CJK ideograph). 

Noncompliant Code Example (Read) 
This noncompliant code example tries to read up to 1024 bytes from a socket and build a 
String from this data. It does this by reading the bytes in a while loop, as recommended by 
rule FIO10-J. If it ever detects that the socket has more than 1024 bytes available, it throws an 
exception. This prevents untrusted input from potentially exhausting the program’s memory. 

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
  InputStream in = socket.getInputStream();
  byte[] data = new byte[MAX_SIZE+1];
  int offset = 0;
  int bytesRead = 0;
  String str = new String();
  while ((bytesRead = in.read(data, offset, data.length - offset))

 != -1) {
    offset += bytesRead;
    str += new String(data, offset, data.length - offset, "UTF-8");
    if (offset >= data.length) {
      throw new IOException("Too much input");
    }
  }
  in.close();
  return str;
}

This code fails to account for the interaction between characters represented with a 
multibyte encoding and the boundaries between the loop iterations. If the last byte read 
from the data stream in one  read() operation is the leading byte of a multibyte  character, 
the trailing bytes are not encountered until the next iteration of the  while loop. 
However, multibyte encoding is resolved during construction of the new  String within 
the loop. Consequently, the multibyte encoding can be interpreted incorrectly. 

Compliant Solution (Read) 
This compliant solution defers creation of the string until all the data is available. 
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public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
  InputStream in = socket.getInputStream();
  byte[] data = new byte[MAX_SIZE+1];
  int offset = 0;
  int bytesRead = 0;
  while ((bytesRead = in.read(data, offset, data.length - offset))

 != -1) {
    offset += bytesRead;
    if (offset >= data.length) {
      throw new IOException("Too much input");
    }
  }
  String str = new String(data, "UTF-8");
  in.close();
  return str;
}

This code avoids splitting multibyte-encoded characters across buffers by deferring 
construction of the result string until the data has been read in full. 

Compliant Solution ( Reader)
This compliant solution uses a Reader rather than an  InputStream. The Reader class 
converts bytes into characters on the fl y, so it avoids the hazard of splitting multibyte 
characters. This routine aborts if the socket provides more than 1024 characters rather than 
1024 bytes. 

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
  InputStream in = socket.getInputStream();
  Reader r = new InputStreamReader(in, "UTF-8");
  char[] data = new char[MAX_SIZE+1];
  int offset = 0;
  int charsRead = 0;
  String str = new String(data);
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  while ((charsRead = r.read(data, offset, data.length - offset))
!= -1) {

    offset += charsRead;
    str += new String(data, offset, data.length - offset);
    if (offset >= data.length) {
      throw new IOException("Too much input");
    }
  }
  in.close();
  return str;
}

Noncompliant Code Example (Substring) 
This noncompliant code example attempts to trim leading letters from the  string. It fails to 
accomplish this task because Character.isLetter() lacks support for supplementary and 
combining characters [ Hornig 2007 ].

// Fails for supplementary or combining characters
public static String trim_bad1(String string) {
  char ch;
  int i;
  for (i = 0; i < string.length(); i += 1) {
    ch = string.charAt(i);
    if (!Character.isLetter(ch)) {
      break;
    }
  }
  return string.substring(i);
}

Noncompliant Code Example (Substring) 
This noncompliant code example attempts to correct the problem by using the  String.
codePointAt() method, which accepts an  int argument. This works for supplementary 
characters but fails for combining characters [ Hornig 2007 ].
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// Fails for combining characters
public static String trim_bad2(String string) {
  int ch;
  int i;
  for (i = 0; i < string.length(); i += Character.charCount(ch)) {
    ch = string.codePointAt(i);
    if (!Character.isLetter(ch)) {
      break;
    }
  }
  return string.substring(i);
}

Compliant Solution (Substring) 
This compliant solution works both for supplementary and for combining characters [ Hornig 
2007]. According to the Java API [ API 2006 ] classjava.text.BreakIteratordocumentation: 

The BreakIterator class implements methods for fi nding the location of bounda-
ries in text. Instances of BreakIterator maintain a current position and scan over 
text returning the index of characters where boundaries occur. 

