

Storage Implementation in vSphere 5.0

TECHNOLOGY DEEP DIVE

Mostafa Khalil

Storage Implementation in vSphere® 5.0

VMware Press is the official publisher of VMware books and training materials, which provide guidance on the critical topics facing today's technology professionals and students. Enterprises, as well as small- and medium-sized organizations, adopt virtualization as a more agile way of scaling IT to meet business needs. VMware Press provides proven, technically accurate information that will help them meet their goals for customizing, building, and maintaining their virtual environment.

With books, certification, study guides, video training, and learning tools produced by world-class architects and IT experts, VMware Press helps IT professionals master a diverse range of topics on virtualization and cloud computing and is the official source of reference materials for preparing for the VMware Certified Professional Examination.

VMware Press is also pleased to have localization partners that can publish its products into more than 42 languages, including, but not limited to, Chinese (Simplified), Chinese (Traditional), French, German, Greek, Hindi, Japanese, Korean, Polish, Russian, and Spanish.

For more information about VMware Press, please visit http://www.vmware.com/go/vmwarepress.

mware Press

pearsonitcertification.com/vmwarepress

Complete list of products • Podcasts • Articles • Newsletters

VMware* Press is a publishing alliance between Pearson and VMware, and is the official publisher of VMware books and training materials that provide guidance for the critical topics facing today's technology professionals and students.

With books, certification and study guides, video training, and learning tools produced by world-class architects and IT experts, VMware Press helps IT professionals master a diverse range of topics on virtualization and cloud computing, and is the official source of reference materials for completing the VMware certification exams.

vmware[®]

PEARSON IT CERTIFICATION

Safari."

Storage Implementation in vSphere® 5.0

TECHNOLOGY DEEP DIVE

Mostafa Khalil, VCDX

mware Press

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco New York • Toronto • Montreal • London • Munich • Paris • Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City

STORAGE IMPLEMENTATION IN VSPHERE® 5.0

Copyright ® 2013 VMware, Inc.

Published by VMware, Inc.

Publishing as VMware Press

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.

ISBN-10: 0-321-79993-3

ISBN-10: 978-0-321-79993-7

Library of Congress Cataloging-in-Publication data is on file.

Printed in the United States of America

First Printing: August 2012

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. The publisher cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

VMware terms are trademarks or registered trademarks of VMware in the United States, other countries, or both.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an "as is" basis. The authors, VMware Press, VMware, and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the CD or programs accompanying it.

The opinions expressed in this book belong to the author and are not necessarily those of VMware.

Corporate and Government Sales

VMware Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales international@pearsoned.com

VMWARE PRESS PROGRAM MANAGER

Erik Ullanderson

ASSOCIATE PUBLISHER

David Dusthimer

EDITOR

Joan Murray

DEVELOPMENT EDITOR

Ellie Bru

MANAGING EDITOR

Sandra Schroeder

PROJECT EDITOR

Seth Kerney

COPY EDITOR

Charlotte Kughen

PROOFREADER

Megan Wade

EDITORIAL ASSISTANT

Vanessa Evans

BOOK DESIGNER

Gary Adair

COMPOSITOR
Studio Galou, LLC.

To my wife Gloria for her uncond	litional love and tireless to complete this book.	efforts in helping make	the time

Contents At A Glance

Part I: Storage Protocols and Block Devices

Chapter 1: Storage Types 1

Chapter 2: Fibre Channel Storage Connectivity 11

Chapter 3: FCoE Storage Connectivity 49

Chapter 4: iSCSI Storage Connectivity 85

Chapter 5: VMware Pluggable Storage Architecture (PSA) 165

Chapter 6: ALUA 227

Chapter 7: Multipathing and Failover 249

Chapter 8: Third-Party Multipathing Plug-ins 297

Chapter 9: Using Heterogeneous Storage Configurations 333

Chapter 10: Using VMDirectPath I/O 345

Chapter 11: Storage Virtualization Devices (SVDs) 369

Part II: File Systems

Chapter 12: VMFS Architecture 381

Chapter 13: Virtual Disks and RDMs 437

Chapter 14: Distributed Locks 505

Chapter 15: Snapshot Handling 529

Chapter 16: VAAI 549

Index 587

Contents

Part I: Storage Protocols and Block Devices

Chapter 1 Storage Types 1 History of Storage 1 Birth of the Hard Disks 4 Along Comes SCSI 4 PATA and SATA—SCSI's Distant Cousins? 5 Units of Measuring Storage Capacity 7 Permanent Storage Media Relevant to vSphere 5 8

Chapter 2 Fibre Channel Storage Connectivity 11

```
SCSI Standards and Protocols 11

SCSI-2 and SCSI-3 Standards 11

Fibre Channel Protocol 12

Decoding EMC Symmetrix WWPN 25

Locating Targets' WWNN and WWPN Seen by vSphere 5 Hosts 27

SAN Topology 30

Fabric Switches 35

FC Zoning 37

Designing Storage with No Single Points of Failure 41
```

Chapter 3 FCoE Storage Connectivity 49

```
FCoE (Fibre Channel over Ethernet) 49
FCoE Initialization Protocol 51
FCoE Initialors 54

Hardware FCoE Adapter 54

Software FCoE Adapter 55
Overcoming Ethernet Limitations 56

Flow Control in FCoE 57
Protocols Required for FCoE 58

Priority-Based Flow Control 58

Enhanced Transmission Selection 58

Data Center Bridging Exchange 59

10GigE — A Large Pipeline 59
802.1p Tag 60
```

Hardware FCoE Adapters 62

How SW FCoE Is Implemented in ESXi 5 62

Configuring FCoE Network Connections 64

Enabling Software FCoE Adapter 68

Removing or Disabling a Software FCoE Adapter 71

Using the UI to Remove the SW FCoE Adapter 71

Using the CLI to Remove the SW FCoE Adapter 72

Troubleshooting FCoE 73

ESXCLI 73

FCoE-Related Logs 76

Parting Tips 82

Chapter 4 iSCSI Storage Connectivity 85

iSCSI Protocol 85

Chapter 5 vSphere Pluggable Storage Architecture (PSA) 165

Native Multipathing 166

Storage Array Type Plug-in (SATP) 167

How to List SATPs on an ESXi 5 Host 168

Path Selection Plugin (PSP) 169

How to List PSPs on an ESXi 5 Host 170

Third-Party Plug-ins 171

Multipathing Plugins (MPPs) 172

Anatomy of PSA Components 173

I/O Flow Through PSA and NMP 174

Classification of Arrays Based on How They Handle I/O 175

Paths and Path States 176

Preferred Path Setting 176

Flow of I/O Through NMP 178

Listing Multipath Details 179

Listing Paths to a LUN Using the UI 179

Listing Paths to a LUN Using the Command-Line Interface (CLI) 183

Identifying Path States and on Which Path the I/O Is Sent-FC 186

Example of Listing Paths to an iSCSI-Attached Device 187

Identifying Path States and on Which Path the I/O Is Sent—iSCSI 190

Example of Listing Paths to an FCoE-Attached Device 190

Identifying Path States and on Which Path the I/O Is Sent—FC 192

Claim Rules 192

MP Claim Rules 193

Plug-in Registration 196

SATP Claim Rules 197

Modifying PSA Plug-in Configurations Using the UI 201

Which PSA Configurations Can Be Modified Using the UI? 202

Modifying PSA Plug-ins Using the CLI 204

Available CLI Tools and Their Options 204

Adding a PSA Claim Rule 206

How to Delete a Claim Rule 215

How to Mask Paths to a Certain LUN 217

How to Unmask a LUN 219

Changing PSP Assignment via the CLI 220

Chapter 6 ALUA 227

ALUA Definition 228

ALUA Target Port Group 228

Asymmetric Access State 229

ALUA Management Modes 231

ALUA Followover 232

Identifying Device ALUA Configuration 237

Troubleshooting ALUA 243

Chapter 7 Multipathing and Failover 249

What Is a Path? 250

Where Is the Active Path? 255

Identifying the Current Path Using the CLI 255

Identifying the IO (Current) Path Using the UI 256

LUN Discovery and Path Enumeration 258

Sample LUN Discovery and Path Enumeration Log Entries 261

Factors Affecting Multipathing 265

How to Access Advanced Options 266

Failover Triggers 267

SCSI Sense Codes 267

Multipathing Failover Triggers 270

Path States 273

Factors Affecting Paths States 274

Path Selection Plug-ins 276

VMW_PSP_FIXED 276

VMW_PSP_MRU 277

VMW_PSP_RR 277

When and How to Change the Default PSP 277

When Should You Change the Default PSP? 277

How to Change the Default PSP 278

PDL and APD 280

Unmounting a VMFS Volume 281

Detaching the Device Whose Datastore Was Unmounted 286

Path Ranking 291

Path Ranking for ALUA and Non-ALUA Storage 291

How Does Path Ranking Work for ALUA Arrays? 292

How Does Path Ranking Work for Non-ALUA Arrays? 293

Configuring Ranked Paths 295

Chapter 8 Third-Party Multipathing I/O Plug-ins 297

MPIO Implementations on vSphere 5 297

EMC PowerPath/VE 5.7 298

Downloading PowerPath/VE 298

Downloading Relevant PowerPath/VE Documentations 300

PowerPath/VE Installation Overview 302

What Gets Installed? 303

Installation Using the Local CLI 304

Installation Using vMA 5.0 306

Verifying Installation 307

Listing Devices Claimed by PowerPath/VE 311

Managing PowerPath/VE 312

How to Uninstall PowerPath/VE 313

Hitachi Dynamic Link Manager (HDLM) 315

Obtaining Installation Files 316

Installing HDLM 317

Modifying HDLM PSP Assignments 322

Locating Certified Storage on VMware HCL 326

Dell EqualLogic PSP Routed 327

Downloading Documentation 328

Downloading the Installation File and the Setup Script 328

How Does It Work? 328

Installing EQL MEM on vSphere 5 329

Uninstalling Dell PSP EQL ROUTED MEM 331

Chapter 9 Using Heterogeneous Storage Configurations 333

What Is a "Heterogeneous" Storage Environment? 333

Scenarios of Heterogeneous Storage 334

ESXi 5 View of Heterogeneous Storage 335

Basic Rules of Using Heterogeneous Storage 335

Naming Convention 336 So, How Does This All Fit Together? 337

Chapter 10 Using VMDirectPath I/O 345

What Is VMDirectPath? 345

Which I/O Devices Are Supported? 346

Locating Hosts Supporting VMDirectPath IO on the HCL 348

VMDirectPath I/O Configuration 349

What Gets Added to the VM's Configuration File? 358

Practical Examples of VM Design Scenarios Utilizing VMDirectPath I/O 358

HP Command View EVA Scenario 358

Passing Through Physical Tape Devices 360

What About vmDirectPath Gen. 2? 360

How Does SR-IOV Work? 361

Supported VMDirectPath I/O Devices 364

Example of DirectPath IO Gen. 2 364

Troubleshooting VMDirectPath I/O 364

Interrupt Handling and IRQ Sharing 364

Device Sharing 365

Chapter 11 Storage Virtualization Devices (SVDs) 369

SVD Concept 369

How Does It Work? 370

Constraints 372

Front-End Design Choices 373

Back-End Design Choices 376

LUN Presentation Considerations 377

RDM (RAW Device Mapping) Considerations 378

Part II: File Systems

Chapter 12 VMFS Architecture 381

History of VMFS 382

VMFS 3 on Disk Layout 384

VMFS5 Layout 391

Common Causes of Partition Table Problems 398

Re-creating a Lost Partition Table for VMFS3 Datastores 399

Re-creating a Lost Partition Table for VMFS5 Datastores 404

Preparing for the Worst! Can You Recover from a File System Corruption? 410

Span or Grow? 416 Upgrading to VMFS5 430

Chapter 13 Virtual Disks and RDMs 437

The Big Picture 437 Virtual Disks 438

Virtual Disk Types 441

Thin on Thin 443

Virtual Disk Modes 444

Creating Virtual Disks Using the UI 445

Creating Virtual Disks During VM Creation 445

Creating a Virtual Disk After VM Creation 448

Creating Virtual Disks Using vmkfstools 450

Creating a Zeroed Thick Virtual Disk Using vmkfstools 452

Creating an Eager Zeroed Thick Virtual Disk Using vmkfstools 452

Creating a Thin Virtual Disk Using vmkfstools 454

Cloning Virtual Disks Using vmkfstools 456

Raw Device Mappings 459

Creating Virtual Mode RDMs Using the UI 459

Listing RDM Properties 466

Virtual Storage Adapters 472

Selecting the Type of Virtual Storage Adapter 473

VMware Paravirtual SCSI Controller 475

Virtual Machine Snapshots 477

Creating the VM's First Snapshot While VM Is Powered Off 478

Creating a VM Second Snapshot While Powered On 484

Snapshot Operations 488

Go to a Snapshot Operation 489

Delete a Snapshot Operation 492

Consolidate Snapshots Operation 494

Reverting to Snapshot 499

Linked Clones 501

Chapter 14 Distributed Locks 505

Basic Locking 506

What Happens When a Host Crashes? 507

Optimistic Locking 508

Dynamic Resource Allocation 509

SAN Aware Retries 509

Optimistic I/O 511

List of Operations That Require SCSI Reservations 511
MSCS-Related SCSI Reservations 512
Perennial Reservations 514
Under the Hood of Distributed Locks 519

Chapter 15 Snapshot Handling 529

What Is a Snapshot? 530 What Is a Replica? 530 What Is a Mirror? 530 VMFS Signature 531

Listing Datastores' UUIDs via the Command-Line Interface 532

Effects of Snapshots on VMFS Signature 532

How to Handle VMFS Datastore on Snapshot LUNs 533

Resignature 534

Resignature a VMFS Datastore Using the UI 534
Resignature a VMFS Datastore Using ESXCLI 536

Force Mount 540

Force-Mounting VMFS Snapshot Using ESXCLI 541

Sample Script to Force-Mount All Snapshots on Hosts in a Cluster 543

Chapter 16 VAAI 549

What Is VAAI? 550 VAAI Primitives 550

Hardware Acceleration APIs 550

Thin Provisioning APIs 551

Full Copy Primitive (XCOPY) 551

Block Zeroing Primitive (WRITE_SAME) 552

Hardware Accelerated Locking Primitive (ATS) 553

ATS Enhancements on VMFS5 553

Thin Provisioned APIs 554

NAS VAAI Primitives 555

Enabling and Disabling Primitives 555

Disabling Block Device Primitives Using the UI 557

Disabling Block Device VAAI Primitives Using the CLI 559

Disabling the UNMAP Primitive Using the CLI 562

Disabling NAS VAAI Primitives 562

VAAI Plug-ins and VAAI Filter 564

Locating Supported VAAI-Capable Block Devices 565

Locating Supported VAAI-Capable NAS Devices 567

Listing Registered Filter and VAAI Plug-ins 569

Listing VAAI Filters and Plug-ins Configuration 570

Listing VAAI vmkernel Modules 573

Identifying VAAI Primitives Supported by a Device 574

Listing Block Device VAAI Support Status Using the CLI 574

Listing NAS Device VAAI Support Status 577

Listing VAAI Support Status Using the UI 577

Displaying Block Device VAAI I/O Stats Using ESXTOP 579

The VAAI T10 Standard Commands 582

Troubleshooting VAAI Primitives 583

Index 587

Preface

This first edition of *Storage Implementation in vSphere 5.0* is my first attempt to put all the practical experience I have acquired over the years supporting VMware products and drinking from the fountain of knowledge that is the VMware team. I share with you in-depth details of how things work so that you can identify problems if and when anything goes wrong. I originally planned to put everything in one book, but as I started writing the page count kept growing, partly due to the large number of illustrations and screenshots that I hope will make the picture clearer for you. As a result, I had to split this book into two volumes so that I don't have to sacrifice quality at the expense of page count. I hope you will find this content as useful as I intended it to be and that you'll watch for the second volume, which is coming down the pike.

The book starts with a brief introduction to the history of storage as I experienced it. It then provides details of the various storage connectivity choices and protocols supported by VMware: Fibre Channel (FC), Fibre Channel over Ethernet (FCoE), and Internet Small Computer System Interface (iSCSI). This transitions us to the foundation of vSphere storage, which is Pluggable Storage Architecture (PSA). From there I build upon this foundation with multipathing and failover (including third-party offerings) and ALUA. I then discuss storage virtual devices (SVDs) and VMDirectPath I/O architecture, implementation, and configuration. I also cover in intricate details Virtual Machine File System (VMFS) versions 3 and 5 and how this highly advanced clustered file system arbitrates concurrent access to virtual machine files as well as raw device mappings. I discuss the details of how distributed locks are handled as well as physical snapshots and virtual machines snapshots. Finally, I share with you vStorage APIs for Array Integration (VAAI) architecture and interactions with the relevant storage arrays.

Consider this volume as the first installment of more advanced content to come. I plan to update the content to vSphere 5.1, which will bear the name of *VMware Cloud Infrastructure Suite (CIS)*, and add more information geared toward design topics and performance optimization.

I would love to hear your opinions or suggestions for topics to cover. You can leave me a comment at my blog: http://vSphereStorage.com.

Thank you and God bless!

Mostafa Khalil, VCDX

Acknowledgments

I would like to acknowledge the endless support I got from my wife Gloria. I would also like to acknowledge the encouragement I got from Scot Bajtos, Senior VP of VMware Global Support Services, and Eric Wansong, VP of VMware Global Support Services (Americas).

I truly appreciate the feedback from those who took time out of their busy schedules to volunteer to review parts of the books:

Craig Risinger, Consulting Architect at VMware

Mike Panas, Senior Member of Technical Staff at VMware

Aboubacar Diar, HP Storage

Vaughn Stewart, NetApp

Jonathan Van Meter

A special thanks to Cormac Hogan, Senior Technical Marketing Architect at VMware, for permitting me to use some of his illustrations.

I also would like to acknowledge Pearson's technical reviewers, whom I knew only by their initials, and my editors Joan Murray and Ellie Bru for staying after me to get this book completed.

One last acknowledgement is to all who have taught and mentored me along the way throughout my journey. Their names are too many to count. You know who you are. Thank you all!

About the Author

Mostafa Khalil is a senior staff engineer at VMware. He is a senior member of VMware Global Support Services and has worked for VMware for more than 13 years. Prior to joining VMware, he worked at Lotus/IBM. A native of Egypt, Mostafa graduated from the Al-Azhar University's School of Medicine, and practiced medicine in Cairo. He became intrigued by the mini computer system used in his medical practice and began to educate himself about computing and networking technologies. After moving to the United States, Mostafa continued to focus on computing and acquired several professional certifications.

He is certified as VCDX (3, 4, & 5), VCAP (4 & 5)-DCD, VCAP4-DCA, VCP (2, 3, 4, & 5), MCSE, Master CNE, HP ASE, IBM CSE, and Lotus CLP.

As storage became a central element in the virtualization environment, Mostafa became an expert in this field and delivered several seminars and troubleshooting workshops at various VMware public events in the United States and around the world.

We Want to Hear from You!

As the reader of this book, *you* are our most important critic and commentator. We value your opinion and want to know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words of wisdom you're willing to pass our way.

As an associate publisher for Pearson, I welcome your comments. You can email or write me directly to let me know what you did or didn't like about this book—as well as what we can do to make our books better.

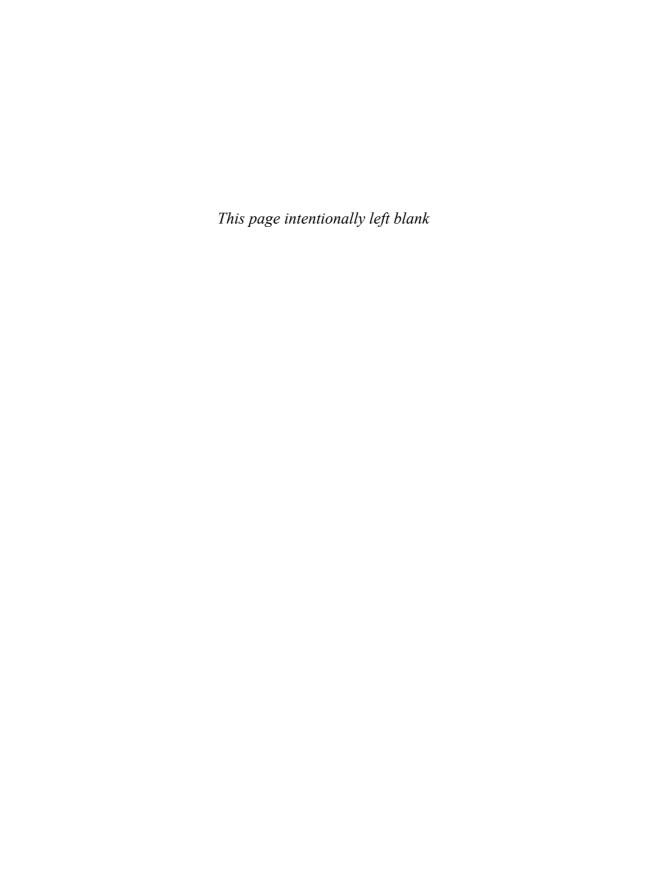
Please note that I cannot help you with technical problems related to the topic of this book. We do have a User Services group, however, where I will forward specific technical questions related to the book.

When you write, please be sure to include this book's title and author as well as your name, email address, and phone number. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: VMwarePress@vmware.com

Mail: David Dusthimer

Associate Publisher


Pearson

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit our website at www.informit.com/title/9780321799937 and register this book for convenient access to any updates, downloads, or errata that might be available for this book.

vSphere Pluggable Storage Architecture (PSA)

vSphere 5.0 continues to utilize the Pluggable Storage Architecture (PSA) which was introduced with ESX 3.5. The move to this architecture modularizes the storage stack, which makes it easier to maintain and to open the doors for storage partners to develop their own proprietary components that plug into this architecture.

Availability is critical, so redundant paths to storage are essential. One of the key functions of the storage component in vSphere is to provide multipathing (if there are multiple paths, which path should a given I/O use) and failover (when a path goes down, I/O failovers to using another path).

VMware, by default, provides a generic Multipathing Plugin (MPP) called Native Multipathing (NMP).

Native Multipathing

To understand how the pieces of PSA fit together, Figures 5.1, 5.2, 5.4, and 5.6 build up the PSA gradually.

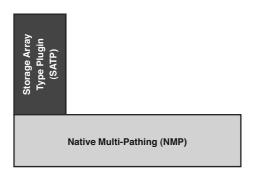
Native Multi-Pathing (NMP)

VMkernel Storage Stack Pluggable Storage Architecture

Figure 5.1 Native MPP

NMP is the component of vSphere 5 vmkernel that handles multipathing and failover. It exports two APIs: Storage Array Type Plugin (SATP) and Path Selection Plugin (PSP), which are implemented as plug-ins.

NMP performs the following functions (some done with help from SATPs and PSPs):


- Registers logical devices with the PSA framework
- Receives input/output (I/O) requests for logical devices it registered with the PSA framework
- Completes the I/Os and posts completion of the SCSI command block with the PSA framework, which includes the following operations:
 - Selects the physical path to which it sends the I/O requests
 - Handles failure conditions encountered by the I/O requests
- Handles task management operations—for example, Aborts/Resets

PSA communicates with NMP for the following operations:

- Open/close logical devices.
- Start I/O to logical devices.
- Abort an I/O to logical devices.
- Get the name of the physical paths to logical devices.
- Get the SCSI inquiry information for logical devices.

Storage Array Type Plug-in (SATP)

Figure 5.2 depicts the relationship between SATP and NMP.

