

Praise for
How Google Tests Software

“James Whittaker has long had the pulse of the issues that are shaping
testing practice. In the decade of the Cloud Transformation, this book is a
must read not just for Googlers, but for all testers who want their prac-
tices to remain relevant, competitive, and meaningful.”

—Sam Guckenheimer, Product Owner,
Visual Studio Strategy, Microsoft

“Google has consistently been an innovator in the app testing space—
whether it’s blending test automation with manual efforts, melding in-
house and outsourced resources, or more recently, pioneering the use of
in-the-wild testing to complement their in-the-lab efforts. This appetite for
innovation has enabled Google to solve new problems and launch better
apps.

In this book, James Whittaker provides a blueprint for Google’s suc-
cess in the rapidly evolving world of app testing.”

—Doron Reuveni, CEO and Cofounder, uTest

“This book is a game changer, from daily releases to heads-up displays.
James Whittaker takes a computer-science approach to testing that will be
the standard for software companies in the future. The process and tech-
nical innovations we use at Google are described in a factual and enter-
taining style. This book is a must read for anyone involved in software
development.”

—Michael Bachman, Senior Engineering Manager
at Google Inc., AdSense/Display

“By documenting much of the magic of Google’s test engineering prac-
tices, the authors have written the equivalent of the Kama Sutra for mod-
ern software testing.”

—Alberto Savoia, Engineering Director, Google

“If you ship code in the cloud and want to build a strategy for ensuring a
quality product with lots of happy customers, you must study and seri-
ously consider the methods in this book.”

—Phil Waligora, Salesforce.com

“James Whittaker is an inspiration and mentor to many people in the
field of testing. We wouldn’t have the talent or technology in this field
without his contributions. I am consistently in awe of his drive, enthusi-
asm, and humor. He’s a giant in the industry and his writing should be
required reading for anyone in the IT industry.”

—Stewart Noakes, Chairman TCL Group Ltd.,
United Kingdom

“I worked with James Whittaker during his time at Microsoft, and
although I miss having him here at Microsoft, I knew he would do great
things at Google. James, Jason Arbon, and Jeff Carollo have packed this
book with innovative testing ideas, practical examples, and insights into
the Google testing machine. Anyone with an ounce of curiosity about
Google’s approach to testing and quality or with the smallest desire to
discover a few new ideas in testing will find value in these pages.”

—Alan Page, Microsoft Xbox, and Author
of How We Test Software at Microsoft

How Google Tests
Software

This page intentionally left blank

James Whittaker
Jason Arbon
Jeff Carollo

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

How Google Tests
Software

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those designa-
tions appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in
quantity for bulk purchases or special sales, which may include elec-
tronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

The Library of Congress cataloging-in-publication data is on file.

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This pub-
lication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. To obtain
permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your
request to (201) 236-3290.

ISBN-13: 978-0-321-80302-3

ISBN-10: 0-321-80302-7

Text printed in the United States on recycled paper at Courier in
Westford, Massachusetts.

First printing: March 2012

Publisher
Paul Boger

Executive Editor
Chris Guzikowski

Senior Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-Shirley

Copy Editor
Ginny Bess Munroe

Indexer
Erika Millen

Proofreader
Mike Henry

Editorial Assistant
Olivia Basegio

Cover Designer
Anne Jones

Compositor
Gloria Schurick

To all testers at Google, Microsoft, and elsewhere who’ve made me
think differently.
—James A. Whittaker

To my wife Heather and my children Luca, Mateo, Dante, and Odessa who
thought I worked at Starbucks all this time.
—Jason Arbon

To Mom, Dad, Lauren, and Alex.
—Jeff Carollo

This page intentionally left blank

A Fault to Guide Software Testing

010101011011000100100100101010110110001001001001010

Table of Contents
Foreword by Alberto Savoia xiii

Foreword by Patrick Copeland xvii

Preface xxiii

Chapter 1 Introduction to Google Software Testing 1

Quality≠Test 5
Roles 6
Organizational Structure 8
Crawl, Walk, Run 10
Types of Tests 12

Chapter 2 The Software Engineer in Test 15

The Life of an SET 17
Development and Test Workflow 17
Who Are These SETs Anyway? 22
The Early Phase of a Project 22
Team Structure 24
Design Docs 25
Interfaces and Protocols 27
Automation Planning 28
Testability 29
SET Workflow: An Example 32
Test Execution 40
Test Size Definitions 41
Use of Test Sizes in Shared Infrastructure 44
Benefits of Test Sizes 46
Test Runtime Requirements 48

Case 1: Change in Common Library 52
Test Certified 54

An Interview with the Founders of the Test
Certified Program 57

Interviewing SETs 62
An Interview with Tool Developer Ted Mao 68
An Interview with Web Driver Creator Simon Stewart 70

Chapter 3 The Test Engineer 75

A User-Facing Test Role 75
The Life of a TE 76

Test Planning 79
Risk 97
Life of a Test Case 108
Life of a Bug 113
Recruiting TEs 127
Test Leadership at Google 134
Maintenance Mode Testing 137
Quality Bots Experiment 141
BITE Experiment 153
Google Test Analytics 163
Free Testing Workflow 169
External Vendors 173

An Interview with Google Docs TE Lindsay Webster 175
An Interview with YouTube TE Apple Chow 181

Chapter 4 The Test Engineering Manager 187

The Life of a TEM 187
Getting Projects and People 189
Impact 191
An Interview with Gmail TEM Ankit Mehta 193
An Interview with Android TEM Hung Dang 198
An Interview with Chrome TEM Joel Hynoski 202
The Test Engineering Director 206
An Interview with Search and Geo Test Director

Shelton Mar 207
An Interview with Engineering Tools Director

Ashish Kumar 211
An Interview with Google India Test Director Sujay Sahni 214
An Interview with Engineering Manager Brad Green 219
An Interview with James Whittaker 222

Chapter 5 Improving How Google Tests Software 229

Fatal Flaws in Google’s Process 229
The Future of the SET 231
The Future of the TE 233
The Future of the Test Director and Manager 234
The Future of Test Infrastructure 234
In Conclusion 235

x How Google Tests Software

Appendix A Chrome OS Test Plan 237

Overview of Themes 237
Risk Analysis 238
Per-Build Baseline Testing 239
Per-LKG Day Testing 239
Per-Release Testing 239
Manual Versus Automation 240
Dev Versus Test Quality Focus 240
Release Channels 240
User Input 241
Test Case Repositories 241
Test Dashboarding 241
Virtualization 241
Performance 242
Stress, Long-Running, and Stability 242
Test Execution Framework (Autotest) 242
OEMs 242
Hardware Lab 242
E2E Farm Automation 243
Testing the Browser AppManager 243
Browser Testability 243
Hardware 244
Timeline 244
Primary Test Drivers 246
Relevant Documents 246

Appendix B Test Tours for Chrome 247

The Shopping Tour 247
The Student Tour 248

Suggested Areas to Test 248
The International Calling Tour 249

Suggested Areas to Test 249
The Landmark Tour 249

Suggested Landmarks in Chrome 249
The All Nighter Tour 250

Suggested Areas to Test 250
The Artisan’s Tour 251

Tools in Chrome 251
The Bad Neighborhood Tour 251

Bad Neighborhoods in Chrome OS 251
The Personalization Tour 252

Ways to Customize Chrome 252

Contents xi

Appendix C Blog Posts on Tools and Code 253

Take a BITE out of Bugs and Redundant Labor 253
Unleash the QualityBots 255
RPF: Google’s Record Playback Framework 257
Google Test Analytics—Now in Open Source 260

Comprehensive 260
Quick 260
Actionable 260
Sustained Value 260

Index 265

xii How Google Tests Software

A Fault to Guide Software Testing

010101011011000100100100101010110110001001001001010

Foreword by Alberto Savoia
Writing a foreword for a book you wish you had written yourself is a dubi-
ous honor; it’s a bit like serving as best man for a friend who is about to
spend the rest of his life with the girl you wanted to marry. But James
Whittaker is a cunning guy. Before asking me if I’d be willing to write this
preface, he exploited my weakness for Mexican food by treating me to a
very nice dinner and plying me with more than a couple Dos Equis before
he “popped the question.” By the time this happened, I was as malleable
and agreeable as the bowl of guacamole I had just finished. “Si senor,” was
pretty much all I could say. His ploy worked and here he stands with his
book as his bride and I get to make the wedding speech.

As I said, he’s one cunning guy.
So here we go…a preface to the book I wish I had written myself. Cue

the mushy wedding music.
Does the world really need yet another software testing book, especial-

ly yet another software testing book from the prolific James Whittaker,
whom I’ve publicly called “the Octomom1 of test book publishing” on
more than one occasion? Aren’t there enough books out there describing
the same old tired testing methodologies and dishing out dubious and
dated advice? Well, there are enough of those books, but this book I am
afraid is not one of them. That’s why I wish I had written it myself. The
world actually needs this particular testing book.

The Internet has dramatically changed the way most software is
designed, developed, and distributed. Many of the testing best practices,
embodied in any number of once popular testing books of yesteryear, are
at best inefficient, possibly ineffective, and in some cases, downright coun-
terproductive in today’s environment. Things have been moving so fast in
our industry that many of the software testing books written as recently as
a few years ago are the equivalent of surgery books containing advice
about leeches and skull drilling to rid the body of evil spirits; it would be
best to recycle them into adult diapers to make sure they don’t fall into the
hands of the gullible.

Given the speed at which things are evolving in the software industry,
I would not be too surprised if ten years from now this book will also be
obsolete. But until the paradigm shifts again, How Google Tests Software
gives you a very timely and applicable insider’s view into how one of the
world’s most successful and fastest growing Internet companies deals with
the unique challenges of software testing in the twenty-first century. James
Whittaker and his coauthors have captured the very essence of how
Google is successful at testing some of the most complicated and popular

1. Don’t get the Octomom reference? Google it!

software of our times. I know this is the case because I’ve been there
through the transition.

I first joined Google as engineering director in 2001. At the time, we
had about two hundred developers and…a whopping three testers! My
developers were already taking responsibility for testing their own code,
but test-driven development and test automation tools such as JUnit were
just entering the scene, so our testing was mostly ad-hoc and dependent on
the diligence of the individual writing the code. But that was okay; we
were a startup and we had to move fast and take risks or we couldn’t com-
pete with the big established players.

However, as the company grew in size and our products became more
mission-critical for our users and customers (such as AdWords, one of the
products I was responsible for, was quickly becoming a major source of
monetizing websites), it became clear that we had to increase our focus
and investment in testing. With only three testers, we had no choice but to
get developers more involved in testing. Along with a few other Googlers,
I introduced, taught, and promoted unit testing. We encouraged develop-
ers to make testing a priority and use tools such as JUnit to automate them.
But adoption was slow and not everybody was sold on the idea of devel-
opers testing their own code. To keep the momentum going, every week at
the company’s Friday afternoon beer bash (appropriately named TGIF), I
gave out testing awards to the developers who wrote tests. It felt a lot like
an animal trainer giving treats to doggies for performing a trick, but at
least it drew attention to testing. Could I be so lucky that getting develop-
ers to test would be this simple?

