

The CERT ® Oracle ®

Secure Coding Standard
for Java ™

The SEI Series in Software Engineering represents is a collaborative
undertaking of the Carnegie Mellon Software Engineering Institute (SEI) and

Addison-Wesley to develop and publish books on software engineering and
related topics. The common goal of the SEI and Addison-Wesley is to provide
the most current information on these topics in a form that is easily usable by
practitioners and students.

Books in the series describe frameworks, tools, methods, and technologies
designed to help organizations, teams, and individuals improve their technical
or management capabilities. Some books describe processes and practices for
developing higher-quality software, acquiring programs for complex systems, or
delivering services more effectively. Other books focus on software and system
architecture and product-line development. Still others, from the SEI’s CERT
Program, describe technologies and practices needed to manage software
and network security risk. These and all books in the series address critical
problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available products.

The SEI Series in
Software Engineering

Preface iii

The CERT ® Oracle ®

Secure Coding Standard
for Java ™

Fred Long
Dhruv Mohindra
Robert C. Seacord
Dean F. Sutherland
David Svoboda

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

The SEI Series in Software Engineering

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT
Coordination Center are registered in the U.S. Patent and Trademark Offi ce by Carnegie Mellon University.

 ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolution-
ary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profi le;
OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering;
Personal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead
Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of The CERT Oracle Secure Coding Standard for Java, © 2007–2011 by
Carnegie Mellon University, in this book is granted by the Software Engineering Institute.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
 international@pearson.com

Visit us on the Web: informit.com/aw

 Library of Congress Cataloging-in-Publication Data

The CERT Oracle secure coding standard for Java / Fred Long . . . [et al.].
 p. cm.—(The SEI series in software engineering)
Includes bibliographical references and index.
ISBN-13: 978-0-321-80395-5 (pbk. : alk. paper)
ISBN-10: 0-321-80395-7 (pbk. : alk. paper)
1. Java (Computer program language) 2. Computer security. 3. Oracle
(Computer fi le) 4. Computer programming—Standards. I. Long, F. W.
(Frederick W.), 1947- II. Carnegie-Mellon University. CERT Coordination
Center.
QA76.73.J38C44 2012
005.8—dc23
 2011027284

 Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-80395-5
ISBN-10: 0-321-80395-7
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, September 2011

 To my late wife, Ann, for all her love, help, and support over the years.
 —Fred Long

 To my parents Deepak and Eta Mohindra, my grandmother
Shashi Mohindra, and our very peppy, spotted Dalmatian Google.

 —Dhruv Mohindra

 To my wife, Alfi e, for making this book worthwhile, and
to my parents, Bill and Lois, for making it possible.

 —David Svoboda

 To my wife, Rhonda, and our children, Chelsea and Jordan.
 —Robert C. Seacord

 For Libby, who makes everything worthwhile.
 —Dean Sutherland

This page intentionally left blank

vii

Contents

Foreword xvii

 Preface xix

Acknowledgments xxxi

About the Authors xxxiii

Chapter 1 Introduction 1

Misplaced Trust 2
Injection Attacks 2
Leaking Sensitive Data 4
Leaking Capabilities 6
Denial of Service 7
Serialization 10
Concurrency, Visibility, and Memory 11
Principle of Least Privilege 18
Security Managers 19
Class Loaders 21
Summary 21

Chapter 2 Input Validation and Data Sanitization (IDS) 23

Rules 23
Risk Assessment Summary 24
IDS00-J. Sanitize untrusted data passed across a trust boundary 24

viii Contents

IDS01-J. Normalize strings before validating them 34
IDS02-J. Canonicalize path names before validating them 36
IDS03-J. Do not log unsanitized user input 41
IDS04-J. Limit the size of files passed to ZipInputStream 43

IDS05-J. Use a subset of ASCII for file and path names 46
IDS06-J. Exclude user input from format strings 48
IDS07-J. Do not pass untrusted, unsanitized data

to the Runtime.exec() method 50
IDS08-J. Sanitize untrusted data passed to a regex 54
IDS09-J. Do not use locale-dependent methods on

locale-dependent data without specifying the appropriate locale 59
IDS10-J. Do not split characters between two data structures 60
IDS11-J. Eliminate noncharacter code points before validation 66
IDS12-J. Perform lossless conversion of String data between

differing character encodings 68
IDS13-J. Use compatible encodings on both sides

of file or network I/O 71

Chapter 3 Declarations and Initialization (DCL) 75

Rules 75
Risk Assessment Summary 75
DCL00-J. Prevent class initialization cycles 75
DCL01-J. Do not reuse public identifiers from the Java

Standard Library 79
DCL02-J. Declare all enhanced for statement loop

variables final 81

Chapter 4 Expressions (EXP) 85

Rules 85
Risk Assessment Summary 85
EXP00-J. Do not ignore values returned by methods 86
EXP01-J. Never dereference null pointers 88
EXP02-J. Use the two-argument Arrays.equals() method

to compare the contents of arrays 90
EXP03-J. Do not use the equality operators when comparing

values of boxed primitives 91
EXP04-J. Ensure that autoboxed values have the intended type 97
EXP05-J. Do not write more than once to the

same variable within an expression 100
EXP06-J. Do not use side-effecting expressions in assertions 103

Contents ix

Chapter 5 Numeric Types and Operations (NUM) 105

Rules 105
Risk Assessment Summary 106
NUM00-J. Detect or prevent integer overflow 106
NUM01-J. Do not perform bitwise and arithmetic

operations on the same data 114
NUM02-J. Ensure that division and modulo operations

do not result in divide-by-zero errors 119
NUM03-J. Use integer types that can fully represent

the possible range of unsigned data 121
NUM04-J. Do not use floating-point numbers if precise

computation is required 122
NUM05-J. Do not use denormalized numbers 125
NUM06-J. Use the strictfp modifier for floating-point

calculation consistency across platforms 128
NUM07-J. Do not attempt comparisons with NaN 132

NUM08-J. Check floating-point inputs for exceptional values 134
NUM09-J. Do not use floating-point variables as loop counters 136
NUM10-J. Do not construct BigDecimal objects

from floating-point literals 138
NUM11-J. Do not compare or inspect the string

representation of floating-point values 139
NUM12-J. Ensure conversions of numeric types to narrower

types do not result in lost or misinterpreted data 141
NUM13-J. Avoid loss of precision when converting

primitive integers to floating-point 146

Chapter 6 Object Orientation (OBJ) 151

Rules 151
Risk Assessment Summary 152
OBJ00-J. Limit extensibility of classes and methods with

invariants to trusted subclasses only 152
OBJ01-J. Declare data members as private and provide

accessible wrapper methods 159
OBJ02-J. Preserve dependencies in subclasses when

changing superclasses 162
OBJ03-J. Do not mix generic with nongeneric raw

types in new code 169
OBJ04-J. Provide mutable classes with copy functionality

to safely allow passing instances to untrusted code 175

OBJ05-J. Defensively copy private mutable class members
before returning their references 180

OBJ06-J. Defensively copy mutable inputs and mutable
internal components 185

OBJ07-J. Sensitive classes must not let themselves be copied 189
OBJ08-J. Do not expose private members of an outer

class from within a nested class 192
OBJ09-J. Compare classes and not class names 194
OBJ10-J. Do not use public static nonfinal variables 197
OBJ11-J. Be wary of letting constructors throw exceptions 199

Chapter 7 Methods (MET) 209

Rules 209
Risk Assessment Summary 210
MET00-J. Validate method arguments 210
MET01-J. Never use assertions to validate method arguments 213
MET02-J. Do not use deprecated or obsolete classes or methods 215
MET03-J. Methods that perform a security check

must be declared private or final 217
MET04-J. Do not increase the accessibility of overridden

or hidden methods 218
MET05-J. Ensure that constructors do not call

overridable methods 220
MET06-J. Do not invoke overridable methods in clone() 223
MET07-J. Never declare a class method that hides a method

declared in a superclass or superinterface 226
MET08-J. Ensure objects that are equated are equatable 229
MET09-J. Classes that define an equals() method must

also define a hashCode() method 238
MET10-J. Follow the general contract when implementing

the compareTo() method 241
MET11-J. Ensure that keys used in comparison operations

are immutable 243
MET12-J. Do not use finalizers 248

Chapter 8 Exceptional Behavior (ERR) 255

Rules 255
Risk Assessment Summary 255
ERR00-J. Do not suppress or ignore checked exceptions 256
ERR01-J. Do not allow exceptions to expose sensitive information 263

x Contents

ERR02-J. Prevent exceptions while logging data 268
ERR03-J. Restore prior object state on method failure 270
ERR04-J. Do not exit abruptly from a finally block 275
ERR05-J. Do not let checked exceptions escape

from a finally block 277
ERR06-J. Do not throw undeclared checked exceptions 280
ERR07-J. Do not throw RuntimeException, Exception,

or Throwable 285
ERR08-J. Do not catch NullPointerException

or any of its ancestors 288
ERR09-J. Do not allow untrusted code to terminate the JVM 296

Chapter 9 Visibility and Atomicity (VNA) 301

Rules 301
Risk Assessment Summary 301
VNA00-J. Ensure visibility when accessing shared

primitive variables 302
VNA01-J. Ensure visibility of shared references

to immutable objects 306
VNA02-J. Ensure that compound operations

on shared variables are atomic 309
VNA03-J. Do not assume that a group of calls

to independently atomic methods is atomic 317
VNA04-J. Ensure that calls to chained methods are atomic 323
VNA05-J. Ensure atomicity when reading and writing

64-bit values 328

Chapter 10 Locking (LCK) 331

Rules 331
Risk Assessment Summary 332
LCK00-J. Use private final lock objects to synchronize

classes that may interact with untrusted code 332
LCK01-J. Do not synchronize on objects that may be

reused 339
LCK02-J. Do not synchronize on the class object

returned by getClass() 343
LCK03-J. Do not synchronize on the intrinsic locks

of high-level concurrency objects 347
LCK04-J. Do not synchronize on a collection view

if the backing collection is accessible 348

Contents xi

xii Contents

LCK05-J. Synchronize access to static fields that can be
modified by untrusted code 351

LCK06-J. Do not use an instance lock to protect
shared static data 352

LCK07-J. Avoid deadlock by requesting and releasing locks
in the same order 355

LCK08-J. Ensure actively held locks are released on exceptional
conditions 365

LCK09-J. Do not perform operations that can block while
holding a lock 370

LCK10-J. Do not use incorrect forms of the double-checked
locking idiom 375

LCK11-J. Avoid client-side locking when using classes
that do not commit to their locking strategy 381

Chapter 11 Thread APIs (THI) 387

Rules 387
Risk Assessment Summary 387
THI00-J. Do not invoke Thread.run() 388
THI01-J. Do not invoke ThreadGroup methods 390
THI02-J. Notify all waiting threads rather than a

single thread 394
THI03-J. Always invoke wait() and await() methods

inside a loop 401
THI04-J. Ensure that threads performing blocking operations

can be terminated 404
THI05-J. Do not use Thread.stop() to terminate threads 412

Chapter 12 Thread Pools (TPS) 417

Rules 417
Risk Assessment Summary 417
TPS00-J. Use thread pools to enable graceful degradation

of service during traffic bursts 418
TPS01-J. Do not execute interdependent tasks

in a bounded thread pool 421
TPS02-J. Ensure that tasks submitted to a thread

pool are interruptible 428
TPS03-J. Ensure that tasks executing in a thread pool

do not fail silently 431
TPS04-J. Ensure ThreadLocal variables are reinitialized

when using thread pools 436

Contents xiii

Chapter 13 Thread-Safety Miscellaneous (TSM) 441

Rules 441
Risk Assessment Summary 441
TSM00-J. Do not override thread-safe methods

with methods that are not thread-safe 442
TSM01-J. Do not let the this reference escape

during object construction 445
TSM02-J. Do not use background threads during class

initialization 454
TSM03-J. Do not publish partially initialized objects 459

Chapter 14 Input Output (FIO) 467

Rules 467
Risk Assessment Summary 468
FIO00-J. Do not operate on files in shared directories 468
FIO01-J. Create files with appropriate access permissions 478
FIO02-J. Detect and handle file-related errors 481
FIO03-J. Remove temporary files before termination 483
FIO04-J. Close resources when they are no longer needed 487
FIO05-J. Do not expose buffers created using the wrap()

or duplicate() methods to untrusted code 493
FIO06-J. Do not create multiple buffered wrappers

on a single InputStream 496
FIO07-J. Do not let external processes block on input and

output streams 500
FIO08-J. Use an int to capture the return value of methods

that read a character or byte 504
FIO09-J. Do not rely on the write() method to output integers

outside the range 0 to 255 507
FIO10-J. Ensure the array is filled when using read()

to fill an array 509
FIO11-J. Do not attempt to read raw binary data

as character data 511
FIO12-J. Provide methods to read and write little-endian data 513
FIO13-J. Do not log sensitive information outside a trust

boundary 516
FIO14-J. Perform proper cleanup at program termination 519

Chapter 15 Serialization (SER) 527

Rules 527
Risk Assessment Summary 528

SER00-J. Maintain serialization compatibility during
class evolution 528

SER01-J. Do not deviate from the proper signatures
of serialization methods 531

SER02-J. Sign then seal sensitive objects before sending them
across a trust boundary 534

SER03-J. Do not serialize unencrypted, sensitive data 541
SER04-J. Do not allow serialization and deserialization

to bypass the security manager 546
SER05-J. Do not serialize instances of inner classes 549
SER06-J. Make defensive copies of private mutable

components during deserialization 551
SER07-J. Do not use the default serialized form for

implementation-defined invariants 553
SER08-J. Minimize privileges before deserializing from

a privileged context 558
SER09-J. Do not invoke overridable methods from

the readObject() method 562
SER10-J. Avoid memory and resource leaks during serialization 563
SER11-J. Prevent overwriting of externalizable objects 566

Chapter 16 Platform Security (SEC) 569

Rules 569
Risk Assessment Summary 570
SEC00-J. Do not allow privileged blocks to leak sensitive

information across a trust boundary 570
SEC01-J. Do not allow tainted variables in privileged blocks 574
SEC02-J. Do not base security checks on untrusted sources 577
SEC03-J. Do not load trusted classes after allowing untrusted

code to load arbitrary classes 579
SEC04-J. Protect sensitive operations with security

manager checks 582
SEC05-J. Do not use reflection to increase accessibility

of classes, methods, or fields 585
SEC06-J. Do not rely on the default automatic signature

verification provided by URLClassLoader and java.util.jar 592
SEC07-J. Call the superclass’s getPermissions() method when

writing a custom class loader 597
SEC08-J. Define wrappers around native methods 599

xiv Contents

Chapter 17 Runtime Environment (ENV) 603

Rules 603
Risk Assessment Summary 603
ENV00-J. Do not sign code that performs only

unprivileged operations 604
ENV01-J. Place all security-sensitive code in a single jar

and sign and seal it 606
ENV02-J. Do not trust the values of environment variables 610
ENV03-J. Do not grant dangerous combinations of permissions 613
ENV04-J. Do not disable bytecode verification 617
ENV05-J. Do not deploy an application that can be

remotely monitored 618

Chapter 18 Miscellaneous (MSC) 625

Rules 625
Risk Assessment Summary 625
MSC00-J. Use SSLSocket rather than Socket for secure data

exchange 626
MSC01-J. Do not use an empty infinite loop 630
MSC02-J. Generate strong random numbers 632
MSC03-J. Never hard code sensitive information 635
MSC04-J. Do not leak memory 638
MSC05-J. Do not exhaust heap space 647
MSC06-J. Do not modify the underlying collection when

an iteration is in progress 653
MSC07-J. Prevent multiple instantiations of singleton objects 657

Glossary 669

References 677

Index 693

Contents xv

This page intentionally left blank

xvii

Foreword

Security in computer systems has been a serious issue for decades. This past decade’s
explosion in the dependence on networks and the computers connected to them has raised
the issue to stratospheric levels. When Java was fi rst designed, dealing with security was a
key component. And in the years since then, all of the various standard libraries,
frameworks, and containers that have been built have had to deal with security too. In the
Java world, security is not viewed as an add-on feature. It is a pervasive way of thinking.
Those who forget to think in a secure mindset end up in trouble.

But just because the facilities are there doesn’t mean that security is assured automati-
cally. A set of standard practices has evolved over the years. The CERT® Oracle® Secure
 Coding Standard for Java™ is a compendium of these practices. These are not theoretical
research papers or product marketing blurbs. This is all serious, mission-critical,
battle-tested, enterprise-scale stuff.

James Gosling

This page intentionally left blank

Preface

An essential element of secure coding in the Java programming language is a well-
documented and enforceable coding standard. The CERT Oracle Secure Coding Standard
for Java provides rules for secure coding in the Java programming language. The goal of
these rules is to eliminate insecure coding practices that can lead to exploitable vulnerabili-
ties. The application of the secure coding standard leads to higher quality systems that are
safe, secure, reliable, dependable, robust, resilient, available, and maintainable and can be
used as a metric to evaluate source code for these properties (using manual or automated
processes).

