
http://www.facebook.com/share.php?u=http://www.ciscopress.com/title/9780321784131
http://twitter.com/?status=RT: download a free sample chapter http://www.ciscopress.com/title/9780321784131
https://plusone.google.com/share?url=http://www.ciscopress.com/title/9780321784131
http://www.linkedin.com/shareArticle?mini=true&url=http://www.ciscopress.com.com/title/9780321784131
http://www.stumbleupon.com/submit?url=http://www.ciscopress.com/title/9780321784131/Free-Sample-Chapter

Praise for
Executable Specifications with Scrum

“This is a great book that demonstrates the value of putting effort behind re-
quirements in an Agile environment, including both the business and technical
value. The book is well-written and flows nicely, approachable for both the
manager and the developer. I am recommending this book to all Scrum teams
who need to integrate business analysts and architects as active teammates.”

—Stephen Forte, Chief Strategy Officer at Telerik and
Board Member at the Scrum Alliance

“Cardinal’s book brings to light one of the most important and neglected aspects
of Scrum: Having user stories that are ready to sprint. Teams often complain
about this, and the author offers practical advice on how to get it done right!”

—Steffan Surdek, co-author of A Practical Guide to Distributed Scrum

“Executable Specifications with Scrum doesn’t shine through its depth but its
breadth. This compendium of proven agile practices describes an overarching
process spike touching important aspects of product development in a cohesive
way. In this compact book, Mario Cardinal clearly explains how he achieves
a validated value stream by applying agile practices around executable
specifications.”

—Ralph Jocham, Founder of agile consulting company effective agile. and
Europe’s first Professional Scrum Master Trainer for Scrum.org

“Cardinal provides deep insights into techniques and practices that drive effec-
tive agile teams. As a practitioner of the craft Cardinal describes, I now have a
written guide to share with those who ask, ‘What is this [ATDD/BDD/TDD/
Executable Specification/etc] thing all about?’ Regardless of the name de jour,
Cardinal gives us what works.”

—David Starr, Senior Program Manager, Microsoft Visual Studio

9780321784131_Book 1.indb i9780321784131_Book 1.indb i 7/1/13 2:02 PM7/1/13 2:02 PM

“Scrum is barely a process, only a framework. It is a tool, and you have to provide many complemen-
tary practices to reach true business agility. This book is perfect for teams that are using Scrum and
want to learn about or get started with executable specifications.”

—Vincent Tencé and François Beauregard, Scrum Trainers at Pyxis Technologies

“This book maps out the important place of specifications in an agile landscape to the benefit of
agilists of all roles.”

—Erik LeBel, Technology and Development Consultant at Pyxis Technologies

9780321784131_Book 1.indb ii9780321784131_Book 1.indb ii 7/1/13 2:02 PM7/1/13 2:02 PM

Executable Specifications
with Scrum

9780321784131_Book 1.indb iii9780321784131_Book 1.indb iii 7/1/13 2:02 PM7/1/13 2:02 PM

9780321784131_Book 1.indb iv9780321784131_Book 1.indb iv 7/1/13 2:02 PM7/1/13 2:02 PM

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Executable
Specifications with
Scrum
A Practical Guide to
Agile Requirements Discovery

 Mario Cardinal

9780321784131_Book 1.indb v9780321784131_Book 1.indb v 7/1/13 2:02 PM7/1/13 2:02 PM

 Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

 The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

 The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales
(800) 382-3419
 corpsales@pearsontechgroup.com

 For sales outside the United States please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

 Library of Congress Control Number: 2013939927

 Copyright © 2014 Pearson Education, Inc.

 All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

 ISBN-13: 978-0-32-178413-1

 ISBN-10: 0-32-178413-8

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

 First printing, July 2013

 Editor-in-Chief

Mark Taub

 Executive Editor

Chris Guzikowski

 Senior Development

Editor
Chris Zahn

 Marketing Manager

Stephane Nakib

 Managing Editor

Kristy Hart

Senior Project Editor

Lori Lyons

 Copy Editor

Apostrophe Editing
Services

 Senior Indexer

Cheryl Lenser

Proofreader

Paula Lowell

 Editorial Assistant

Olivia Basegio

 Cover Designer

Chuti Prasertsith

 Senior Compositor

Gloria Schurick

9780321784131_Book 1.indb vi9780321784131_Book 1.indb vi 7/1/13 2:02 PM7/1/13 2:02 PM

 To my four outstanding children:
Dominic, Lea-Marie, Romane, and Michael.

