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Preface

Complex-Event Processing

Complex-event processing is a nontraditional style of building solu-
tions. This style makes it possible to address problems that do not yield 
well to traditional approaches such as real-time situation analysis. More 
broadly, complex-event processing enables the enterprise to sense, ana-
lyze, and respond to its business situations in new and innovative 
ways—ways that provide extreme value and competitive advantage.

In complex-event processing solutions, the word complex comes 
into play in two very different ways. The first refers to sensing, analyz-
ing, and responding to what is going on. It’s not just, “Oh, this event 
occurred, therefore I need to do <some activity>.” It’s more complex 
than that: It requires correlating that event with other events and with 
contextual information in order to understand whether a situation of 
business importance exists, and then deciding what, if anything, needs 
to be done. Complexity in sensing, complexity in analyzing, complex-
ity in responding.

The other way that complexity applies is that complex-event pro-
cessing involves a wide variety of computational techniques. There is 
no single approach to sensing, analyzing, and responding that is suit-
able for all types of situations. Each of the approaches has its own 
strengths and weaknesses, all of which need to be understood in order 
for you to craft your solution.

About This Book

This book provides an introduction to the complex-event processing 
space and the computational approaches enabled by TIBCO 
BusinessEvents®. It is divided into four parts: Getting Started, 
Technology, Design Patterns, and Deployment.

Part I, Getting Started, provides a conceptual overview of the 
complex-event processing space. It discusses how complex-event 
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processing can be employed in a business context to provide competitive 
differentiation, covers the terminology of complex-event processing, 
and explores the ways in which complex-event processing is different 
from traditional computing. It also explores a number of business appli-
cations for complex-event processing.

Part II, Technology, covers the capabilities of the TIBCO Business 
Events® product suite. It covers the TIBCO Business Events suite of 
products and presents a life-cycle overview of solutions based on these 
products. The TIBCO Business Events executable, a Java virtual machine 
(JVM), can be configured with combinations of five functional compo-
nents: inference agents, cache agents, query agents, process agents, and 
dashboard agents. Inference agents process rules, and cache agents pro-
vide the information-sharing mechanism within TIBCO BusinessEvents. 
Query agents provide both snapshot and continuous queries of cached 
information. Process agents provide orchestration capabilities, while 
dashboard agents provide real-time visualization capabilities. The 
architecture and functionality of each type of agent are explored.

Part III, Design Patterns, explores the building-block design pat-
terns used in constructing complex-event processing solutions with 
TIBCO BusinessEvents. Patterns for recognizing situation changes, 
comparisons and changes to reference data, systems of record, han-
dling duplicate inputs, run-time rule changes, and orchestrating actions 
are explored. Patterns for  pattern recognition, integration, solution 
modularization, information sharing, locking, load distribution, and 
sequencing are covered.

Part IV, Deployment, covers the architecturally significant aspects 
of putting a solution into production. The Nouveau Health Care case 
study is a realistic design problem that illustrates many of the issues an 
architect needs to address. It is used as an example to explore perfor-
mance, modularization for deployment, managing the cache and back-
ing store, defining deployment patterns, and monitoring. Design 
patterns for solution fault tolerance, high availability, and site disaster 
recovery are discussed, along with best practices for the conduct of 
complex-event processing projects.

The organization of the book is shown in Figure P-1.

Online Examples

Many of the examples in this book are taken from actual TIBCO 
BusinessEvents projects that are available online. All of these projects 
begin with the prefix ACEPST and can be found at informit.com/
title/9780321801982.
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TIBCO Architecture Book Series

Architecting Complex-Event Processing Solutions with TIBCO® is the 
third book in a series on architecting solutions with TIBCO products 
(Figure  P-2). It builds upon the material covered in TIBCO® 
Architecture Fundamentals, which provides material common to all 
TIBCO-based designs. Each of the more advanced books, including 
this one, explores a different style of solution, all based on TIBCO 
technology. Each explores the additional TIBCO products that are 
relevant to that style of solution. Each defines larger and more spe-
cialized architecture patterns relevant to the style, all built on top of 
the foundational set of design patterns presented in TIBCO® 
Architecture Fundamentals.

