
Shawn Welch

iOS 5
Core Frameworks

DevelOp and DeSign
Working with graphics, location, iCloud, and more

iOS 5
Core Frameworks

DevelOp and DeSign

Working with graphics, location, iCloud, and more

Shawn Welch

iOS 5 Core Frameworks: Develop and Design
Shawn Welch

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to errata@peachpit.com
Peachpit Press is a division of Pearson Education
Copyright © 2012 by Shawn Welch

Editor: Nancy Peterson
Production editor: Myrna Vladic
Development editor: Margaret S. Anderson/Stellarvisions
Copyeditor and proofreader: Jan B. Seymour
Technical editor: Scott Fisher
Cover design: Aren Howell Straiger
Cover production: Jaime Brenner
Interior design: Mimi Heft
Compositor: David Van Ness
Indexer: Jack Lewis

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
iOS is a trademark of Apple Inc., registered in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit Press was aware of a trademark
claim, the designations appear as requested by the owner of the trademark. All other product names and
services identified throughout this book are used in editorial fashion only and for the benefit of such
companies with no intention of infringement of the trademark. No such use, or the use of any trade name,
is intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-80350-4
ISBN 10: 0-321-80350-7

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

To my brothers, Eric, Danny, and Kyle Welch.

Thank you for keeping me humble and
reminding me of the humor in life.

iv iOS 5 COre FramewOrkS

Acknowledgments

A book is one of those things that involves so many people besides the author
listed on the cover. This book would not exist without the hard work of all those
individuals. To all of the fine folks at Peachpit Press, thank you for your time and
energy in this project.

Margaret Anderson, Nancy Peterson, and Jan Seymour read through my early
writings and helped me turn them into the book you’re reading today. Without their
guidance and expertise in communication, this book would not have been possible.
I am truly blessed to have worked with such a solid, professional, and savvy team.
I hope to work again with all of them in the future. Scott “Fish” Fisher, my tech
editor, played an equally important role of double-checking my code samples to
be sure they were accurate, simple, and to the point. Thanks, Fish.

For people not directly involved in this book, I want to thank the folks at
Flipboard for their help answering questions. Also, thanks to Charles Ying for
reading some early drafts and serving as a test audience. You guys are a top notch
team and I love your work.

As a side note, I wouldn’t be where I am today without the teaching efforts of
Evan Doll and Alan Cannistraro. Thank you, guys.

Finally, I would like to thank everyone over at Kelby Media Group and those
who use my apps. iOS is a platform that is ever changing. For this reason I am
constantly learning and applying knowledge to new apps. Kelby Media Group,
specifically Scott Kelby and Dave Moser, have offered me so many opportunities
to continue to work with their team and perfect my craft. To the fine users of
NAPP who download my apps, thank you for your feedback. Without users, an
app developer’s life is pretty boring.

— Shawn Welch
@shawnwelch

Contents v

Acknowledgments . iv

Welcome to iOS Core Frameworks . xii

Chapter 1 iOS FRameWORkS . 2
Before We Begin . 4
Prerequisites . 4

My Goals for This Book . 6

iOS Frameworks Crash Course . 8

Understanding the Impact of a Multicore Processor 11
The Need for Concurrency . 12

Operation Queues vs. Dispatch Queues . 13

Blocks . 14

Using Blocks in iOS Frameworks . 16

The iOS 5 Top Ten Technologies . 18

Wrapping Up . 20

Part I: YOuR DaTa aND The CLOuD

Chapter 2 CORe DaTa . 22
Getting Started with Core Data . 24
What Is Core Data? . 24

Core Data Stack . 25

Setting Up Core Data in Xcode . 34
Creating a Managed Object Model . 35

Creating a New Persistent Store Coordinator . 37

Adding New Persistent Stores . 38

Creating a New Managed Object Context . 39

Interacting with Core Data . 41
Adding New Objects . 41

Fetching and Modifying Objects . 42

Deleting Objects . 44

Undo, Redo, Rollback, and Reset . 45

Wrapping Up . 49

contents

vi iOS 5 COre FramewOrkS

Chapter 3 iCLOuD . 50
Getting Started With iCloud . 52
How Does iCloud Work? . 53

Before You Begin . 56

iCloud Storage Containers . 60

Special Considerations when Working with iCloud 61

Key-Value Storage . 63
Using the Ubiquitous Key-Value Store . 64

Adding and Removing Objects . 65

Responding to Change Notifications . 67

Syncing Core Data . 70
Determining if iCloud Is Available . 71

Setting Up iCloud Syncing Persistent Store . 72

Core Data Persistent Store Change Notifications . 74

iCloud Document Storage . 76

Wrapping Up . 78

Part II: LOCaTiON aND aCCOuNT SeRviCeS

Chapter 4 CORe LOCaTiON aND maP kiT . 80
Getting Started with Core Location and Map Kit . 82
How Location Is Determined . 83

Location Permissions . 86

The Core Location Manager . 91
Standard Location Service . 91

Significant Location Change Monitoring . 94

Heading Monitoring . 96

Region Monitoring . 98

Responding to New Information from the
Core Location Manager . 100

Forward and Reverse Geocoding . 102
Geocoding Benefits . 102

Geocoding Drawbacks . 103

Forward Geocoding . 103

Reverse Geocoding . 106

Contents vii

Working with Map Kit . 108
Tracking Location with Map Kit . 108

Wrapping Up . 110

Chapter 5 SYSTem aCCOuNTS aND NaTive TWiTTeR aPis 112
Getting Started with System Accounts and Twitter 114
Understanding OAuth Services . 115

The Accounts Workflow . 116

Using the Accounts Framework . 118
New Apps and the Accounts Framework . 118

Accessing Accounts in the Accounts Framework . 121

Migrating Users from Existing Apps into the
Accounts Framework . 122

Special Considerations . 125

Easy Twitter: Tweet Compose View Controller . 128
Using the Tweet Compose View Controller . 128

Interacting with the Twitter API . 132
Creating a TWRequest Object . 132

Performing a TWRequest . 134

Handling a TWRequest Response . 136

Wrapping Up . 138

Part III: GRaPhiCS, imaGeS, aND aNimaTiON

Chapter 6 CORe GRaPhiCS . 140
Getting Started with Core Graphics . 142
Core Graphics and Quartz 2D . 144

Points vs. Pixels . 145

The Graphics Context . 147

Why Use Core Graphics? . 148

Understanding Core Graphics . 149
Drawing Custom UIViews . 149

Graphics Context Stack . 151

viii iOS 5 COre FramewOrkS

Paths, Gradients, Text, and Images . 155
Paths . 155

Gradients . 158

Text . 159

Images . 160

Wrapping Up . 161

Chapter 7 CORe imaGe . 162
Getting Started with Core Image . 164
Why Use Core Image? . 165

Understanding the Core Image Framework . 168
Core Image Still Images and Video Frames . 170

Core Image Filters . 173

Core Image Context . 178

Analyzing Images . 182

Don’t Block the Main Thread! . 184

Example: Core Image Editor . 187

Wrapping Up . 191

Chapter 8 CORe aNimaTiON . 192
Getting Started with Core Animation . 194

Core Animation Using UIKit . 197
UIKit Animations with Animation Contexts . 197

UIKit Animations with Animation Blocks . 199

Understanding Custom Core Animation Effects 201
Core Animation Layer (CALayer) . 201

Implicit vs. Explicit Animations . 202

Core Animation Object (CAAnimation) . 203

My First Custom Animation . 204

Core Animation Examples . 206
Keyframe Animations . 206

3D Transforms . 209

Particle Emitters . 213

Wrapping Up . 217

Contents ix

Part IV: muLTimeDia: auDiO aND viDeO

Chapter 9 CORe auDiO . 220
Multimedia Frameworks . 222

Getting Started with Audio . 224
Why Is Audio Important? . 225

Using the iPod Music Library . 227
Media Picker Controller . 227

Music Player Controller . 229

Music Player Notifications . 230

Using Audio from Other Sources . 232
AV Foundation Audio Session . 233

AV Audio Player . 237

Wrapping Up . 241

Chapter 10 av FOuNDaTiON . 242
Getting Started with AV Foundation . 244
Why Use AV Foundation? . 244

AV Foundation and Other Media-based Frameworks 246

Using Out-of-the-Box Solutions . 248
UIImagePickerController . 248

Using MPMoviePlayerController . 256

Creating a Custom Media Capture Solution . 262
The AVCaptureSession . 262

The AVCaptureVideoPreviewLayer . 262

Setting Up a Custom Image Capture . 263

Wrapping Up . 271

x iOS 5 COre FramewOrkS

Part V: iOS 5 NeWSSTaND aPPS

Chapter 11 NeWSSTaND kiT . 274
Getting Started with Newsstand Kit . 276
Setting Up a Newsstand App . 277

Understanding Newsstand Apps . 282
Newsstand Kit Library and Issues . 282

Downloading Newsstand Kit Content . 284
Starting a New Download . 285

Handling Download Progress and Finished Downloads 287

Updating the Appearance of a Newsstand App
to Reflect New Content . 290

Notifying Newsstand Apps . 291
Using Apple Push Notification Service . 291

Registering for Newsstand Update Notifications . 293

Newsstand Push Notification Format . 294

Responding to Remote Notifications . 295

Special Considerations with Newsstand Apps . 296
Newsstand Apps Waking Up from Background . 296

Reconnecting Abandoned Asset Downloads . 297

Wrapping Up . 299

Index . 300

i

welcome to
ios 5 core
FrAmeworks

xii iOS 5 COre FramewOrkS

welCOme tO ios 5 core FrAmeworks

In June 2007, Steve Jobs introduced the iPhone and changed our thinking about what

is and should be possible with mobile devices. A year later Apple offered this uniquely

powerful operating system to third-party app developers. Each release has taken it further

and in the summer of 2010 it was re-branded as iOS. With iOS 5, Apple has integrated

technologies previously reserved for desktop computers. With that in mind, here are a

few things you should be familiar with before we get started.

the tOOlS

Because working with iOS apps requires a specific set of tools and resources, you must have access to the follow-
ing resources before you can implement the examples presented in this book.

ios Developer
registration

Some of the new technol-
ogies introduced in ioS 5
require testing on actual
ioS hardware. Before you
can install and run apps
on ioS hardware, however,
you must be a registered
developer at developer.
apple.com and you must
pay the $99 registration
fee. For more information,
visit developer.apple.com.

XCoDe

Free to registered ioS
developers, Xcode is
Apple’s primary IDE
(Integrated Development
Environment). When you
download and install
Xcode, that install process
will also include the
ioS 5.0 SDK. these will
be your primary develop-
ment tools when working
with frameworks in ioS 5.

ios DeviCe

It might go without say-
ing, but because certain
examples presented in
this book require ioS
hardware, you should
have access to at least
one ioS device for testing
purposes. Further, when
working with iCloud, it
might be necessary to
have access to more than
one device since iCloud
syncing is designed to
sync content between
devices.

iClouD

Chapter 3 will focus pri-
marily on iCloud, a cloud-
based technology that
services your apps with
automatic synchonization
and management of data
between devices. Before
you can use iCloud in your
apps, however, you must
have an iCloud enabled
Apple ID. iCloud is free for
all users (5 GB of storage)
and registration can be
completed at icloud.com.

the COnCePtS

iOS 5 Core Frameworks will depend heavily on the following concepts throughout
examples and teaching narratives. While some explanation is given in the text, it
would be helpful to familiarize yourself with these concepts beforehand.