Unfortunately, the treats didn’t work. Developers realized that in order
to have adequate tests, they had to write two or three lines of unit test code
for every line of code under test and that those tests required at least as
much maintenance as the functional code itself and had just as much
chance of being buggy. It also became clear to no one’s surprise that
developer-unit testing was not sufficient. We still needed integration tests,
system tests, UI tests, and so on. When it came to testing, we had a lot of
growing up (and substantial learning) to do, and we had to do it fast.
Very fast!

Why the urgency? Well, I don’t believe that any amount of testing can
turn a bad idea or an ill-advised product into a success. I do believe that
the wrong approach to testing can kill the chances of a good product or
company or, at the very least, slow down its growth and open the door for
the competition. Google was at that point. Testing had become one of the
biggest barriers to continued success and coming up with the right testing
strategy to keep up with our ultra-rapid growth in users, products, and
employees without slowing the company down involved a lot of innova-
tive approaches, unorthodox solutions, and unique tools. Not everything

xiv Foreword by Alberto Savoia

worked, of course, but in the process, we learned valuable lessons and
practices that are applicable to any company that wants to grow or move at
the speed of Google. We learned how to have attention to quality without
derailing development or the speed at which we got things done. The
resulting process, with some insights into the thinking behind them and
what makes them work, is what this book is about. If you want to under-
stand how Google met the challenges of testing in the twenty-first century
on modern Internet, mobile, and client applications, then you have come to
the right place. I may wish it was me who was telling the rest of the story,
but James and his coauthors beat me to it and they have nailed the essence
of what testing is like here at Google.

One final note on the book: James Whittaker is the guy who made this
book happen. He came to Google, dug in to the culture, took on big and
important projects, and shipped products such as Chrome, Chrome OS,
and dozens of smaller ones. Somewhere in that time, he became the public
face of Google testing. But, unlike some of his other books, much of this
material is not his. He is as much a reporter on the evolution of how
Google tests software as he is a contributor to it. Keep that in mind as you
read it because James will probably try to take all the credit for himself!

As Google grew from 200 to over 20,000 employees, there were many
people who played important roles in developing and putting into action
our testing strategy. James credits many of them and they have contributed
directly by writing sidebars and giving interviews that are published in
this book. However, no one, not me, James, or anyone else mentioned in
this book, has had as much influence as Patrick Copeland, the architect of
our current organizational structure and leader of Google’s Engineering
Productivity team. Every tester in the company reports up through Patrick
and he is the executive whose vision created what James has documented
and contributed to here. If anyone can take credit for how Google tests
software today, it’s Patrick. I am not just saying this because he’s my boss; I
am saying it because he’s my boss and he told me to say it!

Alberto Savoia is an engineering director and innovation agitator at
Google. He first joined Google in 2001 when, among other things, he man-
aged the launch of Google AdWords and played a key role in kick-starting
a developer / unit testing culture in the company. He is also the author of
The Way of Testivus and of “Beautiful Tests” in O’Reilly’s Beautiful Code.

Note by James Whittaker: I couldn’t agree more! As a scribe and jour-
nalist in this process, I owe most of the material to the organization that
Patrick has created. And I am not just saying this because he gave me per-
mission to write this book. As my boss, he made me write this book!

Foreword by Alberto Savoia xv

This page intentionally left blank

A Fault to Guide Software Testing

010101011011000100100100101010110110001001001001010

Foreword by Patrick Copeland

My adventure with Google started in March of 2005. If you read Alberto’s
foreword, you know a bit about the conditions of Google around that time.
It was small but beginning to show signs of serious growing pains. It was
also a time of rapid technological change as the web world was welcoming
dynamic content and the cloud was becoming a viable alternative to the
then dominant world of client-server.

That first week, I sat with the rest of the Nooglers topped with a tri-
colored propeller hat listening to the founders discussing corporate strate-
gy at a weekly company meeting called TGIF. I knew little about what I
had gotten myself into. I was naïve enough to be excited and aware
enough to be more than a little intimated. The speed and scale of Google
made my previous decade of 5-year ship cycles seem like poor preparation.
Worse still, I think I was the only tester wearing one of those Noogler hats.
Surely there were more of us somewhere!

I joined Google when engineering was just shy of 1,000 people. The
testing team had about 50 full timers and some number of temporary
workers I never could get my head around. The team was called “Testing
Services” and focused the majority of its energy on UI validation and
jumping into projects on an as-needed basis. As you might imagine, it
wasn’t exactly the most glorified team at Google.

But at that time it was enough. Google’s primary businesses were
Search and Ads. The Google world was much smaller than it is today, and
a thorough job of exploratory testing was enough to catch most quality
concerns. But the world was slowly changing. Users were hitting the web
in unprecedented numbers and the document-based web was giving way
to the app-based web. You could feel the inevitability of growth and
change where the ability to scale and get to market quickly would be the
difference between relevance and…a place you did not want to be.

Inside Google, the scale and complexity issues were buckling Testing
Services. What worked well with small homogenous projects was now
burning out good testers as they leapt from one project that was on fire to
the next. And topping all that off was Google’s insistence to release quick-
er. Something needed to give and I had the choice between scaling this
manually intensive process or changing the game completely. Testing
Services needed a radical transformation to match the radical change hap-
pening to the industry and the rest of Google.

I would very much like to say that I drew upon my vast wealth of
experience and conjured the perfect test organization, but the truth is that
my experience had taught me little more than the wrong way to do things.
Every test organization I ever worked as part of or led was dysfunctional
in one way or the other. Stuff was always broken. The code was broken, the

tests were broken, and the team was broken! I knew what it meant to be
buried under quality and technical debt where every innovative idea was
squashed lest it risk breaking the fragile product it depended on. If my
experience taught me anything, it was how not to do testing.

In all my interactions up to this point, one thing about Google was
clear. It respected computer science and coding skill. Ultimately, if testers
were to join this club, they would have to have good computer
science fundamentals and some coding prowess. First-class citizenship
demanded it.

If I was going to change testing at Google, I needed to change what it
meant to be a tester. I used to try to imagine the perfect team and how such
a team would shoulder the quality debt and I kept coming back to the
same premise: The only way a team can write quality software is when the
entire team is responsible for quality. That meant product managers, devel-
opers, testers…everyone. From my perspective, the best way to do this was
to have testers capable of making testing an actual feature of the code base.
The testing feature should be equal to any feature an actual customer
might see. The skill set I needed to build features was that of a developer.

Hiring testers who can code features is difficult; finding feature devel-
opers who can test is even more difficult. But the status quo was worse
than either so I forged ahead. I wanted testers who could do more for their
products and at the same time, I wanted to evolve the nature and owner-
ship of the testing work, which meant asking for far larger investment
from the development teams. This is the one organizational structure I had
yet to see implemented in all my time in the industry and I was convinced
it was right for Google, and I thought that as a company, we were ready
for it.

Unfortunately, few others in the company shared my passion for such
profound and fundamental change. As I began the process of socializing
my equal-but-different vision for the software testing role, I eventually
found it difficult to find a lunch partner! Engineers seemed threatened by
the very notion that they would have to play a bigger role in testing, point-
ing out “that’s what test is for.” Among testers, the attitude was equally
unsavory as many had become comfortable in their roles and the status
quo had such momentum that change was becoming a very hard problem.

I kept pressing the matter mostly out of fear that Google’s engineering
processes would become so bogged down in technical and quality debt
that I’d be back to the same five-year ship cycles I had so happily left
behind in the old client-server world. Google is a company of geniuses
focused on innovation and that entrepreneurial makeup is simply incom-
patible with long product ship cycles. This was a battle worth fighting and
I convinced myself that once these geniuses understood the idea of devel-
opment and testing practices for a streamlined and repeatable “technology
factory,” they would come around. They would see that we were not a
startup anymore and with our rapidly growing user base and increasing
technical debt of bugs and poorly structured code would mean the end of
their coder’s playground.

xviii Foreword by Patrick Copeland

I toured the product teams making my case and trying to find the
sweet spot for my argument. To developers, I painted a picture of continu-
ous builds, rapid deployment, and a development process that moved
quickly, leaving more time for innovation. To testers, I appealed to their
desire to be full engineering partners of equal skill, equal contribution, and
equal compensation.

Developers had the attitude that if we were going to hire people skilled
enough to do feature development, then we should have them do feature
development. Some of them were so against the idea that they filled my
manager’s inbox with candid advice on how to deal with my madness.
Fortunately, my manager ignored those recommendations.

Testers, to my surprise, reacted similarly. They were vested in the way
things were and quick to bemoan their status, but slow to do anything
about it.

My manager’s reaction to the complaints was telling: “This is Google,
if you want something done, then do it.”

And so that’s what I did. I assembled a large enough cadre of like-
minded folks to form interview loops and we began interviewing candi-
dates. It was tough going. We were looking for developer skills and a tester
mindset. We wanted people who could code and wanted to apply that skill
to the development of tools, infrastructure, and test automation. We had to
rethink recruiting and interviewing and then explain that process to the
hiring committees who were entrenched and comfortable with the way
things were.

The first few quarters were rough. Good candidates were often torpe-
doed in the vetting process. Perhaps they were too slow to solve some
arcane coding problem or didn’t fare well in something that someone
thought was important but that had nothing to do with testing skill. I
knew hiring was going to be difficult and made time each week to write
hiring justification after hiring justification. These went to none other than
Google co-founder Larry Page who was (and still is) the last approval in
the hiring process. He approved enough of them that my team began to
grow. I often wonder if every time Larry hears my name he still thinks,
“Hiring testers!”

Of course, by this time, I had made enough noise trying to get buy-in
that we had no choice but to perform. The entire company was watching
and failure would have been disastrous. It was a lot to expect from a small
test team supported by an ever-changing cast of vendors and temps. But
even as we struggled to hire and I dialed back the number of temps we
used, I noticed change was taking hold. The more scarce testing resources
became, the more test work was left for developers to do. Many of the
teams rose to the challenge. I think if technology had stayed the same as it
was, this alone would have taken us nearly where we needed to be.

But technology wasn’t standing still and the rules of development and
testing were changing rapidly. The days of static web content were gone.
Browsers were still trying to keep up. Automation around the browser was
a year behind the already tardy browsers. Making testing a development

Foreword by Patrick Copeland xix

problem at the same time those same developers were facing such a huge
technology shift seemed a fool’s errand. We lacked the ability to properly
test these applications manually, much less with automation.

The pressure on the development teams was just as bad. Google began
buying companies with rich and dynamic web applications. YouTube,
Google Docs, and so on stretched our internal infrastructure. The problems
I was facing in testing were no more daunting than the problems the devel-
opment teams were facing in writing code for me to test! I was trying to
solve a testing problem that simply couldn’t be solved in isolation. Testing
and development, when seen as separate disciplines or even as distinct
problems, was wrong-headed and continuing down such a path meant we
would solve neither. Fixing the test team would only get us an incremental
step forward.

Progress was happening. It’s a funny thing about hiring smart people:
They tend to make progress! By 2007, the test discipline was better posi-
tioned. We were managing the endgame of the release cycle well.
Development teams knew they could count on us as partners to produc-
tion. But our existence as a late-in-the-cycle support team was confining us
to the traditional QA model. Despite our ability to execute well, we were
still not where I wanted us to be. I had a handle on the hiring problem and
testing was moving in the right direction, but we were engaged too late in
the process.