9780321784131_Book 1.indb vii9780321784131_Book 1.indb vii 7/1/13 2:02 PM7/1/13 2:02 PM

9780321784131_Book 1.indb viii9780321784131_Book 1.indb viii 7/1/13 2:02 PM7/1/13 2:02 PM

 Contents

Preface xvi

Chapter 1: Solving the Right Problem 1

 Chapter 2: Relying on a Stable Foundation 13

 Chapter 3: Discovering Through Short Feedback Loops and

Stakeholders’ Desirements 25

 Chapter 4: Expressing Desirements with User Stories 35

 Chapter 5: Refining User Stories by Grooming the Product Backlog 45

 Chapter 6: Confirming User Stories with Scenarios 73

 Chapter 7: Automating Confirmation with Acceptance Tests 97

 Chapter 8: Addressing Nonfunctional Requirements 123

 Chapter 9: Conclusion 145

Glossary 153

 Index 159

ix

9780321784131_Book 1.indb ix9780321784131_Book 1.indb ix 7/1/13 2:02 PM7/1/13 2:02 PM

 Contents

Preface xvi

Chapter 1 Solving the Right Problem 1

Distinguishing the Requirements from the Solution 4
Recognizing the Impact of Uncertainty 5
Tackling Uncertainty 7
Summary 10
References 10

Chapter 2 Relying on a Stable Foundation 13

Defining What Will Hardly Change 14
Creating a Healthy Team 14
Requiring the Involvement of All Stakeholders 16
Expressing a Shared Vision 17
Distinguishing a Meaningful Common Goal 20
Identifying a Set of High-Level Features 21
Validating the “Can-Exist” Assumption 22
Summary 23
References 23

Chapter 3 Discovering Through Short Feedback Loops and
Stakeholders’ Desirements 25

Applying the Trial-and-Error Method 25
Using Short Feedback Loops 29
Targeting Feedback Along the Expected Benefits 31
Focusing on the Stakeholders’ Desirements 31
Summary 34
References 34

Chapter 4 Expressing Desirements with User Stories 35

Describing Desirements by Using User Stories 35
Discovering Desirements by Exploring Roles and Benefits 38
Establishing a Ubiquitous Language 40
Recording Desirements by Using a Product Backlog 41

x

9780321784131_Book 1.indb x9780321784131_Book 1.indb x 7/1/13 2:02 PM7/1/13 2:02 PM

xiContents

Summary 43
References 44

Chapter 5 Refining User Stories by Grooming the Product Backlog 45

Managing the Product Backlog 46
Collaborating to Groom the Product Backlog 48
Ranking User Stories with a Dot Voting Method 49
Illustrating User Stories with Storyboards 52
Sizing User Stories Using Comparison 56
Splitting User Stories Along Business Values 60
Tracking User Stories with a Collaboration Board 62
Delivering a Coherent Set of User Stories 68
Planning Work with User Stories 70
Summary 71
References 72

Chapter 6 Confirming User Stories with Scenarios 73

Scripting User Stories with Scenarios 74
Expressing Scenarios with Formality 76
Scripting Scenarios Using the FIT Tabular Format 77
Scripting Scenarios Using Given-When-Then Syntax 79
Choosing Between FIT Tabular Format or

Given-When-Then Syntax 80
Formalizing a Ubiquitous Language 81
Splitting Scenarios into Commands or Queries 83

Confirming Collaboratively in a Two-Step Process 85
Removing Technical Considerations from Scenarios 89
Evolving Scenarios from Sprint to Sprint 91

Organizing Scenarios by Feature 92
Documenting Scenarios by Feature 93
Avoiding Duplication and Merging Conflicts 94

Summary 95
References 96

Chapter 7 Automating Confirmation with Acceptance Tests 97

Evolving Scenarios into Acceptance Tests 98
Automating Scenarios Using the Red-Green-Refactor Cycle 101

9780321784131_Book 1.indb xi9780321784131_Book 1.indb xi 7/1/13 2:02 PM7/1/13 2:02 PM

Executable Specifications with Scrumxii

Translating the Scenario into an Acceptance Test 104
Transposing Using an Internal DSL 104
Creating a Test 107
Coding the DSL into the Newly Created Test 108

Connecting the Newly Created Test with the Interface 110
Exercising the Interface 112
Chaining Context Between the Steps of the Scenario 113
Making the Test Fail 114

