

5
HTMLIN

TR
O

D
U

C
IN

G

SECOND
EDITION

BRUCE LAWSON
REMY SHARP

Introducing HTML5, Second Edition
Bruce Lawson and Remy Sharp

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.newriders.com
To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education

Copyright © 2012 by Remy Sharp and Bruce Lawson

Project Editor: Michael J. Nolan
Development Editor: Margaret S. Anderson/Stellarvisions
Technical Editors: Patrick H. Lauke (www.splintered.co.uk),
Robert Nyman (www.robertnyman.com)
Production Editor: Cory Borman
Copyeditor: Gretchen Dykstra
Proofreader: Jan Seymour
Indexer: Joy Dean Lee
Compositor: Danielle Foster
Cover Designer: Aren Howell Straiger
Cover photo: Patrick H. Lauke (splintered.co.uk)

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in
any form by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. For informa-
tion on getting permission for reprints and excerpts, contact permissions@
peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without war-
ranty. While every precaution has been taken in the preparation of the book,
neither the authors nor Peachpit shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the instructions contained in this book or by the com-
puter software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and Peachpit was aware of a trademark claim, the designa-
tions appear as requested by the owner of the trademark. All other product
names and services identified throughout this book are used in editorial
fashion only and for the benefit of such companies with no intention of
infringement of the trademark. No such use, or the use of any trade name, is
intended to convey endorsement or other affiliation with this book.

ISBN 13:	978-0-321-78442-1
ISBN 10:	 0-321-78442-1

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com
www.splintered.co.uk
www.robertnyman.com

ACKNOWLEDGEMENTS
Huge thanks to coauthor-turned-friend Remy Sharp, and friend-
turned-ruthless-tech-editor Patrick Lauke: il miglior fabbro. At
New Riders, Michael Nolan, Margaret Anderson, Gretchen Dyk-
stra, and Jan Seymour deserve medals for their hard work and
their patience.

Thanks to the Opera Developer Relations Team, particularly the
editor of dev.opera.com, Chris Mills, for allowing me to reuse
some materials I wrote for him, Daniel Davis for his descrip-
tion of <ruby>, Shwetank Dixit for checking some drafts, and
David Storey for being so knowledgeable about Web Standards
and generously sharing that knowledge. Big shout to former
team member Henny Swan for her support and lemon cake.
Elsewhere in Opera, the specification team of James Graham,
Lachlan Hunt, Philip Jägenstedt, Anne van Kesteren, and Simon
Pieters checked chapters and answered 45,763 daft questions
with good humour. Nothing in this book is the opinion of Opera
Software ASA.

Ian Hickson has also answered many a question, and my fellow
HTML5 doctors (www.html5doctor.com) have provided much
insight and support.

Many thanks to Richard Ishida for explaining <bdi> to me and
allowing me to reproduce his explanation. Also to Aharon Lanin.
Smoochies to Robin Berjon and the Mozilla Developer Center
who allowed me to quote them.

Thanks to Gez Lemon and mighty Steve Faulkner for advice on
WAI-ARIA. Thanks to Denis Boudreau, Adrian Higginbotham,
Pratik Patel, Gregory J. Rosmaita, and Léonie Watson for screen
reader advice.

Thanks to Stuart Langridge for drinkage, immoral support, and
suggesting the working title “HTML5 Utopia.” Mr. Last Week’s cre-
ative vituperation provided loadsalaffs. Thanks, whoever you are.

Thanks to John Allsopp, Tantek Çelik, Christian Heilmann, John
Foliot, Jeremy Keith, Matt May, and Eric Meyer for conversations
about the future of markup. Silvia Pfeiffer’s blog posts on multi-
media were invaluable to my understanding.

www.html5doctor.com

Acknowledgementsiv

Stu Robson braved IE6 to take the screenshot in Chapter 1,
Terence Eden took the BlackBerry screenshots in Chapter 3,
Julia Gosling took the photo of Remy’s magic HTML5 moustache
in Chapter 4, and Jake Smith provided valuable feedback on
early drafts of my chapters. Lastly, but most importantly, thanks
to the thousands of students, conference attendees, and Twitter
followers for their questions and feedback.

This book is in memory of my grandmothers, Marjorie White-
head, 8 March 1917–28 April 2010, and Elsie Lawson 6 June
1920–20 August 2010.

This book is dedicated to Nongyaw, Marina, and James, without
whom life would be monochrome.

—Bruce Lawson

Über thanks to Bruce who invited me to coauthor this book and
without whom I would have spent the early part of 2010 com-
plaining about the weather instead of writing this book. On that
note, I’d also like to thank Chris Mills for even recommending
me to Bruce.

To Robert Nyman, my technical editor: when I was in need of
someone to challenge my JavaScript, I knew there would always
be a Swede at hand. Thank you for making sure my code was as
sound as it could be. Equally to Patrick Lauke, who also whipped
some of my code, and certainly parts of my English, into shape.

Thanks to the local Brighton cafés, Coffee@33 and Café Délice,
for letting me spend so many hours writing this book and drink-
ing your coffee.

To my local Brighton digital community and new friends who have
managed to keep me both sane and insane over the last few
years of working alone. Thank you to Danny Hope, Josh Russell,
and Anna Debenham for being my extended colleagues.

Thank you to Jeremy Keith for letting me rant and rail over HTML5
and bounce ideas, and for encouraging me to publish my thoughts.
Equal thanks to Jessica for letting us talk tech over beers!

Acknowledgements v

To the HTML5 Doctors and Rich Clark in particular for invit-
ing me to contribute—and also to the team for publishing such
great material.

To the whole #jquery-ot channel for their help when I needed
to debug, or voice my frustration over a problem, and for being
someplace I could go rather than having to turn to my cats
for JavaScript support.

To the #whatwg channel for their help when I had misinter-
preted the specification and needed to be put back on the right
path. In particular to Anne Van Kesteren, who seemed to always
have the answers I was looking for, perhaps hidden under some
secret rock I’m yet to discover.

To all the conference organisers that invited me to speak, to the
conference goers that came to hear me ramble, to my Twitter
followers that have helped answer my questions and helped
spur me on to completing this book with Bruce: thank you. I’ve
tried my best with the book, and if there’s anything incorrect or
out of date: blame Bruce buy the next edition. ;-)

To my wife, Julie: thank you for supporting me for all these many
years. You’re more than I ever deserved and without you, I hon-
estly would not be the man I am today.

Finally, this book is dedicated to Tia. My girl. I wrote the major-
ity of my part of this book whilst you were on our way to us. I
always imagined that you’d see this book and be proud and
equally embarrassed. That won’t happen now, and even though
you’re gone, you’ll always be with us and never forgotten.

—Remy Sharp

CONTENTS
		 Introduction 	 ix

	 CHAPTER 1	 Main Structure	 1
The <head> . 2

Using new HTML5 structural elements 6

Styling HTML5 with CSS 10

When to use the new HTML5 structural elements 13

What’s the point? . . 20

Summary . 21

	 CHAPTER 2	 Text	 23
Structuring main content areas 24

Adding blog posts and comments 30

Working with HTML5 outlines 31

Understanding WAI-ARIA 49

Even more new structures! 53

Redefined elements . 65

Global attributes . 70

Removed attributes . 75

Features not covered in this book 77

Summary . 78

	 CHAPTER 3	 Forms	 79
We HTML, and now it s us back 80

New input types . 80

New attributes . 87

<progress>, <meter> elements 94

Putting all this together 95

Backwards compatibility with legacy browsers 99

Styling new form fields and error messages 100

Overriding browser defaults 102

Using JavaScript for DIY validation 104

Contents vii

Avoiding validation . 105

Summary . . 108

	 CHAPTER 4	 Video and Audio	 109
Native multimedia: why, what, and how? 110

Codecs—the horror, the horror 117

Rolling custom controls 123

Multimedia accessibility 136

Synchronising media tracks 139

Summary . . 142

	 CHAPTER 5	 Canvas	 143
Canvas basics . 146

Drawing paths . . 150

Using transformers: pixels in disguise 153

Capturing images . 155

Pushing pixels . 159

Animating your canvas paintings 163

Summary . . 168

	 CHAPTER 6	 Data Storage 	 169
Storage options . 170

Web Storage . . 172

Web SQL Database . 184

IndexedDB . . 195

Summary . . 205

	 CHAPTER 7	 Offline	 207
Pulling the plug: going offline 208

The cache manifest . 209

Network and fallback in detail 212

How to serve the manifest 214

The browser-server process 214

applicationCache . . 217

Debugging tips . . 219

Using the manifest to detect connectivity 221

Killing the cache . . 222

Summary . . 223

Contentsviii

	 CHAPTER 8	 Drag and Drop	 225
Getting into drag . 226

Interoperability of dragged data 230

How to drag any element 232

Adding custom drag icons 233

Accessibility . 234

Summary . . 236

	 CHAPTER 9	 Geolocation	 237
Sticking a pin in your user 238

API methods . . 240

Summary . . 248

	 CHAPTER 10	 Messaging and Workers	 249
Chit chat with the Messaging API 250

Threading using Web Workers 252

Summary . . 264

	 CHAPTER 11	 Real Time 	 265
WebSockets: working with streaming data 266

Server-Sent Events . 270

Summary . . 274

	 CHAPTER 12	 Polyfilling: Patching Old Browsers
		 to Support HTML5 Today	 275

Introducing polyfills . . 276

Feature detection . 277

Detecting properties 278

The undetectables . . 281

Where to find polyfills 281

A working example with Modernizr 282

Summary . . 284

		 And finally...	 285

		 Index	 286

INTRODUCTION
Welcome to the second edition of the Remy & Bruce show. Since
the first edition of this book came out in July 2010, much has
changed: support for HTML5 is much more widespread; Internet
Explorer 9 finally came out; Google Chrome announced it would
drop support for H.264 video; Opera experimented with video
streaming from the user’s webcam via the browser, and HTML5
fever became HTML5 hysteria with any new technique or technol-
ogy being called HTML5 by clients, bosses, and journalists.

All these changes, and more, are discussed in this shiny second
edition. There is a brand new Chapter 12 dealing with the reali-
ties of implementing all the new technologies for old browsers.
And we’ve corrected a few bugs, tweaked some typos, rewritten
some particularly opaque prose, and added at least one joke.

We’re two developers who have been playing with HTML5 since
Christmas 2008—experimenting, participating in the mailing list,
and generally trying to help shape the language as well as learn it.

Because we’re developers, we’re interested in building things.
That’s why this book concentrates on the problems that HTML5
can solve, rather than on an academic investigation of the
language. It’s worth noting, too, that although Bruce works for
Opera Software, which began the proof of concept that eventu-
ally led to HTML5, he’s not part of the specification team there;
his interest is as an author using the language for an accessible,
easy-to-author, interoperable Web.

Who’s this book for?
No knowledge of HTML5 is assumed, but we do expect that
you’re an experienced (X)HTML author, familiar with the con-
cepts of semantic markup. It doesn’t matter whether you’re
more familiar with HTML or XHTML DOCTYPEs, but you should
be happy coding any kind of strict markup.

While you don’t need to be a JavaScript ninja, you should have
an understanding of the increasingly important role it plays in
modern web development, and terms like DOM and API won’t
make you drop this book in terror and run away.

Introductionx

Still here? Good.

What this book isn’t
This is not a reference book. We don’t go through each element
or API in a linear fashion, discussing each fully and then moving
on. The specification does that job in mind-numbing, tear-jerking,
but absolutely essential detail.

What the specification doesn’t try to do is teach you how to use
each element or API or how they work with one another, which
is where this book comes in. We’ll build up examples, discussing
new topics as we go, and return to them later when there are
new things to note.

You’ll also realise, from the title and the fact that you’re comfort-
ably holding this book without requiring a forklift, that this book
is not comprehensive. Explaining a 700-page specification (by
comparison, the first HTML spec was three pages long) in a
medium-sized book would require Tardis-like technology (which
would be cool) or microscopic fonts (which wouldn’t).

What do we mean by HTML5?
This might sound like a silly question, but there is an increasing
tendency amongst standards pundits to lump all exciting new
web technologies into a box labeled HTML5. So, for example,
we’ve seen SVG (Scalable Vector Graphics) referred to as “one
of the HTML5 family of technologies,” even though it’s an inde-
pendent W3C graphics spec that’s ten years old.

Further confusion arises from the fact that the official W3C spec
is something like an amoeba: Bits split off and become their own
specifications, such as Web Sockets or Web Storage (albeit from
the same Working Group, with the same editors).

So what we mean in this book is “HTML5 and related specifica-
tions that came from the WHATWG” (more about this exciting
acronym soon). We’re also bringing a “plus one” to the party—
Geolocation—which has nothing to do with our definition of
HTML5, but which we’ve included for the simple reason that
it’s really cool, we’re excited about it, and it’s part of NEWT:
the New Exciting Web Technologies.

Introduction xi

Who? What? When? Why?
A short history of HTML5

History sections in computer books usually annoy us. You don’t
need to know about ARPANET or the history of HTTP to under-
stand how to write a new language.

Nevertheless, it’s useful to understand how HTML5 came about,
because it will help you understand why some aspects of HTML5
are as they are, and hopefully preempt (or at least soothe) some
of those “WTF? Why did they design it like that?” moments.

How HTML5 nearly never was
In 1998, the W3C decided that they would not continue to
evolve HTML. The future, they believed (and so did your
authors) was XML. So they froze HTML at version 4.01 and
released a specification called XHTML 1.0, which was an XML
version of HTML that required XML syntax rules such as quot-
ing attributes, closing some tags while self-closing others, and
the like. Two flavours were developed (well, actually three, if
you care about HTML Frames, but we hope you don’t because
they’re gone from HTML5). XHTML Transitional was designed to
help people move to the gold standard of XHTML Strict.

This was all tickety-boo—it encouraged a generation of develop-
ers (or at least the professional-standard developers) to think
about valid, well-structured code. However, work then began
on a specification called XHTML 2.0, which was a revolutionary
change to the language, in the sense that it broke backwards-
compatibility in the cause of becoming much more logical and
better-designed.