The boundaries returned may be those of supplementary characters, combining 
character sequences, or ligature clusters. For example, an accented character might be 
stored as a base character and a diacritical mark. 

public static String trim_good(String string) {
  BreakIterator iter = BreakIterator.getCharacterInstance();
  iter.setText(string);
  int i;
  for (i = iter.first(); i != BreakIterator.DONE; i = iter.next()) {
    int ch = string.codePointAt(i);
    if (!Character.isLetter(ch)) {
      break;
    }    
  }
  // Reached first or last text boundary
  if (i == BreakIterator.DONE) { 
    // The input was either blank or had only (leading) letters
    return ""; 
  } else {
    return string.substring(i);
  }
}
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To perform locale-sensitive  String comparisons for searching and sorting, use the 
java.text.Collator class. 

Risk Assessment 
Failure to correctly account for supplementary and combining characters can lead to unex-
pected behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS10-J low unlikely medium P2 L3
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■ IDS11-J. E liminate noncharacter code points before validation 

In some versions prior to Unicode 5.2, conformance clause C7 allows the deletion of 
noncharacter code points. For example, conformance clause C7 from Unicode 5.1 states 
[Unicode 2007 ]:

C7. When a process purports not to modify the interpretation of a valid coded char-
acter sequence, it shall make no change to that coded character sequence other 
than the possible replacement of character sequences by their canonical-equivalent 
sequences or the deletion of noncharacter code points. 

According to the Unicode Technical Report #36, Unicode Security Considerations 
[Davis 2008b ], Section 3.5, “Deletion of Noncharacters”:

Whenever a character is invisibly deleted (instead of replaced), such as in this older 
version of C7, it may cause a security problem. The issue is the following: A gate-
way might be checking for a sensitive sequence of characters, say “delete.” If what 
is passed in is “deXlete,” where X is a noncharacter, the gateway lets it through: The 
sequence “deXlete” may be in and of itself harmless. However, suppose that later 
on, past the gateway, an internal process invisibly deletes the X. In that case, the 
sensitive sequence of characters is formed, and can lead to a security breach. 

Any string modifi cations, including the removal or replacement of noncharacter code 
points, must be performed before any validation of the string is performed. 
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Noncompliant Code Example 
This noncompliant code example accepts only valid ASCII characters and deletes any non-
ASCII characters. It also checks for the existence of a <script> tag. 

Input validation is being performed before the deletion of non-ASCII characters. Con-
sequently, an attacker can disguise a  <script> tag and bypass the validation checks. 

// "\uFEFF" is a non-character code point
String s = "<scr" + "\uFEFF" + "ipt>"; 
s = Normalizer.normalize(s, Form.NFKC);
// Input validation
Pattern pattern = Pattern.compile("<script>");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
  System.out.println("Found black listed tag");
} else {
  // . ..
}

// Deletes all non-valid characters 
s = s.replaceAll("^\\p{ASCII}]", "");
// s now contains "<script>"

Compliant Solution 
This compliant solution replaces the unknown or unrepresentable character with Unicode 
sequence \uFFFD, which is reserved to denote this condition. It also does this replacement 
before doing any other sanitization, in particular, checking for  <script>. This ensures that 
malicious input cannot bypass fi lters. 

String s = "<scr" + "\uFEFF" + "ipt>";

s = Normalizer.normalize(s, Form.NFKC);
// Replaces all non-valid characters with unicode U+FFFD
s = s.replaceAll("^\\p{ASCII}]", "\uFFFD"); 

Pattern pattern = Pattern.compile("<script>");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
  System.out.println("Found blacklisted tag");
} else {
  // . ..
}
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According to the Unicode Technical Report #36, Unicode Security Considerations 
[Davis 2008b ], “ U+FFFD is usually unproblematic, because it is designed expressly for this 
kind of purpose. That is, because it doesn’t have syntactic meaning in programming lan-
guages or structured data, it will typically just cause a failure in parsing. Where the output 
character set is not Unicode, though, this character may not be available.” 

