
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321801982
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321801982
https://plusone.google.com/share?url=http://www.informit.com/title/9780321801982
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321801982
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321801982/Free-Sample-Chapter

Architecting
Complex-Event
Processing Solutions
with TIBCO®

TIBCO® Press provides books to help users of TIBCO technology design and build real-world
solutions. The initial books – the architecture series – provide practical guidance for building
solutions by combining components from TIBCO’s diverse product suite. Each book in the
architecture series covers an application area from three perspectives: a conceptual overview,
a survey of applicable TIBCO products, and an exploration of common design challenges
and TIBCO-specific design patterns for addressing them. The first book in the series, TIBCO®
Architecture Fundamentals, addresses the basics of SOA and event-driven architectures. Each of the
advanced books addresses a particular architecture style, including composite applications and
services, complex event processing, business process management, and data-centric solutions.

The series emphasizes the unification of business process and system design in an approach
known as total architecture. A technology-neutral description of this approach to distributed
systems architecture is described in Implementing SOA: Total Architecture in Practice. Techniques
for addressing the related organizational and management issues are described in Succeeding with
SOA: Realizing Business Value through Total Architecture.

Visit informit.com/tibcopress for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

TIBCO® Press

 Architecting
Complex-Event
Processing Solutions
with TIBCO ®

 Paul C. Brown

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
 New York • Toronto • Montreal • London • Munich • Paris • Madrid
 Capetown • Sydney • Tokyo • Singapore • Mexico City

TIBCO® Press provides books to help users of TIBCO technology design and build real-world
solutions. The initial books – the architecture series – provide practical guidance for building
solutions by combining components from TIBCO’s diverse product suite. Each book in the
architecture series covers an application area from three perspectives: a conceptual overview,
a survey of applicable TIBCO products, and an exploration of common design challenges
and TIBCO-specific design patterns for addressing them. The first book in the series, TIBCO®
Architecture Fundamentals, addresses the basics of SOA and event-driven architectures. Each of the
advanced books addresses a particular architecture style, including composite applications and
services, complex event processing, business process management, and data-centric solutions.

The series emphasizes the unification of business process and system design in an approach
known as total architecture. A technology-neutral description of this approach to distributed
systems architecture is described in Implementing SOA: Total Architecture in Practice. Techniques
for addressing the related organizational and management issues are described in Succeeding with
SOA: Realizing Business Value through Total Architecture.

Visit informit.com/tibcopress for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

TIBCO® Press

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

TIBCO, TIBCO ActiveMatrix Adapter for Database, TIBCO ActiveMatrix BusinessWorks, TIBCO
ActiveMatrix BPM, TIBCO ActiveMatrix Service Bus, TIBCO ActiveMatrix Service Grid,
TIBCO ActiveSpaces, TIBCO Adapter for Files, TIBCO Administrator, TIBCO BusinessEvents,
TIBCO BusinessEvents Data Modeling, TIBCO BusinessEvents Decision Manager, TIBCO
BusinessEvents Event Stream Processing, TIBCO BusinessEvents Process Orchestration, TIBCO
BusinessEvents Views, TIBCO Enterprise Message Service, TIBCO Hawk, TIBCO Rendezvous,
TIBCO Runtime Agent are either registered trademarks or trademarks of TIBCO Software Inc.
and/or its affiliates in the United States and/or other countries.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

  U.S. Corporate and Government Sales
  (800) 382-3419
  corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

  International Sales
  international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Brown, Paul C.
  Architecting complex-event processing solutions with TIBCO / Paul C. Brown.
   pages cm
  Includes index.
  ISBN 978-0-321-80198-2 (pbk. : alk. paper) — ISBN 0-321-80198-9 (pbk. : alk. paper) 
1. Business logistics—Data processing.  2. Event processing (Computer science) 
3. TIBCO Software Inc.  I. Title.
  HD38.5.B76 2014
  658.50285'53—dc23	 2013026369

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One
Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13:	 978-0-321-80198-2
ISBN-10:	 0-321-80198-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, September 2013

To Mugs and Willie

This page intentionally left blank

vii

Contents

Preface	 xvii

Acknowledgments	 xxiii

About the Author	 xxv

Part I:  Getting Started	 1

Chapter 1:  The Event-Enabled Enterprise	 3

Objectives	 3
Extreme Value	 3
Sense, Analyze, and Respond	 5
Innovation in Sensing, Analyzing, and Responding	 6

Innovation in Sensing	 6
Innovation in Analysis	 8
Innovation in Response	 9

The Event-Enabled Enterprise	 9
Summary	 10

Chapter 2:  Concepts	 11

Objectives	 11
Overview	 11
Events	 12

Recognizing Events	 12
Simple Event Recognition May Be Inadequate	 14
Categories of Events	 14
Missing Events	 15

Complex Events	 16

viii Contents

Complex-Event Processing (CEP)	 17
Event Correlation	 20
Context	 21

Constants	 22
Data	 22
Metadata	 23

Analysis Requires Context	 23
Selecting an Analytical Approach	 25
Responding to Events	 26
Event-Driven Processes	 28
Event-Enabled Enterprise Capabilities	 31
Summary	 32

Chapter 3:  CEP Solution Design Patterns	 35

Objectives	 35
Variability in CEP Architectures	 36

Handling Reference Data	 36
Partitioning Functionality	 37

Condition Detection	 39
Situation Recognition	 41
Track and Trace	 42
Business Process Timeliness Monitor	 44
Situational Response	 45
Decision as a Service	 46
Orchestrated Response	 48
Pioneering Solutions	 50
Summary	 51

Part II:  Technology	 53

Chapter 4:  TIBCO BusinessEvents®	 55

Objectives	 55
TIBCO BusinessEvents® Product Suite	 55

TIBCO BusinessEvents®	 56

ixContents

TIBCO BusinessEvents® Data Modeling	 57
TIBCO BusinessEvents® Decision Manager	 58
TIBCO BusinessEvents® Event Stream Processing	 60
TIBCO BusinessEvents® Process Orchestration	 61
TIBCO BusinessEvents® Views	 61

TIBCO BusinessEvents® Solution Deployment	 62
BusinessEvents Solution Life Cycle	 65
Summary	 67

Chapter 5:  Inference Agents	 69

Objectives	 69
Inference Agent Overview	 70
Events, Concepts, and Scorecards	 70

Events	 71
Concepts	 73
Scorecards	 75

Rules	 77
Attributes	 77
Declarations	 77
Conditions	 78
Actions	 78

Run-to-Completion (RTC) Behavior	 79
Rule Conditions and Rete Network Efficiency	 83
Completing the Inference Agent: Preprocessing

and Postprocessing	 87
Channels	 88
Destinations	 89
Preprocessor Functions	 90
Directing Events	 90

Preprocessing Behavior	 91
Postprocessing Behavior	 93
State Models	 98

State Transitions	 98
Timeouts	 99

x Contents

Starting and Stopping State Machines	 99
Summary	 100

Chapter 6:  Cache Agents	 103

Objectives	 103
The Need for a Cache	 103
The Cache and Cache Agents	 104
Object Management Modes	 104

Cache Only	 105
Memory Only	 105
Cache + Memory	 106

Object Locking	 109
Cache Object Replication	 110
Object Persistence	 111

Shared-All Option	 111
Shared-Nothing Option	 113

Summary	 113

Chapter 7:  Query Agents	 115

Objectives	 115
Snapshot Queries	 115

Snapshot Query Execution	 115
Snapshot Query Life Cycle	 117

Continuous Queries	 121
Buffer Management	 122
Continuous Query Life Cycle	 123

Summary	 126

Chapter 8:  Process Agents	 127

Objectives	 127
Intended Utilization	 127
Processes	 130
Behavior	 130
Deployment	 132
Summary	 133

xiContents

Chapter 9:  Dashboard Agents	 135

Objectives	 135
Dashboard Configuration	 135
Behavior	 136
Metrics	 136
Dashboard	 137
Deployment	 139
Summary	 139

Part III:  Design Patterns	 141

Chapter 10:  Solution Basics	 143

Objectives	 143
Recognizing a Situation Change	 143
Reference-Data Comparison Pattern	 144
Systems of Record for Reference Data	 145

TIBCO BusinessEvents® as Reference-Data
System of Record	 145

Database as Reference-Data System of Record	 146
External System as Reference-Data System of Record	 146

Reference-Data Change Coordination Patterns	 147
State Machine Change Recognition Pattern	 149
Continuous Query Change Recognition Pattern	 151
Handling Duplicate Events	 151
Enabling Run-Time Rule Changes	 154

Rule Templates	 154
Decision Tables	 155
Rule Management Server (RMS)	 156

Sequential and Conditional Action Performance	 157
Orchestration Implemented in the Action Section

of a Single Rule	 157
Having a Separate Rule for Each Action	 157
Sequencing the Execution of Rules	 158
Orchestration Implemented in an Explicit

Orchestration Component	 159

xii Contents

Logging and Exception Reporting	 160
Naming Guidelines	 160
Summary	 161

Chapter 11:  Event Pattern Recognition	 163

Objectives	 163
The Need for Event Pattern Recognition	 163
Event Stream Processing Pattern Language	 166
Using a Pattern	 166
Liveness Monitoring	 168
Summary	 169

Chapter 12:  Integration	 171

Objectives	 171
Interacting with TIBCO ActiveMatrix BusinessWorks™	 172

TIBCO ActiveMatrix Business Works™ Send Event	 172
TIBCO ActiveMatrix BusinessWorks™ Wait for Event	 173
TIBCO ActiveMatrix Business Works™ Receive Event	 173
Invoke RuleFunction	 174

TIBCO BusinessEvents® as a Service Provider	 174
TIBCO BusinessEvents® as an Asynchronous Service

Consumer	 175
Concept Maintains Asynchronous Context	 176
State Machine Maintains Asynchronous State	 177
Process Maintains Asynchronous State	 178

TIBCO BusinessEvents® as a Synchronous
Service Consumer	 178

HTTP Send Request Invocation	 179
TIBCO BusinessEvents® Process Orchestration

Web Service Invocation	 179
Custom Function Invocation	 180

Interacting with Databases	 180
Database Interaction Using Database Concepts	 181

Database Concepts and Memory Management	 181

xiiiContents

Database Query	 181
Database Update and Delete	 182

Database Interaction Using TIBCO ActiveMatrix®
Adapter for Database	 182

Inference Agent Publication	 183
Inference Agent Request-Reply	 183
Inference Agent Subscription	 184

Database Interaction Using TIBCO ActiveMatrix
BusinessWorks™	 185

Summary	 185

Chapter 13:  Solution Modularization Patterns	 187

Objectives	 187
Partitioning Situation Recognition from Action	 188
Partitioning Filtering and Enhancement from

Rule Processing	 190
Using TIBCO ActiveMatrix BusinessWorks™ for Filtering

and Enrichment	 191
Partitioning Advantages and Disadvantages	 192
Partitioning Rules of Thumb	 192
Summary	 193