«structured»
Part II: Technology

TIBCO BusinessEvents

Dashboard Agents

Query Agents

Inference Agents

Process Agents

Cache Agents

«structured»
Part IV: Deployment

Fault Tolerance, High Availability, 
and Site Disaster Recovery

Case Study: Nouveau Health Care

Deployment Planning

Best Practices

Performance

«structured»
Part III: Design Patterns

Solution Modularization Patterns

Common Design Challenges

Event Pattern Recognition

Solution Basics

Integration

«structured»
Part I: Getting Started

The Event-Enabled Enterprise

Solution Design Patterns

Concepts

Figure P-1:  Organization of the Book
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Intended Audience

Project architects are the intended primary audience for this book. These 
are the individuals responsible for defining an overall complex-event 
processing solution and specifying the components and services 
required to support that solution. Experienced architects will find 
much of interest, but no specific prior knowledge of architecture is 
assumed in the writing. This is to ensure that the material is also acces-
sible to novice architects and advanced designers. For this latter audi-
ence, however, a reading of TIBCO® Architecture Fundamentals1 and 
Architecting Composite Applications and Services with TIBCO®

2
 is highly 

recommended. These books explore integration and services along 
with the broader topics of solution architecture specification and 
documentation.

TIBCO specialists in a complex-event processing center of excell
ence will find material of interest, including background on TIBCO 
BusinessEvents product suite and related best-practice design pat-
terns. The material on performance and tuning lays the foundation 
for building high-performance applications based on the product 
suite.

1.  Paul C. Brown, TIBCO® Architecture Fundamentals, Boston: Addison-Wesley (2011).

2.  Paul C. Brown, Architecting Composite Applications and Services with TIBCO®, Boston: 
Addison-Wesley (2013).

Architecting Data-Intensive Solutions with TIBCO®Architecting Complex-Event Processing
 Solutions with TIBCO®

Architecting BPM Solutions with TIBCO®

Architecting Composite Applications 
and Services with TIBCO®

TIBCO® Architecture Fundamentals

Figure P-2:  TIBCO Architecture Book Series
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Enterprise architects will find content of interest as well. The collec-
tion of design patterns, in conjunction with those presented in TIBCO® 
Architecture Fundamentals, provides the basis for a baseline set of stand-
ard design patterns for the enterprise.

Detailed Learning Objectives

After reading this book, you will be able to

•	 Describe the characteristics of an event-enabled enterprise
•	 Explain the concepts related to complex-event processing
•	 List examples of complex-event processing solutions
•	 Describe the TIBCO BusinessEvents product suite
•	 Explain the operation and tuning of TIBCO BusinessEvents agents
•	 Explain how situations and changes in situations can be recognized
•	 Describe how rules can be changed at runtime
•	 Explain how activities can be orchestrated
•	 Describe how patterns of events can be recognized
•	 Modularize complex-event processing solutions to facilitate main-

tainability and scalability
•	 Describe how to share information among distributed components 

of a complex-event processing solution
•	 Select and apply appropriate patterns for load distribution, fault 

tolerance, high availability, and site disaster recovery
•	 Explain how design choices impact agent performance
•	 Define deployment patterns for complex-event processing solutions
•	 Describe the best practices for conducting complex-event process-

ing projects
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Chapter 3

CEP Solution Design 
Patterns

Objectives

There are many different architectural patterns that arise in complex-
event processing (CEP) solutions. While all add one or more sense-
analyze-respond processes to the enterprise, the manner in which they 
do so varies widely. This chapter identifies the kinds of variation you 
can expect and presents a number of well-understood patterns, each of 
which addresses a common business challenge.

After reading this chapter you will be able to explain the variability 
in CEP architectures and describe the following patterns:

•	 Condition Detection
•	 Situation Recognition
•	 Track and Trace
•	 Business Process Timeliness Monitor
•	 Decision as a Service
•	 Situational Response
•	 Orchestrated Response

You will also be able to explain the challenges associated with 
pioneering projects that develop new solution patterns.
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Variability in CEP Architectures

The core CEP process (Figure 3-1) is always the same: Some event is 
sensed, it is analyzed in the context of some reference data to determine 
whether something of business interest has occurred, and some deci-
sion is made about what the nature of the response ought to be. Yet 
despite the fact that the core process is always the same, there are many 
different architectures for complex-event processing. Why?

There are two dominant reasons for the variability in CEP architec-
tures: the handling of reference data and the partitioning of 
functionality.

Handling Reference Data

The first area of variability centers around the relationship between the 
reference data and the events being analyzed: Does the stream of events 
alter the reference data that is used to interpret subsequent events? 
Applications in which the stream of events does not alter the reference 
data are relatively straightforward. The primary challenge in these 
applications is obtaining access to the reference data, which almost 
always originates elsewhere, and making access to the data efficient 
during the analysis and response activities.