VMkernel Storage Stack Pluggable Storage Architecture

Figure 5.2 SATP

SATPs are PSA plug-ins specific to certain storage arrays or storage array families. Some are generic for certain array classes—for example, Active/Passive, Active/Active, or ALUA-capable arrays.

SATPs handle the following operations:

- Monitor the hardware state of the physical paths to the storage array
- Determine when a hardware component of a physical path has failed
- Switch physical paths to the array when a path has failed

NMP communicates with SATPs for the following operations:

- Set up a new logical device—claim a physical path
- Update the hardware states of the physical paths (for example, Active, Standby, Dead)
- Activate the standby physical paths of an active/passive array (when Active paths state
 is dead or unavailable)
- Notify the plug-in that an I/O is about to be issued on a given path
- Analyze the cause of an I/O failure on a given path (based on errors returned by the array)

Examples of SATPs are listed in Table 5.1:

Table 5.1 Examples of SATPs

SATP	Description
VMW_SATP_CX	Supports EMC CX that do not use the ALUA protocol
VMW_SATP_ALUA_CX	Supports EMC CX that use the ALUA protocol
VMW_SATP_SYMM	Supports EMC Symmetrix array family
VMW_SATP_INV	Supports EMC Invista array family
VMW_SATP_EVA	Supports HP EVA arrays
VMW_SATP_MSA	Supports HP MSA arrays
VMW_SATP_EQL	Supports Dell Equalogic arrays
VMW_SATP_SVC	Supports IBM SVC arrays
VMW_SATP_LSI	Supports LSI arrays and others OEMed from it (for example, DS4000 family)
VMW_SATP_ALUA	Supports non-specific arrays that support ALUA protocol
VMW_SATP_DEFAULT_AA	Supports non-specific active/active arrays
VMW_SATP_DEFAULT_AP	Supports non-specific active/passive arrays
VMW_SATP_LOCAL	Supports direct attached devices

How to List SATPs on an ESXi 5 Host

To obtain a list of SATPs on a given ESXi 5 host, you may run the following command directly on the host or remotely via an SSH session, a vMA appliance, or ESXCLI:

esxcli storage nmp satp list

An example of the output is shown in Figure 5.3.

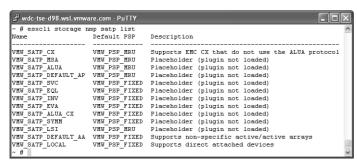
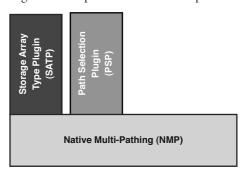


Figure 5.3 Listing SATPs

Notice that each SATP is listed in association with a specific PSP. The output shows the default configuration of a freshly installed ESXi 5 host. To modify these associations, refer to the "Modifying PSA Plug-in Configurations Using the UI" section later in this chapter.


If you installed third-party SATPs, they are listed along with the SATPs shown in Table 5.1.

NOTE

ESXi 5 only loads the SATPs matching detected storage arrays based on the corresponding claim rules. See the "Claim Rules" section later in this chapter for more about claim rules. Otherwise, you see them listed as (Plugin not loaded) similar to the output shown in Figure 5.3.

Path Selection Plugin (PSP)

Figure 5.4 depicts the relationship between SATP, PSP, and NMP.

VMkernel Storage Stack Pluggable Storage Architecture

Figure 5.4 PSP

PSPs are PSA plug-ins that handle path selection policies and are replacements of failover policies used by the Legacy-MP (or Legacy Multipathing) used in releases prior to vSphere 4.x.

PSPs handle the following operations:

- Determine on which physical path to issue I/O requests being sent to a given storage device. Each PSP has access to a group of paths to the given storage device and has knowledge of the paths' states—for example, Active, Standby, Dead, as well as Asymmetric Logical Unit Access (ALUA), Asymmetric Access States (AAS) such as Active optimized Active non-optimized, and so on. This knowledge is obtained from what SATPs report to NMP. Refer to Chapter 6, "ALUA," for additional details about ALUA.
- Determine which path to activate next if the currently working physical path to storage device fails.

NOTE

PSPs do not need to know the actual storage array type (this function is provided by SATPs). However, a storage vendor developing a PSP may choose to do so (see Chapter 8, "Third-Party Multipathing I/O Plug-ins").

NMP communicates with PSPs for the following operations:

- Set up a new logical storage device and claim the physical paths to that device.
- Get the set of active physical paths currently used for path selection.
- Select a physical path on which to issue I/O requests for a given device.
- Select a physical path to activate when a path failure condition exists.

How to List PSPs on an ESXi 5 Host

To obtain a list of PSPs on a given ESXi 5 host, you may run the following command directly on the host or remotely via an SSH session, a vMA appliance, or ESXCLI:

```
# esxcli storage nmp psp list
```

An example of the output is shown in Figure 5.5.

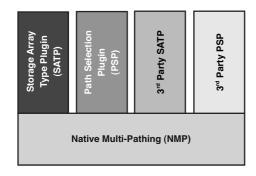


Figure 5.5 Listing PSPs

The output shows the default configuration of a freshly installed ESXi 5 host. If you installed third-party PSPs, they are also listed.

Third-Party Plug-ins

Figure 5.6 depicts the relationship between third-party plug-ins, NMP, and PSA.

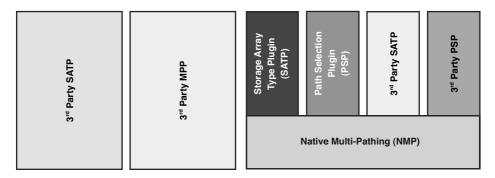
VMkernel Storage Stack Pluggable Storage Architecture

Figure 5.6 Third-party plug-ins

Because PSA is a modular architecture, VMware provided APIs to its storage partners to develop their own plug-ins. These plug-ins can be SATPs, PSPs, or MPPs.

Third-party SATPs and PSPs can run side by side with VMware-provided SATPs and PSPs.

The third-party SATPs and PSPs providers can implement their own proprietary functions relevant to each plug-in that are specific to their storage arrays. Some partners implement only multipathing and failover algorithms, whereas others implement load balancing and I/O optimization as well.


Examples of such plug-ins in vSphere 4.x that are also planned for vSphere 5 are

- **DELL_PSP_EQL_ROUTED**—Dell EqualLogic PSP that provides the following enhancements:
 - Automatic connection management
 - Automatic load balancing across multiple active paths
 - Increased bandwidth
 - Reduced network latency
- HTI_SATP_HDLM—Hitachi ported their HDLM MPIO (Multipathing I/O) management software to an SATP. It is currently certified for vSphere 4.1 with most of the USP family of arrays from Hitachi and HDS. A version is planned for vSphere 5 as well for the same set of arrays. Check with VMware HCL for the current list of certified arrays for vSphere 5 with this plug-in.

See Chapter 8 for further details.

Multipathing Plugins (MPPs)

Figure 5.7 depicts the relationship between MPPs, NMP, and PSA.

VMkernel Storage Stack Pluggable Storage Architecture

Figure 5.7 MPPs, including third-party plug-ins

MPPs that are not implemented as SATPs or PSPs can be implemented as MPPs instead. MPPs run side by side with NMP. An example of that is EMC PowerPath/VE. It is certified with vSphere 4.x and is planned for vSphere 5.

See Chapter 8 for further details.

Anatomy of PSA Components

Figure 5.8 is a block diagram showing the components of PSA framework.

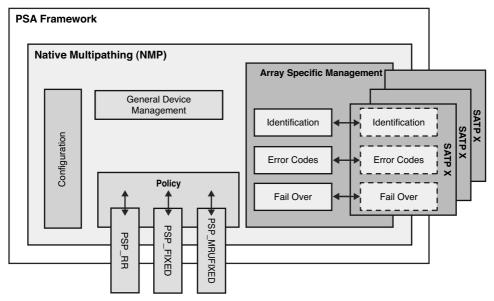


Figure 5.8 NMP components of PSA framework

Now that we covered the individual components of PSA framework, let's put its pieces together. Figure 5.8 shows the NMP component of the PSA framework. NMP provides facilities for configuration, general device management, array-specific management, and path selection policies.

The configuration of NMP-related components can be done via ESXCLI or the user interface (UI) provided by vSphere Client. Read more on this topic in the "Modifying PSA Plug-in Configurations Using the UI" section later in this chapter.

Multipathing and failover policy is set by NMP with the aid of PSPs. For details on how to configure the PSP for a given array, see the "Modifying PSA Plug-in Configurations Using the UI" section later in this chapter.

Arrray-specific functions are handled by NMP via the following functions:

- **Identification**—This is done by interpreting the response data to various inquiry commands (Standard Inquiry and Vital Product Data (VPD) received from the array/storage. This provides details of device identification which include the following:
 - Vendor
 - Model
 - LUN number
 - Device ID—for example, NAA ID, serial number
 - Supported mode pages—for example, page 80 or 83

I cover more detail and examples of inquiry strings in Chapter 7, "Multipathing and Failover" in, the "LUN Discovery and Path Enumeration" section.

- Error Codes—NMP interprets error codes received from the storage arrays with help from the corresponding SATPs and acts upon these errors. For example, an SATP can identify a path as dead.
- Failover—After NMP interprets the error codes, it reacts in response to them. Continuing with the example, after a path is identified as dead, NMP instructs the relevant SATP to activate standby paths and then instructs the relevant PSP to issue the I/O on one of the activated paths. In this example, there are no active paths remaining, which results in activating standby paths (which is the case for Active/Passive arrays).

I/O Flow Through PSA and NMP

In order to understand how I/O sent to storage devices flows through the ESXi storage stack, you first need to understand some of the terminology relevant to this chapter.

Classification of Arrays Based on How They Handle I/O

Arrays can be one of the following types:

- Active/Active—This type of array would have more than one Storage Processor (SP) (also known as Storage Controller) that can process I/O concurrently on all SPs (and SP ports) with similar performance metrics. This type of array has no concept of logical unit number (LUN) ownership because I/O can be done on any LUN via any SP port from initiators given access to such LUNs.
- Active/Passive—This type of array would have two SPs. LUNs are distributed across both SPs in a fashion referred to as LUN ownership in which one of the SPs owns some of the LUNs and the other SP owns the remaining LUNs. The array accepts I/O to given LUN via ports on that SP that "owns" it. I/O sent to the non-owner SPs (also known as Passive SP) is rejected with a SCSI check condition and a sense code that translates to ILLEGAL REQUEST. Think of this like the No Entry sign you see at the entrance of a one-way street in the direction opposite to the traffic. For more details on sense codes, see Chapter 7 's "LUN Discovery and Path Enumeration" section.

NOTE

Some older firmware versions of certain arrays, such as HP MSA, are a variety of this type where one SP is active and the other is standby. The difference is that all LUNs are owned by the active SP and the standby SP is only used when the active SP fails. The standby SP still responds with a similar sense code to that returned from the passive SP described earlier.

- Asymmetric Active/Active or AAA (AKA Pseudo Active/Active)—LUNs on this type of arrays are owned by either SP similarly to the Active/Passive Arrays concept of LUN ownership. However, the array would allow concurrent I/O on a given LUN via ports on both SPs but with different I/O performance metrics as I/O is sent via proxy from the non-owner SP to the owner SP. In this case, the SP providing the lower performance metric accepts I/O to that LUN without returning a check condition. You may think of this as a hybrid between Active/Passive and Active/Active types. This can result in poor I/O performance of all paths to the owner SP that are dead, either due to poor design or LUN owner SP hardware failure.
- Asymmetrical Logical Unit Access (ALUA)—This type of array is an enhanced version of the Asymmetric Active/Active arrays and also the newer generation of some of the Active/Passive arrays. This technology allows initiators to identify the ports on the owner SP as one group and the ports on the non-owner SP as a

different group. This is referred to as Target Port Group Support (TPGS). The port group on the owner SP is identified as Active Optimized port group with the other group identified as Active Non-Optimized port group. NMP would send the I/O to a given LUN via a port in the ALUA optimized port group only as long as they are available. If all ports in that group are identified as dead, I/O is then sent to a port on the ALUA non-optimized port group. When sustained I/O is sent to the ALUA non-optimized port group, the array can transfer the LUN ownership to the non-owner SP and then transition the ports on that SP to ALUA optimized state. For more details on ALUA see Chapter 6.

Paths and Path States

From a storage perspective, the possible routes to a given LUN through which the I/O may travel is referred to as *paths*. A path consists of multiple points that start from the initiator port and end at the LUN.

A path can be in one of the states listed in Table 5.2.

Path State	Description
Active	A path via an Active SP. I/O can be sent to any path in this state.
Standby	A path via a Passive or Standby SP. I/O is not sent via such a path.
Disabled	A path that is disabled usually by the vSphere Administrator.
Dead	A path that lost connectivity to the storage network. This can be due to an HBA (Host Bus Adapter), Fabric or Ethernet switch, or SP port connectivity loss. It can also be due to HBA or SP hardware failure.
Unknown	The state could not be determined by the relevant SATP.

Table 5.2 Path States

Preferred Path Setting

A preferred path is a setting that NMP honors for devices claimed by VMW_PSP_FIXED PSP only. All I/O to a given device is sent over the path configured as the Preferred Path for that device. When the preferred path is unavailable, I/O is sent via one of the surviving paths. When the preferred path becomes available, I/O fails back to that path. By default, the first path discovered and claimed by the PSP is set as the preferred path. To change the preferred path setting, refer to the "Modifying PSA Plug-in Configurations Using the UI" section later in this chapter.

Figure 5.9 shows an example of a path to LUN 1 from host A (interrupted line) and Host B (interrupted line with dots and dashes). This path goes through HBA0 to target 1 on SPA.

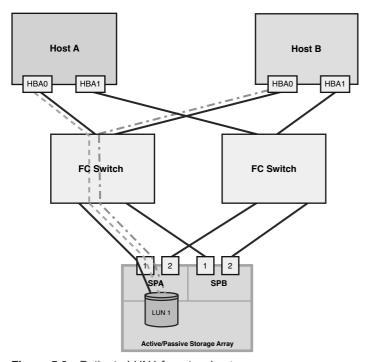


Figure 5.9 Paths to LUN1 from two hosts

Such a path is represented by the following Runtime Name naming convention. (Runtime Name is formerly known as Canonical Name.) It is in the format of HBAx:Cn:Ty:Lz—for example, vmhba0:C0:T0:L1—which reads as follows:

vmhba0, Channel 0, Target 0, LUN1

It represents the path to LUN 0 broken down as the following:

- HBA0—First HBA in this host. The vmhba number may vary based on the number of storage adapters installed in the host. For example, if the host has two RAID controllers installed which assume vmhba0 and vmhba1 names, the first FC HBA would be named vmhba2.
- Channel 0—Channel number is mostly zero for Fiber Channel (FC)- and Internet Small Computer System Interface (iSCSI)-attached devices to target 0, which is the

first target. If the HBA were a SCSI adapter with two channels (for example, internal connections and an external port for direct attached devices), the channel numbers would be 0 and 1.

■ Target 0—The target definition was covered in Chapters 3, "FCoE Storage Connectivity," and 4, "iSCSI Storage Connectivity." The target number is based on the order in which the SP ports are discovered by PSA. In this case, SPA-Port1 was discovered before SPA-Port2 and the other ports on SPB. So, that port was given "target 0" as the part of the runtime name.

NOTE

Runtime Name, as the name indicates, does not persist between host reboots. This is due to the possibility that any of the components that make up that name may change due to hardware or connectivity changes. For example, a host might have an additional HBA added or another HBA removed, which would change the number assumed by the HBA.

Flow of I/O Through NMP

Figure 5.10 shows the flow of I/O through NMP.

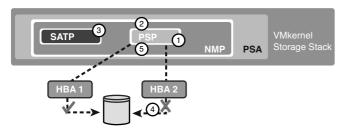


Figure 5.10 I/O flow through NMP

The numbers in the figure represent the following steps:

- 1. NMP calls the PSP assigned to the given logical device.
- 2. The PSP selects an appropriate physical path on which to send the I/O. If the PSP is VMW_PSP_RR, it load balances the I/O over paths whose states are Active or, for ALUA devices, paths via a target port group whose AAS is Active/Optimized.

- **3.** If the array returns I/O error, NMP calls the relevant SATP.
- **4.** The SATP interprets the error codes, activates inactive paths, and then fails over to the new active path.
- **5.** PSP selects new active path to which it sends the I/O.

Listing Multipath Details

There are two ways by which you can display the list of paths to a given LUN, each of which are discussed in this section:

- Listing paths to a LUN using the UI
- Listing paths to a LUN using the CLI

Listing Paths to a LUN Using the UI

To list all paths to a given LUN in the vSphere 5.0 host, you may follow this procedure, which is similar to the procedure for listing all targets discussed earlier in Chapter 2, "Fibre Channel Storage Connectivity" Chapter 3 and Chapter 4:

- 1. Log on to the vSphere 5.0 host directly or to the vCenter server that manages the host using the VMware vSphere 5.0 Client as a user with Administrator privileges.
- **2.** While in the Inventory—Hosts and Clusters view, locate the vSphere 5.0 host in the inventory tree and select it.
- 3. Navigate to the Configuration tab.
- **4.** Under the Hardware section, select the **Storage** option.
- **5**. Under the **View** field, click the **Devices** button.
- **6.** Under the Devices pane, select one of the SAN LUNs (see Figure 5.11). In this example, the device name starts with DGC Fibre Channel Disk.

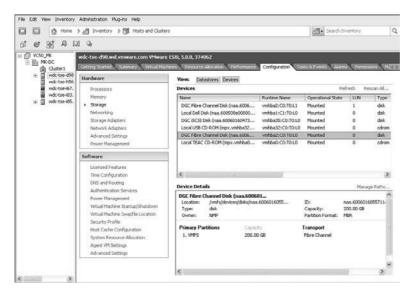


Figure 5.11 Listing storage devices

- 7. Select Manage Paths in the Device Details pane.
- **8.** Figure 5.12 shows details for an FC-attached LUN. In this example, I sorted on the Runtime Name column in ascending order. The **Paths** section shows all available paths to the LUN in the format:
 - Runtime Name—vmhbaX:C0:Ty:Lz where X is the HBA number, y is the target number, and z is the LUN number. More on that in the "Preferred Path Setting" section later in this chapter.
 - **Target**—The WWNN followed by the WWPN of the target (separated by a space).
 - LUN—The LUN number that can be reached via the listed paths.
 - **Status**—This is the path state for each listed path.

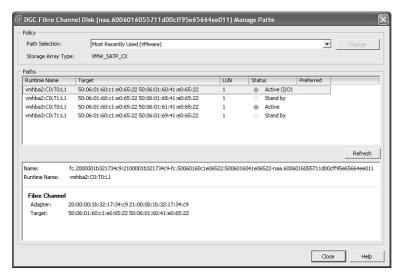


Figure 5.12 Listing paths to an FC-attached LUN

9. The Name field in the lower pane is a permanent one compared to the Runtime Name listed right below it. It is made up of three parts: HBA name, Target Name, and the LUN's device ID separated by dashes (for FC devices) or commas (for iSCSI devices). The HBA and Target names differ by the protocol used to access the LUN.

Figure 5.12 shows the FC-based path Name, which is comprised of

- **Initiator Name**—Made up from the letters FC followed by a period and then the HBA's WWNN and WWPN. The latter two are separated by a colon (these are discussed in Chapter 3).
- **Target Name**—Made up from the target's WWNN and WWPN separated by a colon.
- LUN's Device ID—In this example the NAA ID is naa.6006016055711d0 0cff95e65664ee011, which is based on the Network Address Authority naming convention and is a unique identifier of the logical device representing the LUN.

Figure 5.13 shows the iSCSI-based path Name which is comprised of

■ **Initiator Name**—This is the iSCSI iqn name discussed in Chapter 4.

- Target Name—Made up from the target's iqn name and target number separated by colons. In this example, the target's iqn names are identical while the target numbers are different—such as t,1 and t,2. The second target info is not shown here, but you can display them by selecting one path at a time in the paths, pane to display the details in the lower pane.
- LUN's Device ID—In this example the NAA ID is naa.6006016047301a00 eaed23f5884ee011, which is based on the Network Address Authority naming convention and is a unique identifier of the logical device representing the LUN.

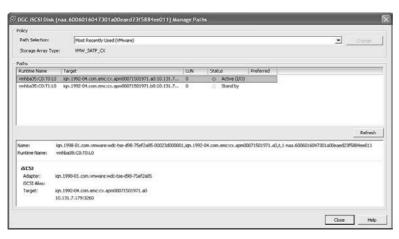


Figure 5.13 Listing paths to an iSCSI-attached LUN

Figure 5.14 shows a Fibre Channel over Ethernet (FCoE)-based path name, which is identical to the FC-based pathnames. The only difference is that fcoe is used in place of fc throughout the name.

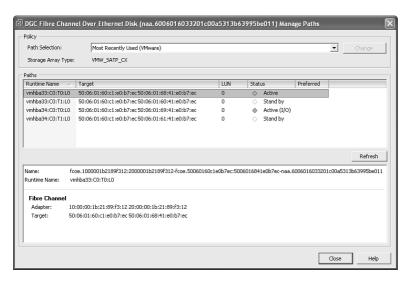


Figure 5.14 Listing paths to an FCoE-attached LUN

Listing Paths to a LUN Using the Command-Line Interface (CLI)

ESXCLI provides similar details to what is covered in the preceding section. For details about the various facilities that provide access to ESXCLI, refer to the "Locating HBA's WWPN and WWNN in vSphere 5 Hosts" section in Chapter 2.

The namespace of ESXCLI in vSphere 5.0 is fairly intuitive! Simply start with esxcli followed by the area of vSphere you want to manage—for example, esxcli network, esxcli software, esxcli storage—which enables you to manage Network, ESXi Software, and Storage, respectively. For more available options just run esxcli -help. Now, let's move on to the available commands:

Figure 5.15 shows the esxcli storage nmp namespace.

Figure 5.15 esxcli storage nmp namespace

The namespace of esxcli storage nmp is for all operations pertaining to native multipathing, which include psp, satp, device, and path.

I cover all these namespaces in detail later in the "Modifying PSA Plug-in Configurations Using the UI" section. The relevant operations for this section are

- esxcli storage nmp path list
- esxcli storage nmp path list -d <device ID e.g. NAA ID>

The first command provides a list of paths to *all* devices regardless of how they are attached to the host or which protocol is used.

The second command lists the paths to the device specified by the device ID (for example, NAA ID) by using the -d option.

The command in this example is

```
esxcli storage nmp path list -d naa.6006016055711d00cff95e65664ee011
```

You may also use the verbose command option --device instead of -d.

You can identify the NAA ID of the device you want to list by running a command like this:

```
esxcfg-mpath -b |grep -B1 "fc Adapter" | grep -v -e "--" |sed 's/ Adapter.*//'
```

You may also use the verbose command option --list-paths instead of -b.