Risk Assessment 
Deleting noncharacter code points can allow malicious input to bypass validation checks. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS11-J high probable medium P12 L1

Related Guidelines 

MITRE CWE CWE-182. Collapse of data into unsafe value
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■ IDS12-J. P erform lossless conversion of String data between 
differing character encodings 

Performing conversions of  String objects between different character encodings may result 
in loss of data. 

According to the Java API [ API 2006 ], String.getBytes(Charset) method 
documentation:

This method always replaces malformed-input and unmappable-character 
sequences with this charset’s default replacement byte array. 

When a String must be converted to bytes, for example, for writing to a fi le, and the 
string might contain unmappable character sequences, proper character encoding must be 
performed. 
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Noncompliant Code Example 
This noncompliant code example [ Hornig 2007 ] corrupts the data when string contains
characters that are not representable in the specifi ed charset.

// Corrupts data on errors
public static byte[] toCodePage_bad(String charset, String string)
  throws UnsupportedEncodingException {
  return string.getBytes(charset);
}

// Fails to detect corrupt data
public static String fromCodePage_bad(String charset, byte[] bytes)
  throws UnsupportedEncodingException {
  return new String(bytes, charset);
}

Compliant Solution 
Thejava.nio.charset.CharsetEncoder class can transform a sequence of 16-bit Unicode char-
acters into a sequence of bytes in a specifi c  Charset, while the java.nio.charset.Character-
Decoder class can reverse the procedure [ API 2006 ]. Also see rule FIO11-J for more information. 

This compliant solution [ Hornig 2007 ] uses the CharsetEncoder and  CharsetDecoder
classes to handle encoding conversions. 

public static byte[] toCodePage_good(String charset, String string)
  throws IOException {

  Charset cs = Charset.forName(charset);
  CharsetEncoder coder = cs.newEncoder();
  ByteBuffer bytebuf = coder.encode(CharBuffer.wrap(string));
  byte[] bytes = new byte[bytebuf.limit()];
  bytebuf.get(bytes);
  return bytes;
}

public static String fromCodePage_good(String charset,byte[] bytes)
  throws CharacterCodingException {

  Charset cs = Charset.forName(charset);
  CharsetDecoder coder = cs.newDecoder();
  CharBuffer charbuf = coder.decode(ByteBuffer.wrap(bytes));
  return charbuf.toString();
}
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Noncompliant Code Example 
This noncompliant code example [ Hornig 2007 ] attempts to append a string to a text fi le in 
the specifi ed encoding. This is erroneous because the  String may contain unrepresentable 
characters.

// Corrupts data on errors
public static void toFile_bad(String charset, String filename,

 String string) throws IOException {

  FileOutputStream stream = new FileOutputStream(filename, true);
  OutputStreamWriter writer = new OutputStreamWriter(stream, charset);
  writer.write(string, 0, string.length());
  writer.close();
}

Compliant Solution 
This compliant solution [ Hornig 2007 ] uses the CharsetEncoder class to perform the 
required function. 

public static void toFile_good(String filename, String string,
                                      String charset) throws IOException {

  Charset cs = Charset.forName(charset);
  CharsetEncoder coder = cs.newEncoder();
  FileOutputStream stream = new FileOutputStream(filename, true);
  OutputStreamWriter writer = new OutputStreamWriter(stream, coder);
  writer.write(string, 0, string.length());
  writer.close();
}

Use the FileInputStream and  InputStreamReader objects to read back the data from 
the fi le. The InputStreamReader accepts an optional  CharsetDecoder argument, which 
must be the same as that previously used for writing to the fi le. 

Risk Assessment 
Use of nonstandard methods for performing character-set-related conversions can lead to 
loss of data. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS12-J low probable medium P4 L3
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Related Guidelines 

MITRE CWE CWE-838. Inappropriate encoding for output context

CWE-116. Improper encoding or escaping of output
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■ IDS13-J. U se compatible encodings on both sides 
of fi le or network  I/O 

Every Java platform has a default character encoding. The available encodings are listed 
in the Supported Encodings document [ Encodings 2006 ]. A conversion between characters 
and sequences of bytes requires a character encoding to specify the details of the conver-
sion. Such conversions use the system default encoding in the absence of an explicitly 
specifi ed encoding. When characters are converted into an array of bytes to be sent 
as output, transmitted across some communication channel, input, and converted back 
into characters, compatible encodings must be used on both sides of the conversation. 
Disagreement over character encodings can cause data corruption. 