On the other hand, applications in which the stream of events mod-
ifies the reference data are much more complicated. The portion of the 
reference data that represents the history of prior events does not have 
a system of record, at least without additional design. If it is unaccepta-
ble to lose this historical data when systems are shut down or fail, then 
the CEP solution must now include a system of record for the historical 
data. The system of record requires careful and clever design to ensure 
that it can handle the stream of data changes efficiently and robustly—
and still make the data efficiently accessible to the analysis and response 
activities (Figure 3-2).

reference data

res pondanalyzes ens e actionevent

Figure 3-1:  Core CEP Process
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Partitioning Functionality

The other area of variability lies in the many ways in which the CEP 
functionality can be partitioned and assigned to different components. 
The basic partitioning found in CEP solutions is shown in Figure 3-3.

Generally, the events driving the process are the observable actions 
of a participant (human or system) in some business process. Most of 
these participants do not announce their activities, at least to compo-
nents not engaged in that business process. For this reason, CEP solu-
tions generally have one or more components dedicated to sensing 
these actions and announcing their observations.

The techniques used for these observations are the same ones tra-
ditionally used in application integration. These techniques, and the 
products that support them, are detailed in TIBCO™ Architecture 
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Fundamentals.1 The relevant observation here, however, is that the 
products used for sensing are, for the most part, not the products used 
for CEP analysis and response. Thus the participant that does the sens-
ing is generally not the participant doing the analysis and response.

As a side note, one of the hallmarks of the event-enabled enterprise 
is that its architecture includes the types of components necessary to 
sense and announce actions and the types of components necessary to 
analyze and respond to those announcements.

In many cases, the volume of events handled by many CEP solutions 
makes it impractical to have one component handle all of the events and 
perform all of the analysis and response processing. Once this point is 
reached, there are a variety of ways in which performance can be 
increased. One is to simply deploy multiple instances of the component 
performing the analysis and response. This is a straightforward approach 
if the reference data is not updated when events occur. But when the 
reference data is updated by events, sharing the history across multiple 
instances of the analysis and response components requires additional 
design. The design patterns for this are discussed in Chapter 14.

Another approach to scalability is to begin to partition the function-
ality across additional components. Figure 3-4 shows one possible par-
titioning in which the analysis that leads up to situation recognition is 
performed by one component and the determination of the required 
responses is performed by another. Partitioning patterns also become 
more complex when the analysis and response computations also 

1.  Paul C. Brown, TIBCO® Architecture Fundamentals, Boston: Addison-Wesley (2011).
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update reference data. Chapter 13 discusses this and other partition-
ings as well as the tradeoffs that need to be considered.

As should be obvious by now, there are many possible functional 
partitionings for CEP solutions. Some lead to simple and straightfor-
ward implementations. Others require clear architectural thinking to 
achieve the desired behavior in a robust and highly scalable fashion.

The following sections discuss a number of CEP solution design pat-
terns, each focused on providing a commonly required business capa-
bility. For the most part, the patterns are arranged somewhat in order of 
increasing complexity. The chapter concludes with a brief discussion of 
problems for which there may not be well-established design patterns.

For simplicity, the sensing component is not shown in these design 
patterns: It is assumed to be always present.

Condition Detection

The simplest solution pattern you will encounter in complex-event 
processing is threshold detection (Figure 3-5). In this pattern, a compo-
nent takes an action that can be observed and results in a technical 
event. The condition detector is listening for this event, whose arrival 
serves as the trigger for analysis. The analysis compares a value con-
veyed by the event to a threshold value and, if the event value exceeds 
the threshold value, generates a business event announcing this condi-
tion. Completing the pattern, another component is listening for these 
announcements and taking appropriate actions.
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In using this pattern the location of the threshold value must be con-
sidered. One option is to permanently fix the threshold value in the anal-
ysis logic. Another option is to make it a piece of contextual information 
that is looked up by the condition detector, either when it starts or each 
time an event is analyzed. Yet another option is to use infrastructure that 
makes it possible to change the value at runtime. TIBCO BusinessEvents® 
rule templates provide this capability, as described in Chapter 10.

The more general form of this pattern is the Condition Detection pat-
tern (Figure 3-6). In this pattern the detected condition is defined by a 
number of values that define the boundaries of the condition being rec-
ognized. The information considered in the analysis is generally a com-
bination of event and contextual data. If the condition is detected, then a 
business event is generated announcing the existence of the condition.

When using this pattern the sources of the parameters defining 
the boundary conditions and the contextual data required to detect the 
condition must be considered, along with the possible need to change 
some of these values at runtime. The design effort required to provide 
access to information originating in other systems and make it effi-
ciently available is often a major part of a CEP project.

In the Condition Detection pattern, the reference data that is used is 
not modified by the processing of events: It does not reflect prior his-
tory. The only state information being used is that conveyed by the 
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triggering event. This makes the condition detector stateless, and there-
fore easy to scale and make highly available.