This coding standard affects a wide range of software systems developed in the Java
programming language.

■ Scope

The CERT Oracle Secure Coding Standard for Java focuses on the Java Standard Edition 6
Platform (Java SE 6) environment and includes rules for secure coding using the Java pro-
gramming language and libraries. The Java Language Specifi cation, 3 rd edition [JLS 2005]
prescribes the behavior of the Java programming language and served as the primary refer-
ence for the development of this standard. This coding standard also addresses new features
of the Java SE 7 Platform. Primarily, these features provide alternative compliant solutions
to secure coding problems that exist in both the Java SE 6 and Java SE 7 platforms.

xix

xx Preface

Languages such as C and C++ allow undefi ned, unspecifi ed, or implementation-defi ned
behaviors, which can lead to vulnerabilities when a programmer makes incorrect assump-
tions about the underlying behavior of an API or language construct. The Java Language
Specifi cation goes further to standardize language requirements because Java is designed to
be a “write once, run anywhere” language. Even then, certain behaviors are left to the
discretion of the implementor of the Java Virtual Machine (JVM) or the Java compiler. This
standard identifi es such language peculiarities and demonstrates secure coding practices to
avoid them.

Focusing only on language issues does not translate to writing secure software. Design
fl aws in Java application programming interfaces (APIs) sometimes lead to their depreca-
tion. At other times, the APIs or the relevant documentation may be interpreted incorrectly
by the programming community. This standard identifi es such problematic APIs and high-
lights their correct use. Examples of commonly used faulty design patterns (anti-patterns)
and idioms are also included.

The Java language, its core and extension APIs, and the JVM provide security
features such as the security manager, access controller, cryptography, automatic
memory management, strong type checking, and bytecode verifi cation. These features
provide suffi cient security for most applications, but their proper use is of paramount
importance. This standard highlights the pitfalls and caveats associated with the secu-
rity architecture and stresses its correct implementation. Adherence to this standard
safeguards the confi dentiality, integrity, and availability (CIA) of trusted programs and
helps eliminate exploitable security fl aws that can result in denial-of-service attacks,
time-of-check-to-time-of-use attacks, information leaks, erroneous computations, and
privilege escalation.

Software that complies with this standard provides its users the ability to defi ne
fi ne-grained security policies and safely execute trusted mobile code on untrusted systems
or untrusted mobile code on trusted systems.

Included Libraries
This secure coding standard addresses security issues primarily applicable to the lang
and util libraries, as well as to the Collections, Concurrency Utilities, Logging,
Management, Refl ection, Regular Expressions, Zip, I/O, JMX, JNI, Math, Serialization,
and XML JAXP libraries. This standard avoids the inclusion of open bugs that have
already been fi xed or those that lack security ramifi cations. A functional bug is
included only when it is likely that it occurs with high frequency, causes considerable
security concerns, or affects most Java technologies that rely on the core platform. This
standard is not limited to security issues specifi c to the Core API but also includes important
security concerns pertaining to the standard extension APIs (javax package).

Preface xxi

Issues Not Addressed
The following issues are not addressed by this standard:

■ Design and Architecture. This standard assumes that the design and architecture of
the product is secure—that is, that the product is free of design-level vulnerabilities
that would otherwise compromise its security.

■ Content. This coding standard does not address concerns specifi c to only one Java-
based platform but applies broadly to all platforms. For example, rules that are
applicable to Java Micro Edition (ME) or Java Enterprise Edition (EE) alone and not
to Java SE are typically not included. Within Java SE, APIs that deal with the user
interface (User Interface Toolkits) or with the web interface for providing features
such as sound, graphical rendering, user account access control, session management,
authentication, and authorization are beyond the scope of this standard. However, this
does not preclude the standard from discussing networked Java systems given the
risks associated with improper input validation and injection fl aws and suggesting
appropriate mitigation strategies.

■ Coding Style. Coding style issues are subjective; it has proven impossible to develop a
consensus on appropriate style rules. Consequently, The CERT® Oracle® Secure Coding
Standard for Java™ recommends only that the user defi ne style rules and apply those
rules consistently; requirements that mandate use of any particular coding style are
deliberately omitted. The easiest way to consistently apply a coding style is with the
use of a code formatting tool. Many integrated development environments (IDEs)
provide such capabilities.

■ Tools. As a federally funded research and development center (FFRDC), the Software
Engineering Institute (SEI) is not in a position to recommend particular vendors or
tools to enforce the restrictions adopted. Users of this document are free to choose
tools; vendors are encouraged to provide tools to enforce these rules.

■ Controversial Rules. In general, the CERT secure coding standards try to avoid the
inclusion of controversial rules that lack a broad consensus.

■ Audience

The CERT® Oracle® Secure Coding Standard for Java™ is primarily intended for developers of
Java language programs. While this standard focuses on the Java Platform SE 6, it should
also be informative (although incomplete) for Java developers working with Java ME or
Java EE and other Java language versions.

xxii Preface

While primarily designed for secure systems, this standard is also useful for achieving
other quality attributes such as safety, reliability, dependability, robustness, resiliency, avail-
ability, and maintainability.

This standard may also be used by

■ Developers of analyzer tools who wish to diagnose insecure or nonconforming Java
language programs

■ Software development managers, software acquirers, or other software development
and acquisition specialists to establish a proscriptive set of secure coding standards

■ Educators as a primary or secondary text for software security courses that teach
secure coding in Java

The rules in this standard may be extended with organization-specifi c rules. However, a
program must comply with existing rules to be considered conforming to the standard.

Training may be developed to educate software professionals regarding the appropriate
application of secure coding standards. After passing an examination, these trained program-
mers may also be certifi ed as secure coding professionals.

■ Contents and O rganization

The standard is organized into an introductory chapter and 17 chapters containing rules
in specifi c topic areas. Each of the rule chapters contains a list of rules in that section,
and a risk assessment summary for the rules. There is also a common glossary and bibli-
ography. This preface is meant to be read fi rst, followed by the introductory chapter. The
rule chapters may be read in any order or used as reference material as appropriate. The
rules are loosely organized in each chapter but, in general, may also be read in any order.

Rules have a consistent structure. Each rule has a unique identifi er, which is included
in the title. The title of the rules and the introductory paragraphs defi ne the conformance
requirements. This is typically followed by one or more sets of noncompliant code exam-
ples and corresponding compliant solutions. Each rule also includes a risk assessment and
bibliographical references specifi c to that rule. When applicable, rules also list related vul-
nerabilities and related guidelines from the following sources:

■ The CERT® C Secure Coding Standard [Seacord 2008]

■ The CERT® C++ Secure Coding Standard [CERT 2011]

■ ISO/IEC TR 24772. Information Technology—Programming Languages—Guidance
to Avoiding Vulnerabilities in Programming Languages through Language Selection
and Use [ISO/IEC TR 24772:2010]

■ MITRE CWE [MITRE 2011]

Preface xxiii

■ Secure Coding Rules for the Java Programming Language, version 3.0 [SCG 2009]

■ The Elements of Java™ Style [Rogue 2000]

Identifi ers
Each rule has a unique identifi er, consisting of three parts:

■ A three-letter mnemonic, representing the section of the standard, is used to group
similar rules and make them easier to fi nd.

■ A two-digit numeric value in the range of 00 to 99, which ensures each rule has a
unique identifi er.

■ The letter J, which indicates that this is a Java language rule and is included to prevent
ambiguity with similar rules in CERT secure coding standards for other languages.

Identifi ers may be used by static analysis tools to reference a particular rule in a diag-
nostic message or otherwise used as shorthand for the rule title.

■ System Q ualities

Security is one of many system attributes that must be considered in the selection and appli-
cation of a coding standard. Other attributes of interest include safety, portability, reliability,
availability, maintainability, readability, and performance.

Many of these attributes are interrelated in interesting ways. For example, readability is
an attribute of maintainability; both are important for limiting the introduction of defects
during maintenance that can result in security fl aws or reliability issues. In addition, read-
ability facilitates code inspection by safety offi cers. Reliability and availability require
proper resource management, which also contributes to the safety and security of the sys-
tem. System attributes such as performance and security are often in confl ict, requiring
tradeoffs to be made.

The purpose of the secure coding standard is to promote software security. However,
because of the relationship between security and other system attributes, the coding stan-
dards may include requirements and recommendations that deal primarily with other sys-
tem attributes that also have a signifi cant impact on security.

■ Priority and L evels

Each rule has an assigned priority. Priorities are assigned using a metric based on Failure
Mode, Effects, and Criticality Analysis (FMECA) [IEC 60812]. Three values are assigned
for each rule on a scale of 1 to 3 for

xxiv Preface

■ Severity—How serious are the consequences of the rule being ignored:

 1 = low (denial-of-service attack, abnormal termination)

 2 = medium (data integrity violation, unintentional information disclosure)

 3 = high (run arbitrary code, privilege escalation)

■ Likelihood—How likely is it that a fl aw introduced by violating the rule could lead to
an exploitable vulnerability:

 1 = unlikely

 2 = probable

 3 = likely

■ Remediation cost—How expensive is it to remediate existing code to comply with the
rule:

 1 = high (manual detection and correction)

 2 = medium (automatic detection and manual correction)

 3 = low (automatic detection and correction)

The three values are multiplied together for each rule. This product provides a measure
that can be used in prioritizing the application of the rules. These products range from 1 to
27. Rules with a priority in the range of 1 to 4 are level 3 rules, 6 to 9 are level 2, and 12 to 27
are level 1. As a result, it is possible to claim level 1, level 2, or complete compliance (level 3)
with a standard by implementing all rules in a level, as shown in Figure P–1.

High severity,
likely, inexpensive
to repair flaws L1 P12-P27

Low severity,
unlikely, expensive
to repair flaws

L2 P6-P9

L3 P1-P4

Med severity,
probable, med cost
to repair flaws

Figure P–1. Levels and priority ranges

Preface xxv

The metric is designed primarily for remediation projects and does not apply to new
development efforts that are implemented to the standard.

■ Conformance T esting

Software systems can be validated as conforming to The CERT® Oracle® Secure Coding
 Standard for Java™.

Normative vs. Nonnormative Text
Portions of this coding standard are intended to be normative; other portions are intended
as good advice. The normative statements in these rules are the requirements for confor-
mance with the standard. Normative statements use imperative language such as “must,”
“shall,” and “require.” Normative portions of each rule must be analyzable, although
automated analysis is infeasible for some rules and not required.

The nonnormative portions of a rule describe good practices or useful advice.
Nonnormative statements do not establish conformance requirements. Nonnormative
statements use verbs such as “should” or phrases such as “is recommended” or “is good
practice.” Nonnormative portions of rules may be inappropriate for automated checking
because such checking would likely report excessive false positives when applied to exist-
ing code. Automated checkers for these nonnormative portions might be useful when
analyzing new code (that is, code that has been developed to this coding standard).

All of the rules in this standard have a normative component. Nonnormative
recommendations are provided only when

■ there is well-known good practice to follow

■ the rule describes an approach that, if universally followed, would avoid violations
where the normative part of the rule applies and would also be harmless when applied
to code where the normative part of the rule is inapplicable

Entirely nonnormative guidelines are excluded from this coding standard. However,
the authors of this book are planning a follow-on effort to publish these guidelines.

■ Automated A nalysis

To ensure that the source code conforms to this secure coding standard, it is necessary to
check for rule violations. The most effective means of checking is to use one or more analy-
sis tools (analyzers). When a rule cannot be checked by a tool, manual review is required.

xxvi Preface

Many of the rules in this standard provide some indication as to whether or not existing
analyzers can diagnose violations of the rule or even how amenable the rule is to automated
analysis. This information is necessarily transitory because existing analyzers evolve and
new analyzers are developed.

When choosing a source code analysis tool, it is clearly desirable that the tool be able to
enforce as many of the rules in this document as possible. Not all rules are enforceable by
automated analysis tools; some will require manual inspection.

■ Completeness and S oundness

To the greatest extent possible, an analyzer should be both complete and sound with respect
to enforceable rules. An analyzer is considered sound (with respect to a specifi c rule) if it
does not give a false-negative result, meaning it is able to fi nd all violations of a rule within
the entire program. An analyzer is considered complete if it does not issue false-positive
results, or false alarms. The possibilities for a given rule are outlined in Table P–1.

Tools with a high false-positive rate cause developers to waste their time, and they can
lose interest in the results and consequently fail to realize value from the true bugs that are
lost in the noise. Tools with a high number of false-negatives miss many defects that should
be found and can foster a false sense of security. In practice, tools need to strike a balance
between the two.

There are many tradeoffs in minimizing false-positives and false-negatives. It is obvi-
ously better to minimize both, and there are many techniques and algorithms that do both
to some degree.

Analyzers are trusted processes, meaning that reliance is placed on the output of the
tools. Consequently, developers must ensure that this trust is warranted. Ideally, this should
be achieved by the tool supplier running appropriate validation tests. While it is possible to
use a validation suite to test an analyzer, no formal validation scheme exists at this time.

False Positives

Y N

N Sound with false positives Complete and sound

Y Unsound with false positives Unsound

Table P–1. Soundness and completeness

Fa
ls

e
N

eg
at

iv
es

Preface xxvii

■ CERT S ource C ode A nalysis L aboratory

CERT has created the Source Code Analysis Laboratory (SCALe), which offers confor-
mance testing of software systems to CERT secure coding standards, including The CERT
Oracle Secure Coding Standard for Java.

SCALe evaluates client source code using multiple analyzers, including static analysis
tools, dynamic analysis tools, and fuzz testing. CERT reports any violations of the secure
coding rules to the developer. The developer may repair and resubmit the software for
reevaluation.

After the developer has addressed these fi ndings and the SCALe team determines that
the product version tested conforms to the standard, CERT issues the developer a certifi cate
and lists the system in a registry of conforming systems.

Successful conformance testing of a software system indicates that the SCALe analysis
was unable to detect violations of rules defi ned by a CERT secure coding standard. Success-
ful conformance testing does not provide any guarantees that these rules are not violated or
that the software is entirely and permanently secure. SCALe does not test for unknown
code-related vulnerabilities, high-level design and architectural fl aws, the code’s opera-
tional environment, or the code’s portability. Conforming software systems can still be inse-
cure, for example, if the software implements an insecure design or architecture.

Some rules in this standard include enumerated exceptions with discussion of the condi-
tions under which each exception applies. When developers invoke an enumerated exception
as a reason for deviating from a rule, they must document the relevant exception in the code at
or near the point of deviation. A minimally acceptable form of documentation is a stylized
comment containing the identifi er of the exception being claimed, as in this example:

// MET12-EX0 applies here

The authors are currently developing a set of Java annotations that will permit pro-
grammers to indicate such exceptions in a form that is both human-readable and accessible
to static analysis tools. For conformance testing purposes, determination of whether an
exception applies in any particular case is made by the SCALe analyst.

Third-Party Libraries
Static analysis tools, such as FindBugs that analyze Java bytecode, can frequently discover
violations of this secure coding standard in third-party libraries in addition to custom code.
Violations of secure coding rules in third-party libraries are treated in the same manner as if
they appeared in custom code.

Unfortunately, developers are not always in a position to modify third-party library
code or perhaps even to convince the vendor to modify the code. This means that the system
cannot pass conformance testing unless the problem is eliminated (possibly by replacing

xxviii Preface

the library with another library or custom-developed code) or by documenting a deviation.
The deviation procedure for third-party library code is the same as for custom code—that
is, the developer must show that the violation does not cause a vulnerability. However, the
costs may be different. For custom code, it may be more economical to repair the problem,
whereas for third-party libraries, it might be easier to document a deviation.

Conformance Testing Process
For each secure coding standard, the source code is found to be provably nonconforming,
conforming, or provably conforming against each rule in the standard.

■ Provably nonconforming. The code is provably nonconforming if one or more viola-
tions of a rule are discovered for which no deviation has been allowed.

■ Conforming. The code is conforming if no violations of a rule are identifi ed.

■ Provably conforming. The code is provably conforming if the code has been verifi ed to
adhere to the rule in all possible cases.

Deviation Procedure
Strict adherence to all rules is unlikely; consequently, deviations associated with specifi c
rule violations are necessary. Deviations can be used in cases where a true positive fi nding is
uncontested as a rule violation but the code is nonetheless determined to be secure. This
may be the result of a design or architecture feature of the software or because the particular
violation occurs for a valid reason that was unanticipated by the secure coding standard. In
this respect, the deviation procedure allows for the possibility that secure coding rules are
overly strict. Deviations cannot be used for reasons of performance, usability, or to achieve
other nonsecurity attributes in the system. A software system that successfully passes con-
formance testing must not present known vulnerabilities resulting from coding errors.

Deviation requests are evaluated by the lead assessor; if the developer can provide suf-
fi cient evidence that deviation does not introduce a vulnerability, the deviation request is
accepted. Deviations should be used infrequently because it is almost always easier to fi x a
coding error than it is to prove that the coding error does not result in a vulnerability.