The output of this command is shown in Figure 5.16.

```
# wdc-tse-d98.wsl.vmware.com - PuIIY

- # esxcfg-mpath -b [grep -B1 "fc Adapter"| grep -v -e "--" |sed 's/Adapter.*//'
naa.6006016055711d00cff95e65664ee011: DCC Fibre Channel Disk (naa.6006016055711d00cff95e65664ee011)

vmhba3:CO:TO:L1 LUN:1 state:standby fc
vmhba3:CO:TO:L1 LUN:1 state:standby fc
vmbba2:CO:TO:L1 LUN:1 state:standby fc
naa.6006016055711d00cef95e65664ee011: DCC Fibre Channel Disk (naa.6006016055711d00cef95e65664ee011)

vmbba3:CO:TO:L0 LUN:0 state:sactive fc
vmbba3:CO:TO:L0 LUN:0 state:sactive fc
vmbba2:CO:TO:L0 LUN:0 state:sactive fc
vmbba2:CO:TO:L0 LUN:0 state:sactive fc
vmbba2:CO:TO:L0 LUN:0 state:sactive fc
vmbba2:CO:TO:L0 LUN:0 state:sactive fc
```

Figure 5.16 Listing paths to an FC-attached LUN via the CLI

This output shows all FC-attached devices. The Device Display Name of each device is listed followed immediately by the Runtime Name (for example, vmhba3:C0:T0:L1) of all paths to that device. This output is somewhat similar to the lagacy multipathing outputs you might have seen with ESX server release 3.5 and older.

The Device Display Name is actually listed after the device NAA ID and a colon.

From the runtime name you can identify the LUN number and the HBA through which they can be accessed. The HBA number is the first part of the Runtime Name, and the LUN number is the last part of that name.

All block devices conforming to the SCSI-3 standard have an NAA device ID assigned, which is listed at the beginning and the end of the Device Display Name line in the preceding output.

In this example, FC-attached LUN 1 has NAA ID naa.6006016055711d00cff95e65 664ee011 and that of LUN0 is naa.6006016055711d00cef95e65664ee011. I use the device ID for LUN 1 in the output shown in Figure 5.17.

Figure 5.17 Listing pathnames to an FC-attached device

You may use the verbose version of the command shown in Figure 5.17 by using --device instead of -d.

From the outputs of Figure 5.16 and 5.17, LUN 1 has four paths.

Using the Runtime Name, the list of paths to LUN1 is

- vmhba3:C0:T1:L1
- vmhba3:C0:T0:L1

vmhba2:C0:T1:L1

■ vmhba2:C0:T0:L1

This translates to the list shown in Figure 5.18 based on the physical pathnames. This output was collected using this command:

esxcli storage nmp path list -d naa.6006016055711d00cff95e65664ee011 |grep fc

Or the verbose option using the following:

esxcli storage nmp path list --device naa.6006016055711d00cff95e65664ee011 | grep fc

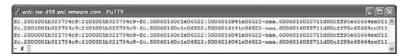


Figure 5.18 Listing physical pathnames of an FC-attached LUN

This output is similar to the aggregate of all paths that would have been identified using the corresponding UI procedure earlier in this section.

Using Table 2.1, "Identifying SP port association with each SP," in Chapter 2, we can translate the targets listed in the four paths as shown in Table 5.3:

Dunting A	0.000		Faure + \A/\A/D
Table 5.3	Identifying S	SP Port to	r LUN Paths

Runtime Name	Target WWPN	Sp Port Association
vmhba3:C0:T1:L1	5006016941e06522	SPB1
vmhba3:C0:T0:L1	5006016141e06522	SPA1
vmhba2:C0:T1:L1	5006016841e06522	SPB0
vmhba2:C0:T0:L1	5006016041e06522	SPA0

Identifying Path States and on Which Path the I/O Is Sent-FC

Still using the FC example (refer to Figure 5.17), two fields are relevant to the task of identifying the path states and the I/O path: Group State and Path Selection Policy Path Config. Table 5.4 shows the values of these fields and their meanings.

Runtime Name	Group State	PSP Path Config	Meaning
vmhba3:C0:T1:L1	Standby	non-current path; rank: 0	Passive SP-no I/O
vmhba3:C0:T0:L1	Active	non-current path; rank: 0	Active-SP-no I/O
vmhba2:C0:T1:L1	Standby	non-current path; rank: 0	Passive SP-no I/O
vmhba2:C0:T0:L1	Active	current path; rank: 0	Active SP-I/O

Table 5.4 Path State Related Fields

Combining the last two tables, we can extrapolate the following:

- The LUN is currently owned by SPA (therefore the state is Active).
- The I/O to the LUN is sent via the path to SPA Port 0.

NOTE

This information is provided by the PSP path configuration because its function is to "Determine on which physical path to issue I/O requests being sent to a given storage device" as stated under the PSP section.

The rank configuration listed here shows the value of 0. I discuss the ranked I/O in Chapter 7.

Example of Listing Paths to an iSCSI-Attached Device

To list paths to a specific iSCSI-attached LUN, try a different approach for locating the device ID:

```
esxcfg-mpath -m | grep iqn
```

You can also use the verbose command option:

```
esxcfg-mpath --list-map | grep iqn
```

The output for this command is shown in Figure 5.19.

```
# wdc.tse-d98.wsi.vmware.com - PUTTY

# esxcfg-mpath -m |grep iqn
vmbba35:c0:T0:L0 vmbba35 iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85 00023d000001,
iqn.1992-04.com.emc:cx.apm00071501971.b0,t,2 naa.6006016047301a00eaed23f5884ee011
vmbba35:c0:T0:L0 vmbba35 iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85 00023d00001,
iqn.1992-04.com.emc:cx.apm00071501971.a0,t,1 naa.6006016047301a00eaed23f5884ee011

# # |
```

Figure 5.19 Listing paths to an iSCSI-attached LUN via the CLI

In the output, the lines wrapped. Each line actually begins with vmhba35 for readability. From this ouput, we have the information listed in Table 5.5.

 Table 5.5
 Matching Runtime Names with Their NAA IDs

Runtime Name	NAA ID
vmhba35:C0:T1:L0	naa.6006016047301a00eaed23f5884ee011
vmhba35:C0:T0:L0	naa.6006016047301a00eaed23f5884ee011

This means that these two paths are to the same LUN 0 and the NAA ID is naa.6006016 047301a00eaed23f5884ee011.

Now, get the pathnames for this LUN. The command is the same as what you used for listing the FC device:

esxcli storage nmp path list -d naa.6006016047301a00eaed23f5884ee011

You may also use the verbose version of this command:

esxcli storage nmp path list --device naa.6006016047301a00eaed23f5884ee011

The output is shown in Figure 5.20.

```
🗗 wdc-tse-d98.wsl.vmware.com - PuTTY
 # esxcli storage nmp path list -d naa.6006016047301a00eaed23f5884ee011
iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85-00023d000001,iqn.1992-04.com.emc:cx
01971.b0,t,2-naa.6006016047301a00eaed23f5884ee011
   Runtime Name: vmhba35:C0:T1:L0
   Device: naa.6006016047301a00eaed23f5884ee011
   Device Display Name: DGC iSCSI Disk (naa.6006016047301a00eaed23f5884ee011)
   Group State: standby
   Array Priority: 1
   Storage Array Type Path Config: SATP VMW SATP CX does not support path configuration.
   Path Selection Policy Path Config: (non-current path; rank: 0)
iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85-00023d000001,iqn.1992-04.com.emc:cx.apm000715
01971.a0,t,1-naa.6006016047301a00eaed23f5884ee011
   Runtime Name: vmhba35:C0:T0:L0
   Device: naa.6006016047301a00eaed23f5884ee011
   Device Display Name: DGC iSCSI Disk (naa.6006016047301a00eaed23f5884ee011)
   Group State: active
   Storage Array Type Path Config: SATP VMW_SATP_CX does not support path configuration. Path Selection Policy Path Config: {current path; rank: 0}
```

Figure 5.20 Listing paths to an iSCSI-attached LUN via CLI

Note that the path name was wrapped for readability.

Similar to what you observed with the FC-attached devices, the output is identical except for the actual path name. Here, it starts with ign instead of fc.

The Group State and Path Selection Policy Path Config shows similar content as well. Based on that, I built Table 5.6.

Table 5.6 Matching Runtime Names with Their Target IDs and SP Ports

Runtime Name	Target IQN	Sp Port Association
vmhba35:C0:T1:L0	iqn.1992-04.com.emc:cx.apm00071501971.b0	SPB0
vmhba35:C0:T0:L0	iqn.1992-04.com.emc:cx.apm00071501971.a0	SPA0

To list only the pathnames in the output shown in Figure 5.20, you may append |grepiqn to the command.

The output of the command is listed in Figure 5.21 and was wrapped for readability. Each path name starts with iqn:

esxcli storage nmp path list --device naa.6006016047301a00eaed23f5884ee011 |grep iqn

```
# wdc-tse-d98.wsl.vmware.com - PuTTY

iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85-00023d000001,iqn.1992-04.c 
om.emc:cx.apm00071501971.b0,t,2-naa.6006016047301a00eaed23f5884ee011
iqn.1998-01.com.vmware:wdc-tse-d98-75ef2a85-00023d000001,iqn.1992-04.c
om.emc:cx.apm00071501971.a0,t,1-naa.6006016047301a00eaed23f5884ee011
- #
```

Figure 5.21 Listing pathnames of iSCSI-attached LUNs

Identifying Path States and on Which Path the I/O Is Sent—iSCSI

The process of identifying path states and I/O path for iSCSI protocol is identical to that of the FC protocol listed in the preceding section.

Example of Listing Paths to an FCoE-Attached Device

The process of listing paths to FCoE-attached devices is identical to the process for FC except that the string you use is fcoe Adapter instead of fc Adapter.

A sample output from an FCoE configuration is shown in Figure 5.22.

Figure 5.22 List of runtime paths of FCoE-attached LUNs via CLI

The command used is the following:

```
esxcfg-mpath -b |grep -B1 "fcoe Adapter" |sed 's/Adapter.*//'
```

You may also use the verbose command:

```
esxcfg-mpath --list-paths | grep -B1 "fcoe Adapter" | sed 's/Adapter.*//
```

Using the NAA ID for LUN 1, the list of pathnames is shown in Figure 5.23.

Figure 5.23 List of pathnames of an FCoE-attached LUN

You may also use the verbose version of the command shown in Figure 5.23 by using --device instead of -d.

This translates to the physical pathnames shown in Figure 5.24.

Figure 5.24 List of paths names of an FCoE LUN

The command used to collect the ouput shown in Figure 5.24 is

esxcli storage nmp path list -d 6006016033201c00a4313b63995be011 |grep fcoe

Using Table 2.1, "Identifying SP Port Association with Each SP," in Chapter 2, you can translate the targets listed in the returned four paths as shown in Table 5.7.

Runtime Name	Target WWPN	SP Port Association
vmhba34:C0:T1:L1	5006016141e0b7ec	SPA1
vmhba34:C0:T0:L1	5006016941e0b7ec	SPB1
vmhba33:C0:T1:L1	5006016041e0b7ec	SPA0
vmhba33:C0:T0:L1	5006016841e0b7ec	SPB0

Table 5.7 Translation of FCoE Targets

Identifying Path States and on Which Path the I/O Is Sent-FC

Still following the process as you did with the FC example (refer to Figure 5.17), two fields are relevant to the task of identifying the path states and the I/O path: Group State and Path Selection Policy Path Config. Table 5.8 shows the values of these fields and their meaning.

Table 5.8 Interpreting	Path	States—	+CoE
-------------------------------	------	---------	------

Runtime Name	Group State	PSP Path Config	Meaning
vmhba34:C0:T1:L1	Standby	non-current path; rank: 0	Passive SP — no I/O
vmhba34:C0:T0:L1	Active	current path; rank: 0	Active-SP — I/O
vmhba33:C0:T1:L1	Standby	non-current path; rank: 0	Passive SP — no I/O
vmhba33:C0:T0:L1	Active	non-current path; rank: 0	Active SP — no I/O

Combining the last two tables, we can extrapolate the following:

- The LUN is currently "owned" by SPB (hence the state is Active).
- The I/O to the LUN is sent via the path to SPB Port 1.

Claim Rules

Each storage device is managed by one of the PSA plug-ins at any given time. In other words, a device cannot be managed by more than one PSA plug-in.

For example, a host that has a third-party MPP installed alongside with NMP, devices managed by the third-party MPP cannot be managed by NMP unless the configuration is changed to assign these devices to NMP. The process of associating certain devices with

certain PSA plug-ins is referred to as *claiming* and is defined by Claim Rules. These rules define the correlation between a device and NMP or MPP. NMP has additional association between the claimed device and a specific SATP and PSP.

This section shows you how to list the various claim rules. The next section discusses how to change these rules.

Claim rules can be defined based on one or a combination of the following:

- Vendor String—In response to the standard inquiry command, the arrays return the standard inquiry response, which includes the Vendor string. This can be used in the definition of a claim rule based on the exact match. A partial match or a string with padded spaces does not work.
- **Model String**—Similar to the Vendor string, the Model string is returned as part of the standard inquiry response. Similar to the Vendor string, a claim rule can be defined using the exact match of the Model string and padded spaces are not supported here.
- Transport—Defining a claim rule based on the transport type, Transport facilitates claiming of all devices that use that transport. Valid transport types are block, fc, iscsi, iscsivendor, ide, sas, sata, usb, parallel, and unknown.
- **Driver**—Specifying a driver name as one of the criteria for a claim rule definition allows all devices accessible via such a driver to be claimed. An example of that is a claim rule to mask all paths to devices attached to an HBA that uses mptscsi driver.

MP Claim Rules

The first set of claim rules defines which MPP claims which devices. Figure 5.25 shows the default MP claim rules.

🗗 wdc-tse-d	98.wsl.vm	ware.com -	PuTTY			×
~ # esxcli	storage	core cla	imrule list			^
Rule Class	Rule	Class	Type	Plugin	Matches	
MP	0	runtime	transport	NMP	transport=usb	
MP	1	runtime	transport	NMP	transport=sata	
MP	2	runtime	transport	NMP	transport=ide	
MP	3	runtime	transport	NMP	transport=block	
MP	4	runtime	transport	NMP	transport=unknown	
MP	101	runtime	vendor	MASK PATH	vendor=DELL model=Universal Xport	
MP	101	file	vendor	MASK PATH	vendor=DELL model=Universal Mport	
MP	65535	runtime	vendor	NMP -	vendor=* model=*	
~ #						~

Figure 5.25 Listing MP Claim Rules

The command to list these rules is

esxcli storage core claimrule list

The namespace here is for the Core Storage because the MPP definition is done on the PSA level. The output shows that this rule class is MP, which indicates that these rules define the devices' association to a specific multipathing plug-in.

There are two plugins specified here: NMP and MASK_PATH. I have already discussed NMP in the previous sections. The MASK_PATH plug-in is used for masking paths to specific devices and is a replacement for the deprecated Legacy Multipathing LUN Masking vmkernel parameter. I provide some examples in the "Modifying PSA Plug-in Configurations Using the UI" section.

Table 5.9 lists each column name in the ouput along with an explanation of each column.

Table 5.9 Explanation of Claim Rules Fields

Column Name	Explanation
Rule Class	The plugin class for which this claim rule set is defined. This can be MP, Filter, or VAAI.
Rule	The rule number. This defines the order the rules are loaded. Similar to firewall rules, the first match is used and supersedes rules with larger numbers.
Class	The value can be runtime or file. A value of file means that the rule definitions were stored to the configuration files (more on this later in this section). A value of Runtime means that the rule was read from the configuration files and loaded into memory. In other words, it means that the rule is active. If a rule is listed as file only and no runtime, the rule was just created but has not been loaded yet. Find out more about loading rules in the next section.
Туре	The type can be vendor, model, transport, or driver. See the explanation in the "Claim Rules" section.
Plugin	The name of the plug-in for which this rule was defined.
Matches	This is the most important field in the rule definition. This column shows the "Type" specified for the rule and its value. When the specified type is vendor, an additional parameter, model, must be used. The model string must be an exact string match or include an * as a wild card. You may use a ^ as "begins with" and then the string followed by an *—for example, ^OPEN-*.

The highest rule number in any claim rules set is 65535. It is assigned here to a Catch-All rule that claims devices from "any" vendor with "any" model string. It is placed as the last rule in the set to allow for lower numbered rules to claim their specified devices. If the attached devices have no specific rules defined, they get claimed by NMP.

Figure 5.26 is an example of third-party MP plug-in claim rules.

₫ wdc-tse-d	98.wsl.vm	ware.com -	PuTTY		
~ # esxcli	storage	core cla	imrule list		^
Rule Class	Rule	Class	Type	Plugin	Matches
MP	0	runtime	transport	NMP	transport=usb
MP	1	runtime	transport	NMP	transport=sata
MP	2	runtime	transport	NMP	transport=ide
MP	3	runtime	transport	NMP	transport=block
MP	4	runtime	transport	NMP	transport=unknown
MP	101	runtime	vendor		vendor=DELL model=Universal Xport
MP	101	file	vendor	MASK_PATH	vendor=DELL model=Universal Xport
MP	230	runtime	vendor	NMP	vendor=HITACHI model=*
MP	230	file	vendor	NMP	vendor=HITACHI model=*
MP	240	runtime	location	NMP	adapter=vmhba2 channel=* target=* lun=1
MP	240	file	location	NMP	adapter=vmhba2 channel=* target=* lun=1
MP	250	runtime	vendor	PowerPath	vendor=DGC model=*
MP	250	file	vendor	PowerPath	vendor=DGC model=*
MP	260	runtime	vendor	PowerPath	vendor=EMC model=SYMMETRIX
MP	260	file	vendor	PowerPath	vendor=EMC model=SYMMETRIX
MP	270	runtime	vendor	PowerPath	vendor=EMC model=Invista
MP	270	file	vendor	PowerPath	vendor=EMC model=Invista
MP	280	file	vendor	PowerPath	vendor=HITACHI model=*
MP	290	runtime	vendor	PowerPath	vendor=HP model=*
MP	290	file	vendor	PowerPath	vendor=HP model=*
MP	300	runtime	vendor	PowerPath	vendor=COMPAQ model=HSV111 (C)COMPAQ
MP	300	file	vendor	PowerPath	vendor=COMPAQ model=HSV111 (C)COMPAQ
MP	310	runtime	vendor	PowerPath	vendor=EMC model=Celerra
MP	310	file	vendor	PowerPath	vendor=EMC model=Celerra
MP	320	runtime	vendor	PowerPath	vendor=IBM model=2107900
MP	320	file	vendor	PowerPath	vendor=IBM model=2107900
MP	65535	runtime	vendor	NMP	vendor=* model=*
~ #					<u>~</u>

Figure 5.26 Listing EMC PowerPath/VE claim rules.

Here you see that rules number 250 through 320 were added by PowerPath/VE, which allows PowerPath plug-in to claim all the devices listed in Table 5.10.

Table 5.10 Arrays Claimed by PowerPath

Storage Array	Vendor	Model
EMC CLARiiON Family	DGC	Any (* is a wild card)
EMC Symmetrix Family	EMC	SYMMETRIX
EMC Invista	EMC	Invista
HITACHI	HITACHI	Any
HP	HP	Any
HP EVA HSV111 family (Compaq Branded)	HP	HSV111 (C) COMPAQ
EMC Celerra	EMC	Celerra
IBM DS8000 family	IBM	2107900

NOTE

There is currently a known limitation with claim rules that use a partial match on the model string. So, older versions of PowerPath/VE that used to have rules stating model=OPEN may not claim the devices whose model string is something such as OPEN-V, OPEN-10, and so on. As evident from Figure 5.26, version 5.7 no longer uses partial matches. Instead, partial matches have been replaced with an *.

Plug-in Registration

New to vSphere 5 is the concept of *plug-in registration*. Actually this existed in 4.x but was not exposed to the end user. When a PSA plug-in is installed, it gets registered with the PSA framework along with their dependencies, if any, similar to the output in Figure 5.27.

	ore plugin registrati			
Module Name	Plugin Name	Plugin Class	Dependencies	Full Path
mask_path_plugin	MASK_PATH	MP		
nmp	NMP	MP		
vmw_satp_symm	VMU_SATP_SYMM	SATP		
vmw_satp_svc	VMW_SATP_SVC	SATP		
vmw satp msa	VMW SATP MSA	SATP		
vmw satp lsi	VMW SATP LSI	SATP		
vmw_satp_inv	VMW_SATP_INV	SATP	vmw_satp_lib_cx	
vmw_satp_eva	VMW SATP EVA	SATP		
vmw_satp_eql	VMW_SATP_EQL	SATP		
vmw_satp_cx	VMW_SATP_CX	SATP	vmw_satp_lib_cx	
vmw satp alua cx	VMW SATP ALUA CX	SATP	vmw satp alua, vmw satp lib cx	
vmw satp lib cx	None	SATP		
vmw_satp_alua	VMW_SATP_ALUA	SATP		
vmw satp default ap	VMW SATP DEFAULT AP	SATP		
vmw satp default aa	VMW SATP DEFAULT AA	SATP		
vmw_satp_local	VMW_SATP_LOCAL	SATP		
vmw psp lib	None	PSP		
vmw psp mru	VMW PSP MRU	PSP	vmw psp lib	
vmw_psp_rr	VMW_PSP_RR	PSP	vmw_psp_lib	
vmw psp fixed	VMW PSP FIXED	PSP	vmw psp lib	
vmw vaaip emc	None	VAAI		
vmw_vaaip_mask	VMW_VAAIP_MASK	VAAI		
vmw vaaip symm	VMW VAAIP SYMM	VAAI	vmw_vaaip_emc	
vmw_vaaip_netapp	VMW_VAAIP_NETAPP	VAAI		
vmw_vaaip_lhn	VMU_VAAIP_LHN	VAAI		
vmw vaaip hds	VMW VAAIP HDS	VAAI		
vmw vaaip eql	VMW VAAIP EQL	VAAI		
vmw vaaip cx	VMU VAAIP CX	VAAI	vmw vaaip emc, vmw satp lib cx	
vaai filter	VAAI FILTER	Filter		

Figure 5.27 Listing PSA plug-in registration

This output shows the following:

■ **Module Name**—The name of the plug-in kernel module; this is the actual plug-in software binary as well as required libraries, if any, that get plugged into vmkernel.

- Plugin Name—This is the name by which the plug-in is identified. This is the exact name to use when creating or modifying claim rules.
- Plugin class—This is the name of the class to which the plug-in belongs. For
 example, the previous section covered the MP class of plug-ins. The next sections
 discuss SATP and PSP plug-ins and later chapters cover VAAI and VAAI_Filter
 classes.
- **Dependencies**—These are the libraries and other plug-ins which the registered plug-ins require to operate.
- Full Path—This is the full path to the files, libraries, or binaries that are specific to the registered plug-in. This is mostly blank in the default registration.

SATP Claim Rules

Now that you understand how NMP plugs into PSA, it's time to examine how SATP plugs into NMP.

Each SATP is associated with a default PSP. The defaults can be overridden using SATP claim rules. Before I show you how to list these rules, first review the default settings.

The command used to list the default PSP assignment to each SATP is

```
esxcli storage nmp satp list
```

The output of this command is shown in Figure 5.28.

🕏 wdc-tse-d98.wsl.vmw	ire.com - PuTTY	
~ # esxcli storage n		2
Name	Default PSP	Description
VMW SATP CX	VMW PSP MRU	Supports EMC CX that do not use the ALUA protocol
	VMW PSP MRU	Placeholder (plugin not loaded)
VMW SATP ALUA	VMW PSP MRU	Placeholder (plugin not loaded)
VMW SATP DEFAULT AP	VMW PSP MRU	Placeholder (plugin not loaded)
VMW SATP SVC	VMW PSP FIXED	Placeholder (plugin not loaded)
VMW SATP EQL	VMW_PSP_FIXED	Placeholder (plugin not loaded)
VMW_SATP_INV	VMW_PSP_FIXED	Placeholder (plugin not loaded)
VMW_SATP_EVA	VMW_PSP_FIXED	Placeholder (plugin not loaded)
VMW_SATP_ALUA_CX	VMW_PSP_FIXED	Placeholder (plugin not loaded)
VMU_SATP_SYMM	VMW_PSP_FIXED	Placeholder (plugin not loaded)
VMW_SATP_LSI	VMW_PSP_MRU	Placeholder (plugin not loaded)
VMW_SATP_DEFAULT_AA	VMW_PSP_FIXED	Supports non-specific active/active arrays
VMW_SATP_LOCAL	VMW_PSP_FIXED	Supports direct attached devices
~ #		

Figure 5.28 Listing SATPs and their default PSPs

The name space is Storage, NMP, and finally SATP.