MoDel-view-
Controller

As with any software
development, it’s a good
idea to be familiar with
the Model-View-Controller
(MVC) design pattern
before you get started.
this book will teach
you about various core
frameworks while assum-
ing an understanding of
this paradigm—especially
when dealing with frame-
works such as Core Data,
Core Graphics, and even
Newsstand Kit.

granD Central
DispatCh

Grand Central Dispatch
(GCD) is a multi-tasking
library designed to take
advantage of multicore
processors. In ioS 5, most
new frameworks will
use GCD because of the
optimizations it provides.
We’ll cover some of the
basics as needed by this
book, however, a familiar-
ity with the concepts and
challenges of GCD will be
helpful.

apple push
notifiCation
serviCe

Apple Push Notification
Service (APNS) is used
to send notifications to
devices so that applica-
tions can perform specific
actions, even if they’re not
running when the noti-
fication is received. We
will use APNS to deliver
content update notifica-
tions to Newsstand Kit
apps. While not covered
in this book, a tutorial
on APNS is available on
ioSCoreFrameworks.com.

4

core locAtion
AND mAp kit

81

One of the obvious benefits of iOS is that

it’s a mobile platform. iOS devices move

throughout the world; calling upon a device’s location

while utilizing Core Location and Map Kit helps you provide a

better context for the data in your app. For example, if a user is in

San Francisco and does a search for “Bart,” they’re probably look-

ing for information on the Bay Area Rapid Transit system (aka the

BART), whereas in other parts of the world that same search may

be looking for a pop culture reference. By pulling a user’s location,

you make the data in your app more relevant to your users. New

to iOS 5 are enhancements to location services including forward

and reverse geocoding, placemarks, and regions.

82 ChaPter 4 Core loCation anD Map kit

getting stArted wIth core
locAtion and mAp kit

Core Location is a set of Objective-C classes built into the Core Services layer of iOS.
Core Location was designed to simplify the process of working with location by
providing a set of APIs that facilitate location monitoring and various location-data
conversions (such as latitude/longitude coordinates to human readable addresses
and vice versa). The Core Location framework is data oriented and can be used to
obtain relevant location information as needed for check-in services, user tracking,
nearby searches, and more.

The Core Location Manager (CLLocationManager) manages this flow of data,
and controls your app’s interaction with the physical hardware used to determine
location. The location manager passes new location data that is retrieved from
hardware to its delegate and then encapsulates it in a CLLocation object. This
object contains a determination of the latitude and longitude coordinates of the
device as well as information about the accuracy of the determination. The loca-
tion manager also calculates speed and heading (based on the observed change in
location), and likewise encapsulates it in the CLLocation object.

Unlike the Core Location framework, the Map Kit framework is visually ori-
ented—it communicates location data back to a user through maps. Using Map Kit,
you can seamlessly embed various map views into your app using Google Maps data
as a service provider. Map Kit also has some very handy (and entirely automated)
APIs designed for visually based real-time user tracking on a map.

When used in combination, Core Location and Map Kit allow you to create
feature-rich, location-aware apps for all iOS devices.

Note: as mentioned by the apple terms of Service agreement and the apple
iOS developer agreement, because the map kit framework uses Google Ser-
vices, the use of this framework and data holds you liable to the Google maps/

Google earth aPI terms of service. For more information about these terms
of service, visit http://code.google.com/apis/maps/iphone/terms.html.

while this will not be an issue for most apps, it’s something you should be
aware of when making your apps.

http://code.google.com/apis/maps/iphone/terms.html

getting starteD with Core loCation anD Map kit 83

linking core locAtion and mAp kit FrAmeworks

Before you can make your app location aware, you must first link the Core Location framework to your
project. If you plan to use map services (for example, to show locations on a map), you should also link
the Map Kit framework. these frameworks are represented by the libraries CoreLocation.framework and
MapKit.framework.

to add the Core Location and Map Kit frameworks to your project, refer to the procedures in Chapter 1,
to Link New Frameworks in an Xcode Project, and add CoreLocation.framework and MapKit.framework
(Figure 4.1). Next, import the following code in the appropriate header (.h) files:

1	 #import	<CoreLocation/CoreLocation.h>

2	 #import	<MapKit/MapKit.h>

FiGuRe 4 .1 Core Location
and Map Kit frameworks
linked to your Xcode
project.

hOw lOCatIOn IS determIned

When an iOS device attempts to pinpoint its location, it relies on three data sources
to make the determination. Each of these data sources provides a different level of
speed (the time it takes to make the determination), performance (the amount of
power used to make the determination), and accuracy (the +/− distance in meters).
Table 4.1 (on the next page) highlights the three technologies used and ranks them
based on their relative properties.

84 ChaPter 4 Core loCation anD Map kit

TabLe 4 .1 Location Determination Sources on iOS Devices

SOurCe SPeed Intended aCCuraCy POwer

Cell tower * Fastest City or region Fairly low, since 3G devices
stay connected to towers.

Wi-Fi Medium City block or better More than cell, but still low.
Requires Wi-Fi to perform a
scan of nearby networks.

GPS * Slowest +/- 5m or better Fairly high compared to other
methods, especially during
continuous tracking.

* Indicates this location data source is not available on all ioS hardware configurations.

As you can see, there are varying levels of performance, speed, and accuracy
between each location source. Determining location through cell phone towers is
very fast and very efficient but it’s not the most accurate determination. This is not
always an issue. For example, if you’re making a taxi app and you want to list the
phone numbers for all of the taxi services in the area, you probably only need to
know what city someone is in. Since taxi services will drive a ways to pick you up,
it’s not necessarily relevant that a person is standing on the corner of Arlington
and Boylston.

At the other end of the spectrum, a fitness app that tracks your running progress
or a turn-by-turn GPS app would require more accurate location data. Your users
would be annoyed if their turn-by-turn app missed a turn by about 100 meters.
In between these extremes, where accuracy is important but not as much as turn-
by-turn, would be a location check-in service. In this case it’s not critical to your
app’s function that a person be in the exact location their device claims to be, so
you can trade off the accuracy for better battery performance.

Another important take-away from Table 4.1 is that not every location data
source is available on every iOS device. Only devices configured with a cellular
radio (iPhones and 3G-enabled iPads) are able to determine location through cell
towers. Additionally, GPS is only available on the iPhone models 3G and later and
all 3G-enabled iPads. If accurate location data is critical to the operation of your
app (such as for turn-by-turn navigation or Find My Friends), then you should
configure your app’s info property list to require the appropriate hardware.

getting starteD with Core loCation anD Map kit 85

You can add two levels of restrictions for location-based hardware capabilities.
When added to the UIRequiredDeviceCapabilities array in your info property list,
these keys provide the following restrictions (Figure 4.2):

 J location-services: Requires that device has some form of location service
available. Used as a general restriction.

 J gps: Requires device with GPS hardware.

Remember, add these keys to your app only if your app is unable to operate
without them. If location is simply a nice feature that improves user experience,
then your app should not require specific hardware. For example, a movie theatre
app might work best when the app can automatically determine your location
using hardware. But this app would also work if a user simply types in their ZIP
code for nearby theaters. In this case, the app should not include location-services
as required hardware.

Fortunately, while it is important for you to be aware of the various source
hardware capabilities, it is not necessary for you to specify which piece of hardware
your application should use—iOS chooses the hardware automatically. When
working with the Core Location Manager to manage updates from hardware, you
simply specify your desired accuracy. The desired accuracy of the location manager

FiGuRe 4 .2 Location-based
hardware requirements added
to an app’s info property list.

Note: the required hardware capability “armv7” in Figure 4.2 simply
indicates that the app must run on an iOS device and will be in your
required capabilities list by default when a new iOS app is created in Xcode.

86 ChaPter 4 Core loCation anD Map kit

is measured in meters and can be set using a CLLocationAccuracy constant. These
constants are defined by the iOS SDK and indicate by name their intended use
(Table 4.2).

TabLe 4 .2 Core Location Accuracy Constants

COnStant Intended uSe

kCLLocationAccuracyBest the default value for the location manager desired accuracy. In this condi-
tion, ioS does its best to provide the best location possible with location-
based hardware.

kCLLocationAccuracyBestForNavigation this condition is the most accurate of all the available configurations and
should only be used in apps where absolute precision is necessary (turn-
by-turn). ioS actually achieves better than “best” in this condition by using
additional sensors beyond location-based hardware to provide highly-
accurate data at all times. this condition is fairly power intensive and is
designed to operate while the device is plugged in to a power source.

kCLLocationAccuracyNearesttenMeters Set the desired accuracy to 10 meters. this condition works well for check-
in type applications.

kCLLocationAccuracyHundredMeters Set the desired accuracy to 100 meters. this condition works well for
nearby services that operate under the assumption your user is walking
(such as nearby restaurants or friends close by).

kCLLocationAccuracyKilometer Set the desired accuracy for 1 kilometer. this condition works well for
city-based searches such as the nearest movie theater.

kCLLocationAccuracythreeKilometers Set the desired accuracy for 3 kilometers. this condition works well for
 city-based searches where you’re looking for services available in that
city and are not necessarily sorting by the closest service.

lOCatIOn PermISSIOnS

I don’t know about you, but I can’t count how many times I’ve launched an app
and was surprised to be asked for access to my location. Nine times out of ten, if I
wasn’t expecting to provide an app with my location, I won’t allow it.

Note: while the accuracy can be defined, it is not a guarantee. iOS will do
its best to optimize accuracy based on the conditions in the table and will

automatically switch between available sources to reach the desired accuracy level.

getting starteD with Core loCation anD Map kit 87

The moral of this story is when you use location in apps, you have to ask for
permission first—there’s no way around it. The harsh truth about location-aware
apps is that many users don’t like providing apps with their location data. Not
everyone will enable location for your app, even if it makes your app super awe-
some. So you need to be prepared to handle conditions where your app does not
have permission to use the services you planned on using.

Controlling loCation perMissions
The first time your app attempts to determine a device’s location, iOS will prompt a
permission dialog to the user that indicates your action. This action occurs whether
you’re using a CLLocationManager (Core Location) or an MKMapView (Map Kit)
configured to show the device’s location. By default, this dialog will simply say, “Your
App Would Like to Use Your Current Location,” with the choices of Don’t Allow and
OK. When you’re determining location using the CLLocationManager, you have
the option of setting a purpose string, which is your opportunity to explain in
the permission dialog why your app needs access to a user’s location. (Figure 4.3).