A small group at Opera, however, was not convinced that XML
was the future for all web authors. Those individuals began
extracurricular work on a proof-of-concept specification that
extended HTML forms without breaking backward-compatibility.
That spec eventually became Web Forms 2.0, and was subse-
quently folded into the HTML5 spec. They were quickly joined
by individuals from Mozilla and this group, led by Ian “Hixie”
Hickson of Opera, continued working on the specification pri-
vately with Apple “cheering from the sidelines” in a small group
that called itself the WHATWG (Web Hypertext Application
Technology Working Group, www.whatwg.org). You can see

www.whatwg.org

Introductionxii

this genesis still in the copyright notice on the WHATWG ver-
sion of the spec “© Copyright 2004–2011 Apple Computer, Inc.,
Mozilla Foundation, and Opera Software ASA (note that you are
licensed to use, reproduce, and create derivative works).”

Hickson moved to Google, where he continued to work full-time
as editor of HTML5 (then called Web Applications 1.0).

In 2006 the W3C decided that they had perhaps been overly
optimistic in expecting the world to move to XML (and, by exten-
sion, XHTML 2.0): “It is necessary to evolve HTML incremen-
tally. The attempt to get the world to switch to XML, including
quotes around attribute values and slashes in empty tags and
namespaces, all at once didn’t work,” said Tim Berners-Lee.

The resurrected HTML Working Group voted to use the WHAT-
WG’s Web Applications spec as the basis for the new version
of HTML, and thus began a curious process whereby the same
spec was developed simultaneously by the W3C (co-chaired
by Sam Ruby of IBM and Chris Wilson of Microsoft, and later by
Ruby, Paul Cotton of Microsoft, and Maciej Stachowiak of Apple),
and the WHATWG, under the continued editorship of Hickson.

In search of the spec

Because the HTML5 specification is being developed by both the W3C and WHATWG, there are different
versions of it. Think of the WHATWG versions as being an incubator group.

The official W3C snapshot is www.w3.org/TR/html5/, while http://dev.w3.org/html5/spec/ is the latest
editor’s draft and liable to change.

The WHATWG has dropped version numbers, so the “5” has gone; it’s just “HTML‚—the living standard.”
Find this at http://whatwg.org/html but beware there are hugely experimental ideas in there. Don’t assume
that because it’s in this document it’s implemented anywhere or even completely thought out yet. This
spec does, however, have useful annotations about implementation status in different browsers.

There’s a one-page version of the complete WHATWG specifications called “Web Applications 1.0” that
incorporates everything from the WHATWG at http://www.whatwg.org/specs/web-apps/current-work/
complete.html but it might kill your browser as it’s massive with many scripts.

A lot of the specification is algorithms really intended for those implementing HTML (browser manufactur-
ers, for example). The spec that we have bookmarked is a useful version for the Web at http://developers.
whatwg.org, which removes all the stuff written for implementers and presents it with attractive CSS,
courtesy of Ben Schwarz. This contains the experimental stuff, too.

Confused? http://wiki.whatwg.org/wiki/FAQ#What_are_the_various_versions_of_the_spec.3F lists and
describes these different versions.

Geolocation is not a WHATWG spec. You can go to http://www.w3.org/TR/geolocation-API/ to find it.

www.w3.org/TR/html5/
http://dev.w3.org/html5/spec/
http://whatwg.org/html
http://www.whatwg.org/specs/web-apps/current-work/complete.html
http://developers.whatwg.org
http://developers.whatwg.org
http://wiki.whatwg.org/wiki/FAQ#What_are_the_various_versions_of_the_spec.3F
http://www.w3.org/TR/geolocation-API/
http://www.whatwg.org/specs/web-apps/current-work/complete.html

Introduction xiii

The process has been highly unusual in several respects.
The first is the extraordinary openness; anyone could join
the WHATWG mailing list and contribute to the spec. Every
email was read by Hickson or the core WHATWG team (which
included such luminaries as the inventor of JavaScript and
Mozilla CTO Brendan Eich, Safari and WebKit Architect David
Hyatt, and inventor of CSS and Opera CTO Håkon Wium Lie).

Good ideas were implemented and bad ideas rejected, regard-
less of who the source was or who they represented, or even
where those ideas were first mooted. Additional good ideas
were adopted from Twitter, blogs, and IRC.

In 2009, the W3C stopped work on XHTML 2.0 and diverted
resources to HTML5 and it was clear that HTML5 had won the
battle of philosophies: purity of design, even if it breaks back-
wards-compatibility, versus pragmatism and “not breaking the
Web.” The fact that the HTML5 working groups consisted of rep-
resentatives from all the browser vendors was also important.
If vendors were unwilling to implement part of the spec (such
as Microsoft’s unwillingness to implement <dialog>, or Mozilla’s
opposition to <bb>) it was dropped. Hickson has said, “The
reality is that the browser vendors have the ultimate veto on
everything in the spec, since if they don’t implement it, the spec
is nothing but a work of fiction.” Many participants found this
highly distasteful: Browser vendors have hijacked “our Web,”
they complained with some justification.

It’s fair to say that the working relationship between W3C and
WHATWG has not been as smooth as it could be. The W3C
operates under a consensus-based approach, whereas Hickson
continued to operate as he had in the WHATWG—as benevolent
dictator (and many will snort at our use of the word benevolent
in this context). It’s certainly the case that Hickson had very firm
ideas of how the language should be developed.

The philosophies behind HTML5
Behind HTML5 is a series of stated design principles
(http://www.w3.org/TR/html-design-principles). There are
three main aims to HTML5:

•	 Specifying current browser behaviours that are
interoperable

•	 Defining error handling for the first time

•	 Evolving the language for easier authoring of web applications

http://www.w3.org/TR/html-design-principles

Introductionxiv

Not breaking existing web pages
Many of our current methods of developing sites and
applications rely on undocumented (or at least unspecified)
features incorporated into browsers over time. For example,
XMLHttpRequest (XHR) powers untold numbers of Ajax-driven
sites. It was invented by Microsoft, and subsequently reverse-
engineered and incorporated into all other browsers, but had
never been specified as a standard (Anne van Kesteren of
Opera finally specified it as part of the WHATWG). Such a vital
part of so many sites left entirely to reverse-engineering! So one
of the first tasks of HTML5 was to document the undocumented,
in order to increase interoperability by leaving less to guesswork
for web authors and implementors of browsers.

It was also necessary to unambiguously define how browsers
and other user agents should deal with invalid markup. This
wasn’t a problem in the XML world; XML specifies “draconian
error handling” in which the browser is required to stop render-
ing if it finds an error. One of the major reasons for the rapid
ubiquity and success of the Web (in our opinion) was that even
bad code had a fighting chance of being rendered by some or
all browsers. The barrier to entry to publishing on the Web was
democratically low, but each browser was free to decide how to
render bad code. Something as simple as

<i>Hello mum!</i>

(note the mismatched closing tags) produces different DOMs in
different browsers. Different DOMs can cause the same CSS to
have a completely different rendering, and they can make writ-
ing JavaScript that runs across browsers much harder than it
needs to be. A consistent DOM is so important to the design of
HTML5 that the language itself is defined in terms of the DOM.

In the interest of greater interoperability, it’s vital that error han-
dling be identical across browsers, thus generating the exact
same DOM even when confronted with broken HTML. In order
for that to happen, it was necessary for someone to specify it.
As we said, the HTML5 specification is well over 700 pages
long, but only 300 or so are relevant to web authors (that’s you
and us); the rest of it is for implementers of browsers, telling
them exactly how to parse markup, even bad markup.

Introduction xv

Web applications
An increasing number of sites on the Web are what we’ll call
web applications; that is, they mimic desktop apps rather than
traditional static text-images-links documents that make up
the majority of the Web. Examples are online word processors,
photo-editing tools, mapping sites, and so on. Heavily powered
by JavaScript, these have pushed HTML 4 to the edge of its
capabilities. HTML5 specifies new DOM APIs for drag and drop,
server-sent events, drawing, video, and the like. These new
interfaces that HTML pages expose to JavaScript via objects in
the DOM make it easier to write such applications using tightly
specified standards rather than barely documented hacks.

Even more important is the need for an open standard (free to
use and free to implement) that can compete with proprietary
standards like Adobe Flash or Microsoft Silverlight. Regardless of
your thoughts on those technologies or companies, we believe
that the Web is too vital a platform for society, commerce, and
communication to be in the hands of one vendor. How differently
would the Renaissance have progressed if Caxton held a patent
and a monopoly on the manufacture of printing presses?

Don’t break the Web
There are exactly umpty-squillion web pages already out there,
and it’s imperative that they continue to render. So HTML5 is
(mostly) a superset of HTML 4 that continues to define how
browsers should deal with legacy markup such as , <cen-
ter>, and other such presentational tags, because millions of web
pages use them. But authors should not use them, as they’re
obsolete. For web authors, semantic markup still rules the day,
although each reader will form her own conclusion as to whether
HTML5 includes enough semantics, or too many elements.

As a bonus, HTML5’s unambiguous parsing rules should ensure
that ancient pages will work interoperably, as the HTML5 parser
will be used for all HTML documents once it’s implemented in
all browsers.

What about XML?
HTML5 is not an XML language (it’s not even an SGML lan-
guage, if that means anything important to you). It must be
served as text/html. If, however, you need to use XML, there is
an XML serialisation called XHTML5. This allows all the same

Introductionxvi

features, but (unsurprisingly) requires a more rigid syntax (if
you’re used to coding XHTML, this is exactly the same as you
already write). It must be well-formed XML and it must be served
with an XML MIME type, even though IE8 and its antecedents
can’t process it (it offers it for downloading rather than render-
ing it). Because of this, we are using HTML rather than XHTML
syntax in this book.

HTML5 support

HTML5 is moving very fast now. The W3C specification went to last call in May 2011, but browsers were
implementing HTML5 support (particularly around the APIs) long before then. That support is going to con-
tinue growing as browsers start rolling out features, so instances where we say “this is only supported in
browser X” will rapidly date—which is a good thing.

New browser features are very exciting and some people have made websites that claim to test browsers’
HTML5 support. Most of them wildly pick and mix specs, checking for HTML5, related WHATWG-derived
specifications such as Web Workers and then, drunk and giddy with buzzwords, throw in WebGL, SVG, the
W3C File API, Media Queries, and some Apple proprietary whizbangs before hyperventilating and going to
bed for a lie-down.

Don’t pay much attention to these sites. Their point systems are arbitrary, their definition of HTML5 mean-
ingless and misleading.

As Patrick Lauke, our technical editor, points out, “HTML5 is not a race. The idea is not that the first
browser to implement all will win the Internet. The whole idea behind the spec work is that all browsers
will support the same feature set consistently.”

If you want to see the current state of support for New Exciting Web Technologies, we recommend
http://caniuse.com by Alexis Deveria.

Let’s get our hands dirty
So that’s your history lesson, with a bit of philosophy thrown in.
It’s why HTML5 sometimes willfully disagrees with other speci-
fications—for backwards-compatibility, it often defines what
browsers actually do, rather than what an RFC document speci-
fies they ought to do. It’s why sometimes HTML5 seems like a
kludge or a compromise—it is. And if that’s the price we have
to pay for an interoperable open Web, then your authors say,
“Viva pragmatism!”

Got your seatbelt on?

Let’s go.

http://caniuse.com

CHAPTER 4
Video and

Audio
Bruce Lawson and Remy Sharp

A LONG TIME AGO, in a galaxy that feels a very long

way away, multimedia on the Web was limited to tinkling

MIDI tunes and animated GIFs. As bandwidth got faster

and compression technologies improved, MP3 music

supplanted MIDI and real video began to gain ground.

All sorts of proprietary players battled it out—Real Player,

Windows Media, and so on—until one emerged as the

victor in 2005: Adobe Flash, largely because of its ubiq-

uitous plugin and the fact that it was the delivery mecha-

nism of choice for YouTube.

HTML5 provides a competing, open standard for delivery

of multimedia on the Web with its native video and audio

elements and APIs. This chapter largely discusses the

<video> element, as that’s sexier, but most of the markup

and scripting are applicable to <audio> as well.

INTRODUCING HTML5110

Native multimedia: why, what, and how?
In 2007, Anne van Kesteren wrote to the Working Group:

“Opera has some internal experimental builds with an imple-
mentation of a <video> element. The element exposes a simple
API (for the moment) much like the Audio() object: play(),
pause(), stop(). The idea is that it works like <object> except
that it has special <video> semantics much like has
image semantics.”

While the API has increased in complexity, van Kesteren’s origi-
nal announcement is now implemented in all the major brows-
ers, including Internet Explorer 9.

An obvious companion to a <video> element is an <audio>
element; they share many similar features, so in this chapter
we discuss them together and note only the differences.

<video>: Why do you need
a <video> element?
Previously, if developers wanted to include video in a web
page, they had to make use of the <object> element, which is
a generic container for “foreign objects.” Due to browser incon-
sistencies, they would also need to use the previously invalid
<embed> element and duplicate many parameters. This resulted
in code that looked much like this:

<object width=”425” height=”344”>
<param name=”movie” value=”http://www.youtube.com/
¬ v/9sEI1AUFJKw&hl=en_GB&fs=1&”></param>
<param name=”allowFullScreen”
value=”true”></param>
<param name=”allowscriptaccess”
value=”always”></param>
<embed src=”http://www.youtube.com/
¬ v/9sEI1AUFJKw&hl=en_GB&fs=1&”
type=”application/x-shockwave-flash”
allowscriptaccess=”always”
allowfullscreen=”true” width=”425”
height=”344”></embed>
</object>

Chapter 4  :   Video and Audio  :   Native multimedia: why, what, and how? 111

This code is ugly and ungainly. Worse still is the fact that the
browser has to pass the video off to a third-party plugin; hope
that the user has the correct version of that plugin (or has the
rights to download and install it, and the knowledge of how to
do so); and then hope that the plugin is keyboard accessible—
along with all the other unknowns involved in handing the con-
tent to a third-party application.

Plugins can also be a significant cause of browser instability
and can create worry for less technical users when they are
prompted to download and install newer versions.

Whenever you include a plugin in your pages, you’re reserving
a certain drawing area that the browser delegates to the plugin.
As far as the browser is concerned, the plugin’s area remains a
black box—the browser does not process or interpret anything
that happens there.

Normally, this is not a problem, but issues can arise when your
layout overlaps the plugin’s drawing area. Imagine, for example,
a site that contains a movie but also has JavaScript or CSS-based
drop-down menus that need to unfold over the movie. By default,
the plugin’s drawing area sits on top of the web page, meaning
that these menus will strangely appear behind the movie.