Once the evaluation process has been completed, a report detailing the conformance or
nonconformance of the code to the corresponding rules in the secure coding standard is
provided to the developer.

CERT SCALe Seal
Developers of software that has been determined by CERT to conform to a secure coding
standard may use the seal shown in Figure P–2 to describe the conforming software on the

Preface xxix

developer’s website. The seal must be specifi cally tied to the software passing conformance
testing and not applied to untested products, the company, or the organization.

Figure P-2 . CERT SCALe Seal

Except for patches that meet the following criteria, any modifi cation of software after it
is designated as conforming voids the conformance designation. Until such software is
retested and determined to be conforming, the new software cannot be associated with the
CERT SCALe Seal.

Patches that meet all three of the following criteria do not void the conformance
designation:

■ The patch is necessary to fi x a vulnerability in the code or is necessary for the mainte-
nance of the software.

■ The patch does not introduce new features or functionality.

■ The patch does not introduce a violation of any of the rules in the secure coding
standard to which the software has been determined to conform.

Use of the CERT SCALe Seal is contingent upon the organization entering into a service
agreement with Carnegie Mellon University and upon the software being designated by
CERT as conforming. For more information, email securecoding@cert.org .

This page intentionally left blank

xxxi

Acknowledgments

Contributors
Siddarth Adukia, Lokesh Agarwal, Ron Bandes, Scott Bennett, Kalpana Chatnani, Steve
Christey, Jose Sandoval Chaverri, Tim Halloran, Thomas Hawtin, Fei He, Ryan Hofl er, Sam
Kaplan, Georgios Katsis, Lothar Kimmeringer, Bastian Marquis, Michael Kross, Masaki
Kubo, Christopher Leonavicius, Bocong Liu, Efstathios Mertikas, Aniket Mokashi, David
Neville, Todd Nowacki, Vishal Patel, Jonathan Paulson, Justin Pincar, Michael Rosenman,
Brendan Saulsbury, Eric Schwelm, Tamir Sen, Philip Shirey, Jagadish Shrinivasavadhani,
Robin Steiger, Yozo Toda, Kazuya Togashi, John Truelove, Theti Tsiampali, Tim Wilson, and
Weam Abu Zaki.

Reviewers
Daniel Bögner, James Baldo Jr., Hans Boehm, Joseph Bowbeer, Mark Davis, Sven Dietrich,
Will Dormann, Chad R. Dougherty, Holger Ebel, Paul Evans, Hari Gopal, Klaus Havelund,
David Holmes, Bart Jacobs, Sami Koivu, Niklas Matthies, Bill Michell, Philip Miller, Nick
Morrott, Attila Mravik, Tim Peierls, Kirk Sayre, Thomas Scanlon, Steve Scholnick, Alex
Snaps, David Warren, Ramon Waspitz, and Kenneth A. Williams .

Editors
Pamela Curtis , Shannon Haas, Carol Lallier, Tracey Tamules, Melanie Thompson, Paul
Ruggerio, and Pennie Walters.

Thanks to everyone who has contributed to making this effort a success.

xxxii Acknowledgments

Addison-Wesley
Kim Boedigheimer, John Fuller, Stephane Nakib, Peter Gordon, Chuti Prasertsith, and
Elizabeth Ryan.

Special Thanks
Archie Andrews, David Biber, Kim Boedigheimer, Peter Gordon, Frances Ho, Joe Jarzombek,
Jason McNatt, Stephane Nakib, Rich Pethia, and Elizabeth Ryan.

xxxiii

About the Authors

Fred Long is a senior lecturer and director of learning and
teaching in the Department of Computer Science, Aberystwyth
University in the United Kingdom.

He lectures on formal methods; Java, C++, and C program-
ming paradigms and programming-related security issues. He is
chairman of the British Computer Society’s Mid-Wales Sub-Branch.

Fred has been a Visiting Scientist at the Software Engineer-
ing Institute since 1992. Recently, his research has involved the
investigation of vulnerabilities in Java.

Dhruv Mohindra is a senior software engineer at Persistent
Systems Limited, India, where he develops monitoring software
for widely used enterprise servers. He has worked for CERT at
the Software Engineering Institute and continues to col-
laborate to improve the state of security awareness in the pro-
gramming community.

Dhruv has also worked for Carnegie Mellon University,
where he obtained his master of science degree in information
security policy and management. He holds an undergraduate

degree in computer engineering from Pune University, India, where he researched with
Calsoft, Inc., during his academic pursuit.

A writing enthusiast, Dhruv occasionally contributes articles to technology magazines
and online resources. He brings forth his experience and learning from developing and
securing service oriented applications, server monitoring software, mobile device applica-
tions, web-based data miners, and designing user-friendly security interfaces.

Robert C. Seacord is a computer security specialist and writer.
He is the author of books on computer security, legacy system
modernization, and component-based software engineering.

Robert manages the Secure Coding Initiative at CERT,
located in Carnegie Mellon’s Software Engineering Institute in
Pittsburgh, Pennsylvania. CERT, among other security-related
activities, regularly analyzes software vulnerability reports and
assesses the risk to the Internet and other critical infrastruc-
ture. Robert is an adjunct professor in the Carnegie Mellon

University School of Computer Science and in the Information Networking Institute.
Robert started programming professionally for IBM in 1982, working in communica-

tions and operating system software, processor development, and software engineering.
Robert also has worked at the X Consortium, where he developed and maintained code for
the Common Desktop Environment and the X Window System.

Robert has a bachelor’s degree in computer science from Rensselaer Polytechnic Institute.

Dean F. Sutherland is a senior software security engineer at
CERT. Dean received his Ph.D. in software engineering from
Carnegie Mellon in 2008. Before his return to academia, he
spent 14 years working as a professional software engineer at
Tartan, Inc. He spent the last six of those years as a senior mem-
ber of the technical staff and a technical lead for compiler back-
end technology. He was the primary active member of the cor-
porate R&D group, was a key instigator of the design and
deployment of a new software development process for Tartan,
led R&D projects, and provided both technical and project
leadership for the 12-person compiler back-end group.

David Svoboda is a software security engineer at CERT.
David has been the primary developer on a diverse set of
software development projects at Carnegie Mellon since
1991, ranging from hierarchical chip modeling and social
organization simulation to automated machine translation
(AMT). His KANTOO AMT software, developed in 1996, is
still in production use at Caterpillar. He has over 13 years of
Java development experience, starting with Java 2, and his
Java projects include Tomcat servlets and Eclipse plug-ins.
David is also actively involved in several ISO standards

groups: the JTC1/SC22/WG14 group for the C programming language and the JTC1/
SC22/WG21 group for C++.

xxxiv About the Authors

23

Chapter 2
Input Validation and Data
Sanitization (IDS)

■ Rules

Rule Page

IDS00-J. Sanitize untrusted data passed across a trust boundary 24

IDS01-J. Normalize strings before validating them 34

IDS02-J. Canonicalize path names before validating them 36

IDS03-J. Do not log unsanitized user input 41

IDS04-J. Limit the size of fi les passed to ZipInputStream 43

IDS05-J. Use a subset of ASCII for fi le and path names 46

IDS06-J. Exclude user input from format strings 48

IDS07-J. Do not pass untrusted, unsanitized data to the Runtime.exec() method 50

IDS08-J. Sanitize untrusted data passed to a regex 54

IDS09-J. Do not use locale-dependent methods on locale-dependent data without specifying
the appropriate locale

59

IDS10-J. Do not split characters between two data structures 60

IDS11-J. Eliminate noncharacter code points before validation 66

IDS12-J. Perform lossless conversion of String data between differing character encodings 68

IDS13-J. Use compatible encodings on both sides of fi le or network I/O 71

24 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

IDS00-J high probable medium P12 L1

IDS01-J high probable medium P12 L1

IDS02-J medium unlikely medium P4 L3

IDS03-J medium probable medium P8 L2

IDS04-J low probable high P2 L3

IDS05-J medium unlikely medium P4 L3

IDS06-J medium unlikely medium P4 L3

IDS07-J high probable medium P12 L1

IDS08-J medium unlikely medium P4 L3

IDS09-J medium probable medium P8 L2

IDS10-J low unlikely medium P2 L3

IDS11-J high probable medium P12 L1

IDS12-J low probable medium P4 L3

IDS13-J low unlikely medium P2 L3

■ IDS00-J. S anitize untrusted data passed across a trust boundary

Many programs accept untrusted data originating from unvalidated users, network connec-
tions, and other untrusted sources and then pass the (modifi ed or unmodifi ed) data across a
trust boundary to a different trusted domain. Frequently the data is in the form of a string
with some internal syntactic structure, which the subsystem must parse. Such data must be
sanitized both because the subsystem may be unprepared to handle the malformed input
and because unsanitized input may include an injection attack.

In particular, programs must sanitize all string data that is passed to command inter-
preters or parsers so that the resulting string is innocuous in the context in which it is
parsed or interpreted.

Many command interpreters and parsers provide their own sanitization and validation
methods. When available, their use is preferred over custom sanitization techniques because
custom developed sanitization can often neglect special cases or hidden complexities in the
parser. Another problem with custom sanitization code is that it may not be adequately main-
tained when new capabilities are added to the command interpreter or parser software.

IDS00-J 25

SQL Injection
A SQL injection vulnerability arises when the original SQL query can be altered to form an
altogether different query. Execution of this altered query may result in information leaks or
data modifi cation. The primary means of preventing SQL injection are sanitizing and vali-
dating untrusted input and parameterizing queries.

Suppose a database contains user names and passwords used to authenticate users of the
system. The user names have a string size limit of 8. The passwords have a size limit of 20.

A SQL command to authenticate a user might take the form:

SELECT * FROM db_user WHERE username='<USERNAME>' AND
 password='<PASSWORD>'

If it returns any records, the user name and password are valid.
However, if an attacker can substitute arbitrary strings for <USERNAME> and <PASSWORD>,

they can perform a SQL injection by using the following string for <USERNAME>:

validuser' OR '1'='1

When injected into the command, the command becomes:

SELECT * FROM db_user WHERE username='validuser' OR '1'='1' AND
password=<PASSWORD>

If validuser is a valid user name, this SELECT statement selects the validuser record in the
table. The password is never checked because username='validuser' is true; consequently
the items after the OR are not tested. As long as the components after the OR generate a
syntactically correct SQL expression, the attacker is granted the access of validuser.

Likewise, an attacker could supply a string for <PASSWORD> such as:

' OR '1'='1

This would yield the following command:

SELECT * FROM db_user WHERE username='' AND password='' OR '1'='1'

This time, the '1'='1' tautology disables both user name and password validation, and the
attacker is falsely logged in without a correct login ID or password.

Noncompliant Code Example
This noncompliant code example shows JDBC code to authenticate a user to a system. The
password is passed as a char array, the database connection is created, and then the
passwords are hashed.

26 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Unfortunately, this code example permits a SQL injection attack because the SQL
statement sqlString accepts unsanitized input arguments. The attack scenario outlined
previously would work as described.

class Login {
 public Connection getConnection() throws SQLException {
 DriverManager.registerDriver(new
 com.microsoft.sqlserver.jdbc.SQLServerDriver());
 String dbConnection =
 PropertyManager.getProperty("db.connection");
 // can hold some value like
 // "jdbc:microsoft:sqlserver://<HOST>:1433,<UID>,<PWD>"
 return DriverManager.getConnection(dbConnection);
 }

 String hashPassword(char[] password) {
 // create hash of password
 }

 public void doPrivilegedAction(String username, char[] password)
throws SQLException {

 Connection connection = getConnection();
 if (connection == null) {
 // handle error
 }
 try {
 String pwd = hashPassword(password);

 String sqlString = "SELECT * FROM db_user WHERE username = '"
 + username +
 "' AND password = '" + pwd + "'";
 Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery(sqlString);

 if (!rs.next()) {
 throw new SecurityException(
 "User name or password incorrect"
);
 }

 // Authenticated; proceed
 } finally {
 try {
 connection.close();
 } catch (SQLException x) {
 // forward to handler
 }
 }
 }
}

IDS00-J 27

Compliant Solution (PreparedStatement)
Fortunately, the JDBC library provides an API for building SQL commands that sanitize
untrusted data. The java.sql.PreparedStatement class properly escapes input strings, pre-
venting SQL injection when used properly. This is an example of component-based sanitization.

This compliant solution modifi es the doPrivilegedAction() method to use a Pre-
paredStatement instead of java.sql.Statement. This code also validates the length of the
username argument, preventing an attacker from submitting an arbitrarily long user name.

public void doPrivilegedAction(
 String username, char[] password
) throws SQLException {
 Connection connection = getConnection();
 if (connection == null) {
 // Handle error
 }
 try {
 String pwd = hashPassword(password);

 // Ensure that the length of user name is legitimate
 if ((username.length() > 8) {
 // Handle error
 }

 String sqlString =
 "select * from db_user where username=? and password=?";
 PreparedStatement stmt = connection.prepareStatement(sqlString);
 stmt.setString(1, username);
 stmt.setString(2, pwd);
 ResultSet rs = stmt.executeQuery();
 if (!rs.next()) {
 throw new SecurityException("User name or password incorrect");
 }

 // Authenticated, proceed
 } finally {
 try {
 connection.close();
 } catch (SQLException x) {
 // forward to handler
 }
 }
}

Use the set*() methods of the PreparedStatement class to enforce strong type check-
ing. This mitigates the SQL injection vulnerability because the input is properly escaped by
automatic entrapment within double quotes. Note that prepared statements must be used
even with queries that insert data into the database.

28 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

XML Injection
Because of its platform independence, fl exibility, and relative simplicity, the extensible
markup language (XML) has found use in applications ranging from remote procedure calls
to systematic storage, exchange, and retrieval of data. However, because of its versatility,
XML is vulnerable to a wide spectrum of attacks. One such attack is called XML injection.

A user who has the ability to provide structured XML as input can override the contents
of an XML document by injecting XML tags in data fi elds. These tags are interpreted and
classifi ed by an XML parser as executable content and, as a result, may cause certain data
members to be overridden.

Consider the following XML code snippet from an online store application, designed
primarily to query a back-end database. The user has the ability to specify the quantity of an
item available for purchase.

<item>
 <description>Widget</description>
 <price>500.0</price>
 <quantity>1</quantity>
</item>

A malicious user might input the following string instead of a simple number in the
quantity fi eld.

1</quantity><price>1.0</price><quantity>1

Consequently, the XML resolves to the following block:

<item>
 <description>Widget</description>
 <price>500.0</price>
 <quantity>1</quantity><price>1.0</price><quantity>1</quantity>
</item>

A Simple API for XML (SAX) parser (org.xml.sax and javax.xml.parsers.
SAXParser) interprets the XML such that the second price fi eld overrides the fi rst, leaving
the price of the item as $1. Even when it is not possible to perform such an attack, the
attacker may be able to inject special characters, such as comment blocks and CDATA

delimiters, which corrupt the meaning of the XML.

Noncompliant Code Example
In this noncompliant code example, a client method uses simple string concatenation to
build an XML query to send to a server. XML injection is possible because the method
performs no input validation.

IDS00-J 29

private void createXMLStream(BufferedOutputStream outStream,
 String quantity) throws IOException {
 String xmlString;
 xmlString = "<item>\n<description>Widget</description>\n" +

"<price>500.0</price>\n" +
"<quantity>" + quantity + "</quantity></item>";

 outStream.write(xmlString.getBytes());
 outStream.flush();
}

Compliant Solution (Whitelisting)
Depending on the specifi c data and command interpreter or parser to which data is being
sent, appropriate methods must be used to sanitize untrusted user input. This compliant
solution uses whitelisting to sanitize the input. In this compliant solution, the method
requires that the quantity fi eld must be a number between 0 and 9.

private void createXMLStream(BufferedOutputStream outStream,
String quantity) throws IOException {

 // Write XML string if quantity contains numbers only.
 // Blacklisting of invalid characters can be performed
 // in conjunction.

 if (!Pattern.matches("[0-9]+", quantity)) {
 // Format violation
 }

 String xmlString = "<item>\n<description>Widget</description>\n" +
 "<price>500</price>\n" +
 "<quantity>" + quantity + "</quantity></item>";
 outStream.write(xmlString.getBytes());
 outStream.flush();
}

Compliant Solution (XML Schema)
A more general mechanism for checking XML for attempted injection is to validate it using
a Document Type Defi nition (DTD) or schema. The schema must be rigidly defi ned to pre-
vent injections from being mistaken for valid XML. Here is a suitable schema for validating
our XML snippet:

<xs:schema xmlns:xs=" http://www.w3.org/2001/XMLSchema">
<xs:element name="item">

30 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 <xs:complexType>
 <xs:sequence>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="price" type="xs:decimal"/>
 <xs:element name="quantity" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

The schema is available as the fi le schema.xsd. This compliant solution employs this
schema to prevent XML injection from succeeding. It also relies on the CustomResolver
class to prevent XXE attacks. This class, as well as XXE attacks, are described in the subse-
quent code examples.

private void createXMLStream(BufferedOutputStream outStream,
 String quantity) throws IOException {
 String xmlString;
 xmlString = "<item>\n<description>Widget</description>\n" +

"<price>500.0</price>\n" +
"<quantity>" + quantity + "</quantity></item>";

 InputSource xmlStream = new InputSource(
 new StringReader(xmlString)
);

 // Build a validating SAX parser using our schema
 SchemaFactory sf
 = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 DefaultHandler defHandler = new DefaultHandler() {
 public void warning(SAXParseException s)
 throws SAXParseException {throw s;}
 public void error(SAXParseException s)
 throws SAXParseException {throw s;}
 public void fatalError(SAXParseException s)
 throws SAXParseException {throw s;}
 };
 StreamSource ss = new StreamSource(new File("schema.xsd"));
 try {
 Schema schema = sf.newSchema(ss);
 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setSchema(schema);
 SAXParser saxParser = spf.newSAXParser();
 // To set the custom entity resolver,
 // an XML reader needs to be created
 XMLReader reader = saxParser.getXMLReader();
 reader.setEntityResolver(new CustomResolver());
 saxParser.parse(xmlStream, defHandler);

IDS00-J 31

 } catch (ParserConfigurationException x) {
 throw new IOException("Unable to validate XML", x);
 } catch (SAXException x) {
 throw new IOException("Invalid quantity", x);
 }

 // Our XML is valid, proceed
 outStream.write(xmlString.getBytes());
 outStream.flush();
}

Using a schema or DTD to validate XML is convenient when receiving XML that may
have been loaded with unsanitized input. If such an XML string has not yet been built, sani-
tizing input before constructing XML yields better performance.