NOTE

VMW_SATP_ALUA_CX plug-in is associated with VMW_PSP_FIXED. Starting with vSphere 5.0, the functionality of VMW_PSP_FIXED_AP has been rolled into VMW_PSP_FIXED. This facilitates the use of the Preferred Path option with ALUA arrays while still handling failover triggering events in a similar fashion to Active/Passive arrays. Read more on this in Chapter 6.

Knowing which PSP is the default policy for which SATP is half the story. NMP needs to know which SATP it will use with which storage device. This is done via SATP claim rules that associate a given SATP with a storage device based on matches to Vendor, Model, Driver, and/or Transport.

To list the SATP rule, run the following:

```
esxcli storage nmp satp rule list
```

The output of the command is too long and too wide to capture in one screenshot. I have divided the output to a set of images in which I list a partial output then list the text of the full output in a subsequent table. Figures 5.29, 5.30, 5.31, and 5.32 show the four quadrants of the output.

TIP

To format the output of the preceding command so that the text is arranged better for readability, you can pipe the output to less -S. This truncates the long lines and aligns the text under their corresponding columns.

So, the command would look like this:

esxcli storage nmp satp list | less -S

Name	Danking	Vendor	Model	Tim desires	Transport	Continue	Toule Consus	Claim Options
Nome	Device	Actidor	nouer	Driver	Transport	Options	Rule Group	Claim Options
VMV SATP CX		DGC						tpgs off
VHW SATP MSA		DOC	HSA1000 VOLUME				system	rbda_orr
		NETAPP	HEATIOU VOLUME				system	The best of the second
VMW_SATP_ALUA		IBM	Caracter seasons				system	tpgs_on
VMV_SATP_ALUA		ADB	2810XIV				system	tpgs_on
VMW_SATP_ALUA		IBM	2107900				ayatem	tpgs_on
VHV_SATP_ALUA						reset_on_attempted_reserve	system	
VMW_SATP_DEFAULT_AP		DEC	HSG80				system	0000000000
VMW_SATP_DEFAULT_AP			HSVX700				system	tpgs_off
VMV_SATP_DEFAULT_AP			HSV100				system	
VMW SATP DEFAULT AP			H3V110				system	
VMW_SATP_SVC		IDM	2145				system	
VMW_SATP_EQL		EQLOGIC	DOMESTIC:				system	
VMW_SATP_INV		ENC	Invista				system	
VMW_SATP_INV		EMC	LUNZ				system	
VMW_SATP_EVA			HSV200				system	tpgs_off
VMW SATP EVA			HSV210				system	tpgs_off
VMV_SATP_EVA			HSVX740				ayates	tpgs_off
VMV_SATP_EVA			HSV101				system	tpgs_off
VEW_SATP_EVA			HSV111				system	tpgs_off
VMW_SATP_EVA			HSV300				ayatem	tpgs_off
VEW_SATP_EVA			HSV400				system	tpgs_off
VMW_SATP_EVA			HSV4SO				system	tpgs_off
VMW_SATP_ALUA_CX		DGC					system	tpgs_on
VHU SATP SYMM		EMC	SYMMETRIX				system	
VMW SATP LSI		IDM	-1742*				system	
VMW_SATP_LSI		IDM	*3542*				system	
VMW_SATP_LSI		IDM	*3552*				system	
VMW_SATP_LSI		IDM	*1722*				system	
MW SATP LSI		IBM	*1815*				system	
MW SATP LSI		IBM	^1724*				system	
VMW SATP LSI		IBM	^1726-*				system	
MW SATP LSI		IBM	^1814*				system	
MW SATP LSI		IBM	*1818*				system	
VHV SATP LSI			Universal Eport				ayatem	

Figure 5.29 Listing SATP claim rules—top-left quadrant of output.

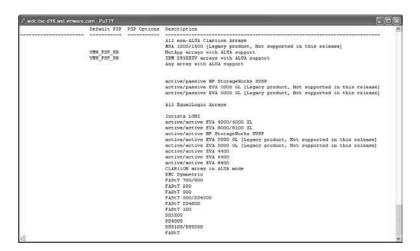


Figure 5.30 Listing SATP claim rules—top-right quadrant of output.

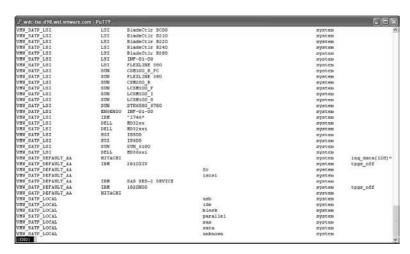


Figure 5.31 Listing SATP claim rules—bottom-left quadrant of output

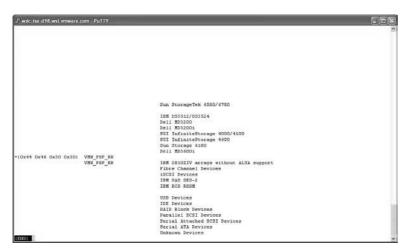


Figure 5.32 Listing SATP claim rules—bottom-right quadrant of output

To make things a bit clearer, let's take a couple of lines from the output and explain what they mean.

Figure 5.33 shows the relevant rules for CLARiiON arrays both non-ALUA and ALUA capable. I removed three blank columns (Driver, Transport, and Options) to fit the content on the lines.

🧬 wdc-tse-d98.wsl.vn	iware.com	- PUIIT				
Name VMW_SATP_CX VMW_SATP_ALUA_CX	Device	Vendor DGC DGC	Model	Rule Group system system	Claim Options tpgs_off tpgs_on	Description All non-ALUA Clariion Arrays CLARiiON array in ALUA mode
:						i

Figure 5.33 CLARiiON Non-ALUA and ALUA Rules

The two lines show the claim rules for EMC CLARiiON CX family. Using this rule, NMP identifies the array as CLARiiON CX when the Vendor string is DGC. If NMP stopped at this, it would have used VMW_SATP_CX as the SATP for this array. However, this family of arrays can support more than one configuration. That is the reason the value Claim Options column comes in handy! So, if that option is tpgs_off, NMP uses the VMW_SATP_CX plug-in, and if the option is tpgs_on, NMP uses VMW_SATP_ALUA_CX. I explain what these options mean in Chapter 6.

Figure 5.34 shows another example that utilizes additional options. I removed the Device column to fit the content to the display.

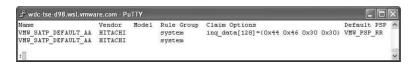


Figure 5.34 Claim rule that uses Claim Options

In this example, NMP uses VMW_SATP_DEFAULT_AA SATP with all arrays returning HITACHI as a model string. However, the default PSP is selected based on the values listed in the Claim Options column:

- If the column is blank, the default PSP (which is VMW_PSP_FIXED and is based on the list shown earlier in this section in Figure 5.28) is used. In that list, you see that VMW_SATP_DEFAULT_AA is assigned the default PSP named VMW_PSP_FIXED.
- If the column shows inq_data[128]={0x44 0x46 0x30 0x30}, which is part of the data reported from the array via the Inquiry String, NMP overrides the default PSP configuration and uses VMW_PSP_RR instead.

Modifying PSA Plug-in Configurations Using the UI

You can modify PSA plug-ins' configuration using the CLI and, to a limited extent, the UI. Because the UI provides far fewer options for modification, let me address that first to get it out of the way!

Which PSA Configurations Can Be Modified Using the UI?

You can change the PSP for a given device. However, this is done on a LUN level rather than the array.

Are you wondering why you would want to do that?

Think of the following scenario:

You have Microsoft Clustering Service (MSCS) cluster nodes in Virtual Machines (VMs) in your environment. The cluster's shared storage is Physical Mode Raw Device Mappings (RDMs), which are also referred to as (Passthrough RDMs). Your storage vendor recommends using Round-Robin Path Selection Policy (VMW_PSP_RR). However, VMware does not support using that policy with the MSCS clusters in shared RDMs.

The best approach is to follow your storage vendor's recommendations for most of the LUNs, but follow the procedure listed here to change just the RDM LUNs' PSP to their default PSPs.

Procedure to Change PSP via UI

1. Use the vSphere client to navigate to the MSCS node VM and right-click the VM in the inventory pane. Select **Edit Settings** (see Figure 5.35).

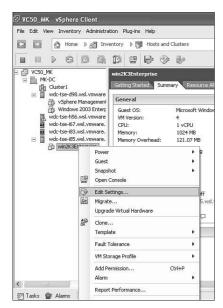
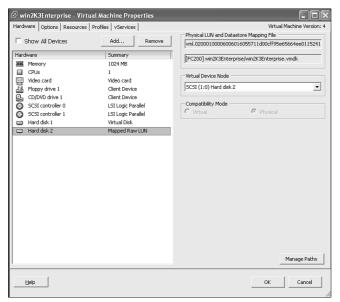



Figure 5.35 Editing VM's settings via the UI

The resulting dialog is shown in Figure 5.36.

Figure 5.36 Virtual Machine Properties dialog

- 2. Locate the RDM listed in the Hardware tab. You can identify this by the summary column showing Mapped Raw LUN. On the top right-hand side you can locate the Logical Device Name, which is prefixed with vml in the field labeled Physical LUN and Datastore Mapping File.
- **3.** Double-click the text in that field. Right-click the selected text and click **Copy** (see Figure 5.37).

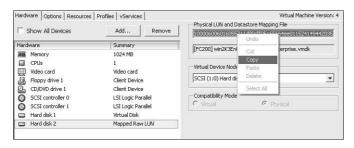


Figure 5.37 Copying RDM's VML ID (Logical Device Name) via the UI

4. I use the copied text to follow Steps 4 and 5 of doing the same task via the CLI in the next section. However, for this section, click the **Manage Paths** button in the dialog shown in Figure 5.37.

The resulting Manage Paths dialog is shown in Figure 5.38.

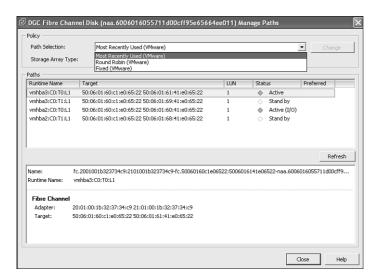


Figure 5.38 Modifying PSP selection via the UI

- 5. Click the pull-down menu next to the Path Selection field and change it from Round Robin (VMware) to the default PSP for your array. Click the **Change** button. To locate which PSP is the default, check VMware HCL. If the PSP listed there is Round Robin, follow the examples listed in the previous section, "SATP Claim Rules," to identify which PSP to select.
- 6. Click Close.

Modifying PSA Plug-ins Using the CLI

The CLI provides a range of options to configure, customize, and modify PSA plug-in settings. I provide the various configurable options and their use cases as we go.

Available CLI Tools and Their Options

New to vSphere 5.0 is the expansion of using esxcli as the main CLI utility for managing ESXi 5.0. The same binary is used whether you log on to the host locally or remotely via

SSH. It is also used by vMA or vCLI. This simplifies administrative tasks and improves portability of scripts written to use esxcli.

TIP

The only difference between the tools used locally or via SSH compared to those used in vMA and Remote CLI is that the latter two require providing the server name and the user's credentials on the command line. Refer to Chapter 3 in which I covered using the FastPass (fp) facility of vMA and how to add the users' credentials to the CREDSTORE environment variable on vCLI.

Assuming that the server name and user credentials are set in the environment, the command-line syntax in all the examples in this book is identical regardless of where you use them.

ESXCLI Namespace

Figure 5.39 shows the command-line help for esxcli.

Figure 5.39 Listing esxcli namespace

The relevant namespace for this chapter is storage. This is what most of the examples use. Figure 5.40 shows the command-line help for the storage namespace:

esxcli storage

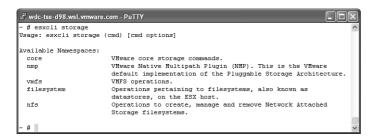


Figure 5.40 Listing esxcli storage namespace

Table 5.11 lists ESXCLI namespaces and their usage.

Table 5.11 Available Namespaces in the storage Namespace

Name Space	Usage
core	Use this for anything on the PSA level like other MPPs, PSA claim rules, and so on.
nmp	Use this for NMP and its "children," such as SATP and PSP.
vmfs	Use this for handling VMFS volumes on snapshot LUNs, managing extents, and upgrading VMFS manually.
filesystem	Use this for listing, mounting, and unmounting supported datastores.
nfs	Use this to mount, unmount, and list NFS datastores.

Adding a PSA Claim Rule

PSA claim rules can be for MP, Filter, and VAAI classes. I cover the latter two in Chapter 6.

Following are a few examples of claim rules for the MP class.

Adding a Rule to Change Certain LUNs to Be Claimed by a Different MPP

In general, most arrays function properly using the default PSA claim rules. In certain configurations, you might need to specify a different PSA MPP.

A good example is the following scenario:

You installed PowerPath/VE on your ESXi 5.0 host but then later realized that you have some MSCS cluster nodes running on that host and these nodes use Passthrough RDMs (Physical compatibility mode RDM). Because VMware does not support third-party MPPs with MSCS, you must exclude the LUNs from being managed by PowerPath/VE.

You need to identify the device ID (NAA ID) of each of the RDM LUNs and then identify the paths to each LUN. You use these paths to create the claim rule.

Here is the full procedure:

1. Power off one of the MSCS cluster nodes and locate its home directory. If you cannot power off the VM, skip to Step 6.

Assuming that the cluster node is located on Clusters_Datastore in a directory named node1, the command and its output would look like Listing 5.1.

Listing 5.1 Locating the RDM Filename

```
#cd /vmfs/volumes/Clusters_datastore/node1

#fgrep scsi1 *.vmx |grep fileName

scsi1:0.fileName = "/vmfs/volumes/4d8008a2-9940968c-04df-001e4f1fbf2a/
node1/quorum.vmdk"

scsi1:1.fileName = "/vmfs/volumes/4d8008a2-9940968c-04df-001e4f1fbf2a/
node1/data.vmdk"
```

The last two lines are the output of the command. They show the RDM filenames for the node's shared storage, which are attached to the virtual SCSI adapter named scsil.

2. Using the RDM filenames, including the path to the datastore, you can identify the logical device name to which each RDM maps as shown in Listing 5.2.

Listing 5.2 Identifying RDM's Logical Device Name Using the RDM Filename

```
#vmkfstools --queryrdm /vmfs/volumes/4d8008a2-9940968c-04df-001e4f1fbf2a/
node1/quorum.vmdk
```

Disk /vmfs/volumes/4d8008a2-9940968c-04df-001e4f1fbf2a/node1/quorum.vmdk is a Passthrough Raw Device Mapping

Maps to: vml.02000100006006016055711d00cff95e65664ee011524149442035

You may also use the shorthand version using -q instead of --queryrdm.

This example is for the quorum. vmdk. Repeat the same process for the remaining RDMs. The device name is prefixed with vml and is highlighted.

3. Identify the NAA ID using the vml ID as shown in Listing 5.3.

Listing 5.3 Identifying NAA ID Using the Device vml ID

```
#esxcfg-scsidevs --list --device vml.02000100006006016055711d00cff95e65664 ee011524149442035 |grep Display
```

Display Name: DGC Fibre Channel Disk (naa.6006016055711d00cff95e65664ee011)

You may also use the shorthand version:

```
#esxcfg-scsidevs -l -d vml.02000100006006016055711d00cff95e65664 ee011524149442035 |grep Display
```

4. Now, use the NAA ID (highlighted in Listing 5.3) to identify the paths to the RDM LUN.

Figure 5.41 shows the output of command:

```
esxcfg-mpath -m |grep naa.6006016055711d00cff95e65664ee011 | sed `s/fc.*//'
```


Figure 5.41 Listing runtime pathnames to an RDM LUN

You may also use the verbose version of the command:

```
esxcfg-mpath --list-map |grep naa.6006016055711d00cff95e65664ee011 |
sed `s/fc.*//'
```

This truncates the output beginning with "fc" to the end of the line on each line. If the protocol in use is not FC, replace that with "iqn" for iSCSI or "fcoe" for FCoE.

The output shows that the LUN with the identified NAA ID is LUN 1 and has four paths shown in Listing 5.4.

Listing 5.4 RDM LUN's Paths

vmhba3:C0:T1:L1
vmhba3:C0:T0:L1
vmhba2:C0:T1:L1
vmhba2:C0:T0:L1

If you cannot power off the VMs to run Steps 1–5, you may use the UI instead.

5. Use the vSphere client to navigate to the MSCS node VM. Right-click the VM in the inventory pane and then select **Edit Settings** (see Figure 5.42).

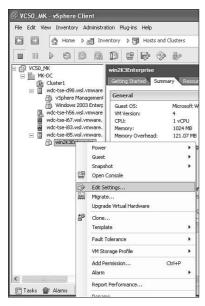


Figure 5.42 Editing VM's settings via the UI

6. In the resulting dialog (see Figure 5.43), locate the RDM listed in the Hardware tab. You can identify this by the summary column showing Mapped Raw LUN. On the top right-hand side you can locate the Logical Device Name, which is prefixed with vml in the field labeled Physical LUN and Datastore Mapping File.

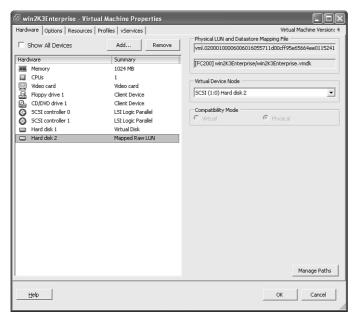


Figure 5.43 Virtual machine properties dialog

7. Double-click the text in that field. Right-click the selected text and click **Copy** as shown in Figure 5.44.

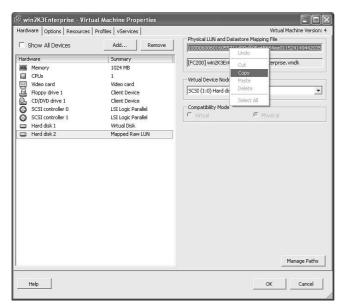


Figure 5.44 Copying RDM's VML ID (Logical Device Name) via the UI

- **8.** You may use the copied text to follow Steps 4 and 5. Otherwise, you may instead get the list of paths to the LUN using the **Manage Paths** button in the dialog shown in Figure 5.44.
- **9.** In the Manage Paths dialog (see Figure 5.45), click the Runtime Name column to sort it. Write down the list of paths shown there.

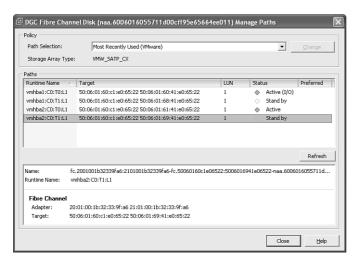


Figure 5.45 Listing the runtime pathnames via the UI

10. The list of paths shown in Figure 5.45 are

```
vmhba1:C0:T0:L1
vmhba1:C0:T1:L1
vmhba2:C0:T0:L1
vmhba2:C0:T1:L1
```

NOTE

Notice that the list of paths in the UI is different from that obtained from the command line. The reason can be easily explained; I used two different hosts for obtaining the list of paths. If your servers were configured identically, the path list should be identical as well.

However, this is not critical because the LUN's NAA ID is the same regardless of paths used to access it. This is what makes NAA ID the most unique element of any LUN, and that is the reason ESXi utilizes it for uniquely identifying the LUNs. I cover more on that topic later in Chapter 7.

11. Create the claim rule.

I use the list of paths obtained in Step 5 for creating the rule from the ESXi host from which it was obtained.

The Ground Rules for Creating the Rule

- The rule number must be lower than any of the rules created by PowerPath/VE installation. By default, they are assigned rules 250–320 (refer to Figure 5.26 for the list of PowerPath claim rules).
- The rule number must be higher than 101 because this is used by the Dell Mask Path rule. This prevents claiming devices masked by that rule.
- If you created other claim rules in the past on this host, use a rule number that is different from what you created in a fashion that the new rules you are creating now do not conflict with the earlier rules.
- If you must place the new rules in an order earlier than an existing rule but there are no rule numbers available, you may have to move one of the lower-numbered rules higher by the number of rules you plan on creating.

For example, you have previously created rules numbered 102–110 and that rule 109 cannot be listed prior to the new rules you are creating. If the new rules count is four, you need to assign them rule numbers 109–112. To do that, you need to move rules 109 and 110 to numbers 113 and 114. To avoid having to do this in the future, consider leaving gaps in the rule numbers among sections.

An example of moving a rule is

```
esxcli storage core claimrule move --rule 109 --new-rule 113 esxcli storage core claimrule move --rule 110 --new-rule 114
```

You may also use the shorthand version:

```
esxcli storage core claimrule move -r 109 -n 113 esxcli storage core claimrule move -r 110 -n 114
```

Now, let's proceed with adding the new claim rules:

- 1. The set of four commands shown in Figure 5.46 create rules numbered 102–105. The rules criteria are
 - The claim rule type is "location" (-t location).
 - The location is specified using each path to the same LUN in the format:
 - -A or --adapter vmhba(x) where X is the vmhba number associated with the path.

- -C or --channel (Y) where Y is the channel number associated with the path.
- -T or --target (Z) where Z is the target number associated with the path.
- -L or --lun (n) where n is the LUN number.
- The plug-in name is NMP, which means that this claim rule is for NMP to claim the paths listed in each rule created.

NOTE

It would have been easier to create a single rule using the LUN's NAA ID by using the --type device option and then using --device <NAA ID>. However, the use of device as a rule type is not supported with MP class plug-ins.

```
# wdc-tse-d98.wsl.vmware.com -PUTTY

# esxcli storage core claimrule add -r 102 -t location -A vmhba2 -C 0 -T 0 -L 1 -P NMP

# esxcli storage core claimrule add -r 103 -t location -A vmhba2 -C 0 -T 1 -L 1 -P NMP

# esxcli storage core claimrule add -r 104 -t location -A vmhba3 -C 0 -T 0 -L 1 -P NMP

# esxcli storage core claimrule add -r 105 -t location -A vmhba3 -C 0 -T 1 -L 1 -P NMP

# # esxcli storage core claimrule add -r 105 -t location -A vmhba3 -C 0 -T 1 -L 1 -P NMP
```

Figure 5.46 Adding new MP claim rules

- **2.** Repeat Step 1 for each LUN you want to reconfigure.
- **3.** Verify that the rules were added successfully. To list the current set of claim rules, run the command shown in Figure 5.47:

```
esxcli storage core claimrule list.
```

🗗 wdc-tse-d	98.wsl.vm	ware.com -	PuTTY		
~ # esxcli	storage	core cla	imrule list		^
Rule Class	Rule	Class	Type	Plugin	Matches
MP	0	runtime	transport	NMP	transport=usb
MP	1	runtime	transport	NMP	transport=sata
MP	2	runtime	transport	NMP	transport=ide
MP	3	runtime	transport	NMP	transport=block
MP	4	runtime	transport	NMP	transport=unknown
MP	101	runtime	vendor	MASK_PATH	vendor=DELL model=Universal Xport
MP	101	file	vendor	MASK_PATH	vendor=DELL model=Universal Xport
MP	102	file	location	NMP	adapter=vmhba2 channel=0 target=0 lun=1
MP	103	file	location	NMP	adapter=vmhba2 channel=0 target=1 lun=1
MP	104	file	location	NMP	adapter=vmhba3 channel=0 target=0 lun=1
MP	105	file	location	NMP	adapter=vmhba3 channel=0 target=1 lun=1
MP	65535	runtime	vendor	NMP	vendor=* model=*
~ #					~

Figure 5.47 Listing added claim rules

Notice that the four new rules are now listed, but the Class column shows them as file. This means that the configuration files were updated successfully but the rules were not loaded into memory yet.