We had been making progress with a concept we called “Test
Certified” (which the authors explain in some detail later in this book)
where we consulted with dev teams and helped them get better code
hygiene and unit testing practices established early. We built tools and
coached teams on continuous integration so that products were always in a
state that made them testable. There were countless small improvements
and tweaks, many of them detailed in this book, that erased much of the
earlier skepticism. Still, there was a lack of identity to the whole thing. Dev
was still dev; test was still test. Many of the ingredients for culture change
were present, but we needed a catalyst for getting them to stick.

As I looked around the organization that had grown from my idea to
hire developers in a testing role, I realized that testing was only part of
what we did. We had tool teams building everything from source reposito-
ries to building infrastructure to bug databases. We were test engineers,
release engineers, tool developers, and consultants. What struck me was
just how much the nontesting aspect of our work was impacting produc-
tivity. Our name may have been Testing Services, but our charter was so
much more.

So I decided to make it official and I changed the name of the team to
Engineering Productivity. With the name change also came a cultural
adjustment. People began talking about productivity instead of testing and
quality. Productivity is our job; testing and quality are the job of everyone
involved in development. This means that developers own testing and

xx Foreword by Patrick Copeland

developers own quality. The productivity team is responsible for enabling
development to nail those two things.

In the beginning, the idea was mostly aspirational and our motto of
“accelerating Google” may have rung hollow at first, but over time and
through our actions, we delivered on these promises. Our tools enabled
developers to go faster and we went from bottleneck to bottleneck clearing
the clogs and solving the problems developers faced. Our tools also
enabled developers to write tests and then see the result of those tests on
build after build. Test cases were no longer executed in isolation on some
tester’s machine. Their results were posted on dashboards and accumulat-
ed over successive versions so they became part of the public record of the
application’s fitness for release. We didn’t just demand developers get
involved; we made it easy for them to do so. The difference between pro-
ductivity and testing had finally become real: Google could innovate with
less friction and without the accumulation of technical debt.

And the results? Well, I won’t spoil the rest of the book because that’s
why it was written. The authors took great pains to scour their own experi-
ences and those of other Googlers to boil our secret sauce down to a core
set of practices. But we were successful in many ways—from orders of
magnitude, decreases in build times, to run-it-and-forget-it test automation,
to open sourcing some truly innovative testing tools. As of the writing of
this preface, the Productivity Team is now about 1,200 engineers or a bit
larger than all of Google Engineering in 2005 when I joined. The productiv-
ity brand is strong and our charter to accelerate Google is an accepted part
of the engineering culture. The team has travelled light years from where
we were on my first day sitting confused and uncertain at TGIF. The only
thing that hasn’t changed since that day is my tri-colored propeller hat,
which sits on my desk serving as a reminder of how far we’ve come.

Patrick Copeland is the senior director of Engineering Productivity and the
top of the testing food chain at Google. All testers in the company report
up through Patrick (whose skip-level manager, incidentally, is Larry Page,
Google’s Co-founder and CEO). Patrick’s career at Google was preceded by
nearly a decade at Microsoft as a director of Test. He’s a frequent public
speaker and known around Google as the architect of Google’s technology
for rapid development, testing, and deployment of software.

Foreword by Patrick Copeland xxi

This page intentionally left blank

A Fault to Guide Software Testing

010101011011000100100100101010110110001001001001010

Preface

Software development is hard. Testing that software is hard, too. And
when you talk about development and testing at the scale of the entire
web, you are talking about Google. If you are interested in how one of the
biggest names in the Internet handles such large-scale testing, then you
have found the right book.

Google tests and releases hundreds of millions of lines of code distri-
buted across millions of source files daily. Billions of build actions prompt
millions of automated tests to run across hundreds of thousands of
browser instances daily. Operating systems are built, tested, and released
within the bounds of a single calendar year. Browsers are built daily. Web
applications are released at near continuous pace. In 2011, 100 features of
Google+ were released over a 100-day period.

This is Google scale and Google speed—the scale of the Web itself—
and this is the testing solution described in this book. We reveal how this
infrastructure was conceived, implemented, and maintained. We introduce
the reader to the many people who were instrumental in developing both
the concepts and the implementation and we describe the infrastructure
that it takes to pull it off.

But it wasn’t always this way. The route Google took to get where it is
today is just as interesting as the technology we use to test. Turn the clock
back six years and Google was more like other companies we once worked
for: Test was a discipline off the mainstream. Its practitioners were under-
appreciated and over-worked. It was a largely manual process and people
who were good at automating it were quickly absorbed into development
where they could be more “impactful.” The founding team of what Google
calls “Engineering Productivity” has to overcome bias against testing and a
company culture that favored heroic effort over engineering rigor. As it
stands today, Google testers are paid on the same scale as developers with
equivalent bonuses and promotion velocity. The fact that testers succeeded
and that this culture has lived on through significant company growth (in
terms of products, variety, and revenue) and structural reorganizations
should be encouraging to companies following in Google’s footsteps.
Testing can be done right and it can be appreciated by product teams and
company executives alike.

As more and more companies find their fortunes and futures on the
Web, testing technology and organizational structure as described in this
book might become more prevalent. If so, consider this the playbook for
how to get there.

This Google testing playbook is organized according to the roles
involved. In the first section, we discuss all the roles and introduce all the

concepts, processes, and intricacies of the Google quality processes. This
section is a must read.

The chapters can be read in any order whatsoever. We first cover the
SET or software engineer in test role because this is where modern Google
testing began. The SET is a technical tester and the material in that chapter
is suitably technical but at a high enough level that anyone can grasp the
main concepts. The SET chapter is followed by a chapter covering the other
primary testing role, that of the TE or test engineer. This is a big chapter
because the TE’s job is broad and Google TEs cover a lot of ground during
the product cycle. This is a role many traditional testers find familiar, and
we imagine it will be the most widely read section of the book because it
applies to the broadest practitioner audience.

The balance of the book is about test management and interviews with
key Googlers who either played a part in the history of Google test or are
key players on key Google products. These interviews will likely be of
interest to anyone who is trying to develop Google-like testing processes or
teams.

There is a final chapter that really should not be missed by any inter-
ested reader. James Whittaker gives insight into how Google testing is still
evolving and he makes some predictions about where Google and the
industry at large are heading test-wise. We believe many readers will find
it insightful and some might even find it shocking.

xxiv Preface

A NOTE ABOUT FIGURES
Due to the complexity of the topics discussed and the graphical nature of the Internet, some figures from Chapter 3 in this
book are very detailed and are intended only to provide a high-level view of concepts. Those figures are representational
and not intended to be read in detail. If you prefer to view these figures on your computer, you can download them at
www.informit.com/title/9780321803023.

www.informit.com/title/9780321803023

A Word About This Book xxv

A Word About This Book
When Patrick Copeland originally suggested that I write this book, I was
hesitant to do so, and my reasons all turned out to be good ones. People
would question whether I was the best Googler to write it. (They did.) Too
many people would want to get involved. (This also turned out to be true.)
But mostly, it was because all my prior books were written for beginners.
Both the How to Break…series and my Exploratory Testing book can be told
as a complete, end-to-end story. Not so with this book. Readers might
well read this book in a single sitting, but it’s meant as more of a reference
for how Google actually performs the tasks, both small ones and big ones,
that make up our practice of testing. I expect people who have tested soft-
ware in a corporate environment will get more out of it than beginners
because they will have a basis for comparing our Google processes to the
ones they are used to. I picture experienced testers, managers, and execu-
tives picking it up, finding a topic of interest, and reading that section to
see how Google performs some specific task. This is not a writing style I
have often assumed!

Two heretofore unpublished co-authors have joined me in this
endeavor. Both are excellent engineers and have been at Google longer
than I have been. Jason Arbon’s title is a test engineer, but he’s an
entrepreneur at heart and his impact on many of the ideas and tools that
appear in the test engineer chapters of this book has been profound.
Having our careers intersect has changed us both. Jeff Carollo is a tester
turned developer and is categorically the best test developer I have ever
met. Jeff is one of the few people I have seen succeed at “walk away
automation”—which is test code written so well and so self contained that
the author can create it and leave it to the team to run without interven-
tion. These two are brilliant and we tried hard to make this book read with
one voice.

There are any number of guest Googlers who have supplied material.
Whenever the text and subject matter is the work of a single author, that
person is identified in the heading that precedes his work. There are also a
number of interviews with key Googlers who had profound impact on the
way we do testing. It was the best way we could think of to include as
many of the people who defined Google testing without having a book

with 30 authors! Not all readers will be interested in all the interviews, but
they are clearly marked in the text so they can be skipped or read individu-
ally. We thank all these contributors profusely and accept any blame if our
ability to do justice to their work fell short in any way. The English lan-
guage is a poor medium to describe sheer brilliance.

Happy reading, happy testing, and may you always find (and fix) the
bug you are looking for.

James Whittaker
Jason Arbon

Jeff Carollo
Kirkland, Washington

xxvi A Word About This Book

Acknowledgments xxvii

Acknowledgments
We want to acknowledge every engineer at Google who has worked tire-
lessly to improve the quality. We also want to mention our appreciation for
the open and distributed culture of Google engineering and management,
which allowed us to treat our testing methodologies and practices much as
we build products—with experimentation and the freedom to explore.

We’d like to specifically mention the following people who spent their
energy and took risks to push testing into the cloud: Alexis O. Torres, Joe
Muharksy, Danielle Drew, Richard Bustamante, Po Hu, Jim Reardon, Tejas
Shah, Julie Ralph, Eriel Thomas, Joe Mikhail, and Ibrahim El Far. Also,
thanks to our editors, Chris Guzikowski and Chris Zahn, who politely tol-
erated our engineering-speak. Thanks to interviewees who shared their
views and experiences: Ankit Mehta, Joel Hynoski, Lindsay Webster, Apple
Chow, Mark Striebeck, Neal Norwitz, Tracy Bialik, Russ Rufer, Ted Mao,
Shelton Mar, Ashish Kumar, Sujay Sahni, Brad Green, Simon Stewart, and
Hung Dang. A special thanks goes to Alberto Savoia for the inspiration to
prototype and iterate quickly. Thanks to Google and the cafeteria staff and
chefs for the great food and coffee. Thanks to candid feedback from Phil
Waligora, Alan Page, and Michael Bachman. Ultimately, thanks to Pat
Copeland for assembling and funding such an energetic and talented set of
engineers who are focused on quality.

This page intentionally left blank

A Fault to Guide Software Testing

010101011011000100100100101010110110001001001001010

About the Authors

James Whittaker is an engineering director at Google and has been respon-
sible for testing Chrome, maps, and Google web apps. He used to work for
Microsoft and was a professor before that. James is one of the best-known
names in testing the world over.

Jason Arbon is a test engineer at Google and has been responsible for
testing Google Desktop, Chrome, and Chrome OS. He also served as devel-
opment lead for an array of open-source test tools and personalization
experiments. He worked at Microsoft prior to joining Google.

Jeff Carollo is a software engineer in test at Google and has been
responsible for testing Google Voice, Toolbar, Chrome, and Chrome OS. He
has consulted with dozens of internal Google development teams helping
them improve initial code quality. He converted to a software engineer in
2010 and leads development of Google+ APIs. He also worked at Microsoft
prior to joining Google."