XML External Entity Attacks (XXE)
An XML document can be dynamically constructed from smaller logical blocks called
entities. Entities can be internal, external, or parameter-based. External entities allow the
inclusion of XML data from external fi les.

According to XML W3C Recommendation [W3C 2008], Section 4.4.3, “Included If
Validating”:

When an XML processor recognizes a reference to a parsed entity, to validate the
document, the processor MUST include its replacement text. If the entity is exter-
nal, and the processor is not attempting to validate the XML document, the proces-
sor MAY, but need not, include the entity’s replacement text.

An attacker may attempt to cause denial of service or program crashes by manipulating the
URI of the entity to refer to special fi les existing on the local fi le system, for example, by
specifying /dev/random or /dev/tty as input URIs. This may crash or block the program
indefi nitely. This is called an XML external entity (XXE) attack. Because inclusion of
replacement text from an external entity is optional, not all XML processors are vulnerable
to external entity attacks.

Noncompliant Code Example
This noncompliant code example attempts to parse the fi le evil.xml, reports any errors,
and exits. However, a SAX or a DOM (Document Object Model) parser will attempt to
access the URL specifi ed by the SYSTEM attribute, which means it will attempt to read the
contents of the local /dev/tty fi le. On POSIX systems, reading this fi le causes the program

32 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

to block until input data is supplied to the machine’s console. Consequently, an attacker can
use this malicious XML fi le to cause the program to hang.

class XXE {
 private static void receiveXMLStream(InputStream inStream,
 DefaultHandler defaultHandler)
 throws ParserConfigurationException, SAXException, IOException {
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(inStream, defaultHandler);
 }

 public static void main(String[] args)
 throws ParserConfigurationException, SAXException, IOException {
 receiveXMLStream(new FileInputStream("evil.xml"),

new DefaultHandler());
 }
}

This program is subject to a remote XXE attack if the evil.xml fi le contains the
following:

<?xml version="1.0"?>
<!DOCTYPE foo SYSTEM "file:/dev/tty">
<foo>bar</foo>

This noncompliant code example may also violate rule ERR06-J if the information con-
tained in the exceptions is sensitive.

Compliant Solution (EntityResolver)
This compliant solution defi nes a CustomResolver class that implements the interface
org.xml.sax.EntityResolver. This enables a SAX application to customize handling of
external entities. The setEntityResolver() method registers the instance with the corre-
sponding SAX driver. The customized handler uses a simple whitelist for external entities.
The resolveEntity() method returns an empty InputSource when an input fails to
resolve to any of the specifi ed, safe entity source paths. Consequently, when parsing mali-
cious input, the empty InputSource returned by the custom resolver causes a java.net.
MalformedURLException to be thrown. Note that you must create an XMLReader object on
which to set the custom entity resolver.

IDS00-J 33

This is an example of component-based sanitization.

class CustomResolver implements EntityResolver {
 public InputSource resolveEntity(String publicId, String systemId)
 throws SAXException, IOException {

 // check for known good entities
 String entityPath = "/home/username/java/xxe/file";
 if (systemId.equals(entityPath)) {
 System.out.println("Resolving entity: " + publicId +
 " " + systemId);
 return new InputSource(entityPath);
 } else {
 return new InputSource(); // Disallow unknown entities
 // by returning a blank path
 }
 }
}

class XXE {
 private static void receiveXMLStream(InputStream inStream,

DefaultHandler defaultHandler)
 throws ParserConfigurationException, SAXException, IOException {
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser saxParser = factory.newSAXParser();

 // To set the Entity Resolver, an XML reader needs to be created
 XMLReader reader = saxParser.getXMLReader();
 reader.setEntityResolver(new CustomResolver());
 reader.setErrorHandler(defaultHandler);

 InputSource is = new InputSource(inStream);
 reader.parse(is);
 }

 public static void main(String[] args)
 throws ParserConfigurationException, SAXException, IOException {
 receiveXMLStream(new FileInputStream("evil.xml"),
 new DefaultHandler());
 }
}

Risk Assessment
Failure to sanitize user input before processing or storing it can result in injection attacks.

Rule Severity Likelihood Remediation Cost Priority Level

IDS00-J high probable medium P12 L1

34 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Related Vulnerabilities CVE-2008-2370 describes a vulnerability in Apache Tomcat 4.1.0
through 4.1.37, 5.5.0 through 5.5.26, and 6.0.0 through 6.0.16. When a RequestDispatcher
is used, Tomcat performs path normalization before removing the query string from the
URI, which allows remote attackers to conduct directory traversal attacks and read arbitrary
fi les via a .. (dot dot) in a request parameter.

Related Guidelines

CERT C Secure Coding Standard STR02-C. Sanitize data passed to complex subsystems

CERT C++ Secure Coding Standard STR02-CPP. Sanitize data passed to complex subsystems

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-116. Improper encoding or escaping of output

Bibliography

[OWASP 2005]

[OWASP 2007]

[OWASP 2008] Testing for XML Injection (OWASP-DV-008)

[W3C 2008] 4.4.3, Included If Validating

■ IDS01-J. N ormalize strings before validating them

Many applications that accept untrusted input strings employ input fi ltering and validation
mechanisms based on the strings’ character data.

For example, an application’s strategy for avoiding cross-site scripting (XSS) vulnera-
bilities may include forbidding <script> tags in inputs. Such blacklisting mechanisms are a
useful part of a security strategy, even though they are insuffi cient for complete input vali-
dation and sanitization. When implemented, this form of validation must be performed
only after normalizing the input.

Character information in Java SE 6 is based on the Unicode Standard, version 4.0 [Uni-
code 2003]. Character information in Java SE 7 is based on the Unicode Standard, version
6.0.0 [Unicode 2011].

According to the Unicode Standard [Davis 2008a], annex #15, Unicode Normalization
Forms:

When implementations keep strings in a normalized form, they can be assured that
equivalent strings have a unique binary representation.

Normalization Forms KC and KD must not be blindly applied to arbitrary text.
Because they erase many formatting distinctions, they will prevent round-trip
conversion to and from many legacy character sets, and unless supplanted by

IDS01-J 35

formatting markup, they may remove distinctions that are important to the seman-
tics of the text. It is best to think of these Normalization Forms as being like upper-
case or lowercase mappings: useful in certain contexts for identifying core meanings,
but also performing modifi cations to the text that may not always be appropriate.
They can be applied more freely to domains with restricted character sets.

Frequently, the most suitable normalization form for performing input validation on arbi-
trarily encoded strings is KC (NFKC) because normalizing to KC transforms the input into an
equivalent canonical form that can be safely compared with the required input form.

Noncompliant Code Example
This noncompliant code example attempts to validate the String before performing nor-
malization. Consequently, the validation logic fails to detect inputs that should be rejected
because the check for angle brackets fails to detect alternative Unicode representations.

// String s may be user controllable
// \uFE64 is normalized to < and \uFE65 is normalized to > using NFKC
String s = "\uFE64" + "script" + "\uFE65";

// Validate
Pattern pattern = Pattern.compile("[<>]"); // Check for angle brackets
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
 // Found black listed tag
 throw new IllegalStateException();
} else {
 // . ..
}

// Normalize
s = Normalizer.normalize(s, Form.NFKC);

The normalize() method transforms Unicode text into an equivalent composed or
decomposed form, allowing for easier searching of text. The normalize method supports
the standard normalization forms described in Unicode Standard Annex #15—Unicode
Normalization Forms .

Compliant Solution
This compliant solution normalizes the string before validating it. Alternative representa-
tions of the string are normalized to the canonical angle brackets. Consequently, input
validation correctly detects the malicious input and throws an IllegalStateException.

36 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

String s = "\uFE64" + "script" + "\uFE65";

// Normalize
s = Normalizer.normalize(s, Form.NFKC);

// Validate
Pattern pattern = Pattern.compile("[<>]");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
 // Found black listed tag
 throw new IllegalStateException();
} else {
 // . ..
}

Risk Assessment
Validating input before normalization affords attackers the opportunity to bypass fi lters
and other security mechanisms. This can result in the execution of arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

IDS01-J high probable medium P12 L1

Related Guidelines

ISO/IEC TR 24772:2010 Cross-site scripting [XYT]

MITRE CWE CWE-289. Authentication bypass by alternate name

CWE-180. Incorrect behavior order: Validate before canonicalize

Bibliography

[API 2006]

[Davis 2008a]

[Weber 2009]

■ IDS02-J. C anonicalize path names before validating them

According to the Java API [API 2006] for class java.io.File:

A path name, whether abstract or in string form, may be either absolute or relative.
An absolute path name is complete in that no other information is required to
locate the fi le that it denotes. A relative path name, in contrast, must be interpreted
in terms of information taken from some other path name.

IDS02-J 37

Absolute or relative path names may contain fi le links such as symbolic (soft) links,
hard links, shortcuts, shadows, aliases, and junctions. These fi le links must be fully resolved
before any fi le validation operations are performed. For example, the fi nal target of a sym-
bolic link called trace might be the path name /home/system/trace. Path names may also
contain special fi le names that make validation diffi cult:

1. “.” refers to the directory itself.

2. Inside a directory, the special fi le name “..” refers to the directory’s parent directory.

In addition to these specifi c issues, there are a wide variety of operating system–specifi c
and fi le system–specifi c naming conventions that make validation diffi cult.

The process of canonicalizing fi le names makes it easier to validate a path name. More
than one path name can refer to a single directory or fi le. Further, the textual representation of
a path name may yield little or no information regarding the directory or fi le to which it refers.
Consequently, all path names must be fully resolved or canonicalized before validation.

Validation may be necessary, for example, when attempting to restrict user access to
fi les within a particular directory or otherwise make security decisions based on the name
of a fi le name or path name. Frequently, these restrictions can be circumvented by an
attacker by exploiting a directory traversal or path equivalence vulnerability. A directory
traversal vulnerability allows an I/O operation to escape a specifi ed operating directory. A
path equivalence vulnerability occurs when an attacker provides a different but equivalent
name for a resource to bypass security checks.

Canonicalization contains an inherent race window between the time the program
obtains the canonical path name and the time it opens the fi le. While the canonical path
name is being validated, the fi le system may have been modifi ed and the canonical path
name may no longer reference the original valid fi le. Fortunately, this race condition can be
easily mitigated. The canonical path name can be used to determine whether the referenced
fi le name is in a secure directory (see rule FIO00-J for more information). If the referenced
fi le is in a secure directory, then, by defi nition, an attacker cannot tamper with it and cannot
exploit the race condition.

This rule is a specifi c instance of rule IDS01-J.

Noncompliant Code Example
This noncompliant code example accepts a fi le path as a command-line argument and
uses the File.getAbsolutePath() method to obtain the absolute fi le path. It also uses
the isInSecureDir() method defi ned in rule FIO00-J to ensure that the fi le is in a secure
directory. However, it neither resolves fi le links nor eliminates equivalence errors.

public static void main(String[] args) {
 File f = new File(System.getProperty(“user.home”) +
 System.getProperty(“file.separator”) + args[0]);

38 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 String absPath = f.getAbsolutePath();

 if (!isInSecureDir(Paths.get(absPath))) {
 throw new IllegalArgumentException();
 }
 if (!validate(absPath)) { // Validation
 throw new IllegalArgumentException();
 }
}

The application intends to restrict the user from operating on fi les outside of their home
directory. The validate() method attempts to ensure that the path name resides within
this directory, but can be easily circumvented. For example, a user can create a link in their
home directory that refers to a directory or fi le outside of their home directory. The path
name of the link might appear to the validate() method to reside in their home directory
and consequently pass validation, but the operation will actually be performed on the fi nal
target of the link, which resides outside the intended directory.

Note that File.getAbsolutePath() does resolve symbolic links, aliases, and short cuts
on Windows and Macintosh platforms. Nevertheless, the Java Language Specifi cation (JLS)
lacks any guarantee that this behavior is present on all platforms or that it will continue in
future implementations.

Compliant Solution (getCanonicalPath())
This compliant solution uses the getCanonicalPath() method, introduced in Java 2,
because it resolves all aliases, shortcuts, and symbolic links consistently across all plat-
forms. Special fi le names such as dot dot (..) are also removed so that the input is reduced
to a canonicalized form before validation is carried out. An attacker cannot use ../
sequences to break out of the specifi ed directory when the validate() method is present.

public static void main(String[] args) throws IOException {
File f = new File(System.getProperty(“user.home”) +
System.getProperty(“file.separator”)+ args[0]);

 String canonicalPath = f.getCanonicalPath();

 if (!isInSecureDir(Paths.get(canonicalPath))) {
 throw new IllegalArgumentException();
 }
 if (!validate(canonicalPath)) { // Validation
 throw new IllegalArgumentException();
 }
}

IDS02-J 39

The getCanonicalPath() method throws a security exception when used within applets
because it reveals too much information about the host machine. The getCanonicalFile()
method behaves like getCanonicalPath() but returns a new File object instead of a String.

Compliant Solution (Security Manager)
A comprehensive way of handling this issue is to grant the application the permissions to
operate only on fi les present within the intended directory—the user’s home directory in
this example. This compliant solution specifi es the absolute path of the program in its secu-
rity policy fi le and grants java.io.FilePermission with target ${user.home}/* and
actions read and write.

grant codeBase "file:/home/programpath/" {
 permission java.io.FilePermission "${user.home}/*", "read, write";
};

This solution requires that the user’s home directory is a secure directory as described
in rule FIO00-J.

Noncompliant Code Example
This noncompliant code example allows the user to specify the absolute path of a fi le name
on which to operate. The user can specify fi les outside the intended directory (/img in this
example) by entering an argument that contains ../ sequences and consequently violate
the intended security policies of the program.

FileOutputStream fis =
 new FileOutputStream(new File("/img/" + args[0]));
// . ..

Noncompliant Code Example
This noncompliant code example attempts to mitigate the issue by using the File.getCa-

nonicalPath() method, which fully resolves the argument and constructs a canonicalized
path. For example, the path/img/../etc/passwd resolves to /etc/passwd.Canonicalization
without validation is insuffi cient because an attacker can specify fi les outside the intended
directory.

File f = new File("/img/" + args[0]);
String canonicalPath = f.getCanonicalPath();
FileOutputStream fis = new FileOutputStream(f);
// . ..

40 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Compliant Solution
This compliant solution obtains the fi le name from the untrusted user input, canonicalizes
it, and then validates it against a list of benign path names. It operates on the specifi ed fi le
only when validation succeeds; that is, only if the fi le is one of the two valid fi les file1.txt
or file2.txt in /img/java.

File f = new File("/img/" + args[0]);
String canonicalPath = f.getCanonicalPath();

if (!canonicalPath.equals("/img/java/file1.txt") &&
 !canonicalPath.equals("/img/java/file2.txt")) {
 // Invalid file; handle error
}

FileInputStream fis = new FileInputStream(f);

The /img/java directory must be secure to eliminate any race condition.

Compliant Solution (Security Manager)
This compliant solution grants the application the permissions to read only the intended
fi les or directories. For example, read permission is granted by specifying the absolute path
of the program in the security policy fi le and granting java.io.FilePermission with the
canonicalized absolute path of the fi le or directory as the target name and with the action set
to read.