NOTE

I truncated the PowerPath rules in Figure 5.47 for readability. Also note that using the Location type utilizes the current runtime names of the devices, and they may change in the future. If your configuration changes—for example, adding new HBAs or removing existing ones—the runtime names change, too. This results in these claim rules claiming the wrong devices. However, in a static environment, this should not be an issue.

TIP

To reduce the number of commands used and the number of rules created, you may omit the -T or --target option, which assumes a wildcard. You may also use the -u or --autoassign option to auto-assign the rule number. However, the latter assigns rule numbers starting with 5001, which may be higher than the existing claim rules for the device hosting the LUN you are planning to claim.

Figure 5.48 shows a sample command line that implements a wildcard for the target. Notice that this results in creating two rules instead of four and the "target" match is *.

🗗 wdc-tse-d	98.wsl.vm	ware.com -	PuTTY			(
~ # esxcli	storage	core cla	imrule add	-r 104 -t 1	ocation -A vmhba2 -C O -L 1 -P NMP	^
~ # esxcli	storage	core cla	imrule add	-r 105 -t 1	ocation -A vmhba3 -C O -L 1 -P NMP	П
~ # esxcli	storage	core cla	imrule list			П
Rule Class	Rule	Class	Type	Plugin	Matches	П
						П
MP	0	runtime	transport	NMP	transport=usb	П
MP	1	runtime	transport	NMP	transport=sata	П
MP	2	runtime	transport	NMP	transport=ide	П
MP	3	runtime	transport	NMP	transport=block	П
MP	4	runtime	transport	NMP	transport=unknown	П
MP	101	runtime	vendor	MASK PATH	vendor=DELL model=Universal Mport	П
MP	101	file	vendor	MASK PATH	vendor=DELL model=Universal Xport	П
MP	104	file	location	NMP	adapter=vmhba2 channel=0 target=* lun=1	- 1
MP	105	file	location	NMP	adapter=vmhba3 channel=0 target=* lun=1	
MP	65535	runtime	vendor	NMP	vendor=* model=*	
~ #						~

Figure 5.48 Adding MP claim rules using a wildcard

4. Before loading the new rules, you must first unclaim the paths to the LUN specified in that rule set. You use the NAA ID as the device ID:

esxcli storage core claiming unclaim --type device --device naa.600601 6055711d00cff95e65664ee011

You may also use the shorthand version:

esxcli storage core claiming unclaim -t device -d naa.6006016055711d00 cff95e65664ee011

- 5. Load the new claim rules so that the paths to the LUN get claimed by NMP: esxcli storage core claimrule load
- **6.** Use the following command to list the claim rules to verify that they were successfully loaded:

```
esxcli storage core claimrule list
```

Now you see that each of the new rules is listed twice—once with file class and once with runtime class—as shown in Figure 5.49.

🕏 wdc-tse	e-d98.wsl.vm	ware.com -	PuTTY			K
~ # esxc	li storage	core cla	imrule list			^
Rule Cla	ss Rule	Class	Type	Plugin	Matches	
MP	0	runtime	transport	NMP	transport=usb	
MP	1	runtime	transport	NMP	transport=sata	
MP	2	runtime	transport	NMP	transport=ide	
MP	3	runtime	transport	NMP	transport=block	
MP	4	runtime	transport	NMP	transport=unknown	
MP	101	runtime	vendor	MASK_PATH	vendor=DELL model=Universal Xport	
MP	101	file	vendor	MASK PATH	vendor=DELL model=Universal Xport	
MP	102	runtime	location	NMP	adapter=vmhba2 channel=0 target=0 lun=1	
MP	102	file	location	NMP	adapter=vmhba2 channel=0 target=0 lun=1	
MP	103	runtime	location	NMP	adapter=vmhba2 channel=0 target=1 lun=1	
MP	103	file	location	NMP	adapter=vmhba2 channel=0 target=1 lun=1	
MP	104	runtime	location	NMP	adapter=vmhba3 channel=0 target=0 lun=1	
MP	104	file	location	NMP	adapter=vmhba3 channel=0 target=0 lun=1	
MP	105	runtime	location	NMP	adapter=vmhba3 channel=0 target=1 lun=1	
MP	105	file	location	NMP	adapter=vmhba3 channel=0 target=1 lun=1	
MP	65535	runtime	vendor	NMP	vendor=* model=*	v

Figure 5.49 Listing MP claim rules

How to Delete a Claim Rule

Deleting a claim rule must be done with extreme caution. Make sure that you are deleting the rule you intend to delete. Prior to doing so, make sure to collect a "vm-support" dump by running vm-support from a command line at the host or via SSH. Alternatively, you can select the menu option Collect Diagnostics Data via the vSphere client.

To delete a claim rule, follow this procedure via the CLI (locally, via SSH, vCLI, or vMA):

- 1. List the current claim rules set and identify the claim rule or rules you want to delete. The command to list the claim rules is similar to what you ran in Step 6 and is shown in Figure 5.49.
- 2. For this procedure, I am going to use the previous example and delete the four claim rules I added earlier which are rules 102–105. The command for doing that is in Figure 5.50.

```
wdc-tse-d98.wsl.vmware.com - PuTTY

- # esxcli storage core claimrule remove -r 102

- # esxcli storage core claimrule remove -r 103

- # esxcli storage core claimrule remove -r 104

- # esxcli storage core claimrule remove -r 105

- # # esxcli storage core claimrule remove -r 105
```

Figure 5.50 Removing claim rules via the CLI

You may also run the verbose command:

```
esxcli storage core claimrule remove --rule <rule-number>
```

3. Running the claimrule list command now results in an output similar to Figure 5.51. Observe that even though I just deleted the claim rules, they still show up on the list. The reason for that is the fact that I have not loaded the modified claim rules. That is why the deleted rules show runtime in their Class column.

₩ wdc-tse-d98.wsl, vmware.com - PuTTY						
~ # esxcli	storage	core cla	imrule list			^
Rule Class	Rule	Class	Type	Plugin	Matches	
MP	0	runtime	transport	NMP	transport=usb	
MP	1	runtime	transport	NMP	transport=sata	
MP	2	runtime	transport	NMP	transport=ide	
MP	3	runtime	transport	NMP	transport=block	
MP	4	runtime	transport	NMP	transport=unknown	
MP	101	runtime	vendor	MASK_PATH	vendor=DELL model=Universal Xport	
MP	101	file	vendor	MASK_PATH	vendor=DELL model=Universal Xport	
MP	102	runtime	location	NMP	adapter=vmhba2 channel=0 target=0 lun=1	
MP	103	runtime	location	NMP	adapter=vmhba2 channel=0 target=1 lun=1	
MP	104	runtime	location	NMP	adapter=vmhba3 channel=0 target=0 lun=1	
MP	105	runtime	location	NMP	adapter=vmhba3 channel=0 target=1 lun=1	
MP	65535	runtime	vendor	NMP	vendor=* model=*	
~ #						~

Figure 5.51 Listing MP claim rules

5. Because I know from the previous procedure the device ID (NAA ID) of the LUN whose claim rules I deleted, I ran the unclaim command using the -t device or --type option and then specified the -d or --device option with the NAA ID. I then loaded the claim rules using the load option. Notice that the deleted claim rules are no longer listed see Figure 5.52.

© wdc-tse-d98.wsl.vmware.com - PuTTY								
~ # esxcli	~ # esxcli storage core claiming unclaim -t device -d naa.6006016055711d00cff95e65664ee011 🔨							
~ # esxcli	~ # esxcli storage core claimrule load							
~ # esxcli	storage	core cla	imrule list					
Rule Class	Rule	Class	Type	Plugin	Matches			
MP	0	runtime	transport	NMP	transport=usb			
MP	1	runtime	transport	NMP	transport=sata			
MP	2	runtime	transport	NMP	transport=ide			
MP	3	runtime	transport	NMP	transport=block			
MP	4	runtime	transport	NMP	transport=unknown			
MP	101	runtime	vendor	MASK PATH	vendor=DELL model=Universal Xport			
MP	101	file	vendor	MASK PATH	vendor=DELL model=Universal Xport	_		
MP	65535	runtime	vendor	NMP -	vendor=* model=*			
~ #					8	~		

Figure 5.52 Unclaiming a device using its NAA ID and then loading the claim rules

You may also use the verbose command options:

```
esxcli storage core claiming unclaim --type device --device <Device-ID>
```

You may need to claim the device after loading the claim rule by repeating the claiming command using the "claim" instead of the "unclaim" option:

```
esxcli storage core claiming claim -t device -d <device-ID>
```

How to Mask Paths to a Certain LUN

Masking a LUN is a similar process to that of adding claim rules to claim certain paths to a LUN. The main difference is that the plug-in name is MASK_PATH instead of NMP as used in the previous example. The end result is that the masked LUNs are no longer visible to the host.

1. Assume that you want to mask LUN 1 used in the previous example and it still has the same NAA ID. I first run a command to list the LUN visible by the ESXi host as an example to show the before state (see Figure 5.53).

```
**Wdc-tse-d98.wsL.vmware.com - PUITY

- # esxcli storage nmp device list -d naa.6006016055711d00cff95e65664ee011

naa.6006016055711d00cff95e65664ee011

Device Display Name: DOC Fibre Channel Disk (naa.6006016055711d00cff95e65664ee011)

Storage Array Type: VMW_SATP_CX

Storage Array Type Device Config: (navireg ipfilter )

Path Selection Policy: VMW_PSP_MRU

Path Selection Policy Device Config: Current Path=vmhba2:CO:TO:L1

Path Selection Policy Device Config:

Working Paths: vmhba2:CO:TO:L1

- # #
```

Figure 5.53 Listing LUN properties using its NAA ID via the CLI

You may also use the verbose command option --device instead of -d.

2. Add the MASK_LUN claim rule, as shown in Figure 5.54.

🕏 wdc-tse-	d98.wsl.vm	ware.com -	PuTTY			×
~ # esxcl	i storage	core cla	imrule add	-r 110 -t 1	ocation -A vmhba2 -C O -L 1 -P MASK_PATH	^
~ # esxcl	i storage	core cla	imrule add	-r 111 -t l	ocation -A vmhba3 -C O -L 1 -P MASK_PATH	
~ # esxcl	i storage	core cla	imrule list		_	
Rule Clas	s Rule	Class	Type	Plugin	Matches	
MP	0	runtime	transport	NMP	transport=usb	
MP	1	runtime	transport	NMP	transport=sata	
MP	2	runtime	transport	NMP	transport=ide	
MP	3	runtime	transport	NMP	transport=block	
MP	4	runtime	transport	NMP	transport=unknown	
MP	101	runtime	vendor	MASK_PATH	vendor=DELL model=Universal Xport	
MP	101	file	vendor	MASK PATH	vendor=DELL model=Universal Mport	
MP	110	file	location	MASK PATH	adapter=vmhba2 channel=0 target=* lun=1	
MP	111	file	location	MASK_PATH	adapter=vmhba3 channel=0 target=* lun=1	
MP	65535	runtime	vendor	NMP	vendor=* model=*	
~ #						~

Figure 5.54 Adding Mask Path claim rules

As you see in Figure 5.54, I added rule numbers 110 and 111 to have MASK_PATH plug-in claim all targets to LUN1 via vmhba2 and vmhba3. The claim rules are not yet loaded, hence the file class listing and no runtime class listings.

3. Load and then list the claim rules (see Figure 5.55).

₽ wdc-tse-d98.wsl.vmware.com - PuTTY							
~ # esxcli storage core claimrule load							
~ # esxcli	storage	core cla	imrule list				
Rule Class	Rule	Class	Type	Plugin	Matches		
MP	0	runtime	transport	NMP	transport=usb		
MP	1	runtime	transport	NMP	transport=sata		
MP	2	runtime	transport	NMP	transport=ide		
MP	3	runtime	transport	NMP	transport=block		
MP	4	runtime	transport	NMP	transport=unknown		
MP	101	runtime	vendor	MASK_PATH	vendor=DELL model=Universal Xport		
MP	101	file	vendor	MASK PATH	vendor=DELL model=Universal Xport		
MP	110	runtime	location	MASK PATH	adapter=vmhba2 channel=0 target=* lun=1		
MP	110	file	location	MASK_PATH	adapter=vmhba2 channel=0 target=* lun=1		
MP	111	runtime	location	MASK PATH	adapter=vmhba3 channel=0 target=* lun=1		
MP	111	file	location	MASK PATH	adapter=vmhba3 channel=0 target=* lun=1	-11	
MP	65535	runtime	vendor	NMP	vendor=* model=*		
~ #						~	

Figure 5.55 Loading and listing claim rules after adding Mask Path rules

Now you see the claim rules listed with both file and runtime classes.

4. Use the reclaim option to unclaim and then claim the LUN using its NAA ID. Check if it is still visible (see Figure 5.56).

```
# wdc.tse-d98.wsl.vmware.com -PUTTY

# esxcli storage core claiming reclaim -d naa.6006016055711d00cff95e65664ee011

# esxcli storage nmp device list -d naa.6006016055711d00cff95e65664ee011

**Unknown device naa.6006016055711d00cff95e65664ee011

**# | | |
```

Figure 5.56 Reclaiming the paths after loading the Mask Path rules

You may also use the verbose command option --device instead of -d.

Notice that after reclaiming the LUN, it is now an Unknown device.

How to Unmask a LUN

To unmask this LUN, reverse the preceding steps and then reclaim the LUN as follows:

1. Remove the MASK_PATH claim rules (numbers 110 and 111) as shown in Figure 5.57.

```
🗗 wdc-tse-d98.wsl.vmware.com - PuTTY
  # esxcli storage core claimrule remove -r 110
 # esxcli storage core claimrule remove -r 111
~ # esxcli storage core claimrule load
~ # esxcli storage core claimrule list
Rule Class Rule Class
                O runtime transport NMP
                                                    transport=usb
                   runtime transport
                                        NMP
                                                    transport=sata
                2 runtime transport NMP
                                                    transport=ide
                                                    transport=block
                             transport
MP
MP
                4 runtime
                            transport
                                        NMP
                                                    transport=unknown
              101 runtime vendor
                                         MASK PATH vendor=DELL model=Universal Xport
               101
                             vendor
                                         MASK_PATH vendor=DELL model=Universal Xport
MP
            65535 runtime vendor
                                        NMP
                                                    vendor=* model=*
```

Figure 5.57 Removing the Mask Path claim rules

You may also use the verbose command options:

```
esxcli storage core claimrule remove --rule <rule-number>
```

- 2. Unclaim the paths to the LUN in the same fashion you used while adding the MASK_PATH claim rules—that is, using the -t location and omitting the -T option so that the target is a wildcard.
- **3.** Rescan using both HBA names.
- **4.** Verify that the LUN is now visible by running the list command.

Figure 5.58 shows the outputs of Steps 2–4.

```
🗗 wdc-tse-d98.wsl.vmware.com - PuTTY
 # esxcli storage core claiming unclaim -t location -A vmhba2 -C O -L 1 -P MASK PATH
 # esxcli storage core claiming unclaim -t location -A vmhba3 -C O -L 1 -P MASK PATH
# esxcfq-rescan vmhba2
 # esxcfg-rescan vmhba3
~ # esxcli storage core device list -d naa.6006016055711d00cff95e65664ee011
maa.6006016055711d00cff95e65664ee011
  Display Name: DGC Fibre Channel Disk (naa.6006016055711d00cff95e65664ee011)
  Has Settable Display Name: true
  Size: 10240
  Device Type: Direct-Access
  Multipath Plugin: NMP
  Devfs Path: /vmfs/devices/disks/naa.6006016055711d00cff95e65664ee011
  Vendor: DGC
Model: RAID 5
  Revision: 0326
  SCSI Level: 4
  Is Pseudo: false
  Status: on
  Is RDM Capable: true
  Is Local: false
  Is Removable: false
  Is SSD: false
  Is Offline: false
  Is Perennially Reserved: false
  Thin Provisioning Status: unknown
  Attached Filters:
  VAAI Status: unknown
  Other UIDs: vml.02000100006006016055711d00cff95e65664ee011524149442035
```

Figure 5.58 Unclaiming the Masked Paths

You may also use the verbose command options:

```
esxcli storage core claiming unclaim --type location --adapter vmhba2 --channel 0 --lun 1 --plugin MASK PATH
```

Changing PSP Assignment via the CLI

The CLI enables you to modify the PSP assignment per device. It also enables you to change the default PSP for a specific storage array or family of arrays. I cover the former use case first because it is similar to what you did via the UI in the previous section. I follow with the latter use case.

Changing PSP Assignment for a Device

To change the PSP assignment for a given device, you may follow this procedure:

- 1. Log on to the ESXi 5 host locally or via SSH as root or using vMA 5.0 as vi-admin.
- 2. Identify the device ID for each LUN you want to reconfigure:

```
esxcfg-mpath -b |grep -B1 "fc Adapter" | grep -v -e "--" |sed 's/Adapter.*//
```

You may also use the verbose version of this command:

```
esxcfg-mpath --list-paths grep -B1 "fc Adapter" \mid grep -v -e "--" \mid sed 's/Adapter.*//'
```

Listing 5.5 shows the output of this command.

Listing 5.5 Listing Device ID and Its Paths

naa.60060e8005275100000027510000011a : HITACHI Fibre Channel Disk (naa.6006 0e8005275100000027510000011a)

```
vmhba2:C0:T0:L1 LUN:1 state:active fc
vmhba2:C0:T1:L1 LUN:1 state:active fc
vmhba3:C0:T0:L1 LUN:1 state:active fc
vmhba3:C0:T1:L1 LUN:1 state:active fc
```

From there, you can identify the device ID (in this case, it is the NAA ID). Note that this output was collected using a Universal Storage Platform®V (USP V), USP VM, or Virtual Storage Platform (VSP).

This output means that LUN1 has device ID naa.60060e800527510000002751 0000011a.

3. Using the device ID you identified, run this command:

```
esxcli storage nmp device set -d <device-id> --psp=<psp-name>
```

You may also use the verbose version of this command:

```
esxcli storage nmp device set --device <device-id> --psp=<psp-name>
```

For example:

```
esxcli storage nmp device set -d naa.60060e80052751000000275100000011a --psp=VMW_PSP_FIXED
```

This command sets the device with ID naa.60060e800527510000002751000 0011a to be claimed by the PSP named VMW_PSP_FIXED.

Changing the Default PSP for a Storage Array

There is no simple way to change the default PSP for a specific storage array unless that array is claimed by an SATP that is specific for it. In other words, if it is claimed by an SATP that also claims other brands of storage arrays, changing the default PSP affects *all* storage arrays claimed by the SATP. However, you may add an SATP claim rule that uses a specific PSP based on your storage array's Vendor and Model strings:

1. Identify the array's Vendor and Model strings. You can identify these strings by running

```
esxcli storage core device list -d <device ID> |grep 'Vendor\|Model'
```

Listing 5.6 shows an example for a device on an HP P6400 Storage Array.

Listing 5.6 Listing Device's Vendor and Model Strings

```
esxcli storage core device list -d naa.600508b4000f02cb0001000001660000 | grep 'Model \ | Vendor'
```

Vendor: HP Model: HSV340

In this example, the Vendor String is HP and the Model is HSV340.

2. Use the identified values in the following command:

```
esxcli storage nmp satp rule add --satp <current-SATP-USED> --vendor
<Vendor string> --model <Model string> --psp <PSP-name> --description
<Description>
```

TIP

It is always a good practice to document changes manually made to the ESXi host configuration. That is why I used the --description option to add a description of the rules I add. This way other admins would know what I did if they forget to read the change control record that I added using the company's change control software.

In this example, the command would be like this:

```
esxcli storage nmp satp rule add --satp VMW_SATP_EVA --vendor HP --model HSV340 --psp VMW_PSP_FIXED --description "Manually added to use FIXED"
```

It runs silently and returns an error if it fails.

Example of an error:

"Error adding SATP user rule: Duplicate user rule found for SATP VMW_SATP_EVA matching vendor HP model HSV340 claim Options PSP VMW_PSP_FIXED and PSP Options"

This error means that a rule already exists with these options. I simulated this rule by first adding it and then rerunning the same command. To view the existing SATP claim rules list for all HP storage arrays, you may run the following command:

```
esxcli storage nmp satp rule list |less -S |grep 'Name\|---\|HP'|less
```

Figure 5.59 shows the output of this command (I cropped some blank columns, including Device, for readability):

🗗 wdc-tse-d98.wsl.vmw	are.com - Ρι				×	
Name	Vendor	Model	Rule Group	Claim Options	Default PSP	^
HTI_SATP_HDLM	HP	^OPEN-*	user			
VMW SATP DEFAULT AP		HSVX700	system	tpgs_off		
VMW SATP EVA	HP	HSV340	user	_	VMW PSP FIXED	
VMW SATP EVA		HSVX740	system	tpgs off		
:				_		~

Figure 5.59 Listing SATP rule list for HP devices

You can easily identify non-system rules where the Rule Group column value is user. Such rules were added by a third-party MPIO installer or manually added by an ESXi 5 administrator. The rule in this example shows that I had already added VMW_PSP_FIXED as the default PSP for VMW_SATP_EVA when the matching vendor is HP and Model is HSV340.

I don't mean to state by this example that HP EVA arrays with HSV340 firmware should be claimed by this specific PSP. I am only using it for demonstration purposes. You *must* verify which PSP is supported by and certified for your specific storage array from the array vendor.

As a matter of fact, this HP EVA model happens to be an ALUA array and the SATP must be VMW_SATP_ALUA see Chapter 6. How did I know that? Let me explain!

- Look at the output in Figures 5.29–5.32. There you should notice that there are no listings of HP EVA arrays with Claim Options value of tpgs_on. This means that they were not claimed by any specific SATP explicitly.
- To filter out some clutter from the output, run the following command to list all claim rules with a match on Claim Options value of tpgs_on.

```
esxcli storage nmp satp rule list |grep 'Name\|---\|tpgs_on' |less -S
```

Listing 5.7 shows the output of that command:

Listing 5.7 Listing SATP Claim Rules List

Name	Device	Vendor	Model	Rule Group	Claim Options
VMW_SATP_ALUA		NETAPP		system	tpgs_on
VMW_SATP_ALUA		IBM	2810XIV	system	tpgs_on
VMW_SATP_ALUA				system	tpgs_on
VMW_SATP_ALUA_CX		DGC		system	tpgs_on

I cropped some blank columns for readability.

Here you see that there is a claim rule with a blank vendor and the Claim Options is tpgs_on. This claim rule claims *any* device with *any* vendor string as long as its Claim Options is tpgs_on.

Based on this rule, VMW_SATP_ALUA claims *all* ALUA-capable arrays including HP storage arrays based on a match on the Claim Options value of tpgs_on.

What does this mean anyway?