According to the Java API [ API 2006 ] for the String class:

The length of the new String is a function of the charset, and for that reason may 
not be equal to the length of the byte array. The behavior of this constructor when 
the given bytes are not valid in the given charset is unspecifi ed. 

Binary data that is expected to be a valid string may be read and converted to a string by 
exception FIO11-EX0. 

Noncompliant Code Example 
This noncompliant code example reads a byte array and converts it into a  String using the 
platform’s default character encoding. When the default encoding differs from the encoding 
that was used to produce the byte array, the resulting  String is likely to be incorrect. 
Undefi ned behavior can occur when some of the input lacks a valid character representa-
tion in the default encoding. 

FileInputStream fis = null;
try { 
  fis = new FileInputStream("SomeFile");
  DataInputStream dis = new DataInputStream(fis);
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  byte[] data = new byte[1024];
  dis.readFully(data);
  String result = new String(data);
} catch (IOException x) {
  // handle error
} finally {
  if (fis != null) {
    try {
      fis.close();
    } catch (IOException x) {
      // Forward to handler
    }
  }
}

Compliant Solution 
This compliant solution explicitly specifi es the intended character encoding in the second 
argument to the  String constructor. 

FileInputStream fis = null;
try {
  fis = new FileInputStream("SomeFile");
  DataInputStream dis = new DataInputStream(fis);
  byte[] data = new byte[1024];
  dis.readFully(data);
  String encoding = "SomeEncoding"; // for example, "UTF-16LE"
  String result = new String(data, encoding);
} catch (IOException x) {
  // handle error
} finally {
  if (fis != null) {
    try {
      fis.close();
    } catch (IOException x) {
      // Forward to handler
    }
  }
}

Exceptions
IDS13-EX0: An explicit character encoding may be omitted on the receiving side when the 
data is produced by a Java application that uses the same platform and default character 
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encoding and is communicated over a secure communication channel (see  MSC00-J for 
more information). 

Risk Assessment 
Failure to specify the character encoding while performing fi le or network I/O can result in 
corrupted data. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS13-J low unlikely medium P2 L3

Automated Detection Sound automated detection of this vulnerability is not feasible. 

Bibliography
[Encodings 2006]
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intended type of, 97–99 
await() methods, 401–404 

B
Background threads, in class 

initialization, 454–459 
BigDecimal objects, from 
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C
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Class(es), continued
deprecated, 215–216 
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serialization during, 528–531 
extensibility of, 152–159 
initialization cycles, prevention of, 

75–79
loader, 21 
loading of trusted after loading by 

untrusted code, 579–582 
mutable

defensive copying for, 180–185 
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175–180
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members from within, 
192–194

obsolete, 215–216 
refl ection to increase accessibility 

of, 585–592 
sanitization of, 155–156 
sensitive, copying of, 189–192 
serialization of instances of inner, 

549–551
superclasses 

methods declared in, 226–229 
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162–169

synchronization of, with private 
fi nal lock objects when 
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code, 332–338 
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220–222
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D
DCL00-J, 75–79 
DCL01-J, 79–81 
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Degradation of service, in traffi c 
bursts, 417–420 
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7–8
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print representation of, 126 
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Double-checked locking idiom, 
375–381

E
Empty infi nite loop, 630–632 
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compatible, on both sides of I/O, 
71–73

lossless conversion of string data 
between, 68–71 

Environment variables, trusting 
values of, 610–613 
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ENV01-J, 606–610 
ENV02-J, 610–613 
ENV03-J, 613–616 
ENV04-J, 617–618 
ENV05-J, 618–624 
Equality operators, in comparison of 
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Equatable objects, equating, 