Problems and quirks can also arise if your page has dynamic
layout changes. Resizing the dimensions of the plugin’s drawing
area can sometimes have unforeseen effects—a movie playing in
the plugin may not resize, but instead simply may be cropped or
display extra white space. HTML5 provides a standardised way to
play video directly in the browser, with no plugins required.

One of the major advantages of the HTML5 video element is
that, finally, video is a full-fledged citizen on the Web. It’s no lon-
ger shunted off to the hinterland of <object> or the nonvalidat-
ing <embed> element.

So now, <video> elements can be styled with CSS. They can be
resized on hover using CSS transitions, for example. They can
be tweaked and redisplayed onto <canvas> with JavaScript. Best
of all, the innate hackability that open web standards provide
is opened up. Previously, all your video data was locked away;
your bits were trapped in a box. With HTML5 multimedia, your
bits are free to be manipulated however you want.

NOTE  <embed> is finally
standardised in HTML5; it

was never part of any previous
flavour of (X)HTML.

INTRODUCING HTML5112

What HTML5 multimedia isn’t good for
Regardless of the sensationalist headlines of the tech journalists,
HTML5 won’t “kill” all plugins overnight. There are use-cases for
plugins not covered by the new spec.

Copy protection is one area not dealt with by HTML5—unsurpris-
ingly, given that it’s a standard based on openness. So people
who need digital rights management (DRM) are probably not
going to want to use HTML5 video or audio, as they’ll be as easy
to download to a hard drive as an is now. Some browsers
offer simple context-menu access to the URL of the video, or
even let the user save the video. Developers can view source,
find the reference to the video’s URL, and download it that way.
(Of course, you don’t need us to point out that DRM is a fool’s
errand, anyway. All you do is alienate your honest users while
causing minor inconvenience to dedicated pirates.)

HTML5 can’t give us adaptive streaming either. This is a process
that adjusts the quality of a video delivered to a browser based
on changes to network conditions to ensure the best experi-
ence. It’s being worked on, but it isn’t there yet.

Plugins currently remain the best cross-browser option for
accessing the user’s webcam or microphone and then transmit-
ting video and audio from the user’s machine to a web page
such as Daily Mugshot or Chatroulette, although getUserMedia
and WebRTC are in the cards for Chrome, Opera, and Firefox—
see “Video conferencing, augmented reality” at the end of this
chapter. After shuddering at the unimaginable loneliness that a
world without Chatroulette would represent, consider also the
massive amount of content already out there on the web that
will require plugins to render it for a long time to come.

Anatomy of the video
and audio elements
At its simplest, to include video on a page in HTML5 merely
requires this code:

<video src=turkish.webm></video>

The .webm file extension is used here to point to a WebM-encoded
video.

NOTE  If you’re really,
really anxious to do DRM,

check out http://lists.whatwg.
org/htdig.cgi/whatwg-whatwg.
org/2010-July/027051.html for
Henri Sivonen’s suggested
method, which requires no
changes to the spec.

http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2010-July/027051.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2010-July/027051.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2010-July/027051.html

Chapter 4  :   Video and Audio  :   Native multimedia: why, what, and how? 113

Similar to <object>, you can put fallback markup between the
tags for older web browsers that do not support native video. You
should at least supply a link to the video so users can download
it to their hard drives and watch it later on the operating system’s
media player. Figure 4.1 shows this code in a modern browser
and fallback content in a legacy browser.

<h1>Video and legacy browser fallback</h1>
<video src=leverage-a-synergy.webm>
 Download the How to
 ¬ leverage a synergy video
</video>

However, this example won’t actually do anything just yet. All you
can see here is the first frame of the movie. That’s because you
haven’t told the video to play, and you haven’t told the browser
to provide any controls for playing or pausing the video.

autoplay
While you can tell the browser to play the video or audio auto-
matically once the web page is loaded, you almost certainly
shouldn’t, as many users (and particularly those using assistive
technology, such as a screen reader) will find it highly intrusive.
Users on mobile devices probably won’t want you using their
bandwidth without them explicitly asking for the video. Never-
theless, here’s how you do it:

<video src=leverage-a-synergy.webm autoplay>
 <!-- your fallback content here -->
</video>

FIGURE 4.1  HTML5 video in a
modern browser and fallback
content in a legacy browser.

INTRODUCING HTML5114

controls
Providing controls is approximately 764 percent better than
autoplaying your video. See Figure 4.2. You can use some
simple JavaScript to write your own (more on that later) or you
can tell the browser to provide them automatically:

<video src=leverage-a-synergy.webm controls>
</video>

Naturally, these differ between browsers, as the spec doesn’t
prescribe what the controls should look like or do, but most
browsers don’t reinvent the wheel and instead have stuck to
what has become the general norm for such controls—there’s
a play/pause toggle, a seek bar, and volume control.

Browsers have chosen to visually hide the controls, and only
make them appear when the user hovers or sets focus on the
controls via the keyboard. It’s also possible to move through the
different controls using only the keyboard. This native keyboard
accessibility is already an improvement on plugins, which can be
tricky to tab into from surrounding HTML content.

If the <audio> element has the controls attribute, you’ll see them
on the page. Without the attribute, you can hear the audio but
nothing is rendered visually on the page at all; it is, of course,
there in the DOM and fully controllable via JavaScript and the
new APIs.

NOTE  Browsers have
different levels of key-

board accessibility. Firefox’s
native controls are right and left
arrows to skip forward/back (up
and down arrows after tabbing
into the video), but there is no
focus highlight to show where
you are, and so no visual clue.
The controls don’t appear if the
user has JavaScript disabled in
the browser; so although the
contextual menu allows the user
to stop and start the movie,
there is the problem of
discoverability.

Opera’s accessible native con-
trols are always present when
JavaScript is disabled, regard-
less of whether the controls
attribute is specified.

IE9 has good keyboard accessi-
bility. Chrome and Safari appear
to lack keyboard accessibility. We
anticipate increased keyboard
accessibility as manufacturers
iron out teething problems.

FIGURE 4.2  The default
controls in Firefox. (These are
similar in all modern browsers.)

Chapter 4  :   Video and Audio  :   Native multimedia: why, what, and how? 115

poster
The poster attribute points to an image that the browser will use
while the video is downloading, or until the user tells the video
to play. (This attribute is not applicable to <audio>.) It removes
the need for additional tricks like displaying an image and then
removing it via JavaScript when the video is started.

If you don’t use the poster attribute, the browser shows the first
frame of the movie, which may not be the representative image
you want to show.

The behavior varies somewhat on mobile devices. Mobile Safari
does grab the first frame if no poster is specified; Opera Mobile
conserves bandwidth and leaves a blank container.

muted
The muted attribute, a recent addition to the spec (read: “as yet,
very little support”), gives a way to have the multimedia element
muted by default, requiring user action to unmute it. This video
(an advertisement) autoplays, but to avoid annoying users, it does
so without sound, and allows the user to turn the sound on:

<video src=”adverts.cgi?kind=video” controls autoplay loop
¬ muted></video>

height, width
The height and width attributes tell the browser the size of
the video in pixels. (They are not applicable to <audio>.) If you
leave them out, the browser uses the intrinsic width of the video
resource, if that is available. Otherwise it uses the intrinsic width
of the poster frame, if that is available. If neither is available, the
browser defaults to 300 pixels.

If you specify one value but not the other, the browser adjusts
the size of the unspecified dimension to preserve the video’s
aspect ratio.

If you set both width and height to an aspect ratio that doesn’t
match that of the video, the video is not stretched to those
dimensions but is rendered letterboxed inside the video element
of your specified size while retaining the aspect ratio.

INTRODUCING HTML5116

loop
The loop attribute is another Boolean attribute. As you would
imagine, it loops the media playback. Support is flaky at the
moment, so don’t expect to be able to have a short audio sam-
ple and be able to loop it seamlessly. Support will get better—
browsers as media players is a new phenomenon.

preload
Maybe you’re pretty sure that the user wants to activate the
media (she’s drilled down to it from some navigation, for exam-
ple, or it’s the only reason to be on the page), but you don’t
want to use autoplay. If so, you can suggest that the browser
preload the video so that it begins buffering when the page
loads in the expectation that the user will activate the controls.

<video src=leverage-a-synergy.ogv controls preload>
</video>

There are three spec-defined values for the preload attribute.
If you just say preload, the user agent can decide what to do.
A mobile browser may, for example, default to not preloading
until explicitly told to do so by the user. It’s important to remem-
ber that a web developer can’t control the browser’s behavior:
preload is a hint, not a command. The browser will make its
decision based on the device it’s on, current network conditions,
and other factors.

•	 preload=auto (or just preload)

This is a suggestion to the browser that it should begin
downloading the entire file.

•	 preload=none

This state suggests to the browser that it shouldn’t preload
the resource until the user activates the controls.

•	 preload=metadata

This state suggests to the browser that it should just
prefetch metadata (dimensions, first frame, track list, dura-
tion, and so on) but that it shouldn’t download anything fur-
ther until the user activates the controls.

Chapter 4  :   Video and Audio  :  C odecs—the horror, the horror 117

src
As on an , the src attribute points to audio or video
resource, which the browser will play if it supports the specific
codec/container format. Using a single source file with the src
attribute is really only useful for rapid prototyping or for intranet
sites where you know the user’s browser and which codecs
it supports.

However, because not all browsers can play the same formats,
in production environments you need to have more than one
source file. We’ll cover this in the next section.

Codecs—the horror, the horror
Early drafts of the HTML5 specification mandated that all brows-
ers should have built-in support for multimedia in at least two
codecs: Ogg Vorbis for audio and Ogg Theora for movies. Vor-
bis is a codec used by services like Spotify, among others, and
for audio samples in games like Microsoft Halo.

However, these requirements for default format support were
dropped from the HTML5 spec after Apple and Nokia objected,
so the spec makes no recommendations about codecs at all.
This leaves us with a fragmented situation, with different brows-
ers opting for different formats, based on their ideological and
commercial convictions.

Currently, there are two main container/codec combinations
that developers need to be aware of: the new WebM format
(www.webmproject.org) which is built around the VP8 codec
that Google bought for $104 million and open licensed, and the
ubiquitous MP4 format that contains the royalty-encumbered
H.264 codec. H.264 is royalty-encumbered because, in some
circumstances, you must pay its owners if you post videos that
use that codec. We’re not lawyers so can’t give you guidance on
which circumstances apply to you. Go to www.mpegla.com and
have your people talk to their people’s people.

In our handy cut-out-and-lose chart (Table 4.1), we also include
the Ogg Theora codec for historical reasons—but it’s really
only useful if you want to include support for older versions
of browsers with initial <video> element support like Firefox 3.x
and Opera 10.x.

NOTE  So long as the http
endpoint is a streaming

resource on the Web, you can
just point the <video> or
<audio> element at it to
stream the content.

www.webmproject.org
www.mpegla.com

INTRODUCING HTML5118

TABLE 4.1  Video codec support in modern browsers.

WEBM
(VP8 CODEC)

MP4
(H.264 CODEC)

OGV
(OGG THEORA
CODEC)

Opera Yes No Yes

Firefox Yes No Yes

Chrome Yes Yes—see Note, support
will be discontinued

Yes

IE9 + Yes (but codec must
be installed manually)

Yes No

Safari No Yes No

Marvel at the amazing coincidence that the only two browsers
that support H.264 are members of the organization that col-
lects royalties for using the codec (www.mpegla.com/main/
programs/AVC/Pages/Licensors.aspx).

A similarly fragmented situation exists with audio codecs,
for similar royalty-related reasons (see Table 4.2).

TABLE 4.2  Audio codec support in modern browsers.

.OGG/ .OGV
(VORBIS CODEC)

MP3 MP4/ M4A
(AAC CODEC)

WAV

Opera Yes No No Yes

Firefox Yes No No Yes

Chrome Yes Yes Yes Yes

IE9 + No Yes Yes No

Safari No Yes Yes Yes

The rule is: provide both a royalty-free WebM and an H.264
video, and both a Vorbis and an MP3 version of your audio, so
that nobody gets locked out of your content. Let’s not repeat the
mistakes of the old “Best viewed in Netscape Navigator” badges
on sites, or we’ll come round and pin a “n00b” badge to your
coat next time you’re polishing your FrontPage CD.

Multiple <source> elements
To do this, you need to encode your multimedia twice: once
as WebM and once as H.264 in the case of video, and in both
Vorbis and MP3 for audio. Then, you tie these separate versions
of the file to the media element.

NOTE  At time of writing,
Chrome still supports

H.264 but announced it will be
discontinued. Therefore, assume
it won't be supported.

NOTE  It’s possible to
polyfill MP3 support into

Firefox. JSmad (jsmad.org) is a
JavaScript library that decodes
MP3s on the fly and recon-
structs them for output using the
Audio Data API, although we
wonder about performance on
lower-spec devices. Such an API
is out-of-the-scope of this
book—though we’ve included
things like geolocation which
aren’t part of HTML5, single-
vendor APIs are stretching the
definition too far.

www.mpegla.com/main/programs/AVC/Pages/Licensors.aspx
www.mpegla.com/main/programs/AVC/Pages/Licensors.aspx

Chapter 4  :   Video and Audio  :  C odecs—the horror, the horror 119

What’s the “best” codec?

Asking what’s “better” (WebM or MP4) starts an argument that makes debating the merits of Mac or PC
seem like a quiet chat between old friends.

To discuss inherent characteristics, you need to argue about macroblock type in B-frames and six-tap filter-
ing for derivation of half-pel luma sample predictions—for all intents and purposes, “My flux capacitor is
bigger than yours!”

Suffice it to say that for delivering video across the Web, both WebM and MP4 offer good-enough quality
at web-friendly compression. Ogg Theora is less web-friendly.

The real differences are royalty encumbrance and hardware acceleration. Some people need to pay if they
have MP4/H.264 video on their website.

There are many chips that perform hardware decoding of H.264, which is why watching movies on your
mobile phone doesn’t drain the battery in seconds as it would if the video were decoded in software.
At the time of this writing (July 2011, a year after WebM was open sourced), hardware-decoding chips for
WebM are just hitting the market.