This page intentionally left blank

CHAPTER 1
Introduction to Google Software Testing

James Whittaker

There is one question I get more than any other. Regardless of the country I
am visiting or the conference I am attending, this one question never fails to
surface. Even Nooglers ask it as soon as they emerge from new-employee
orientation: “How does Google test software?”

I am not sure how many times I have answered that question or even
how many different versions I have given, but the answer keeps evolving
the longer time I spend at Google and the more I learn about the nuances of
our various testing practices. I had it in the back of my mind that I would
write a book and when Alberto, who likes to threaten to turn testing books
into adult diapers to give them a reason for existence, actually suggested I
write such a book, I knew it was going to happen.

Still, I waited. My first problem was that I was not the right person to
write this book. There were many others who preceded me at Google and I
wanted to give them a crack at writing it first. My second problem was that
I as test director for Chrome and Chrome OS (a position now occupied by
one of my former directs) had insights into only a slice of the Google testing
solution. There was so much more to Google testing that I needed to learn.

At Google, software testing is part of a centralized organization called
Engineering Productivity that spans the developer and tester tool chain,
release engineering, and testing from the unit level all the way to
exploratory testing. There are a great deal of shared tools and test infra-
structure for web properties such as search, ads, apps, YouTube, and every-
thing else we do on the Web. Google has solved many of the problems of
speed and scale and this enables us, despite being a large company, to
release software at the pace of a start-up. As Patrick Copeland pointed out
in his preface to this book, much of this magic has its roots in the test team.

At Google, software testing is part of a centralized organization called Engineering
Productivity.

When Chrome OS released in December 2010 and leadership was suc-
cessfully passed to one of my directs, I began getting more heavily involved
in other products. That was the beginning of this book, and I tested the
waters by writing the first blog post,1 “How Google Tests Software,” and
the rest is history. Six months later, the book was done and I wish I had not
waited so long to write it. I learned more about testing at Google in the last
six months than I did my entire first two years, and Nooglers are now read-
ing this book as part of their orientation.

This isn’t the only book about how a big company tests software. I was
at Microsoft when Alan Page, BJ Rollison, and Ken Johnston wrote How We
Test Software at Microsoft and lived first-hand many of the things they wrote
about in that book. Microsoft was on top of the testing world. It had ele-
vated test to a place of honor among the software engineering elite.
Microsoft testers were the most sought after conference speakers. Its first
director of test, Roger Sherman, attracted test-minded talent from all over
the globe to Redmond, Washington. It was a golden age for software
testing.

And the company wrote a big book to document it all.
I didn’t get to Microsoft early enough to participate in that book, but I

got a second chance. I arrived at Google when testing was on the ascent.
Engineering Productivity was rocketing from a couple of hundred people to
the 1,200 it has today. The growing pains Pat spoke of in his preface were in
their last throes and the organization was in its fastest growth spurt ever.
The Google testing blog was drawing hundreds of thousands of page views
every month, and GTAC2 had become a staple conference on the industry
testing circuit. Patrick was promoted shortly after my arrival and had a
dozen or so directors and engineering managers reporting to him. If you
were to grant software testing a renaissance, Google was surely its
epicenter.

This means the Google testing story merits a big book, too. The problem
is, I don’t write big books. But then, Google is known for its simple and
straightforward approach to software. Perhaps this book is in line with that
reputation.

How Google Tests Software contains the core information about what it
means to be a Google tester and how we approach the problems of scale,
complexity, and mass usage. There is information here you won’t find any-
where else, but if it is not enough to satisfy your craving for how we test,
there is more available on the Web. Just Google it!

There is more to this story, though, and it must be told. I am finally
ready to tell it. The way Google tests software might very well become the
way many companies test as more software leaves the confines of the desk-
top for the freedom of the Web. If you’ve read the Microsoft book, don’t
expect to find much in common with this one. Beyond the number of

2 How Google Tests Software

1. http://googletesting.blogspot.com/2011/01/how-google-tests-software.html.

2. GTAC is the Google Test Automation Conference (www.GTAc.biz).

http://googletesting.blogspot.com/2011/01/how-google-tests-software.html
www.GTAc.biz

Introduction to Google Software Testing 3

authors—both books have three—and the fact that each book documents
testing practices at a large software company, the approaches to testing
couldn’t be more different.

The way Google tests software might very well become the way many companies
test as more software leaves the confines of the desktop for the freedom of the Web.

Patrick Copeland dealt with how the Google methodology came into
being in his preface to this book and since those early days, it has continued
to evolve organically as the company grew. Google is a melting pot of engi-
neers who used to work somewhere else. Techniques proven ineffective at
former employers were either abandoned or improved upon by Google’s
culture of innovation. As the ranks of testers swelled, new practices and
ideas were tried and those that worked in practice at Google became part of
Google and those proven to be baggage were jettisoned. Google testers are
willing to try anything once but are quick to abandon techniques that do
not prove useful.

Google is a company built on innovation and speed, releasing code the
moment it is useful (when there are few users to disappoint) and iterating
on features with early adopters (to maximize feedback). Testing in such an
environment has to be incredibly nimble and techniques that require too
much upfront planning or continuous maintenance simply won’t work. At
times, testing is interwoven with development to the point that the two
practices are indistinguishable from each other, and at other times, it is so
completely independent that developers aren’t even aware it is going on.

At times, testing is interwoven with development to the point that the two prac-
tices are indistinguishable from each other, and at other times, it is so completely
independent that developers aren’t even aware it is going on.

Throughout Google’s growth, this fast pace has slowed only a little. We
can nearly produce an operating system within the boundaries of a single
calendar year; we release client applications such as Chrome every few weeks;
and web applications change daily—all this despite the fact that our start-up
credentials have long ago expired. In this environment, it is almost easier to
describe what testing is not—dogmatic, process-heavy, labor-intensive, and
time-consuming—than what it is, although this book is an attempt to do
exactly that. One thing is for sure: Testing must not create friction that slows
down innovation and development. At least it will not do it twice.

Google’s success at testing cannot be written off as owing to a small or
simple software portfolio. The size and complexity of Google’s software
testing problem are as large as any company’s out there. From client operat-
ing systems, to web apps, to mobile, to enterprise, to commerce and social,

Google operates in pretty much every industry vertical. Our software is big;
it’s complex; it has hundreds of millions of users; it’s a target for hackers;
much of our source code is open to external scrutiny; lots of it is legacy; we
face regulatory reviews; our code runs in hundreds of countries and in many
different languages, and on top of this, users expect software from Google to
be simple to use and to “just work.” What Google testers accomplish on a
daily basis cannot be credited to working on easy problems. Google testers
face nearly every testing challenge that exists every single day.

Whether Google has it right (probably not) is up for debate, but one
thing is certain: The approach to testing at Google is different from any
other company I know, and with the inexorable movement of software
away from the desktop and toward the cloud, it seems possible that
Google-like practices will become increasingly common across the industry.
It is my and my co-authors’ hope that this book sheds enough light on the
Google formula to create a debate over just how the industry should be fac-
ing the important task of producing reliable software that the world can
rely on. Google’s approach might have its shortcomings, but we’re willing
to publish it and open it to the scrutiny of the international testing commu-
nity so that it can continue to improve and evolve.

Google’s approach is more than a little counterintuitive: We have fewer
dedicated testers in our entire company than many of our competitors have
on a single product team. Google Test is no million-man army. We are small
and elite Special Forces that have to depend on superior tactics and
advanced weaponry to stand a fighting chance at success. As with military
Special Forces, it is this scarcity of resources that forms the base of our
secret sauce. The absence of plenty forces us to get good at prioritizing, or
as Larry Page puts it: “Scarcity brings clarity.” From features to test tech-
niques, we’ve learned to create high impact, low-drag activities in our pur-
suit of quality. Scarcity also makes testing resources highly valued, and
thus, well regarded, keeping smart people actively and energetically
involved in the discipline. The first piece of advice I give people when they
ask for the keys to our success: Don’t hire too many testers.

4 How Google Tests Software

The first piece of advice I give people when they ask for the keys to our success:
Don’t hire too many testers.

How does Google get by with such small ranks of test folks? If I had to
put it simply, I would say that at Google, the burden of quality is on the
shoulders of those writing the code. Quality is never “some tester’s” prob-
lem. Everyone who writes code at Google is a tester, and quality is literally
the problem of this collective (see Figure 1.1). Talking about dev to test
ratios at Google is like talking about air quality on the surface of the sun.
It’s not a concept that even makes sense. If you are an engineer, you are a
tester. If you are an engineer with the word test in your title, then you are
an enabler of good testing for those other engineers who do not.

The fact that we produce world-class software is evidence that our par-
ticular formula deserves some study. Perhaps there are parts of it that will
work in other organizations. Certainly there are parts of it that can be
improved. What follows is a summary of our formula. In later chapters, we
dig into specifics and show details of just how we put together a test prac-
tice in a developer-centric culture.

Quality ≠ Test

“Quality cannot be tested in” is so cliché it has to be true. From automobiles
to software, if it isn’t built right in the first place, then it is never going to be
right. Ask any car company that has ever had to do a mass recall how
expensive it is to bolt on quality after the fact. Get it right from the begin-
ning or you’ve created a permanent mess.

However, this is neither as simple nor as accurate as it sounds.
Although it is true that quality cannot be tested in, it is equally evident that
without testing, it is impossible to develop anything of quality. How does
one decide if what you built is high quality without testing it?

The simple solution to this conundrum is to stop treating development
and test as separate disciplines. Testing and development go hand in hand.
Code a little and test what you built. Then code some more and test some
more. Test isn’t a separate practice; it’s part and parcel of the development
process itself. Quality is not equal to test. Quality is achieved by putting

Introduction to Google Software Testing 5

FIGURE 1.1 Google engineers prefer quality over features.

development and testing into a blender and mixing them until one is indis-
tinguishable from the other.

6 How Google Tests Software

Quality is not equal to test. Quality is achieved by putting development and test-
ing into a blender and mixing them until one is indistinguishable from the other.

At Google, this is exactly our goal: to merge development and testing
so that you cannot do one without the other. Build a little and then test it.
Build some more and test some more. The key here is who is doing the test-
ing. Because the number of actual dedicated testers at Google is so dispro-
portionately low, the only possible answer has to be the developer. Who
better to do all that testing than the people doing the actual coding? Who
better to find the bug than the person who wrote it? Who is more incen-
tivized to avoid writing the bug in the first place? The reason Google can
get by with so few dedicated testers is because developers own quality. If a
product breaks in the field, the first point of escalation is the developer who
created the problem, not the tester who didn’t catch it.

This means that quality is more an act of prevention than it is detection.
Quality is a development issue, not a testing issue. To the extent that we are
able to embed testing practice inside development, we have created a
process that is hyper-incremental where mistakes can be rolled back if any
one increment turns out to be too buggy. We’ve not only prevented a lot of
customer issues, we have greatly reduced the number of dedicated testers
necessary to ensure the absence of recall-class bugs. At Google, testing is
aimed at determining how well this prevention method works.