It means that the claim rule that I added for the HSV340 is wrong because it will force it to be claimed by an SATP that does not handle ALUA. I must remove the rule that I added then create another rule that does not violate the default SATP assignment:

1. To remove the SATP claim rule, use the same command used to add, substituting the add option with remove:

```
esxcli storage nmp satp rule remove --satp VMW_SATP_EVA --vendor HP --model HSV340 --psp VMW PSP FIXED
```

2. Add a new claim rule to have VMW_SATP_ALUA claim the HP EVA HSV340 when it reports Claim Options value as tpgs_on:

```
esxcli storage nmp satp rule add --satp VMW_SATP_ALUA --vendor HP --model HSV340 --psp VMW_PSP_FIXED --claim-option tpgs_on --description "Re-added manually for HP HSV340"
```

3. Verify that the rule was created correctly. Run the same command used in Step 2 in the last procedure:

```
esxcli storage nmp satp rule list |grep 'Name\|---\|tpgs on' |less -S
```

Figure 5.60 shows the output.

₽ wdc-tse-d98.wsl.v	/mware.co	m - PuTTY				×
Name	Vendor	Model	Rule Group	Claim Options	Default PSP	^
VMW SATP ALUA	NETAPP		system	tpgs on	VMW PSP RR	
VMW_SATP_ALUA	IBM	2810XIV	system	tpgs_on	VMW PSP RR	
VMU_SATP_ALUA	HP	HSV340	user	tpgs_on	VMW_PSP_FIXED	
VMW_SATP_ALUA			system	tpgs_on		
VMW_SATP_ALUA_CX	DGC		system	tpgs_on		
:						~

Figure 5.60 SATP rule list after adding rule

Notice that the claim rule has been added in a position prior to the catch-all rule described earlier. This means that this HP EVA HSV340 model will be claimed by VMW_SATP_ALUA when the Claim Options value is tpgs on.

NOTE

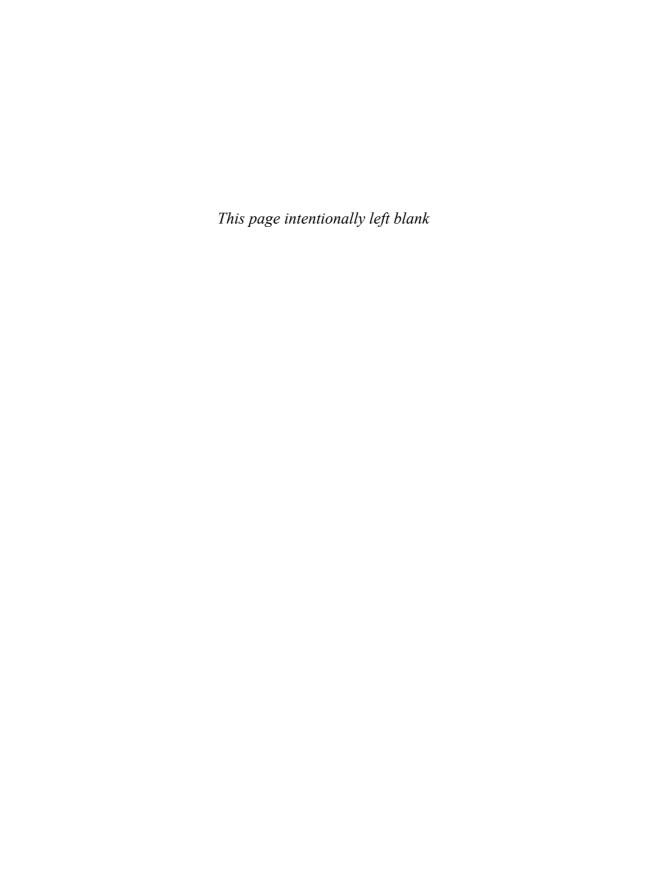
If you had manually set certain LUNs to a specific PSP previously, the preceding command will not affect that setting.

To reset such a LUN to use the current default PSP, use the following command:

esxcli storage nmp device set --device <device-ID> --default

For example:

esxcli storage nmp device set --device naa.6006016055711d00cef95e65 664ee011 --default


NOTE

All EVAs today have the tpgs_on option enabled by default, and it CANNOT be changed by the user. So adding an EVA claim rule would only be useful in the context of trying to use a different PSP by default for all EVA LUNs or assigning PSP defaults to EVA different from other ALUA-capable arrays using the default SATP_ALUA.

Summary

This chapter covered PSA (VMware Pluggable Storage Architecture) components. I showed you how to list PSA plug-ins and how they interact with vSphere ESXi 5. I also showed you how to list, modify, and customize PSA claim rules and how to work around some common issues.

It also covered how ALUA-capable devices interact with SATP claim rules for the purpose of using a specific PSP.

Index

Symbols

10GigE pipeline, 59-60 802.1p tag, Ethernet frames, 60-61 /var/log/syslog.log Listing of addinc vmnic as an FCoE Adapter, 78 /var/log/syslog.log Snippet Showing Device and Path Claiming Events listing, 79

Α

AAS (Asymmetric Access States), 170

ALUA (Asymmetric Logical Unit
Access), 229-231

accelerated locking primitive, 553

access, SSH (secure shell) hosts, enabling,
17-19

active/active arrays, 175, 227

active/passive arrays, 175, 227

active path state (I/O), 176, 255-257, 274

adapters

FCoE, 51-56

Hardware (HW) FCoE Adapters, 62 Software (SW) FCoE Adapters, 62-63, 68-73 iSCSI parameters, 153-162 Additional Sense Code (ASC), 269, 554 Additional Sense Code Qualifier (ASCQ), 269, 554 addresses, iSCSI initiators, 96 aliases, 98 double indirect, VMFS (Virtual Machine File System), 397 EUI, 98 IQN, 96-101 NAA IDs, 98 address spaces, remapping, SVDs, 370 Advanced Settings, VMkernel, 265-267 aliases, iSCSI initiators, 98 All Paths Down (APD), 280 unmounting VMFS datastores, 281-286 Alternative Method for Listing iSCSI Target Portals—HW Initiators, 95

active/passive, 227

Alternative Method for Listing iSCSI ALUA (Asymmetric Logical Unit Target Portals—SW Initiators Access) listing, 95 AAS (Asymmetric Access State), ALUA (Asymmetric Logical Unit Access), 229-231 227-228, 247 followover, 232-237 AAS (Asymmetric Access State), 229-231 identifying device configuration, 237-243 array (I/O), 170, 175 claim rules, 237-238 identifying device path states, 246-247 common implementations, 232 management modes, 231-232 followover, 232-237 path ranking, 292-293 identifying device configuration, 237-243 TPG (Target Port Group), 228-229 identifying device path states, 246-247 troubleshooting, 243-245 management modes, 231-232 EMC VNX, 240-241 path ranking, 291-293 I/O, 175-176 TPG (Target Port Group), 228-229 non-ALUA arrays, path ranking, 293-295 troubleshooting, 243-245 pseudo-active/active, 227 Another Sample Log of Corrupt Heartbeat VAAI (vStorage APIs for Array listing, 520 Integration), 549-550 APD (All Paths Down), 280 ATS (Accelerated Locking Primitive), 553-554 unmounting VMFS datastores, 281-286 block zeroing primitive, 552-553 APIs (application programming interfaces), VAAI (vStorage APIs for Array full copy primitive, 551-552 Integration), 549-550 hardware accelerated locking ATS (Accelerated Locking Primitive), primitive, 553 553-554 hardware acceleration APIs, 550-551 block zeroing primitive, 552-553 NAS (Network Attach Storage) full copy primitive, 551-552 primitives, 555 primitives, 550-551 hardware accelerated locking primitive, 553 thin provision APIs, 551, 554 hardware acceleration APIs, 550-551 array-specific functions, NMP (Native NAS (Network Attach Storage), 555 Multipathing), 174 primitives, 550-551 ASC (Additional Sense Code), 269 thin provisioning APIs, 551, 554 ASCQ (Additional Sense Code Qualifier), 269 architecture, SVDs, 371-372 Asymmetric Access States (AAS), 170 arrays, 227 Asymmetric Active/Active array (I/O), 175 active/active, 227

Asymmetric Logical Unit Access (ALUA). See ALUA (Asymmetric Logical	С		
Unit Access) ATA (AT Attachment), 5	cable unplugged from HBA port path sta 274		
ATS (Accelerated Locking Primitive), 553-554	cable unplugged from SP port path state, 274		
	calculating partition offset, 403		
В	claim rules		
back-end storage, SVDs, migrating to, 373 bad connection path state, 274 bandwidth LANs (local area networks), 549 measuring, 8 SANs (storage area networks), 549 SVDs, 376-377 BC/DR (Business Continuity/Disaster Recovery), 41, 410, 529 best practices, heterogeneous storage, 342 binary data, 1 BIOS (Basic Input Output System), HBAs, configuring hardware iSCSI initiators, 109-112	ALUA (Asymmetric Logical Unit Access), identifying, 237-238 VAAI Filter, listing, 570 CEE (Converged Enhanced Ethernet) port 78 certified storage, VMware HCL, locating, 326, 327 Checking Whether a Lock Is Free code listing, 523 CIB (Cluster-in-a-Box), 512 claimed devices, listing with PowerPath VE, 311-312 claim rules creating, 212 MP, 193-196 PSA, 192-193		
bits, 1, 7	adding, 206-215		
block device primitives disabling with CLI, 559-561 disabling with UI, 557-558	deleting, 215-217 SATPs, 197-201 VAAI plug-ins, listing, 570		
block devices, 8 VAAI-capable, locating supported, 565-566	Class field (claim rules), 194 CLI (command line interface), 17		
I/O stats, displaying, 579-582 listing support, 574-577 ock zeroing primitive, VAAI, 552-553 eaking a Lock listing, 525	block device VAAI, listing support, 574-577 current path, identifying, 255 detaching devices, 290-291		
breaking distributed locks, 525-527	disabling block device primitives, 559-561		
Business Continuity/Disaster Recovery (BC/DR), 41, 529 bytes, 1, 7	disabling UNMAP primitives, 562 EMC PowerPath/VE 5.7, installing, 304-306		
	ESXCLL namespace, 205-206		

listing datastore UUIDs, 532 listing iSCSI initiators, 103-105 LUNs, listing paths to, 183-186 modifying PSP assignments, 324-325 PSA configurations, modifying, 204-206 PSP assignments, changing, 220-225 RDMs, creating, 465 Software (SW) FCoE Adapters, removing, 72-73

unmounting VMFS datastores, 285-286 clones

full, 551

linked, 501-503

cloning virtual disks, vmkfstools, 456-459

cluster groups, file systems, 388

Cluster-in-a-Box (CIB), 512

clusters, hosts, force-mounting snapshots on, 543-547

CNA (Converged Network Adapter), 54 code listings

Alternative Method for Listing iSCSI Target Portals—HW Initiators, 95

Alternative Method for Listing iSCSI Target Portals—SW Initiators, 95

Another Sample Log of Corrupt Heartbeat, 520

Breaking a Lock, 525

Checking Whether a Lock Is Free, 523

Commands Run by 5nmp_hti_satp_ hdlm-rules.jsonn Jumpstart Script, 322

Commands Run by PowerPath Jumpstart Scripts, 320

Commands Run by psa-powerpath-preclaim-config.jsonp Script, 311

Content of a Physical Mode RDM Descriptor File, 468 Content of a Sparse Disk Descriptor File, 457

Content of a Virtual Mode RDM Descriptor File, 467

Content of Second Snapshot's Delta Disk Descriptor File, 486

Count of Blocks Used by a Sparse Disk, 458

Count of Blocks Used by Thick Virtual Disk, 455

Count of Blocks Used by Thin Virtual Disk, 455

Delta Disk Descriptor File Content, 481

Dry Run of Installing PowerPath/VE Offline Bundle, 305

Entering Maintenance Mode, 313

Exiting Maintenance Mode, 314

Identifying Device ID Using vml ID, 470

Identifying NAA ID using the device vml ID, 208

Identifying RDM Device ID Using Its vml ID, 517

Identifying RDMIs Logical Device Name Using the RDM Filename, 207

Identifying the LUN Number Based on Device ID, 470

Identifying vml ID of a Mapped LUN, 517

Installing PowerPath/VE Offline Bundle, 306

Installing the NAS VAAI Plug-in VIB, 557

iSCSI Portal Parameters to Identify the iSCSI Logical Network, 150

Listing Active iSCSI Sessions with a Specific Target Using esxli, 91-92

Listing a Single-Device VAAI Support, 575

Listing Current EnableResignature Advanced System Setting, 537 Listing Current VAAI Primitives Advanced System Setting, 560-561

Listing Device ID and Its Paths, 221

Listing Device Properties, 576

Listing Device's Vendor and Model Strings, 222

Listing Duplicate Extent Case, 543

Listing EnableResignature VSI Node Content, 538

Listing Extents' Device ID, 393

Listing iSCSI Sessions, 87, 88

Listing iSCSI Session's Connection Information, 92-93

Listing iSCSI Sessions with a Specific Target Using vmkiscsi-tool, 90-91

Listing iSCSI Target Portals—HW Initiators, 94

Listing iSCSI Target Portals—SW Initiators, 95

Listing PowerPath VIB Profile, 313

Listing Reason for Un-mountability, 542

Listing SATP Claim Rules List, 223

Listing Snapshot Datastores Using ESXCLI, 542

Listing VAAI Support Status, 574

Listing VAAI vmkernel Modules, 573

Listing vMA 5 Managed Targets, 537

Listing VM Files, 466

Listing VMFS5 Properties, 395

Listing VMFS Snapshot of a Spanned Datastore, 533

Listing Volume Extents Device ID, 395

Locating NAA ID in Inquiry Response, 264

Locating Snapshot Prefix of the Crashed App X Snapshot, 502

Locating the Delta Virtual Disk Used by a Snapshot, 502

Locating the LVM Header Offset Using hexdump, 403

Locating the RDM Filename, 207

Measuring Time to Create Eager Zeroed Thick Virtual Disk, 453

Out of Space Error Sample Log Entries, 584

Output of Commands Listing RDM Pointers Block Count, 467

Output of Creating Eager Zeroed Thick Virtual Disk, 453

PCI Passthru Entries in vmx File, 358

RDM LUNOs paths, 209

Removing NASS VAAI Plug-in VIB, 563

Replaying the Heartbeat Journal, 522

Rescanning for Datastores, 539

Sample Listing of PCI Device ID Info, 365

Sample Log Entries of Corrupt Heartbeat, 520

Sample Log Entries of Corrupt VMFs, 521

Sample Log Entry Message of an Out of Space Warning, 583

Sample Output of a LUN That Is NOT Reserved, 515

Sample PERL Script That Mounts All Snapshot Volumes on a List of Hosts, 544-547

Sample Virtual Disk Descriptor File, 439

Selecting Device I/O Stats Columns to Display in ESXTOP, 579

Setting a Perennially Reserved Option, 516

Snapshot Parent Disks After Consolidation, 497

Snapshot Parent Disks Before Consolidation, 497

Sparse Files Created by Cloning Option, 457

Uninstalling PowerPath, 314

Using vmkfstools to List RDM Properties, 469	REPORT TARGET PORT GROUPS (REPORT TPGs), 231
/var/log/syslog.log Listing of addinc vmnic As an FCoE Adapter, 78	SET TARGET PORT GROUPS (SET TPGs), 231
/var/log/syslog.log Snippet Showing	VAAI T10 Standard SCSI, 582, 583
Device and Path Claiming	vifp, 23
Events, 79	vifptarget, 23
Verifying the Outcome of Changing the EnableResignature Setting,	WRITE_SAME SCSI, 553
539, 562	XCOPY, 551
VIB Installation Dry Run, 556	Commands Run by Cnmp_hti_satp_hdlm-
Virtual Disk Descriptors After Consolidation, 497	rules.jsonn Jumpstart Script listing, 322
Virtual Disk Descriptors Before Consolidation, 496	Commands Run by PowerPath Jumpstart Scripts listing, 320
Virtual Disks Association with Snapshots After	Commands Run by Cpsa-powerpath-pre- claim-config.jsonp Script listing, 311
Consolidation, 498	common library (IMA), 160
Virtual Disks Association with	communication (NMP)
Snapshots Before	SATPs, 167
Consolidation, 498	PSPs, 170
Virtual Machine Files Before Taking Snapshot, 478	PSA, 166
Virtual Machine Snapshot Dictionary	communication flow, iSCSI, 163-164
File Content, 483	configuration
VM Directory Content After Creating	FCoE network connections, 64-68
Second Snapshot (Powered	iSCSI
On), 485	hardware, 152-153
VM Directory Listing After First Snapshot Created, 480	initiators, 109-144
vmkfstools Command to Create a	software, 146-152
Virtual Mode RDM, 465	plug-ins, VAAI, 570-573
vmkfstools Command to Create Physical	PSA
Mode RDM, 466	modifying with CLI, 204-206
vmkfstools Options, 451	modifying with UI, 201-204
vmsd File Content, 487	ranked paths, 295
command line interface (CLI). See CLI	VAAI Filter, listing, 570-573
(command line interface)	VMDirectPath I/O, 349-357
commands	configuration files, VMs (virtual machines). VMDirectPath, 358
get, 296	connections, FCoE, configuring, 64-68
INQUIRY, 231	connections, r-Cor, configuring, 04-08
list. 74	

connectivity, iSCSI (Internet Small Computer System Interface), 86-109	D		
initiators, 96-153	daemons		
portals, 93-95	DCBD (Datacenter Bridging Daemon),		
sessions, 86-93	59		
targets, 144-145	iSCSI, 159-160		
consolidating VM snapshot operations,	storage vendor, 161		
494-499	DAEs (Disk Array Enclosures), 4, 9		
constraints, SVDs, 372	databases, iSCSI, 159		
Content of a Physical Mode RDM	Datacenter Bridging Daemon (DCBD), 59		
Descriptor File listing, 468	Data Center Bridging Exchange (DCBX),		
Content of a Sparse Disk Descriptor File	58-59		
listing, 457	Data General Corporation, 2		
Content of a Virtual Mode RDM Descriptor File listing, 467	DataMover, 551		
Content of Second Snapshot's Delta Disk	data storage, 1		
Descriptor File listing, 486	PATA (Parallel ATA), 5-7		
Continuation of /var/log/syslog.log	permanent, 2-4		
listing, 81	media, 8-9		
Converged Enhanced Ethernet (CEE)	SATA (Serial ATA), 5-7		
port, 78	SCSI (Small Computer System		
Converged Network Adapter (CNA), 54	Interface), 4-7		
core namespace, 206	volatile data storage, 2		
correlating iSCSI initiators, 88-89	datastores		
corrupted file systems, recovering, 410-416	extents, 402		
corruption	recovered, mounting, 404		
file systems, distributed locks, 521-522	signatures, resignature, 534-540		
heartbeat, distributed locks, 520	snapshots, 529-540		
corrupt partition tables, repairing, 401-404	force-mounting, 540-547		
Count of Blocks Used by a Sparse Disk	LUNs, 533-534		
listing, 458	VMFS signatures, 532-533		
Count of Blocks Used by Thick Virtual Disk listing, 455	VMFS		
Count of Blocks Used by Thin Virtual Disk	growing, 424		
listing, 455	spanning, 416-424		
current path, identifying, 255-257	re-creating lost partition tables for, 399-409		
	unmounting, 281-286		
	DCBD (Datacenter Bridging Daemon), 59		
	DCBX (Data Center Bridging Exchange), 58-59		

dead path state, 274	RDMs (Raw Device Mappings), 4 37-438, 459
dead path state (I/O), 176	creating with CLI, 465
decoding EMC Symmetrix/DMX WWPNs, 25-26	listing properties, 466-472
default PSPs, changing, 277-280, 325-326	physical mode, 459, 464
defective switch port path state, 274	virtual mode, 459-463
deleting	sharing, VMDirectPath I/O, 365-367
claim rules, 215-217	SVDs (Storage Virtualization Devices)
PowerPath VE, 313-315	369-371
VM snapshot operations, 492-494	address space remapping, 370
Dell EqualLogic PSP, 327-328	metadata, 370
installing, 329-331	VAAI-capable block devices, 565-566
uninstalling, 331-332	VAAI-capable NAS devices, 567-568
DELL_PSP_EQL_ROUTED, 172	VAAI primitives, support, 574-579
Delta Disk Descriptor File Content	VMDirectPath I/O, 364
listing, 481	VMDirectPath support, 346-348
dependent hardware iSCSI initiators, 96	device tables, spanned, VMFS, 393-394
communication flow, 163-164	direct block addressing, VMFS3, 389
dependent iSCSI initiator modules, 161-162	directors, 9
dependent virtual disk mode, 444	disabling
design guidelines, SANs (Storage Area	path state (I/O), 176
Networks), 41-47	VAAI primitives, 555-564
design scenarios, VMs (virtual machines), VMDirectPath, 358-360	discovering LUNs, 258-260
	log entries, 261-264
detaching devices, unmounted datastores, 286-291	Disk Array Enclosures (DAEs), 4
device configuration	Disk Database fields, 441
identifying	Disk DescriptorFile fields, 439
device path states	disk layout
identifying, 246, 247	GPT (GUID Partition Table), 405-407
devices	VMFS3, 384-390
claimed, PowerPath/VE, 311, 312	VMFS5, 391-396
detaching, unmounted datastores,	Disk.MaxLUN setting (VMkernel), 265
286-291	Disk Operating System (DOS), 3
identifying, ALUA (Asymmetric Logical Unit Access), 237-243	Disk.PathEvalTime configuration option, 274-275
PDL (Permanent Device Loss), 280	Disk.SupportSparseLUN setting (VMkernel), 265
unmounting VMFS datastores, 281-286	Disk.UseReportLUN setting (VMkernel), 266

displaying block device VAAI I/O stats,	enabling VAAI primitives, 555-557		
ESXTOP, 579-582	encapsulation, FCoE (Fiber Channel over		
distributed locks, 505-507, 519-527	Ethernet), 49-50		
breaking, 525-527	endpoints, FCoE, 51-52		
file system corruption, 521-522	Enhanced Transmission Selection (ETS), 58		
free, 523-525	ENodes, 51-53		
heartbeat corruption, 520			
replaying heartbeat journal, 522	Entering Maintenance Mode listing, 313		
Distributed Resource Scheduler (DRS), 8	enumeration, paths, 258-260		
documentation	log entries, 261-264		
EqualLogic, 328	EqualLogic Host Connection Manager (EHCM), 327-328		
PowerPath VE, downloading, 300-302	EqualLogic PSP, 327-328		
double indirect addressing, VMFS (Virtual	installing, 329-331		
Machine File System), 397	uninstalling, 331-332		
Driver claim rules, 193	error codes (NMP), 174		
drivers, QLogic FC HBA, 275-276	ESXCLI, 91		
DRS (Distributed Resource Scheduler), 8	FCoE namespace, 73-74		
Dry Run of Installing PowerPath/VE Offline Bundle listing, 305	force-mounting VMFS snapshots,		
dynamic resource allocation, 509	541-543		
dynamic resource anocation, 507	namespace, 205-206		
	VMFS datastores, resignature, 536-540		
E	ESXi hosts		
eager zeroed thick virtual disks, 442	changes to, HDLM (Hitachi Dynami Link Manager), 319-322		
creating with vmkfstools, 452-453	PSPs, listing on, 170-171		
EHCM (EqualLogic Host Connection	SATPs, listing on, 168-169		
Manager), 327-328	SW FCoE, 62-63		
EMC CLARiiON CX arrays, 238	ESXTOP, block device VAAI I/O stats,		
EMC PowerPath/VE 5.7, 298-300	displaying, 579-582		
downloading documentations, 300-302	Ethernet		
installing, 302-311	FCoE (Fiber Channel over Ethernet),		
licensing modes, 302	49-51		
listing claimed devices, 311-312	10GigE pipeline, 59-60		
managing, 312-313	configuring, 64-68		
uninstalling, 313-315	encapsulation, 49-50		
EMC Symmetrix/DMX WWPNs, decoding, 25-26	FIP (FCoE Initialization Protocol), 51-53		
EMC VNX array, 240-241	flow control, 57		

frame architecture, 51	initiators, 15
Hardware (HW) FCoE Adapters, 62	layers, 30
initiators, 54-56	name services, 35
overcoming Ethernet limitations,	nodes, 15-20
56-57	ports, 31-32
required protocols, 57-60	Registered State Change Notification
Software (SW) FCoE Adapters, 62-73	(RSCN), 36
troubleshooting, 73-81	targets, 23-25
frames, 802.1p tag, 60-61	topologies, 32-33
ETS (Enhanced Transmission	zoning, 37-41
Selection), 58	FC-AL (Arbitrated Loop) topology, 33
EUI naming format, iSCSI initiators, 98	FCF (FCoE Forwarders), 51-53
exabytes, 7 exchanges, FC networks, 14	FCoE (Fiber Channel over Ethernet), 11, 49-51, 82-83
Exiting Maintenance Mode listing, 314	10GigE pipeline, 59-60
Extent Description, fields, 440	adapters, 54-56
extents, datastores, 402	Adapters, 51-53
	configuring connections, 64-68
-	encapsulation, 49-50
<u> </u>	endpoints, 51-52
Fabric-Device Management Interface	FCF (FCoE Forwarders), 51-53
(FDMI), 36	FIP (FCoE Initialization Protocol),
Fabric Login (FLOGI), 37	51-53
failover, 296	flow control, 57
NMP (Native Multipathing), 174	frame architecture, 51
PSPs (Path Selection Plugins), 276-280	Hardware (HW) FCoE Adapters, 62
ranked paths, 294-295	heterogeneous storage rules, 336
triggers, 267-273	initiators, 54-56
fbb (File Block Bitmap), 390	logs, 76-81
FC (Fibre Channel), 11, 30, 85, 333	overcoming Ethernet limitations, 56-57
exchanges, 14	required protocols, 57-60
Fabric-Device Management Interface (FDMI), 36	Software (SW) FCoE Adapters, 62-63 enabling, 68-71
Fabric Login (FLOGI), 37	removing, 71-73
Fabric switches, 35-37	troubleshooting, 73-81
frames, 12-14	FCP (Fibre Channel Protocol), 12-14
heterogeneous storage rules, 336	FC Point-to-Point topology, 32-33
identifying path states, 186-187, 192	1 077