Implementing the Interface 115
Replacing Unit Testing with Context-Specification

Testing 116
Making the Test Pass 117

Evolving the Acceptance Test 117
Running Acceptance Tests Side-by-Side with Continuous
 Integration 118
Enhancing Scenarios with Test Results 119
Summary 121
References 122

Chapter 8 Addressing Nonfunctional Requirements 123

Improving External Quality Using Restrictions 125
Translating Nonfunctional Requirements into

Restrictions 127
Reducing the Functional Scope to a Single Scenario 129
Setting Measurable Quality Objectives 131
Testing Restrictions with Proven Practices 135

Ensuring Internal Quality Using Sound Engineering Practices 137
Improving Software Construction with Explicit Practices 137
Mastering Practices with Collaborative Construction 140

Summary 142
References 143

Chapter 9 Conclusion 145

Recapitulating the Book 146
Summarizing the Process 148
Drawing Attention to Individual Roles 149

Glossary 153

Index 159

9780321784131_Book 1.indb xii9780321784131_Book 1.indb xii 7/1/13 2:02 PM7/1/13 2:02 PM

xiii

Figure List

Figure 1.1: Usage of features in a typical system 3

Figure 1.2: Uncertainty diagram 5

Figure 1.3: Traditional engineering and uncertainty 7

Figure 1.4: R&D and uncertainty 8

Figure 1.5: Agile and uncertainty 9

Figure 3.1: Sprint 29

Figure 4.1: Product backlog is the list of desirements sorted by importance 41

Figure 4.2: Product backlog is like an iceberg 43

Figure 5.1: Grooming the backlog 49

Figure 5.2: An example of a storyboard for an animated film 53

Figure 5.3: An example of a paper prototype 54

Figure 5.4: A computerized low-fidelity storyboard 55

Figure 5.5: Deck of Fibonacci cards 59

Figure 5.6: The backlog grooming workflow 62

Figure 5.7: A collaboration board is a two-dimensional grid 63

Figure 5.8: A task board is a well-known example of a
collaboration board 64

Figure 5.9: A collaboration board with no signals 65

Figure 5.10: A collaboration board with “Done” signals 65

9780321784131_Book 1.indb xiii9780321784131_Book 1.indb xiii 7/1/13 2:02 PM7/1/13 2:02 PM

Executable Specifications with Scrumxiv

Figure 5.11: A collaboration board with “Ready” signals 66

Figure 5.12: A collaboration sticker has nine display areas 66

Figure 5.13: A collaboration sticker representing a user story 67

Figure 5.14: Planning sprints with story mapping 69

Figure 6.1: A state transition 75

Figure 6.2: A FIT table 77

Figure 6.3: A FIT table is a state transition 78

Figure 6.4: A FIT table is a test 78

Figure 6.5: Describing concepts using precondition and
consequence states 82

Figure 6.6: Formalizing a ubiquitous language 83

Figure 6.7: Differentiating between command and query 84

Figure 6.8: Querying a list of items 84

Figure 6.9: Confirming collaboratively using a two-step process 86

Figure 6.10: Specifying the scenarios 87

Figure 6.11: Scenarios work at many levels 90

Figure 6.12: Organizing the scenarios by feature 92

Figure 6.13: A scenario validates only one feature 93

Figure 6.14: Generating the specification with computer-based tools 94

Figure 7.1: The acceptance test is a copy of a scenario in a format
suitable for execution on a computer 98

9780321784131_Book 1.indb xiv9780321784131_Book 1.indb xiv 7/1/13 2:02 PM7/1/13 2:02 PM

xvFigure List

Figure 7.2: Turning scenarios into acceptance tests using a
three-stage process 102

Figure 7.3: Turning scenarios into acceptance tests is how an increment
is built 103

Figure 7.4: Coding the internal DSL inside the SpecFlow automation
framework 108

Figure 7.5: Coding the internal DSL inside the StoryQ automation
framework 109

Figure 7.6: Connecting the steps with the interface 112

Figure 7.7: Chaining context between the steps 114

Figure 7.8: Implementing the interface using TDD 116

Figure 7.9: Visualizing specifications conformance by identifying
failing tests 120

Figure 7.10: Tracing work completeness by measuring passing tests 121

Figure 8.1: Imposing restrictions using a concrete and specific
functional scope 129

Figure 8.2: Addressing a restriction side by side with its linked
functional scope 130

Figure 8.3: Avoid linking restrictions with a user story 130

Figure 8.4: Linking restrictions with scenarios is a process repeated
story after story 131

Figure 8.5: Enhancing a scenario with a restriction 132

Figure 8.6: Querying a list of items in a scenario 133

Figure 9.1: Summarizing the process 149

9780321784131_Book 1.indb xv9780321784131_Book 1.indb xv 7/1/13 2:02 PM7/1/13 2:02 PM

xvi

 Preface

 There is a wide range of books that have been written about specifications. Un-
fortunately, most of them are not useful for software development teams. These
books rely on traditional engineering practices. They assume requirements are
known upfront and, once specified, will not change for the duration of the pro-
ject. And if changes happen, they presume they will be minor, so they could be
tracked with a change management process. They promote a sequential process
starting with a distinct requirements phase that delivers a detailed requirements
specification before starting to design and build the product.