Manifestations of this blending of development and testing are insepa-
rable from the Google development mindset, from code review notes ask-
ing “where are your tests?” to posters in the bathrooms reminding
developers about best-testing practices.3 Testing must be an unavoidable
aspect of development, and the marriage of development and testing is
where quality is achieved.

3. http://googletesting.blogspot.com/2007/01/introducing-testing-on-toilet.html.

Testing must be an unavoidable aspect of development, and the marriage of devel-
opment and testing is where quality is achieved.

Roles

In order for the “you build it, you break it” motto to be real (and kept real
over time), there are roles beyond the traditional feature developer that are
necessary. Specifically, engineering roles that enable developers to do test-
ing efficiently and effectively have to exist. At Google, we have created

http://googletesting.blogspot.com/2007/01/introducing-testing-on-toilet.html

roles in which some engineers are responsible for making other engineers
more productive and more quality-minded. These engineers often identify
themselves as testers, but their actual mission is one of productivity. Testers
are there to make developers more productive and a large part of that pro-
ductivity is avoiding re-work because of sloppy development. Quality is
thus a large part of that productivity. We are going to spend significant time
talking about each of these roles in detail in subsequent chapters; therefore,
a summary suffices for now.

The software engineer (SWE) is the traditional developer role. SWEs
write functional code that ships to users. They create design documenta-
tion, choose data structures and overall architecture, and they spend the
vast majority of their time writing and reviewing code. SWEs write a lot of
test code, including test-driven design (TDD), unit tests, and, as we explain
later in this chapter, participate in the construction of small, medium, and
large tests. SWEs own quality for everything they touch whether they wrote
it, fixed it, or modified it. That’s right, if a SWE has to modify a function
and that modification breaks an existing test or requires a new one, they
must author that test. SWEs spend close to 100 percent of their time writing
code.

The software engineer in test (SET) is also a developer role, except his
focus is on testability and general test infrastructure. SETs review designs
and look closely at code quality and risk. They refactor code to make it
more testable and write unit testing frameworks and automation. They are
a partner in the SWE codebase, but are more concerned with increasing
quality and test coverage than adding new features or increasing perform-
ance. SETs also spend close to 100 percent of their time writing code, but
they do so in service of quality rather than coding features a customer
might use.

Introduction to Google Software Testing 7

SETs are partners in the SWE codebase, but are more concerned with increasing
quality and test coverage than adding new features or increasing performance.
SETs write code that allows SWEs to test their features.

The test engineer (TE) is related to the SET role, but it has a different
focus. It is a role that puts testing on behalf of the user first and developers
second. Some Google TEs spend a good deal of their time writing code in
the form of automation scripts and code that drives usage scenarios and
even mimics the user. They also organize the testing work of SWEs and
SETs, interpret test results, and drive test execution, particularly in the late
stages of a project as the push toward release intensifies. TEs are product
experts, quality advisers, and analyzers of risk. Many of them write a lot of
code; many of them write only a little.

From a quality standpoint, SWEs own features and the quality of those
features in isolation. They are responsible for fault-tolerant designs, failure
recovery, TDD, unit tests, and working with the SET to write tests that exer-
cise the code for their features.

SETs are developers who provide testing features. A framework that can
isolate newly developed code by simulating an actual working environment
(a process involving such things as stubs, mocks, and fakes, which are all
described later) and submit queues for managing code check-ins. In other
words, SETs write code that enables SWEs to test their features. Much of the
actual testing is performed by the SWEs. SETs are there to ensure that features
are testable and that the SWEs are actively involved in writing test cases.

Clearly, an SET’s primary focus is on the developer. Individual feature
quality is the target and enabling developers to easily test the code they
write is the primary focus of the SET. User-focused testing is the job of the
Google TE. Assuming that the SWEs and SETs performed module- and
feature-level testing adequately, the next task is to understand how well this
collection of executable code and data works together to satisfy the needs of
the user. TEs act as double-checks on the diligence of the developers. Any
obvious bugs are an indication that early cycle developer testing was inade-
quate or sloppy. When such bugs are rare, TEs can turn to the primary task
of ensuring that the software runs common user scenarios, meets perform-
ance expectations, is secure, internationalized, accessible, and so on. TEs
perform a lot of testing and manage coordination among other TEs, contract
testers, crowd sourced testers, dogfooders,4 beta users, and early adopters.
They communicate among all parties the risks inherent in the basic design,
feature complexity, and failure avoidance methods. After TEs get engaged,
there is no end to their mission.

Organizational Structure

In most organizations I have worked with, developers and testers exist as
part of the same product team. Organizationally, developers and testers

8 How Google Tests Software

Note
The TE role puts testing on behalf of the user first. TEs organize the overall quality
practices, interpret test results, drive test execution, and build end-to-end test
automation.

4. The term dogfood is used by most software companies in the U.S. to denote internal adoption
of software that is not yet released. The phrase “eating your own dogfood” is meant to convey
the idea that if you make a product to sell to someone else, you should be willing to use it
yourself to find out if it is any good.

report to the same product team manager. One product, one team, and
everyone involved is always on the same page.

Unfortunately, I have never actually seen it work that way. Senior man-
agers tend to come from program management or development and not
testing ranks. In the push to ship, priorities often favor getting features
complete and other fit-and-finish tasks over core quality. As a single team,
the tendency is for testing to be subservient to development. Clearly, this is
evident in the industry’s history of buggy products and premature releases.
Service Pack 1 anyone?

Introduction to Google Software Testing 9

Note
As a single team, senior managers tend to come from program management or
development and not testing ranks. In the push to ship, priorities often favor get-
ting features complete and other fit-and-finish tasks over core quality. The ten-
dency for such organizational structures is for testing to be subservient to
development.

Google’s reporting structure is divided into what we call Focus Areas or
FAs. There is an FA for Client (Chrome, Google Toolbar, and so on), Geo
(Maps, Google Earth, and so on), Ads, Apps, Mobile, and so on. All SWEs
report to a director or VP of a FA.

SETs and TEs break this mold. Test exists in a separate and horizontal
(across the product FAs) Focus Area called Engineering Productivity.
Testers are essentially on loan to the product teams and are free to raise
quality concerns and ask questions about functional areas that are missing
tests or that exhibit unacceptable bug rates. Because we don’t report to the
product teams, we can’t simply be told to get with the program. Our priori-
ties are our own and they never waiver from reliability, security, and so on
unless we decide something else takes precedence. If a development team
wants us to take any shortcuts related to testing, these must be negotiated
in advance and we can always decide to say no.

This structure also helps to keep the number of testers low. A product
team cannot arbitrarily lower the technical bar for testing talent or hire
more testers than they need simply to dump menial work on them. Menial
work around any specific feature is the job of the developer who owns the
feature and it cannot be pawned off on some hapless tester. Testers are
assigned by Engineering Productivity leads who act strategically based on
the priority, complexity, and needs of the product team in comparison to
other product teams. Obviously, we can get it wrong, and we sometimes do,
but in general, this creates a balance of resources against actual and not per-
ceived need.

The on-loan status of testers also facilitates movement of SETs and TEs
from project to project, which not only keeps them fresh and engaged, but
also ensures that good ideas move rapidly around the company. A test tech-
nique or tool that works for a tester on a Geo product is likely to be used
again when that tester moves to Chrome. There’s no faster way of moving
innovations in test than moving the actual innovators.

It is generally accepted that 18 months on a product is enough for a
tester and that after that time, he or she can (but doesn’t have to) leave
without repercussion to another team. One can imagine the downside of
losing such expertise, but this is balanced by a company full of generalist
testers with a wide variety of product and technology familiarity. Google is
a company full of testers who understand client, web, browser, and mobile
technologies, and who can program effectively in multiple languages and
on a variety of platforms. And because Google’s products and services are
more tightly integrated than ever before, testers can move around the com-
pany and have relevant expertise no matter where they go.

Crawl, Walk, Run

One of the key ways Google achieves good results with fewer testers than
many companies is that we rarely attempt to ship a large set of features at
once. In fact, the exact opposite is the goal: Build the core of a product and
release it the moment it is useful to as large a crowd as feasible, and then
get their feedback and iterate. This is what we did with Gmail, a product
that kept its beta tag for four years. That tag was our warning to users that
it was still being perfected. We removed the beta tag only when we reached
our goal of 99.99 percent uptime for a real user’s email data. We did it again
with Android producing the G1, a useful and well-reviewed product that
then became much better and more fully featured with the Nexus line of
phones that followed it. It’s important to note here that when customers are
paying for early versions, they have to be functional enough to make them
worth their while. Just because it is an early version doesn’t mean it has to
be a poor product.

10 How Google Tests Software

Note
Testers are assigned to product teams by Engineering Productivity leads who act
strategically based on the priority, complexity, and needs of the product team in
comparison to other product teams. This creates a balance of resources against
actual and not perceived need. As a central resource, good ideas and practices tend
to get adopted companywide.

It’s not as cowboy a process as it might sound at first glance. In fact, in
order to make it to what we call the beta channel release, a product must go
through a number of other channels and prove its worth. For Chrome, a
product I spent my first two years at Google working on, multiple channels
were used depending on our confidence in the product’s quality and the
extent of feedback we were looking for. The sequence looks something like
this:

• Canary Channel: This is used for daily builds we suspect aren’t fit for
release. Like a canary in a coalmine, if a daily build fails to survive, then
it is a sign our process has gotten chaotic and we need to re-examine
our work. Canary Channel builds are only for the ultra-tolerant user
running experiments and certainly not for someone depending on the
application to get real work done. In general, only engineers (developer
and testers) and managers working on the product pull builds from the
canary channel.

Introduction to Google Software Testing 11

Note
Google often builds the “minimum useful product” as an initial version and then
quickly iterates successive versions allowing for internal and user feedback and
careful consideration of quality with every small step. Products proceed through
canary, development, testing, beta, and release channels before making it to users.

Note
The Android team goes one step further, and has its core development team’s
phone continually running on the nearly daily build. The thought is that they will
be unlikely to check in bad code it if impacts the ability to call home.

• Dev Channel: This is what developers use for their day-to-day work.
These are generally weekly builds that have sustained successful usage
and passed some set of tests (we discuss this in subsequent chapters).
All engineers on a product are required to pick up the Dev Channel
build and use it for real work and for sustained testing. If a Dev
Channel build isn’t suitable for real work, then back to the Canary
channel it goes. This is not a happy situation and causes a great deal of
re-evaluation by the engineering team.

• Test Channel: This is essentially the best build of the month in terms of
the one that passes the most sustained testing and the one engineers
trust the most for their work. The Test Channel build can be picked up
by internal dogfood users and represents a candidate Beta Channel
build given good sustained performance. At some point, a Test Channel
build becomes stable enough to be used internally companywide and

sometimes given to external collaborators and partners who would
benefit from an early look at the product.

• Beta Channel or Release Channel: These builds are stable Test Channel
builds that have survived internal usage and pass every quality bar the
team sets. These are the first builds to get external exposure.

This crawl, walk, run approach gives us the chance to run tests and
experiment on our applications early and obtain feedback from real human
beings in addition to all the automation we run in each of these channels
every day.