Chapter 14:  Common Design Challenges	 195

Objectives	 195
Information Sharing	 195

Using an Event for Information Sharing	 196
Using the Cache for Information Sharing	 196

Locking	 198
Locks	 198
Locking Requires Programming Discipline	 199
Avoiding Deadlocks	 199
Locking and Data Structures	 199

Load Distribution	 201
Using IP Redirectors to Distribute Load	 201
Using JMS Queues to Distribute Load	 201

xiv Contents

Using TIBCO BusinessEvents® Load Balancer
to Distribute Load	 202

Directing Related Work to a Single Agent	 202
Managing Sequencing	 203

Preserving Sequencing within One Inference Agent	 204
Preserving Sequencing across Multiple Inference

Agents	 205
Recovering Temporal Sequencing (Reordering)	 205

Handling Duplicate Events	 206
Summary	 207

Part IV:  Deployment	 209

Chapter 15:  Case Study: Nouveau Health Care	 211

Objectives	 211
Nouveau Health Care Solution Architecture	 212

Nouveau Health Care Business Processes	 212
Nouveau Health Care Architecture Pattern	 213
Nouveau Health Care in Context	 214
Processing Claims from Providers	 215

Claim Tracker	 217
Claim Status Concept	 218
Claim Track Interface	 219
Claim Tracker Processes	 221

Monitor Claim Processing	 222
Obtain Claim Status	 224

Summary	 224

Chapter 16:  Performance	 225

Objectives	 225
TIBCO BusinessEvents® Profiler	 225
Design Choices and Agent Performance	 226

Structuring Rule Conditions	 227
Organizing Decision Tables	 228
Accessing Large XML Event Payloads	 228

xvContents

Locking Objects	 229
Choosing Inference Agent Threading Models	 229
Using Synchronous I/O Calls in Rule Actions	 231

Demand Analysis	 232
Triggering Events	 233
Analysis	 234
Analysis Interpretation	 236

Sizing Rules of Thumb	 237
Summary	 237

Chapter 17:  Deployment Planning	 239

Objectives	 239
Modularization	 240

Modularization Units	 240
Agents	 241
Processing Units	 242
Clusters	 243

Object Management Configuration	 244
Object Management Mode	 245
Object Replication	 245
Backing Store	 245
Claim Tracker Object Management Configuration	 246

Deployment Patterns	 247
Deployment Requirements for

Run-Time Configurability	 248
Monitoring	 249
Summary	 250

Chapter 18: � Fault Tolerance, High Availability,
and Site Disaster Recovery	 253

Objectives	 253
Solution Fault Tolerance	 254

Backing Store Configuration for Fault Tolerance	 254
Coordination Patterns	 254
Inter-Agent Communications	 256

xvi Contents

Site Disaster Recovery	 256
Summary	 257

Chapter 19:  Best Practices	 259

Objectives	 259
Architecture Planning	 259
Designing Data Models for Concepts	 260
Object Management Modes, Threading, and Locking	 261
Designing Rules	 261
Testing Best Practices	 262
Summary	 262

Index	 265

xvii

Preface

Complex-Event Processing

Complex-event processing is a nontraditional style of building solu-
tions. This style makes it possible to address problems that do not yield
well to traditional approaches such as real-time situation analysis. More
broadly, complex-event processing enables the enterprise to sense, ana-
lyze, and respond to its business situations in new and innovative
ways—ways that provide extreme value and competitive advantage.

In complex-event processing solutions, the word complex comes
into play in two very different ways. The first refers to sensing, analyz-
ing, and responding to what is going on. It’s not just, “Oh, this event
occurred, therefore I need to do <some activity>.” It’s more complex
than that: It requires correlating that event with other events and with
contextual information in order to understand whether a situation of
business importance exists, and then deciding what, if anything, needs
to be done. Complexity in sensing, complexity in analyzing, complex-
ity in responding.

The other way that complexity applies is that complex-event pro-
cessing involves a wide variety of computational techniques. There is
no single approach to sensing, analyzing, and responding that is suit-
able for all types of situations. Each of the approaches has its own
strengths and weaknesses, all of which need to be understood in order
for you to craft your solution.

About This Book

This book provides an introduction to the complex-event processing
space and the computational approaches enabled by TIBCO
BusinessEvents®. It is divided into four parts: Getting Started,
Technology, Design Patterns, and Deployment.

Part I, Getting Started, provides a conceptual overview of the
complex-event processing space. It discusses how complex-event

xviii Preface

processing can be employed in a business context to provide competitive
differentiation, covers the terminology of complex-event processing,
and explores the ways in which complex-event processing is different
from traditional computing. It also explores a number of business appli-
cations for complex-event processing.

Part II, Technology, covers the capabilities of the TIBCO Business
Events® product suite. It covers the TIBCO Business Events suite of
products and presents a life-cycle overview of solutions based on these
products. The TIBCO Business Events executable, a Java virtual machine
(JVM), can be configured with combinations of five functional compo-
nents: inference agents, cache agents, query agents, process agents, and
dashboard agents. Inference agents process rules, and cache agents pro-
vide the information-sharing mechanism within TIBCO BusinessEvents.
Query agents provide both snapshot and continuous queries of cached
information. Process agents provide orchestration capabilities, while
dashboard agents provide real-time visualization capabilities. The
architecture and functionality of each type of agent are explored.

Part III, Design Patterns, explores the building-block design pat-
terns used in constructing complex-event processing solutions with
TIBCO BusinessEvents. Patterns for recognizing situation changes,
comparisons and changes to reference data, systems of record, han-
dling duplicate inputs, run-time rule changes, and orchestrating actions
are explored. Patterns for pattern recognition, integration, solution
modularization, information sharing, locking, load distribution, and
sequencing are covered.

Part IV, Deployment, covers the architecturally significant aspects
of putting a solution into production. The Nouveau Health Care case
study is a realistic design problem that illustrates many of the issues an
architect needs to address. It is used as an example to explore perfor-
mance, modularization for deployment, managing the cache and back-
ing store, defining deployment patterns, and monitoring. Design
patterns for solution fault tolerance, high availability, and site disaster
recovery are discussed, along with best practices for the conduct of
complex-event processing projects.

The organization of the book is shown in Figure P-1.

Online Examples

Many of the examples in this book are taken from actual TIBCO
BusinessEvents projects that are available online. All of these projects
begin with the prefix ACEPST and can be found at informit.com/
title/9780321801982.

xixPreface

TIBCO Architecture Book Series

Architecting Complex-Event Processing Solutions with TIBCO® is the
third book in a series on architecting solutions with TIBCO products
(Figure P-2). It builds upon the material covered in TIBCO®
Architecture Fundamentals, which provides material common to all
TIBCO-based designs. Each of the more advanced books, including
this one, explores a different style of solution, all based on TIBCO
technology. Each explores the additional TIBCO products that are
relevant to that style of solution. Each defines larger and more spe-
cialized architecture patterns relevant to the style, all built on top of
the foundational set of design patterns presented in TIBCO®
Architecture Fundamentals.

«structured»
Part II: Technology

TIBCO BusinessEvents

Dashboard Agents

Query Agents

Inference Agents

Process Agents

Cache Agents

«structured»
Part IV: Deployment

Fault Tolerance, High Availability,
and Site Disaster Recovery

Case Study: Nouveau Health Care

Deployment Planning

Best Practices

Performance

«structured»
Part III: Design Patterns

Solution Modularization Patterns

Common Design Challenges

Event Pattern Recognition

Solution Basics

Integration

«structured»
Part I: Getting Started

The Event-Enabled Enterprise

Solution Design Patterns

Concepts

Figure P-1:  Organization of the Book

xx Preface

Intended Audience

Project architects are the intended primary audience for this book. These
are the individuals responsible for defining an overall complex-event
processing solution and specifying the components and services
required to support that solution. Experienced architects will find
much of interest, but no specific prior knowledge of architecture is
assumed in the writing. This is to ensure that the material is also acces-
sible to novice architects and advanced designers. For this latter audi-
ence, however, a reading of TIBCO® Architecture Fundamentals1 and
Architecting Composite Applications and Services with TIBCO®

2
 is highly

recommended. These books explore integration and services along
with the broader topics of solution architecture specification and
documentation.

TIBCO specialists in a complex-event processing center of excell
ence will find material of interest, including background on TIBCO
BusinessEvents product suite and related best-practice design pat-
terns. The material on performance and tuning lays the foundation
for building high-performance applications based on the product
suite.

1.  Paul C. Brown, TIBCO® Architecture Fundamentals, Boston: Addison-Wesley (2011).

2.  Paul C. Brown, Architecting Composite Applications and Services with TIBCO®, Boston:
Addison-Wesley (2013).

Architecting Data-Intensive Solutions with TIBCO®Architecting Complex-Event Processing
 Solutions with TIBCO®

Architecting BPM Solutions with TIBCO®

Architecting Composite Applications
and Services with TIBCO®

TIBCO® Architecture Fundamentals

Figure P-2:  TIBCO Architecture Book Series

xxiPreface

Enterprise architects will find content of interest as well. The collec-
tion of design patterns, in conjunction with those presented in TIBCO®
Architecture Fundamentals, provides the basis for a baseline set of stand-
ard design patterns for the enterprise.

Detailed Learning Objectives

After reading this book, you will be able to

•	 Describe the characteristics of an event-enabled enterprise
•	 Explain the concepts related to complex-event processing
•	 List examples of complex-event processing solutions
•	 Describe the TIBCO BusinessEvents product suite
•	 Explain the operation and tuning of TIBCO BusinessEvents agents
•	 Explain how situations and changes in situations can be recognized
•	 Describe how rules can be changed at runtime
•	 Explain how activities can be orchestrated
•	 Describe how patterns of events can be recognized
•	 Modularize complex-event processing solutions to facilitate main-

tainability and scalability
•	 Describe how to share information among distributed components

of a complex-event processing solution
•	 Select and apply appropriate patterns for load distribution, fault

tolerance, high availability, and site disaster recovery
•	 Explain how design choices impact agent performance
•	 Define deployment patterns for complex-event processing solutions
•	 Describe the best practices for conducting complex-event process-

ing projects

This page intentionally left blank

xxiii

Acknowledgments

I must begin by acknowledging the extraordinary contribution of
Rodrigo Abreu in formulating the content of this book and the
accompanying TIBCO Education course. Not only was he instrumental
in helping me fine-tune the scope of material to be covered, but he also
clarified (often by experiment) many questions about actual product
behavior. This was all in addition to his “day job,” and often on his own
time. It is fair to say that without his assistance, neither this book nor
the accompanying course would exist. I am in his debt.

This book and accompanying course started out as a conversation
with Paul Vincent in September 2010. The outline we put together at
that time has stood the test of time and it can still be clearly recognized
in the finished product. Wenyan Ma made many valuable contribu-
tions in defining the scope of material to be covered, and Michael
Roeschter made significant contributions to the content.