FiGuRe 4 .3 A location services
permission dialog.

Custom purpose string
configured by the Core
Location Manager.

88 ChaPter 4 Core loCation anD Map kit

We’ll get into the specifics of the CLLocationManager in the next section; how-
ever, while we’re on the subject of permissions you can configure the custom pur-
pose message of a CLLocationManager by setting its managed property purpose
(Figure 4.3).

1	 [locationManager	setPurpose:@”My	Custom	Purpose	Message...”];

DeterMining loCation serviCe availaBility
Before you attempt to use location services in your app, you should first check
to see if they’re available. There are many reasons why location services might
be unavailable. First and foremost, the necessary hardware might be disabled
because a device is in airplane mode or because the user has turned off location
services globally for all apps. Second, a user might have disallowed access to your
app specifically either in the location services permission dialog mentioned in
the previous section or in the Settings app. Finally, the Parental Controls section
of the Settings app on every iOS device allows parents the choice to prevent apps
from using location data. This condition should be handled separately from the
permission dialog because in this case your users will never be presented with a
dialog asking for permission.

With these conditions in mind, the CLLocationManager offers two class meth-
ods that allow you to determine first, whether or not location services are enabled,
and second, the authorization status of your specific app. These class methods
are [CLLocationManager locationServicesEnabled] and [CLLocationManager
authorizationStatus], with the conditions and possible values demonstrated
in the following code block:

getting starteD with Core loCation anD Map kit 89

 1	 //	Check	to	see	if	location	services	are	enabled

 2	 if([CLLocationManager	locationServicesEnabled]){

 3	

 4	 				NSLog(@”Location	Services	Enabled”);

 5	

 6	 				//	Switch	through	the	possible	location

 7	 				//	authorization	states

 8	 				switch([CLLocationManager	authorizationStatus]){

 9	 						case	kCLAuthorizationStatusAuthorized:

10	 								NSLog(@”We	have	access	to	location	services”);

11	 								break;

12	 						case	kCLAuthorizationStatusDenied:

13	 								NSLog(@”Location	services	denied	by	user”);

14	 								break;

15	 						case	kCLAuthorizationStatusRestricted:

16	 								NSLog(@”Parental	controls	restrict	location	services”);

17	 								break;

18	 						case	kCLAuthorizationStatusNotDetermined:

19	 								NSLog(@”Unable	to	determine,	possibly	not	available”);

20	 				}

21	 }

22	 else{

23	 				//	locationServicesEnabled	was	set	to	NO

24	 				NSLog(@”Location	Services	Are	Disabled”);

25	 }

90 ChaPter 4 Core loCation anD Map kit

This code block is fairly straightforward. Functionally, we’re not doing much
more than printing log messages based on the possible location services enabled
and location authorization states. In line 2 we first check to see if location services
are enabled. If this condition results to NO, we jump down to line 22 and handle
our disabled condition. This condition would result as NO if the device were in
airplane mode or if location services were disabled globally in the Settings app. In
lines 8 through 20 we handle the condition that location services are enabled by
evaluating a switch statement based on the possible authorization status values.
The possible values for the location authorization status are

 J kCLAuthorizationStatusAuthorized: Your app is able to use location
services.

 J kCLAuthorizationStatusDenied: The user has chosen to deny your app
access to location services.

 J kCLAuthorizationStatusRestricted: You do not have access to location
services because availability is restricted by parental controls. This means
the user will never be presented a permission dialog.

 J kCLAuthorizationStatusNotDetermined: Your app was unable to deter-
mine if location services are authorized. This authorization state is most
likely caused by location services being disabled or some other fringe case
caused by errors. In our code block, we would probably never reach this
condition because we first check to see if location services are enabled. But,
if you were to check this value outside of our code block while services are
disabled, the status would be unknown.

Note: even though the unknown authorization status is most likely the
cause of services being disabled, you should not use this status value as a
condition in your app indicating services are disabled. this status could also

be the cause of some unknown error iOS experienced when attempting
to check on your app’s status (possibly caused hardware or software

issues, uncorrectable by you or the user). to indicate services are dis-
abled, use the locationServicesenabled Boolean.

the Core loCation Manager 91

As the first step in working with location data, we’ll focus on Core Location. Remem-
ber, Core Location is primarily a data-oriented framework. This means we’ll be
dealing with coordinates, text strings, and number values instead of visual location
information like maps. Later in the Map Kit section, we’ll discuss how to use some
of the data sources we learn about with Core Location in combination with Map
Kit, and how to visually represent location information on a map.

I’ve mentioned the Core Location Manager (CLLocationManager) a few times.
The CLLocationManager is responsible for controlling the flow and frequency of
location updates provided by location hardware. Simply put, the location manager
generates location objects (CLLocation objects) and passes them to its delegate
whenever a certain set of criteria is met. These criteria are determined by how
you configure and start your location manager.

The CLLocationManager is typically used to generate location data while work-
ing with one of the following services.

 J Standard Location Service

 J Significant Location Change Monitoring

 J Heading Monitoring

 J Region Monitoring

Standard lOCatIOn SerVICe

The standard location service is one of the most common uses of the location man-
ager. Used to determine a user’s current location as needed for nearby searches or
check-in locations, the standard location service can be configured with a desired
accuracy and distance filter (which is the threshold used to determine when a
new location should be generated). When a device moves beyond the configured
distance filter, the standard location service triggers a new location and calls the
necessary delegate methods. After creating the location manager and configuring
the desired properties, call startUpdatingLocation to begin location services. The

Note: you can have as many Cllocationmanager objects as needed by
your application, but each location manager should be used to moni-
tor one service. In the case of regions, any region being monitored
during the runtime lifecycle of your app will be added as a member
of the nSSet property monitoredRegions in all Cllocationmanager objects.

the core locAtion mAnAger

92 ChaPter 4 Core loCation anD Map kit

following code block demonstrates how to set up a new location manager using
the standard location service:

 1	 //Create	a	new	location	manager

 2	 locationManager	=	[[CLLocationManager	alloc]	init];

 3	

 4	 //	Set	Location	Manager	delegate

 5	 [locationManager	setDelegate:self];

 6	

 7	 //	Set	location	accuracy	levels

 8	 [locationManager	setDesiredAccuracy:kCLLocationAccuracyKilometer];

 9	

10	 //	Update	again	when	a	user	moves	distance	in	meters

11	 [locationManager	setDistanceFilter:500];

12	

13	 //	Configure	permission	dialog

14	 [locationManager	setPurpose:@”My	Custom	Purpose	Message...”];

15	

16	 //	Start	updating	location

17	 [locationManager	startUpdatingLocation];

In this code block, line 2 allocates a new CLLocationManager and saves it as an
instance variable named locationManager. In line 5 we set the location manager
delegate as self, which means this class must observe the CLLocationManager-
Delegate protocol (covered in the section below, Responding to New Information
from the Core Location Manager). Next, in line 8 we set the desired accuracy of
our location manager to 1 kilometer, and in line 11 we set the distance filter of our
location manager to 500 meters.

While the distance filter can be almost any value, I personally have found that
setting your distance filter to half the distance of your desired accuracy typically
generates a fairly accurate sample of locations as needed by the location accuracy.

the Core loCation Manager 93

In line 14 we set the custom purpose message. Remember, this message will be
shown in the location permission dialog as seen in Figure 4.3 and should be used
to describe why your app needs access to a user’s location—especially when it’s
not readily apparent. Finally, in line 17 we start updates on the location manager
by calling startUpdatingLocation.

uSInG stAndArd locAtion services aS a BAckground process

By default, your app will not run the standard location service as a background process. the standard loca-
tion service significantly impacts your user’s battery life if left running. Even if the location manager is not
sending new locations to the delegate, the standard location service still continuously monitors a user’s
location to determine when the distance filter threshold is crossed. Unless the information generated is
relevant to a user’s current task, it’s recommended that you disable this service for performance reasons. If
you’re doing a simple calculation for search purposes, you should turn off the standard location service as
soon as you receive your first location update.

But perhaps location services are vital to the function of your app, such as a fitness app that continues to
track a user’s run in the background while they exit the app to select a new music playlist. In this case, you
can add the mode location to the UIBackgroundModes array in your app’s info property list.

If your app needs location awareness while running in the background and you do not need the high-
sample rate generated by standard location services, it’s recommended that for better user experience you
use the significant location change service described in the next section. For most apps, the accuracy and
frequency of location updates provided by significant location change monitoring is sufficient for back-
ground needs.

tip: the permission dialog is presented once and only once to
the user the first time your app calls startUpdatingLocation. Plan
accordingly and be prepared for the user to disallow location services!

Note: you can download a sample app that demonstrates
the standard location service (with background support) at this
book’s website, iOSCoreFrameworks.com/download#chapter-4.

94 ChaPter 4 Core loCation anD Map kit

SIGnIFICant lOCatIOn ChanGe mOnItOrInG

The location manager of a significant location change service sends new locations
to the delegate whenever it detects the device has significantly changed position.
The location manager provides a starting location as soon as this service is started
and future locations are only calculated and sent to the delegate when the device
detects new Wi-Fi hotspots or cellular towers. While slightly similar to the standard
location service in functionality, this method is much more aggressive in power
management and is highly efficient. While the standard service continuously
monitors a user’s location to determine when the distance filter threshold is crossed,
the significant location change disables location services between new location
events (because location events are determined when new connections are located
by the cellular and Wi-Fi antennae). As an added bonus, unlike the standard loca-
tion service, the significant change monitoring service will wake up an app that’s
suspended or terminated and allow the app to execute any necessary background
processes.

The code needed to set up a significant location change monitoring is much sim-
pler, essentially because the significant location change service is largely handled
by the core operating system. Remember, the significant location change monitor-
ing service automatically generates new locations when the radio antennae detect
new connection sources (cellular or Wi-Fi). That means the significant location
change service will ignore the accuracy and distance filter properties of the loca-
tion manager (the accuracy will always be the best available by the sources used).
The following code block demonstrates how to set up a location manager that
monitors significant location changes:

tip: your app only stays active in the background for a few seconds,
long enough to perform simple calculations and updates. If you need to

perform more complicated tasks, consider setting up a long background process
with an expiration handler. For more information on long background processes,
visit iOSCoreFrameworks.com/reference#long-background-process.

the Core loCation Manager 95

 1	 //Create	a	new	location	manager

 2	 locationManager	=	[[CLLocationManager	alloc]	init];

 3	

 4	 //	Set	Location	Manager	delegate

 5	 [locationManager	setDelegate:self];

 6	

 7	 //	Configure	permission	dialog

 8	 [locationManager	setPurpose:@”My	Custom	Purpose	Message...”];

 9	

10	 //	Start	updating	location

11	 [locationManager	startMonitoringSignificantLocationChanges];

Very similar to the previous code block, starting the significant location change
service simply involves creating a new location manager (line 2), setting the delegate
(line 5), configuring an optional custom purpose message (line 8), and then calling
the method, startMonitoringSignificantLocationChanges in line 11 (instead of
startUpdatingLocation). Just like the standard location service, the significant
location change service interacts with its delegate using the same methods, which
is covered in the section that follows, Responding to New Information from the
Core Location Manager.