Previously, we’ve used the <video src=”...”> syntax to specify
the source for our video. This works fine for a single file, but
how do we tell the browser that there are multiple versions
(using different encoding) available? Instead of using the single
src attribute, you nest separate <source> elements for each
encoding with appropriate type attributes inside the <audio> or
<video> element and let the browser download the format that it
can display. Faced with multiple <source> elements, the browser
will look through them (in source order) and choose the first one
it finds that it thinks it can play (based on the type attribute—
which gives explicit information about the container MIME type
and the codec used—or, missing that, heuristic based on file
extension). Note that in this case we do not provide a src attri-
bute in the media element itself:

1.	 <video controls>

2.	 <source src=leverage-a-synergy.mp4 type=’video/mp4;
	 ¬ codecs=”avc1.42E01E, mp4a.40.2”’>

3.	 <source src=leverage-a-synergy.webm type=’video/webm;
	 ¬ codecs=”vp8, vorbis”’>

4.	 <p>Your browser doesn’t support video.

5.	 Please download the video in <a href=leverage-a-
	 ¬ synergy.webm>webM or <a href=leverage-a-
	 ¬ synergy.mp4>MP4 format.</p>

6.	 </video>

INTRODUCING HTML5120

Line 1 tells the browser that a video is to be inserted and gives it
default controls. Line 2 offers an MP4 version of the video. We’ve
put the mp4 first, because some old versions of Mobile Safari on
the iPad have a bug whereby they only look at the first <source>
element, so that if it isn’t first, it won’t be played. We’re using the
type attribute to tell the browser what kind of container format is
used (by giving the file’s MIME type) and what codec was used for
the encoding of the video and the audio stream. If you miss out
on the type attribute, the browser downloads a small bit of each
file before it figures out that it is unsupported, which wastes band-
width and could delay the media playing.

Notice that we used quotation marks around these parameters—
the spec uses ‘video/mp4; codecs=”avc...”’ (single around the
outside, double around the codec). Some browsers stumble
when it’s the other way around. Line 3 offers the WebM equiva-
lent. The codec strings for H.264 and AAC are more compli-
cated than those for WebM because there are several profiles
for H.264 and AAC, to cater for different categories of devices
and connections. Higher profiles require more CPU to decode,
but they are better compressed and take less bandwidth.

We could also offer an Ogg video here for older versions of
Firefox and Opera, after the WebM version, so those that can
use the higher-quality WebM version pick that up first, and the
older (yet still HTML5 <video> element capable) browsers fall
back to this.

Inside the <video> element is our fallback message, including
links to both formats for browsers that can natively deal with
neither video type but which is probably on top of an operat-
ing system that can deal with one of the formats, so the user
can download the file and watch it in a media player outside
the browser.

OK, so that’s native HTML5 video for users of modern brows-
ers. What about users of legacy browsers—including Internet
Explorer 8 and older?

Video for legacy browsers
Older browsers can’t play native video or audio, bless them. But
if you’re prepared to rely on plugins, you can ensure that users
of older browsers can still experience your content in a way that
is no worse than they currently get.

Chapter 4  :   Video and Audio  :  C odecs—the horror, the horror 121

Remember that the contents of the <video> element can contain
markup, like the text and links in the previous example? Here,
we’ll place an entire Flash video player movie into the fallback
content instead (and of course, we’ll also provide fallback for
those poor users who don’t even have that installed). Luckily,
we don’t need to encode our video in yet another format like
FLV (Flash’s own legacy video container); because Flash (since
version 9) can load MP4 files as external resources, you can
simply point your custom Flash video player movie to the MP4
file. This combination should give you a solid workaround for
Internet Explorer 8 and older versions of other browsers. You
won’t be able to do all the crazy video manipulation stuff we’ll
see later in this chapter, but at least your users will still get to
see your video.

The code for this is as hideous as you’d expect for a transitional
hack, but it works anywhere that Flash Player is installed—which
is almost everywhere. You can see this nifty technique in an
article called “Video for Everybody!” by its inventor, Kroc Camen
(http://camendesign.com/code/video_for_everybody).

Alternatively, you could host the fallback content on a video
hosting site and embed a link to that between the tags of a
video element:

<video controls>

 <source src=leverage-a-synergy.mp4 type=’video/mp4;
 ¬ codecs=”avc1.42E01E, mp4a.40.2”’>
 <source src=leverage-a-synergy.webm type=’video/webm;
 ¬ codecs=”vp8, vorbis”’>
<embed src=”http://www.youtube.com/v/cmtcc94Tv3A&hl=
¬ en_GB&fs=1&rel=0” type=”application/x-shockwave-flash”
¬ allowscriptaccess=”always” allowfullscreen=”true”
¬ width=”425” height=”344”>
</video>

You can use the HTML5 Media Library (http://html5media.info)
to hijack the <video> element and automatically add necessary
fallback by adding one line of JavaScript in the page header.

NOTE  The content
between the tags is fall-

back content only for browsers
that do not support the
<video> element at all. A
browser that understands
HTML5 video but can’t play any
of the formats that your code
points to will not display the
“fallback” content between the
tags, but present the user with a
broken video control instead.
This has bitten me on the bot-
tom a few times. Sadly, there is
no video record of that.

http://camendesign.com/code/video_for_everybody
http://html5media.info

INTRODUCING HTML5122

Encoding royalty-free video and audio

Ideally, you should start the conversion from the source format itself, rather than recompressing an already
compressed version which reduces the quality of the final output. If you already have a web-optimised,
tightly compressed MP4/H.264 version, don’t convert that one to WebM/VP8, but rather go back to your
original footage and recompress that if possible.

For audio, the open-source audio editing software Audacity (http://audacity.sourceforge.net/) has built-in
support for Ogg Vorbis export.

For video conversion, there are a few good choices. For WebM, there are only a few encoders at the
moment, unsurprisingly for such a new codec. See www.webmproject.org/tools/ for the growing list.

For Windows and Mac users we can highly recommend Miro Video Converter (www.mirovideoconverter.
com), which allows you to drag a file into its window for conversion into WebM, Theora, or H.264 opti-
mised for different devices such as iPhone, Android Nexus One, PS2, and so on.

The free VLC (www.videolan.org/vlc/) can convert files on Windows, Mac, and Linux.

For those developers who are not afraid by a bit of command-line work, the open-source FFmpeg library
(http://ffmpeg.org) is the big beast of converters. $ ffmpeg -i video.avi video.webm is all you need.

The conversion process can also be automated and handled server-side. For instance, in a CMS environ-
ment, you may be unable to control the format in which authors upload their files, so you may want to do
compression at the server end. ffmpeg can be installed on a server to bring industrial-strength conversions
of uploaded files (maybe you’re starting your own YouTube killer?).

If you’re worried about storage space and you’re happy to share your media files (audio and video) under
one of the various CC licenses, have a look at the Internet Archive (www.archive.org/create/), which will
convert and host them for you. Just create a password and upload, and then use a <video> element on
your page but link to the source file on their servers.

Another option for third-party conversion and hosting is vid.ly. The free service allows you to upload any
video up to 2GB via the website, after which they will convert it. When your users come to the site, they
will be served a codec their browser understands, even on mobile phones.

Sending differently compressed
videos to handheld devices
Video files tend to be large, and sending very high-quality video
can be wasteful if sent to handheld devices where the small
screen sizes make high quality unnecessary. There’s no point in
sending high-definition video meant for a widescreen monitor
to a handheld device screen, and most users of smartphones
and tablets will gladly compromise a little bit on encoding qual-
ity if it means that the video will actually load over a mobile

http://audacity.sourceforge.net/
www.webmproject.org/tools/
www.mirovideoconverter.com
www.mirovideoconverter.com
www.videolan.org/vlc/
http://ffmpeg.org
www.archive.org/create/

Chapter 4  :   Video and Audio  :   Rolling custom controls 123

connection. Compressing a video down to a size appropriate for
a small screen can save a lot of bandwidth, making your server
and—most importantly—your mobile users happy.

HTML5 allows you to use the media attribute on the <source>
element, which queries the browser to find out screen size (or
number of colours, aspect ratio, and so on) and to send different
files that are optimised for different screen sizes.

This functionality and syntax is borrowed from the CSS Media
Queries specification www.w3.org/TR/css3-mediaqueries but is
part of the markup, as we’re switching source files depending
on device characteristics. In the following example, the browser
is “asked” if it has a min-device-width of 800 px—that is, does it
have a wide screen. If it does, it receives hi-res.webm; if not, it is
sent lo-res.webm:

<video controls>
 <source src=hi-res.webm ... media=”(min-device-width:
 ¬ 800px)”>
 <source src=lo-res.webm>
 ...
</video>

Also note that you should still use the type attribute with codecs
parameters and fallback content previously discussed. We’ve
just omitted those for clarity.

Rolling custom controls
One truly spiffing aspect of the <video> and <audio> media ele-
ments is that they come with a super easy JavaScript API. The
API’s events and methods are the same for both <audio> and
<video>. With that in mind, we’ll stick with the sexier media ele-
ment: the <video> element for our JavaScript discussion.

As you saw at the start of this chapter, Anne van Kesteren has
spoken about the new API and about the new simple methods
such as play(), pause() (there’s no stop method: simply pause
and move to the start), load(), and canPlayType(). In fact, that’s
all the methods on the media element. Everything else is events
and attributes.

Table 4.3 provides a reference list of media attributes, methods,
and events.

NOTE  We use min-device-
width rather than min-

width. Mobile browsers (which
vary the reported width of their
viewport to better accommodate
web pages by zooming the
viewport) will then refer to the
nominal width of their physical
screen.

www.w3.org/TR/css3-mediaqueries

INTRODUCING HTML5124

TABLE 4.3  Media Attributes, Methods, and Events

ATTRIBUTES METHODS EVENTS

error state

error

load()

canPlayType(type)

play()

pause()

addTrack(label, kind, language)

loadstart

progress

suspend

abort

error

emptied

stalled

play

pause

loadedmetadata

loadeddata

waiting

playing

canplay

canplaythrough

seeking

seeked

timeupdate

ended

ratechange

network state

src

currentSrc

networkState

preload

buffered

ready state

readyState

seeking

controls

controls

volume

muted

tracks

tracks

playback state

currentTime

startTime

duration

paused

defaultPlaybackRate

playbackRate

played

seekable

ended

autoplay

loop

width [video only]

height [video only]

videoWidth [video only]

videoHeight [video only]

poster [video only]

Chapter 4  :   Video and Audio  :   Rolling custom controls 125

Using JavaScript and the new media API, you have complete
control over your multimedia—at its simplest, this means that
you can easily create and manage your own video player con-
trols. In our example, we walk you through some of the ways to
control the video element and create a simple set of controls.
Our example won’t blow your mind—it isn’t nearly as sexy as the
<video> element itself (and is a little contrived!)—but you’ll get a
good idea of what’s possible through scripting. The best bit is
that the UI will be all CSS and HTML. So if you want to style it
your own way, it’s easy with just a bit of web standards knowl-
edge—no need to edit an external Flash Player or similar.

Our hand-rolled basic video player controls will have a play/pause
toggle button and allow the user to scrub along the timeline of
the video to skip to a specific section, as shown in Figure 4.3.

Our starting point will be a video with native controls enabled.
We’ll then use JavaScript to strip the native controls and add our
own, so that if JavaScript is disabled, the user still has a way to
control the video as we intended:

<video controls>
 <source src=”leverage-a-synergy.webm” type=”video/webm” />
 <source src=”leverage-a-synergy.mp4” type=”video/mp4” />
 Your browser doesn’t support video.
 Please download the video in <a href=”leverage-a-
 ¬ synergy.webm”>WebM or <a href=”leverage-a-
 ¬ synergy.mp4”>MP4 format.
</video>
<script>
var video = document.getElementsByTagName(‘video’)[0];
video.removeAttribute(‘controls’);
</script>

FIGURE 4.3  Our simple but
custom video player controls.

NOTE  Some browsers, in
particular Opera, will show

the native controls even if
JavaScript is disabled; other
browsers, mileage may vary.

INTRODUCING HTML5126

Play, pause, and toggling playback
Next, we want to be able to play and pause the video from a
custom control. We’ve included a button element that we’re
going to bind a click handler and do the play/pause functionality
from. Throughout my code examples, when I refer to the play
object it will refer to this button element:

<button class=”play” title=”play”>►</button/>

We’re using ►, which is a geometric XML entity that looks
like a play button. Once the button is clicked, we’ll start the
video and switch the value to two pipes using ▐, which
looks (a little) like a pause, as shown in Figure 4.4.

For simplicity, I’ve included the button element as markup, but
as we’re progressively enhancing our video controls, all of
these additional elements (for play, pause, scrubbing, and so on)
should be generated by the JavaScript.

In the play/pause toggle, we have a number of things to do:

1.	 If the user clicks on the toggle and the video is currently
paused, the video should start playing. If the video has pre-
viously finished, and our playhead is right at the end of the
video, then we also need to reset the current time to 0, that
is, move the playhead back to the start of the video, before
we start playing it.

2.	 Change the toggle button’s value to show that the next
time the user clicks, it will toggle from pause to play or play
to pause.

3.	 Finally, we play (or pause) the video:

playButton.addEventListener(‘click’, function () {
 if (video.paused || video.ended) {
 if (video.ended) {
 video.currentTime = 0;
 }
 this.innerHTML = ‘’; // ▐▐ doesn’t
 ¬ need escaping here
 this.title = ‘pause’;
 video.play();
 } else {
 this.innerHTML = ‘’; // ►
 this.title = ‘play’;
 video.pause();
 }
}, false);

FIGURE 4.4  Using XML
entities to represent play and
pause buttons.

Chapter 4  :   Video and Audio  :   Rolling custom controls 127

The problem with this logic is that we’re relying entirely on our
own script to determine the state of the play/pause button. What
if the user was able to pause or play the video via the native
video element controls somehow (some browsers allow the
user to right click and select to play and pause the video)? Also,
when the video comes to the end, the play/pause button would
still show a pause icon. Ultimately, we need our controls always
to relate to the state of the video.