 Goal of This Book

 It is my belief that traditional engineering practices are not suitable for software
development. Central to the process of software specification is a high level
of uncertainty, which is not the case with traditional engineering. Fortunately,
with the growth of the agile community in the past decade, a body of knowledge
more suited to the reality of software development has emerged. Many books
explaining agility have become must-read books for anyone interested in soft-
ware development. A large majority of them contain at least a chapter or two
on requirements, some almost totally dedicated to this topic. Because I believe
these texts are important, I will include citations from them and reference them
throughout this book.

 I wrote this book to add to this body of knowledge. It is a compendium of
the agile practices related to executable specifications. Executable specifications
enable us to easily test the behavior of the software against the requirements.
Throughout this book, I will explain how you can specify software when prereq-
uisites are not clearly defined and when requirements are both difficult to grasp
and constantly evolving. Software development practitioners will learn how to
trawl requirements incrementally, step-by-step, using a vision-centric and an
emergent iterative practice. They will also learn how to specify as you go while
writing small chunks of requirements.

9780321784131_Book 1.indb xvi9780321784131_Book 1.indb xvi 7/1/13 2:02 PM7/1/13 2:02 PM

xviiPreface

 This book aims to explain the technical mechanisms needed to obtain the
benefits of executable specifications. It not only provides a sound case for itera-
tive discovery of requirements, it also goes one step further by teaching you how
to connect the specifications with the software under construction. This whole
process leads to the building of executable specifications.

 It is important to recognize that even with the best intentions you cannot
force agreement upon stakeholders. The following African proverb explains this
succinctly: “You can’t make grass grow faster by pulling on it.” When knowl-
edge is incomplete and needs are constantly changing, we cannot rely on ap-
proaches based on traditional engineering. Instead, it is critical that you empha-
size empirical techniques based on the iterative discovery of the requirements.
The objective sought is not only to solve the problem right, but also to solve the
right problem—this is the paramount challenge of software construction.

 This book is unique in that it teaches you how to connect requirements and
architecture using executable specifications. You learn how to specify require-
ments as well as how to automate the requirements verification with a Scrum
framework. As a result of reading this book, you can select a tool and start us-
ing executable specifications in future agile projects. Here are five advantages to
reading this book:

 • You can understand how the work of business analysts changes when
transitioning from traditional to agile practices.

 • You learn how to groom emergent requirements within the Scrum frame-
work.

 • You get insight about storyboarding and paper prototyping to improve
conversations with stakeholders.

 • You discover how to build an emergent design while ensuring implementa-
tion correctness at all times

 • You can understand that software architects who are adopting agile
practices are designing incrementally and concurrently with software
development.

9780321784131_Book 1.indb xvii9780321784131_Book 1.indb xvii 7/1/13 2:02 PM7/1/13 2:02 PM

Executable Specifications with Scrumxviii

 Who Should Read This Book?

 Readers of this book have already adopted the Scrum framework or are transi-
tioning to agile practices. They understand the fundamentals of agility but are
unfamiliar with executable specifications. They want to understand why the
executable specifications are useful and most important how to start with this
new practice.

 With the massive adoption of Scrum framework, the next major challenge
facing agile teams is to integrate business analysts and architects as active team-
mates. Anyone who is a Scrum master, manager or decision maker who faces
this challenge should read this book. In addition, all team members involved in
agile projects will benefit from this book. It goes without saying that business
analysts and software architects will be happy to find a book that directly ad-
dresses their concerns.

 Advanced or expert agilists will be interested in the book’s concise overview
of executable specifications. They could use this book to successfully guide their
teammates down this path. In addition, the terminology used throughout the
book can help leaders to communicate effectively with their peers.

 Road Map for This Book

 Executable specifications require a change in mindset. This book focuses on this
issue. Executable specifications help reduce the gap between what stakeholders
want the software to do (the “What”), and what the software really does (the
“How”). Executable specifications address requirements in a way that makes it
easy for the development team to verify the software against the specifications
and this as often as requirement changes occur.