Note: download a complete project demonstrating the signif-
icant location change service and relevant background processing
methods at iOSCoreFrameworks.com/download#chapter-4.

96 ChaPter 4 Core loCation anD Map kit

headInG mOnItOrInG

Heading information is a little different than the other location-based data types
generated by the location manager. Unlike the previous services, the heading
monitoring service only generates new heading information (direction information
relative to magnetic north or true north). The heading object (CLHeading) is cre-
ated using the device’s magnetometer (compass) and does not contain a reference
to the latitude and longitude coordinates of the device.

Just like with other location services, not all devices are equipped with a magne-
tometer, especially older generation models. You should first check to see if heading
services are available by calling [CLLocationManager headingAvailable], and if
heading services are required for your app’s function (such as a compass app) you
should add the value magnetometer to your app’s info property list.

One of the reasons heading monitoring exists as a separate service—besides
separate hardware—is because doing so allows additional performance optimiza-
tion. In most location-aware apps, you don’t need to know the device heading with
incredible accuracy. The majority of apps are able to get by on the generic speed
and heading information generated in the standard and significant location change
services. In these cases, the course and speed values managed by the CLLocation
object are simply extrapolated based on the previous location coordinate (distance
moved, direction moved). This means if your user is standing still, the CLLocation
object is likely to hold invalid heading information.

Because heading monitoring is a separate service, however, you can give your
users the option of turning on additional heading information as needed. This
practice is observed in the native Google Maps app on the iPhone and iPad. When
a user taps the location button once, the map zeros in on their current location. If
they tap the location button again, the Google Maps app enables heading monitor-
ing to indicate the direction the device is facing.

Starting a heading monitoring service is just like starting updates on a standard
location service. The process involves creating a new location manager, assign-
ing the delegate, setting your desired accuracy and threshold filter (in degrees
changed), and calling startUpdatingHeading. Because the heading is dependent
on the orientation of your device (landscape versus portrait), the location manager
also allows you to set the desired heading orientation. The following code block
demonstrates how to set up a new heading monitoring service:

the Core loCation Manager 97

 1	 if([CLLocationManager	headingAvailable]){

 2	

 3	 				//	Create	a	new	Location	Manager	and	assign	delegate

 4	 				headingManager	=	[[CLLocationManager	alloc]	init];

 5	 				[headingManager	setDelegate:self];

 6	

 7	 				//Send	all	updates,	even	minor	ones

 8	 				[headingManager	setHeadingFilter:kCLHeadingFilterNone];

 9	

10	 				//	Set	heading	accuracy

11	 				[headingManager	setDesiredAccuracy:kCLLocationAccuracyBest];

12	

13	 				//	Set	expected	device	orientation

14	 				[headingManager	setHeadingOrientation:

	 																														CLDeviceOrientationLandscapeLeft];

15	

16	 				//	Start	updating	headings

17	 				[headingManager	startUpdatingHeading];

18	 }

19	 else

20	 				NSLog(@”Heading	not	available”);

You’ll notice this code block is similar to the standard location service. The
first thing we do is check to see if heading services are available by calling the
CLLocationManager class method headingAvailable in line 1. Next, in lines 4
and 5 we create a new CLLocationManager object and assign the delegate to self.
In line 8 we set up our desired heading filter. This value specifies the minimum
heading change in degrees needed to trigger a new heading event. In line 8 we set
this option to the constant, kCLHeadingFilterNone. This simply sets the filter to
nothing allowing us to obtain every change detected (no matter how minor) from
the magnetometer. By default, this filter value is set to 1 degree.

98 ChaPter 4 Core loCation anD Map kit

In line 14 we set the expected orientation of our device to landscape left. The
orientation will default to portrait, and if your device allows for rotation you should
detect device rotations and reassign the heading orientation when appropriate.
Finally, in line 17 we start updating our heading information. This begins call-
ing the delegate method, locationManager:didUpdateHeading: when the filter
threshold condition is met.

reGIOn mOnItOrInG

One of the newest features available in iOS 5 is the ability to add region-based
monitoring services to a location manager. Region monitoring allows you to moni-
tor a device’s interaction with the bounds of defined areas or regions; specifically,
the location manager will call didEnterRegion and didExitRegion on its assigned
delegate when the bounds of monitored regions are crossed.

This new functionality allows for all sorts of app opportunities from auto-
check-in services to real-time recommendations (for example, you’re walking past
a good coffee shop and an app on your phone knows that you like coffee). In fact,
the new Reminders app for iOS 5 uses this functionality in combination with Siri
(the iPhone 4S digital assistant) to carry out requests such as “Remind me when I
get home that I need to take out the trash,” or “Remind me when I leave the office
that I need to call my wife and tell her I’m on my way.” In these examples, Siri simply
defines a region in a core location manager for the locations home and the office
and sets up a reminder to trigger when those regions detect the appropriate
didExitRegion or didEnterRegion events.

tip: when Siri sets up the regions, “she” will actually read your
personal address card and look for an address labeled as “home”

and “work.” If detected, Siri will convert your home address to a latitude
and longitude coordinate using the forward geocoding aPIs and then set
up a region based on that coordinate. more about this in the section below
on geocoding.

the Core loCation Manager 99

The process for monitoring regions is very similar to the other services we
monitored. Instead of setting up distance filters or depending on cell towers to trig-
ger new location events, however, we define a specific circular region (or regions)
based on a set of latitude and longitude coordinates and a radius in meters.

The following code block demonstrates how to monitor for a region. This
example assumes that you already know the latitude and longitude coordi-
nates of your target region. Later, we’ll cover how to generate these values using
human-readable address strings, but for now, let’s just assume you’ve memorized
that Apple’s main campus is located at the latitude and longitude coordinates of
(37.331691, −122.030751).

 1	 //	Create	a	new	location	manager

 2	 locationManager	=	[[CLLocationManager	alloc]	init];

 3	

 4	 //	Set	the	location	manager	delegate

 5	 [locationManager	setDelegate:self];

 6	

 7	 //	Create	a	new	CLRegion	based	on	the	lat/long

 8	 //	position	of	Apple’s	main	campus

 9	 CLLocationCoordinate2D	appleLatLong	=	
	 				CLLocationCoordinate2DMake(37.331691,	-122.030751);

10	 CLRegion	*appleCampus	=	[[CLRegion	alloc]	
	 																									initCircularRegionWithCenter:appleLatLong	
	 																																															radius:100	
	 																																											identifier:@”Apple”];

11	

12	 //	Start	monitoring	for	our	CLRegion	using	best	accuracy

13	 [locationManager	startMonitoringForRegion:appleCampus	
	 																										desiredAccuracy:kCLLocationAccuracyBest];

In this example, we set up the location manager and delegate in lines 2 through
5. In line 9 we create a new CLLocationCoordinate2D using the latitude and lon-
gitude coordinates for Apple’s main campus. Next, in line 10 we allocate a new

100 ChaPter 4 Core loCation anD Map kit

CLRegion. Notice we initialize this region as a circular region with the radius of
100 meters. This method also allows us to assign an identifier we can use to refer
to the region at a later time (in the event you’re monitoring more than one region
in your location manager). Finally, in line 13 we simply start the monitoring service
for our CLRegion by calling startMonitoringForRegion:desiredAccuracy.

reSPOndInG tO new InFOrmatIOn FrOm
the COre lOCatIOn manaGer

As you’ve learned, the location manager is delegate based. This means the location
manager calls methods on its assigned delegate whenever new location, heading,
or region information is available. These delegates are defined in the protocol
CLLocationManagerDelegate.

Table 4.3 outlines the delegate methods used in the standard location service,
significant location change monitoring service, heading monitoring service, and
the region monitoring service described in this chapter. By implementing these
methods in the class used as the assigned delegate, you can update your UI or save
relevant course information as needed by your app.

tip: In this example we used the kCllocationaccuracyBest set-
ting because our region radius is only 100 meters. the accuracy of the

region monitoring will help eliminate false positives and prevent duplicate
notifications by adding a small buffer zone. make sure your accuracy radius is
not too high compared to the radius of your region. For example, if you had a
50m radius defined, you wouldn’t want your accuracy to be calculated using
the 3 kilometer accuracy setting.

tip: notice the last delegate method in table 4.3 is not actually
related to the return of Cllocation objects from hardware but rather to

changes in the authorization status of location services in your app. you should
be continually aware of any changes in your app due to permissions with core
location services. while the method is optional, it’s best to implement it in case
something changes while you’re using location.

the Core loCation Manager 101

TabLe 4 .3 Core Location Manager Delegate Protocol Methods

methOd deSCrIPtIOn

locationManager:didUpdatetoLocation:fromLocation: Called by both the standard location service and signifi-
cant location change service when new CLLocation objects
are generated. Both of these services pass in the new
CLLocation object (toLocation) as well as the previous
 location object (fromLocation)

locationManager:didFailWithError: Called by the standard location service and the significant
location change service when an error occurs. An error
could be the result of conditions such as bad hardware or
an interruption in service during a location call.

locationManager:didUpdateHeading: Called by the heading monitoring service whenever a new
heading is generated based on the heading filter threshold.
the heading object passed to this delegate (CLHeading)
contains relative directions to both true and magnetic north
along with the x, y, and z components of that heading.

locationManager:didEnterRegion: Called by the location manager when a device crosses into
a monitored region.

locationManager:didExitRegion: Called by the location manager when a device exits a
 monitored region.

locationManager:monitoringDidFailForRegion:withError: Called when region monitoring fails due to an error.

locationManager:didChangeAuthorizationStatus: Called when the location permissions for this app are
changed.

Note: you can download a complete project that demonstrates all of the
core location manager services demonstrated in this chapter by visiting
iOSCoreFrameworks.com/download#chapter-4. For more information on
the hardware requirements and various capabilities of different iOS models,
visit developer.apple.com or iOSCoreFrameworks.com/reference#core-location.

102 ChaPter 4 Core loCation anD Map kit

Geocoding is the process of going from a set of latitude and longitude coordinates
to a human readable address and vice versa. Forward geocoding means you start
with an address or location (such as Boston, MA) and end up with latitude and
longitude coordinates. Reverse geocoding is the process of going from latitude
and longitude coordinates back to a human-readable address.

Before iOS 5, developers only had access to reverse geocoding APIs available
in Map Kit. With the introduction of iOS 5, however, the Map Kit APIs have been
deprecated and Apple engineers added both forward and reverse geocoding to the
Core Location framework. Not only does iOS 5 provide unique access to forward
geocoding APIs, but there is no longer a dependency on Map Kit for these processes.

GeOCOdInG BeneFItS

One of the major advantages of using the iOS 5 geocoding APIs is the fact that they
are inherently locale based. For example, if my phone is set to Japanese as my native
language and I’m visiting a friend in the United States, when I perform a geocod-
ing operation to convert coordinates to a physical address, the result is returned
in the native language of my phone (Japanese). This involves not only translating
the language but also reformatting the order in which addresses are communicated.