Eventful media elements
The media elements fire a broad range of events: when play-
back starts, when a video has finished loading, if the volume has
changed, and so on. So, getting back to our custom play/pause
button, we strip the part of the script that deals with changing its
visible label:

playButton.addEventListener(‘click’, function () {
 if (video.ended) {
 video.currentTime = 0;
 }
 if (video.paused) {
 video.play();
 } else {
 video.pause();
 }
}, false);

In the simplified code, if the video has ended we reset it, and
then toggle the playback based on its current state. The label
on the control itself is updated by separate (anonymous) func-
tions we’ve hooked straight into the event handlers on our
video element:

video.addEventListener(‘play’, function () {
 play.title = ‘pause’;
 play.innerHTML = ‘’;
}, false);
video.addEventListener(‘pause’, function () {
 play.title = ‘play’;
 play.innerHTML = ‘’;
}, false);
video.addEventListener(‘ended’, function () {
 this.pause();
}, false);

NOTE  In these examples,
we’re using the

addEventListener DOM
level 2 API, rather than the
attachEvent, which is specific
to Internet Explorer up to ver-
sion 8. IE9 supports video, but it
thankfully also supports the stan-
dardised addEventListener,
so our code will work there, too.

INTRODUCING HTML5128

Whenever the video is played, paused, or has reached the end,
the function associated with the relevant event is now fired,
making sure that our control shows the right label.

Now that we’re handling playing and pausing, we want to show
the user how much of the video has downloaded and therefore
how much is playable. This would be the amount of buffered
video available. We also want to catch the event that says how
much video has been played, so we can move our visual slider
to the appropriate location to show how far through the video
we are, as shown in Figure 4.5. Finally, and most importantly,
we need to capture the event that says the video is ready to
be played, that is, there’s enough video data to start watching.

Monitoring download progress
The media element has a “progress” event, which fires once the
media has been fetched but potentially before the media has
been processed. When this event fires, we can read the video.
seekable object, which has a length, start(), and end() method.
We can update our seek bar (shown in Figure 4.5 in the second
frame with the whiter colour) using the following code (where
the buffer variable is the element that shows how much of the
video we can seek and has been downloaded):

video.addEventListener(‘progress’, updateSeekable, false);
function updateSeekable() {
 var endVal = this.seekable && this.seekable.length ?
 ¬ this.seekable.end() : 0;
 buffer.style.width = (100 / (this.duration || 1) *
 ¬ endVal) + ‘%’;
}

FIGURE 4.5  Our custom
video progress bar, including
seekable content and the
current playhead position.

Chapter 4  :   Video and Audio  :   Rolling custom controls 129

The code binds to the progress event, and when it fires, it gets
the percentage of video that can be played back compared to
the length of the video. Note the keyword this refers to the
video element, as that’s the context in which the updateSeekable
function will be executed. The duration attribute is the length of
the media in seconds.

However, there’s some issues with Firefox. In previous versions
the seekable length didn’t match the actual duration, and in the
latest version (5.0.1) seekable seems to be missing altogether.
So to protect ourselves from the seekable time range going a
little awry, we can also listen for the progress event and default
to the duration of the video as backup:

video.addEventListener(‘durationchange’, updateSeekable,
¬ false);
video.addEventListener(‘progress’, updateSeekable, false);
function updateSeekable() {
 buffer.style.width = (100 / (this.duration || 1) *
 (this.seekable && this.seekable.length ? this.seekable.
 ¬ end() : this.duration)) + ‘%’;
}

It’s a bit rubbish that we can’t reliably get the seekable range.
Alternatively we could look to the video.buffered property,
but sadly since we’re only trying to solve a Firefox issue,
this value in Firefox (currently) doesn’t return anything for the
video.buffered.end() method—so it’s not a suitable alternative.

When the media file is ready to play
When your browser first encounters the video (or audio) element
on a page, the media file isn’t ready to be played just yet. The
browser needs to download and then decode the video (or audio)
so it can be played. Once that’s complete, the media element will
fire the canplay event. Typically this is the time you would initialise
your controls and remove any “loading” indicator. So our code to
initialise the controls would typically look like this:

video.addEventListener(‘canplay’, initialiseControls,
¬ false);

Nothing terribly exciting there. The control initialisation enables
the play/pause toggle button and resets the playhead in the
seek bar.

INTRODUCING HTML5130

However, sometimes this event won’t fire right away (or when
you’re expecting it to). Sometimes the video suspends down-
load because the browser is trying to prevent overwhelming
your system. That can be a headache if you’re expecting the
canplay event, which won’t fire unless you give the media ele-
ment a bit of a kicking. So instead, we’ve started listening for
the loadeddata event. This says that there’s some data that’s
been loaded, though not necessarily all the data. This means
that the metadata is available (height, width, duration, and so on)
and some media content—but not all of it. By allowing the user
to start playing the video at the point in which loadeddata has
fired, browsers like Firefox are forced to go from a suspended
state to downloading the rest of the media content, which lets
them play the whole video.

You may find that in most situations, if you’re doing something
like creating a custom media player UI, you might not need the
actual video data to be loaded—only the metadata. If that’s the
case, there’s also a loadedmetadata event which fires once the
first frame, duration, dimensions, and other metadata is loaded.
This may in fact be all you need for a custom UI.

So the correct point in the event cycle to enable the user inter-
face is the loadedmetadata:

video.addEventListener(‘loadedmetadata’, initialiseControls,
¬ false);

Media loading control: preload

Media elements also support a preload attribute that allows you to
control how much of the media is loaded when the page renders.
By default, this value is set to auto, but you can also set it to none
or metadata. If you set it to none, the user will see either the image
you’ve used for the poster attribute, or nothing at all if you don’t set a
poster. Only when the user tries to play the media will it even request
the media file from your server.

By setting the preload attribute to metadata, the browser will pull
down required metadata about the media. It will also fire the loaded-
metadata event, which is useful if you’re listening for this event to set
up a custom media player UI.

NOTE  The events to
do with loading fire in the

following order: loadstart,
durationchange,
loadedmetadata,
loadeddata, progress,
canplay, canplaythrough.

Chapter 4  :   Video and Audio  :   Rolling custom controls 131

A race to play video
Here’s where I tell you that as much as native video and audio
smells of roses, there’s a certain pong coming from somewhere.
That somewhere is a problem in the implementation of the
media element that creates what’s known as a “race condition.”

A race, what now?

In this situation, the race condition is where an expected sequence of
events fires in an unpredicted order. In particular, the events fire before
your event handler code is attached.

The problem is that it’s possible, though not likely, for the
browser to load the media element before you’ve had time to
bind the event listeners.

For example, if you’re using the loadedmetadata event to listen
for when a video is ready so that you can build your own fancy-
pants video player, it’s possible that the native video HTML ele-
ment may trigger the events before your JavaScript has loaded.

Workarounds
There are a few workarounds for this race condition, all of which
would be nice to avoid, but I’m afraid it’s just something we
need to code for defensively.

WORKAROUND #1: HIGH EVENT DELEGATION

In this workaround, we need to attach an event handler on the
window object. This event handler must be above the media ele-
ment. The obvious downside to this approach is that the script
element is above our content, and risks blocking our content
from loading (best practice is to include all script blocks at the
end of the document).

Nonetheless, the HTML5 specification states that media events
should bubble up the DOM all the way to the window object. So
when the loadedmetadata event fires on the window object, we
check where the event originated from, via the target property,
and if that’s our element, we run the setup code. Note that in
the example below, I’m only checking the nodeName of the ele-
ment; you may want to run this code against all audio elements
or you may want to check more properties on the DOM node
to make sure you’ve got the right one.

INTRODUCING HTML5132

<script>
function audioloaded() {
 // setup the fancy-pants player
}

window.addEventListener(‘loadedmetadata’, function (event) {
 if (event.target.nodeName === ‘AUDIO’) {
 // set this context to the DOM node
 audioloaded.call(event.target);
 }
}, true);

</script>

<audio src=”hanson.mp3”>
 <p>If you can read this, you can’t enjoy the soothing
 ¬ sound of the Hansons.</p>
</audio>

WORKAROUND #2: HIGH AND INLINE

Here’s a similar approach using an inline handler:

<script>
function audioloaded() {
 // setup the fancy-pants player
}
</script>

<audio src=”hanson.mp3” onloadedmetadata=
¬ ”audoloaded.call(this)”>
 <p>If you can read this, you can’t enjoy the soothing
 ¬ sound of the Hansons.</p>
</audio>

Note that in the inline event handler I’m using .call(this) to
set the this keyword to the audio element the event fired upon.
This means it’s easier to reuse the same function later on if
browsers (in years to come) do indeed fix this problem.

By putting the event handler inline, the handler is attached as
soon as the DOM element is constructed, therefore it is in place
before the loadedmetadata event fires.

Chapter 4  :   Video and Audio  :   Rolling custom controls 133

WORKAROUND #3: JAVASCRIPT GENERATED MEDIA

Another workaround is to insert the media using JavaScript.
That way you can create the media element, attach the event
handlers, and then set the source and insert it into the DOM.

Remember: if you do insert the media element using JavaScript,
you need to either insert all the different source elements manu-
ally, or detect the capability of the browser, and insert the src
attribute that the browser supports, for instance WebM/video
for Chrome.

I’m not terribly keen on this solution because it means that
those users without JavaScript don’t get the multimedia at all.
Although a lot of HTML5 is “web applications,” my gut (and
hopefully yours, too) says there’s something fishy about resort-
ing to JavaScript just to get the video events working in a way
that suits our needs. Even if your gut isn’t like mine (quite pos-
sible), big boys’ Google wouldn’t be able to find and index your
amazing video of your cat dancing along to Hanson if JavaScript
was inserting the video. So let’s move right along to workaround
number 4, my favourite approach.

WORKAROUND #4: CHECK THE READYSTATE

Probably the best approach, albeit a little messy (compared
to a simple video and event handler), is to simply check the
readyState of the media element. Both audio and video have
a readyState with the following states:

•	 HAVE_NOTHING = 0;

•	 HAVE_METADATA = 1;

•	 HAVE_CURRENT_DATA = 2;

•	 HAVE_FUTURE_DATA = 3;

•	 HAVE_ENOUGH_DATA = 4;

Therefore if you’re looking to bind to the loadedmetadata event,
you only want to bind if the readyState is 0. If you want to bind
before it has enough data to play, then bind if readyState is less
than 4.

INTRODUCING HTML5134

Our previous example can be rewritten as:

<audio src=”hanson.mp3”>
 <p>If you can read this, you can’t enjoy the soothing
 ¬ sound of the Hansons.</p>
</audio>

<script>
function audioloaded() {
 // setup the fancy-pants player
}

var audio = document.getElementsByTagName(‘audio’)[0];

if (audio.readyState > 0) {
 audioloaded.call(audio);
} else {
 audio.addEventListener(‘loadedmetadata’, audioloaded,
 ¬ false);
}
</script>

This way our code can sit nicely at the bottom of our document,
and if JavaScript is disabled, the audio is still available. All good
in my book.

Will this race condition ever be fixed?
Technically I can understand that this issue has always existed
in the browser. Think of an image element: if the load event fires
before you can attach your load event handler, then nothing is
going to happen. You might see this if an image is cached and
loads too quickly, or perhaps when you’re working in a develop-
ment environment and the delivery speed is like Superman on
crack—the event doesn’t fire.

Images don’t have ready states, but they do have a complete
property. When the image is being loaded, complete is false.
Once the image is done loading (note this could also result in it
failing to load due to some error), the complete property is true.
So you could, before binding the load event, test the complete
property, and if it’s true, fire the load event handler manually.

Since this logic has existed for a long time for images, I would
expect that this same logic is being applied to the media ele-
ment, and by that same reasoning, technically this isn’t a bug,
as buggy as it may appear to you and me!

Chapter 4  :   Video and Audio  :   Rolling custom controls 135

Fast forward, slow motion, and reverse
The spec provides an attribute, playbackRate. By default, the
assumed playbackRate is 1, meaning normal playback is at the
intrinsic speed of the media file. Increasing this attribute speeds
up the playback; decreasing it slows it down. Negative values
indicate that the video will play in reverse.

Not all browsers support playbackRate yet (only WebKit-based
browsers and IE9 support it right now), so if you need to support
fast forward and rewind, you can hack around this by program-
matically changing currentTime:

function speedup(video, direction) {
 if (direction == undefined) direction = 1; // or -1 for
 ¬ reverse

 if (video.playbackRate != undefined) {
 video.playbackRate = direction == 1 ? 2 : -2;
 } else { // do it manually
 video.setAttribute(‘data-playbackRate’, setInterval
 ¬ ((function playbackRate () {
 video.currentTime += direction;

return playbackRate; // allows us to run the
¬ function once and setInterval
 })(), 500));
 }
}

function playnormal(video) {
 if (video.playbackRate != undefined) {
 video.playbackRate = 1;
 } else { // do it manually
 clearInterval(video.getAttribute(‘data-playbackRate’));
 }
}

As you can see from the previous example, if playbackRate is sup-
ported, you can set positive and negative numbers to control the
direction of playback. In addition to being able to rewind and fast
forward using the playbackRate, you can also use a fraction to
play the media back in slow motion using video.playbackRate = 0.5,
which plays at half the normal rate.

INTRODUCING HTML5136

Full-screen video
For some time, the spec prohibited full-screen video, but it’s
obviously a useful feature so WebKit did its own proprietary
thing with WebkitEnterFullscreen();. WebKit implemented its API
in a way that could only be triggered by the user initiating the
action; that is, like pop-up windows, they can’t be created unless
the user performs an action like a click. The only alternative to
this bespoke solution by WebKit would be to stretch the video
to the browser window size. Since some browsers have a full-
screen view, it’s possible to watch your favourite video of Bruce
doing a Turkish belly dance in full screen, but it would require
the user to jump through a number of hoops—something we’d
all like to avoid.

In May 2011, WebKit announced it would implement Mozilla’s full-
screen API (https://wiki.mozilla.org/Gecko:FullScreenAPI). This API
allows any element to go full-screen (not only <video>)—you might
want full-screen <canvas> games or video widgets embedded in
a page via an <iframe>. Scripts can also opt in to having alphanu-
meric keyboard input enabled during full-screen view, which means
that you could create your super spiffing platform game using the
<canvas> API and it could run full-screen with full keyboard support.

As Opera likes this approach, too, we should see something
approaching interoperability. Until then, we can continue to fake
full-screen by going full-window by setting the video’s dimen-
sions to equal the window size.

Multimedia accessibility
We’ve talked about the keyboard accessibility of the video ele-
ment, but what about transcripts and captions for multimedia?
After all, there is no alt attribute for video or audio as there is
for . The fallback content between the tags is meant only
for browsers that can’t cope with native video, not for people
whose browsers can display the media but can’t see or hear it
due to disability or situation (for example, being in a noisy envi-
ronment or needing to conserve bandwidth).