 To facilitate this change in mindset, this book offers a unique approach to the
process that spans nine chapters:

 • Chapter 1 : Solving the Right Problem

 This chapter explains the need to respond efficiently to the constantly
changing requirements using iterative discovery and executable specifica-
tions.

9780321784131_Book 1.indb xviii9780321784131_Book 1.indb xviii 7/1/13 2:02 PM7/1/13 2:02 PM

xixPreface

 • Chapter 2 : Relying on a Stable Foundation

 This chapter explains how to identify what will hardly change: the core
certainties on which the team should rely. Those certainties are not re-
quirements. They are high-level guardrails that ensure a solution can be
built. They create a stable foundation to ensure that an iterative require-
ments discovery is possible.

 • Chapter 3 : Discovering Through Short Feedback Loops and Stakeholders’

Desirements

 This chapter shows that to tackle uncertainties, teams must discover stake-
holders’ desires and requirements (desirements) through short feedback
loops.

 • Chapter 4 : Expressing Desirements with User Stories

 This chapter teaches you how to express desirements with user stories and
how to record them using the product backlog.

 • Chapter 5 : Refining User Stories by Grooming the Product Backlog

 This chapter explains how to groom the product backlog so that you can
plan sprints that can increase the likelihood of success of the feedback
loops.

 • Chapter 6 : Confirming User Stories with Scenarios

 This chapter demonstrates how to confirm user stories by scripting behav-
iors with scenarios.

 • Chapter 7 : Automating Confirmation with Tests

 This chapter explains how to turn scenarios into automated tests so that
you can easily confirm the expected behavior of the software against the
evolving specifications.

 • Chapter 8 : Addressing Nonfunctional Requirements

 This chapter teaches you how to ensure quality software by specifying
nonfunctional requirements.

 • Chapter 9 : Conclusion

 This last chapter summarizes the key elements of the book.

9780321784131_Book 1.indb xix9780321784131_Book 1.indb xix 7/1/13 2:02 PM7/1/13 2:02 PM

Executable Specifications with Scrumxx

Acknowledgments

 One to whom I owe the most is Nathalie Provost, who first convinced me to
write this book. Throughout this journey, she has supported me and our four
children so that I can fulfill that dream.

 Personal thanks are due to Erik Renaud, my business partner, with whom
I have shared great discussions regarding nonfunctional requirements and col-
laboration boards. Similarly, a personal thanks goes out to Rob Daigneau and
Stefan Surdek who provided counsel and advice on the overall book-writing
process.

 It is well known that learning comes through real-world experience. I want to
thank the Urban Turtle team, especially Francois Beauregard, Dominic Danis,
Louis Pellerin, Guillaume Petitclerc and Luc Dorval, with whom I have learned
so much about Scrum, backlog grooming, and executable specifications. In the
same vein, I cannot forget my adventure with Tyco and the RunAtServer team,
particularly Yanick Brunet and Gabriel Labrecque, with whom I had the oppor-
tunity to experience storyboarding and paper prototyping during the construc-
tion of real software.

 I would like to thank my reviewers for reading the draft copies of this book
and contributing numerous comments that helped improve the book. Thanks to
David Starr, Leyna Zimdars, Robert Bogetti, Jochen Krebs and one anonymous
reviewer.

 Special thanks are due to Leita Boucicaut for assistance in reviewing and
improving the manuscript. Her ability and willingness to always find the right
word is outstanding. She challenged me to make the text understandable to all,
even the nontechnical readers.

 Lastly, I could not have published this book without the support of Addison
Wesley. Thanks to Christopher Guzikowski, the executive editor; Olivia Base-
gio, the editorial assistant; Christopher J. Zahn, the senior development editor
and Lori Lyons, the senior project editor.

9780321784131_Book 1.indb xx9780321784131_Book 1.indb xx 7/1/13 2:02 PM7/1/13 2:02 PM

xxi

 Known for many years as an agile coach
specializing in software architecture, Mario

Cardinal is the co-founder of Slingboards
Lab, a young start-up that brings sticky
notes to smartphones, tablets, and the web
for empowering teams to better collaborate.
A visionary and an entrepreneur, he likes to
seize the opportunities that emerge from the
unexpected. His friends like to describe him
as someone who can extract the essence of a
complicated situation, sort out the core ideas
from the incidental distractions, and provide
a summary that is easy to understand. For the
ninth consecutive year, he has received the
Most Valuable Professional (MVP) award
from Microsoft. MVP status is awarded to
credible technology experts who are among
the best community members willing to
share their experience to help others realize
their potential.