Situation Recognition

The Situation Recognition pattern (Figure 3-7), on the surface, looks a 
lot like the Condition Detection pattern. However, there is a major 
difference: In the Situation Recognition pattern, the context data used 
to recognize a situation when the triggering event arrives contains 
historical information. Many of the triggering events that arrive do not 
result in a business event, but their occurrence results in the modifica-
tion of the context data. The updated context data then provides the 
context for evaluating the next event that arrives.

Since the context data in this pattern contains historical informa-
tion, the ability of the pattern to recognize a situation may be compro-
mised if the historical data is lost. Such a loss would occur if the 
situation recognition component is holding context data in memory 
and the component is restarted. For this reason, the use of this pattern 
almost always requires persisting the historical information and recov-
ering this information when the component restarts. The object persis-
tence discussion in Chapter 6 discusses techniques for doing this.

There are many variations on this pattern both in the manner in which 
the context data keeps track of prior history and the manner in which the 
historical information is used to interpret a current event. Chapter 10 
discusses a number of design patterns that can be used for this purpose.
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Track and Trace

The Track-and-Trace pattern (Figure 3-8) is a special case of the Situation 
Recognition pattern. This pattern involves two contextual elements: a 
model of the expected process and the state of an existing instance of 
that process. If the triggering event marks the beginning of a new pro-
cess execution, an initial process state is created. For other events, infor-
mation in the event is used to locate the state of the process already 
being executed (there may be many instances of the process being exe-
cuted at any given point in time). Once the current state has been iden-
tified, the process model is then used to interpret the triggering event 
in the context of that state.

This simplified example omits a common challenge: the handling 
of out-of-sequence events. In many real-world situations, events may 
arrive out of sequence. In some cases, the first event that arrives may 
not be the initial event in the process. In a full solution, additional logic 
must be added to handle these situations. Chapter 14 discusses some of 
the design considerations.

The state machine approach provides for a rich and varied interpre-
tation of the process execution. If the triggering event corresponds to 
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an expected transition in the state machine (given the current state), the 
conclusion is that the process is executing in an expected manner—at 
least at this time. The analysis can be designed to announce business 
events when particular states have been achieved (i.e, announce that a 
milestone has been reached).

If the triggering event does not correspond to an expected transition, 
something unexpected has happened. Again, the analysis can be 
designed to emit business events announcing this unexpected situation.

This type of analysis is appropriate for monitoring any type of 
unmanaged process. Tracking of a package from initial pickup to final 
delivery is one example. Tracking your luggage from the time you drop 
it off at the departure airport ticket counter until the time you pick it up 
at the baggage carousel at your final destination is another.

In general, this approach is well suited for monitoring any process 
in which there is a hand-off of responsibility from one participant to 
another. You give your luggage to the counter agent—one hand-off of 
responsibility. The counter agent places the bag on the conveyer as a 
means of handing off responsibility to the baggage handlers. The pro-
cess continues until the final hand-off, which begins when the baggage 
handler at your final destination places the bag on the conveyer lead-
ing to the baggage carousel and ends when you pick up your luggage.

The events being monitored in track-and-trace situations are the 
evidence that individual hand-offs have been successful. The challenge 
in most situations is finding the evidence. In the days before security 
requirements mandated scanning and tracking luggage on airplanes, 
the evidence was scanty: You got your receipt for your bag when you 
dropped it off (that is, when you handed it off to the airline) and you 
(hopefully) picked up your bag at its destination. There was little evi-
dence available for any intermediate progress.

The security requirement that luggage not travel on a plane unless 
the associated passenger is also on board has resulted in better 
tracking—better evidence—of your luggage’s progress. The luggage 
tracking tag is scanned when the luggage is loaded on the plane or 
placed in a bin that will subsequently be loaded on the plane. It is 
scanned again when it comes off. These scans provide intermediate 
evidence of progress.

Your challenge in designing a Track-and-Trace solution is going 
to  be finding appropriate evidence of progress. It is not uncommon 
that the full set of evidence you would like to have is simply not avail-
able. When this occurs, you may want to implement the degree of 
tracking that is supported by the currently available evidence and 
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independently begin an initiative that will eventually provide more 
detailed evidence of progress. This is exactly what happened in the 
telecommunications case study described back in Chapter 2.

Business Process Timeliness Monitor

The Business Process Timeliness Monitor (Figure 3-9) is an extension of 
the Track-and-Trace pattern. State machine models can be extended so 
that the absence of an expected event within some period of time can 
be recognized. While, of course, you can apply this approach to recog-
nizing that an overall process did not complete on time, the greatest 
benefit comes from recognizing that some intermediate event did not 
occur on time, and thus the overall process is in jeopardy of being late. 
The recognition can be used to trigger an action that will correct the 
course of the overall process and get it back on track for an on-time 
completion. The telecommunications case study discussed back in 
Chapter 2 is an example of this pattern in action.