Many others have contributed to the technical content: Pranab
Dhar, Sergio Gonik, Ryan Hollom, Fatih Ildiz, Ali Nikkhah, Mitul Patel,
Nicolas Prade, Patrick Sapinski, Rajarsi Sarkar, Rajesh Senapathy, Piotr
Smolinski, Suresh Subramani, Piotr Szuszkiewicz, and Yueming Xu.
I am grateful for their contributions.

My deepest thanks to the TIBCO Education team who worked with
me on this project: Alan Brown, Mike Fallon, Michelle Jackson, and
Madan Mashalkar. In more ways than I can mention, they made it all
happen. Special thanks to Jan Plutzer, who strongly supported this
effort from its inception.

Without the strong support of Eugene Coleman, Paul Asmar, and
Murat Sonmez, I would not have been able to dedicate the time neces-
sary for this effort. You have my deepest gratitude.

I would like to acknowledge those who took the time to review the
manuscript: Abby Brown, Antonio Bruno, Benjamin Dorman, Jose
Estefania, Lloyd Fischer, Alexandre Jeong, James Keegan, Lee Kleir,
Edward Rayl, Michael Roeschter, and Mark Shelton. Your feedback has
significantly improved the book.

xxiv Acknowledgments

I would like to thank the folks at Addison-Wesley for their contin-
ued support. Peter Gordon, my editor, has been a thoughtful guide
through five books. Kim Boedigheimer continues to work behind-the-
scenes magic to make things happen. The production team  Julie
Nahil, Megan Guiney, and Diane Freed  did their usual fine work in
making this book a reality.

Finally, I would like to thank my wife, Maria, and my children,
Jessica and Philip, for their love and support.

xxv

About the Author

Dr. Paul C. Brown is a Principal Software Architect
at TIBCO Software Inc. His work centers on enter-
prise and large-scale solution architectures, the
roles of architects, and the organizational and
management issues surrounding these roles.
His total architecture approach, the concurrent
design of both business processes and informa-
tion systems, can reduce project duration by

25 percent. He has architected tools for designing distributed control
systems, process control interfaces, internal combustion engines, and
NASA satellite missions. Dr. Brown is the author of Succeeding with SOA:
Realizing Business Value Through Total Architecture (2007), Implementing
SOA: Total Architecture In Practice (2008), TIBCO® Architecture Fundamentals
(2011), Architecting Composite Applications and Services with TIBCO® (2012),
and Architecting Complex-Event Processing Solutions with TIBCO® (2014),
all from Addison-Wesley, and he is a coauthor of the SOA Manifesto (soa-
manifesto.org). He received his Ph.D. in computer science from
Rensselaer Polytechnic Institute and his BSEE from Union College. He is
a member of IEEE and ACM.

This page intentionally left blank

This page intentionally left blank

35

Chapter 3

CEP Solution Design
Patterns

Objectives

There are many different architectural patterns that arise in complex-
event processing (CEP) solutions. While all add one or more sense-
analyze-respond processes to the enterprise, the manner in which they
do so varies widely. This chapter identifies the kinds of variation you
can expect and presents a number of well-understood patterns, each of
which addresses a common business challenge.

After reading this chapter you will be able to explain the variability
in CEP architectures and describe the following patterns:

•	 Condition Detection
•	 Situation Recognition
•	 Track and Trace
•	 Business Process Timeliness Monitor
•	 Decision as a Service
•	 Situational Response
•	 Orchestrated Response

You will also be able to explain the challenges associated with
pioneering projects that develop new solution patterns.

36 Chapter 3   CEP Solution Design Patterns

Variability in CEP Architectures

The core CEP process (Figure 3-1) is always the same: Some event is
sensed, it is analyzed in the context of some reference data to determine
whether something of business interest has occurred, and some deci-
sion is made about what the nature of the response ought to be. Yet
despite the fact that the core process is always the same, there are many
different architectures for complex-event processing. Why?

There are two dominant reasons for the variability in CEP architec-
tures: the handling of reference data and the partitioning of
functionality.

Handling Reference Data

The first area of variability centers around the relationship between the
reference data and the events being analyzed: Does the stream of events
alter the reference data that is used to interpret subsequent events?
Applications in which the stream of events does not alter the reference
data are relatively straightforward. The primary challenge in these
applications is obtaining access to the reference data, which almost
always originates elsewhere, and making access to the data efficient
during the analysis and response activities.

On the other hand, applications in which the stream of events mod-
ifies the reference data are much more complicated. The portion of the
reference data that represents the history of prior events does not have
a system of record, at least without additional design. If it is unaccepta-
ble to lose this historical data when systems are shut down or fail, then
the CEP solution must now include a system of record for the historical
data. The system of record requires careful and clever design to ensure
that it can handle the stream of data changes efficiently and robustly—
and still make the data efficiently accessible to the analysis and response
activities (Figure 3-2).

reference data

res pondanalyzes ens e actionevent

Figure 3-1:  Core CEP Process

Variability in CEP Architectures 37

Partitioning Functionality

The other area of variability lies in the many ways in which the CEP
functionality can be partitioned and assigned to different components.
The basic partitioning found in CEP solutions is shown in Figure 3-3.

Generally, the events driving the process are the observable actions
of a participant (human or system) in some business process. Most of
these participants do not announce their activities, at least to compo-
nents not engaged in that business process. For this reason, CEP solu-
tions generally have one or more components dedicated to sensing
these actions and announcing their observations.

The techniques used for these observations are the same ones tra-
ditionally used in application integration. These techniques, and the
products that support them, are detailed in TIBCO™ Architecture

pers is t
his torical data

reference data «datastore»
his torical data

analyzes ens e res pond actionevent

Figure 3-2:  Persisting Historical Data

s ens e
event

analyze

res pond

take
appropriate

ac tion

perform
obs ervable

action

analys is and res pons e c omponent res ponding partic ipantpartic ipant performing work

announc ement of action

announc ement of
required res pons e

s ens ing c omponent

referenc e data

Figure 3-3:  Basic CEP Functional Partitioning

38 Chapter 3   CEP Solution Design Patterns

Fundamentals.1 The relevant observation here, however, is that the
products used for sensing are, for the most part, not the products used
for CEP analysis and response. Thus the participant that does the sens-
ing is generally not the participant doing the analysis and response.

As a side note, one of the hallmarks of the event-enabled enterprise
is that its architecture includes the types of components necessary to
sense and announce actions and the types of components necessary to
analyze and respond to those announcements.

In many cases, the volume of events handled by many CEP solutions
makes it impractical to have one component handle all of the events and
perform all of the analysis and response processing. Once this point is
reached, there are a variety of ways in which performance can be
increased. One is to simply deploy multiple instances of the component
performing the analysis and response. This is a straightforward approach
if the reference data is not updated when events occur. But when the
reference data is updated by events, sharing the history across multiple
instances of the analysis and response components requires additional
design. The design patterns for this are discussed in Chapter 14.

Another approach to scalability is to begin to partition the function-
ality across additional components. Figure 3-4 shows one possible par-
titioning in which the analysis that leads up to situation recognition is
performed by one component and the determination of the required
responses is performed by another. Partitioning patterns also become
more complex when the analysis and response computations also

1.  Paul C. Brown, TIBCO® Architecture Fundamentals, Boston: Addison-Wesley (2011).

s ens e
event

analyze

take
appropriate

ac tion

res pond

perform
obs ervable

action

analys is componentpartic ipant performing work res pons e c omponent res ponding partic ipant

announcement of action

announcement of
required res pons e

s ens ing component

s ituation
rec ognition

announcement

reference data reference data

Figure 3-4:  Partitioning Situation Recognition from Response

Condition Detection 39

update reference data. Chapter 13 discusses this and other partition-
ings as well as the tradeoffs that need to be considered.

As should be obvious by now, there are many possible functional
partitionings for CEP solutions. Some lead to simple and straightfor-
ward implementations. Others require clear architectural thinking to
achieve the desired behavior in a robust and highly scalable fashion.

The following sections discuss a number of CEP solution design pat-
terns, each focused on providing a commonly required business capa-
bility. For the most part, the patterns are arranged somewhat in order of
increasing complexity. The chapter concludes with a brief discussion of
problems for which there may not be well-established design patterns.

For simplicity, the sensing component is not shown in these design
patterns: It is assumed to be always present.

Condition Detection

The simplest solution pattern you will encounter in complex-event
processing is threshold detection (Figure 3-5). In this pattern, a compo-
nent takes an action that can be observed and results in a technical
event. The condition detector is listening for this event, whose arrival
serves as the trigger for analysis. The analysis compares a value con-
veyed by the event to a threshold value and, if the event value exceeds
the threshold value, generates a business event announcing this condi-
tion. Completing the pattern, another component is listening for these
announcements and taking appropriate actions.

thres hold detection component

thres hold
detection

partic ipant interes ted in condition

take
appropriate

action

perform an
obs ervable

action

partic ipant performing work

triggering event

thres hold value

bus ines s event

Figure 3-5:  Threshold Detection Pattern

40 Chapter 3   CEP Solution Design Patterns

In using this pattern the location of the threshold value must be con-
sidered. One option is to permanently fix the threshold value in the anal-
ysis logic. Another option is to make it a piece of contextual information
that is looked up by the condition detector, either when it starts or each
time an event is analyzed. Yet another option is to use infrastructure that
makes it possible to change the value at runtime. TIBCO BusinessEvents®
rule templates provide this capability, as described in Chapter 10.

The more general form of this pattern is the Condition Detection pat-
tern (Figure 3-6). In this pattern the detected condition is defined by a
number of values that define the boundaries of the condition being rec-
ognized. The information considered in the analysis is generally a com-
bination of event and contextual data. If the condition is detected, then a
business event is generated announcing the existence of the condition.

When using this pattern the sources of the parameters defining
the boundary conditions and the contextual data required to detect the
condition must be considered, along with the possible need to change
some of these values at runtime. The design effort required to provide
access to information originating in other systems and make it effi-
ciently available is often a major part of a CEP project.

In the Condition Detection pattern, the reference data that is used is
not modified by the processing of events: It does not reflect prior his-
tory. The only state information being used is that conveyed by the

perform an
obs ervable

action

condition
detection

take
appropriate

action

partic ipant interes ted in conditionpartic ipant performing work c ondition detection component

condition
boundary

parameters

triggering event

bus ines s event

context data

Figure 3-6:  Condition Detection Pattern

Situation Recognition 41

triggering event. This makes the condition detector stateless, and there-
fore easy to scale and make highly available.

Situation Recognition

The Situation Recognition pattern (Figure 3-7), on the surface, looks a
lot like the Condition Detection pattern. However, there is a major
difference: In the Situation Recognition pattern, the context data used
to recognize a situation when the triggering event arrives contains
historical information. Many of the triggering events that arrive do not
result in a business event, but their occurrence results in the modifica-
tion of the context data. The updated context data then provides the
context for evaluating the next event that arrives.

Since the context data in this pattern contains historical informa-
tion, the ability of the pattern to recognize a situation may be compro-
mised if the historical data is lost. Such a loss would occur if the
situation recognition component is holding context data in memory
and the component is restarted. For this reason, the use of this pattern
almost always requires persisting the historical information and recov-
ering this information when the component restarts. The object persis-
tence discussion in Chapter 6 discusses techniques for doing this.