Additionally, the forward geocoding APIs are form agnostic, meaning they
really don’t care what language or format an address is entered in. The geocoding
APIs will automatically handle any known format based on the language settings
of the device and handle the conversion as necessary.

As a developer working with the geocoding APIs, you don’t have to do anything
special to make your app work with different geocoding languages.

ForwArd and
reverse geocoding

forwarD anD reverse geoCoDing 103

GeOCOdInG drawBaCkS

One of the biggest drawbacks to the geocoding API stems from one of its great
advantages. All of the geocoding operations are handled in the cloud, meaning the
conversions do not happen on the device. Now, this is undeniably an advantage
because your device is not wasting precious power and resources to handle the
conversion. Additionally, as new conversion information and techniques become
more accurate, Apple can simply update their APIs in the cloud giving your app
even better performance down the road. The drawback is your app must have an
Internet connection to use the geocoding APIs. That means if your app is running
in airplane mode or on a Wi-Fi-only device that’s not connected to a Wi-Fi hotspot,
you won’t have access to geocoding services and should plan accordingly.

FOrward GeOCOdInG

Forward geocoding means you’re starting with an address and are seeking coor-
dinates. This can be used to create the coordinates of a region, as needed by the
previous example on region monitoring, or to derive the coordinates of nearby loca-
tions based on address information (such as a check service or nearby restaurants).
There are three ways to forward geocode. Two of these methods involve simple
string conversion while the third supports an address dictionary.

Note: Because geocoding operations are asynchronous, the callbacks of these
services are handled using completion handler blocks. when the geocoding
operation is complete, the geocoder will execute this block and pass in an nSarray
of possible placemarks and an nSerror object indicating the success of the conversion.

104 ChaPter 4 Core loCation anD Map kit

working with strings
The first, and most simple, geocoding operation converts a single string to an array
of possible CLPlacemark objects.

 1	 //	Geocode	a	simple	string	using	a	completion	handler

 2	 [fgeo	geocodeAddressString:@”Boston,	MA”	
	 									completionHandler:^(NSArray	*placemarks,	NSError	*error){

 3	

 4	 										//	Make	sure	the	geocoder	did	not	produce	an	error

 5	 										//	before	continuing

 6	 										if(!error){

 7	

 8	 														//	Iterate	through	all	of	the	placemarks	returned

 9	 														//	and	output	them	to	the	console

10	 														for(CLPlacemark	*placemark	in	placemarks){

11	 																		NSLog(@”%@”,[placemark	description]);

12	 														}

13	 										}

14	 										else{

15	 														//	Our	geocoder	had	an	error,	output	a	message

16	 														//	to	the	console

17	 														NSLog(@”There	was	a	forward	geocoding	error\n%@”,

	 																				[error	localizedDescription]);

18	 										}

19	 						}

20];

forwarD anD reverse geoCoDing 105

In this code block we convert the simple string, “Boston, MA”, to a CLPlacemark
using forward geocoding. The returned array of CLPlacemarks contains all of the
possible placemarks for the given address. Obviously, the more information you
provide in the address string, the more reliable the returned placemarks will be.
As mentioned before, one of the advantages of the geocoding APIs is they’re form
independent. It’s not necessary that you add delimiters like commas or tabs between
your address values.

The second geocoding operation is similar, but allows for further optimization
by limiting the conversion to a specified CLRegion. If you want to help iOS with
the conversion process, you can define a CLRegion (if known) to limit the scope
of search and improve result speed and accuracy. This method is handled just as
before, except we define a CLRegion as an additional parameter, as seen in the
following code block:

1	 [fgeo	geocodeAddressString:@”Boston,	MA”	
	 																		inRegion:myRegion	
	 									completionHandler:^(NSArray	*placemarks,	NSError	*error){

2	 													//handle	results

3	 				}

4];

tip: the ClPlacemark object simply contains a Cllocation, Clregion, and
nSdictionary of available address component strings. For example, if you have
an incomplete address (say you’re missing a ZIP code), you can convert the address
using forward geocoding and pull the completed address from the ClPlacemark object.

Note: while an Internet location is required for geocoding
operations, the forward geocoder is able to determine high
level address information (for example, country origin) with-
out an Internet connection based on local device information.

106 ChaPter 4 Core loCation anD Map kit

working with aDDress DiCtionaries
The third method used to forward geocode address information operates within the
context of an address dictionary. Using the Address Book framework, you have full
access to the contact cards and their relevant address information. When pulled
from the address book, this information is returned as an NSDictionary object
with various keys and values based on the information available.

Using the geocodeAddressDictionary method on a geocoder object, you can
easily convert this address book dictionary into a CLPlacemark. This is exactly
the process Siri uses to convert address book information for labels like home
or the office into region monitoring services using the location manager. The
following code block demonstrates how to convert an address book diction-
ary using the GLGeocoder class. For a complete example on how to pull these
address dictionaries from the Address Book using the ABPeoplePicker, visit
iOSCoreFrameworks.com/download#chapter-4.

1	 [fgeo	geocodeAddressDictionary:myAddressDictionary	
	 						completionHandler:^(NSArray	*placemarks,	NSError	*error){

2	 													//handle	results

3	 				}

4];

reVerSe GeOCOdInG

Reverse geocoding is the process of converting a CLLocation into a CLPlacemark.
Remember that the CLPlacemark contains the CLLocation, CLRegion, and an
NSDictionary for the address. So while both geocoding techniques create a
CLPlacemark, the geocoding process CLGeocoder simply fills in the blanks.

The following example demonstrates how to convert a CLLocation into a
CLPlacemark using reverse geocoding. Remember, because the monitoring ser-
vices return CLLocation objects when a new update is performed, you can easily
obtain an address for a user’s location by starting the standard location service,
obtaining their current location, and then reverse geocoding that location with
the CLGeocoder.

tip: don’t forget to turn off location
updates when you’re finished!

forwarD anD reverse geoCoDing 107

 1	 //	Reverse	Geocode	a	CLLocation	to	a	CLPlacemark

 2	 [fgeo	reverseGeocodeLocation:myLocationObject	
	 								completionHandler:^(NSArray	*placemarks,	NSError	*error){

 3	

 4	 										//	Make	sure	the	geocoder	did	not	produce	an	error

 5	 										//	before	continuing

 6	 										if(!error){

 7	

 8	 														//	Iterate	through	all	of	the	placemarks	returned

 9	 														//	and	output	them	to	the	console

10	 														for(CLPlacemark	*placemark	in	placemarks){

11	 																		NSLog(@”%@”,[placemark	description]);

12	 														}

13	 										}

14	 										else{

15	 														//	Our	geocoder	had	an	error,	output	a	message

16	 														//	to	the	console

17	 														NSLog(@”There	was	a	reverse	geocoding	error\n%@”,

	 																				[error	localizedDescription]);

18	 										}

19	 						}

20];

108 ChaPter 4 Core loCation anD Map kit

Now let’s turn from working with data oriented location objects to maps. The Map
Kit framework is rather extensive and provides the necessary views and controls
for displaying map data. The primary view in the Map Kit framework is MKMapView,
which is a subclass of UIView, and automatically renders Google Maps data based
on the relative location of a visible map view rect.

traCkInG lOCatIOn wIth maP kIt

So you know that the MKMapView render’s map data and provides the same
 gesture-based interaction seen in the native Maps application. You also know
that you can use the standard location service to track a user’s location. Fortu-
nately, tracking a user’s position is a common enough use case that both Map Kit
and Core Location offer this capability. The benefit of Map Kit’s tracking services
is they will automatically track a user’s location and indicate that location on the
map using the famous Google Maps blue tracking ball seen in the native Maps app.
As accuracy changes, the region circle around this ball will automatically adjust
just as it does in the native app.

To enable tracking on an MKMapView, simply set the Boolean property
showsUsersLocation. When set to YES, the MKMapView will first prompt the
user with the same Core Location permission dialog. If authorization is approved,
the MKMapView will automatically animate the changes in a user’s location and
the accuracy of the determination.

Note: map kit allows you to add a variety of overlays and annotations
(such as push pins and location indicators), all of which are incredibly use-
ful for creating rich map data, but not directly relevant to our conversation

about location. Because we don’t have enough space in this book to go
into the finer details of map kit, I’ve put together an online tutorial

explaining the ins-and-outs of map kit overlays and annotations, avail-
able at iOSCoreFrameworks.com/tutorial#map-kit.

working wIth mAp kit

working with Map kit 109

The MKMapView also manages a delegate property that it uses to communi-
cate location update information through various methods. These methods are
defined in the protocol MKMapViewDelegate and can be used to update necessary
map information (such as reload overlays and annotations). The delegate method
relevant to location updates is mapView:didUpdateUserLocation: which passes
in an MKUserLocation object.

The MKUserLocation object is very handy. Unlike monitoring location with
Core Location, the MKMapView can be configured to provide both heading and
motion in a single delegate method based on the tracking mode defined by its
userTrackingMode property. The possible values of this property are

 J MKUserTrackingModeNone

 J MKUserTrackingModeFollow

 J MKUserTrackingModeFollowWithHeading

When the tracking mode is set to follow with heading, the MKUserLocation
object will contain both a CLLocation object and a CLHeading object. If the track-
ing mode is set to just follow, the MKUserLocation object passed to the delegate
will only contain the location.

Note: For a complete project example demonstrating the power of
mkmapView and the map kit framework—along with other downloads
available in this chapter—visit, iOSCoreFrameworks.com/download#chapter-4.

110 ChaPter 4 Core loCation anD Map kit

Core Location and Map Kit are an incredibly powerful set of tools and APIs that
give you full access to available location metadata. Using Core Location directly,
through the location manager, you can monitor a user’s location using standard
services, significant change services, or region monitoring. Additionally, the core
location manager allows direct access to heading information relative to either true
north or magnetic north. Using Core Location you can determine where a person
is and where they’re going.

Beyond specific device location information, Core Location offers powerful
(locale aware) address conversion APIs. These APIs let you forward and reverse
geocode location information into a CLPlacemark. Placemarks contain a com-
pleted form of the address including a CLLocation, CLRegion, and NSDictionary
of address values.

Finally, using Map Kit you can easily track a user’s location by toggling a single
Boolean property, showsUserLocation. Once enabled, the MKMapView will auto-
matically animate and track the location while communicating that information
back to the user on the map.