There are two methods of attaching synchronized text alter-
natives (captions, subtitles, and so on) to multimedia, called
in-band and out-of-band. In-band means that the text file is
included in the multimedia container; an MP4 file, for example,
is actually a container for H.264 video and AAC audio, and can

https://wiki.mozilla.org/Gecko:FullScreenAPI

Chapter 4  :   Video and Audio  :   Multimedia accessibility 137

hold other metadata files too, such as subtitles. WebM is a con-
tainer (based on the open standard Matroska Media Container
format) that holds VP8 video and Ogg Vorbis audio. Currently,
WebM doesn’t support subtitles, as Google is waiting for the
Working Groups to specify the HTML5 format: “WHATWG/W3C
RFC will release guidance on subtitles and other overlays in
HTML5 <video> in the near future. WebM intends to follow that
guidance”. (Of course, even if the container can contain addi-
tional metadata, it’s still up to the media player or browser to
expose that information to the user.)

Out-of-band text alternatives are those that aren’t inside the
media container but are held in a separate file and associated
with the media file with a child <track> element:

<video controls>
<source src=movie.webm>
<source src=movie.mp4>
<track src=english.vtt kind=captions srclang=en>
<track src=french.vtt kind=captions srclang=fr>
<p>Fallback content here with links to download video
¬ files</p>
</video>

This example associates two caption tracks with the video, one
in English and one in French. Browsers will have some UI mech-
anism to allow the user to select the one she wants (listing any
in-band tracks, too).

The <track> element doesn’t presuppose any particular format,
but the browsers will probably begin by implementing the new
WebVTT format (previously known as WebSRT, as it’s based on
the SRT format) (www.whatwg.org/specs/web-apps/current-work/
multipage/the-video-element.html#webvtt).

This format is still in development by WHATWG, with lots of
feedback from people who really know, such as the BBC, Netflix,
and Google (the organisation with probably the most experience
of subtitling web-delivered video via YouTube). Because it’s still
in flux, we won’t look in-depth at syntax here, as it will probably
be slightly different by the time you read this.

WebVTT is just a UTF-8 encoded text file, which looks like this
at its simplest:

WEBVTT

00:00:11.000 --> 00:00:13.000
Luftputefartøyet mitt er fullt av ål

www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html#webvtt
www.whatwg.org/specs/web-apps/current-work/multipage/the-video-element.html#webvtt

INTRODUCING HTML5138

This puts the subtitle text “Luftputefartøyet mitt er fullt av ål”
over the video starting at 11 seconds from the beginning, and
removes it when the video reaches the 13 second mark (not 13
seconds later).

No browser currently supports WebVTT or <track> but there are
a couple of polyfills available. Julien Villetorte (@delphiki) has
written Playr (www.delphiki.com/html5/playr/), a lightweight
script that adds support for these features to all browsers that
support HTML5 video (Figure 4.6).

WebVTT also allows for bold, italic, and colour text, vertical text
for Asian languages, right-to-left text for languages like Arabic
and Hebrew, ruby annotations (see Chapter 2), and positioning
text from the default positioning (so it doesn’t obscure key text
on the screen, for example), but only if you need these features.

The format is deliberately made to be as simple as possible, and
that’s vital for accessibility: If it’s hard to write, people won’t do it,
and all the APIs in the world won’t help video be accessible if
there are no subtitled videos.

Let’s also note that having plain text isn’t just important for
people with disabilities. Textual transcripts can be spidered by
search engines, pleasing the Search Engine Optimists. And, of
course, text can be selected, copied, pasted, resized, and styled
with CSS, translated by websites, mashed up, and all other kinds
of wonders. As Shakespeare said in Sonnet 155, “If thy text be
selectable/‘tis most delectable.”

FIGURE 4.6  Remy reading
Shakespeare’s Sonnet 155,
with Welsh subtitle displayed
by Playr.

NOTE  Scott Wilson’s
VTT Caption Creator

(http://scottbw.wordpress.
com/2011/06/28/creating-
subtitles-and-audio-descriptions-
with-html5-video/) is a utility that
can help author subtitles to be
used as standalone HTML, or a
W3C Widget.

http://scottbw.wordpress.com/2011/06/28/creating-subtitles-and-audio-descriptions-with-html5-video/
http://scottbw.wordpress.com/2011/06/28/creating-subtitles-and-audio-descriptions-with-html5-video/
http://scottbw.wordpress.com/2011/06/28/creating-subtitles-and-audio-descriptions-with-html5-video/
http://scottbw.wordpress.com/2011/06/28/creating-subtitles-and-audio-descriptions-with-html5-video/
www.delphiki.com/html5/playr/

Chapter 4  :   Video and Audio  :   Synchronising media tracks 139

Synchronising media tracks
HTML5 will allow for alternative media tracks to be included and
synchronised in a single <audio> or <video> element .

You might, for example, have several videos of a sporting event,
each from different camera angles, and if the user moves to a
different point in one video (or changes the playback rate for
slow motion), she expects all the other videos to play in sync.
Therefore, different media files need to be grouped together.

This could be a boon for accessibility, allowing for sign-language
tracks, audio description tracks, dubbed audio tracks, and similar
additional or alternative tracks to the main audio/video tracks.

MediaElement.js, King of the Polyfills

MediaElement.js (www.mediaelementjs.com) is a plugin developed by John Dyer (http://j.hn), a web devel-
oper for Dallas Theological Seminary.

Making an HTML5 player isn’t rocket surgery. The problem comes when you’re doing real world video and
you need to support older browsers that don’t support native multimedia or browsers that don’t have the
codec you’ve been given.

Most HTML5 players get around this by injecting a completely separate Flash Player. But there are two
problems with this approach. First, you end up with two completely different playback UIs (one in HTML5
and one in Flash) that have to be skinned and styled independently. Secondly, you can’t use HTML5 Media
events like “ended” or “timeupdate” to sync other elements on your page.

MediaElement.js takes a different approach. Instead of offering a bare bones Flash player as a fallback,
it includes a custom player that mimics the entire HTML5 Media API. Flash (or Silverlight, depending on
what the user has installed) renders the media and then bubbles fake HTML5 events up to the browser.
This means that with MediaElement.js, even our old chum IE6 will function as if it supports <video> and
<audio>. John cheekily refers to this as a fall “forward” rather than a fallback.

On mobile systems (Android, iOS, WP7), MediaElement.js just uses the operating system’s UI. On the
desktop, it supports all modern browsers with true HTML5 support and upgrades older browsers. Addition-
ally, it injects support using plugins for unsupported codecs support. This allows it to play MP4, Ogg, and
WebM, as well as WMV and FLV and MP3.

MediaElement.js also supports multilingual subtitles and chapter navigation through <track> elements
using WebVTT, and there are plugins for Wordpress, Drupal, and BlogEngine.net, making them a no-
brainer to deploy and use on those platforms.

A noble runner-up to the crown is LeanBack Player http://dev.mennerich.name/showroom/html5_video/
with WebVTT polyfilling, no dependency on external libraries, and excellent keyboard support.

http://j.hn
www.mediaelementjs.com
http://dev.mennerich.name/showroom/html5_video/

INTRODUCING HTML5140

This can be accomplished with JavaScript, or declaratively with
a mediagroup attribute on the <audio> or <video> element:

<div>
 <video src=”movie.webm” autoplay controls
 ¬ mediagroup=movie></video>
 <video src=”signing.webm” autoplay
 ¬ mediagroup=movie></video>
 </div>

This is very exciting, and very new, so we won’t look further: the
spec is constantly changing and there are no implementations.

Video conferencing, augmented reality
As we mentioned earlier, accessing a device’s camera and micro-
phone was once available only to web pages via plugins. HTML5
gives us a way to access these devices straight from JavaScript,
using an API called getUserMedia. (You might find it referred to as
the <device> element on older resources. The element itself has
been spec’d away, but the concept has been moved to a pure API.)

An experimental build of Opera Mobile on Android gives us
a glimpse of what will be possible once this feature is widely
available. It connects the camera to a <video> element using
JavaScript by detecting whether getUserMedia is supported and,
if so, setting the stream coming from the camera as the src of
the <video> element:

<!DOCTYPE html>
<h1>Simple web camera display demo</h1>
<video autoplay></video>
<script type=”text/javascript”>
var video = document.getElementsByTagName(‘video’)[0],
 heading = document.getElementsByTagName(‘h1’)[0];

if(navigator.getUserMedia) {
 navigator.getUserMedia(‘video’, successCallback,
 ¬ errorCallback);
 function successCallback(stream) {
 video.src = stream;
 }
 function errorCallback(error) {
 heading.textContent =
 “An error occurred: [CODE “ + error.code + “]”;
 }

NOTE  On 25 August 2011,
the American Federal

Communications Commission
released FCC 11-126, ordering
certain TV and video networks
to provide video description for
certain television programming.

Providing descriptions of a pro-
gram’s key visual elements in
natural pauses in the program’s
dialogue is a perfect use of
mediagroup and the associ-
ated API.

NOTE  getUserMedia is
a method of the navigator

object according to the spec.
Until the spec settles down,
though, Opera (the only imple-
mentors so far) are putting it on
the opera object.

Chapter 4  :   Video and Audio  :   Synchronising media tracks 141

} else {
 heading.textContent =
 “Native web camera streaming is not supported in
 ¬ this browser!”;
}
</script>

Once you’ve done that, you can manipulate the video as you
please. Rich Tibbett wrote a demo that copies the video into
canvas (thereby giving you access to the pixel data), looks at
those pixels to perform facial recognition, and draws a mous-
tache on the face, all in JavaScript (see Figure 4.7).

Norwegian developer Trygve Lie has made demos of getUserMedia
that use Web Sockets (see Chapter 10) to send images from an
Android phone running the experimental Opera Mobile build to a
desktop computer. See https://github.com/trygve-lie/demos-html5-
realtime for the source code and a video demonstrating it.

Obviously, giving websites access to your webcam could create
significant privacy problems, so users will have to opt-in, much
as they have to do with geolocation. But that’s a UI concern
rather than a technical problem.

Taking the concept even further, there is also a Peer-to-Peer API
being developed for HTML, which will allow you to hook up your
camera and microphone to the <video> and <audio> elements
of someone else’s browser, making it possible to do video
conferencing.

FIGURE 4.7  Remy Sharp, with
a magical HTML5 moustache.
(Photo by Julia Gosling)

https://github.com/trygve-lie/demos-html5-realtime
https://github.com/trygve-lie/demos-html5-realtime

INTRODUCING HTML5142

In May 2011, Google announced WebRTC, an open technology
for voice and video on the Web, based on the HTML5 specifica-
tions. WebRTC uses VP8 (the video codec in WebM) and two
audio codecs optimised for speech with noise and echo can-
cellation, called iLBC, a narrowband voice codec, and iSAC, a
bandwidth-adaptive wideband codec (see http://sites.google.
com/site/webrtc/).

As the project website says, “We expect to see WebRTC support
in Firefox, Opera, and Chrome soon!”

Summary
You’ve seen how HTML5 gives you the first credible alternative
to third-party plugins. The incompatible codec support currently
makes it harder than using plugins to simply embed video in a
page and have it work cross-browser.

On the plus side, because video and audio are now regular ele-
ments natively supported by the browser (rather than a “black
box” plugin) and offer a powerful API, they’re extremely easy
to control via JavaScript. With nothing more than a bit of web
standards knowledge, you can easily build your own custom
controls, or do all sorts of crazy video manipulation with only a
few lines of code. As a safety net for browsers that can’t cope,
we recommend that you also add links to download your video
files outside the <video> element.

There are already a number of ready-made scripts available
that allow you to easily leverage the HTML5 synergies in your
own pages, without having to do all the coding yourself. jPlayer
(www.jplayer.org) is a very liberally licensed jQuery audio player
that degrades to Flash in legacy browsers, can be styled with
CSS, and can be extended to allow playlists. For video, you’ve
already met Playr, MediaElement.js and LeanBack Player which
are my weapons of choice, but many other players exist. There’s
a useful video player comparison chart at http://praegnanz.de/
html5video/.

Accessing video with JavaScript is more than writing new play-
ers. In the next chapter, you’ll learn how to manipulate native
media elements for some truly amazing effects, or at least our
heads bouncing around the screen—and who could conceive
of anything more amazing than that?

http://sites.google.com/site/webrtc/
http://sites.google.com/site/webrtc/
www.jplayer.org
http://praegnanz.de/html5video/
http://praegnanz.de/html5video/

INDEX286

INDEX
attachEvent method, 251

versus addEventListener event, 124
attributes

custom data, 72–73
global, 70–75
removed in HTML5, 75–76

Audacity software, 122
Audio Data API, 118
<audio> element/audio, 54, 110, 112–113. See also

multimedia
attributes, 124
autoplay, 113
controls, 54, 114
loop, 116
muted, 115
playbackRate, 135
preload, 116, 130
src, 116

events, 124, 127–129
methods, 124
addTrack(), 124
canPlayType(), 123–124
load(), 123–124
pause(), 123–124, 126–127
play(), 123–124, 126–127

autocomplete attribute, 92
autofocus attribute, 89
autoplay attribute, 113, 124

B
Baranovskiy, Dmitry, 152
Base64 encoding, 162–163
<bdi> element, 58–59
beginPath method, 150–151
 element, 69
Berjon, Robin, 20
Berners-Lee, Sir Tim, 33
Bespin project, 166
bezierCurveTo method, 152
bidirectional connections, 266
bidirectional text, 58
<big> element, 70
Bing, schema.org, 27
BlackBerry, input types

color, 87
date, 82–83

<blink> element, 70
block-level elements, 39, 54
block-level style sheet, 11
<blockquote> element, 18, 36
<footer> element, 29

A
AAC codec, 118, 120, 136
abort event, 124
accessibility. See also WAI-ARIA

Designing with Progressive Enhancement: Building the
Web that Works for Everyone, 52–53

“Importance of HTML Headings for Accessibility,” 38
“Introduction to WAI-ARIA,” 52
The Paciello Group, 52
Universal Design for Web Applications, 52

accesskey attribute, 70–71
Ace editor, 166
addEventListener method, 228, 251, 261
<address> element, 65
addTrack method, 124
Adkins, Jr., Tab, 57
Adobe Flash, 121, 125

MediaEvent.js plugin, 139
polyfill for WebSockets, 266

<a> element, 54
alt attribute, 62
“The Amazing HTML5 Doctor Easily Confused HTML5

Element Flowchart of Enlightenment!”, 44
animating canvas paintings, 163–166

rendering text, 166–167
saving/restoring drawing states, 166

AppCache, 212, 223
Apple Safari. See Safari
<applet> element, 70
Apple VoiceOver screen reader, 53
applicationCache object, 209, 217–218, 220–222
arcTo method, 152
ARIA (Accessible Rich Internet Applications).