There are many variations on this pattern both in the manner in which
the context data keeps track of prior history and the manner in which the
historical information is used to interpret a current event. Chapter 10
discusses a number of design patterns that can be used for this purpose.

s ituation recognition component

s ituation recognizer data pers is tence

perform an
obs ervable

action

s ituation
recognition

take
appropriate

action

pers is t
his torical data

partic ipant interes ted in conditionpartic ipant performing work

triggering event

condition
boundary

parameters

bus ines s event

«datastore»
his torical data

context data

Figure 3-7:  Situation Recognition Pattern

42 Chapter 3   CEP Solution Design Patterns

Track and Trace

The Track-and-Trace pattern (Figure 3-8) is a special case of the Situation
Recognition pattern. This pattern involves two contextual elements: a
model of the expected process and the state of an existing instance of
that process. If the triggering event marks the beginning of a new pro-
cess execution, an initial process state is created. For other events, infor-
mation in the event is used to locate the state of the process already
being executed (there may be many instances of the process being exe-
cuted at any given point in time). Once the current state has been iden-
tified, the process model is then used to interpret the triggering event
in the context of that state.

This simplified example omits a common challenge: the handling
of out-of-sequence events. In many real-world situations, events may
arrive out of sequence. In some cases, the first event that arrives may
not be the initial event in the process. In a full solution, additional logic
must be added to handle these situations. Chapter 14 discusses some of
the design considerations.

The state machine approach provides for a rich and varied interpre-
tation of the process execution. If the triggering event corresponds to

track-and-trac e component

analys is pers is tenc e

take
appropriate

ac tion

«structured»
track-and-trace analys is

interpret triggering event in the
context of the current s tate

locate current proces s s tate

create initial proces s s tate

initial event?

pers is t s tate
c hanges

Additional logic is required
to handle out-of-sequence
events.

perform an
obs ervable

action

partic ipant interes ted in c onditionpartic ipant performing work

model of
expected
proces striggering event

bus ines s event

«datastore»
proces s s tate

proces s s tate

No Yes

Figure 3-8:  Track-and-Trace Pattern

Track and Trace 43

an expected transition in the state machine (given the current state), the
conclusion is that the process is executing in an expected manner—at
least at this time. The analysis can be designed to announce business
events when particular states have been achieved (i.e, announce that a
milestone has been reached).

If the triggering event does not correspond to an expected transition,
something unexpected has happened. Again, the analysis can be
designed to emit business events announcing this unexpected situation.

This type of analysis is appropriate for monitoring any type of
unmanaged process. Tracking of a package from initial pickup to final
delivery is one example. Tracking your luggage from the time you drop
it off at the departure airport ticket counter until the time you pick it up
at the baggage carousel at your final destination is another.

In general, this approach is well suited for monitoring any process
in which there is a hand-off of responsibility from one participant to
another. You give your luggage to the counter agent—one hand-off of
responsibility. The counter agent places the bag on the conveyer as a
means of handing off responsibility to the baggage handlers. The pro-
cess continues until the final hand-off, which begins when the baggage
handler at your final destination places the bag on the conveyer lead-
ing to the baggage carousel and ends when you pick up your luggage.

The events being monitored in track-and-trace situations are the
evidence that individual hand-offs have been successful. The challenge
in most situations is finding the evidence. In the days before security
requirements mandated scanning and tracking luggage on airplanes,
the evidence was scanty: You got your receipt for your bag when you
dropped it off (that is, when you handed it off to the airline) and you
(hopefully) picked up your bag at its destination. There was little evi-
dence available for any intermediate progress.

The security requirement that luggage not travel on a plane unless
the associated passenger is also on board has resulted in better
tracking—better evidence—of your luggage’s progress. The luggage
tracking tag is scanned when the luggage is loaded on the plane or
placed in a bin that will subsequently be loaded on the plane. It is
scanned again when it comes off. These scans provide intermediate
evidence of progress.

Your challenge in designing a Track-and-Trace solution is going
to be finding appropriate evidence of progress. It is not uncommon
that the full set of evidence you would like to have is simply not avail-
able. When this occurs, you may want to implement the degree of
tracking that is supported by the currently available evidence and

44 Chapter 3   CEP Solution Design Patterns

independently begin an initiative that will eventually provide more
detailed evidence of progress. This is exactly what happened in the
telecommunications case study described back in Chapter 2.

Business Process Timeliness Monitor

The Business Process Timeliness Monitor (Figure 3-9) is an extension of
the Track-and-Trace pattern. State machine models can be extended so
that the absence of an expected event within some period of time can
be recognized. While, of course, you can apply this approach to recog-
nizing that an overall process did not complete on time, the greatest
benefit comes from recognizing that some intermediate event did not
occur on time, and thus the overall process is in jeopardy of being late.
The recognition can be used to trigger an action that will correct the
course of the overall process and get it back on track for an on-time
completion. The telecommunications case study discussed back in
Chapter 2 is an example of this pattern in action.

Detecting the absence of an event requires the establishment of a
service-level agreement specifying the maximum amount of time it
should take for the process to complete or remain in each intermediate
state. When the state machine monitoring the process is started or a
particular intermediate state is entered, a timer is started. When the
overall process completes, or the intermediate state is exited, the cor-
responding timer is stopped. However, if the timer expires before the

bus ines s proces s timelines s monitor

timeoutanalys is pers is tence

«structured»
track-and-trace analys is with

timeout handling

interpret triggering event in the
c ontext of the current s tate

locate current proces s s tate

c reate initial proces s s tate

initial event?

pers is t s tate changes
take

appropriate
ac tion

at (timer expires)

s tart timeout
timer(s)

create timeout
event

perform an
obs ervable

ac tion

Additional logic is required
to handle out-of-sequence
events.

partic ipant interes ted in conditionpartic ipant performing work

model of expected proces s

triggering event

bus ines s event

«datastore»
proces s s tate

timeout event

proces s s tate

timer

No Yes

Figure 3-9:  Business Process Timeliness Monitor

Situational Response 45

process completes or the intermediate state is exited, a timeout event
is generated. This is an indication that some expected event did not
occur.

In recognizing this situation, it is the expiration of the timer that
serves as the trigger for the analysis. Some introspection of the state
machine may be required to identify which events did not occur, but
the larger design requirement is to determine which parties should be
notified when this situation arises and what actions those parties are
going to take to get the overall process back on track.

Situational Response

All the patterns in this chapter up to this point have had one character-
istic in common: They simply recognize that some condition exists and
announce that fact with an event. Other independent participants
receive these notifications and decide what action to take.

In some situations there is an additional challenge in determining
what the appropriate response ought to be (Figure 3-10). Further analy-
sis is required, generally to focus the actions on achieving specific busi-
ness objectives. Reference data, often containing historical information,
is required for the analysis. The result of the analysis is generally one or
more directives to actually perform the identified actions.

Consider the case in which there is some form of perishable com-
modity being sold: fresh produce and meat, seats on a plane, or hotel
rooms—anything that becomes worthless if not sold by some point in

s ens e
event

analyze

take
appropriate

ac tion

perform further
analys is to determine

appropriate res pons es

perform
obs ervable

action

analys is componentpartic ipant performing work res pons e component res ponding partic ipant

announcement of action

announcement of
required res pons e

s ens ing component

s ituation
recognition

announcement

reference data reference data

Figure 3-10:  Situational Response Pattern

46 Chapter 3   CEP Solution Design Patterns

time. The desired business strategy is to dynamically set the price of
the commodity based on the remaining inventory and the time remain-
ing before the commodity becomes worthless. The situation being
responded to in these cases is the presence of a potential consumer for
the perishable commodity.

The simplistic approach to pricing the commodity is to fix a point
in time at which it will be put on sale. The idea is that this will raise
demand and ensure that the commodity does not go to waste. The
problem with this approach is that it neither maximizes revenue nor
minimizes the likelihood that the commodity will go to waste. If the
commodity is selling well and will likely sell out, putting it on sale will
result in lost revenue. On the other hand, if the commodity is selling
very poorly, lowering the price by a set amount at a fixed point in time
might not ensure that the commodity actually sells out.

A more sophisticated approach is to track the rate at which the com-
modity is selling versus the price of the commodity. With this approach,
the offering price for the commodity can be adjusted dynamically. This
approach is often applied to online product sales. It requires complex-
event processing to do the dynamic price adjustments as consumers
shop and as commodity inventories change. Note that the rate of sales
and the current inventory become part of the reference data—a dynamic
part whose currency must be maintained in a timely manner—most
likely via events!

Decision as a Service

In the Decision-as-a-Service pattern (Figure 3-11), the logic necessary
to make a decision is factored into a separate component. The service
consumer gathers all relevant current-state input data for the decision
and passes it to the service. This is typically a synchronous request-
reply interaction, but it may be asynchronous. In either case, the deci-
sion service computes output data from the input data, using static
reference data as appropriate. The output data reflects the decision
results.

The value of this pattern is that it encapsulates the logic of the deci-
sion as a service. This simplifies the maintenance of both the service
consumer and the decision service. In particular, it allows the imple-
mentation of the service (that is, the business rules) to be updated
without requiring a modification to the service consumer.

Decision as a Service 47

To make this possible, however, both the input and output data
structures have to remain fixed.

Let’s consider an example from the banking world. A bank needs to
evaluate applications for credit cards to determine whether a credit
card should be issued and what the credit limit should be on the
account. In this case, the same data structure is used for both the input
and output, with the difference being that some of the field values are
computed by the Credit Card Decision service. Figure 3-12 shows this
data structure. The input data includes the applicant’s age, credit score,

as s emble information and
 invoke s ervic e

prior activities

wait for res ults

us e output data
 to drive

proc es s �ow

compute
output values

s ervic e c ons umer decis ion s ervice

s tatic reference data

input data

output data

Figure 3-11:  Decision-as-a-Service Pattern

Output Data

Input Data -Age
-CreditScore
-HasDL
-MaritalStatus
-Income
-Eligible
-Status
-CreditLimit

A pplicant

Figure 3-12:  Credit Card Decision Service Data Structure

48 Chapter 3   CEP Solution Design Patterns

a flag indicating whether or not the applicant has a driver’s license,
another flag indicating whether they are married, and the applicant’s
income. The computed output values comprise a Boolean indicating
whether the applicant is eligible, a field indicating the current status,
and another field indicating the credit limit should the status be
accepted.

A decision table describing the logic for this service is shown in
Figure 3-13. This example is developed using the TIBCO BusinessEvents®
Decision Manager, which is described in Chapter 10. Each line of the
table defines a set of conditions for the input values (the Condition
Area) and the corresponding computed output values (the Action Area).

The Decision-as-a-Service pattern is useful when the business rules
change frequently but the data used to drive the decision and the out-
puts of the decision can be fixed.