229–238
ERR00-J, 256–299 
ERR01-J, 9, 263–268 
ERR02-J, 268–270 
ERR03-J, 270–274 
ERR04-J, 275–277 
ERR06-J, 280–285 
ERR07-J, 285–288 
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handling of, 481–483 
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checked, 277–280 
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NullPointer, catching of, 288–296 
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268–270
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sanitized, 265–266 
sensitive information exposed by, 

263–268
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thrown by constructors, 199–207 
wrapping, 265 

Executor framework, 18 
EXP00-J, 86–88 
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EXP04-J, 97–99 
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EXP06-J, 103–104 
Explicit locking, 18 
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invariants to trusted subclasses, 
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Externalizable objects, preventing 
overwriting of, 566–567 

F
File names, ASCII subset for, 

46–48
Files
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478–481

device, 469 
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FIO12-J, 513–516 
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values in, 134–136 
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Floating-point numbers 
conversion of, to integers, 142, 
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representation of, 139–141 
Floating-point variables, as loop 
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from, 48–50 
For statement, enhanced, 81–83 

G
Generic raw types, 169–175 
getClass() method, 343–347 
getPermissions() method, 

597–598

H
Hard coding, of sensitive data, 

635–638
hashCode() method, 238–240 
Heap memory, 11 
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218–220

I
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553–558
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Initialization
background threads in, 454–459 
lazy, 375–376 
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Initialization cycles, class, 
prevention of, 75–79 
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352–354
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objects, 657–668 
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507–509
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extensibility with, 
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collection vs., 653–657 

K
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immutability of, 243–248 
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L
Lazy initialization, 375–376 
LCK00-J, 8, 332–338 
LCK01-J, 8 
LCK02-J, 343–347 
LCK03-J, 347–348 
LCK04-J, 348–350 
LCK05-J, 351–352 
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Leaking
across trust boundary, by 

privileged blocks, 570–573 
capabilities, 6–7 
from exceptions, 264–265 
memory, 638–647 
of sensitive data, 4–6 
during serialization, 563–565 

Least privilege, principle of, 18–19 
Links, fi le, 469 
Little-endian data, methods to read 

and write, 513–516 
Locale-sensitivity, 59–60 
Locking

actively held, release of, on 
exceptional conditions, 
365–370

blocking operations and, 
370–375

client-side, with noncommittal 
classes, 381–386 

deadlock avoidance, by requesting 
and releasing locks in same 
order, 355–365 

double-checked idiom, 375–381 
explicit, 18 
instance, to protect shared static 

data, 352–354 
in synchronization of classes 

interacting with untrusted 
code, 332–338 

synchronization on, of high-level 
concurrency objects, 347–348 

Logging
prevention of exceptions during, 

268–270
of sensitive information outside 

trust boundary, 516–519 
of unsanitized user input, 41–43 

Logical negation, 310 
Loop, empty infi nite, 630–632 
Loop counters, fl oating-point 

variables as, 136–138 
Loop variables, 81–83 

M
Memory

concurrency, visibility and, 11–18 
leakage of, 638–647 

Methods
accessibility of, 218–220 
atomic, atomicity of group of calls 

to, 317–323 

await(), inside loop, 401–404 
chained, atomicity of calls to, 

323–328
compareTo(), 241–243 
declaration of hidden, in 

superclass of superinterface, 
226–229

deprecated, 215–216 
duplicate(), 493–496 
equals(), with hashCode(),

238–240
extensibility of, 152–159 
failure of, restoring prior object 

state after, 270–274 
hidden, 218–220 
ignoring values returned by, 

86–88
int for return value capture, 

504–507
native, defi ning wrappers around, 

599–601
obsolete, 215–216 
overridable

constructor calling of, 220–222 
invoking

in clone(), 223–225 
from  readObject(), 562–563 

overridden, 218–220 
to read and write little-endian 

data, 513–516 
refl ection to increase accessibility 

of, 585–592 
security check, as private or fi nal, 

217–218
serialization, proper signatures for, 

531–534
ThreadGroup methods, invocation 

of, 390–394 
thread-safe, 442–445 
validation of arguments, 210–213 

assertions for, 213–215 
wait(), inside loop, 401–404 
wrap(), 493–496 
wrapper, accessible, private data 

members and, 159–162 
MET00-J, 210–213 
MET01-J, 213–215 
MET02-J, 215–216 
MET03-J, 217–218 
MET04-J, 218–220 
MET05-J, 220–222 
MET06-J, 223–225 
MET07-J, 226–229 