FC Ports, 15	spanning datastores, 416-424
locating HBAls in, 16-20	upgrading to VMFS5, 430-436
FDCs (File Descriptor Clusters), 388, 507	VMFS1, 382
fdisk, re-creating partition tables, 404	VMFS2, 382
FDMI (Fabric-Device Management	VMFS3, 383-384
Interface), 36	VMFS5, 384-396
Fiber Channel over Ethernet (FCoE). See FCoE (Fibre Channel over Ethernet)	filters, VAAI, 564-568
Fibre Channel (FC). See FC (Fibre	configuring, 570-573
Channel)	registering, 569
Fibre Channel over Ethernet (FCoE). See	FIP (FCoE Initialization Protocol), 51-53
FCoE (Fiber Channel over Ethernet)	FLOGI (Fabric Login), 37
Fibre Channel path state, 274-275	floppy disks and drives, 3
Fibre Channel Protocol (FCP), 12-14 fields	flow control, FCoE (Fibre Channel over Ethernet), 57
	FLR (Function Level Reset), 347-348
Disk Database, 441 Disk DescriptorFile, 439	followover, ALUA (Asymmetric Logical
Extent description, 440	Unit Access), 232-237
file allocation, VMFS, 395-396	force-mounting, datastore snapshots,
File Block Bitmap (fbb), 390	540-547
File Descriptor Clusters (FDCs), 388, 507	Forwarders, FCoE, 51-53
	frames
file extensions, VMs (virtual machines), 478 file systems	Ethernet 802.1p tag, 60-61
•	FC (Fibre Channel), 12-14
cluster groups, 388	FCoE (Fiber Channel over Ethernet), 51
corruption, distributed locks, 521-522	free distributed locks, 523-525
namespace, 206	full clones, 551
recovering corrupted, 410-416	full copy primitive, VAAI, 551-552
usage, listing with thin virtual disks, 454-456	Function Level Reset (FLR), 347-348
VMFS, 382	
double indirect addressing, 397	G
growing datastores and volumes, 424-430	get command, 296
lock modes, 524	gigabytes, 7
partition table problems, 398-399	GPT (GUID Partition Table), disk layout, 405-407
recovering corrupted, 410-416	Group State field, 247
re-creating lost partition tables, 399-409	growing VMFS datastores and volumes,
signatures, 531	424-430

Н	heterogeneous storage
	best practices, 342
HA (High Availability), 8	target numbers, 338-341
hard disks, 4	High Availability (HA), 8
hardware accelerated locking primitive, 553	Hitachi Dynamic Link Manager (HDLM).
hardware acceleration APIs, 550-551	See HDLM (Hitachi Dynamic Link
hardware ATS (Accelerated Locking Primitive), 553-554	Manager) hosts
Hardware Compatibility Lists (HCLs), 8	ESXi 5
hardware FCoE adapters, 54-56, 62	listing PSPs on, 170-171
hardware iSCSI initiators, 96, 105	listing SATPs on, 168-169
configuring, 109-119, 137-139, 152-153	force-mounting snapshots on, 543-547
dependent, 96	SSH (secure shell), enabling access, 17-19
communication flow, 163-164	VMDirectPath supported, locating,
independent, 96	348-349
communication flow, 164	host SCSI status codes, 268
listing, 96-99	HTI_SATP_HDLM, 172
hard zoning, 39-40	HW (Hardware) FCoE Adapters, 62
HBAs (host bust adapters)	HW iSCSI initiators. See hardware iSCSI
BIOS, configuring hardware iSCSI initiators, 109-112	initiators
iSCSI, independent modules, 162	1
HCLs (Hardware Compatibility Lists), 8	
VMDirectPath, host support, 348-349	IDE (Integrated Device Electronics), 5
HDLM (Hitachi Dynamic Link	identifiers, FC nodes and ports, 15-16
Manager), 315	Identifying Device ID Using vml ID
installing, 317-322	listing, 470
modifying PSP assignments, 322-326	Identifying NAA ID using the device vml
obtaining installation files, 316-317	ID listing, 208
VMware HCL, locating certified storage, 326-327	Identifying RDM Device ID Using Its vml ID listing, 517
heartbeat corruption, distributed locks, 520	Identifying RDMIs Logical Device Name
heartbeat journal, replaying, 522	Using the RDM Filename listing, 207
heterogeneous storage, 333-343	Identifying the LUN Number Based on Device ID listing, 470
naming conventions, 336-337, 343	
rules, 335-336	Identifying vml ID of a Mapped LUN
scenarios, 334-335	listing, 517
target enumeration, 340	IEC (International Electrotechnical Commission), 7

IETF (Internet Engineering Task	installation files
Force), 85	EqualLogic PSP, 328
IMA (iSCSI API), 160	HDLM (Hitachi Dynamic Link
independent hardware iSCSI initiators, 96	Manager), obtaining, 316-317
communication flow, 164	Installing PowerPath/VE Offline Bundle
configuring, 109	listing, 306
independent iSCSI HBA modules, 162	Installing the NAS VAAI Plug-in VIB listing, 557
independent virtual disk mode, 444	Integrated Device Electronics (IDE), 5
indirect block addressing, VMFS3, 389	International Electrotechnical Commission
information summary, partition tables, manually collecting, 413-415	(IEC), 7
information units, 14	Internet Engineering Task Force (IETF), 85
initiator records, SVDs, 377	Internet protocol (IP). See IP (Internet
initiators	Protocol)
FC (Fibre Channel), 15	Internet Small Computer System Interface
FCoE (Fibre Channel over Ethernet), 54-56	(iSCSI). See iSCSI (Internet Small Computer
iSCSI (Internet Small Computer System Interface), 86-87, 96	interrupt handling, VMDirectPath I/O, 364-365
communication flow, 163-164	I/O (input/output), 227
configuring, 109-144	arrays, 175-176
correlating, 88-89	flow, 174-179
dependent hardware, 96	MPIO (Multipathing and I/O), 249, 297
dependent modules, 161-162	EqualLogic PSP, 327-332
hardware, 94-96	formats, 297-298
independent hardware, 96	HDLM (Hitachi Dynamic Link
listing, 96-109	Manager), 315-327
names and addresses, 96-101	PowerPath/VE 5.7, 298-315
software, 95-96	MPIO (Multipathing Input/Output), 249
INQUIRY command, 231	optimistic, 511
inquiry responses, NAA IDs, locating, 264	paths, 176-178, 250-255
installation	redirection, SVDs, 370
EQL MEM, 329-331	VMDirectPath, 345, 367
HDLM (Hitachi Dynamic Link	configuration, 349-357
Manager), 317-322	device sharing, 365-367
PowerPath VE, 302-304	device support, 346-348
CLI, 304-306	host support, 348-349
verification, 307-311	interrupt handling, 364-365
vMA 5.0, 306-307	IRQ sharing, 364-365

second generation, 360-364	iSCSI Portal Parameters to Identify the iSCSI Logical Network listing, 150
supported devices, 364	io doi nogram i vecu om nocing, mo
troubleshooting, 364-367	
VM configuration file, 358	K-L
VM design scenarios, 358-360	1111 - 7
IOMMU (I/O Memory Management Unit), 345	kilobytes, 7 Kroll-Ontrack recovery service, 410
IP (Internet protocol), 85	
IQN naming scheme, iSCSI initiators, 96-101	LANs (local area networks), bandwidth, 549 layers, FC (Fibre Channel), 30
IRQ sharing, VMDirectPath I/O, 364-365	layout
iSCSI (Internet Small Computer System Interface), 11, 85, 164, 333	VMFS3, 384-390
adapters, parameters, 153-162	VMFS5, 391-396
communication flow, 163-164	LBA (Logical Block Addressing), 4
connectivity, 86-100	Legacy-MP, 169
portals, 93-95	legacy multipathing, 249
sessions, 86-93	licensing modes, PowerPath VE, 302 linked clones, 501-503
daemon, 159-160	
database, 159	links, virtual, establishing, 53 Linux vCLI, listing iSCSI initiators,
HBAs, independent modules, 162	108-109
heterogeneous storage, rules, 336	list command, 74
IMA (iSCSI API), 160	listing
initiators, 86-87, 94-96	claimed devices, PowerPath VE, 311-312
configuring, 109-153	datastore UUIDs, 532
correlating, 88-89	iSCSI
dependent modules, 161-162	initiators, 96-109
hardware, 96	portals, 94-95
listing, 96-109	sessions, 87-93
names and addresses, 96-101	paths, iSCSI-attached devices, 187-191
software, 96	paths to LUNs
portals, 93-95	CLI, 183-186
protocol module, 161	UIs, 179-183
sessions, 86-93	plug-ins, VAAI, 570-573
targets, 144-145	PSPs on ESXi 5 hosts, 170-171
transport module, 161	SATPs on ESXi 5 hosts, 168-169
iSCSI-attached devices, listing paths to, 187-191	storage devices, 180 VAAI Filter, 570-573

VAAI vmkernel modules, 573-574

Listing Active iSCSI Sessions with a Specific Target listing, 91-92

Listing a Single-Device VAAI Support listing, 575

Listing Current EnableResignature
Advanced System Setting listing, 537

Listing Current VAAI Primitives Advanced System Setting listing, 560-561

Listing Device ID and Its Paths, 221

Listing Device Properties listing, 576

Listing Devices Vendor and Model Strings, 222

Listing Duplicate Extent Case listing, 543

Listing EnableResignature VSI Node Content listing, 538

Listing Extents Device ID, 393

Listing iSCSI Sessions, 87-88

Listing iSCSI Session s Connection Information, 92-93

Listing iSCSI Sessions with a Specific Target Using vmkiscsi-tool, 90-91

Listing iSCSI Target Portals—HW Initiators, 94

Listing iSCSI Target Portals—SW Initiators, 95

Listing PowerPath VIB Profile listing, 313

listing properties, RDMs, 466-469

UI, 470-472

vmkfstools, 469-470

Listing Reason for Un-mountability listing, 542

listings

Alternative Method for Listing iSCSI
Target Portals—HW Initiators,
95

Alternative Method for Listing iSCSI Target Portals—SW Initiators, 95

Another Sample Log of Corrupt Heartbeat, 520 Breaking a Lock, 525

Checking Whether a Lock Is Free, 523

Commands Run by 9nmp_hti_satp_ hdlm-rules.jsonn Jumpstart Script, 322

Commands Run by PowerPath Jumpstart Scripts, 320

Commands Run by 3psa-powerpath-preclaim-config.jsonp Script, 311

Content of a Physical Mode RDM Descriptor File, 468

Content of a Sparse Disk Descriptor File, 457

Content of a Virtual Mode RDM Descriptor File, 467

Content of Second Snapshot's Delta Disk Descriptor File, 486

Continuation of /var/log/syslog.log, 81

Count of Blocks Used by a Sparse Disk, 458

Count of Blocks Used by Thick Virtual Disk, 455

Count of Blocks Used by Thin Virtual Disk, 455

Delta Disk Descriptor File Content, 481

Dry Run of Installing PowerPath/VE Offline Bundle, 305

Entering Maintenance Mode, 313

Exiting Maintenance Mode, 314

Identifying Device ID Using vml ID, 470

Identifying NAA ID using the device vml ID, 208

Identifying RDM Device ID Using Its vml ID, 517

Identifying RDM2s Logical Device Name Using the RDM Filename, 207

Identifying the LUN Number Based on Device ID, 470

Identifying vml ID of a Mapped LUN, 517

- Installing PowerPath/VE Offline Bundle, 306
- Installing the NAS VAAI Plug-in VIB, 557
- iSCSI Portal Parameters to Identify the iSCSI Logical Network, 150
- Listing Active iSCSI Sessions with a Specific Target, 91-92
- Listing a Single-Device VAAI Support, 575
- Listing Current EnableResignature Advanced System Setting, 537
- Listing Current VAAI Primitives Advanced System Setting, 560-561
- Listing Device ID and Its Paths, 221
- Listing Device Properties, 576
- Listing DeviceLs Vendor and Model Strings, 222
- Listing Duplicate Extent Case, 543
- Listing EnableResignature VSI Node Content, 538
- Listing Extents 5 Device ID, 393
- Listing iSCSI Sessions, 87-88
- Listing iSCSI Sessions Connection Information, 92-93
- Listing iSCSI Sessions with a Specific Target Using vmkiscsi-tool, 90-91
- Listing iSCSI Target Portals—HW Initiators, 94
- Listing iSCSI Target Portals—SW Initiators, 95
- Listing PowerPath VIB Profile, 313
- Listing Reason for Un-mountability, 542
- Listing SATP Claim Rules List, 223
- Listing Snapshot Datastores Using ESXCLI, 542
- Listing VAAI Support Status, 574
- Listing VAAI vmkernel Modules, 573
- Listing vMA 5 Managed Targets, 537

- Listing VM Files, 466
- Listing VMFS5 Properties, 395
- Listing VMFS Snapshot of a Spanned Datastore, 533
- Listing Volume Extent4s Device ID, 395
- Locating NAA ID in Inquiry Response, 264
- Locating Snapshot Prefix of the Crashed App X Snapshot, 502
- Locating the Delta Virtual Disk Used by a Snapshot, 502
- Locating the LVM Header Offset Using hexdump, 403
- Locating the RDM Filename, 207
- Measuring Time to Create Eager Zeroed Thick Virtual Disk, 453
- Out of Space Error Sample Log Entries, 584
- Output of Commands Listing RDM Pointers Block Count, 467
- Output of Creating Eager Zeroed Thick Virtual Disk, 453
- PCI Passthru Entries in vmx File, 358
- RDM LUNOs paths, 209
- Removing NASS VAAI Plug-in VIB, 563
- Replaying the Heartbeat Journal, 522
- Rescanning for Datastores, 539
- Sample Listing of PCI Device ID Info,
- Sample Log Entries of Corrupt Heartbeat, 520
- Sample Log Entries of Corrupt VMFs,
- Sample Log Entry Message of an Out of Space Warning, 583
- Sample Output of a LUN That Is NOT Reserved, 515
- Sample PERL Script That Mounts All Snapshot Volumes on a List of Hosts, 544-547
- Sample Virtual Disk Descriptor File, 439

- Selecting Device I/O Stats Columns to Display in ESXTOP, 579
- Setting a Perennially Reserved Option, 516
- Snapshot Parent Disks After Consolidation, 497
- Snapshot Parent Disks Before Consolidation, 497
- Sparse Files Created by Cloning Option, 457
- Uninstalling PowerPath, 314
- Using vmkfstools to List RDM Properties, 469
- /var/log/syslog.log Listing of addinc vmnic as an FCoE Adapter, 78
- /var/log/syslog.log Snippet Showing Device and Path Claiming Events, 79
- Verifying the Outcome of Changing the EnableResignature Setting, 539-562
- VIB Installation Dry Run, 556
- Virtual Disk Descriptors After Consolidation, 497
- Virtual Disk Descriptors Before Consolidation, 496
- Virtual Disks Association with Snapshots After Consolidation, 498
- Virtual Disks Association with Snapshots Before Consolidation, 498
- Virtual Machine Files before Taking Snapshot, 478
- Virtual Machine Snapshot Dictionary File Content, 483
- VM Directory Content After Creating Second Snapshot (Powered On), 485
- VM Directory Listing After First Snapshot Created, 480

- vmkfstools Command to Create a Virtual Mode RDM, 465
- vmkfstools Command to Create Physical Mode RDM, 466
- vmkfstools Options, 451
- vmsd File Content, 487
- Listing SATP Claim Rules List listing, 223
- Listing Snapshot Datastores Using ESXCLI listing, 542
- Listing VAAI Support Status listing, 574
- Listing VAAI vmkernel Modules listing, 573
- Listing vMA 5 Managed Targets listing, 537-559
- Listing VM Files listing, 466
- Listing VMFS5 Properties, 395
- Listing VMFS Snapshot of a Spanned Datastore listing, 533
- Listing Volume Extent4s Device ID, 395
- lists, partition tables, maintaining, 410-412
- local area networks (LANs), bandwidth, 549
- local storage media, supported, 8
- Locating NAA ID in Inquiry Response listing, 264
- Locating Snapshot Prefix of the Crashed App X Snapshot listing, 502
- Locating the Delta Virtual Disk Used by a Snapshot listing, 502
- Locating the LVM Header Offset Using hexdump listing, 403
- Locating the RDM Filename listing, 207
- locking, optimistic, 508
- lock modes, VMFS, 524
- locks, distributed, 505-507, 519-520, 527
 - breaking, 525-527
 - file system corruption, 521-522
 - free, 523-525
 - heartbeat corruption, 520
 - replaying heartbeat journal, 522

log entries	M
path enumeration, 261-265 upgrading, 432-433 Logical Block Addressing (LBA), 4	MAC portion (Volume UUID), 531 magnetic tapes, 2
Logical Unit Numbers (LUNs). See LUNs (Logical Unit Numbers)	managed targets, vMA 5, 559 management modes, ALUA (Asymmetric Logical Unit Access), 231-232
Logical Volume Manager (LVM), 383 Logical Volume Manager (LVM) Header, 385, 403 logs FCoE (Fibre Channel over Ethernet), 76-81	managing PowerPath VE, 312-313 MANs (metro area networks), 531 manually collecting partition table information, 413-415 mapping LUNs, 460-461
REDO, 477 lossless-ness, emulating, 58	Matches field (claim rules), 194 Measuring Time to Create Eager Zeroed Thick Virtual Disk listing, 453
lost partition tables re-creating for VMFS3 datastores, 399-404 re-creating for VMFS5 datastores,	megabytes, 7 memory, RAM (Random Access Memory), 2
404-409 repairing, 401-404 LUNs (Logical Unit Numbers), 227, 250,	metadata, 385 SVDs, 370 metadata binary dumps, maintaining,
333-334, 373, 383, 505 discovering, 258-260 log entries, 261-264	415-416 metro area networks (MANs), 531 Microsoft Clustering Services (MSCS).
heterogeneous storage, 337 listing paths to, 181 CLI, 183-186	See MSCS (Microsoft Clustering Services) migration, SVDs, 379-380 back-end storage, 373
UIs, 179-183 mapping, 460-461 masking paths to, 217-219 paths, 177	mirroring, RAID, 530, 531 Model string claim rules, 193 modes, virtual disks, 444
RDM paths, 208 replicas, 530 snapshots, VMFS datastores, 533-534 SVDs, 377	modules, VAAI, listing vmkernel, 573-574 mounting datastore snapshots, 540-547 recovered datastores, 404
unmasking, 219, 220 LVM (Logical Volume Manager), 383 LVM (Logical Volume Manager) Header, 385, 403	MP (Multipath) claim rules, 193-196 MPIO (Multipathing Input/Output), 249, 297, 332 EqualLogic PSP, 327-328

installing, 329-331	functions, 166
uninstalling, 331-332	MPPs (Multipathing Plugins),
formats, 297-298	172-173
HDLM (Hitachi Dynamic Link Manager), 315	PSPs (Path Selection Plugins), 166-171
installing, 317-322	SATPs (Storage Array Type Plugins), 166-169
locating certified storage, 326-327	third-party plug-ins, 171-172
modifying PSP assignments, 322-326	Multipathing Input/Output (MPIO). See
obtaining installation files, 316-317	MPIO (Multipathing Input/Output)
PowerPath/VE 5.7, 298-300	Multipathing Plugins (MPPs), 165, 172-173,
downloading documentations, 300-302	297, 564
installing, 302-311	N.I.
licensing modes, 302	N
listing claimed devices, 311-312	NAA IDs
managing, 312-313	identifying, 208
uninstalling, 313-315	iSCSI initiators, 98
MPPs (Multipathing Plugins), 165, 172-173, 297, 564	locating, 264
MSCS (Microsoft Clustering Services), 202,	names, iSCSI initiators, 96
277, 459	aliases, 98
reservations, 512-514	EUI, 98
perennial, 514-519	IQN, 96-101
multi-initiator zoning, 40-41	NAA IDs, 98
multipathing, 165, 296	namespaces
factors affecting, 265-267	ESXCLI, 205-206
failover triggers, 270-273	storage, 206
legacy, 169, 249	naming conventions, heterogeneous
listing details, 179-186	storage, 336-337, 343
MPIO (Multipathing Input/Output),	NAS (Network Attached Storage), 8, 333
249, 297	disabling, 562-564
EqualLogic PSP, 327-332	primitives, 555
formats, 297-298	VAAI-capable, locating supported, 567-568
HDLM (Hitachi Dynamic Link	
Manager), 315-327	Native Multipathing (NMP). See NMP (Native Multipathing)
PowerPath/VE 5.7, 298-315	networks
NMP (Native Multipathing), 165-166, 249	LANs (local area networks),
communication, 166	bandwidth, 549
,	