Types of Tests

Instead of distinguishing between code, integration, and system testing,
Google uses the language of small, medium, and large tests (not to be con-
fused with t-shirt sizing language of estimation among the agile commu-
nity), emphasizing scope over form. Small tests cover small amounts of
code and so on. Each of the three engineering roles can execute any of
these types of tests and they can be performed as automated or manual
tests. Practically speaking, the smaller the test, the more likely it is to be
automated.

12 How Google Tests Software

Instead of distinguishing between code, integration, and system testing, Google
uses the language of small, medium, and large tests, emphasizing scope over form.

Small tests are mostly (but not always) automated and exercise the code
within a single function or module. The focus is on typical functional
issues, data corruption, error conditions, and off-by-one mistakes. Small
tests are of short duration, usually running in seconds or less. They are
most likely written by a SWE, less often by an SET, and hardly ever by TEs.
Small tests generally require mocks and faked environments to run. (Mocks
and fakes are stubs—substitutes for actual functions—that act as placehold-
ers for dependencies that might not exist, are too buggy to be reliable, or
too difficult to emulate error conditions. They are explained in greater
detail in later chapters.) TEs rarely write small tests but might run them
when they are trying to diagnose a particular failure. The question a small
test attempts to answer is, “Does this code do what it is supposed to do?”

Medium tests are usually automated and involve two or more interact-
ing features. The focus is on testing the interaction between features that
call each other or interact directly; we call these nearest neighbor functions.
SETs drive the development of these tests early in the product cycle as indi-
vidual features are completed and SWEs are heavily involved in writing,
debugging, and maintaining the actual tests. If a medium test fails or

breaks, the developer takes care of it autonomously. Later in the develop-
ment cycle, TEs can execute medium tests either manually (in the event the
test is difficult or prohibitively expensive to automate) or with automation.
The question a medium test attempts to answer is, “Does a set of near neigh-
bor functions interoperate with each other the way they are supposed to?”

Large tests cover three or more (usually more) features and represent
real user scenarios, use real user data sources, and can take hours or even
longer to run. There is some concern with overall integration of the features,
but large tests tend to be more results-driven, checking that the software
satisfies user needs. All three roles are involved in writing large tests and
everything from automation to exploratory testing can be the vehicle to
accomplish them. The question a large test attempts to answer is, “Does the
product operate the way a user would expect and produce the desired results?”
End-to-end scenarios that operate on the complete product or service are
large tests.

Introduction to Google Software Testing 13

Note
Small tests cover a single unit of code in a completely faked environment.
Medium tests cover multiple and interacting units of code in a faked or real envi-
ronment. Large tests cover any number of units of code in the actual production
environment with real and not faked resources.

The actual language of small, medium, and large isn’t important. Call
them whatever you want as long as the terms have meaning that everyone
agrees with.5 The important thing is that Google testers share a common
language to talk about what is getting tested and how those tests are
scoped. When some enterprising testers begin talking about a fourth class
they dubbed enormous tests, every other tester in the company could imag-
ine a systemwide test covering every feature and that runs for a very long
time. No additional explanation is necessary.6

The primary driver of what gets tested and how much is a very
dynamic process and varies from product to product. Google prefers to
release often and leans toward getting a product out to users quickly so we
can get feedback and iterate. Google tries hard to develop only products
that users will find compelling and to get new features out to users as early

5. The original purpose of using small, medium, and large was to standardize terms that so
many testers brought in from other employers where smoke tests, BVTs, integrations tests, and
so on had multiple and conflicting meanings. Those terms had so much baggage that it was
felt that new ones were needed.

6. Indeed, the concept of an enormous test is formalized and Google’s automation infrastruc-
ture uses these designations of small, medium, and so on to determine the execution sequence
during automated runs. This is described in more detail in the chapter on SETs later in this
book.

as possible so they might benefit from them. Plus, we avoid over-investing
in features no user wants because we learn this early. This requires that we
involve users and external developers early in the process so we have a
good handle on whether what we are delivering hits the mark.

Finally, the mix between automated and manual testing definitely
favors the former for all three sizes of tests. If it can be automated and the
problem doesn’t require human cleverness and intuition, then it should be
automated. Only those problems, in any of the previous categories, that
specifically require human judgment, such as the beauty of a user interface
or whether exposing some piece of data constitutes a privacy concern,
should remain in the realm of manual testing.

14 How Google Tests Software

7. Google’s recording technology and automation-assisted manual testing are described in
detail in subsequent chapters on the TE role.

The mix between automated and manual testing definitely favors the former for all
three sizes of tests. If it can be automated and the problem doesn’t require human
cleverness and intuition, then it should be automated.

Having said that, it is important to note that Google performs a great
deal of manual testing, both scripted and exploratory, but even this testing
is done under the watchful eye of automation. Recording technology con-
verts manual tests to automated tests, with point-and-click validation of
content and positioning, to be re-executed build after build to ensure mini-
mal regressions, and to keep manual testers always focusing on new issues.
We also automate the submission of bug reports and the routing of manual
testing tasks.7 For example, if an automated test breaks, the system deter-
mines the last code change that is the most likely culprit, sends email to its
authors, and files a bug automatically. The ongoing effort to automate to
within the “last inch of the human mind” is currently the design spec for
the next generation of test-engineering tools Google builds.

A Fault to Guide Software Testing

010101011011000100100100101010110110001001001001010

Index
Symbols
10-minute test plan, 103-104
20 percent time, 18, 22

A
ACC (Attribute Component

Capability) analysis, 81
attributes, 82-85
capabilities, 88-92
components, 86-87
Google+ example, 92-96
principles of, 81-82

ACC methodology, 260-264
All Nighter tour (Chrome), 250
allocation, managing, 189-191
analysis

Attribute Component Capability.
See ACC (Attribute Component
Capability) analysis

risk analysis, 97-101
risk mitigation, 101-102

Andrews, Mike, 226
Android

interview: TEM Hung Dang,
198-202

testing
and automation, 200
bugs found after

shipping, 202
demands on developers, 201
documentation, 201
manual testing, 201

organization of, 200
origins of, 198-199
team staffing/hiring, 200

AppEngine, 256
application compatibility

(Chrome), 204
approach to new projects

Gmail, 193
Search and Geo testing, 209-210

apps, impact of BITE (Browser
Integrated Test Environment)
on, 157

Arbon, Jason, 257
interview with James Whittaker,

222-227
on Google Desktop, 138-140
on origin of BITE, 160-162
on origin of Bots, 148-151
on test innovation and

experimentation, 171-173
on test leadership, 134-135
on user stories, 106

Artisan’s tour (Chrome), 251
Assigned to field (Buganizer), 120
Attachments field (Buganizer), 120
Attribute Component Capability

analysis. See ACC (Attribute
Component Capability) analysis

attributes
ACC (Attribute Component

Capability) analysis, 82-85
Google+ attributes, 92

auto update feature in Google client
applications, 16

266 Index

automation, 14
Android testing team, 200
automation planning, 28-29
Chrome testing, 204, 240
Engineering Tools team, 211-213

testing as balancing act, 212
toolset, 211-212

Search and Geo testing, 210
Autotest, Chrome OS test plan, 242

B
Bad Neighborhood tour (Chrome),

251-252
Beta Channel builds, 12
beta status, 10
Bialik, Tracy, 57
Big O notation, 66
binding risk calculations to project

data (GTA), 166-167
BITE (Browser Integrated Test

Environment), 253-255
executing manual and exploratory

tests with, 162
goals of, 153-154
impact on Google Maps, 157
layers with, 162-163
origin of, 160-162
Record and Playback framework

(RPF), 159-160
reporting bugs with, 154-156
viewing bugs with, 157-158

Blocking field (Buganizer), 120
blogs, Google Testing Blog

BITE (Browser Integrated Testing
Environment), 253-255

QualityBots, 255-257
Record/Playback (RPF), 257-259
Test Analytics, 260-264

Bots
dashboard, 142
development of, 151-152
features, 141-142
origin of, 148-151
results, 143-147

Browser Integrated Test Environment.
See BITE (Browser Integrated Test
Environment)

browser testability, Chrome OS test
plan, 243-244

bug reporting, 113
with BITE (Browser Integrated

Test Environment), 154-158
bug lifecycle, 126
Buganizer

basic workflow for bugs,
123-126

charts of overall bug activity,
114-118

fields, 120-123
goals of, 114

BugsDB, 114
differences between bugs at

Google and elsewhere, 124
Gmail testing, 197
Google Feedback, 124-125
Issue Tracker, 118-119
Search and Geo testing, 210

Buganizer, 68
basic workflow for bugs, 123-126
charts of overall bug activity,

114-118
differences between bugs at

Google and elsewhere, 124
fields, 120-123
goals of, 114

Index 267

bugs found after shipping
Android, 202
Search and Geo, 210

BugsDB, 69, 114
build system, 20-21
build targets, 21
Bustamante, Richard, 255-257

C
Canary Channel builds, 11
candidate example (SETs), 67
capabilities

ACC (Attribute Component
Capability) analysis, 88-92

Google+ capabilities, 93-95
Carollo, Jeff, 222-227
CC field (Buganizer), 120
change in common library

example (continuous integration
systems), 52-53

change in dependent project example
(continuous integration systems),
53-54

change lists (CLs), 29-30
in Continuous Build systems, 31
in Submit Queues, 31

Changed field (Buganizer), 120
Changelists field (Buganizer), 120
Chome OS test plan

Autotest, 242
browser testability, 243-244
dev versus test quality focus, 240
E2E farm automation, 243
hardware, 244
hardware lab, 242
long-running test cases, 242
manual versus automation, 240

OEMs, 242
per-build baseline testing, 239
per-LKG day testing, 239
per-release testing, 239-240
performance, 242
primary test drivers, 246
release channels, 240
relevant documents, 246
risk analysis, 238-239
test case repositories, 241
test dashboarding, 241
themes, 237-238
timeline, 244-245
user input, 241
virtualization, 241

Chord, Jordanna, 109
Chow, Apple, 181-185
Chris/Jay Continuous Build, 31
Chrome

Browser Integrated Testing
Environment (BITE), 253-255

interview: TEM Joel Hynoski,
202-206

test tours
All Nighter tour, 250
Artisan’s tour, 251
Bad Neighborhood tour,

251-252
International Calling tour, 249
Landmark tour, 249-250
Personalization tour, 252
Shopping tour, 247-248
Student tour, 248

testing
application compatibility, 204
challenges, 203
team hiring/staffing, 205-206

268 Index

testing as balancing act,
202-203

tools and processes, 204-205
UI automation, 204

ChromeBot, 149
client applications, auto update

feature, 16
CLs (change lists), 29-30

in Continuous Build systems, 31
in Submit Queues, 31

code coverage, 48, 216
code review, 19, 29-30
code sharing, 17-19
common library changes example