// All files in /img/java can be read
grant codeBase "file:/home/programpath/" {
 permission java.io.FilePermission "/img/java", "read";
};

Risk Assessment
Using path names from untrusted sources without fi rst canonicalizing them and then vali-
dating them can result in directory traversal and path equivalence vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

IDS02-J medium unlikely medium P4 L3

IDS03-J 41

Related Vulnerabilities CVE-2005-0789 describes a directory traversal vulnerability in
LimeWire 3.9.6 through 4.6.0 that allows remote attackers to read arbitrary fi les via a ..
(dot dot) in a magnet request.

CVE-2008-5518 describes multiple directory traversal vulnerabilities in the web
administration console in Apache Geronimo Application Server 2.1 through 2.1.3 on
Windows that allow remote attackers to upload fi les to arbitrary directories.

Related Guidelines

The CERT C Secure Coding Standard FIO02-C. Canonicalize path names originating from
untrusted sources

The CERT C++ Secure Coding Standard FIO02-CPP. Canonicalize path names originating
from untrusted sources

ISO/IEC TR 24772:2010 Path Traversal [EWR]

MITRE CWE CWE-171. Cleansing, canonicalization, and
comparison errors

CWE-647. Use of non-canonical URL paths for
authorization decisions

Bibliography

[API 2006] Method getCanonicalPath()

[Harold 1999]

■ IDS03-J. D o not log unsanitized user input

A log injection vulnerability arises when a log entry contains unsanitized user input. A
malicious user can insert fake log data and consequently deceive system administrators as
to the system’s behavior [OWASP 2008]. For example, a user might split a legitimate log
entry into two log entries by entering a carriage return and line feed (CRLF) sequence,
either of which might be misleading. Log injection attacks can be prevented by sanitizing
and validating any untrusted input sent to a log.

Logging unsanitized user input can also result in leaking sensitive data across a trust
boundary, or storing sensitive data in a manner that violates local law or regulation. For
example, if a user can inject an unencrypted credit card number into a log fi le, the system
could violate PCI DSS regulations [PCI 2010]. See rule IDS00-J for more details on input
sanitization.

42 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Noncompliant Code Example
This noncompliant code example logs the user’s login name when an invalid request is
received. No input sanitization is performed.

if (loginSuccessful) {
 logger.severe("User login succeeded for: " + username);
} else {
 logger.severe("User login failed for: " + username);
}

Without sanitization, a log injection attack is possible. A standard log message when
username is david might look like this:

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login failed for: david

If the username that is used in a log message was not david, but rather a multiline string
like this:

david
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login succeeded for: administrator

the log would contain the following misleading data:

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login failed for: david
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login succeeded for: administrator

Compliant Solution
This compliant solution sanitizes the username input before logging it, preventing injection
attacks. Refer to rule IDS00-J for more details on input sanitization.

if (!Pattern.matches("[A-Za-z0-9_]+", username)) {
 // Unsanitized username
 logger.severe("User login failed for unauthorized user");
} else if (loginSuccessful) {
 logger.severe("User login succeeded for: " + username);
} else {
 logger.severe("User login failed for: " + username);
}

IDS04-J 43

Risk Assessment
Allowing unvalidated user input to be logged can result in forging of log entries, leaking
secure information, or storing sensitive data in a manner that violates a local law or
regulation.

Rule Severity Likelihood Remediation Cost Priority Level

IDS03-J medium probable medium P8 L2

Related Guidelines

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-144. Improper neutralization of line delimiters

CWE-150. Improper neutralization of escape, meta, or control
sequences

Bibliography

[API 2006]

[OWASP 2008]

[PCI DSS Standard]

■ IDS04-J. L imit the size of fi les passed to ZipInputStream

Check inputs to java.util.ZipInputStream for cases that cause consumption of excessive
system resources. Denial of service can occur when resource usage is disproportionately large in
comparison to the input data that causes the resource usage. The nature of the zip algorithm
permits the existence of zip bombs where a small fi le, such as ZIPs, GIFs, or gzip-encoded HTTP
content consumes excessive resources when uncompressed because of extreme compression.

The zip algorithm is capable of producing very large compression ratios [Mahmoud
2002]. Figure 2–1 shows a fi le that was compressed from 148MB to 590KB, a ratio of more
than 200 to 1. The fi le consists of arbitrarily repeated data: alternating lines of a characters
and b characters. Even higher compression ratios can be easily obtained using input data
that is targeted to the compression algorithm, or using more input data (that is untargeted),
or other compression methods.

Any entry in a zip fi le whose uncompressed fi le size is beyond a certain limit must not
be uncompressed. The actual limit is dependent on the capabilities of the platform.

This rule is a specifi c instance of the more general rule MSC07-J.

44 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Figure 2–1. Very large compression ratios in a Zip fi le.

Noncompliant Code Example
This noncompliant code fails to check the resource consumption of the fi le that is being
unzipped. It permits the operation to run to completion or until local resources are exhausted.

static final int BUFFER = 512;
// . ..

// external data source: filename
BufferedOutputStream dest = null;
FileInputStream fis = new FileInputStream(filename);
ZipInputStream zis = new ZipInputStream(new BufferedInputStream(fis));
ZipEntry entry;
while ((entry = zis.getNextEntry()) != null) {
 System.out.println("Extracting: " + entry);
 int count;
 byte data[] = new byte[BUFFER];
 // write the files to the disk
 FileOutputStream fos = new FileOutputStream(entry.getName());
 dest = new BufferedOutputStream(fos, BUFFER);
 while ((count = zis.read(data, 0, BUFFER)) != -1) {
 dest.write(data, 0, count);
 }
 dest.flush();
 dest.close();
}
zis.close();

IDS04-J 45

Compliant Solution
In this compliant solution, the code inside the while loop uses the ZipEntry.getSize()

method to fi nd the uncompressed fi le size of each entry in a zip archive before extract-
ing the entry. It throws an exception if the entry to be extracted is too large—100MB in
this case.

static final int TOOBIG = 0x6400000; // 100MB

 // . ..

 // write the files to the disk, but only if file is not insanely big
 if (entry.getSize() > TOOBIG) {
 throw new IllegalStateException("File to be unzipped is huge.");
 }
 if (entry.getSize() == -1) {
 throw new IllegalStateException(
 "File to be unzipped might be huge.");
 }
 FileOutputStream fos = new FileOutputStream(entry.getName());
 dest = new BufferedOutputStream(fos, BUFFER);
 while ((count = zis.read(data, 0, BUFFER)) != -1) {
 dest.write(data, 0, count);
 }

Risk Assessment

Rule Severity Likelihood Remediation Cost Priority Level

IDS04-J low probable high P2 L3

Related Guidelines

MITRE CWE CWE-409. Improper handling of highly compressed
data (data amplifi cation)

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 2-5. Check that inputs do not cause
excessive resource consumption

Bibliography

[Mahmoud 2002] Compressing and Decompressing Data Using Java APIs

46 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

■ IDS05-J. U se a subset of ASCII for fi le and path names

File and path names containing particular characters can be troublesome and can cause
unexpected behavior resulting in vulnerabilities. The following characters and patterns can
be problematic when used in the construction of a fi le or path name:

■ Leading dashes: Leading dashes can cause problems when programs are called with
the fi le name as a parameter because the fi rst character or characters of the fi le name
might be interpreted as an option switch.

■ Control characters, such as newlines, carriage returns, and escape: Control characters
in a fi le name can cause unexpected results from shell scripts and in logging.

■ Spaces: Spaces can cause problems with scripts and when double quotes aren’t used to
surround the fi le name.

■ Invalid character encodings: Character encodings can make it diffi cult to perform
proper validation of fi le and path names. (See rule IDS11-J.)

■ Name-space separation characters: Including name-space separation characters in a
fi le or path name can cause unexpected and potentially insecure behavior.

■ Command interpreters, scripts, and parsers: Some characters have special meaning
when processed by a command interpreter, shell, or parser and should consequently
be avoided.

As a result of the infl uence of MS-DOS, fi le names of the form xxxxxxxx.xxx, where x
denotes an alphanumeric character, are generally supported by modern systems. On some
platforms, fi le names are case sensitive; while on other platforms, they are case insensitive.
VU#439395 is an example of a vulnerability in C resulting from a failure to deal appropri-
ately with case sensitivity issues [VU#439395].

This rule is a specifi c instance of rule IDS00-J.

Noncompliant Code Example
In the following noncompliant code example, unsafe characters are used as part of a fi le name.

File f = new File("A\uD8AB");
OutputStream out = new FileOutputStream(f);

A platform is free to defi ne its own mapping of unsafe characters. For example, when
tested on an Ubuntu Linux distribution, this noncompliant code example resulted in the
following fi le name:

A?

IDS05-J 47

Compliant Solution
Use a descriptive fi le name containing only the subset of ASCII previously described.

File f = new File("name.ext");
OutputStream out = new FileOutputStream(f);

Noncompliant Code Example
This noncompliant code example creates a fi le with input from the user without sanitizing
the input.

public static void main(String[] args) throws Exception {
 if (args.length < 1) {
 // handle error
 }
 File f = new File(args[0]);
 OutputStream out = new FileOutputStream(f);
 // . ..
}

No checks are performed on the fi le name to prevent troublesome characters. If an
attacker knew this code was in a program used to create or rename fi les that would later be
used in a script or automated process of some sort, the attacker could choose particular
characters in the output fi le name to confuse the later process for malicious purposes.

Compliant Solution
In this compliant solution, the program uses a whitelist to reject unsafe fi le names.

public static void main(String[] args) throws Exception {
 if (args.length < 1) {
 // handle error
 }
 String filename = args[0];

 Pattern pattern = Pattern.compile("[^A-Za-z0-9%&+,.:=_]");
 Matcher matcher = pattern.matcher(filename);
 if (matcher.find()) {
 // filename contains bad chars, handle error
 }

48 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 File f = new File(filename);
 OutputStream out = new FileOutputStream(f);
 // . ..
}

All fi le names originating from untrusted sources must be sanitized to ensure they con-
tain only safe characters.

Risk Assessment
Failing to use only a safe subset of ASCII can result in misinterpreted data.

Rule Severity Likelihood Remediation Cost Priority Level

IDS05-J medium unlikely medium P4 L3

Related Guidelines
CERT C Secure Coding Standard MSC09-C. Character encoding—Use subset of ASCII

for safety

CERT C++ Secure Coding Standard MSC09-CPP. Character encoding—Use subset of ASCII
for safety

ISO/IEC TR 24772:2010 Choice of fi lenames and other external identifi ers [AJN]

MITRE CWE CWE-116. Improper encoding or escaping of output

Bibliography
ISO/IEC 646-1991 ISO 7-bit coded character set for information interchange

[Kuhn 2006] UTF-8 and Unicode FAQ for UNIX/Linux

[Wheeler 2003] 5.4, File Names

[VU#439395]

■ IDS06-J. E xclude user input from format strings

Interpretation of Java format strings is stricter than in languages such as C [Seacord 2005].
The standard library implementations throw appropriate exceptions when any conversion
argument fails to match the corresponding format specifi er. This approach reduces oppor-
tunities for malicious exploits. Nevertheless, malicious user input can exploit format strings
and can cause information leaks or denial of service. As a result, strings from an untrusted
source should not be incorporated into format strings.

IDS06-J 49

Noncompliant Code Example
This noncompliant code example demonstrates an information leak issue. It accepts a
credit card expiration date as an input argument and uses it within the format string.

class Format {
 static Calendar c =
 new GregorianCalendar(1995, GregorianCalendar.MAY, 23);
 public static void main(String[] args) {
 // args[0] is the credit card expiration date
 // args[0] can contain either %1$tm, %1$te or %1$tY as malicious
 // arguments
 // First argument prints 05 (May), second prints 23 (day)
 // and third prints 1995 (year)
 // Perform comparison with c, if it doesn't match print the
 // following line
 System.out.printf(args[0] +
 " did not match! HINT: It was issued on %1$terd of some month", c);
 }
}

In the absence of proper input validation, an attacker can determine the date against
which the input is being verifi ed by supplying an input that includes one of the format
string arguments %1$tm, %1$te, or %1$tY.

Compliant Solution
This compliant solution ensures that user-generated input is excluded from format strings.

class Format {
 static Calendar c =
 new GregorianCalendar(1995, GregorianCalendar.MAY, 23);
 public static void main(String[] args) {
 // args[0] is the credit card expiration date
 // Perform comparison with c,
 // if it doesn't match print the following line
 System.out.printf ("%s did not match! "
 + " HINT: It was issued on %1$terd of some month", args[0], c);
 }
}

Risk Assessment
Allowing user input to taint a format string may cause information leaks or denial of service.

50 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Rule Severity Likelihood Remediation Cost Priority Level

IDS06-J medium unlikely medium P4 L3

Automated Detection Static analysis tools that perform taint analysis can diagnose some
violations of this rule.

Related Guidelines

CERT C Secure Coding Standard FIO30-C. Exclude user input from format strings

CERT C++ Secure Coding Standard FIO30-CPP. Exclude user input from format strings

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-134. Uncontrolled format string

Bibliography

[API 2006] Class Formatter

[Seacord 2005] Chapter 6, Formatted Output

■ IDS07-J. D o not pass untrusted, unsanitized data
to the Runtime.exec() method

External programs are commonly invoked to perform a function required by the overall sys-
tem. This is a form of reuse and might even be considered a crude form of component-based
software engineering. Command and argument injection vulnerabilities occur when an
application fails to sanitize untrusted input and uses it in the execution of external programs.

Every Java application has a single instance of class Runtime that allows the application
to interface with the environment in which the application is running. The current runtime
can be obtained from the Runtime.getRuntime() method. The semantics of Runtime.
exec() are poorly defi ned, so it’s best not to rely on its behavior any more than necessary,
but typically it invokes the command directly without a shell. If you want a shell, you can
use /bin/sh -c on POSIX or cmd.exe on Windows. The variants of exec() that take the
command line as a single string split it using a StringTokenizer. On Windows, these
tokens are concatenated back into a single argument string before being executed.

Consequently, command injection attacks cannot succeed unless a command interpreter
is explicitly invoked. However, argument injection attacks can occur when arguments have
spaces, double quotes, and so forth, or start with a - or / to indicate a switch.

IDS07-J 51

This rule is a specifi c instance of rule IDS00-J. Any string data that originates from out-
side the program’s trust boundary must be sanitized before being executed as a command
on the current platform.

Noncompliant Code Example (Windows)
This noncompliant code example provides a directory listing using the dir command. This
is implemented using Runtime.exec() to invoke the Windows dir command.

class DirList {
 public static void main(String[] args) throws Exception {
 String dir = System.getProperty("dir");
 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec("cmd.exe /C dir " + dir);
 int result = proc.waitFor();
 if (result != 0) {
 System.out.println("process error: " + result);
 }
 InputStream in = (result == 0) ? proc.getInputStream() :
 proc.getErrorStream();
 int c;
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 }
}

Because Runtime.exec() receives unsanitized data originating from the environment,
this code is susceptible to a command injection attack.

An attacker can exploit this program using the following command:

java -Ddir='dummy & echo bad' Java

The command executed is actually two commands:

cmd.exe /C dir dummy & echo bad

which fi rst attempts to list a nonexistent dummy folder and then prints bad to the console.

Noncompliant Code Example (POSIX)
This noncompliant code example provides the same functionality but uses the POSIX ls
command. The only difference from the Windows version is the argument passed to
Runtime.exec().

52 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

class DirList {
 public static void main(String[] args) throws Exception {
 String dir = System.getProperty("dir");
 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec(new String[] {"sh", "-c", "ls " + dir});
 int result = proc.waitFor();
 if (result != 0) {
 System.out.println("process error: " + result);
 }
 InputStream in = (result == 0) ? proc.getInputStream() :
 proc.getErrorStream();
 int c;
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 }
}

The attacker can supply the same command shown in the previous noncompliant code
example with similar effects. The command executed is actually:

sh -c 'ls dummy & echo bad'

Compliant Solution (Sanitization)
This compliant solution sanitizes the untrusted user input by permitting only a small group
of whitelisted characters in the argument that will be passed to Runtime.exec(); all other
characters are excluded.

// . ..
if (!Pattern.matches("[0-9A-Za-z@.]+", dir)) {
 // Handle error
}
// . ..

Although this is a compliant solution, this sanitization approach rejects valid directo-
ries. Also, because the command interpreter invoked is system dependent, it is diffi cult to
establish that this solution prevents command injections on every platform on which a Java
program might run.

Compliant Solution (Restricted User Choice)
This compliant solution prevents command injection by passing only trusted strings to
Runtime.exec(). While the user has control over which string is used, the user cannot
provide string data directly to Runtime.exec().

IDS07-J 53

// . ..
String dir = null;
// only allow integer choices
int number = Integer.parseInt(System.getproperty("dir"));
switch (number) {
 case 1:
 dir = "data1"
 break; // Option 1
 case 2:
 dir = "data2"
 break; // Option 2
 default: // invalid
 break;
}
if (dir == null) {
 // handle error
}

This compliant solution hard codes the directories that may be listed.
This solution can quickly become unmanageable if you have many available directories.

A more scalable solution is to read all the permitted directories from a properties fi le into a
java.util.Properties object.