About the Author

9780321784131_Book 1.indb xxi9780321784131_Book 1.indb xxi 7/1/13 2:02 PM7/1/13 2:02 PM

9780321784131_Book 1.indb xxii9780321784131_Book 1.indb xxii 7/1/13 2:02 PM7/1/13 2:02 PM

 Chapter 5

 Refining User Stories by
Grooming the Product
Backlog

 You learned in the previous chapter that iterative discovery of desire-
ments involves expressing user stories with the help of a product back-
log. The purpose of this chapter is to learn how to groom the product
backlog so that you can plan sprints that will increase the quality of
feedback loops.

 In this chapter, you will learn the importance of the product owner for
the product backlog. This chapter discusses how the team refines user
stories by grooming the product backlog. Grooming is the act of rank-
ing, illustrating, sizing, and splitting user stories. You will see how to
use collaboration boards to make explicit the grooming process, with a
minimum of formality. Finally, it concludes by explaining how to organ-
ize effective sprints with story mapping.

45

9780321784131_Book 1.indb 459780321784131_Book 1.indb 45 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog4646

 Managing the Product Backlog

 Nowadays, it is unlikely that new software must address the needs of a
single stakeholder. On average, there are easily between 10 and 20 stake-
holders. This requires the involvement of several people. If the product
backlog is an ordered list, and the stakeholders are responsible for set-
ting the priority, how do you ensure the list actually gets sorted and that
every item does not end up being poorly defined? Assigning the product
backlog ownership to a group of people is not a viable solution. Scrum
recognizes this issue by defining a specific role for this responsibility, the
product owner.

 The product owner is responsible for ensuring that the product back-
log is always in a healthy state. He is the primary interface between the
development team and the stakeholders. The product owner is the defini-
tive authority on all that concerns requirements. His main responsibility
is to decide the ordering of what will be built and list these decisions into
the product backlog.

 One of the primary qualities of the product owner is to be the bearer
of the vision. He understands the big picture. This knowledge gives that
person the authority to prioritize the importance of the desirements ex-
pressed by stakeholders. Faced with the unexpected, the product own-
er knows how to stay the course and is responsive to the stakeholders’
changes.

 There is a lot of responsibility (both explicit and implicit) involved in
managing the product backlog. Work will not get done without someone
actively collaborating with stakeholders to understand customer/market
needs and then communicating with the development team to ensure
those needs are met. Being the product owner does not mean that he
decides alone. The development team actively takes a hand in backlog
management.

9780321784131_Book 1.indb 469780321784131_Book 1.indb 46 7/1/13 2:02 PM7/1/13 2:02 PM

Managing the Product Backlog 47

 Is the Product Owner the New Role for Analysts?

 Within an agile framework, creating a new user story is an activity
open to all. It can be done either by a stakeholder or by a team mem-
ber. It is strongly recommended that stakeholders write the stories
without requiring business analysts to act as a proxy between them
and the team. There are cases in which the product owner creates a
story in response to a request from stakeholders, but this scenario
is not mandatory.

 Because of her experience and know-how, there are similarities
between the analyst and product owner roles. However, they are
two different roles in the Scrum team. There is a major difference
between a true analyst and a product owner. Product owners repre-
sent the business and have the authority to make decisions that af-
fect their product. Typically, an analyst does not have this decision-
making authority.

 To have a true business analyst step into the role of product own-
er is possible but not always the best option. For example, here is a
scenario in which a business analyst is probably not the best choice
for owning and maintaining the product backlog. Say you are an
independent software vendor selling software to thousands of users.
In this case, someone must focus on both the customer and market,
adapting the iteration plan and evolving the product roadmap. An
analyst is not trained for that job.

 You must realize that the evolving role of the analyst does not
necessarily consist of being a product owner. Someone else with
stronger marketing skills than the business analyst could also in-
herit this responsibility. In the next chapter, you will learn that, by
default, the role of the analyst is now more tactical. He handles a
myriad of details and still does analysis, but now mostly focuses
inward on the delivery team.

9780321784131_Book 1.indb 479780321784131_Book 1.indb 47 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog48

 This new, strategic role is more than just backlog prioritization . It is
about facilitating software development over successive sprints and en-
suring appropriate customer/market needs are inserted into that process.