Detecting the absence of an event requires the establishment of a 
service-level agreement specifying the maximum amount of time it 
should take for the process to complete or remain in each intermediate 
state. When the state machine monitoring the process is started or a 
particular intermediate state is entered, a timer is started. When the 
overall process completes, or the intermediate state is exited, the cor-
responding timer is stopped. However, if the timer expires before the 
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process completes or the intermediate state is exited, a timeout event 
is generated. This is an indication that some expected event did not 
occur.

In recognizing this situation, it is the expiration of the timer that 
serves as the trigger for the analysis. Some introspection of the state 
machine may be required to identify which events did not occur, but 
the larger design requirement is to determine which parties should be 
notified when this situation arises and what actions those parties are 
going to take to get the overall process back on track.

Situational Response

All the patterns in this chapter up to this point have had one character-
istic in common: They simply recognize that some condition exists and 
announce that fact with an event. Other independent participants 
receive these notifications and decide what action to take.

In some situations there is an additional challenge in determining 
what the appropriate response ought to be (Figure 3-10). Further analy-
sis is required, generally to focus the actions on achieving specific busi-
ness objectives. Reference data, often containing historical information, 
is required for the analysis. The result of the analysis is generally one or 
more directives to actually perform the identified actions.

Consider the case in which there is some form of perishable com-
modity being sold: fresh produce and meat, seats on a plane, or hotel 
rooms—anything that becomes worthless if not sold by some point in 
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time. The desired business strategy is to dynamically set the price of 
the commodity based on the remaining inventory and the time remain-
ing before the commodity becomes worthless. The situation being 
responded to in these cases is the presence of a potential consumer for 
the perishable commodity.

The simplistic approach to pricing the commodity is to fix a point 
in time at which it will be put on sale. The idea is that this will raise 
demand and ensure that the commodity does not go to waste. The 
problem with this approach is that it neither maximizes revenue nor 
minimizes the likelihood that the commodity will go to waste. If the 
commodity is selling well and will likely sell out, putting it on sale will 
result in lost revenue. On the other hand, if the commodity is selling 
very poorly, lowering the price by a set amount at a fixed point in time 
might not ensure that the commodity actually sells out.

A more sophisticated approach is to track the rate at which the com-
modity is selling versus the price of the commodity. With this approach, 
the offering price for the commodity can be adjusted dynamically. This 
approach is often applied to online product sales. It requires complex-
event processing to do the dynamic price adjustments as consumers 
shop and as commodity inventories change. Note that the rate of sales 
and the current inventory become part of the reference data—a dynamic 
part whose currency must be maintained in a timely manner—most 
likely via events!

Decision as a Service

In the Decision-as-a-Service pattern (Figure 3-11), the logic necessary 
to make a decision is factored into a separate component. The service 
consumer gathers all relevant current-state input data for the decision 
and passes it to the service. This is typically a synchronous request-
reply interaction, but it may be asynchronous. In either case, the deci-
sion service computes output data from the input data, using static 
reference data as appropriate. The output data reflects the decision 
results.

The value of this pattern is that it encapsulates the logic of the deci-
sion as a service. This simplifies the maintenance of both the service 
consumer and the decision service. In particular, it allows the imple-
mentation of the service (that is, the business rules) to be updated 
without requiring a modification to the service consumer.
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To make this possible, however, both the input and output data 
structures have to remain fixed.

Let’s consider an example from the banking world. A bank needs to 
evaluate applications for credit cards to determine whether a credit 
card should be issued and what the credit limit should be on the 
account. In this case, the same data structure is used for both the input 
and output, with the difference being that some of the field values are 
computed by the Credit Card Decision service. Figure 3-12 shows this 
data structure. The input data includes the applicant’s age, credit score, 
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a flag indicating whether or not the applicant has a driver’s license, 
another flag indicating whether they are married, and the applicant’s 
income. The computed output values comprise a Boolean indicating 
whether the applicant is eligible, a field indicating the current status, 
and another field indicating the credit limit should the status be 
accepted.

A decision table describing the logic for this service is shown in 
Figure 3-13. This example is developed using the TIBCO BusinessEvents® 
Decision Manager, which is described in Chapter 10. Each line of the 
table defines a set of conditions for the input values (the Condition 
Area) and the corresponding computed output values (the Action Area).

The Decision-as-a-Service pattern is useful when the business rules 
change frequently but the data used to drive the decision and the out-
puts of the decision can be fixed.