Don’t forget, when working with location it’s always important to check and
monitor relevant permissions! It doesn’t matter if you have the coolest location app
in the world, there are users who will download your app and not enable location
services. Be prepared for error conditions and blocked access.

wraPPInG up

This page intentionally left blank

300 inDeX

numBerS
3D (three dimensional) transforms

adding perspective, 211–212
in CALayer, 201
Core Animation, 209–210

3G (three-G) data connection, 62

a
ACAccountCredential

defined, 118
migrating accounts into

Accounts, 124
ACAccounts

accessing, 121
defined, 118

ACAccountStore
defined, 118–120
maintaining separation, 127
populating with available

accounts, 121
ACAccountStoreDidChangeNotification,

126, 138
ACAccountType

accessing accounts, 121–122
defined, 119

ACAccountTypeIdentifierTwitter, 118–119
access tokens

in Accounts framework, 121–122
migrating into Accounts, 122–124
OAuth services, 115–116

accessGranted, 121
Accounts

accessing accounts in, 121–122
defined, 18
getting started, 114–117
migrating users from existing apps

into, 122–124
new apps and, 118–120
overview, 113
special considerations, 125–127
using, 118

accountsd process, 121
accountsDidChange:, 126
accuracy

constants, 85–86
for region monitoring, 100

addArcWithCenter, 156–157
addCurveToPoint, 156
adding

iCloud entitlements, 58–60
new objects in Core Data, 41–42
new persistent stores, 38

addLineToPoint, 156–157
address dictionaries, 106
airplane mode and geocoding, 103
alpha, 195

Ambient mode
AVAudioPlayer, 239
AVAudioSession, 234

analyzing images
with CIDetector, 168
with Core Image, 182–184
overview, 166

Angry Birds, 225
animateWithDuration:animations:, 200
animation. see Core Animation
animation blocks, 199–200
animation contexts, 197–198
animationDidStop, 197
animationWithKeyPath, 209
Aperture, 164
APNS (Apple Push Notification Service)

missed notifications, 296–297
overview, 291–298

App ID, 57–58
App Store, 275–276
appearance of Newsstand app, 290
Apple

audio session documentation, 237
Core Animation, 194
Core Image, 164
document storage, 78
Mac OS X. see Mac OS X
multicore processor, 11
Twitter and Accounts, 113
video streaming guidelines, 257

Apple Push Notification Service (APNS)
missed notifications, 296–297
overview, 291–298

Application Music Player, 229–230
Application presents content in

Newsstand, 280
applicationDidLaunch, 293
applyingFilter, 190
apps

Accounts and new, 118–120
challenges of audio, 224
document storage, 76–77
iCloud storage between platforms, 61
iCloud use case, 55
migrating users from existing into

Accounts, 122–124
Newsstand. see Newsstand Kit
Top Ten Technologies of iOS 5, 18–19
Twitter. see Twitter
understanding Newsstand, 282–283
using iOS frameworks, 6–7
using multicore processors, 11
why use Core Graphics?, 148

ARC (Automatic Reference Counting), 6
architecture of Core Data, 25
arcWithCenter, 156–157
assets

Assets Library, 247
defined, 244
downloading, 284–290

ATOM feed, 281
attributes. see also properties

defined, 26
filter, 173–176

attributes dictionary
for complex filters, 176
key-value coding and, 168
for Sepia-tone filter, 175

audio. see Core Audio
audio capture. see capturing media
audio sessions, 233–237
Audio Toolbox, 226
Audio Unit, 226
audioPlayerBeginInterruption:, 240
audioPlayerdecodeErrordidOccur:error:,

240
audioPlayerdidFinishPlaying:success	

➝ fully:, 240
audioPlayerEndInterruption:, 240
AudioSessionGetProperty(), 236
authentication

in Accounts workflow, 116–117
migrating into Accounts, 122–124
performing TWRequest, 134–135
understanding OAuth services, 115–116

authorization status, 88–90
author's note, 299
auto adjustment filters, 183
automatic filter enhancement, 166
Automatic Reference Counting (ARC), 6
AV Foundation

Audio Session, 233–237
AVCaptureSession, 262
AVCaptureVideoPreviewLayer, 262–263
custom image capture, 263–269
defined, 19
getting started, 244–247
in-camera effects and video, 269–270
linking to project, 226
MPMoviePlayerController, 256–261
multimedia frameworks, 222–223
out-of-the-box solutions, 248
overview, 243
UIImagePickerController, 248–255

availability
checking iCloud, 71, 78
checking Twitter, 131
determining location service, 88–90
filter, 173–174
Newsstand content, 293

AVAsset, 244
AVAudioPlayer, 232, 237–240
AVAudioSession, 233–237
AVCaptureConnection, 267–269
AVCaptureOutputs, 269–270
AVCaptureSession, 262–267
AVCaptureVideoPreviewLayer, 262–263,

265–266
AVPlayerLayer, 244

indeX

inDeX 301

B
background processes

AVAudioPlayer, 237–239
AVAudioSession, 233–235, 237
Newsstand app, 291
Newsstand app properties, 280
Newsstand apps waking up, 296–297
rendering and filtering images, 184–186
standard location services as, 93
using expiration handler, 295–296

backgroundColor
custom animation, 204–205
keyframe animation, 206–207
UIKit animation, 195

beginAnimation, 197–198
beginGeneratingPlaybackNotification, 231
beginInterruption, 236
blocks

in multicore processor, 14–16
running filters in background thread,

184–186
UIKit animations with, 199–200
using in iOS frameworks, 16–17

bounds, 195
built-in filters, 173–174
bundle ID

defined, 54
enabling iCloud, 57–58
using wildcards in, 57

C
CAAnimation

customization, 204–205
defined, 203

CABasicAnimation, 203
Caches folder

defined, 284
downloading Newsstand content to,

285–286
moving downloaded files to, 289

CAEmitterCells, 213–217
CAEmitterLayer, 215–217
CAKeyframeAnimation

along paths, 208
color change animation, 206–207
defined, 203

CALayer
AVPlayerLayer and, 244
defined, 201–202

Calendar, 148
cameras

adding to AVCaptureSession, 264–267
capture mode, 255
creating recorder with

UIImagePickerController,
251–254

filters. see filters

images. see images
in-camera effects and video, 269–270
UIImagePickerController source

types, 250
canSendTweet, 131
captureMode, 255
captureStillImageAsynchronously	

➝ FromConnection:, 267–269
capturing media

AVCaptureSession, 262
AVCaptureVideoPreviewLayer, 262–263
custom, 263–269
in-camera effects and video, 269–270
using UIImagePickerController,

250–254
CATransform3D, 211–212
CATransitionAnimation, 203
cell emitters, 215–217
cell towers

location information, 84
significant location change monitoring,

94
center, 195
CFBundleIcons, 280
CGImageRef

CIImage and, 170–172
rendering images, 181
rendering in background thread,

185–186
CGPDFGraphicsContext, 147
change monitoring, 94–95
change notifications

Core Data persistent store, 74–75
iCloud, 53
observing account database, 126
responding to iCloud, 67–70
syncing, 70

CIContext
defined, 168–169
rendering images, 178–181
rendering in background thread,

185–186
CIDetector

defined, 168–169
image analysis, 183–184

CIFaceFeature, 168
CIFeature, 168
CIFilter, 168–169
CIImage

defined, 168–169
UIImage and, 170–172

CIVector, 169
classes

defined, 8
generating managed object, 27

CLLocationManager
heading monitoring, 96–98
overview, 91
region monitoring, 98–100

responding to new information for,
100–101

significant location change monitoring,
94–95

standard location service, 91–93
CLLocationManagerauthorizationStatus,

88–90
CLLocationManagerlocationServicesEnabled,

88–90
CLPlacemarks

forward geocoding, 104–105
reverse geocoding, 106–107

CMMotionManager, 16–17
Cocoa Touch, 5
coding. see Xcode
coding, key-value. see key-value coding
colors

animating particle emitters, 215–216
custom animation, 204–205
keyframe animation, 206–207
UIKit animation, 195

commitAnimation, 197–198
compass, 96
completion block handlers

capturing still image with, 269
executing code on main thread from,

125–126
GCD, 119–120, 125
handling TWRequest response, 136–137
tweet compose view controller, 131

complex filters, 176
concurrency

in Core Data, 33
in GCD, 13
in multicore processor, 11–12
when creating managed object

context, 39
condition change notification, 69
connectionDidFinishDownload

handling finished downloads, 287–289
updating app appearance, 290

connectionDidFinishLoading, 134
connections

AVCaptureConnection, 267–269
geocoding requirements, 103

content
downloading Newsstand app, 284–290
loading into MPMoviePlayerController,

257–261
Newsstand updated notifications, 293
responding to remote notifications,

295–296
contentStretch, 195
context, animation, 197–198
context, Core Image, 178–181
context, graphics. see graphics context
context, managed object. see managed

object context
control events, 47

302 inDeX

coordinate system of Core Graphics,
145–146

Core Animation
3D transforms, 209–210
adding perspective, 211–212
animating along paths, 207–208
custom effects, 201–205
defined, 19
getting started, 194–196
keyframe animations, 206–207
overview, 193
particle emitters, 213–217
using UIKit, 197–200

Core Audio
AVAudioPlayer, 237–240
AVAudioSession, 233–237
defined, 19
getting started, 224–226
multimedia frameworks, 222–223
overview, 221
using audio from other sources, 232
using iPod Music Library, 227–231

Core Data
adding new objects, 41–42
concurrency in, 33
defined, 18, 24–25
deleting objects, 44–45
fetching and modifying objects, 42–44
getting started, 24
managed object context, 30–32
managed object model, 26–27
overview, 23
persistent store and store file, 28–30
persistent store coordinator, 28
setting up in Xcode, 34–40
stack, 25
syncing entitlements, 58–59
syncing with iCloud, 69–75
undo, redo, rollback and reset, 45–48

Core Data Model Editor
creating managed object model, 35–36
defined, 26

Core Graphics
defined, 18
getting started, 142–148
linking to AV Foundation project, 247
overview, 141
paths, gradients, text, and images,

154–160
understanding, 149–154

Core Image
analyzing images, 182–184
Core Image context, 178–181
defined, 19
don't block main thread, 184–186
editor, 187–190
filters, 173–178

getting started, 164–167
linking to AV Foundation project, 247
overview, 163
still images and video frames, 170–172
understanding, 168–169

Core Image context, 178–181
Core Location

defined, 18
forwarding and reverse geocoding,

102–107
getting started, 82–90
manager. see CLLocationManager
overview, 81
working with Map Kit, 108–109

Core Media, 247
Core OS, 5
Core Services

Core Location. see Core Location
defined, 5
GCD in, 14

cover updating, 290
CPU rendering, 178–179
customization

animation, 204–205
animation effects, 201–205
camera overlay, 251–254
with Core Graphics, 148
UIView, 149–151

CVPixelBuffer, 171

d
data management. see Core Data
default iCloud settings, 54
defaultStore, 64
delegate methods

animation contexts, 197
AVAudioPlayer, 240
AVAudioSession, 233–234
capturing video, 269–270
CLLocationManager, 100–101
downloading content, 285–287
handling audio interruptions, 236
Map Kit, 109
media picker controller, 227–229
NSURLConnectionDownloadDelegate,