Compliant Solution (Avoid Runtime.exec())
When the task performed by executing a system command can be accomplished by some
other means, it is almost always advisable to do so. This compliant solution uses the File.
list() method to provide a directory listing, eliminating the possibility of command or
argument injection attacks.

import java.io.File;

class DirList {
 public static void main(String[] args) throws Exception {
 File dir = new File(System.getProperty("dir"));
 if (!dir.isDirectory()) {
 System.out.println("Not a directory");
 } else {
 for (String file : dir.list()) {
 System.out.println(file);
 }
 }
 }
}

54 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Risk Assessment
Passing untrusted, unsanitized data to the Runtime.exec() method can result in command
and argument injection attacks.

Rule Severity Likelihood Remediation Cost Priority Level

IDS07-J high probable medium P12 L1

Related Vulnerabilities

[CVE-2010-0886] Sun Java Web Start plugin command line argument injection

[CVE-2010-1826] Command injection in updateSharingD’s handling of Mach RPC messages

[T-472] Mac OS X Java command injection fl aw in updateSharingD lets local users
gain elevated privileges

Related Guidelines

The CERT C Secure Coding Standard ENV03-C. Sanitize the environment when invoking
external programs

ENV04-C. Do not call system() if you do not need a
command processor

The CERT C++ Secure Coding Standard ENV03-CPP. Sanitize the environment when invoking
external programs

ENV04-CPP. Do not call system() if you do not need a
command processor

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-78. Improper neutralization of special elements
used in an OS command (“OS command injection”)

Bibliography

[Chess 2007] Chapter 5, Handling Input, “Command Injection”

[OWASP 2005]

[Permissions 2008]

■ IDS08-J. S anitize untrusted data passed to a regex

Regular expressions are widely used to match strings of text. For example, the POSIX grep
utility supports regular expressions for fi nding patterns in the specifi ed text.

IDS08-J 55

For introductory information on regular expressions, see the Java Tutorials [Tutorials 08].
The java.util.regex package provides the Pattern class that encapsulates a compiled
representation of a regular expression and the Matcher class, which is an engine that uses a
Pattern to perform matching operations on a CharSequence.

Java’s powerful regular expression (regex) facilities must be protected from misuse. An
attacker may supply a malicious input that modifi es the original regular expression in such
a way that the regex fails to comply with the program’s specifi cation. This attack vector,
called a regex injection, might affect control fl ow, cause information leaks, or result in
denial-of-service (DoS) vulnerabilities.

Certain constructs and properties of Java regular expressions are susceptible to
exploitation:

■ Matching fl ags: Untrusted inputs may override matching options that may or may not
have been passed to the Pattern.compile() method.

■ Greediness: An untrusted input may attempt to inject a regex that changes the
original regex to match as much of the string as possible, exposing sensitive
information.

■ Grouping: The programmer can enclose parts of a regular expression in parentheses
to perform some common action on the group. An attacker may be able to change the
groupings by supplying untrusted input.

Untrusted input should be sanitized before use to prevent regex injection. When the
user must specify a regex as input, care must be taken to ensure that the original regex
cannot be modifi ed without restriction. Whitelisting characters (such as letters and digits)
before delivering the user-supplied string to the regex parser is a good input sanitization
strategy. A programmer must provide only a very limited subset of regular expression
functionality to the user to minimize any chance of misuse.

Regex Injection Example
Suppose a system log fi le contains messages output by various system processes. Some
processes produce public messages and some processes produce sensitive messages marked
“private.” Here is an example log fi le:

10:47:03 private[423] Successful logout name: usr1 ssn: 111223333
10:47:04 public[48964] Failed to resolve network service
10:47:04 public[1] (public.message[49367]) Exited with exit code: 255
10:47:43 private[423] Successful login name: usr2 ssn: 444556666
10:48:08 public[48964] Backup failed with error: 19

56 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

A user wishes to search the log fi le for interesting messages but must be prevented from
seeing the private messages. A program might accomplish this by permitting the user to
provide search text that becomes part of the following regex:

(.*? +public\[\d+\] +.*<SEARCHTEXT>.*)

However, if an attacker can substitute any string for <SEARCHTEXT>, he can perform
a regex injection with the following text:

.*)|(.*

When injected into the regex, the regex becomes:

(.*? +public\[\d+\] +.*.*)|(.*.*)

This regex will match any line in the log fi le, including the private ones.

Noncompliant Code Example
This noncompliant code example periodically loads the log fi le into memory and allows
clients to obtain keyword search suggestions by passing the keyword as an argument to
suggestSearches().

public class Keywords {
 private static ScheduledExecutorService scheduler
 = Executors.newSingleThreadScheduledExecutor();
 private static CharBuffer log;
 private static final Object lock = new Object();

 // Map log file into memory, and periodically reload
 static
 try {
 FileChannel channel = new FileInputStream(
 "path").getChannel();

 // Get the file's size and map it into memory
 int size = (int) channel.size();
 final MappedByteBuffer mappedBuffer = channel.map(
 FileChannel.MapMode.READ_ONLY, 0, size);

 Charset charset = Charset.forName("ISO-8859-15");
 final CharsetDecoder decoder = charset.newDecoder();

 log = decoder.decode(mappedBuffer); // Read file into char buffer

IDS08-J 57

 Runnable periodicLogRead = new Runnable() {
 @Override public void run() {
 synchronized(lock) {
 try {
 log = decoder.decode(mappedBuffer);
 } catch (CharacterCodingException e) {
 // Forward to handler
 }
 }
 }
 };
 scheduler.scheduleAtFixedRate(periodicLogRead,

 0, 5, TimeUnit.SECONDS);
 } catch (Throwable t) {
 // Forward to handler
 }
 }

 public static Set<String> suggestSearches(String search) {
 synchronized(lock) {
 Set<String> searches = new HashSet<String>();

 // Construct regex dynamically from user string
 String regex = "(.*? +public\\[\\d+\\] +.*" + search + ".*)";

 Pattern keywordPattern = Pattern.compile(regex);
 Matcher logMatcher = keywordPattern.matcher(log);
 while (logMatcher.find()) {
 String found = logMatcher.group(1);
 searches.add(found);
 }
 return searches;
 }
 }

}

This code permits a trusted user to search for public log messages such as “error.” However,
it also allows a malicious attacker to perform the regex injection previously described.

Compliant Solution (Whitelisting)
This compliant solution fi lters out nonalphanumeric characters (except space and single
quote) from the search string, which prevents regex injection previously described.

58 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

public class Keywords {
 // . ..
 public static Set<String> suggestSearches(String search) {
 synchronized(lock) {
 Set<String> searches = new HashSet<String>();

 StringBuilder sb = new StringBuilder(search.length());
 for (int i = 0; i < search.length(); ++i) {
 char ch = search.charAt(i);
 if (Character.isLetterOrDigit(ch) ||
 ch == ' ' ||
 ch == '\'') {
 sb.append(ch);
 }
 }
 search = sb.toString();

 // Construct regex dynamically from user string
 String regex = "(.*? +public\\[\\d+\\] +.*" + search + ".*)";
 // . ..
 }
 }
}

This solution also limits the set of valid search terms. For instance, a user may no longer
search for “name =” because the = character would be sanitized out of the regex.

Compliant Solution
Another method of mitigating this vulnerability is to fi lter out the sensitive information
prior to matching. Such a solution would require the fi ltering to be done every time the log
fi le is periodically refreshed, incurring extra complexity and a performance penalty.
Sensitive information may still be exposed if the log format changes but the class is not also
refactored to accommodate these changes.

Risk Assessment
Failing to sanitize untrusted data included as part of a regular expression can result in the
disclosure of sensitive information.

Rule Severity Likelihood Remediation Cost Priority Level

IDS08-J medium unlikely medium P4 L3

IDS09-J 59

Related Guidelines

MITRE CWE CWE-625. Permissive regular expression

Bibliography

[Tutorials 08] Regular Expressions

[CVE 05] CVE-2005-1949

■ IDS09-J. D o not use locale-dependent methods on
locale-dependent data without specifying the appropriate locale

Using locale-dependent methods on locale-dependent data can produce unexpected results
when the locale is unspecifi ed. Programming language identifi ers, protocol keys, and
HTML tags are often specifi ed in a particular locale, usually Locale.ENGLISH. It may even
be possible to bypass input fi lters by changing the default locale, which can alter the behav-
ior of locale-dependent methods. For example, when a string is converted to uppercase, it
may be declared valid; however, changing the string back to lowercase during subsequent
execution may result in a blacklisted string.

Any program which invokes locale-dependent methods on untrusted data must explicitly
specify the locale to use with these methods.

Noncompliant Code Example
This noncompliant code example uses the locale-dependent String.toUpperCase() method
to convert an HTML tag to uppercase. While the English locale would convert “title” to
“TITLE,” the Turkish locale will convert “title” to “T?TLE,” where “?” is the Latin capital
letter “I” with a dot above the character [API 2006].

"title".toUpperCase();

Compliant Solution (Explicit Locale)
This compliant solution explicitly sets the locale to English to avoid unexpected results.

"title".toUpperCase(Locale.ENGLISH);

This rule also applies to the String.equalsIgnoreCase() method.

60 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Compliant Solution (Default Locale)
This compliant solution sets the default locale to English before proceeding with string
operations.

Locale.setDefault(Locale.ENGLISH);
"title".toUpperCase();

Risk Assessment
Failure to specify the appropriate locale when using locale-dependent methods on locale-
dependent data may result in unexpected behavior.

Rule Severity Likelihood Remediation Cost Priority Level

IDS09-J medium probable medium P8 L2

Bibliography

[API 2006] Class String

■ IDS10-J. Do not split characters between two data structures

Legacy software frequently assumes that every character in a string occupies 8 bits (a Java
byte). The Java language assumes that every character in a string occupies 16 bits (a Java
char). Unfortunately, neither the Java byte nor Java char data types can represent all possi-
ble Unicode characters. Many strings are stored or communicated using encodings such as
UTF-8 that support characters with varying sizes.

While Java strings are stored as an array of characters and can be represented as an array
of bytes, a single character in the string might be represented by two or more consecutive
elements of type byte or of type char. Splitting a char or byte array risks splitting a
multibyte character.

Ignoring the possibility of supplementary characters, multibyte characters, or combining
characters (characters that modify other characters) may allow an attacker to bypass input
validation checks. Consequently, characters must not be split between two data structures.

Multibyte Characters
Multibyte encodings are used for character sets that require more than one byte to uniquely
identify each constituent character. For example, the Japanese encoding Shift-JIS (shown

IDS10-J 61

below) supports multibyte encoding where the maximum character length is two bytes
(one leading and one trailing byte).

Byte Type Range

single-byte 0x00 through 0x7F and 0xA0 through 0xDF

lead-byte 0x81 through 0x9F and 0xE0 through 0xFC

trailing-byte 0x40-0x7E and 0x80-0xFC

The trailing byte ranges overlap the range of both the single-byte and lead-byte charac-
ters. When a multibyte character is separated across a buffer boundary, it can be interpreted
differently than if it were not separated across the buffer boundary; this difference arises
because of the ambiguity of its composing bytes [Phillips 2005].

Supplementary Characters
According to the Java API [API 2006] class Character documentation (Unicode Character
Representations):

The char data type (and consequently the value that a Character object
encapsulates) are based on the original Unicode specifi cation, which defi ned
characters as fi xed-width 16-bit entities. The Unicode standard has since been
changed to allow for characters whose representation requires more than 16 bits.
The range of legal code points is now \u0000 to \u10FFFF, known as Unicode
scalar value.

The Java 2 platform uses the UTF-16 representation in char arrays and in the
String and StringBuffer classes. In this representation, supplementary charac-
ters are represented as a pair of char values, the fi rst from the high-surrogates
range, (\uD800-\uDBFF), the second from the low-surrogates range (\uDC00-\
uDFFF).

An int value represents all Unicode code points, including supplementary
code points. The lower (least signifi cant) 21 bits of int are used to represent Uni-
code code points, and the upper (most signifi cant) 11 bits must be zero. Unless
otherwise specifi ed, the behavior with respect to supplementary characters and
surrogate char values is as follows:

■ The methods that only accept a char value cannot support supplementary
characters. They treat char values from the surrogate ranges as undefi ned
characters. For example, Character.isLetter('\uD840') returns false, even
though this specifi c value if followed by any low-surrogate value in a string
would represent a letter.

62 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

■ The methods that accept an int value support all Unicode characters, including
supplementary characters. For example, Character.isLetter(0x2F81A)
returns true because the code point value represents a letter (a CJK ideograph).

Noncompliant Code Example (Read)
This noncompliant code example tries to read up to 1024 bytes from a socket and build a
String from this data. It does this by reading the bytes in a while loop, as recommended by
rule FIO10-J. If it ever detects that the socket has more than 1024 bytes available, it throws an
exception. This prevents untrusted input from potentially exhausting the program’s memory.

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
 InputStream in = socket.getInputStream();
 byte[] data = new byte[MAX_SIZE+1];
 int offset = 0;
 int bytesRead = 0;
 String str = new String();
 while ((bytesRead = in.read(data, offset, data.length - offset))

 != -1) {
 offset += bytesRead;
 str += new String(data, offset, data.length - offset, "UTF-8");
 if (offset >= data.length) {
 throw new IOException("Too much input");
 }
 }
 in.close();
 return str;
}

This code fails to account for the interaction between characters represented with a
multibyte encoding and the boundaries between the loop iterations. If the last byte read
from the data stream in one read() operation is the leading byte of a multibyte character,
the trailing bytes are not encountered until the next iteration of the while loop.
However, multibyte encoding is resolved during construction of the new String within
the loop. Consequently, the multibyte encoding can be interpreted incorrectly.

Compliant Solution (Read)
This compliant solution defers creation of the string until all the data is available.

IDS10-J 63

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
 InputStream in = socket.getInputStream();
 byte[] data = new byte[MAX_SIZE+1];
 int offset = 0;
 int bytesRead = 0;
 while ((bytesRead = in.read(data, offset, data.length - offset))

 != -1) {
 offset += bytesRead;
 if (offset >= data.length) {
 throw new IOException("Too much input");
 }
 }
 String str = new String(data, "UTF-8");
 in.close();
 return str;
}

This code avoids splitting multibyte-encoded characters across buffers by deferring
construction of the result string until the data has been read in full.

Compliant Solution (Reader)
This compliant solution uses a Reader rather than an InputStream. The Reader class
converts bytes into characters on the fl y, so it avoids the hazard of splitting multibyte
characters. This routine aborts if the socket provides more than 1024 characters rather than
1024 bytes.

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
 InputStream in = socket.getInputStream();
 Reader r = new InputStreamReader(in, "UTF-8");
 char[] data = new char[MAX_SIZE+1];
 int offset = 0;
 int charsRead = 0;
 String str = new String(data);

64 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 while ((charsRead = r.read(data, offset, data.length - offset))
!= -1) {

 offset += charsRead;
 str += new String(data, offset, data.length - offset);
 if (offset >= data.length) {
 throw new IOException("Too much input");
 }
 }
 in.close();
 return str;
}

Noncompliant Code Example (Substring)
This noncompliant code example attempts to trim leading letters from the string. It fails to
accomplish this task because Character.isLetter() lacks support for supplementary and
combining characters [Hornig 2007].

// Fails for supplementary or combining characters
public static String trim_bad1(String string) {
 char ch;
 int i;
 for (i = 0; i < string.length(); i += 1) {
 ch = string.charAt(i);
 if (!Character.isLetter(ch)) {
 break;
 }
 }
 return string.substring(i);
}

Noncompliant Code Example (Substring)
This noncompliant code example attempts to correct the problem by using the String.
codePointAt() method, which accepts an int argument. This works for supplementary
characters but fails for combining characters [Hornig 2007].

IDS10-J 65

// Fails for combining characters
public static String trim_bad2(String string) {
 int ch;
 int i;
 for (i = 0; i < string.length(); i += Character.charCount(ch)) {
 ch = string.codePointAt(i);
 if (!Character.isLetter(ch)) {
 break;
 }
 }
 return string.substring(i);
}

Compliant Solution (Substring)
This compliant solution works both for supplementary and for combining characters [Hornig
2007]. According to the Java API [API 2006] classjava.text.BreakIteratordocumentation:

The BreakIterator class implements methods for fi nding the location of bounda-
ries in text. Instances of BreakIterator maintain a current position and scan over
text returning the index of characters where boundaries occur.

The boundaries returned may be those of supplementary characters, combining
character sequences, or ligature clusters. For example, an accented character might be
stored as a base character and a diacritical mark.

public static String trim_good(String string) {
 BreakIterator iter = BreakIterator.getCharacterInstance();
 iter.setText(string);
 int i;
 for (i = iter.first(); i != BreakIterator.DONE; i = iter.next()) {
 int ch = string.codePointAt(i);
 if (!Character.isLetter(ch)) {
 break;
 }
 }
 // Reached first or last text boundary
 if (i == BreakIterator.DONE) {
 // The input was either blank or had only (leading) letters
 return "";
 } else {
 return string.substring(i);
 }
}

66 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

To perform locale-sensitive String comparisons for searching and sorting, use the
java.text.Collator class.