MET08-J, 229–238 
MET09-J, 238–240 
MET10-J, 241–243 
MET11-J, 243–248 
MET12-J, 8, 248–254 
Modifi er,  strictfp, for fl oating-

point calculation consistency, 
128–132

Modulo operations, divide-by-zero 
operations in, 119–121 

MSC00-J, 626–630 
MSC01-J, 630–632 
MSC02-J, 632–634 
MSC03-J, 635–638 
MSC04-J, 638–647 
MSC05-J, 8, 647–653 
MSC06-J, 653–657 
MSC07-J, 657–668 
Multibyte characters, 60–61 
Mutable classes 

defensive copying for, 
180–185

providing copy functionality to, 
175–180

N
Names

class, comparison of classes 
without comparison of class 
names, 194–196 

fi le, ASCII subset for, 46–48 
path

ASCII subset for, 46–48 
canonicalization of, before 

validation, 36–41 
NaN, prevention of comparisons 

with, 132–134 
Narrowing, integer, 141–142 
Negation

bitwise, 311 
logical, 310 

Nested class, exposure of sensitive 
members of outer class from 
within, 192–194 

Nonfi nal variables, public static, 
197–199

Nongeneric raw types, 169–175 
Normalization, 3 

before validation, 34–36 
Not-a-number, prevention of 

comparisons with, 
132–134

Null object pattern, 291–292 
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NullPointerException, catching, 
288–296

Null pointers, dereferencing of, 
88–90

Numbers
denormalized, 125–128 

avoiding use of, 125–128 
detecting, 125–126 
print representation of, 126 

fl oating-point 
conversion of, to integers, 142, 

146–149
precision with, 122–125 
strictfp modifi er for 

calculation consistency 
with, 128–132 

Numeric types, conversion to narrower 
types, data loss and, 141–146 

NUM00-J, 106–114 
NUM01-J, 114–119 
NUM02-J, 9, 119–121 
NUM03-J, 121–122 
NUM04-J, 122–125 
NUM05-J, 125–128 
NUM06-J, 128–132 
NUM07-J, 132–134 
NUM08-J, 134–136 
NUM09-J, 136–138 
NUM10-J, 138–139 
NUM11-J, 139–141 
NUM12-J, 141–146 
NUM13-J, 146–149 

O
Objects

BigDecimal, from fl oating-point 
literals, 138–139 

construction of, this reference 
escape during, 445–454 

equatable, equating, 229–238 
externalizable, preventing 

overwriting of, 566–567 
high-level concurrency, synchro-

nization on intrinsic locks of, 
347–348

partially-initalized, 199 
publishing of, 459–466 

restoring prior state of, on method 
failure, 270–274 

returned by  getClass() method, 
synchronization of, 343–347 

reused, synchronization of, 
339–342

singleton, multiple instantiations 
of, 657–668 

synchronization of reused, 
339–342

visibility of shared references to 
immutable, 306–309 

OBJ00-J, 152–159 
OBJ01-J, 159–162 
OBJ02-J, 162–169 
OBJ03-J, 169–175 
OBJ04-J, 175–180 
OBJ05-J, 180–185 
OBJ06-J, 185–189 
OBJ07-J, 189–192 
OBJ08-J, 192–194 
OBJ09-J, 194–196 
OBJ10-J, 197–199 
OBJ11-J, 199–207 
Obsolete classes, 215–216 
Obsolete methods, 215–216 
Overfl ow, integer, detection or 