Orchestrated Response

While process orchestration is not a traditional focus of complex-event 
processing, the need to orchestrate portions of CEP solution activity  
is increasing in importance (Figure 3-14). In this relatively common 

Figure 3-13:  Decision Table for the Credit Card Decision Service



Orchestrated Response 49

pattern, process orchestration is used to coordinate multiple participants 
in responding to a situation. The reason for the orchestration is twofold: 
to control the order in which the actions are performed and to confirm 
the successful completion of the actions. Less common is a situation in 
which process coordination is required for situation recognition.

This pattern is a hybrid of event-driven and request-driven interac-
tions. All of the interactions up to the receipt of the situation recogni-
tion announcement are event driven. The response orchestration 
component, however, uses request-driven interactions to not only 
request that each participant perform its work but also to confirm the 
successful completion of that work.

When this pattern is used, a choice must be made regarding the type 
of technology to be used for the response orchestration. Traditionally, this 
would be a component designed specifically for process orchestration, 
such as TIBCO ActiveMatrix BusinessWorks™ or TIBCO ActiveMatrix® 
BPM. With this approach, if rule-based reasoning is required in the 
orchestration, the Decision-as-a-Service pattern is used. The service 
returns values that then guide the subsequent process execution.
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However, separating process orchestration from complex-event 
processing may become a performance barrier, particularly if a signifi-
cant amount of repetitive information must be passed to the decision 
service on each invocation. In such cases, it is better to have the process 
orchestration performed directly by a CEP component. This is the pur-
pose of the TIBCO BusinessEvents® Process Orchestration product. It 
adds process orchestration capabilities to TIBCO BusinessEvents®.

Pioneering Solutions

We close this chapter on a cautionary note. Early explorers drew maps 
of the territories they became familiar with and drew dragons in the 
unexplored corners of these maps, warning those later map readers to 
beware of those unexplored spaces. Even worse, many explorers never 
even reached their goals: Columbus was seeking Asia when he found 
the Americas, and numerous explorers sought unsuccessfully for the 
Northwest Passage that would provide a North American route from 
the Atlantic to the Pacific.

The relevance here is that there are many types of applications for 
complex-event processing that have been well explored. If you are 
working in one of these areas, the problem is well defined, and imple-
menting your solution will be a straightforward engineering exercise. 
If, however, you are working in an area that is not well defined, one in 
which the analytical approach for either situation recognition or action 
determination has not yet been established, proceed with caution. 
Some (but not all) of these areas are true research topics—you need to 
invest a little time in determining whether or not your particular prob-
lem is well defined before you commit to building a solution. Remember, 
it took more than 400 years to find the Northwest Passage!

How can you tell when you are on safe ground? Ask yourself the 
following questions:

•	 Is the information related to the problem understood well enough 
to create a quality information model (including relevant state 
information)?

•	 Is there a well-defined (i.e., measurable) set of criteria that defines 
the situation that needs to be recognized?

•	 Are there well-defined triggers that identify the points in time at 
which the situation recognition analysis will be performed?
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•	 Is the information necessary for this recognition analysis readily 
accessible?

•	 Is there a clearly articulated approach for using the available infor-
mation to recognize the situation?

•	 Is there a well-defined (i.e., measurable) approach for responding 
to the situation once it has been recognized?

•	 Is the reference information needed for determining the response 
readily accessible?

•	 Does the business value of the resulting situation recognition and 
response capabilities warrant the investment in the solution?

If you answered yes to all of these questions, you are on solid 
ground. If you answered no to any of them, you may be plowing new 
ground. You need to eliminate this uncertainty before you commit to 
producing a solution. Focus your initial efforts on developing the 
answers to these questions, with particular attention to the last one: Is 
the result worth the effort? Then, and only then, should you commit to 
building a solution.

The riskiest question in the list is the first: What is it that you are 
trying to recognize? Define your goals based on solid analytical results 
and beware of open-ended criteria. For example, you are never going to 
recognize all forms of financial fraud: The bad guys are constantly invent-
ing new ways to scam the financial system and circumvent the checks 
currently in place. Identifying fraud, in general, is not an achievable goal.

On the other hand, there are specific behavior patterns that fairly 
reliably indicate that there might be fraud in progress. An analysis of 
login patterns might identify these behavior patterns, and the recogni-
tion of these patterns as they occur is definitely a well-defined and 
measurable goal.

If you find yourself waving your hands as you attempt to get spe-
cific about defining your recognition goals—stop! You are treading on 
thin ice. Do your analytical homework and convince yourself that you 
can be precise about what is to be recognized.