MANs (metro area networks), 531	0
SANs (Storage Area Networks) bandwidth, 549 topology, 30, 31, 32, 33, 35 nfs namespace, 206 NMP (Native Multipathing), 166, 249, 564 array-specific functions, 174 claim rules, 192-193 communication, 166 error codes, 174 failover, 174 functions, 166 I/O flow, 174-179	on path state, 274 operations, VM snapshots, 488-492 consolidating, 494-499 deleting, 492-494 optimistic I/O, 511 optimistic locking, 508 Out-of-Space errors, 444, 584 Out of Space Error Sample Log Entries listing, 584 Out of Space Warnings, 444 Output of Commands Listing RDM Pointers Block Count listing, 467
listing multipathing details, 179-186 MPPs (Multipathing Plugins), 165, 172-173	Output of Creating Eager Zeroed Thick Virtual Disk listing, 453
PSPs (Path Selection Plugins), 166, 169 communications, 170	Р
listing on ESXi 5 hosts, 170-171 operations, 170 SATPs (Storage Array Type Plugins), 166 communication, 167 examples, 168 listing on ESXi 5 hosts, 168-169 operations, 167 nmp namespace, 206 nodes, FC (fibre channel), 15-16 non-ALUA arrays, path ranking, 293, 294, 295 non-pass-through RDMs. See virtual mode RDMs non-persistent independent disk mode, 444 Nova 1200 Mini Computer, 2	Parallel ATA (PATA), 5-7 parameters, iSCSI adapters, 153-162 paravirtualization, 475 Paravirtual SCSI Controller (PVSCSI). See PVSCSI (Paravirtual SCSI Controller) partition offset, calculating, 403 partitions, GPT (GUID Partition Table), disk layout, 405-407 partition tables, 399-400 maintaining lists, 410-412 manually collecting information summary, 413-415 problems, common causes, 398-399 re-creating, 399-409 repairing, 401-404 Partner Verified and Supported Products
	(PVSP) program, 346 passthrough, physical tape devices, 360

pass-through RDMs. See physical mode RDMs	PCI (Peripheral Component Interconnect), 345
passthru.map, file listing, 346	PDL (Permanent Device Loss), 280-281
PATA (Parallel ATA), 5-7	unmounting VMFS datastores, 281-286
path ranks, setting, 295-296	perennial SCSI reservations, 514-519
paths, 250-255	Peripheral Component Interconnect
see also multipathing	(PCI), 345
active, 255-257	permanent data storage, 2
APD (All Paths Down), 280-281	Permanent Device Loss (PDL), 280-281
unmounting VMFS datastores,	unmounting VMFS datastores, 281-286
281-286	permanent storage, 4
enumeration, 258-260	media, 8-9
log entries, 261-264	persistent independent disk mode, 444
failover	petabytes, 7
PSPs, 276-280	PFC (Priority-based Flow Control), 57-58
triggers, 270-273	physical mode RDMs, 459
identifying current, 255-257	creating with CLI, 465
I/O, 176-178	creating with UI, 464
listing, iSCSI-attached devices, 187-191	listing properties, 466-469
LUNs, 177	UI, 470-472
masking to, 217-219	vmkfstools, 469-470
maximum usable, 265	physical tape devices, passthrough, 360
multipathing, factors affecting, 265-267	Pluggable Storage Architecture (PSA).
ranked, configuring, 295	See PSA (Pluggable Storage
ranking, 291-295	Architecture)
RDM LUNs, 208	Plugin field (claim rules), 194
states, 273-274	plug-ins
factors affecting, 274-276	ESX plug-in, 160
thrashing, 232-234	Multipathing Plugins (MPPs), 564
Path Selection Plugin (PSP). See PSP (Path	registration, 196-197
Selection Plugin)	third-party, 171-172
path states	VAAI, 564-568
Fibre Channel, 274-275	listing, 569-573
identifying, FC (Fibre Channel),	vendor IMA plug-ins, 160
186-187, 192	plugins
I/O, 176-178	MPPs (Multipathing Plugins), 172-173,
pbc (Pointer Block Cluster), 389	297
PCI Passthru Entries in vmx File	PSPs (Path Selection Plugins), 169, 298
listing, 358	communications, 170

failover, 276-280	protocols
listing on ESXi 5 hosts, 170-171	FCoE (Fibre Channel over Ethernet), 49-51, 57-60, 82-83
operations, 170	
SATPs (Storage Array Type Plug-Ins),	10GigE pipeline, 59-60
167	configuring network connections, 64-68
communications, 167	DCBX (Data Center Bridging
examples, 168	Exchange), 58-59
listing on ESXi 5 hosts, 168-169	ETS (Enhanced Transmission
operations, 167	Selection), 58
Pointer Block Cluster (pbc), 389	FIP (FCoE Initialization Protocol),
portals, iSCSI (Internet Small Computer	51-53
System Interface), 93-95	flow control, 57-58
ports, FC (Fibre Channel), 15-16, 31-32	hardware FCoE adapters, 54-55
PowerPath/VE 5.7, 298-300	Hardware (HW) FCoE Adapters, 62
downloading documentations, 300-302	initiators, 54
installing, 302-311	software FCoE adapters, 55-56
licensing modes, 302	Software (SW) FCoE Adapters, 62-73
listing claimed devices, 311-312	troubleshooting, 73-81
managing, 312-313	FCP (Fibre Channel Protocol), 12-14
uninstalling, 313-315	FIP (FCoE Initialization Protocol),
preferred path settings, I/O, 176-178	51-53
primitives	IP (Internet Protocol), 85
block zeroing, 552-553	iSCSI (Internet Small Computer System
full copy, 551-552	Interface), 85, 164
hardware accelerated locking, 553	adapter parameter, 153-162
VAAI, 550-551	communication flow, 163-164
disabling, 555-564	configuring, 146-153
enabling, 555-557	connectivity, 86-100
identifying supported devices,	daemon, 159-160
574-579	database, 159
NAS (Network Attach Storage), 555	HBAs, 162
troubleshooting, 583-584	IMA (iSCSI API), 160
Priority-based Flow Control (PFC), 57-58	initiators, 86-162
priority levels, QoS, 61	portals, 93-95
properties, RDMs	protocol module, 161
listing, 466-472	sessions, 86-93
viewing, 464	targets, 144-145
protocol module, iSCSI, 161	transport module, 161

SVDs, 374-377	third-party, 171-172
TCP (Transmission Control Protocol),	VMW_PSP_FIXED, 276
86	VMW_PSP_MRU, 277
PSA (Pluggable Storage Architecture), 80, 165, 225, 233, 297, 564	VMW_PSP_RR PSP, 277
claim rules, 192-196	PVSCSI (Paravirtual SCSI Controller), 475-476
adding, 206-215	PVSP (Partner Verified and Supported
deleting, 215-217	Products) program, 346
components, 173-174	
I/O flow, 174-176	Q-R
LUNs, 217-219	Q-n
modifying configurations, 201-206	QLogic FC HBA driver, 275, 276
NMP (Native Multipathing), 166	QoS (Quality of Service), priority levels, 61
communication, 166	- (- , , , , , , , , , , , , , , , , , ,
functions, 166	RAID, mirroring, 530-531
listing multipath details, 179-186	RAM (Random Access Memory), 2
MPPs (Multipathing Plugins),	Random portion (Volume UUID), 531
172-173	ranked paths, configuring, 295
PSPs (Path Selection Plugins),	ranking paths, 291-295
166-171	ALUA arrays, 291-293
SATPs (Storage Array Type Plugins), 166-169	non-ALUA arrays, 293-295
third-party plug-ins, 171-172	Raw Device Mappings (RDMs). See RDMs (Raw Device Mappings)
plug-in registration, 196-197	RDM LUNRs paths listing, 209
PSPs, changing assignments, 220-225	RDMs (Raw Device Mappings), 202,
SATPs, claim rules, 197-201	437-438, 459, 503
pseudo-active/active arrays, 227	creating with CLI, 465
PSPs (Path Selection Plugins), 166, 169, 298	filenames, locating, 207
assignments, changing, 220-225	LUN paths, 208
changing default, 277-280, 325-326	physical mode, 459
communications, 170	creating with UI, 464
EqualLogic, 327-332	properties, listing, 466-472
failover, 276-280	SVDs, 378
listing ESXi 5 hosts, listing on, 170-171	viewing properties, 464
modifying assignments, HDLM	virtual mode, 459
(Hitachi Dynamic Link Manager), 322-326	creating with UI, 459-463
operations, 170	recovered datastores, mounting, 404
Round Robin, 277	redirection, I/O, SVDs, 370

REDO logs, 477	S
Registered State Change Notification (RSCN), 36	Sample Listing of PCI Device ID Info
registering VAAI filters and plug-ins, 569	listing, 365
Removing NASS VAAI Plug-in VIB listing, 563	Sample Log Entries of Corrupt Heartbeat listing, 520
repairing partition tables, 401-404	Sample Log Entries of Corrupt VMFs listing, 521
Replaying the Heartbeat Journal listing, 522	Sample Log Entry Message of an Out of Space Warning listing, 583
replicas, LUNs, 530 Request for Product Qualification	Sample Output of a LUN That Is NOT Reserved listing, 515
(RPQ), 360 Rescanning for Datastores listing, 539	Sample PERL Script That Mounts All Snapshot Volumes on a List of Hosts
reservations, SCSI, 511	in a Cluster listing, 544-547
MSCS (Microsoft Clustering Services), 512-514	Sample Virtual Disk Descriptor File listing, 439
perennial, 514-519	SAN Aware Retries, 509-510
resignature	SANs (Storage Area Networks)
VMFS datastores, 534-540	bandwidth, 549
VMFS volumes, 372	design guidelines, 41-47
resource allocation, dynamic, 509	topology, 30-35
resource clusters, VMFS3, 387	SAS (serially attached SCSI), 4
reverting to VM snapshots, 499-501	SATA (Serial ATA), 5-7
Round Robin PSPs, 277	SATPs (Storage Array Type Plugins),
RPQ (Request for Product Qualification),	166-167, 298
360	claim rules, 197-201
RSCN (Registered State Change	communication, 167
Notification), 36	ESXi 5 hosts, listing on, 168-169
RTP_id field, 247	examples, 168
Rule Class field (claim rules), 194	operations, 167
rules	third-party, 171-172
claim PSA, 206-217	SBC-3 (SCSI Block Commands-3), 549
	sbc (Sub-Block Cluster), 388
rules, creating, 212	scenarios, heterogeneous storage, 334-335
heterogeneous storage, 335-336	SCSI (Small Computer System Interface), 4-7
	Bus Sharing, virtual, 476-477
	PVSCSI (Paravirtual SCSI Controller), 475-476

reservations, 511	VMs (virtual machines), 477-478
MSCS (Microsoft Clustering	creating while powered off, 478-484
Services), 512-514	creating while powered on, 484-488
perennial, 514-519	linked clones, 501-503
sense codes, 267-270	operations, 488-499
sense keys, 269	reverting to, 499-501
standards, 11-12	software FCoE adapters, 55-56
SCSI Block Commands-3 (SBC-3), 549	software initiators. See iSCSI initiators
Seagate recovery service, 410	Software (SW) FCoE Adapters, 62-63
Selecting Device I/O Stats Columns to Display in ESXTOP listing, 579	enabling, 68-71
sense codes, SCSI, 267-270	removing, 71-73
sense keys, SCSI, 269	soft zoning, 38-39
Serial ATA (SATA), 5-7	spanned device tables, 393-394
serially attached SCSI (SAS), 4	spanning VMFS datastores, 416-424
setup script, EqualLogic PSP, 328	Sparse Files Created by Cloning Option listing, 457
sessions, iSCSI (Internet Small Computer	sprawl, storage, 334
System Interface), 86-93	SPs (Storage Processors), 9, 175
SET TARGET PORT GROUPS (SET TPGs) command, 231	SR-IOV, 361-363
Setting a Perennially Reserved Option	SSH (secure shell) hosts, 17
listing, 516	enabling access, 17-19
shared storage devices, 8-9	HBAHs, locating, 19-21
signatures, VMFS, 531	listing iSCSI initiators, 102-103
resignature, 534-540	standards, SCSI, 11-12
snapshots, 532-533	standby path state, 274
single initiator zoning, 40-41	standby path state (I/O), 176
Site Recovery Manager, 536	states, paths, 273-276
Small Computer System Interface (SCSI). See SCSI (Small Computer System Interface)	storage area networks (SANs). See SANs (storage area networks)
Snapshot Parent Disks After Consolidation	storage arrays, 227
listing, 497	active/active, 227 active/passive, 227
Snapshot Parent Disks Before Consolidation listing, 497	ALUA
snapshots, 530	AAS (Asymmetric Access State),
VMFS datastores, 529-540	229-231
force-mounting, 540-547	followover, 232-237 identifying device configuration, 237-243
LUNs, 533-534	
signatures, 532-533	==

identifying device path states, 246-247	initiator records, 377
management modes, 231-232	I/O redirection, 370
path rankings, 292-293	LUNs, 377
TPG (Target Port Group), 228-229	metadata, 370
troubleshooting, 243-245	migration, 379-380
non-ALUA, path rankings, 293-295	migration to, back-end storage, 373
pseudo-active/active, 227	protocols, 374-377
Storage Array Type Path Config field, 247	RDMs (RAW Device Mapping), 378
storage capacity, units, 7-8	Switched Fabric configuration, 34
storage devices	switches, Fabric, 35-37
listing, 180	SW (Software) FCoE Adapters, 62-63
selecting, 9	enabling, 68-71
shared, 8-9	removing, 71-73
Storage DRS, 8	System Time portion (Volume UUID), 531
Storage Layered Applications, 459	
storage namespaces, 206	т
storage processors (SPs), 9, 175	<u>'</u>
storage. See data storage	T10 Technical Committee, 11
storage snapshots. See snapshots	Tag Control Information (TCI), 61
storage sprawl, 334	Tag Protocol Identifier (TPID), 61
storage vendor daemons, 161	tape devices, passthrough, 360
storage virtualization, 334	target enumeration, heterogeneous storage
Storage Virtualization Devices (SVDs).	338-341
See SVDs (Storage Virtualization	targets
Devices)	FC (Fibre Channel), 23, 24, 25
Storage vMotion, 8	iSCSI, 144-145
Sub-Block Cluster (sbc), 388	WWNNs, locating, 27-30
supported devices, VAAI primitives, identifying, 574-579	WWPNs, locating, 27-30
SVDs (Storage Virtualization Devices),	TCI (Tag Control Information), 61
369-371, 380	TCP (Transmission Control Protocol), 86
address space remapping, 370	terabytes, 7
architecture, 371-372	thin provisioning APIs, 554
bandwidth, 376-377	VAAI, 551
benefits, 378-379	thin virtual disks, 442-444
choosing, 373-380	creating with vmkfstools, 454
constraints, 372	listing file system usage, 454-456
disadvantages, 379	third-party plug-ins, 171-172
	thrashing paths, 232-234

topologies FC (Fibre Channel), 32-33 SANs (Storage Area Networks), 30-35 TPG_id field, 247 TPG_state field, 247 TPG (Target Port Group), ALUA (Asymmetric Logical Unit Access), 228-229 TPID (Tag Protocol Identifier), 61 Transmission Control Protocol (TCP), 86 Transport claim rules, 193 transport module, iSCSI, 161 triggers, failover, 267-270 multipathing, 270-273 troubleshooting ALUA (Asymmetric Logical Unit Access), 243-245 FCoE (Fibre Channel over Ethernet), 73-81 VAAI primitives, 583-584 VMDirectPath I/O, 364-367 TSC Time portion (Volume UUID), 531 Type field (claim rules), 194	VAAI support status, listing, 577-579 virtual disks, creating, 445-450 virtual mode RDMs, creating, 459-463 VMFS datastores, resignature, 534-536 uninstalling EQL MEM, 331-332 PowerPath VE, 313-315 Uninstalling PowerPath listing, 314 units, storage capacity, 7-8 unknown path state (I/O), 176 UNMAP primitives, 554 disabling with CLI, 562 unmasking LUNs, 219, 220 unmounting VMFS datastores, 281-286 upgrading log entries, 432-433 VMFS5, 430-436 Used Space Monitoring primitives, 554 Using vmkfstools to List RDM Properties listing, 469 UUIDs (universally unique identifiers), 531-532
U	V
UI (user interface) current path, identifying, 256, 257 disabling block device primitives, 557-558 listing iSCSI initiators, 99-101 listing RDM properties, 470-472 LUNs, listing paths to, 179-183 modifying PSP assignments, 323 physical mode RDMs, creating, 464 PSA configurations, modifying, 201-204 Software (SW) FCoE Adapters, removing, 71-72	VAAI (vStorage APIs for Array Integration), 8, 549-550, 585 filters, 564-568 listing configuration, 570-573 registering, 569 plug-ins, 564-568 listing, 569-573 primitives, 550-551 ATS (Accelerated Locking Primitive), 553-554 block zeroing, 552-553 disabling, 555-564
-	enabling, 555-557

unmounting VMFS datastores, 281-284

full copy, 551-552	creating, 454
hardware accelerated locking, 553	listing file system usage, 454-456
hardware acceleration APIs, 550-551	zeroed thick, 441-442
identifying supported devices,	creating, 452
574-579 NAS (Network Attach Storage), 555	Virtual Disks Association with Snapshots After Consolidation listing, 498
thin provisioning APIs, 551, 554	Virtual Disks Association with Snapshots
troubleshooting, 583-584	Before Consolidation listing, 498
vmkernel modules, listing, 573-574	virtualization
VAAI T10 Standard SCSI commands, 582-583	paravirtualization, PVSCSI, 475-476 SVDs (Storage Virtualization Devices),
VASA (vStorage APIs for Storage	369-371, 380
Awareness), 8	address space remapping, 370
vCLI, 17, 23	architecture, 371-372
Vendor string claim rules, 193	bandwidth, 376-377
verification, PowerPath VE installation,	benefits, 378-379
307-311	choosing, 373-380
Verifying the Outcome of Changing the	constraints, 372
EnableResignature Setting listing, 539-562	disadvantages, 379
vh (Volume Header), 385	initiator records, 377
VIB Installation Dry Run listing, 556	I/O redirection, 370
VIBs (vSphere Installation Bundles), 556	LUNs, 377
vifp command, 23	metadata, 370
vifptarget command, 23	migration, 373-380
Virtual Disk Descriptors After	protocols, 374-377
Consolidation listing, 497	RDMs (RAW Device Mapping), 378
Virtual Disk Descriptors Before	virtualization, storage, 334
Consolidation listing, 496	virtual links, establishing, 53
virtual disks, 438-443	Virtual Machine Fabric Extender
cloning with vmkfstools, 456-459	(VM-FEX), 364
creating after VM creation, 448-450	Virtual Machine Files before Taking
creating during VM creation, 445-448	Snapshot listing, 478
creating with UI, 445-450	Virtual Machine File System (VMFS). See VMFS (Virtual Machine File
creating with vmkfstools, 450-456	System)
eager zeroed thick, 442-453	Virtual Machine Snapshot Dictionary File
modes, 444	Content listing, 483
thin, 442-444	virtual mode RDMs, 459
	creating with CLI, 465

creating with UI, 459-463	partition tables, 399-400
listing properties, 466-469	maintaining lists, 410-412
UI, 470-472	problems, 398-399
vmkfstools, 469-470	re-creating lost, 399-409
virtual SCSI Bus Sharing, 476-477	recovering corrupted, 410-416
virtual storage adapters, 472-473	signatures, 531
vMA (vSphere Management Assistant) 5.0,	resignature, 534-540
17, 21-22	VMFS1, 382
listing iSCSI initiators, 105-108	VMFS2, 382-383
managed targets, 559	VMFS3, 383
PowerPath/VE 5.7, installing, 306, 307	datastores, 416-424
VM Directory Content After Creating	direct block addressing, 389
Second Snapshot (Powered On) listing, 485	disk layout, 384-390
VM Directory Listing After First Snapshot	file allocation, 395-396
Created listing, 480	indirect block addressing, 389
VMDirectPath, 345, 367	partition offset, 385
device sharing, 365-367	partition tables, re-creating lost
host support, 348-349	399-404
interrupt handling, 364-365	resource clusters, 387
I/O configuration, 349-357	spanned device tables, 393-394
I/O device support, 346-348	upgrading to VMFS5, 430-436
IRQ sharing, 364-365	volumes, growing, 425-430
second generation, 360-364	VMFS5, 384, 436
supported devices, 364	ATS primitive, 553-554
troubleshooting, 364-367	datastores, 416-424
VMs (virtual machines), 358-360	disk layout, 391-396
VM-FEX (Virtual Machine Fabric	double indirect addressing, 397
Extender), 364	file allocation, 395-396
VMFS (Virtual Machine File System),	partition tables, 398-409
381-382, 436, 505	recovering corrupted, 410-416
datastores	spanned device tables, 393-394
growing, 424	upgrading to, 430-436
listing UUIDs, 532	unmounting datastores, 281-286
snapshots, 529-547	volumes
spanning, 416-424	force mount, 372
double indirect addressing, 397	growing, 425-430
file allocation, 395-396	resignature, 372
lock modes, 524	

VMkernel, 249	VMFS (Virtual Machine File System),
advanced options, accessing, 266-267	381-382
Advanced Settings, 265-267	double indirect addressing, 397
modules, VAAI, listing, 573-574	growing datastores, 424
namespaces, 206	growing volumes, 425-430
vmkfstools	partition table problems, 398-399
listing RDM properties, 469-470	re-creating lost partition tables, 399-409
virtual disks	spanning datastores, 416-424
cloning, 456-459	upgrading to VMFS5, 430-436
creating, 450-456	VMFS1, 382
RDMs, creating, 465-466	VMFS2, 382-383
vmkfstools Command to Create a Virtual Mode RDM listing, 465	VMFS3, 383-390
vmkfstools Command to Create Physical	VMFS5, 384-396
Mode RDM listing, 466	vmsd File Content listing, 487
vmkfstools Options listing, 451	VMware, NMP (Native Multipathing), 165
vmkiscsi-tool, 90	VMware HCL, certified storage, locating,
vmklinux, 161	326, 327
vmkstools, 430	VMware vStorage APIs for Array
vMotion, 8 VMs (virtual machines)	Integration (VAAI). See VAAI (VMware vStorage APIs for Array
	Integration)
configuration files, VMDirectPath I/O, 358	VMW_PSP_FIXED plug-in, 198, 276
configuring for PVSCSI (Paravirtual	VMW_PSP_MRU plug-in, 277
SCSI Controller), 475-476	VMW_PSP_RR PSP plug-in, 277
creating virtual disks after creation,	VMW_SATP_ALUA_CX plug-in, 198
448-450	VOBs (vSphere Observations), 444
creating virtual disks during creation,	VoIP (Voice over IP), 60
445-448	volatile data storage, 2
design scenarios, VMDirectPath I/O,	volatile memory, 2
358-360	Volume Header (vh), 385
file extensions, 478	volumes, VMFS, growing, 425-430
snapshots, 477-478	Volume UUIDs (universally unique
creating while powered off, 478-484	identifiers), 531
creating while powered on, 484-488	VPD (Vital Product Data), 174
linked clones, 501-503	vSphere Installation Bundles (VIBs), 556
operations, 488-499	vSphere Management Assistant (vMA), 17
reverting to, 499-501	vSphere Observations (VOBs), 444

vStorage APIs for Array Integration (VAAI), 8 vStorage APIs for Storage Awareness (VASA), 8

W-Z

Watchdog, 77
WRITE_SAME SCSI command, 553
WWNNs (World Wide Node Names), 15
locating HBAls in, 16-20
locating targets, 27-30
WWPNs (World Wide Port Names), 15
EMC Symmetrix/DMX WWPNs,
decoding, 25-26
locating HBAs in, 16-20
locating targets, 27-30

XCOPY command, 551

zeroed thick virtual disks, 441-442 creating with vmkfstools, 452 zoning, FC (Fibre Channel), 37-41