Orchestrated Response

While process orchestration is not a traditional focus of complex-event
processing, the need to orchestrate portions of CEP solution activity
is increasing in importance (Figure 3-14). In this relatively common

Figure 3-13:  Decision Table for the Credit Card Decision Service

Orchestrated Response 49

pattern, process orchestration is used to coordinate multiple participants
in responding to a situation. The reason for the orchestration is twofold:
to control the order in which the actions are performed and to confirm
the successful completion of the actions. Less common is a situation in
which process coordination is required for situation recognition.

This pattern is a hybrid of event-driven and request-driven interac-
tions. All of the interactions up to the receipt of the situation recogni-
tion announcement are event driven. The response orchestration
component, however, uses request-driven interactions to not only
request that each participant perform its work but also to confirm the
successful completion of that work.

When this pattern is used, a choice must be made regarding the type
of technology to be used for the response orchestration. Traditionally, this
would be a component designed specifically for process orchestration,
such as TIBCO ActiveMatrix BusinessWorks™ or TIBCO ActiveMatrix®
BPM. With this approach, if rule-based reasoning is required in the
orchestration, the Decision-as-a-Service pattern is used. The service
returns values that then guide the subsequent process execution.

perform
obs ervable

action

analyze

execute A
action

determine required
res pos nes

direct
partic ipant A

direct
partic ipant B

direct
partic ipant C

execute B
action

execute C
action

res pons e orches tration
component

analys is component res ponding
partic ipant C

partic ipant
performing work

res ponding
partic ipant A

s ituation
recognition

announcement

res ponding
partic ipant B

triggering event

reference data

reference data

Figure 3-14:  Response Orchestration Pattern

50 Chapter 3   CEP Solution Design Patterns

However, separating process orchestration from complex-event
processing may become a performance barrier, particularly if a signifi-
cant amount of repetitive information must be passed to the decision
service on each invocation. In such cases, it is better to have the process
orchestration performed directly by a CEP component. This is the pur-
pose of the TIBCO BusinessEvents® Process Orchestration product. It
adds process orchestration capabilities to TIBCO BusinessEvents®.

Pioneering Solutions

We close this chapter on a cautionary note. Early explorers drew maps
of the territories they became familiar with and drew dragons in the
unexplored corners of these maps, warning those later map readers to
beware of those unexplored spaces. Even worse, many explorers never
even reached their goals: Columbus was seeking Asia when he found
the Americas, and numerous explorers sought unsuccessfully for the
Northwest Passage that would provide a North American route from
the Atlantic to the Pacific.

The relevance here is that there are many types of applications for
complex-event processing that have been well explored. If you are
working in one of these areas, the problem is well defined, and imple-
menting your solution will be a straightforward engineering exercise.
If, however, you are working in an area that is not well defined, one in
which the analytical approach for either situation recognition or action
determination has not yet been established, proceed with caution.
Some (but not all) of these areas are true research topics—you need to
invest a little time in determining whether or not your particular prob-
lem is well defined before you commit to building a solution. Remember,
it took more than 400 years to find the Northwest Passage!

How can you tell when you are on safe ground? Ask yourself the
following questions:

•	 Is the information related to the problem understood well enough
to create a quality information model (including relevant state
information)?

•	 Is there a well-defined (i.e., measurable) set of criteria that defines
the situation that needs to be recognized?

•	 Are there well-defined triggers that identify the points in time at
which the situation recognition analysis will be performed?

Summary 51

•	 Is the information necessary for this recognition analysis readily
accessible?

•	 Is there a clearly articulated approach for using the available infor-
mation to recognize the situation?

•	 Is there a well-defined (i.e., measurable) approach for responding
to the situation once it has been recognized?

•	 Is the reference information needed for determining the response
readily accessible?

•	 Does the business value of the resulting situation recognition and
response capabilities warrant the investment in the solution?

If you answered yes to all of these questions, you are on solid
ground. If you answered no to any of them, you may be plowing new
ground. You need to eliminate this uncertainty before you commit to
producing a solution. Focus your initial efforts on developing the
answers to these questions, with particular attention to the last one: Is
the result worth the effort? Then, and only then, should you commit to
building a solution.

The riskiest question in the list is the first: What is it that you are
trying to recognize? Define your goals based on solid analytical results
and beware of open-ended criteria. For example, you are never going to
recognize all forms of financial fraud: The bad guys are constantly invent-
ing new ways to scam the financial system and circumvent the checks
currently in place. Identifying fraud, in general, is not an achievable goal.

On the other hand, there are specific behavior patterns that fairly
reliably indicate that there might be fraud in progress. An analysis of
login patterns might identify these behavior patterns, and the recogni-
tion of these patterns as they occur is definitely a well-defined and
measurable goal.

If you find yourself waving your hands as you attempt to get spe-
cific about defining your recognition goals—stop! You are treading on
thin ice. Do your analytical homework and convince yourself that you
can be precise about what is to be recognized.

Summary

There are two factors that contribute to the variability in complex-event
processing architectures. One is the handling of reference data and the
extent to which the stream of events modifies the reference data used to

52 Chapter 3   CEP Solution Design Patterns

interpret subsequent events. The other is the myriad ways in which the
necessary sense, analyze, and respond activities can be partitioned and
assigned to components. There is no one-size-fits-all architecture for
complex event processing.

The simplest architectures are those in which the reference data is
not impacted by the stream of events. The Threshold Detection and
Condition Detection patterns are examples of these.

When the event stream can alter the reference data, the architecture
gets a bit more complicated. The reference data now contains some his-
torical information. If this information is essential for analysis, the solu-
tion must now become a system of record for this information. This
requires persisting the information.

The Situation Recognition pattern uses historical data in its analysis.
Some of the events that arrive simply result in updates to the historical
data. Others, when analyzed, signify the recognition of a business-
significant condition that must be announced. Track-and-Trace is a spe-
cialization of this pattern that does milestone-level tracking of a process.
The Business Process Timeliness Monitor extends Track-and-Trace to
determine whether the milestones are achieved on time.

Some applications require more than simply announcing that a
condition exists. The Situational Response pattern applies contextual
analysis to determine the actions that are required in a specific situa-
tion. The Decision-as-a-Service pattern makes these analytical capabili-
ties available to non-CEP components. Sometimes the requirement
extends beyond simply identifying the required actions to include the
management of their execution. The result is the Orchestrated Response
pattern.

Building a solution in which the situations to be recognized, the
desired responses, and the analytical techniques to be used are all well
defined is a straightforward (though sometimes complex) engineering
exercise. Building a solution when any of these is not well defined has
a significant degree of uncertainty. In these situations, before a commit-
ment is made to produce a solution, preliminary work should be under-
taken to clarify the approach to recognition and response. Once this
preliminary work has been completed, an estimate of the effort required
to implement the solution should be made to ensure that it is warranted
by the expected business benefit.

This page intentionally left blank

265

Index

A
Account Change Recognition, 151–152
Actions

partitioning situation recognition from
response, 188–189

rule agenda, 81
rule clauses of inference agents, 78–79
sequential and conditional, 157–160
synchronous I/O calls in rule actions, 231

Active sensing, 6–7
ActiveMatrix

BPM, 49–50, 159
BusinessWorks. See BusinessWorks
database adapter. See Adapter for

Database
integration with, 172
process orchestration and, 49–50, 159
resource information for, 171
Service Grid, 204

ActiveMatrix BPM, 49–50, 159
ActiveSpaces

channel types, 88
Data Grid and, 160

Adapter for Database
database interaction with, 182–183
Inference Agent Publication pattern, 183
Inference Agent Request-Reply pattern,

183
Inference Agent Subscription pattern,

184–185
updating reference data on external

system, 147
Administrator, TIBCO, 56, 68
Agents

cache agents. See cache agents
dashboard agents. See dashboard agents
deadlocks and, 199
in deployment, 241–242
directing related work to single agent,

202–203

inference agents. See inference agents
inter-agent communications, 256
modularization and, 240–241
options for turning on profiler, 226
partitioning and, 188–189
process agents. See process agents
processing units and, 243
query agents. See query agents
TIBCO BusinessEvents, 56
types of, 63–64

Alerts, display options, 137
Analysis. See also sense-analyze-respond

pattern
approaches to event analysis, 25–26
capabilities of event-enabled enterprises,

31–32
CEP (complex-event processing) and,

17–19
complex events requiring, 16–17
context required for event analysis, 23–24
correlation in, 21
event-enabled enterprises and, 11
inference agents and, 69
innovations in, 8
interpreting, 236
of performance, 234–236
rule-based, 19–20
Track-and-Trace pattern and, 43
triggers for, 261

Architecting Composite Applications and Services
with TIBCO (Brown), xx, 171, 203

Architecture
best practices for planning, 259–260
Nouveau Health Care case study, 213–214
variability of CEP architectures, 36

Asynchronous Service Consumer pattern
interaction with BusinessWorks, 185
TIBCO BusinessEvents as service

consumer, 175–178
attribute keyword, 77

Index266

Attributes, in rule clauses, 77
Automation, of sensing, 7
Availability. See also fault tolerance

load distribution and, 201
of solutions, 253

B
Backing store

configuring for fault tolerance, 254
configuring object management, 245–246

Backup Copies, replicating cache objects, 110
Behavior models, event correlation and, 21
BEMM (BusinessEvents Monitoring and

Management)
managing logging, 160
overview of, 56
solution life cycle and, 66–68
turning on profiler, 226

Berkeley DB, 111
Best practices

architecture planning, 259–260
designing data models by concepts,

260–261
for object management, 261
overview of, 259
for rule design, 261
summary, 262–263
testing, 262

BPM, 49–50, 159
BPMN (Business Process Modeling Notation)

defining processes, 130
managing process execution, 23
metadata models for process

description, 23
plugin for TIBCO Business Events

Studio, 62
Browser Interface, Decision Manager, 58
Buffers

continuous queries operating on, 121
managing, 122–123

Business Process Modeling Notation. See
BPMN (Business Process Modeling
Notation)

Business Process Timeliness Monitor pattern,
CEP design patterns, 44–45

Business processes. See processes
Business rules. See rules
BusinessEvents

as asynchronous service consumer,
175–178

BusinessWorks Receive Event as process
starter, 173–174

core features, 56–57
Data Modeling, 57–58
Decision Manager. See Decision Manager
deploying solutions, 63–65

Event Stream Processing. See Event
Stream Processing

Load Balancer, 202
managing logging, 160
metadata and, 23
overview of, 55, 56
Process Orchestration. See Process

Orchestration
product suite, 55–56
Profiler, 225–226
reference data change coordination

patterns, 147–148
request-reply interaction with

ActiveMatrix BusinessWorks, 173–174
rule templates, 22, 40, 154–155
as service provider, 174–175
solution life cycle, 65–68
solution life cycle and, 66–68
Studio. See Studio
summary, 68–69
support for computational

specializations, 19
as synchronous service consumer, 178–180
as system of record for reference data, 145
turning on profiler, 226
variety in feature set, 17
Views. See Views

BusinessEvents Monitoring and Manage-
ment. See BEMM (BusinessEvents
Monitoring and Management)