(continuous integration systems),
52-53

Component field (Buganizer), 121
components

ACC (Attribute Component
Capability) analysis, 86-87

Google+ components, 93
Continuous Build scripts, 31
Continuous Build systems, 31
continuous integration with

dependency analysis, 50-52, 212-213
change in common library

example, 52-53
change in dependent project

example, 53-54
Copeland, Patrick, xvii-xxi, 1, 3, 219,

223-224
Corbett, Jay, 31
coverage reports, 48
Created field (Buganizer), 121
crowd sourcing, 107
culture

culture fit, interviewing for, 67-68
overview of, 219, 224

D
Dang, Hung, 198-202
dashboard (Bots), 142
dependencies

platform dependencies, 19-20
dependency analysis in

continuous integration systems,
50-52

change in common library
example, 52-53

change in dependent project
example, 53-54

dependent project changes example
(continuous integration systems),
53-54

Depends On field (Buganizer), 120
design documents, 25-27
Dev Channel builds, 11
developers

and assignment of risk values, 101
Android testing team, 201
Chrome OS test plan, 240

development process
automation planning, 28-29
design documents, 25-27
early project phase, 22-24
evolution of testing in, 31-32
ideal circumstances, 15-17
interfaces and protocols

documentation, 27
merging with software testing, 6
overview of, 17-21
SET job description, 22
SET workflow example, 32-40
team structure, 24-25
testability in, 29-30

Diagnostic Utility, 217

Index 269

directors. See test engineering
directors

documentation
Android testing team, 201
Chrome OS test plan, 246
of interfaces and protocols, 27

dogfood, 8

E
E2E farm automation, 243
early project phase, testing in, 22-24
El Far, Ibrahim, 257
end-to-end tests. See enormous tests
Engineering Productivity, 1-2
Engineering Productivity

Reviews, 214
Engineering Tools team, 211

automation, 213
continuous integration, 212-213
Engineering Productivity

Reviews, 214
interview: Engineering Tools

director Ashish Kumar, 211-214
remote pair programming, 213
team staffing/hiring, 213
testing as balancing act, 212
toolset, 211-212

engineers. See SETs (software
engineers in test); TEs (test
engineers)

enormous tests, 13, 44
executives and assignment of risk

values, 101
experimentation, 171-173
Exploratory Testing (Whittaker), 226
external vendors, 173-175

F
failure, frequency of, 97-99
fakes, 15
FAs (Focus Areas), 9
feature development in ideal

development process, 15-16
Feedback, 124-125, 220-221
fixits, 58
flaws in Google’s testing process,

229-231
Flux Capacitor, 162
Focus Areas (FAs), 9
Found In field (Buganizer), 121
free testing workflow, 169-170
frequency of failure, 97-99
future

of managers, 234
of SETs (software engineer in test),

231-232
of TEs (test engineers), 233-234
of test directors, 234
of test infrastructure, 234-235

G
Geo

interview: test director Shelton
Mar, 207-211

testing
approach to new projects,

209-210
bugs, 210
bugs found after

shipping, 210
challenges, 209
history of, 208
manual versus automated

testing, 210
testing culture, 209

270 Index

global test engineering, India
Engineering Productivity team, 218

Gmail
interview: TEM Ankit Mehta,

193-198
testing

approaching new testing
projects, 193

bug prevention, 197
Java Script Automation, 197
latency testing, 194
lessons learned, 196
load testing, 197
passion for testing, 198
team dynamics, 194-195
team staffing/hiring, 196-198
traps and pitfalls, 196-197

goals of test sizes in test execution
infrastructure, 45-46

Golden Change Lists, 31
Google AppEngine, 256
Google Chrome. See Chrome
Google Desktop, 138-140
Google Diagnostic Utility, 216
Google Docs

approach to new projects, 176
interview: Google Docs TE

Lindsay Webster, 175-180
Google Feedback, 124-125, 220-221
Google India, 214-218
Google Maps, impact of BITE

(Browser Integrated Test
Environment) on, 157

Google Test Analytics. See GTA
Google Test Automation Conference

(GTAC), 2
Google Test Case Manager (GTCM),

109-113

Google Testing Blog
BITE (Browser Integrated Testing

Environment), 253-255
QualityBots, 255-257
Record/Playback (RPF), 257-259
Test Analytics, 260-264

Google+, ACC (Attribute Component
Capability) analysis, 92-96

Green, Brad, 219-223
GTA (Google Test Analytics)

binding risk calculations to project
data, 166-167

future availability of, 168
goals of, 163
support for risk analysis, 163-165
test passes, 168

GTAC (Google Test Automation
Conference), 2

GTCM (Google Test Case Manager),
109-113

H
hardware, Chrome OS test plan, 244
hardware lab, Chrome OS test

plan, 242
Harvester, 48
hiring. See recruiting
horizontal partitioning, 64
How to Break Software (Whittaker), 226
How to Break Software Security

(Thompson and Whittaker), 226
How to Break Web Software (Andrews

and Whittaker), 226
How We Test Software at Microsoft

(Page, Rollison, and Johnston), 2
Hu, Po, 255, 259
Huggins, Jason, 70

Index 271

HYD, India Engineering Productivity
team, 216

Hynoski, Joel, 202-206, 259

I
impact, 97-100
improving software testing

flaws in Google’s process, 229-231
managers, 234
SETs (software engineer in test),

231-232
TEs (test engineers), 233-234
test directors, 234
test infrastructure, 234-235

India Engineering Productivity team
Code Coverage, 216
Diagnostic Utility, 217
global test engineering, 218
history of, 214-215
HYD, 216
innovations, 218
performance and load testing,

217-218
role of India in evolution of

Google testing, 215-216
innovation, 171-173

India Engineering Productivity
team, 218

integration testing, 28, 31. See also
medium tests

interfaces, documenting, 27
International Calling tour

(Chrome), 249
interviewing candidates

role of test leadership, 136
SETs (software engineers in test),

62-68
TEs (test engineers), 130-133

interviews
Ankit Mehta (Gmail TEM),

193-198
Apple Chow (YouTube TE),

181-185
Brad Green (engineering

manager), 219-221
Hung Dang (Android TEM),

198-202
James Whittaker, 222-227
Joel Hynoski (Chrome TEM),

202-206
Lindsay Webster (Google Docs

TE), 175-180
Simon Stewart, 70-73
Ted Mao, 68-70
Test Certified system founders,

57-62
Issue Tracker, 68, 118-119

J-K
JavaScript Automation, Gmail

testing, 197
Johnston, Ken, 2

Kazwell, Bella, 60
knowledge

of people, 188-189
of product, 188

Known Bugs Extension, 241
Kumar, Ashish, 211-214

L
Landmark tour (Chrome), 249-250
large tests, 13, 44-46
Last modified field (Buganizer), 121
latency testing, Gmail, 194

272 Index

layers with BITE (Browser Integrated
Test Environment), 162-163

leadership, 134-137
pirate leadership analogy, 134-135
recruiting and interviewing, 136
role of, 136-137
senior test directors, 136
tech leads, 135
test directors, 135
test engineering managers, 135
TLM (tech lead manager), 135

Life of a Dollar, 17
Life of a Query, 17
life span of test plans, 79-80
limits on test sizes, 45-46
Liu, Wensi, 258
load testing

Gmail, 197
India Engineering Productivity

team, 217-218
long-running test cases, Chrome OS

test plan, 242
Lopez, Chris, 31

M
maintenance mode testing, 137

Google Desktop example, 138-140
guidelines, 140-141

managers. See TEMs (test
engineering managers)

managing allocation, 189-191
manual testing, 14

Android testing team, 201
Chrome OS test plan, 240
Search and Geo testing, 210

Mao, Ted, 68-70

MapReduce, 64
Mar, Shelton, 207-211, 223
Meade, Mike, 138
medium tests, 12, 43, 47
Mehta, Ankit, 193-198
minimum useful products, 11
mitigating risk, 101-108
mocks, 15
Mondrian, 29
Muharsky, Joe Allan, 253-255, 259

N
nearest neighbor functions, 12
Nooglers, 17
Norwitz, Neal, 57
Notes field (Buganizer), 121

O
OEMs, Chrome OS test plan, 242
OKRs (objectives and key results), 57
optimizations, considering in

testing, 64
organization of Android testing team,

200
organizational structure (Google),

8-10, 224
origins of testing (Android), 198-199

P
Page, Alan, 2
passion for testing, Gmail testing

team, 198
peer bonuses, 19
people knowledge by TEMs (test

engineering managers), 188-189

Index 273

per-build baseline testing (Chrome OS
test plan), 239

per-LKG day testing (Chrome OS test
plan), 239

per-release testing (Chrome OS test
plan), 239-240

performance testing
Chrome OS test plan, 242
India Engineering Productivity

team, 217-218
Personalization tour (Chrome), 252
pirate leadership analogy, 134-135
planning. See test planning
platform dependencies, 19-20
PMs (program managers) and

assignment of risk values, 101
pre-submit rules, 30
primary test drivers (Chrome OS test

plan), 246
Priority field (Buganizer), 121
product knowledge by TEMs (test

engineering managers), 188
protocol buffers, documenting, 27

Q-R
quality, development versus testing, 6
QualityBots, 255-257

Ralph, Julie, 255
readabilities, 19, 29
Reardon, Jim, 168, 260-264
Record and Playback framework

(RPF), 159-160, 257-259
recruiting

Android testing team, 200
Chrome testing team, 205-206
Engineering Tools team, 213
Gmail testing team, 196, 198

role of test leadership, 136
SETs (software engineers in test),

62-68
TEs (test engineers)

challenges, 127-128
interview process, 130-133

release channels
Chrome OS test plan, 240
Release Channel builds, 12

remote pair programming, 213
Reported by (Reporter) field

(Buganizer), 121
reporting bugs, 113

with BITE (Browser Integrated
Test Environment), 154-156

bug lifecycle, 126
Buganizer

basic workflow for bugs,
123-126

charts of overall bug activity,
114-118

fields, 120-123
goals of, 114

BugsDB, 114
differences between bugs at

Google and elsewhere, 124
Google Feedback, 124-125
Issue Tracker, 118-119

Resolution field (Buganizer), 121
resource usage of test sizes, 45-46
reusability, 64
review and performance

management, 137
reviewing

code, 19, 29-30
design documents, 26-27

274 Index

risk
explained, 97
risk analysis, 97-101

Chrome OS test plan, 238-239
GTA (Google Test Analytics)

support for, 163-165
guidelines, 104-108

risk mitigation, 101-108
Rollison, BJ, 2
RPF (Record and Playback

framework), 159-160, 257-259
Rufer, Russ, 57
runtime requirements in test

execution infrastructure, 48-50

S
safety, considering in testing, 64
Sahni, Sujay, 214-218
salespeople and assignment of risk

values, 101
Savoia, Alberto, xiii-xv, 223
scale, considering in testing, 64
Search

interview: test director Shelton
Mar, 207-211

testing
approach to new projects,

209-210
bugs found after shipping,

210
challenges, 209
history of, 208
manual versus automated

testing, 210
testing culture, 209

Selenium, 70
senior test directors, 136

services, ratio with SWEs, 21
SETs (software engineers in test),

7-8, 15
automation planning, 28-29
candidate example, 67
compared to TEs (test engineers),

128-129
design documents, 25-27
future of, 231-232
integration with SWEs’ role, 22
interfaces and protocols

documentation, 27
interviewing, 62-68
job description, 22
role in development process, 21
Simon Stewart interview, 70-73
Ted Mao interview, 68-70
as test developers, 16
test execution infrastructure, 40-41

runtime requirements, 48-50
test sizes, 41-48

workflow example, 32-40
Severity field (Buganizer), 122
Shah, Tejas, 138, 151-152, 257
sharding, 64
shared code repository, 17-19
Sherman, Roger, 2
shipping code, 17
Shopping tour (Chrome), 247-248
side projects, 18, 22
sizes of tests, 12-13
small tests, 12, 42, 47
software development. See

development process
software engineer (SWE), 7
software engineers in test. See SETs