See WAI-ARIA
aria-describedby attribute, 74
aria-grabbed attribute, 236
aria-labelledby attribute, 74
aria-required attribute, 90
ARIA role=presentation attribute, 61, 75
aria-valuemax attribute, 98
aria-valuemin attribute, 98
aria-valuenow attribute, 98
<article> element, 18–20, 54
<footer> element, 28–29
<header> element, 28
links around block-level elements, 39
nesting, 28–29
replacing <div class=”post”>, 25
replacing <div> element, 32
versus <section> element, 38–44

<aside> element, 17–19, 34–35, 54, 57
Ateş, Faruk, 279

INDEX 287

<body> element, 3–4, 5, 18, 36
border=... attribute, 75–76
browsers. See legacy browsers or specific browsers
buffered attribute, 124
<button> element, 54
Bynens, Mathias, 278

C
CACHE MANIFEST namespace, 210, 221
Camen, Kroc, 121
Camino, legacy problems, 12
canplay event, 124, 130
canplaythrough event, 124, 130
canPlayType method, 123–124
<canvas> element/canvases, 54

2D API, 144, 146
versus SVG (Scalable Vector Graphics), 152

accessibility, 168
animating paintings, 163–166

rendering text, 166–167
saving/restoring drawing states, 166

capturing images, 155–158
drawing paths, 150–152
exporting in multiple formats, 162–163
interrogating individual pixels, 159–161
Open Web technology, 144
painting gradients and patterns, 147–150
transformations, 153–154
vector-drawing programs, 144–145

CanvasPixelArray object, 161
case studies, www.guardian.co.uk, 44–49
caveats, <small> element, 19
<center> element, 70
character encoding, UTF-8, 2
charset=”utf-8” attribute, XHTML and XML versus

HTML5, 2
checkvalidity method, 104
Chisholm, Wendy, 52
Chrome (Google)

audio/video codecs, 118
controls attribute, 114
<details> element, 60
drag and drop, 226–227, 229, 232
EventSource object, 273
forms, 81
Google Docs, 209
IndexedDB, 204
input types

number, 85
range, 85

offline applications, 208, 219–220, 223
outlines, 32
<progress> element, 94–95
schema.org, 27
Web SQL Database, 170–171, 184
Web Storage API, 178
Web Workers, 253, 259, 262–263

<cite> element, 66

classes
attributes, 6, 8
names, Google index research, 6

clearInterval method, 156
clearWatch method, 239–240
clip method, 152
codecs, 117

best, 119
browser support, video and audio, 118
handheld devices, 122–123
royalty-free, 122
<source> element, 118–120

color attribute, 87
Comet WebSockets, 265–266, 269
<command> element, 77
Contacts add-on, Firefox, 82
Contacts API, W3C, 82
contenteditable attribute, 71, 281
<content> element, 10
content models, 54
contentWindow object, 250
controls attribute, 54, 114, 124
cookie library, 169
cookies, 170
Coordinated Universal Time (UTC), 26
coords (coordinates) object, 241–243, 247
copyrights, <small> element, 19
createPattern method, 147–149
createRadialGradient method, 148
Crockford, Douglas, 177–178, 182
CSS (Cascading Style Sheets), 10
<body> element requirement, 11
display:inline, 54
form fields, styling, 100–101
HTML5 elements and content models, 54
:-mox-any() grouping mechanism, 37
polyfills, 282
<video> element, 111

CSS Basic User Interface Module, 100
“CSS Design: Taming Lists,” 16
CSS Media Queries specification, 122
currentSrc attribute, 124
currentTime attribute, 124

D
data-• attribute, 72–73
<datalist> element, with list attribute, 87–89
data storage

cookies, 170
IndexedDB, 171, 195

debugging tools, 204–205
indexed databases, creating, 196–197
object stores, 198–199
object stores, adding/putting objects in, 199–201
object stores, deleting data, 203–204
object store transactions, 201–203
version control, 197–198

options, 170–172

www.guardian.co.uk

INDEX288

data storage (continued)
persistent storage, 223
Web SQL Database, 170–172, 184

database insertions, 187–193
database queries, 187–193
databases, opening/creating, 185–186
database tables, 186–187
database transactions, 193–194
version control, 185

Web Storage, 170–175
accessing storage, 175–178
debugging tools, 178–179
fallback options, 182–183
storage events, 180–182

dataTransfer object, 228–230
date attribute, 82–83
dates and times, 26–28
datetime attribute, 83
Davis, Daniel, 63
defaultPlaybackRate attribute, 124
definition lists, 66–67
 element, 54
deleteDatabase method, 203–204
deleteObjectStore method, 203
Designing with Progressive Enhancement: Building the

Web that Works for Everyone, 52–53
<details> element, 18, 36, 59–60, 278
<device> element, 140
digital rights management (DRM), 112
dir attribute, 59
disclaimers, <small> element, 19
display:block, 11
display:inline, CSS, 54
<div> element, 7–8

replacing with <article> element, 32
<dl> element, 66–67
DOCTYPE, 2
<!doctype html> tags, 2
document outlines, 31–34
DOM API, Microdata, 57
drag and drop, 226–229

accessibility, 234–236
custom drag icons, 233–234
draggable attribute, 232–233
interoperability of data, 230–232

dragend event, 232
dragenter event, 232–233
draggable attribute, 73
dragleave event, 232
Dragonfly. See Opera/Opera Dragonfly
dragoverevent, 233
dragstart event, 229–236
drawImage method, 155–159
DRM (digital rights management), 112
drop event, 232
dropzone attribute/drop zone, 226–229, 232–236
duration attribute, 124
durationchange event, 130
Dyer, John, 139

E
eCSStender utility, 282
email attribute, 81–82, 99
embedded content models, 54
<embed> element, 54, 70, 77, 110–111
 element, 67
emptied event, 124
ended attribute, 124
ended event, 124
error attribute, 124
error event, 124
EventSource object, 270–274
excanvas library, 146
executeSQL method, 186–194
“Extending HTML5—Microdata,” 57

F
FALLBACK namespace, 210–213, 221
fallback-server-time.js, 209–211
“fat footers,” 19
Faulkner, Steve, 39, 52, 61
FCC 11-126, American Federal Communications

Commission, 140
Federal Communications Commission, U.S, FCC 11-126,

140
FFmpeg library, 122
<fieldset> element, 18, 36, 93, 105–106
<figcaption> element, 60–62
<figure> element, 18, 36, 60–62
Filament Group, 168
File API, 236
fillText method, 167
Firefox (Mozilla)

audio/video, codecs supported, 118, 120
canvas image formats, 162
Contacts add-on, 82
controls attribute, 114
cookie security, 204–205
drag and drop, 226–229, 232
EventSource object, 273
forms, 80–81

psuedo-classes, 101
full-screen API, 136
geolocation, 238–240
IndexedDB, 204–205
legacy problems, 12
messaging, 251
:-mox-any() grouping mechanism, 37
offline applications, 213, 215, 223
seekable attribute, 129
Web Workers, 253, 257, 262–264

Flash (Adobe), 121, 125
MediaElement.js plug-in, 139
polfill for WebSockets, 266

FlashCanvas, 146
flow content models, 54
 element, 70

INDEX 289

<footer> element, 16, 18–20, 25
<article> element, 28
<blockquote> element, 29

form attribute, 93–94
<form> element/forms

attributes
formvalidate, 106
novalidate, 105–106

form fields
error messages, 101
overriding browser defaults, 102–104
styling, 100–101
validation, avoiding, 105–106
validation, JavaScript, 104–105

<input> element, attributes
autocomplete, 92
autofocus, 89
form, 93–94
list with <datalist> element, 87–89
max, 93, 96–97
min, 93, 96–97
multiple, 90
name, 87
pattern, 91–92
placeholder, 90
required, 90
step, 93
WAI-ARIA, 97–98

<input: focus> element, 100
<input type> element, attributes
color, 87
date, 82–83
datetime, 83
email, 81–82, 99
month, 84
number, 84–85
range, 85, 96–97
search, 86
tel, 86
text, 99
time, 83
url, 82
week, 84

input types, 81–82
<meter> element, 93–95, 97
oninput event, 107–108

versus onchange event, 106–107
versus onforminput event, 107

<output> element, 97
<progress> element, 93–95, 97
sliders, 96–99

formnovalidate method, 106
formvalidate attribute, 106

G
geolocation, 237–238

configuring, 246–247
GPS devices, 243, 245, 247
locating users, 238–240, 247
methods, 240–244

error handler, 244–246

getCurrentPosition method, 239–242, 244–246
getData method, 228–230
getElementByID method, 87
getImageData method, 161
getTime method, 189
getUserMedia API, 140–141
Google Buzz, 238
Google Chrome. See Chrome
Google Maps, 238
Google Wave, 267
Gowalla, 238
GPS devices and geolocation, 243, 245, 247
gradients, 147–150

H
<h-1–h6> elements, 13, 54

replacing with <section> element, 33
H.264 codec, 117–120, 122, 136
Harmomy, 144–145
<head> element, 2–4
<header> element, 13–15, 25, 28
heading content models, 54
height attribute, 115, 124
<hgroup> element, 13, 35
Hickson, Ian, 6, 53, 225–226
hidden attribute, 73–74
Holzmann, Ralph, 282
<hr> element, 67–68
HTML 4

elements removed in HTML5, 70
versus HTML5, 7–8, 11

HTML5
attributes, 6
class names, 6
elements removed from HTML4, 70
versus HTML 4, 7–8, 11
Media Library, 121
offline, 208
shiv, 54, 276
versus XML and XHTML, 2–3

html5canvas library, 146
“The HTML5 <ruby> element in words of one

syllable or less,” 63
“HTML5: Techniques for providing useful text

alternatives,” 61
HTML5: Up and Running, 279
<html> tags

importance, 4–5
optional tags, 3–4
primary language declaration, 4–5

I
id attribute, 74, 87
IDs, names in Google index research, 6
IE (Internet Explorer)
addEventListener event, 127
audio/video codecs, 118
Base64 encoding, 162
<body> element, 5
canvas element, 146

INDEX290

IE (Internet Explorer) (continued)
canvas image formats, 162
controls attribute, 114
cookies, 172
CSS, 11–12
<datalist> element, 89
drag and drop, 225–229, 232–233
elements, adding missing, 4
forms, 80
geolocation, 238
IndexedDB, 171, 205
input types, search, 86
JavaScript, 11–12
messaging, 251
polyfills, 277, 280–284
Web Storage, 183
Web Workers, 253

<i> element, 67
IE Print Protector, 12
<iframe> element, 54, 70
iLBC codec, 142
image captures, 155–158
 element, 54
alt attribute, 62
longdesc=... attribute, 76

immediate-mode API (2D canvas) versus retained-mode
API (SVG), 152

“Importance of HTML Headings for Accessibility,” 38
importScripts method, 259
in-band/out-of-band methods, synchronized text

attachments, 136–137
“Incite a Riot,” 66
IndexedDB, 171, 195

debugging tools, 204–205
indexed databases, creating, 196–197
object stores, 198–199

adding/putting objects in, 199–201
deleting data, 203–204
transactions, 201–203

version control, 197–198
Web Workers, 255, 260

inline elements, 54
<input> element, attributes
autocomplete, 92
autofocus, 89
form, 93–94
list with <datalist> element, 87–89
max, 93, 96–97
min, 93, 96–97
multiple, 90
name, 87
pattern, 91–92
placeholder, 90
required, 90
step, 93
WAI-ARIA, 97–98

<input: focus> element, 100
<input type> element, attributes
color, 87
date, 82–83
datetime, 83

email, 81–82, 99
month, 84
number, 84–85
range, 85, 96–97
search, 86
tel, 86
text, 99
time, 83
url, 82
week, 84

:in-range pseudo-class, 101
<ins> element, 54
INSERT statements, 188–194
interactive content models, 54
:intermediate pseudo-class, 101
internationalization, 58
Internet Archive, 122
Internet Explorer. See IE
“Introduction to WAI-ARIA,” 52
iOS, geolocation, 238
Irish, Paul, 279, 281
Ishida, Richard, 58
isPointInPath method, 152
itemid attribute, 56–57, 74
itemprop attribute, 55–56, 74
itemref attribute, 56, 74
itemscope attribute, 54, 74
itemtype attribute, 54–55

J
JavaScript
<body> element requirement, 11
IE application of CSS to HTML5, 11–12
IE Print Protector, 12
JSmad library, 118
polyfills, 276–284
ppk on JavaScript, 72
race condition workarounds, 131–134
validation for legacy browsers, 99
Web Forms API, 104–106

JIT (Just in Time compilation), 168
jPlayer, 142
jQuery Visualize, 168
jsconsole.com, 219–220
JSmad library, 118
JSON (JavaScript Object Notation) library, 177–178, 182
stringify and parse functions, 232, 252
WebSockets, 267–269

Just in Time compilation (JIT), 168

K
Keith, Jeremy, 66, 88
<keygen> element, 54, 77, 93
key method, 176
Koch, Peter-Paul, 72, 169–170

INDEX 291

L
<label> element, 54, 93
LAMP system, 271
Langridge, Stuart, 63
languages

bidirectional text, 58
“The HTML5 <ruby> element in words of one syllable

or less,” 63
<ruby> element, 63

Lauke, Patrick, 100
LeanBack Player, 139
legacy browsers

backwards compatibility, 80, 88, 99
<body> element requirement, 11
multimedia, 120–121
overriding defaults, 102–104
<script> element, JavaScript default, 11
styling HTML5 problems, 12
video/audio problems, 113

legal restrictions, <small> element, 19
Lemon, Gez, 52, 235
Levithan, Steven, 91
Lie, Trygve, 141
linear fills, 147–148
links and block-level elements, 39
list attribute with <datalist> element, 87–89
lists

definition lists, 66–67
ordered/unordered lists, 68
unordered lists, 16, 68

loadeddata event, 124, 130
loadedmetadata event, 124, 130–134
load method, 123–124
loadstart event, 124, 127–130
localStorage object, 172–175, 178–182, 223
longdesc=... attribute, 76
loop attribute, 116, 124