BusinessWorks
database interaction with, 185
for filtering and enrichment, 191
integration with, 172
process orchestration and, 49–50, 159
Receive Event activity, 173–174
resource information for, 171
Send Event activity, 172
Wait for Event activity, 173

C
Cache

cache agents and, 104
example of use of, 106–109
factors contributing to need for, 103
fault tolerance and, 254
for information sharing, 196–198
interpreting performance analysis, 236
recognizing changes to cached objects,

148–149
Cache Agent Quorum, 110
Cache agents

analysis of Claim Tracker, 235
cache and, 104
Cache + Memory mode, 106
Cache Only mode, 105

Index 267

in core of TIBCO BusinessEvents, 56
deploying process agents and, 132
example of use of, 106–109
factors contributing to need for cache, 103
functional data modeling extensions

and, 57
Memory Only mode, 105–106
modularization and, 242
object locking, 109–110
object management modes, 104–105
object persistence, 111
object replication, 110
processing units and, 243
Shared-All persistence option, 111–113
Shared-Nothing persistence option, 113
sizing rules of thumb, 237
snapshot query execution and, 115
solution deployment and, 63–64
summary, 113–114
supplying buffer of continuous

queries, 121
timeout notification and, 236

Cache-Aside
behavior, 112
configuring backing store, 246
update strategy, 111–112

Cache + Memory mode
database concept configuration, 181
object management modes, 106

Cache Only mode
configuring object management,

244–246
database concept configuration, 181
information sharing, 196–198
object management, 105
process management, 131

Call Activity, 130
Caller threads, threading models for

inference agents, 230
Catalog functions, turning on profiler, 226
CDD files

logging and exception reporting, 160
object management modes and, 104–105
solution life cycle and, 65–66

CEP (complex-event processing)
correlation in, 21
feasibility and, 25–26
functional partitioning, 37–39
handling reference data, 36–37
metadata, 23
overview of, 17–20
responding to complex events, 26–28
variability of architectures, 36

CEP design patterns
Business Process Timeliness Monitor,

44–45

Condition Detection, 39–41
creating new solutions, 50–51
Decision-as-a-Service pattern, 46–48
functional partitioning, 37–39
handling reference data, 36–37
overview of, 35
Response Orchestration, 48–50
Situation Recognition, 41
Situational Response, 45–46
summary, 51–52
Track-and-Trace pattern, 42–44
variability of CEP architectures, 36

Change management
coordinating changes to reference data,

147–148
recognizing changes to cached objects,

148–149
recognizing changes to continuous

queries, 151
recognizing changes to state machines,

149–150
runtime rule changes, 154

Channels
communication between clusters, 243
destinations, 89
snapshot queries and, 115
supplying buffer of continuous queries,

121
threads associated with channel

types, 92
for transport of services, 174–175
types of, 88–89

Charts, display options for metric data, 137
Checkpoints, process agent behavior

and, 131
Claim processing, in Nouveau Health Care

case study
analysis, 234–236
Claim Status Notification, 217
Claim Tracker, 217–218
Claim Tracker Interface, 219–221
Monitor Claim Processing process,

219–221
Obtain Claim Status process,

223–224
overview of, 214–216

Claim Status Notification
configuring object management, 246
monitoring and, 249–250
transitions and, 218
triggering claim processing events,

233–234
Claim Status Request

configuring object management, 246
triggering claim processing events, 234

Claim Status Timeout, 234

Index268

Claim Tracker
agent modularization and, 242
configuring object management, 246
deployment patterns and, 247
monitoring and, 249–250
overview of, 217–218
triggering events in, 233–234

Claim Tracker Interface, 219–221
Clusters

deployment and, 243–244, 248
modularization and, 240

Communication
inter-agent, 256
telecommunication service restoration

case, 13–14
Competitive advantage

event-enabled enterprises and, 9
by improving business processes, 5

Complex events
complex event processing. See CEP

(complex-event processing)
defined, 14
deploying, 239
design challenges, 195
event categories, 15
feasibility of analysis, 25–26
integration and, 171
overview of, 16–17
processing generally, xvii
processing with TIBCO BusinessEvents,

55
recognizing situations that require action,

143
responding to, 26–28

Computation
in analytic approach, 25
metrics and, 136

Concept data structures, in inference agents
actions and, 78
examples, 74–75
overview of, 70–71
pointers for referencing, 74
properties, 73–74
scorecards as special type of concept, 75

Concept Maintains Asynchronous Context,
176–177

Concepts
AccountConcept example, 106–109
database queries and, 181
designing data models by, 260–261
interaction using database concepts, 181
join conditions and, 261

Condition Detection pattern, CEP design
patterns, 39–41

Conditions
action performance, 157–160

avoiding complex, 261
checkpoints and, 131
filter conditions, 115–117
Rete network efficiency, 83–87
rule clauses of inference agents, 78
rule conditions for accessing XML event

payloads, 228–229
structuring rule conditions for

performance, 227–228
types of rule conditions, 227

Configuration
of backing store, 254
of dashboard agents, 135–136
database concept, 181
object management, 244–246
run-time configuration requirements,

248–249
Constants, as thresholds for decision

making, 22
Content-aware load balancing, 203
Context

Condition Detection pattern and, 40
event analysis requiring, 23–24
of events, 21–23
Situation Detection pattern and, 41
Track-and-Trace pattern and, 42

Continuous queries
buffer management, 122–123
Continuous Query Change Recognition

pattern, 151
example, 122, 124–126
information sharing, 197
life cycle, 123–124
overview of, 121–122

Coordination patterns, fault tolerance and,
254–256

Correlation, of events, 20–21
Credit-card fraud, CEP example,

18–19
Custom functions, defining, 180
Customers, extreme value converting

into fans, 4

D
Dashboard agents

behavior of, 136
configuring, 135–136
deploying, 139
display options, 137
information sharing, 197
metrics, 136–137
overview of, 135
solution deployment and, 63–64
summary, 139–140
TIBCO BusinessEvents Views, 63
TickerTracker example, 138–139

Index 269

Data
acquisition for analysis, 25
aggregation, 136
as context for analysis, 22
innovations in sensing and data

quality, 7–8
Data Grid, ActiveSpaces, 160
Data modeling

designing models by concepts, 260–261
state machine modeling, 57–58
using database as system of record for

reference data, 146
Data structures

Claim Status example, 220
concepts, 73–75
events, 71–73
of inference agents, 70–71
locks and, 199–200
overview of, 70–71
scorecards, 75–76

Databases
concepts and memory management, 181
integration using ActiveMatrix Adapter

for Database, 182–183
integration with, 180–181
object persistence options, 111
queries, 181
as system of record for reference data, 146
updates and deletes, 182

DB2, 111
Deadlocks. See also locks, 199
Decision-as-a-Service patten

in decision making, 46–48
decision tables, 155–156
process orchestration and, 49

Decision Manager
Decision-as-a-Service pattern and, 48
overview of, 58–60
runtime rule changes, 154

Decision tables
defining processes and, 130
organizing for performance, 228
for virtual rules, 155–156

Decision trees, visualization with TIBCO
BusinessEvents Studio, 228

Declaration, in rule clauses, 77–78
declare keyword, 77–78
Dedicated worker pool thread, 230
Delegation with Confirmation, coordination

patterns, 159
Deletes, database, 182
Demand analysis, 232–233
Deployment

agents for, 241–242
clusters in, 243–244
configuring object management, 244–246

of dashboard agents, 139
modularization units in, 240–241
monitoring, 249–250
overview of, 239
of patterns, 167, 247–248
of process agents, 132
processing units and, 242–243
requirements for run-time configuration,

248–249
summary, 250–251
TIBCO BusinessEvents solutions, 63–65

Design
best practices for rule design, 261
of cache for information sharing, 196–198
CEP patterns. See CEP design patterns
directing related work to single agent,

202–203
for duplicate event handling, 206–207
for information sharing, 195–196
for load distribution, 201–202
for locking, 198–200
overview of, 195
for performance, 226
for sequencing, 203–206
summary, 207

Destinations
channels and, 89
preprocessing and, 92
selecting threading models by, 261
sending events to, 172–173

Disaster recovery. See also fault tolerance,
256–257

Display options, dashboard agents, 137
Duplicate events, handling, 151–153, 206–207

E
EAR files

RMS generating, 156–157
solution life cycle and, 65–66

EMS (Enterprise Message Service)
analysis of Claim Tracker, 235
deployment of Claim Tracker, 248
interpreting performance analysis, 236
resource information for, 171
solution life cycle and, 65
timeout notification and, 236

Enhancement/enrichment
BusinessWorks used for, 191
partitioning from rule processing, 190–191

Enterprise architects, intended audience for
this book, xxi

Enterprise Message Service. See EMS
(Enterprise Message Service)

Equivalent joins
inference agent conditions, 78
types of rule conditions, 227

Index270

Event data structure, inference agent
actions and, 78–79
overview of, 70
timeToLive, properties, and

payload, 71–73
Event-driven processes

demand analysis and, 232
overview of, 28–31
partitioning and, 188

Event-enabled enterprises
capabilities of, 31–32
delivery of extreme value and, 3–4
innovations in analysis, 8
innovations in response, 9
innovations in sensing, 6–8
overview of, 3
sense-analyze-respond pattern, 5–6
summary, 10
what it is, 9–10

Event pattern recognition
monitoring liveness of components,

168–169
need for, 163–165
overview of, 163
pattern language in Event Stream

Processing, 166
putting patterns to use, 166–168
summary, 169

Event Stream Processing
event pattern recognition, 163, 165
overview of, 60–61
pattern language in, 166
query agents and, 115

Events
accessing XML event payloads, 228–229
analysis requires context, 23–24
analytical approaches, 25–26
capabilities of event-enabled enterprises,

31–32
categories of, 14–15
communicating between blocks of rules,

260
complex. See complex events
complex-event processing. See CEP

(complex-event processing)
context of, 21–23
correlation of, 20–21
defined, 12
directing events created in preprocessor

functions, 90–91
event-driven processes, 28–31
handling duplicate, 151–153, 206–207
for information sharing, 196
for intermediate conclusions, 261
missing or failing to recognize, 15–16
modularization and, 241

processing TIBCO BusinessEvents, 56
recognizing, 12–14
responding to, 26–28
rule-based analysis, 19–20
summary, 32–33

Excel spreadsheets, 58
Exception handling

Exception Reporting Interface,
221–222

Resolve Claim Processing
Exception, 217, 221

solutions, 160
Expected behavior, CEP metadata, 23
Explicit buffer management, continuous

queries, 123
External system, as system of record for

reference data, 146–147
Extreme value, successful enterprises

delivering, 3–4

F
Fault tolerance

configuring backing store for, 254
coordination patterns and, 254–256
inter-agent communications for, 256
object replication providing, 111
summary, 257

File systems
analysis of Claim Tracker, 235
timeout notification and, 236

Filters/filtering
BusinessWorks for, 191
inference agent conditions, 78
partitioning from rule processing,