287–289
reconnecting abandoned asset

downloads, 297–298
registering for Newsstand update

notifications, 293
deleting objects, 44–45
detecting audio sessions, 235–236
detecting faces. see face detection
device orientation, 268
dictionaries, address, 106

dictionaries, attribute. see attributes
dictionary

didEnterRegion, 98
didExitRegion, 98
didReceiveRemoteNotification, 294, 295
dispatch queues vs. operation queues,

13–14
document apps, 55
document storage

iCloud, 76–77
iCloud entitlements, 58–59

downloading Newsstand content
overview, 284–290
reconnecting abandoned, 297–298

downloadIssueWithInfo, 296
downloadWithDelegate, 285–287
drawing in Core Graphics, 155–160
drawRect:

Core Graphics image, 160
customizing UIView, 149–150
nesting save and restore calls, 152
overriding, 147

e
EAGLContext, 180
EaseIn, 208
EaseInEaseOut, 208
EaseOut, 208
editing images. see Core Image
effects

cell emitter, 213–217
filter. see filters
Flipboard page-turn, 211–212
in-camera effects and video, 269–270

Elliott, Bryan, 164
emitterCells, 213–215
emitterMode, 213
emitterPosition, 213–214
emitterShape, 213
enabling iCloud

in provisioning portal, 57–58
quick starting, 54
before you begin, 56–57

enabling Newsstand app, 281
endInterruptionWithFlags:, 236
entities

creating managed object model, 36
defined, 26
managed object context, 30–32

entitlements
adding required to iCloud, 58–60
determining availability of iCloud, 71

exception, unknown key, 177
expiration handler, 295–296
explicit animations, 202

inDeX 303

F
face detection

with CIDetector, 168
defined, 166
image analysis, 182–184

favorite tracking, 65–67
featuresInImage:options:, 182–183
fetched properties

creating managed object model, 36
defined, 27

fetching objects
in Core Data, 42–44
managed object context, 32

file coordinator object, 76
filters

AV Foundation, 270
CIFilter object, 168–169
in CIImage, 172
Core Image, 173–178
Core Image editor, 187–190
image analysis, 182–184
overview of Core Image, 164
running in background thread, 184–186

filtersInCategory:, 187
filtersnamesinCategory:, 174
filterWithName:, 173–174
fireworks effect, 213–217
flash simulation, 267
flip animation, 209–210
Flipboard page-turn effect, 211–212
fonts, 159
forKey, 204–205
format of APNS, 294
forward geocoding, 102–106
Foundation

AV. see AV Foundation
iOS crash course, 8
iOS prerequisites, 4
objects, 136

frame, 195
frameworks, 8

G
Garage Band, 148
GCD (Grand Central Dispatch)

completion block handlers, 120
concurrency in Core Data, 33
defined, 13–14
running filters in background thread,

184–186
UIKit animations with blocks, 199–200

geocodeAddressDictionary, 106
geocoding, 102–107
GET method, 133
goals for book, 6–7
Google Maps, 96

Google Services, 82
gotchas

Core Image editor, 187–190
Newsstand app, 296–298

GPS, 84–85
GPU rendering

vs. CPU rendering, 178–179
image, 181

gradients, 158–159
Grand Central Dispatch (GCD). see GCD

(Grand Central Dispatch)
graphics. see Core Graphics
graphics context

defined, 147
properties, 150–151
stack, 151–154

h
handler block, 16–17
hardware requirements

AVCaptureSession, 266
camera device capability, 254
for location-based apps, 84–85

HD (high-definition) recording, 266
heading monitoring

with CLLocationManager, 96–98
delegate methods, 101

high-definition (HD) recording, 266
HTTP Live Streaming, 257, 261

I
iCloud

adding required entitlements, 58–60
before you begin, 56
defined, 18
document storage, 76–77
enabling in iOS Provisioning Portal,

57–58
getting started, 52
how it works, 53–55
key-value storage, 63–69
overview, 51
special considerations, 61–62
storage containers, 60–61
syncing Core Data, 69–75
use case, 55

iCloud Container Identifier, 71
iCloud Daemon, 67
Icon Files, 280
icons, Newsstand app

aspect ratio, 276
styles, 280
updating appearance, 290

identifiers
account, 121

maintaining account store
separation, 127

team prefix. see team prefix identifiers
ubiquity container, 54, 71

image picker controller, 248–255
images

in AV Foundation. see AV Foundation
in Core Graphics, 160
in Core Image. see Core Image
custom capture, 263–269
still images and video frames, 170–172
uploading with tweet compose view

controller, 130
implicit animations, 202
importing

Accounts and Twitter to project, 114
audio frameworks, 226
Core Graphics, 143
Core Image, 167
Core Location and Map Kit, 83
framework into header files, 10
Newsstand Kit, 278
Quartz Core, 196

in-camera effects, 269–270
info property list, 279–280
inputImage, 175
inputIntensity, 175–177
instance variables

preventing filter lag, 188–190
setting CIContext as, 180, 186

interruptions, handling audio, 236, 240
iOS frameworks

crash course, 8–10
enabling iCloud in Provisioning Portal,

57–58
goals for book, 6–7
overview, 3
prerequisites, 4–6
top ten technologies, 18–19
understanding impact of multicore

processor, 11–17
iOS Provisioning Portal, 54, 57–58
iPad

multicore processor, 11
resolution, 145

iPhone
multicore processor, 11
resolution, 145

iPod Music Library, 227–231
iPod Music Player, 229–230
issues, Newsstand Kit

defined, 282–283
downloading content, 285–286
handling finished download and

progress, 288–289
issueWithName, 44–45
iTunes Connect, 281
iWork applications, 55

304 inDeX

j
Java, 12
Jobs, Steve, 51

k
Key Value Observing (KVO), 267, 269
keyframe animations

CAKeyframeAnimation, 203
Core Animation, 206–208

keys
location-based app, 85
Newsstand app, 279–280

key-value coding
attributes dictionary and, 177
custom animation, 205
defined, 168
format of APNS, 294

key-value storage
with iCloud, 63–69
iCloud entitlements, 58–59
iCloud use case, 55
quick starting iCloud, 54
responding to change notifications,

67–69
KVO (Key Value Observing), 267, 269

l
launch site, 213
launchOptions, 296–297
layers

graphics context, 151
iOS, 5
preview, 262–263

layers, Core Animation
3D transforms, 209–210
assigning animations to, 204–205
CAEmitterLayer, 215–217
CALayer, 201–202

LibDispatch, 178
libraries, photo

capturing still image, 267–269
selecting photos from, 249–250

library, Newsstand Kit, 282–283, 297–298
linear gradients, 158–159
Liner, 208
linking

Accounts and Twitter to project, 114
audio frameworks, 226
AV Foundation to project, 247
Core Data framework, 35
Core Graphics to project, 143
Core Image, 167
Core Location and Map Kit, 83
new frameworks in Xcode project,

9–10

Newsstand Kit to project, 278
Quartz Core to project, 196

Live Streaming, 257, 261
loading content into

MPMoviePlayerController, 257–261
location manager. see CLLocationManager
location-services, 85

m
Mac OS X

Core Image, 163
enabling iCloud, 56
iCloud storage between platforms, 61
native frameworks in iOS, 4

main dispatch queue
creating managed object context, 39
in GCD, 13–14

managed object context
in Core Data, 30–32
creating new, 39–40
deleting objects in, 44–45
fetching and modifying objects, 42–44
tips and tricks, 48
undo, redo, rollback and reset, 47

managed object model
Core Data, 26–27
creating in Xcode, 35–36

Map Kit
Core Location and, 91
forward and reverse geocoding, 102
working with, 108–109

maximum duration of video, 255
Media

AV Foundation, 243
Core Animation, 193
Core Audio, 221
Core Graphics, 141
Core Image, 163
defined, 5

media capture. see capturing media
media picker controller, 227–229
Media Player

linking to project, 226, 247
MPMediaPickerController, 227–229
MPMoviePlayerController, 245, 256–261
MPMoviePlayerViewController, 261
MPMusicPlayerController, 229–230
multimedia frameworks, 222–223

mediaLibraryButtonPressed:, 227–229
mergeChangesFromContextDidSave	

➝ Notification:, 70
message composition, 130
methods

Core Graphics image, 160
creating CIContext, 179–180
for creating CIImage, 171
delegate. see delegate methods
text, 159

UIBezierPath, 156
migrating users in Accounts, 122–124
mirroring data with iCloud, 53, 55
MKMapView, 108–109
Mobile Core Services, 247
mobile platforms, 3
model layer of Core Animation, 202
Model-View-Controller (MVC) design

paradigm, 24–25
modifying objects in Core Data, 42–44
monitoring

heading, 96–98
region, 98–100
significant location change, 94–95

motion manager, 16–17
moveToPoint, 156–157
movie player controller, 256–261
moviePlayer, 261
MPMediaPickerController, 227–229
MPMoviePlayerController, 245, 256–261
MPMoviePlayerViewController,

256–257, 261
MPMusicPlayerController, 229–230
multicore processors, 11–17
multimedia frameworks

AV Foundation, 242–246
Core Audio, 222–223

multithreading
in multicore processor, 12
UIKit animations with blocks, 199–200

Music Library, 227–231
music player controller, 229–230
MVC (Model-View-Controller) design

paradigm, 24–25

n
naming

downloads, 288–289
Newsstand issues, 283
persistent stores, 72–73

newCover, 290
Newsstand Content Availability, 291–292
Newsstand Kit

defined, 19
downloading content, 284–290
getting started, 276–281
notifications, 291–296
overview, 275
special considerations, 296–298
understanding apps, 282–283

NKAssetDownload
defined, 282
downloading content, 285–287
handling finished download and

progress, 287–289
reconnecting abandoned, 297–298

NKDontThrottleNewsstandContent	
➝ Notifications, 293

inDeX 305

NKIssue
defined, 282–283
downloading content, 285–286
handling finished download and

progress, 288–289
NKLibrary

defined, 282–283
reconnecting abandoned asset

downloads, 297–298
notifications

change. see change notifications
missed APNS, 296–297
music player, 230–231
Newsstand Kit, 291–296

Now Playing
challenges of mobile device audio, 223
using iPod Music Library, 227

NSBinaryStorageType, 30
NSConfinementConcurrencyType, 33
NSData, 171
NsInMemoryStoreType, 30
NSMainQueueConcurrencyType, 33
NSManagedObject

managed object context, 30
objectID, 40

NSNotificationCenter, 53
NSNumber, 69
NSObject, 5
NSPersistentStoreDidImportUbiquitous	

➝ ContentChangesNotification, 74
NSPredicate, 43–44
NSPrivateQueueConcurrencyType, 33
NSSQLiteStoreType, 30
NSThread, 184
NSUbiquitousKeyValueStore

adding and removing objects, 65–67
quick starting, 54
using, 64

NSUbiquitousKeyValueStoreDidChange	
➝ ExternallyNotification, 67–68

NSUndoManager, 45–47
NSUnknownKeyException, 177
NSURLConnection

creating CIImage with, 171
download delegate, 287–289
handling TWRequest response, 136–137
performing TWRequest, 134–135