Risk Assessment
Failure to correctly account for supplementary and combining characters can lead to unex-
pected behavior.

Rule Severity Likelihood Remediation Cost Priority Level

IDS10-J low unlikely medium P2 L3

Bibliography

[API 2006] Classes Character and BreakIterator

[Hornig 2007] Problem Areas: Characters

■ IDS11-J. E liminate noncharacter code points before validation

In some versions prior to Unicode 5.2, conformance clause C7 allows the deletion of
noncharacter code points. For example, conformance clause C7 from Unicode 5.1 states
[Unicode 2007]:

C7. When a process purports not to modify the interpretation of a valid coded char-
acter sequence, it shall make no change to that coded character sequence other
than the possible replacement of character sequences by their canonical-equivalent
sequences or the deletion of noncharacter code points.

According to the Unicode Technical Report #36, Unicode Security Considerations
[Davis 2008b], Section 3.5, “Deletion of Noncharacters”:

Whenever a character is invisibly deleted (instead of replaced), such as in this older
version of C7, it may cause a security problem. The issue is the following: A gate-
way might be checking for a sensitive sequence of characters, say “delete.” If what
is passed in is “deXlete,” where X is a noncharacter, the gateway lets it through: The
sequence “deXlete” may be in and of itself harmless. However, suppose that later
on, past the gateway, an internal process invisibly deletes the X. In that case, the
sensitive sequence of characters is formed, and can lead to a security breach.

Any string modifi cations, including the removal or replacement of noncharacter code
points, must be performed before any validation of the string is performed.

IDS11-J 67

Noncompliant Code Example
This noncompliant code example accepts only valid ASCII characters and deletes any non-
ASCII characters. It also checks for the existence of a <script> tag.

Input validation is being performed before the deletion of non-ASCII characters. Con-
sequently, an attacker can disguise a <script> tag and bypass the validation checks.

// "\uFEFF" is a non-character code point
String s = "<scr" + "\uFEFF" + "ipt>";
s = Normalizer.normalize(s, Form.NFKC);
// Input validation
Pattern pattern = Pattern.compile("<script>");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
 System.out.println("Found black listed tag");
} else {
 // . ..
}

// Deletes all non-valid characters
s = s.replaceAll("^\\p{ASCII}]", "");
// s now contains "<script>"

Compliant Solution
This compliant solution replaces the unknown or unrepresentable character with Unicode
sequence \uFFFD, which is reserved to denote this condition. It also does this replacement
before doing any other sanitization, in particular, checking for <script>. This ensures that
malicious input cannot bypass fi lters.

String s = "<scr" + "\uFEFF" + "ipt>";

s = Normalizer.normalize(s, Form.NFKC);
// Replaces all non-valid characters with unicode U+FFFD
s = s.replaceAll("^\\p{ASCII}]", "\uFFFD");

Pattern pattern = Pattern.compile("<script>");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
 System.out.println("Found blacklisted tag");
} else {
 // . ..
}

68 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

According to the Unicode Technical Report #36, Unicode Security Considerations
[Davis 2008b], “ U+FFFD is usually unproblematic, because it is designed expressly for this
kind of purpose. That is, because it doesn’t have syntactic meaning in programming lan-
guages or structured data, it will typically just cause a failure in parsing. Where the output
character set is not Unicode, though, this character may not be available.”

Risk Assessment
Deleting noncharacter code points can allow malicious input to bypass validation checks.

Rule Severity Likelihood Remediation Cost Priority Level

IDS11-J high probable medium P12 L1

Related Guidelines

MITRE CWE CWE-182. Collapse of data into unsafe value

Bibliography

[API 2006]

[Davis 2008b] 3.5, Deletion of Noncharacters

[Weber 2009] Handling the Unexpected: Character-Deletion

[Unicode 2007]

[Unicode 2011]

■ IDS12-J. P erform lossless conversion of String data between
differing character encodings

Performing conversions of String objects between different character encodings may result
in loss of data.

According to the Java API [API 2006], String.getBytes(Charset) method
documentation:

This method always replaces malformed-input and unmappable-character
sequences with this charset’s default replacement byte array.

When a String must be converted to bytes, for example, for writing to a fi le, and the
string might contain unmappable character sequences, proper character encoding must be
performed.

IDS12-J 69

Noncompliant Code Example
This noncompliant code example [Hornig 2007] corrupts the data when string contains
characters that are not representable in the specifi ed charset.

// Corrupts data on errors
public static byte[] toCodePage_bad(String charset, String string)
 throws UnsupportedEncodingException {
 return string.getBytes(charset);
}

// Fails to detect corrupt data
public static String fromCodePage_bad(String charset, byte[] bytes)
 throws UnsupportedEncodingException {
 return new String(bytes, charset);
}

Compliant Solution
Thejava.nio.charset.CharsetEncoder class can transform a sequence of 16-bit Unicode char-
acters into a sequence of bytes in a specifi c Charset, while the java.nio.charset.Character-
Decoder class can reverse the procedure [API 2006]. Also see rule FIO11-J for more information.

This compliant solution [Hornig 2007] uses the CharsetEncoder and CharsetDecoder
classes to handle encoding conversions.

public static byte[] toCodePage_good(String charset, String string)
 throws IOException {

 Charset cs = Charset.forName(charset);
 CharsetEncoder coder = cs.newEncoder();
 ByteBuffer bytebuf = coder.encode(CharBuffer.wrap(string));
 byte[] bytes = new byte[bytebuf.limit()];
 bytebuf.get(bytes);
 return bytes;
}

public static String fromCodePage_good(String charset,byte[] bytes)
 throws CharacterCodingException {

 Charset cs = Charset.forName(charset);
 CharsetDecoder coder = cs.newDecoder();
 CharBuffer charbuf = coder.decode(ByteBuffer.wrap(bytes));
 return charbuf.toString();
}

70 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Noncompliant Code Example
This noncompliant code example [Hornig 2007] attempts to append a string to a text fi le in
the specifi ed encoding. This is erroneous because the String may contain unrepresentable
characters.

// Corrupts data on errors
public static void toFile_bad(String charset, String filename,

 String string) throws IOException {

 FileOutputStream stream = new FileOutputStream(filename, true);
 OutputStreamWriter writer = new OutputStreamWriter(stream, charset);
 writer.write(string, 0, string.length());
 writer.close();
}

Compliant Solution
This compliant solution [Hornig 2007] uses the CharsetEncoder class to perform the
required function.

public static void toFile_good(String filename, String string,
 String charset) throws IOException {

 Charset cs = Charset.forName(charset);
 CharsetEncoder coder = cs.newEncoder();
 FileOutputStream stream = new FileOutputStream(filename, true);
 OutputStreamWriter writer = new OutputStreamWriter(stream, coder);
 writer.write(string, 0, string.length());
 writer.close();
}

Use the FileInputStream and InputStreamReader objects to read back the data from
the fi le. The InputStreamReader accepts an optional CharsetDecoder argument, which
must be the same as that previously used for writing to the fi le.

Risk Assessment
Use of nonstandard methods for performing character-set-related conversions can lead to
loss of data.

Rule Severity Likelihood Remediation Cost Priority Level

IDS12-J low probable medium P4 L3

IDS13-J 71

Related Guidelines

MITRE CWE CWE-838. Inappropriate encoding for output context

CWE-116. Improper encoding or escaping of output

Bibliography

[API 2006] Class String

[Hornig 2007] Global Problem Areas: Character Encodings

■ IDS13-J. U se compatible encodings on both sides
of fi le or network I/O

Every Java platform has a default character encoding. The available encodings are listed
in the Supported Encodings document [Encodings 2006]. A conversion between characters
and sequences of bytes requires a character encoding to specify the details of the conver-
sion. Such conversions use the system default encoding in the absence of an explicitly
specifi ed encoding. When characters are converted into an array of bytes to be sent
as output, transmitted across some communication channel, input, and converted back
into characters, compatible encodings must be used on both sides of the conversation.
Disagreement over character encodings can cause data corruption.

According to the Java API [API 2006] for the String class:

The length of the new String is a function of the charset, and for that reason may
not be equal to the length of the byte array. The behavior of this constructor when
the given bytes are not valid in the given charset is unspecifi ed.

Binary data that is expected to be a valid string may be read and converted to a string by
exception FIO11-EX0.

Noncompliant Code Example
This noncompliant code example reads a byte array and converts it into a String using the
platform’s default character encoding. When the default encoding differs from the encoding
that was used to produce the byte array, the resulting String is likely to be incorrect.
Undefi ned behavior can occur when some of the input lacks a valid character representa-
tion in the default encoding.

FileInputStream fis = null;
try {
 fis = new FileInputStream("SomeFile");
 DataInputStream dis = new DataInputStream(fis);

72 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 byte[] data = new byte[1024];
 dis.readFully(data);
 String result = new String(data);
} catch (IOException x) {
 // handle error
} finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException x) {
 // Forward to handler
 }
 }
}

Compliant Solution
This compliant solution explicitly specifi es the intended character encoding in the second
argument to the String constructor.

FileInputStream fis = null;
try {
 fis = new FileInputStream("SomeFile");
 DataInputStream dis = new DataInputStream(fis);
 byte[] data = new byte[1024];
 dis.readFully(data);
 String encoding = "SomeEncoding"; // for example, "UTF-16LE"
 String result = new String(data, encoding);
} catch (IOException x) {
 // handle error
} finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException x) {
 // Forward to handler
 }
 }
}

Exceptions
IDS13-EX0: An explicit character encoding may be omitted on the receiving side when the
data is produced by a Java application that uses the same platform and default character

IDS13-J 73

encoding and is communicated over a secure communication channel (see MSC00-J for
more information).

Risk Assessment
Failure to specify the character encoding while performing fi le or network I/O can result in
corrupted data.

Rule Severity Likelihood Remediation Cost Priority Level

IDS13-J low unlikely medium P2 L3

Automated Detection Sound automated detection of this vulnerability is not feasible.

Bibliography
[Encodings 2006]

This page intentionally left blank

Index

A
Access control rules, 5 t
Accessibility

of overridden or hidden methods,
218–220

refl ection to increase, 585–592
Access permissions, creation of

fi les with appropriate,
478–481

Arguments, method, validation of,
210–213

Arithmetic operations, avoiding
bitwise and, 114–119

Arrays
comparison of contents of, 90–91
fi lling of, 509–511

ASCII subset, for fi le and path
names, 46–48

Assertions
side-effecting expressions in,

103–104
for validation of method

arguments, 213–215
Atomic classes, 17–18
Atomicity

of calls to chained methods,
323–328

of compound operations on shared
variables, 309–317

of group of calls to independently
atomic methods, 317–323

when reading and writing 64-bit
values, 328–330

Authentication, 626
Autoboxed values, ensuring

intended type of, 97–99
await() methods, 401–404

B
Background threads, in class

initialization, 454–459
BigDecimal objects, from

fl oating-point literals, 138–139
BigInteger, 108–110, 154
“Billion laughs attack,” 7
Binary data, as character data,

511–513
Bitwise negation, 311
Bitwise operations, avoiding

arithmetic and, 114–119
Blocking operations

external processes and, with input
and output streams,
500–504

lock holding and, 370–375
termination of threads performing,

404–412
Bounded thread pools, interdepend-

ent task execution in, 420–427
Boxed primitives, comparing values

of, 91–97
Buffered wrappers, 496–500

Buffer exposure, 493–496
Bytecode manipulations, 285
Bytecode verifi cation, disabling of,

617–618

C
Canonicalization, 3

before validation, 36–41
Capabilities, leaking, 6–7
Chained methods, atomicity of calls

to, 323–328
Character(s)

binary data as, 511–513
multibyte, 60–61
supplementary, 61–62

Character splitting, between data
structures, 60–66

Checked exceptions
escaping from fi nally block,

277–280
ignoring or suppressing, 256–263
undeclared, throwing of, 280–285

Class(es)
atomic, 17–18
background threads in initializa-

tion of, 454–459
comparison of, vs. comparison of

class names, 194–196
defi ning equals() method, and

hashCode() method,
238–240

693

694 Index

Class(es), continued
deprecated, 215–216
evolution of, maintaining

serialization during, 528–531
extensibility of, 152–159
initialization cycles, prevention of,

75–79
loader, 21
loading of trusted after loading by

untrusted code, 579–582
mutable

defensive copying for, 180–185
providing copy functionality to,

175–180
nested, exposure of outer class

members from within,
192–194

obsolete, 215–216
refl ection to increase accessibility

of, 585–592
sanitization of, 155–156
sensitive, copying of, 189–192
serialization of instances of inner,

549–551
superclasses

methods declared in, 226–229
preserving subclass dependen-

cies when changing,
162–169

synchronization of, with private
fi nal lock objects when
interacting with untrusted
code, 332–338

Cleanup, at termination, 519–525
Code signing

of unprivileged operations, 604–606
Collection modifi cation, during

iteration, 653–657
compareTo() method, 241–243
Comparison operations, key

immutability in, 243–248
Compound operations, on

shared variables, atomicity of,
309–317

Concurrency, 11–18
Concurrency-related denial of

service, 8–9
Confi dentiality, 626
Consistency, 234–235
Constructors

exceptions thrown by, 199–207
overridable methods called by,

220–222

Copy functionality
for mutable classes, 175–180

defensive, 180–185
for mutable inputs and internal

components, defensive,
185–189

for sensitive classes, 189–192

D
DCL00-J, 75–79
DCL01-J, 79–81
DCL02-J, 81–83
Deadlock, avoidance of, by

requesting and releasing locks
in same order, 355–365

Defensive copying
for mutable classes, 180–185
of mutable inputs and mutable

internal components,
185–189

of private mutable components
during deserialization,
551–552

Degradation of service, in traffi c
bursts, 417–420

Denial-of-service
concurrency-related, 8–9
precursors to, 9
through resource exhaustion,

7–8
Denormalized numbers

avoiding use of, 125–128
detecting, 125–126
print representation of, 126

Dependencies, in subclasses,
preservation of, 162–169

Deployment, application, remote
monitoring vs., 618–624

Deprecated classes, 215–216
Deprecated methods, 215–216
Dereferencing, of null pointers,

88–90
Deserialization

defensive copying of private
mutable components during,
551–552

minimization of privileges before,
from privileged context,
558–561

Device fi les, 469
Directories, shared, 468–478
Distrustful decomposition, 2
Divide-by-zero errors, 119–121

Division operations, divide-by-zero
errors in, 119–121

Double-checked locking idiom,
375–381

E
Empty infi nite loop, 630–632
Encodings

compatible, on both sides of I/O,
71–73

lossless conversion of string data
between, 68–71

Environment variables, trusting
values of, 610–613

ENV00-J, 604–606
ENV01-J, 606–610
ENV02-J, 610–613
ENV03-J, 613–616
ENV04-J, 617–618
ENV05-J, 618–624
Equality operators, in comparison of

boxed primitive values, 91–97
equals() method, 238–240
Equatable objects, equating,

229–238
ERR00-J, 256–299
ERR01-J, 9, 263–268
ERR02-J, 268–270
ERR03-J, 270–274
ERR04-J, 275–277
ERR06-J, 280–285
ERR07-J, 285–288
ERR09-J, 9, 296–299
Errors, fi le-related, detection and

handling of, 481–483
Exceptions, 256–299

checked, 277–280
throwing of undeclared,

280–285
ignoring checked, 256–263
leaks from, 264–265
NullPointer, catching of, 288–296
prevention of, while logging,

268–270
rethrowing, 265
sanitized, 265–266
sensitive information exposed by,

263–268
suppression of checked, 256–263
thrown by constructors, 199–207
wrapping, 265

Executor framework, 18
EXP00-J, 86–88

Index 695

EXP01-J, 9, 88–90
EXP02-J, 90–91
EXP03-J, 91–97
EXP04-J, 97–99
EXP05-J, 100–103
EXP06-J, 103–104
Explicit locking, 18
Expressions, 85–104
Extensibility, limitation of, with

invariants to trusted subclasses,
152–159

Externalizable objects, preventing
overwriting of, 566–567

F
File names, ASCII subset for,

46–48
Files

with appropriate access
permissions, creation of,
478–481

device, 469
errors, detection and handling of,

481–483
links, 469
shared access, 470
in shared directories, 468–478
temporary, removal of, before

termination, 483–487
Filtering data, 4 f
Finalizer attack, 200–203
Finalizers, 248–254
Finally block

abrupt exit from, 275–277
checked exceptions escaping from,

277–280
FIO00-J, 9, 468–478
FIO01-J, 478–481
FIO02-J, 481–483
FIO03-J, 8, 483–487
FIO04-J, 8, 487–493
FIO05-J, 493–496
FIO06-J, 496–500
FIO07-J, 8, 500–504
FIO08-J, 504–507
FIO09-J, 507–509
FIO10-J, 509–511
FIO11-J, 511–513
FIO12-J, 513–516
FIO13-J, 516–519
FIO14-J, 8, 519–525
Floating-point inputs, exceptional

values in, 134–136

Floating-point literals, BigDecimal
objects from, 138–139

Floating-point numbers
conversion of, to integers, 142,

146–149
precision with, 122–125
strictfp modifi er for calculation

consistency with, 128–132
Floating-point values, string

representation of, 139–141
Floating-point variables, as loop

counters, 136–138
Format strings, excluding user input

from, 48–50
For statement, enhanced, 81–83

G
Generic raw types, 169–175
getClass() method, 343–347
getPermissions() method,

597–598

H
Hard coding, of sensitive data,

635–638
hashCode() method, 238–240
Heap memory, 11
Heap space exhaustion, 647–653
Hidden methods, accessibility of,