 Though this role is typically assigned to someone with technical back-
ground, someone from marketing or product management is probably
just as qualified. If any of these people cannot fulfill the role, someone
with a solid understanding of end users, the marketplace, the compe-
tition, or future trends can become the product owner. This is not a
solitary role—the product owner is most likely part of a larger team—
perhaps in product management (if an independent software vendor) or
in a client-facing team (if in consulting).

 Collaborating to Groom the Product Backlog

 When dealing with emerging needs, it is impossible to keep the entire
backlog in a ready state; only the top elements need to be. A healthy
backlog provides a set of high-value, ready desirements, about equal in
size, that are small enough so that the team can deliver them in the up-
coming sprints. To obtain desirements that are ready to iterate, you need
to periodically groom the backlog.

 Even with all the improvements wrought by the Scrum framework,
grooming the backlog remains, and likely will remain, a fundamentally
human endeavor, fueled by the insights, ideas, passions, and perceptions
of people looking for the best. Rather than letting stakeholders work of
their own free will, the product owner must lead everyone by using a
sequence of activities that promotes deliberate discovery. Grooming the
backlog boils down to a sequence of four activities: ranking, illustrating,
sizing, and splitting user stories, as shown in Figure 5.1 .

9780321784131_Book 1.indb 489780321784131_Book 1.indb 48 7/1/13 2:02 PM7/1/13 2:02 PM

Ranking User Stories with a Dot Voting Method 49

Product
Backlog

Split

Size

Illustrate

Rank

 Figure 5.1 Grooming the backlog.

 These activities are never performed solo by the product owner. To ac-
complish these activities, the product owner must collaborate: first with
stakeholders and then with the development team. Backlog grooming is
a team effort.

 Ranking User Stories with a Dot Voting Method

 Although, according to the development team, the product owner is per-
ceived as the one who decides the ordering of the backlog, it is actually
not his decision. He must rely on stakeholders who are the ones who
decide the importance of each story.

 For the product owner, ranking user stories is actually a contact sport
with stakeholders. It requires that he brings all his senses to the task and
applies the best of his thinking, his feelings, and his communication skills
to the challenge of facilitating decision making. The product owner is a
facilitator, not a decider. Because he understands the process of groom-
ing the backlog, he can guide stakeholders.

9780321784131_Book 1.indb 499780321784131_Book 1.indb 49 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog50

 As mentioned in Chapter 3 , “Discovering Through Short Feedback
Loops and Stakeholders’ Desirements,” you can picture the communica-
tion between builders and stakeholders as a large room swathed in dark-
ness. The product owner is in the room having conversations with stake-
holders and what he hears is a cacophony of dissident voices. Because
there is no light, little knowledge is derived from the situation. Now,
imagine that the voice of each stakeholder emits a color when speaking.

 The product owner steers the conversation by asking stakeholders
what is the most important desirement. Soon, he will be surrounded with
multicolored fireflies representing stakeholders’ desirements. By forcing
the writing of the desirements as a user story, this can simplify the an-
swers and increase the likelihood that the same desirement can repeated
by several stakeholders. When user stories begin to accumulate, all the
different colors merge, creating sparkling white lights. Order springs
from the cacophony. These white lights are the important stories, those
that the product owner must rank at the top of the backlog.

 So far, the ranking process as described may seem abstract. Forget the
abstract to be more practical. Usually, when discussing ranking, authors
prefer to present the most common techniques, such as binary search tree,
Kano analysis, MoSCoW (Must-Should-Could-Would), or other numer-
al assignment techniques. Now do the same by using one of the preferred
methods: the dot voting technique (also known as spending your dollar
technique). This established facilitation method is widely used by work-
shop facilitators for prioritizing ideas among a large number of people,
and for deciding which are the most important to take forward.

 The method is summarized as follows:

 1. Post the user stories on the wall using yellow stickies or in some
manner that enables each item to receive votes.

 2. Give four to five dots to each stakeholder.

9780321784131_Book 1.indb 509780321784131_Book 1.indb 50 7/1/13 2:02 PM7/1/13 2:02 PM

Ranking User Stories with a Dot Voting Method 51

 3. Ask the stakeholders to place their votes. Stakeholders should apply
dots (using pens, markers, or, most commonly, stickers) under or
beside written stories to show which ones they prefer.