NSUserDefaults
adding and removing objects, 65–67
key-value storage and, 63

O
OAuth services

in Accounts workflow, 116–117
migrating into Accounts, 122–124
Twitter API, 132
understanding, 115–116

objectForID
defined, 40
tips and tricks, 48

objectForKey:, 175
objectID

defined, 40
tips and tricks, 48

objects
adding new in Core Data, 41–42
CAAnimation, 203
CLLocation, 82
CLPlacemarks, 104–105
in Core Data, 25
Core Image, 168
creating TWRequest, 132–134
deleting in Core Data, 44–45
fetching and modifying in Core Data,

42–44
location, 91
in managed object model, 26–27
NKLibrary, 282–283
storing as keys, 63
UIBezierPath, 155–157

observers, 267
online materials

for Core Data, 49
iOS, 7

OpenAL, 226
OpenGL ES 2.0, 178
operation queues, 13–14
OS X

Core Image, 163
enabling iCloud, 56
iCloud storage between platforms, 61
native frameworks in iOS, 4

outputs of AVCaptureSession, 269–270

P
particle emitter animation, 213–217
paths

animating along, 207–208
in Core Graphics, 155–157

performance
CPU vs. GPU rendering, 178–179
GCD and, 14
of implicit vs. explicit animation, 202
location data source, 83–84
multicore processor, 11
storage types, 58

performBlock
change notifications, 74–75
managed object context, 33

performBlockAndWait
creating managed object context, 39
defined, 33

performRequestWithHandler
handling TWRequest response, 136–137
performing TWRequest, 134–135

performSelectorOnMainThread, 125–126
permissions

Accounts workflow, 117
location, 86–88
OAuth services, 115

persistent store coordinator
Core Data, 28
creating in Xcode, 37

persistent stores
adding new in Core Data, 38
store file and, 28–30
syncing with iCloud, 70–75

persistentStoreDidChange:, 74–75
perspective, 211–212
photo editing. see Core Image
photo library

capturing still image, 267–269
selecting photos from, 249–250

pixels
modifying with filters, 173–178
vs. points, 145–146

placemarks
forward geocoding, 104–105
reverse geocoding, 106–107

platforms, iCloud storage on, 61
Play and Record mode, 234
playback. see AV Foundation; Core Audio
playback, 240
Playback mode, 234
player layer, 244
points coordinate display, 145–146
polar coordinate system, 215
preferences, 62
prepareToPlay, 238–239
presentation layer of Core Animation, 202
preview layer

adding to AVCaptureSession, 265–266
AVCaptureVideoPreviewLayer, 262–263

properties
accessGranted, 121
account-type, 114
animating, 203
AVAudioSession, 237
CALayer, 201
CGImageRef, 170
creating managed object model, 36
custom animation, 204–205
graphics context, 150–151
key-value coding, 168
moviePlayer, 261
Newsstand app info list, 279–280
NKIssue, 283
objectID, 40
observers, 267
particle emitter, 213–217
showsUserLocation, 108
UIImagePickerController video, 255
UIKit animations, 197–198
UIView animatable, 195
userTrackingMode, 109

306 inDeX

protocols, Foundation, 5
public timeline, 133
publications. see Newsstand Kit
push notifications, 291–298

q
quality of video, 255
Quartz 2D, 144
Quartz Core

Core Animation, 193
Core Graphics and, 144
linking in Xcode project, 9–10
linking to AV Foundation project, 247
linking to project, 196

queues
managed object context, 48
operation vs. dispatch, 13–14
when creating managed object

context, 39

r
radial gradients, 158–159
reason keys, 68–69
reconnecting abandoned asset downloads,

297–298
Record mode, 234
recording HD, 266
recording undo events, 47
rectangle parameter for image

rendering, 181
redo, 45–48
region monitoring

CLLocationManager, 98–100
geocoding, 105

registerForRemoteNotificationTypes:,
293

registering for APNS
Newsstand update notifications, 293
overview, 292

registering iOS apps, 56
relationships

creating managed object model, 36
defined, 26
key-value coding, 168

remote notifications
iOS Simulator and, 292
missed notifications, 296–297
registering for Newsstand update

notifications, 293
responding to, 295–296

removeObjectForKey:, 65–67
rendering images

CIImage object, 168
with Core Image context, 178–181

running in background thread,
184–186

requests
creating TWRequest, 132–134
handling TWRequest, 136–137
performing in Twitter, 134–135

Required background modes, 280
requirements

downloading content, 287–289
hardware. see hardware requirements
iCloud entitlements, 58–60

reset, 45–48
resolution, 145–146
response to TWRequest, 136–137
restoring graphics context, 152–154
retina display, 145–146
reverse geocoding, 102–103, 106–107
rocket animation, 213–217
rollback, 45–48
root classes, 5
rotationMode, 208

S
Saved Photos album, 250
saving

in Core Data, 48
graphics context, 152–154

SDK (Software Development Kit), 9
selecting photos from photo library,

249–250
Sepia-tone filter

gotcha, 188
overview, 174–177

serial queues, 13
sessions, audio, 233–237
setAnimationDidStopSelector, 206
setContentURL, 257
setNeedsDisplay, 150
setNewsstandIconImage, 290
setObject:forKey, 65–66
Settings app, 116–117
setValue:forKey:, 175, 177
shake events, 47
showPhotoLibrary, 249
showsUserLocation, 108, 110
significant location change monitoring

defined, 94–95
delegate methods, 101

sizing fonts, 159
sliders

Core Image editor, 187–188
working with filters and, 176

Software Development Kit (SDK), 9
Solo Ambient mode

AVAudioPlayer, 239
AVAudioSession, 234

sound. see Core Audio
soundURL, 239
source types for UIImagePickerController,

249–250
standard location service

defined, 91–93
delegate methods, 101

startMonitoringForRegion:desired	
➝ Accuracy, 100

startMonitoringSignificantLocation	
➝ Changes, 95

startUpdatingHeading, 96–97
startUpdatingLocation, 91–93
startVideoCapture, 255
state notifications, 230–231. see also

notifications
still images. see also images

vs. video capture, 269–270
video frames and, 170–172

Stocks, 148
stopVideoCapture, 255
storage. see key-value storage

account, 118–120
containers, 60–61, 71
document, 76–77
issue, 284
persistent store and store file, 28–30

streaming video guidelines, 257
strings

attributes dictionary and, 177
forward geocoding, 104–105
key-value coding, 168

sublayer hierarchy of Core Animation, 201
synchronization

Core Data with iCloud, 69–75
with key-value storage, 64
responding to notifications, 68
setting up iCloud persistent store, 72–73

system accounts. see Accounts

t
team prefix identifiers

defined, 54
determining availability of iCloud, 71
enabling iCloud, 57–58
iCloud storage between platforms, 61

technologies in iOS 5, 18–19
terms of service, Map Kit, 82
testing iCloud, 78
text, 159
three dimensional (3D) transforms

adding perspective, 211–212
in CALayer, 201
Core Animation, 209–210

three-G (3G) data connection, 62
Tiny Wings, 225

inDeX 307

tokens, access. see access tokens
Top Ten Technologies of iOS 5, 18–19
touch events, 47
tracking

favorites, 65–67
issues, 282–283
location, 108–109

transform, 195
transforms. see 3D (three dimensional)

transforms
transition animation, 203
Twitter

Accounts. see Accounts
framework in iOS, 18
getting started, 115–116
interacting with API, 132–137
overview, 113
tweet compose view controller, 128–131

TWRequest
creating, 132–134
performing, 134–135

TWTweetComposeViewController, 128–131

u
ubiquitous key-value store. see key-value

storage
ubiquity container

document storage and, 76–77
quick starting iCloud, 54

ubiquity container identifier
defined, 54
team prefix identifier and, 71, 78

UIBackgroundModes, 280
UIBezierPath, 155–157
UIEvent, 142
UIGraphicsGetCurrentContext(), 147
UIImage, 170–172
UIImagePickerController, 245, 248–255
UIImageView, 181
UIKit

Core Animation using, 197–200
Core Graphics and, 142
getting started with Core Animation,

194–195
iOS crash course, 8
iOS prerequisites, 4
linking to project, 247
UIImage and CIImage, 170
UIImagePickerController, 248–255

UINewsstandApp, 280
UIRemoteNotificationTypeNewsstand	

➝ ContentAvailability, 293
UITweetComposeViewController, 128

UIView
animatable properties, 195
animation with UIKit, 197–200
custom camera overlay, 251–254
customization, 149–151

undo, 45–48
UNIX, 12
unknown authorization status, 90
updating

heading, 96–97
location, 91–93
Newsstand appearance, 290
notifications, 293

URLs
creating AVAudioPlayer, 238
creating CIImage, 171
creating TWRequest, 132–134
downloading issue content, 289
loading content into

MPMoviePlayerController, 257
syncing persistent stores, 72–73

user accounts. see Accounts
user defaults

adding and removing objects, 65–67
key-value storage and, 63

users
events, 47
migrating into Accounts, 122–124

userTrackingMode, 109

V
values. see also properties

in CALayer, 201
complex filter, 175–176
in Core Data, 25
fetched properties and, 27
keyframe animation, 207
for location authorization, 90
obtaining image analysis, 182–183
perspective, 211–212
setting Sepia-tone filter, 177
userTrackingMode, 109

video
capture. see capturing media
in-camera effects and, 269–270
loading into MPMoviePlayerController,

257–261
still images and frames, 170–172
working with UIImagePickerController,

254–255
videoMaximumDuration, 255
videoQuality, 255
viewDidLoad

animation contexts, 197–198

creating MPMoviePlayerController, 260
Twitter availability, 131

views
CALayer, 201
custom camera overlay, 251–254
customizing UIView, 149–151
Map Kit, 108–109
MPMoviePlayerViewController,

256–257, 261
tweet compose view controller, 128–131
UIImagePickerController, 250
UIView. see UIView

w
Weather

3D transforms, 209
Core Graphics, 148

web services authorization, 115
whitelist, 284
Wi-Fi

geocoding access, 103
location information, 84
significant location change

monitoring, 94
wildcards

in bundle ID, 57
iCloud storage between platforms, 61

workflows
Accounts, 116–117
image processing, 169
OAuth, 115

X
Xcode

ARC, 6
info property list, 279–280
iOS crash course, 8–10
linking Accounts and Twitter to

project, 114
linking audio frameworks to

project, 226
linking AV Foundation to project, 247
linking Core Graphics to project, 143
linking Core Image to project, 167
linking Newsstand Kit to project, 278
linking Quartz Core to project, 196
setting up Core Data in, 34–40

Z
Z value, 201

	Contents
	Acknowledgments
	Welcome to iOS Core Frameworks
	CHAPTER 4 CORE LOCATION AND MAP KIT
	Getting Started with Core Location and Map Kit
	The Core Location Manager
	Forward and Reverse Geocoding
	Working with Map Kit
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	J
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