Index 275

software testing
Android

and automation, 200
bugs found after

shipping, 202
demands on developers, 201
documentation, 201
manual testing, 201
organization of testing, 200
origins of testing, 198-199
team staffing/hiring, 200

automation planning, 28-29
evolution of, 31-32
BITE (Browser Integrated Test

Environment)
executing manual and

exploratory tests with, 162
goals of, 153-154
impact on Google Maps, 157
layers with, 162-163
origin of, 160-162
Record and Playback

framework (RPF), 159-160
reporting bugs with, 154-156
viewing bugs with, 157-158

Bots
dashboard, 142
development of, 151-152
features, 141-142
origin of, 148-151
results, 143-147

challenges of Google test
management, 219-220

changes in, 219
Chrome

application compatibility, 204
Autotest, 242

browser testability, 243-244
challenges, 203
dev versus test quality

focus, 240
E2E farm automation, 243
hardware, 244
hardware lab, 242
long-running test cases, 242
manual versus

automation, 240
OEMs, 242
per-build baseline testing, 239
per-LKG day testing, 239
per-release testing, 239-240
performance, 242
primary test drivers, 246
release channels, 240
relevant documents, 246
risk analysis, 238-239
team hiring/staffing, 205-206
test case repositories, 241
test dashboarding, 241
testing as balancing act,

202-203
tools and processes, 204-205
themes, 237-238
timeline, 244-245
UI automation, 204
user input, 241
virtualization, 241

with continuous integration
systems with dependency
analysis, 50-52

change in common library
example, 52-53

change in dependent project
example, 53-54

276 Index

culture, 219
in development process, 17-21
in early project phase, 22-24
Engineering Tools team

automation, 213
continuous integration,

212-213
Engineering Productivity

Reviews, 214
remote pair

programming, 213
team staffing/hiring, 213
testing as balancing act, 212
toolset, 211

enormous tests, 13
external vendors, 173-175
flaws in Google’s testing process,

229-231
free testing workflow, 169-170
future of

SETs (software engineers in
test), 231-232

TEs (test engineers), 233-234
test directors, 234
test infrastructure, 234-235

in ideal development process,
15-16

integration testing, enabling, 28
Gmail

approach to new testing
projects, 193

bug prevention, 197
Java Script Automation, 197
latency testing, 194
lessons learned, 196
load testing, 197
passion for testing, 198
team dynamics, 194-195

team staffing/hiring, 196-198
traps and pitfalls, 196-197

Google Feedback, 220-221
GTA (Google Test Analytics)

binding risk calculations to
project data, 166-167

future availability of, 168
goals of, 163
support for risk analysis,

163-165
test passes, 168

India Engineering Productivity
team

Code Coverage, 216
Diagnostic Utility, 217
global test engineering, 218
history of, 214-215
HYD, 216
innovations, 218
performance and load testing,

217-218
role of India in evolution of

Google testing, 215-216
large tests, 13
maintenance mode testing, 137

Google Desktop example,
138-140

guidelines, 140-141
medium tests, 12
merging development and

testing, 6
and organizational structure, 8-10
overview of Google software

testing, 1-5
Search and Geo

approach to new projects,
209-210

bugs found after
shipping, 210

Index 277

challenges, 209
history of, 208
manual versus automated

testing, 210
testing culture, 209

sequence
Beta Channel builds, 12
Canary Channel builds, 11
Dev Channel builds, 11
Release Channel builds, 12
Test Channel builds, 11

SETs (software engineers in
test). See SETs (software
engineers in test)

small tests, 12
TEs (test engineers). See TEs

(test engineers)
TEMs (test engineering

managers). See TEMs (test
engineering managers)

Test Certified system, 54-55
benefits of, 56
interview with founders of,

57-62
levels of, 55-56

test execution infrastructure, 40-41
runtime requirements, 48-50
test sizes, 41-48
test harnesses, 15
test infrastructure, 15, 234-235

test innovation and
experimentation, 171-173

test sizes, 41-44
benefits and weaknesses of,

46-48
examples of testing jobs, 44-45
goals and resource usage,

45-46
test tours. See test tours

testing traps (Gmail), 196-197
types of tests, 41

staffing. See recruiting
Status field (Buganizer), 122
Stewart, Simon, 70-73
stories (user), 106
Stredwick, Jason, 255-257
Striebeck, Mark, 57, 223
Student tour (Chrome), 248
submit queues, 30-31
Summary field (Buganizer), 122
SWEs (software engineers), 7

as feature developers, 16
integration with SETs’ role, 22
ratio with services, 21

system tests. See also large tests

T
TAP (Test Automation Program), 32
Targeted To field (Reporter) field

(Buganizer), 122
team dynamics

in development process, 24-25
Gmail, 194-195

tech lead managers (TLMs), 135
tech leads (TLs), 25, 135
TEMs (test engineering managers),

135, 187
allocation, managing, 189-191
future of, 234
impact, creating, 191-192
interviews

Android TEM Hung Dang,
198-202

Chrome TEM Joey Hynoski,
202-206

engineering manager Brad
Green, 219-221

278 Index

Engineering Tools director
Ashish Kumar, 211-214

Gmail TEM Ankit Mehta,
193-198

Google India test director
Sujay Sahni, 214-218

James Whittaker, 222-227
Search and Geo test director

Shelton Mar, 207-211
people knowledge, 188-189
product knowledge, 188
role of, 187-189
test engineering directors, 206-207

TEs (test engineers), 7, 75
ACC (Attribute Component

Capability) analysis, 81-82
BITE (Browser Integrated Test

Environment) experiment
executing manual and

exploratory tests with, 162
goals of, 153-154
impact on Google Maps, 157
layers with, 162-163
origin of, 160-162
Record and Playback

framework (RPF), 159-160
reporting bugs with, 154-156
viewing bugs with, 157-158

Bots experiment
dashboard, 142
development of, 151-152
features, 141-142
origin of, 148-151
results, 143-147

bugs and bug reporting, 113
basic workflow for bugs,

123-126
bug lifecycle, 126
Buganizer, 114-123

BugsDB, 114
differences between bugs at

Google and elsewhere, 124
Google Feedback, 124-125
Issue Tracker, 118-119

compared to SETs (Software
Engineers in Test), 128-129

external vendors, 173-175
free testing workflow, 169-170
future of, 233-234
interviews

Google Dogs TE Lindsay
Webster, 175-180

YouTube TE Apple Chow,
181-185

maintenance mode testing, 137
Google Desktop example,

138-140
guidelines, 140-141

recruiting
challenges, 127-128
interview process, 130-133

role of, 76-79
TE workgroup, 225
test cases, 108

GTCM (Google Test Case
Manager), 109-113

Test Scribe, 109
test innovation and

experimentation, 171-173
test leadership, 134-137

pirate leadership analogy,
134-135

role of, 136-137
test planning. See test planning
as user developers, 16
as user-facing test role, 75-76

Test Analytics, 260-264
Test Automation Program (TAP), 32

Index 279

test cases, 108
Chrome OS test plan, 241
GTCM (Google Test Case

Manager), 109-113
Test Scribe, 109

Test Certified system, 54-55
benefits of, 56
interview with founders of, 57-62
levels of, 55-56

Test Channel builds, 11
test dashboarding (Chrome OS test

plan), 241
test directors, 135, 234
Test Encyclopedia, 49
test engineers. See TEs (test engineers)
test engineering directors

and assignment of risk values, 101
interviews

Engineering Tools director
Ashish Kumar, 211-214

Google India test director
Sujay Sahni, 214-218

Search and Geo test director
Shelton Mar, 207-211

Shelton Mar (Search and Geo
test director), 207-211

role of, 206-207
test engineering managers. See TEMs

(test engineering managers)
test execution infrastructure, 15, 40-41,

234-235
runtime requirements, 48-50
test sizes, 41-44

benefits and weaknesses of,
46-48

examples of testing jobs, 44-45
goals and resource usage,

45-46
test harnesses, 15

test passes (GTA), 168
test planning, 79

10-minute test plan, 103-104
ACC (Attribute Component

Capability) analysis
attributes, 82-85
capabilities, 88-92
components, 86-87
Google+ example, 92-96
principles of, 81-82

automation planning, 28-29
Chrome OS test plan

Autotest, 242
browser testability, 243-244
dev versus test quality

focus, 240
E2E farm automation, 243
hardware, 244
hardware lab, 242
long-running test cases, 242
manual versus

automation, 240
OEMs, 242
per-build baseline testing, 239
per-LKG day testing, 239
per-release testing, 239-240
performance, 242
primary test drivers, 246
release channels, 240
relevant documents, 246
risk analysis, 238-239
test case repositories, 241
test dashboarding, 241
themes, 237-238
timeline, 244-245
user input, 241
virtualization, 241

crowd sourcing, 107

280 Index

desired features of test plans,
80-81

history of test planning at
Google, 81

life span of test plans, 79-80
risk

explained, 97
risk analysis, 97-108
risk mitigation, 101-108

role of, 80
user stories, 106

Test Scribe, 109
test tours (Chrome)

All Nighter tour, 250
Artisan’s tour, 251
Bad Neighborhood tour, 251-252
International Calling tour, 249
Landmark tour, 249-250
Personalization tour, 252
Shopping tour, 247-248
Student tour, 248

testability in development process,
29-30

testing. See software testing
Thomas, Eriel, 257
Thompson, Hugh, 226
timeline (Chrome OS test plan),

244-245
TLM (tech lead manager), 135
TLs (tech leads), 25, 135
tools and processes (Chrome testing),

204-205
ToTT (Testing on the Toilet), 58
tours. See test tours
twenty percent time, 18, 22
Type field (Reporter) field

(Buganizer), 123

types of tests
automated versus manual

testing, 14
enormous tests, 13
large tests, 13
medium tests, 12
small tests, 12

U
UI automation (Chrome), 204
Unit Test Dashboard, 31
unit testing, 31. See also small tests
Upson, Linus, 219
user developers in ideal development

process, 16
user input (Chrome OS test plan), 241
user stories, 106

V
vendors (external), 173-175
Verified In field (Reporter) field

(Buganizer), 123
Verifier field (Reporter) field

(Buganizer), 123
viewing bugs with BITE (Browser

Integrated Test Environment),
157-158

virtualization (Chrome OS test
plan), 241

W-X-Y-Z
Wave, 71
Web Test Framework (WTF), 162
WebDriver, 70-73, 150
Webster, Lindsay, 175-180

Index 281

Whittaker, James (interview), 222-227
workflow. See development process
WTF (Web Test Framework), 162
Wu, Eric, 151

Yang, Elena, 151
YouTube, interview with TE Apple

Chow, 181-185

	Table of Contents
	Foreword
	Foreword
	Preface
	Chapter 1 Introduction to Google Software Testing
	Quality ≠ Test
	Roles
	Organizational Structure
	Crawl, Walk, Run
	Types of Tests

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