prevention of, 106–114 
Overridable methods 

constructor calling of, 220–222 
invoking

in clone() method, 223–225 
from  readObject() method, 

562–563
Overridden methods, accessibility of, 

218–220

P
Partially-initalized objects, 199 

publishing of, 459–466 
Path names 

ASCII subset for, 46–48 
canonicalization of, before 

validation, 36–41 
Permissions, dangerous 

combinations of, 613–616 
Pointers, null, dereferencing of, 

88–90
Polymorphism, disallowing, 158 
Precision 

fl oating-point numbers and, 
122–125

loss of, in conversion of primitive 
integers to fl oating point, 
146–149

Primitives, boxed, comparing values 
of, 91–97 

Primitive variables, shared, ensuring 
visibility with, 302–306 

Principle of least privilege, 18–19 
Privacy protection, 626 
Private data members, 159–162 
Privilege

minimization of, before 
deserialization, 558–561 

principle of least, 18–19 
separation, 2 

Public identifi ers, reuse of, 79–81 
Public static nonfi nal variables, 

197–199

R
Random number generation, strong, 

632–634
Raw types, mixing of generic and 

nongeneric, 169–175 
read() method, for array fi lling, 

509–511
readObject() method, invoking 

overridable methods from, 
562–563

Reference returning, defensive 
copying of mutable classes for, 
180–185

Refl ection, 585–592 
Regex, sanitization of untrusted data 

passed to, 54–59 
Remote monitoring, deployment vs.,

618–624
Resource closure, 487–493 
Resource exhaustion, in denial-of-

service, 7–8 
RuntimeException, throwing of, 

285–288
Runtime.exec() method, 50–54 

S
Sanitization, 3 

of classes, 155–156 
of exceptions, 265–266 
of untrusted data passed across 

trust boundary, 24–34 
of untrusted data passed to regex, 

54–59
SEC00-J, 570–573 
SEC01-J, 574–576 
SEC02-J, 577–578 
SEC03-J, 579–582 
SEC04-J, 582–585 
SEC05-J, 585–592 
SEC06-J, 592–597 
SEC07-J, 597–598 
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SEC08-J, 599–601 
Security checks 

protecting sensitive operations 
with, 582–585 

untrusted sources and, 
577–578

Security manager, 19–21, 154–155 
serialization bypassing, 546–549 

Sensitive classes, copying of, 
189–192

Sensitive data 
hard coding of, 635–638 
leaking of, 4–6 
logging of, outside trust boundary, 

516–519
serialization of unencrypted, 

541–546
signing and sealing of, before 

sending across trust 
boundary, 534–541 

Sensitive information, exposure by, 
by exceptions, 263–268 

Serialization, 10–11 
bypassing security manager, 

546–549
compatibility during class 

evolution, 528–531 
defensive copying of private 

mutable components during 
de-, 551–552 

of implementation-defi ned 
invariants, 553–558 

of instances of inner, 549–551 
memory and resource leaks 

during, 563–565 
proper signatures for, 531–534 
of unencrypted sensitive data, 

541–546
SER00-J, 528–531 
SER01-J, 531–534 
SER02-J, 534–541 
SER03-J, 541–546 
SER04-J, 546–549 
SER05-J, 549–551 
SER06-J, 551–552 
SER07-J, 553–558 
SER08-J, 558–561 
SER09-J, 562–563 
SER10-J, 8, 563–565 
SER11-J, 566–567 
Shared directories, 468–478 
Shared fi le access, 470 

Shared memory, 11 
Shared variables, compound 

operations on, atomicity of, 
309–317

Side-effecting expressions, in 
assertions, 103–104 

Signature verifi cation, from 
URLClassLoader and  java.
util.jar, 592–597 

Singleton objects, multiple 
instantiations of, 657–668 

Socket, SSLSocket vs., for secure 
data exchange, 626–630 

SQL injection, 25–27 
SSLSocket, Socket vs., for

secure data exchange, 626–630 
Static fi elds, synchronization of 

access to, 351–352 
Static nonfi nal variables, public, 

197–199
strictfp modifi er, for fl oating-point 

calculation consistency, 
128–132

String representation, of fl oating-
point values, 139–141 

Subclass(es)
dependencies, preservation of, 

162–169
extensibility limitation with 

invariants to trusted, 
152–159

Superclasses 
fi nalizer, 250 
methods declared in, 226–229 
preserving subclass dependencies 

when changing, 162–169 
Supplementary characters, 61–62 
Symmetry, 230–231 
Synchronization, 16–17 