190–191
snapshot query execution and, 115–117
structuring rule conditions for

performance, 261
types of rule conditions, 227

Fire and Forget coordination pattern, 159
Forgy, Charles L., 80

G
Global locking, performance impact of, 229
Graphs

dashboard agent and, 135
display options for metric data, 137

H
Hawk

channel types, 88
Hawk agent in MM (Monitoring and

Management), 66
Hawk agent in monitoring, 250
Hawk agent starting/stopping processing

units, 68

Index 271

managing logging, 160
options for turning on profiler, 226

High availability. See also fault tolerance
request-reply coordination patterns in,

254–255
of solutions, 253

Historical data, recent history as context for
analysis, 22

Hot Deployment, 249
HTTP

channel types, 88
custom function invocation, 180
IP redirectors for load distribution, 201
multithreaded channels and, 230
sendRequest() for interacting with, 179
TIBCO Business Events as service

provider for, 174
HTTP Send Request Invocation, 179

I
I/O calls, synchronous I/O calls used in rule

actions, 231
Implicit buffer management, for continuous

queries, 123
Inference agents

analysis of Claim Tracker, 235
channels, 88–89
concept data structure and, 73–75
ConditionsSeparate example, 81–84
in core of TIBCO BusinessEvents, 56
data structures used by, 70–71
defining processes, 130
deploying patterns, 167
deploying process agents, 132
destinations, 89
directing events created in preprocessor

functions, 90–91
event data structure and, 71–73
functional data modeling extensions

and, 57
Inference Agent Publication pattern, 183
Inference Agent Request-Reply

pattern, 183
Inference Agent Subscription pattern,

184–185
interpreting performance analysis, 236
lacking fault tolerance, 254
Load Balancer and, 202
LocalChannel example, 94–98
locks and, 109, 198
overview of, 69–70
partitioning and, 190–191, 241
postprocessing behavior, 93–94
preprocessing and postprocessing, 87–88
preprocessing behavior, 91–92
preprocessor functions, 90

preserving sequences across multiple, 205
preserving sequences within single, 204
processing timeouts, 235–236
RTC (run-to-completion) behavior, 79–81
rule actions, 78–79
rule attributes, 77
rule conditions, 78
rule conditions and Rete network

efficiency, 83–87
rule declaration, 77–78
scorecard data structure and, 75–76
sizing rules of thumb, 237
solution deployment and, 63–64
starting/stopping state machines, 99
state models, 98
state transitions, 98–99
summary, 100–101
threading model for, 229–231
timeouts, 99
updating reference data on external

system, 147
working memory, 103

Information
cache for sharing, 196–198
events for sharing, 196
planning architecture and, 259–260
sharing, 195

Innovations
in analysis, 8
extreme value and, 5
in response, 9
in sensing, 6–8

Integration
with ActiveMatrix Adapter for Database,

182–183
with ActiveMatrix BusinessWorks, 172
BusinessWorks Receive Event activity,

173–174
BusinessWorks Send Event activity, 172
BusinessWorks Wait for Event

activity, 173
database concepts and memory

management and, 181
database queries and, 181
database updates and deletes and, 182
with databases, 180–181
Inference Agent Publication pattern, 183
Inference Agent Request-Reply pattern,

183
Inference Agent Subscription pattern,

184–185
invoking rule function for, 174
overview of, 171–172
summary, 185–186
TIBCO BusinessEvents as asynchronous

service consumer, 175–178

Index272

Integration, continued
TIBCO BusinessEvents as service

provider, 174–175
TIBCO BusinessEvents as synchronous

service consumer, 178–180
Interval events, 15
IP redirectors, for load distribution, 201
IPhone, example of extreme value, 3–4

J
Java, defining custom functions, 180
Java virtual machines (JVMs)

solution deployment and, 63
threading models and, 230

JDBC, 182
JMS (Java Message Service)

channel types, 88
coordination patterns in fault

tolerance, 255
handling duplicate events, 151–153,

206–207
inter-agent communications, 256
preserving sequences across multiple

inference agents, 205
preserving sequences within single

inference agent, 204
queues for load distribution, 201
using TIBCO Business Events as service

provider, 174
Join conditions

concepts and, 261
inference agent conditions, 78
types of rule conditions, 227

JVMs (Java virtual machines)
solution deployment and, 63
threading models and, 230

L
Life cycle

continuous queries, 123–124
of patterns, 168
snapshot queries, 117–118
TIBCO BusinessEvents, 65–68

Liveness monitoring, 168–169
Load Balancer, TIBCO BusinessEvents, 202
Load distribution

content-aware load balancing, 203
IP redirectors for, 201
JMS queries for, 201
TIBCO BusinessEvents Load Balancer, 202

Local
channel types, 88–89
LocalChannel example, 94–98

Locks
avoiding deadlocks, 199
data structures and, 199–200

establishing locking policy for
objects, 261

information sharing and, 197–198
object locking, 109–110
overview of, 198
performance and, 229

Logging, 160

M
Maintenance, modularization for ease of, 260
Manage Payments process, Nouveau Health

Care case study, 212–214
Memory management, databases, 181
Memory Only

configuring object management, 244–246
as default memory management

mode, 181
overview of, 105–106
transient concepts and, 261

Messages
checkpoints and, 130
defining processes and, 130

Metadata, 23
Metric fields, 136
Metrics

dashboard agents, 136–137
determining for monitoring, 249
display options, 137
planning architecture and, 259

Microsoft Excel spreadsheets, 58
MM (Monitoring and Management)

managing logging, 160
overview of, 56
solution life cycle, 66–68
turning on profiler, 226

Modularization
in deployment, 240–241
ease of maintenance and, 260

Modularization patterns
BusinessWorks used for filtering and

enrichment, 191
overview of, 187
partitioning advantages/

disadvantages, 192
partitioning filtering and enhancement

from rule processing, 190–191
partitioning rules of thumb, 192
partitioning situation recognition from

response, 188–189
summary, 193

Monitor Claim Processing process,
Nouveau Health Care case study,
212–213, 217, 222, 242

Monitoring
deployment, 249–250
liveness monitoring, 168–169

Index 273

Monitor Claim Processing process,
212–213, 217, 222, 242

Track-and-Trace pattern and, 43
Monitoring and Management. See MM

(Monitoring and Management)

N
Naming guidelines, for rules, 160–161
Networks

analysis of Claim Tracker, 235
interpreting performance analysis, 236
Rete networks, 81, 83–87
timeout notification and, 236

Nonequivalent join conditions, 78, 227
Notification events

Claim Status example, 222, 233–235
timeouts, 235–236

Nouveau Health Care case study
architecture pattern, 213–214
business processes, 212–213
claim processing, 215–216
Claim Status Notification, 217
Claim Tracker, 217–218
Claim Tracker Interface, 217–221
Monitor Claim Processing process,

222
Obtain Claim Status process,

223–224
overview of, 211–212
summary, 224

O
Object Data Management Group, 61
Object Query Language (OQL), 61
Objects

best practices for managing, 261
Cache + Memory mode, 106
Cache Only mode, 105
configuring object management,

244–246
locking, 109–110
locking policy for, 261
management modes, 104
Memory Only mode, 105–106
recognizing changes to cached objects,

148–149
replication of cache objects, 110
Shared-All persistence option, 111–113
Shared-Nothing persistence option, 113

Obtain Claim Status process, 217,
223–224, 242

ODBC, 182
Online examples in this book, accessing,

xviii–xix
OQL (Object Query Language), 61
Oracle DB, 111

Orchestrated Response pattern. See Response
Orchestration pattern

Out-of-sequence events, handling, 42

P
Partitioning. See also modularization patterns

advantages/disadvantages, 192
deployment and, 241
filtering and enhancement from rule

processing, 190–191
rules of thumb, 192
situation recognition from response,

38–39, 188–189
variability of CEP architectures

and, 37–39
Pattern language

in Event Stream Processing, 166
pattern recognition and, 164–165
putting patterns to use, 166–168

Pattern.IO.toPattern() function, 167
Patterns

Asynchronous Service Consumer pattern,
175–178, 185

CEP. See CEP design patterns
Continuous Query Change Recognition

pattern, 149–151
Delegation with Confirmation coordina-

tion patterns, 159
deploying, 247–248
Inference Agent Publication pattern, 183
Inference Agent Request-Reply

pattern, 183
Inference Agent Subscription pattern,

184–185
matching, 60–61
modularization patterns. See

modularization patterns
recognizing event patterns. See event

pattern recognition
reference data change coordination

patterns, 147–148
Reference-Data Comparison pattern, 144
Request-Reply coordination patterns,

254–255
sense-analyze-respond pattern. See

sense-analyze-respond pattern
Synchronous Service Consumer pattern,

178–180
Payload

accessing XML event payloads,
228–229

of inference agent event data
structure, 72

Performance
analysis of, 234–236
demand analysis, 232–233

Index274

Performance, continued
design choices impacting, 226
interpreting analysis, 236
load distribution and, 201
locking and, 229
organizing decision tables, 228
overview of, 225
profiles, 225–226
sizing rules of thumb, 237
structuring rule conditions, 227–228
summary, 237–238
synchronous I/O calls used in rule

actions, 231
threading model for inference agents and,

229–231
triggering events, 233–234
XML event payloads and, 228–229

Persistence
backing store providing, 245–246
overview of object persistence, 111–113
persistent event pattern for fault

tolerance, 256
Point events, 15
Postprocessing

behavior, 93–94
RTC cycle and, 87–88

Preprocessing
behavior, 91–92
directing events created in preprocessor

functions, 90–91
object locking and, 109
of patterns, 167
preprocessor functions, 90
RTC cycle and, 87–88
snapshot query example, 119–120

Process agents
behavior of, 130–132
defining processes, 130
deploying, 132
intended utilization of, 127–129
lacking fault tolerance, 254
overview of, 127
Process Orchestration and, 61
solution deployment and, 63–64
summary, 132–133

Process Claim, Nouveau Health Care case
study, 212–213

Process Maintains Asynchronous
State, 178

Process Orchestration
adding process orchestration to TIBCO

BusinessEvents, 50
options for orchestration of actions,

159–160
overview of, 61–62
Web Service invocation, 179–180

Processes. See also process agents
BusinessWorks Receive Event as process

starter, 173–174
defining, 130
event-driven, 28–31, 188, 232
for improving competitive advantage, 5
managing execution of, 23
managing in Cache Only mode, 131
in Nouveau Health Care case study,

212–213, 221–224
orchestrating. See Process Orchestration
request-driven, 28–29
Timeliness Monitor pattern, 44–45

Processing units
cache agents and, 104
in clusters, 240
deployment and, 242–243
Hot Deployment and, 249
sending event to destination in, 172–173
solution deployment and, 63
TIBCO BusinessEvents and, 56
Views and, 135

Product suite, TIBCO BusinessEvents,
55–56

Profiler, TIBCO BusinessEvents, 225–226
Profiles, performance, 225–226
Project architects, intended audience for this

book, xx
Properties, of inference agent event data

structure, 72
Publication pattern, inference agents, 183

Q
Queries

CEP metadata and query structure, 23
continuous. See continuous queries
database, 181
Event Stream Processing and, 60–61
snapshot. See snapshot queries