218–220

I
Identifi ers, public, reuse of,

79–81
IDS00-J, 9, 24–34
IDS01-J, 34–36
IDS02-J, 36–41
IDS03-J, 41–43
IDS04-J, 8, 43–45
IDS05-J, 46–48
IDS06-J, 9, 48–50
IDS07-J, 50–54
IDS08-J, 9, 54–59
IDS09-J, 59–60
IDS10-J, 60–66
IDS11-J, 66–68
IDS12-J, 68–71
IDS13-J, 71–73
Immutable objects, ensuring

visibility of, 306–309
Implementation-defi ned invariants,

553–558
Infi nite loop, empty, 630–632

Initialization
background threads in, 454–459
lazy, 375–376
partial, 199

Initialization cycles, class,
prevention of, 75–79

Injection attacks, 2–4, 2 f
Inner classes, serialization of

instances of, 549–551
Instance lock, for shared static data,

352–354
Instantiations, multiple, of singleton

objects, 657–668
Integer narrowing, 141–142
Integer overfl ow, detection or

prevention of, 106–114
Integers, outside 0-255 range,

507–509
Integer types, unsigned data range

and, 121–122
Integrity protection, 626
Interruptibility, of tasks submitted to

thread pool, 427–430
Invariants

implementation-defi ned,
serialized form for,
553–558

to trusted subclasses, limitation of
extensibility with,
152–159

Iteration, modifi cation of underlying
collection vs., 653–657

K
Keys, in comparison operations,

immutability of, 243–248
Keywords, volatile, 14–15,

14f, 15 t

L
Lazy initialization, 375–376
LCK00-J, 8, 332–338
LCK01-J, 8
LCK02-J, 343–347
LCK03-J, 347–348
LCK04-J, 348–350
LCK05-J, 351–352
LCK06-J, 352–354
LCK07-J, 9, 355–365
LCK08-J, 9, 365–370
LCK09-J, 9, 370–375
LCK10-J, 375–381
LCK11-J, 9, 381–386

696 Index

Leaking
across trust boundary, by

privileged blocks, 570–573
capabilities, 6–7
from exceptions, 264–265
memory, 638–647
of sensitive data, 4–6
during serialization, 563–565

Least privilege, principle of, 18–19
Links, fi le, 469
Little-endian data, methods to read

and write, 513–516
Locale-sensitivity, 59–60
Locking

actively held, release of, on
exceptional conditions,
365–370

blocking operations and,
370–375

client-side, with noncommittal
classes, 381–386

deadlock avoidance, by requesting
and releasing locks in same
order, 355–365

double-checked idiom, 375–381
explicit, 18
instance, to protect shared static

data, 352–354
in synchronization of classes

interacting with untrusted
code, 332–338

synchronization on, of high-level
concurrency objects, 347–348

Logging
prevention of exceptions during,

268–270
of sensitive information outside

trust boundary, 516–519
of unsanitized user input, 41–43

Logical negation, 310
Loop, empty infi nite, 630–632
Loop counters, fl oating-point

variables as, 136–138
Loop variables, 81–83

M
Memory

concurrency, visibility and, 11–18
leakage of, 638–647

Methods
accessibility of, 218–220
atomic, atomicity of group of calls

to, 317–323

await(), inside loop, 401–404
chained, atomicity of calls to,

323–328
compareTo(), 241–243
declaration of hidden, in

superclass of superinterface,
226–229

deprecated, 215–216
duplicate(), 493–496
equals(), with hashCode(),

238–240
extensibility of, 152–159
failure of, restoring prior object

state after, 270–274
hidden, 218–220
ignoring values returned by,

86–88
int for return value capture,

504–507
native, defi ning wrappers around,

599–601
obsolete, 215–216
overridable

constructor calling of, 220–222
invoking

in clone(), 223–225
from readObject(), 562–563

overridden, 218–220
to read and write little-endian

data, 513–516
refl ection to increase accessibility

of, 585–592
security check, as private or fi nal,

217–218
serialization, proper signatures for,

531–534
ThreadGroup methods, invocation

of, 390–394
thread-safe, 442–445
validation of arguments, 210–213

assertions for, 213–215
wait(), inside loop, 401–404
wrap(), 493–496
wrapper, accessible, private data

members and, 159–162
MET00-J, 210–213
MET01-J, 213–215
MET02-J, 215–216
MET03-J, 217–218
MET04-J, 218–220
MET05-J, 220–222
MET06-J, 223–225
MET07-J, 226–229

MET08-J, 229–238
MET09-J, 238–240
MET10-J, 241–243
MET11-J, 243–248
MET12-J, 8, 248–254
Modifi er, strictfp, for fl oating-

point calculation consistency,
128–132

Modulo operations, divide-by-zero
operations in, 119–121

MSC00-J, 626–630
MSC01-J, 630–632
MSC02-J, 632–634
MSC03-J, 635–638
MSC04-J, 638–647
MSC05-J, 8, 647–653
MSC06-J, 653–657
MSC07-J, 657–668
Multibyte characters, 60–61
Mutable classes

defensive copying for,
180–185

providing copy functionality to,
175–180

N
Names

class, comparison of classes
without comparison of class
names, 194–196

fi le, ASCII subset for, 46–48
path

ASCII subset for, 46–48
canonicalization of, before

validation, 36–41
NaN, prevention of comparisons

with, 132–134
Narrowing, integer, 141–142
Negation

bitwise, 311
logical, 310

Nested class, exposure of sensitive
members of outer class from
within, 192–194

Nonfi nal variables, public static,
197–199

Nongeneric raw types, 169–175
Normalization, 3

before validation, 34–36
Not-a-number, prevention of

comparisons with,
132–134

Null object pattern, 291–292

Index 697

NullPointerException, catching,
288–296

Null pointers, dereferencing of,
88–90

Numbers
denormalized, 125–128

avoiding use of, 125–128
detecting, 125–126
print representation of, 126

fl oating-point
conversion of, to integers, 142,

146–149
precision with, 122–125
strictfp modifi er for

calculation consistency
with, 128–132

Numeric types, conversion to narrower
types, data loss and, 141–146

NUM00-J, 106–114
NUM01-J, 114–119
NUM02-J, 9, 119–121
NUM03-J, 121–122
NUM04-J, 122–125
NUM05-J, 125–128
NUM06-J, 128–132
NUM07-J, 132–134
NUM08-J, 134–136
NUM09-J, 136–138
NUM10-J, 138–139
NUM11-J, 139–141
NUM12-J, 141–146
NUM13-J, 146–149

O
Objects

BigDecimal, from fl oating-point
literals, 138–139

construction of, this reference
escape during, 445–454

equatable, equating, 229–238
externalizable, preventing

overwriting of, 566–567
high-level concurrency, synchro-

nization on intrinsic locks of,
347–348

partially-initalized, 199
publishing of, 459–466

restoring prior state of, on method
failure, 270–274

returned by getClass() method,
synchronization of, 343–347

reused, synchronization of,
339–342

singleton, multiple instantiations
of, 657–668

synchronization of reused,
339–342

visibility of shared references to
immutable, 306–309

OBJ00-J, 152–159
OBJ01-J, 159–162
OBJ02-J, 162–169
OBJ03-J, 169–175
OBJ04-J, 175–180
OBJ05-J, 180–185
OBJ06-J, 185–189
OBJ07-J, 189–192
OBJ08-J, 192–194
OBJ09-J, 194–196
OBJ10-J, 197–199
OBJ11-J, 199–207
Obsolete classes, 215–216
Obsolete methods, 215–216
Overfl ow, integer, detection or

prevention of, 106–114
Overridable methods

constructor calling of, 220–222
invoking

in clone() method, 223–225
from readObject() method,

562–563
Overridden methods, accessibility of,

218–220

P
Partially-initalized objects, 199

publishing of, 459–466
Path names

ASCII subset for, 46–48
canonicalization of, before

validation, 36–41
Permissions, dangerous

combinations of, 613–616
Pointers, null, dereferencing of,

88–90
Polymorphism, disallowing, 158
Precision

fl oating-point numbers and,
122–125

loss of, in conversion of primitive
integers to fl oating point,
146–149

Primitives, boxed, comparing values
of, 91–97

Primitive variables, shared, ensuring
visibility with, 302–306

Principle of least privilege, 18–19
Privacy protection, 626
Private data members, 159–162
Privilege

minimization of, before
deserialization, 558–561

principle of least, 18–19
separation, 2

Public identifi ers, reuse of, 79–81
Public static nonfi nal variables,

197–199

R
Random number generation, strong,

632–634
Raw types, mixing of generic and

nongeneric, 169–175
read() method, for array fi lling,

509–511
readObject() method, invoking

overridable methods from,
562–563

Reference returning, defensive
copying of mutable classes for,
180–185

Refl ection, 585–592
Regex, sanitization of untrusted data

passed to, 54–59
Remote monitoring, deployment vs.,

618–624
Resource closure, 487–493
Resource exhaustion, in denial-of-

service, 7–8
RuntimeException, throwing of,

285–288
Runtime.exec() method, 50–54

S
Sanitization, 3

of classes, 155–156
of exceptions, 265–266
of untrusted data passed across

trust boundary, 24–34
of untrusted data passed to regex,

54–59
SEC00-J, 570–573
SEC01-J, 574–576
SEC02-J, 577–578
SEC03-J, 579–582
SEC04-J, 582–585
SEC05-J, 585–592
SEC06-J, 592–597
SEC07-J, 597–598

698 Index

SEC08-J, 599–601
Security checks

protecting sensitive operations
with, 582–585

untrusted sources and,
577–578

Security manager, 19–21, 154–155
serialization bypassing, 546–549

Sensitive classes, copying of,
189–192

Sensitive data
hard coding of, 635–638
leaking of, 4–6
logging of, outside trust boundary,

516–519
serialization of unencrypted,

541–546
signing and sealing of, before

sending across trust
boundary, 534–541

Sensitive information, exposure by,
by exceptions, 263–268

Serialization, 10–11
bypassing security manager,

546–549
compatibility during class

evolution, 528–531
defensive copying of private

mutable components during
de-, 551–552

of implementation-defi ned
invariants, 553–558

of instances of inner, 549–551
memory and resource leaks

during, 563–565
proper signatures for, 531–534
of unencrypted sensitive data,

541–546
SER00-J, 528–531
SER01-J, 531–534
SER02-J, 534–541
SER03-J, 541–546
SER04-J, 546–549
SER05-J, 549–551
SER06-J, 551–552
SER07-J, 553–558
SER08-J, 558–561
SER09-J, 562–563
SER10-J, 8, 563–565
SER11-J, 566–567
Shared directories, 468–478
Shared fi le access, 470

Shared memory, 11
Shared variables, compound

operations on, atomicity of,
309–317

Side-effecting expressions, in
assertions, 103–104

Signature verifi cation, from
URLClassLoader and java.
util.jar, 592–597

Singleton objects, multiple
instantiations of, 657–668

Socket, SSLSocket vs., for secure
data exchange, 626–630

SQL injection, 25–27
SSLSocket, Socket vs., for

secure data exchange, 626–630
Static fi elds, synchronization of

access to, 351–352
Static nonfi nal variables, public,

197–199
strictfp modifi er, for fl oating-point

calculation consistency,
128–132

String representation, of fl oating-
point values, 139–141

Subclass(es)
dependencies, preservation of,

162–169
extensibility limitation with

invariants to trusted,
152–159

Superclasses
fi nalizer, 250
methods declared in, 226–229
preserving subclass dependencies

when changing, 162–169
Supplementary characters, 61–62
Symmetry, 230–231
Synchronization, 16–17

of access to static fi elds modifi ed
by untrusted code, 351–352

of classes that interact with
untrusted code, private fi nal
lock objects for, 332–338

on class object returned by
getClass() method,
343–347

on collection view, 348–350
on intrinsic locks of high-level

concurrency objects,
347–348

of reused objects, 339–342

T
Tainted variables, in privileged

blocks, 574–576
Temporary fi les, removal of, before

termination, 483–487
Termination

cleanup at, 519–525
temporary fi les and, removal of,

483–487
of threads by Thread.stop()

method, 412–415
by untrusted code, 296–299

THI00-J, 388–390
THI01-J, 390–394
THI02-J, 394–401
THI03-J, 401–404
THI04-J, 9, 404–412
THI05-J, 412–415
this reference, escape of, in object

construction, 445–454
ThreadGroup methods, 390–394
ThreadLocal variables, 435–439
Thread pools

bounded, interdependent task
execution in, 420–427

for graceful degradation of service
in traffi c bursts, 417–420

interruptibility of tasks submitted
to, 427–430

silent failure of tasks in,
430–434

ThreadLocal variable
reinitialization in, 435–439

Thread.run() method, 388–390
Thread-safe methods, 442–445
Thread.stop() method, 412–415
TPS00-J, 8, 417–420
TPS01-J, 8, 420–427
TPS02-J, 9, 427–430
TPS03-J, 430–434
TPS04-J, 435–439
Traffi c bursts, thread pools for

graceful degradation of service
for, 417–420

Transitivity, 232–233
Trust, 2
Trust boundary

leakage of sensitive data across,
by privileged blocks,
570–573

logging of sensitive information
outside, 516–519

Index 699

sanitization of untrusted data
passed across, 24–34

signing and sealing sensitive
objects before sending across,
534–541

TSM00-J, 442–445
TSM01-J, 445–454
TSM02-J, 9, 454–459
TSM03-J, 459–466
Two-argument Arrays.equals()

method, 90–91

U
Unsigned data, integer types and

range of, 121–122
Untrusted code

loading of trusted classes after
loading by, 579–582

termination by, 296–299
URLClassLoader, 592–597

V
Validation

canonicalization before, 36–41
defi nition of, 3
elimination of noncharacter

code points before, 66–68
of method arguments,

210–213
assertions for, 213–215

normalization before, 34–36

Values
autoboxed, ensuring intended

type of, 97–99
64-bit, atomicity when reading

and writing, 328–330
of boxed primitives, comparing,

91–97
exceptional, in fl oating-point

inputs, 134–136
fl oating-point, string

representation of, 139–141
returned by methods, ignoring,

86–88
Variables

in expression, writing more than
once to, 100–103

fl oating-point, as loop counters,
136–138

public static nonfi nal, 197–199
shared, compound operations on,

atomicity of, 309–317
shared primitive, ensuring

visibility with, 302–306
tainted, in privileged blocks,

574–576
ThreadLocal, reinitialization of, in

thread pools, 435–439
trusting values of environment,

610–613
Verifi cation, bytecode, disabling of,

617–618

Visibility, 11–18
of shared references to immutable

objects, 306–309
when accessing shared primitive

variables, 302–306
VNA00-J, 302–306
VNA01-J, 306–309
VNA02-J, 309–317
VNA03-J, 8, 317–323
VNA04-J, 323–328
VNA05-J, 328–330
Volatile, 14–15, 14 f, 15 t

W
wait() methods, 401–404
Wrapper methods, accessible,

159–162
Wrappers, defi ning of, around native

methods, 599–601
write() method, for integer

output outside of 0-255,
507–509

X
XML external entity attacks, 31–34
XML injection, 28–31

Z
Zeros, division by, 119–121
“Zip bombs,” 7
ZipInputStream, 43–45

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 2 Input Validation and Data Sanitization (IDS)
	Rules
	Risk Assessment Summary
	IDS00-J. Sanitize untrusted data passed across a trust boundary
	IDS01-J. Normalize strings before validating them
	IDS02-J. Canonicalize path names before validating them
	IDS03-J. Do not log unsanitized user input
	IDS04-J. Limit the size of files passed to ZipInputStream
	IDS05-J. Use a subset of ASCII for file and path names
	IDS06-J. Exclude user input from format strings
	IDS07-J. Do not pass untrusted, unsanitized data to the Runtime.exec() method
	IDS08-J. Sanitize untrusted data passed to a regex
	IDS09-J. Do not use locale-dependent methods on locale-dependent data without specifying the appropriate locale
	IDS10-J. Do not split characters between two data structures
	IDS11-J. Eliminate noncharacter code points before validation
	IDS12-J. Perform lossless conversion of String data between differing character encodings
	IDS13-J. Use compatible encodings on both sides of file or network I/O

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