of access to static fi elds modifi ed 
by untrusted code, 351–352 

of classes that interact with 
untrusted code, private fi nal 
lock objects for, 332–338 

on class object returned by 
getClass() method, 
343–347

on collection view, 348–350 
on intrinsic locks of high-level 

concurrency objects, 
347–348

of reused objects, 339–342 

T
Tainted variables, in privileged 

blocks, 574–576 
Temporary fi les, removal of, before 

termination, 483–487 
Termination 

cleanup at, 519–525 
temporary fi les and, removal of, 

483–487
of threads by  Thread.stop()

method, 412–415 
by untrusted code, 296–299 

THI00-J, 388–390 
THI01-J, 390–394 
THI02-J, 394–401 
THI03-J, 401–404 
THI04-J, 9, 404–412 
THI05-J, 412–415 
this reference, escape of, in object 

construction, 445–454 
ThreadGroup methods, 390–394 
ThreadLocal variables, 435–439 
Thread pools 

bounded, interdependent task 
execution in, 420–427 

for graceful degradation of service 
in traffi c bursts, 417–420 

interruptibility of tasks submitted 
to, 427–430 

silent failure of tasks in, 
430–434

ThreadLocal variable 
reinitialization in, 435–439 

Thread.run() method, 388–390 
Thread-safe methods, 442–445 
Thread.stop() method, 412–415 
TPS00-J, 8, 417–420 
TPS01-J, 8, 420–427 
TPS02-J, 9, 427–430 
TPS03-J, 430–434 
TPS04-J, 435–439 
Traffi c bursts, thread pools for 

graceful degradation of service 
for, 417–420 

Transitivity, 232–233 
Trust, 2 
Trust boundary 

leakage of sensitive data across, 
by privileged blocks, 
570–573

logging of sensitive information 
outside, 516–519 
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sanitization of untrusted data 
passed across, 24–34 

signing and sealing sensitive 
objects before sending across, 
534–541

TSM00-J, 442–445 
TSM01-J, 445–454 
TSM02-J, 9, 454–459 
TSM03-J, 459–466 
Two-argument  Arrays.equals()

method, 90–91 

U
Unsigned data, integer types and 

range of, 121–122 
Untrusted code 

loading of trusted classes after 
loading by, 579–582 

termination by, 296–299 
URLClassLoader, 592–597 

V
Validation 

canonicalization before, 36–41 
defi nition of, 3 
elimination of noncharacter 

code points before, 66–68 
of method arguments, 

210–213
assertions for, 213–215 

normalization before, 34–36 

Values 
autoboxed, ensuring intended 

type of, 97–99 
64-bit, atomicity when reading 

and writing, 328–330 
of boxed primitives, comparing, 

91–97
exceptional, in fl oating-point 

inputs, 134–136 
fl oating-point, string 

representation of, 139–141 
returned by methods, ignoring, 

86–88
Variables 

in expression, writing more than 
once to, 100–103 

fl oating-point, as loop counters, 
136–138

public static nonfi nal, 197–199 
shared, compound operations on, 

atomicity of, 309–317 
shared primitive, ensuring 

visibility with, 302–306 
tainted, in privileged blocks, 

574–576
ThreadLocal, reinitialization of, in 

thread pools, 435–439 
trusting values of environment, 

610–613
Verifi cation, bytecode, disabling of, 

617–618

Visibility, 11–18 
of shared references to immutable 

objects, 306–309 
when accessing shared primitive 

variables, 302–306 
VNA00-J, 302–306 
VNA01-J, 306–309 
VNA02-J, 309–317 
VNA03-J, 8, 317–323 
VNA04-J, 323–328 
VNA05-J, 328–330 
Volatile, 14–15, 14 f, 15 t

W
wait() methods, 401–404 
Wrapper methods, accessible, 

159–162
Wrappers, defi ning of, around native 

methods, 599–601 
write() method, for integer 

output outside of 0-255, 
507–509

X
XML external entity attacks, 31–34 
XML injection, 28–31 

Z
Zeros, division by, 119–121 
“Zip bombs,” 7 
ZipInputStream, 43–45 
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