M
machine-readable dates and times, 26
MAMA crawler, Opera, 6
<mark> element, 63
<marquee> element, 70
Matroska Media Container format, 137
max attribute, 93, 96–97
May, Matt, 52
media. See <audio> element; multimedia;

<video> element
MediaElement.js, 139
mediagroup attribute, 140
Media Library, HTML5, 121
<menu> element, 54, 77
messages.js worker, 261
messaging, 250–252
<meta charset=utf-8> tags, 2
metadata content models, 54
<meta> element, swapping with <title> element, 4
<meta name=generator> element, alt attribute, 62
<meta> tags, XHTML and XML versus HTML5, 2–3
<meter> element, 93–95, 97

Microdata
attributes
itemid, 56–57, 74
itemprop, 55–56, 74
itemref, 56, 74
itemscope, 54, 74
itemtype, 54–55, 74

DOM API, 57
resources, 57
specification, 56

“Microdata Tutorial,” 57
Microsoft Internet Explorer. See IE
min attribute, 93, 96–97
Miro Video Converter, 122
Modernizr project, 279–280, 282–283
month attribute, 84
mousedown, mousemove, and mouseup events, 256
moveTo method, 151, 153
:-mox-any() grouping mechanism, 37
Mozilla Firefox. See Firefox
-moz-ui-invalid pseudo-class, 101
MP3/MP4/MP4A formats, 117–122, 136, 139
MS Paint, 144
multimedia. See also <audio> element; <video> element

accessibility, 136–138
attributes
autoplay, 113, 124
buffered, 124
controls, 54, 114, 124
currenSrc, 124
currentTime, 124
defaultPlaybackRate, 124
duration, 124
ended, 124
error, 124
height, 115, 124
loop, 116, 124
mediagroup, 140
muted, 115, 124
networkState, 124
paused, 124
playbackRate, 124, 135
played, 124
poster, 115, 124
preload, 116, 124, 130
readyState, 124
seekable, 124, 128
seeking, 124
src, 116, 124
startTime, 124
tracks, 124
videoHeight, 124
videoWidth, 124
volume, 124
width, 115, 124

codecs, 117
best, 119
browser support, video and audio, 118
handheld devices, 122–123
royalty-free, 122
<source> element, 118–120

INDEX292

events
abort, 124
attachEvent versus addEventListener, 124
canplay, 124, 130
canplaythrough, 124, 130
durationchange, 130
emptied, 124
ended, 124
error, 124
loadeddata, 124, 130
loadedmetadata, 124, 130–134
loadstart, 124, 127–130
pause, 124
play, 124
playing, 124
progress, 124
ratechange, 124
seeked, 124
seeking, 124
stalled, 124
suspend, 124
timeupdate, 124
waiting, 124

legacy browsers, 120–121
media tracks, synchronizing, 139–140
methods, 124
addTrack(), 124
canPlayType(), 123–124
load(), 123–124
pause(), 123–124, 126–127
play(), 123–124, 126–127

polyfills, 139
shortcomings in HTML5, 112
video conferencing, 140–142
WebRTC, 112, 142

multiple attribute, 90
muted attribute, 115, 124

N
name attribute, 87
Nas, Wilfred, 86
native drop zones, 233
<nav> element, 15–18, 34–35, 54
Neal, Jon, 12
NETWORK namespace, 210, 212–213
networkState attribute, 124
Newhouse, Mark, 16
Nitot, Tristan, 159
Node.js script, 267
novalidate attribute, 105–106
number attribute, 84–85
NVDA (open-source) screen reader, 53

O
<object> element, 54, 93
offline applications, 208
applicationCache object, 209, 217–218, 220–222
browser-server process, 214–217
cache, killing, 222–223

cache manifest, 209–212
manifest, 214

detecting connectivity, 221–222
network whitelist, 212–213

offline events, 208
Ogg Vorbis/Ogg Theora codec, 117–122, 137, 139
OGV codec, 118
 element, 16, 68
onchange event, versus oninput event, 106–107
ondragover event, 227–229
ondrop event, 227–229
onforminput event, versus oninput event, 107
oninput event, 107–108

versus onchange event, 106–107
versus onforminput event, 107

online events, 208
onmessage method, 254, 267
openDatabase method, 185–188
open property, 278
Open Web technologies

canvases, 144
geolocation, 238

Opera/Opera Dragonfly
audio/video

codecs supported, 118, 120
controls attribute, 114
<datalist> element, 89

browsers adding missing elements, 4
canvas image formats, 162
EventSource object, 273
forms, 80–81

calendar widget, 83
custom validation messages, 103

geolocation, 238, 240
getUserMeddia API, 140–141
IndexedDB, 204
input types

number, 85
range, 97
URL, 82
week, 84

Microdata DOM API, 57
offline applications, 223
outlines, 32
poster attribute, 115
<progress> element, 94–95
Web SQL Database, 170–171, 184
Web Storage, 179
Web Workers, 253, 257, 259, 264

options, 170–172
ordered/unordered lists, 68
outlines, 31–34

accessibility, 37–38
web-based utility, 32

out-of-band/in-band methods, synchronized text
attachments, 136–137

:out-of-range pseudo-class, 101
<output> element, 93, 97

INDEX 293

P
The Paciello Group, 52
Parker, Todd, et al, 53
paths API, 150–152
pattern attribute, 91–92
pattern fills, 147–149
patterns, 147–150
paused attribute, 124
pause event, 124
pause method, 123–124, 126–127
persistent storage, 223
PhoneGap, geolocation, 238
photofilter.js sub-worker, 258–259
phrasing content models, 54
Pieters, Simon, 12
Pilgrim, Mark, 279
pixels on canvases, 159–161
placeholder attribute, 90
playbackRate attribute, 124, 135
played attribute, 124
play event, 124
playing event, 124
play method, 123–124, 126–127
Playr script, 138
polyfills, 275-284

ARIA roles, 52
data-* attributes, 72
EventSource object, 273
feature detection, 277

methods list, 279
Modernizr project, 273, 279–280, 281–283
new functions, 279
performance, 280
properties, 278

FlashCanvas, 146
HTML5 shiv, 276
JavaScript, 276–284
JSmad library, 118
localStorage object, 182
MediaElement.js, 139
MP3 support, 118
resources, 281–282
undetectable technologies, 281
WebSockets, 266
WebVTT, 138–139

Position object, 241
poster attribute, 115, 124
postMessage method, 250–252, 255–263, 267
postMessage/onmessage method, 254
ppk on JavaScript, 72
preload attribute, 116, 124, 130
preventDefault method, 228
prime.js script, 256
processing.js library, 163
<progress> element, 93–95, 97
progress event, 124
pubdate attribute, 27–28
public-key cryptography, 77
putImageData method, 161

Q
quadraticCurveTo method, 152
querySelectorAll method, 147
querySelector method, 147
quotation attribution, 29

R
radial fills, 147–148
range attribute, 85, 96–97
Raphaël JavaScript library, 152
ratechange event, 124
readyState attribute, 124
real-time Web. See Server-Sent Events; WebSockets
rect method, 152
regular expressions, 91–92
removeItem method, 175–177
required attribute, 90
Resig, John, 163, 276
restore method, 166
retained-mode API (SVG) versus immediate-mode API

(2D canvas), 152
role, aria-* attribute, 74
role=main tags, WAI-ARIA, 10
role=slider attribute, 98
Rouget, Paul, 159
<rp> element, 63–64
<rt> element, 63–64
<ruby> element, 63–64

S
Safari (Apple)

audio/video
codecs supported, 118, 120
controls attribute, 114
poster attribute, 115

canvas image formats, 162
contenteditable attribute, 281
drag and drop, 226–227, 229, 232–233
EventSource object, 273
geolocation, 240
offline applications, 208, 216, 222–223
Web SQL Database, 170, 184
Web Storage, 178
Web Workers, 253, 259, 262–263

save method, 166
schema.org, 27
Scooby Doo algorithm, 10
screen readers, 53
<script> element, 11–12

inside <datalist> element, 89
search attribute, 86
Searchhi script, 63
<section> element, 18–19, 54

versus <article> element, 38–44
replacing <h-1–h6> element, 33

sectioning content, 18, 32–34
models, 54

sectioning root elements, 18, 36

INDEX294

seekable attribute, 124, 128
seeked event, 124
seeking attribute, 124
seeking event, 124
<select> element, 54, 93
selectivizr utility, 282
<s> element, 68
Server-Sent Events, 270–274
server-time.js, 209–211, 216
sessionStorage object, 172–183, 223, 279, 282–283
setCustomValidity method, 102–104
setData method, 229–231
setInterval method, 154, 156–158, 255
setItem method, 174–177, 174–178, 176–177, 183
setOnline method, 221
setTimeout method, 200, 255, 274
Sexton, Alex, 279, 282
SharedWorkers, 259–261
shiv, HTML5, 54
sidebars, 17–18
Silverlight and html5canvas library, 146
single-threaded applications, 250
Sivonen, Henri, 112
<small> element, 19, 24, 69
<source> element, 118–120
spellcheck attribute, 74
src attribute, 116, 124
SRT format, 137
stalled event, 124
startTime attribute, 124
step attribute, 93
storageArea object, 180
storage events, 180
strokeText method, 167
 element, 69
Studholme, Oli, 29, 57, 67
<style> element, scoped attribute, 78
styles, consistent use, 3
style sheets, block-level style sheet, 11
“Styling HTML5 markup in IE without script,” 12
summary=... attribute, 76
suspend event, 124
SVG (Scalable Vector Graphics), 144
<svg> element, 54
syntax, consistent use, 3

T
tabindex attribute, 74–75
<table> element
border=... attribute, 75–76
summary=... attribute, 76

<td> element, 18, 36
tel attribute, 86
Tennison, Jeni, 57
text

bidirectional, 58
“HTML5: Techniques for providing useful text

alternatives,” 61
<textarea> element, 54, 93

text attribute, 99
threads for browsers, 250
Tibbett, Rich, 141
time attribute, 83
<time> element, 26–28
pubdate attribute, 27–28

times and dates, 26–28
timestamp object, 241
timeupdate event, 124
<title> element
alt attribute, 62
swapping with <meta> element, 4

toDataURL method, 161–163
<track> element, 137, 139
tracks attribute, 124
transformations, canvases, 153–154
translate method, 153–154, 165–167
type attribute, 54

U
<u> element, 69–70
 element, 16
Unicode Bidirectional algorithm, 58
Universal Design for Web Applications, 52
unordered lists, 16, 68
url attribute, 82
usemap attribute, 54
userData methods, 182
“Using Multiple Vocabularies in Microdata,” 57
UTC (Coordinated Universal Time), 26
UTF-8 character encoding, 2

V
validation

avoiding, 105–106
<http://html5.validator.nu> tag, 5
<http://lint.brihten.com> tag, 5
<http://validator.w3.org> tag, 5
JavaScript, 104–105
pros and cons, 5

valid attribute, 105
validity attribute, 105
ValidityState object, 105
van Kesteren, Anne, 110, 123
vector-drawing programs, 144–145
Verou, Lea, 278
<video> element/videos, 54, 110–113.

See also multimedia
attributes, 124
download progress, 128–129
events, 124
full-screen, 136
getUserMedia API, 140
methods, 124
playing, 129–130

rates and reverse, 135
race condition workarounds, 131–134
reasons needed, 110–111
video player comparison chart, 142

INDEX 295

“Video for Everybody!”, 121
videoHeight attribute, 124
videoWidth attribute, 124
vid.ly, 122
Villetorte, Julien, 138
VLC, 122
VoiceOver (Apple) screen reader, 53
volume attribute, 124
VP8 codec, 118, 122, 137, 142
VTT Caption Creator, 138

W
WAI-ARIA (Web Accessibility Initiative’s Accessible

Rich Internet Applications) suite, 49–50.
See also accessibility

attributes, 97–98
aria-describedby, 74
aria-grabbed, 236
aria-labelledby, 74
ARIA role=presentation, 61, 75
aria-valuemax, 98
aria-valuemin, 98
aria-valuenow, 98

document landmarks and structure, 51–52
drag and drop, 234–236
forms, 97–98
HTML5, combining with, 52
“Introduction to WAI-ARIA,” 52
outlines, 37–38
resources, 52–53
role, aria-*, 74
role=main tags, 10
screen readers, 53
W3C specification, 53

waiting event, 124
watchPosition method, 239–241, 243–246
WAV codec, 118
<wbr> element, 64
Web Forms API, JavaScript, 104–106
WebKit browsers

forms, 80
error messages, 101

geolocation, 238, 240
WebkitEnterFullscreen method, 136
Web Storage, 178

key method, 176
Web Workers, 262

WebM codec, 117–120, 122, 133, 137, 139, 142
WebRTC, 112, 142
WebSockets, 266–270
Web SQL Database, 170–172, 184

databases
insertions, 187–193
opening/creating, 185–186
querying, 187–193
tables, 186–187
transactions, 193–194

version control, 185
Web Workers, 255, 260

Web Storage, 170–175
accessing storage, 175–178
debugging tools, 178–179
fallback options, 182–183
storage events, 180–182

WebVTT format, 137–139
Web Workers

IndexedDB, 260
Web SQL Database, 260

Web Workers/workers
creating/working with, 253–254
debugging, 262–264
importing scripts and libraries, 259
IndexedDB, 255
inside activities, 254–257
reasons to use, 252–253
SharedWorkers, 259–261
Web SQL Database, 255
within workers, 257–259

week attribute, 84
Weyl, Estelle, 44
WHATWG, 137
whitelists, 212
width attribute, 115, 124
willValidate attribute, 105
Wilson, Scott, 138
window object, 250–251, 255, 264

X - Z
xhr.js script, 263
XHTML
<http://lint.brihten.com> tag, 5
validation, 5
versus XML and HTML5, 2–3
XMLHttpRequest Level 2 object, 250
XMLHttpRequest object

WebSockets, 266
Web Workers, 263

XML versus HTML5 and XHTML, 2–3
x-moz-errormessage attribute, 104

Yahoo!, schema.org, 27
yepnope tool, 282

	Contents
	Introduction
	CHAPTER 4 Video and Audio
	Native multimedia: why, what, and how?
	Codecs—the horror, the horror
	Rolling custom controls
	Multimedia accessibility
	Synchronising media tracks
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