Summary

There are two factors that contribute to the variability in complex-event 
processing architectures. One is the handling of reference data and the 
extent to which the stream of events modifies the reference data used to 
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interpret subsequent events. The other is the myriad ways in which the 
necessary sense, analyze, and respond activities can be partitioned and 
assigned to components. There is no one-size-fits-all architecture for 
complex event processing.

The simplest architectures are those in which the reference data is 
not impacted by the stream of events. The Threshold Detection and 
Condition Detection patterns are examples of these.

When the event stream can alter the reference data, the architecture 
gets a bit more complicated. The reference data now contains some his-
torical information. If this information is essential for analysis, the solu-
tion must now become a system of record for this information. This 
requires persisting the information.

The Situation Recognition pattern uses historical data in its analysis. 
Some of the events that arrive simply result in updates to the historical 
data. Others, when analyzed, signify the recognition of a business-
significant condition that must be announced. Track-and-Trace is a spe-
cialization of this pattern that does milestone-level tracking of a process. 
The Business Process Timeliness Monitor extends Track-and-Trace to 
determine whether the milestones are achieved on time.

Some applications require more than simply announcing that a 
condition exists. The Situational Response pattern applies contextual 
analysis to determine the actions that are required in a specific situa-
tion. The Decision-as-a-Service pattern makes these analytical capabili-
ties available to non-CEP components. Sometimes the requirement 
extends beyond simply identifying the required actions to include the 
management of their execution. The result is the Orchestrated Response 
pattern.

Building a solution in which the situations to be recognized, the 
desired responses, and the analytical techniques to be used are all well 
defined is a straightforward (though sometimes complex) engineering 
exercise. Building a solution when any of these is not well defined has 
a significant degree of uncertainty. In these situations, before a commit-
ment is made to produce a solution, preliminary work should be under-
taken to clarify the approach to recognition and response. Once this 
preliminary work has been completed, an estimate of the effort required 
to implement the solution should be made to ensure that it is warranted 
by the expected business benefit.
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(run-to-completion)

Runtime
configuration, 248–249
rule changes, 154
TIBCO Runtime Agent, 56

S
Scalability, partitioning and, 38
Scorecard data structure

actions and, 78
examples, 75–76
Monitoring Scorecard, 249
overview of, 71
for summarizing activity, 75

Scripts
in deployment, 68
in rule execution, 130

Send Event activity, BusinessWorks, 172
SendRequest(), HTTP and SOAP 

interactions and, 179
Sense-analyze-respond pattern

event-enabled enterprises and, 9–10
innovations in analysis, 8
innovations in response, 9
innovations in sensing, 6–8
overview of, 5–6

Sensing. See also sense-analyze-respond 
pattern

Business Process Timeliness Monitor 
pattern, 44–45

capabilities of event-enabled enterprises, 
31–32

comparisons against reference data, 144
Condition Detection pattern, 39–41
event-enabled enterprises and, 11
event pattern recognition. See event 

pattern recognition
innovations in, 6–8
missing or failing to recognize events, 

15–16
recognizing changes to cached objects, 

148–149
recognizing events, 12–14
recognizing situation change, 143–144
reference data change coordination, 

147–148

reference data system of record, 145–147
Situation Recognition pattern, 41
Track-and-Trace pattern, 42–44

Separation of responsibility, in event-driven 
processes, 30

Sequences
action performance, 157–160
managing, 203–204
preserving across multiple inference 

agents, 205
preserving within one inference agent, 204
recovering temporal sequencing (reorder-

ing), 205–206
Service Grid, ActiveMatrix, 204
Service level agreements (SLAs), 13–14
Services

invoking Web Services, 130, 179–180
TIBCO BusinessEvents as asynchronous 

service consumer, 175–178
TIBCO BusinessEvents as service 

provider, 174–175
TIBCO BusinessEvents as synchronous 

service consumer, 178–180
Shared-All

cache object persistence, 111–113
configuring backing store, 245–246
fault tolerance and, 254

Shared-Nothing
cache object persistence, 113
configuring backing store, 245–246
fault tolerance and, 254

Shared pool threads, choosing threading 
model, 230

Simple events, 14
Site disaster recovery. See also fault tolerance, 

256–257
Situation Recognition pattern, 41
Situational Response pattern

overview of, 45–46
partitioning situation recognition from 

response, 38–39, 188–189
Track-and-Trace pattern as special case of, 

42–44
Sizing, rules of thumb for, 237
SLA Timeout Processing, 242
SLAs (service level agreements), 13–14
Snapshot queries

example, 118–121
executing, 115–117
life cycle of, 117–118
overview of, 115

SOAP
IP redirectors for load distribution, 201
sendRequest() for interacting with, 179
using TIBCO Business Events as service 

provider, 174



Index 277

Solutions
clusters and, 240
comparisons against reference data, 144
Continuous Query Change Recognition 

pattern, 151
decision tables, 155–156
duplicate event handling, 151–153
logging and exception reporting, 160
modularization patterns. See modulariza-

tion patterns
naming guidelines, 160–161
overview of, 143
recognizing cached object change,  