Query agents
buffer management in continuous queries,

122–123
continuous queries, 121–122
continuous query example, 124–126
continuous query life cycle, 123–124
Event Stream Processing and, 61
information sharing, 197
lacking fault tolerance, 254
overview of, 115
sizing rules of thumb, 237
snapshot queries, 115
snapshot query example, 118–121
snapshot query execution, 115–117
snapshot query life cycle, 117–118
solution deployment and, 63–64
summary, 126

Index 275

Query.create() function, 117, 123
Query.Statement.close() function, 124
Query.Statement.execute() function,

118, 123
Query.Statement.open() function,

118, 123

R
Ranadivé, Vivek, 3, 8
RDBMS

memory management and, 181
updates and deletes and, 182

Real time analysis
innovations in analysis, 8
TIBCO BusinessEvents Views, 62–63

Receive Event activity, BusinessWorks,
173–174

Recognition. See sensing
Reference data

change coordination patterns, 147–148
as context for analysis, 22
correlating events with, 21
innovations in analysis and, 8
Reference-Data Change pattern, 148
Reference-Data Comparison pattern, 144
Situational Response pattern, 45
system of record, 145–147
variability of CEP architectures, 36–37

Reference-Data Change pattern, 148
Reference-Data Comparison pattern, 144
Relational databases, data modeling and,

57–58
Rendezvous

channel types, 88
solution life cycle and, 65

Replication
of cache objects, 110
configuring object management, 245

Repository. See cache
Request-driven processes

augmenting with event-driven, 30–31
comparing with event-driven, 28–29

Request Reply pattern
coordination patterns, 159–160
in high availability, 254–255
Inference Agent Request-Reply

pattern, 183
Resolve Claim Processing

Exception, 217, 221
Response. See also sense-analyze-respond

pattern
capabilities of event-enabled enterprises,

31–32
Decision-as-a-Service pattern, 46–48
event-enabled enterprises and, 11–12
to events, 26–28

innovations in, 9
Response Orchestration pattern, 48–50,

127–129
Situational Response pattern, 45–46

Response Orchestration pattern, 48–50,
127–129

Responsibilities, separating in event-driven
processes, 30

Results sets, queries, 118
Rete networks

overview of, 81
rule conditions and efficiency of, 83–87

RMS (Rules Management Server), 56,
156–157, 248

Route Claim, Nouveau Health Care case
study, 212–213

RTC (run-to-completion)
behavior, 79–81
choosing threading models, 229–231
executing inference agent rules, 70
locks for avoiding conflicts, 109–110
performance information regarding,

225–226
postprocessing behavior, 93–94
pre and postprocessing, 87–88
preprocessing behavior, 92

Rule-based analysis
overview of, 19–20
power and flexibility of, 187
process orchestration and, 49

Rule engines, 56
Rule templates, changing values at runtime,

22, 40, 154–155
Rules

accessing XML event payloads, 228–229
actions, 78–79
agenda, 80–81
attributes, 77
best practices for designing, 261
BPMN script executing, 130
conditions, 78
conditions and Rete network efficiency,

83–87
decision tables for virtual, 155–156
declarations, 77–78
event responses determined by, 27–28
invoking rule functions, 174
locking objects and, 229
naming guidelines, 160–161
orchestrating, 157–160
partitioning, 190–192
reference data change coordination

patterns, 147–148
RMS (Rules Management Server), 156–157
runtime rule changes, 154
sequencing execution of, 158

Index276

Rules, continued
structuring rule conditions for

performance, 227–228
synchronous I/O calls in rule

actions, 231
templates, 40, 154–155
testing best practices, 262

Rules Management Server (RMS), 56,
156–157, 248

Run-to-completion. See RTC
(run-to-completion)

Runtime
configuration, 248–249
rule changes, 154
TIBCO Runtime Agent, 56

S
Scalability, partitioning and, 38
Scorecard data structure

actions and, 78
examples, 75–76
Monitoring Scorecard, 249
overview of, 71
for summarizing activity, 75

Scripts
in deployment, 68
in rule execution, 130

Send Event activity, BusinessWorks, 172
SendRequest(), HTTP and SOAP

interactions and, 179
Sense-analyze-respond pattern

event-enabled enterprises and, 9–10
innovations in analysis, 8
innovations in response, 9
innovations in sensing, 6–8
overview of, 5–6

Sensing. See also sense-analyze-respond
pattern

Business Process Timeliness Monitor
pattern, 44–45

capabilities of event-enabled enterprises,
31–32

comparisons against reference data, 144
Condition Detection pattern, 39–41
event-enabled enterprises and, 11
event pattern recognition. See event

pattern recognition
innovations in, 6–8
missing or failing to recognize events,

15–16
recognizing changes to cached objects,

148–149
recognizing events, 12–14
recognizing situation change, 143–144
reference data change coordination,

147–148

reference data system of record, 145–147
Situation Recognition pattern, 41
Track-and-Trace pattern, 42–44

Separation of responsibility, in event-driven
processes, 30

Sequences
action performance, 157–160
managing, 203–204
preserving across multiple inference

agents, 205
preserving within one inference agent, 204
recovering temporal sequencing (reorder-

ing), 205–206
Service Grid, ActiveMatrix, 204
Service level agreements (SLAs), 13–14
Services

invoking Web Services, 130, 179–180
TIBCO BusinessEvents as asynchronous

service consumer, 175–178
TIBCO BusinessEvents as service

provider, 174–175
TIBCO BusinessEvents as synchronous

service consumer, 178–180
Shared-All

cache object persistence, 111–113
configuring backing store, 245–246
fault tolerance and, 254

Shared-Nothing
cache object persistence, 113
configuring backing store, 245–246
fault tolerance and, 254

Shared pool threads, choosing threading
model, 230

Simple events, 14
Site disaster recovery. See also fault tolerance,

256–257
Situation Recognition pattern, 41
Situational Response pattern

overview of, 45–46
partitioning situation recognition from

response, 38–39, 188–189
Track-and-Trace pattern as special case of,

42–44
Sizing, rules of thumb for, 237
SLA Timeout Processing, 242
SLAs (service level agreements), 13–14
Snapshot queries

example, 118–121
executing, 115–117
life cycle of, 117–118
overview of, 115

SOAP
IP redirectors for load distribution, 201
sendRequest() for interacting with, 179
using TIBCO Business Events as service

provider, 174

Index 277

Solutions
clusters and, 240
comparisons against reference data, 144
Continuous Query Change Recognition

pattern, 151
decision tables, 155–156
duplicate event handling, 151–153
logging and exception reporting, 160
modularization patterns. See modulariza-

tion patterns
naming guidelines, 160–161
overview of, 143
recognizing cached object change,

148–149
recognizing situation change, 143–144
reference data change coordination,

147–148
reference data system of record, 145–147
RMS (Rules Management Server),

156–157
rule templates, 154–155
runtime rule changes, 154
sequential and conditional action

performance, 157–160
State Machine Change Recognition

pattern, 149–150
summary, 161–162

Spreadsheets, Decision Manager interface
and, 58

SQL
Inference Agent Publication pattern, 183
object persistence options, 111

State Machine Change Recognition pattern,
149–150

State Machine Maintains Asynchronous State,
177–178

State machines
change recognition pattern, 149–150
Claim Status example, 220, 223–224
event pattern recognition and, 164–165
maintaining asynchronous state, 177–178
modeling, 57–58
partitioning rules of thumb, 192
starting/stopping, 99
state transitions, 98–99
timeouts, 99

State models
managing state, 192
metadata models for process description,

23
modeling state machines, 57–58
overview of, 98
starting/stopping state machines, 99
state transitions, 98–99
timeouts, 99
transitions and, 98–99

Studio
BPMN (Business Process Modeling

Notation) plugin, 62
data modeling and, 57
eclipse-based design environment, 56
solution life cycle and, 66
spreadsheet-style interface, 58
visualization of decision trees with, 228

Sub-processes, executing, 130
Subscription, Inference Agent Subscription

pattern, 184–185
Synchronous I/O calls, used in rule actions,

231
Synchronous Service Consumer pattern,

178–180
System of record, for reference data

database as, 146
external system as, 146–147
TIBCO BusinessEvents, 145

T
Tabular data, dashboard agent and, 135
TCP, 230
Technical events, 14
Telecommunication service restoration case,

13–14
Templates, rule templates, 22, 40, 154–155
Temporal sequencing (reordering), recovery,

205–206
Testing, 262
then keyword, action clause of inference

agents, 78–79
Threads

associated with channel types, 92
choosing threading model for inference

agents, 229–231
postprocessing behavior, 93–94
selecting threading models by

destination, 261
Thresholds

Condition Detection pattern and, 39–40
constant use in decision making, 22
transactions and, 106–109

TIBCO
ActiveMatrix. See ActiveMatrix
ActiveSpaces. See ActiveSpaces
Administrator, 56, 68
BusinessEvents. See BusinessEvents
Enterprise Message Service. See EMS

(Enterprise Message Service)
Hawk. See Hawk
Rendezvous. See Rendezvous

TIBCO Architecture Fundamentals (Brown),
12–13, 171, xix–xx

TIBCO Runtime Agent (TRA), 56, 65–66
Timeliness, innovations in sensing and, 7–8

Index278

Timeouts
avoiding deadlocks, 199
Claim Status Timeout example,

233–234
Claim Tracker example, 223
notification events for, 235–236
object locking and, 109
state modeling and, 99

TimeToLive parameter, of inference agent
event data structure, 71–72

TRA (TIBCO Runtime Agent), 56, 65–66
Track-and-Trace pattern

Business Process Timeliness Monitor
pattern as extension of, 44–45

CEP design patterns, 42–44
Claim Tracker example, 217–218

Transactional data, as context for analysis, 22
Transactions

managing sequencing, 203–206
thresholds, 106–109

Triggers
for analysis, 261
Condition Detection pattern and, 39
demand analysis and, 232
event-driven processes, 28
performance events and, 233–234
planning architecture and, 260
Situation Detection pattern and, 41
Track-and-Trace pattern and, 42–43

Tuning mechanisms. See also
performance, 225

Two-second advantage (Ranadivé and
Maney), 8

U
UML 1.2 state machine notation, 57
Updates, database, 182

V
Validate Membership process,

Nouveau Health Care case study,
212–213

Views
be-views.exe, 135
behavior of, 136–137
overview of, 62–63
TickerTracker example, 138–139

Virtual rules, 155–156
Visual alerts, display options for metric

data, 137

W
Wait for Event activity, BusinessWorks, 173
Web Services, invoking, 130, 179–180
when keyword, 78
Work, timing of, 8
Write-Behind behavior

configuring backing store, 246
object persistence and, 112

X
XML event payloads, 228–229

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 3: CEP Solution Design Patterns
	Objectives
	Variability in CEP Architectures
	Condition Detection
	Situation Recognition
	Track and Trace
	Business Process Timeliness Monitor
	Situational Response
	Decision as a Service
	Orchestrated Response
	Pioneering Solutions
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