148–149
recognizing situation change, 143–144
reference data change coordination, 

147–148
reference data system of record, 145–147
RMS (Rules Management Server),  

156–157
rule templates, 154–155
runtime rule changes, 154
sequential and conditional action 

performance, 157–160
State Machine Change Recognition 

pattern, 149–150
summary, 161–162

Spreadsheets, Decision Manager interface 
and, 58

SQL
Inference Agent Publication pattern, 183
object persistence options, 111

State Machine Change Recognition pattern, 
149–150

State Machine Maintains Asynchronous State, 
177–178

State machines
change recognition pattern, 149–150
Claim Status example, 220, 223–224
event pattern recognition and, 164–165
maintaining asynchronous state, 177–178
modeling, 57–58
partitioning rules of thumb, 192
starting/stopping, 99
state transitions, 98–99
timeouts, 99

State models
managing state, 192
metadata models for process description, 

23
modeling state machines, 57–58
overview of, 98
starting/stopping state machines, 99
state transitions, 98–99
timeouts, 99
transitions and, 98–99

Studio
BPMN (Business Process Modeling 

Notation) plugin, 62
data modeling and, 57
eclipse-based design environment, 56
solution life cycle and, 66
spreadsheet-style interface, 58
visualization of decision trees with, 228

Sub-processes, executing, 130
Subscription, Inference Agent Subscription 

pattern, 184–185
Synchronous I/O calls, used in rule actions, 

231
Synchronous Service Consumer pattern, 

178–180
System of record, for reference data

database as, 146
external system as, 146–147
TIBCO BusinessEvents, 145

T
Tabular data, dashboard agent and, 135
TCP, 230
Technical events, 14
Telecommunication service restoration case, 

13–14
Templates, rule templates, 22, 40, 154–155
Temporal sequencing (reordering), recovery, 

205–206
Testing, 262
then keyword, action clause of inference 

agents, 78–79
Threads

associated with channel types, 92
choosing threading model for inference 

agents, 229–231
postprocessing behavior, 93–94
selecting threading models by  

destination, 261
Thresholds

Condition Detection pattern and, 39–40
constant use in decision making, 22
transactions and, 106–109

TIBCO
ActiveMatrix. See ActiveMatrix
ActiveSpaces. See ActiveSpaces
Administrator, 56, 68
BusinessEvents. See BusinessEvents
Enterprise Message Service. See EMS 

(Enterprise Message Service)
Hawk. See Hawk
Rendezvous. See Rendezvous

TIBCO Architecture Fundamentals (Brown), 
12–13, 171, xix–xx

TIBCO Runtime Agent (TRA), 56, 65–66
Timeliness, innovations in sensing and, 7–8
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Timeouts
avoiding deadlocks, 199
Claim Status Timeout example, 

233–234
Claim Tracker example, 223
notification events for, 235–236
object locking and, 109
state modeling and, 99

TimeToLive parameter, of inference agent 
event data structure, 71–72

TRA (TIBCO Runtime Agent), 56, 65–66
Track-and-Trace pattern

Business Process Timeliness Monitor 
pattern as extension of, 44–45

CEP design patterns, 42–44
Claim Tracker example, 217–218

Transactional data, as context for analysis, 22
Transactions

managing sequencing, 203–206
thresholds, 106–109

Triggers
for analysis, 261
Condition Detection pattern and, 39
demand analysis and, 232
event-driven processes, 28
performance events and, 233–234
planning architecture and, 260
Situation Detection pattern and, 41
Track-and-Trace pattern and, 42–43

Tuning mechanisms. See also  
performance, 225

Two-second advantage (Ranadivé and 
Maney), 8

U
UML 1.2 state machine notation, 57
Updates, database, 182

V
Validate Membership process,  

Nouveau Health Care case study, 
212–213

Views
be-views.exe, 135
behavior of, 136–137
overview of, 62–63
TickerTracker example, 138–139

Virtual rules, 155–156
Visual alerts, display options for metric  

data, 137

W
Wait for Event activity, BusinessWorks, 173
Web Services, invoking, 130, 179–180
when keyword, 78
Work, timing of, 8
Write-Behind behavior

configuring backing store, 246
object persistence and, 112

X
XML event payloads, 228–229
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