 4. Order the product backlog from the most number of dots to the
least.

 When you are done with this first pass, it is almost certain that the
stakeholders will not be completely happy with the outcome of the vote.
If that is the case, you should review the voting and optimize it. Here’s
what you can do:

 1. Arrange the votes into three groups to represent high, medium, and
low priorities.

 2. Discuss stories in each group.

 3. Move items around to create a high-priority list.

 4. Make a new vote with items in the high-priority list.

 The goal during this review is to start a discussion about each group.
Discuss which user stories are a low or medium priority, and which must
be delivered in the near future. Why are they low priority? After discus-
sion, stakeholders may agree to move them into the high-priority list.
Also, discuss the stories that are almost high priority and decide if you
should move them in the high-priority list. When you are done with the
discussion, repeat voting, this time using only the items that belong to the
high-priority list. Finish this second vote by ordering the product backlog
from the most number of dots to the least.

 Identifying the user stories that are top priorities is the first step of a
two-step process. The second step is to ensure that the stories are small
enough so that the team can build them in a sprint. To achieve this goal,
the product owner must shift focus and start discussions with the devel-
opment team. Unlike stakeholders, the team members are the ones who
can measure the size of user stories.

9780321784131_Book 1.indb 519780321784131_Book 1.indb 51 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog52

 Sizing requires a rough understanding by the development team of the
user experience. The user experience enables stakeholders to discuss the
success criteria. These criteria say in the words of the stakeholders how
they expect the software to behave.

 During this second step, seek to quickly define success criteria, so the
team estimates the size of stories as soon as possible and with minimum
effort. A storyboard is the perfect medium for achieving this goal. If user
stories help monitor conversations with stakeholders, storyboards help
to illustrate expectations rapidly and cheaply. They are concrete exam-
ples that provide the explicit information required by the development
team.

 Illustrating User Stories with Storyboards

 As experience teaches, stakeholders love to envision the software from
the user interface standpoint. As a result, often they specify how the soft-
ware should work, rather than just what it is supposed to do. This is why
illustrating user stories with a storyboard is so efficient.

 Storyboards, as we know them today, were developed at the Walt
Disney Studios in the 1930s. The first storyboards evolved from comic
book-like story sketches. They were used to “preview” an animation
before a single animated cartoon was produced.

 Figure 5.2 shows an example of a storyboard for an animated film.
Not only does a storyboard make possible a dress rehearsal of the final
product, but also by posting it on the wall, it elicits early feedback and
encourages quick, painless editing, leading to significant savings in time
and resources.

9780321784131_Book 1.indb 529780321784131_Book 1.indb 52 7/1/13 2:02 PM7/1/13 2:02 PM

Illustrating User Stories with Storyboards 53

12

6

39

No?

 Figure 5.2 An example of a storyboard for an animated film.

 For the general public, a storyboard means drawing pre-production
pictures for video production, animation, and film making. Unfortunate-
ly, too few know that storyboarding also applies to software develop-
ment. It helps to illustrate the important steps of the user experience.

 It is tough to capture the big picture without visually depicting the
user story. Explaining requirements from the perspective of the user in-
terface helps to turn unspoken assumptions into explicit information. In
addition, explicit information helps stakeholders think and communicate
effectively. To keep up a healthy conversation between stakeholders, the
product owner, and the development team, each user story should be en-
hanced with a storyboard. During specifications, the screens required to
illustrate the user story are roughly sketched, either on paper or through
the use of computer-based software.

 Do not expect the storyboard to be a visual prototype that looks like
the final user interface. It is an artistic rendition in which many details
are missing. A storyboard is a low-fidelity visual aid that communicates
the visible behaviors of a user story.

9780321784131_Book 1.indb 539780321784131_Book 1.indb 53 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog54

 The process of visual thinking enables stakeholders and the product
owner to brainstorm together, placing their ideas on storyboards and
then arranging them in a structured way. This fosters more ideas and
generates consensus within the group. The reason for the usefulness of
a storyboard is that it helps stakeholders, as well as the development
team, understand exactly how the user story will work. It is also more
cost-effective to make changes to a storyboard than to an implemented
user story.

 The simplest technique for creating storyboards is paper prototyping

[1] . It involves creating rough, even hand-sketched, drawings of the user
interface to use as throwaway prototypes. All interactions within the
prototype are simulated. Although paper prototyping is sketchy and in-
complete, this simple method of communication with stakeholders can
provide a great deal of useful feedback that can result in the design of
better user stories. Figure 5.3 demonstrates how you can easily sketch
ideas, test them almost instantaneously with stakeholders, and get rapid
feedback on what does and does not work.

 Figure 5.3 An example of a paper prototype.

9780321784131_Book 1.indb 549780321784131_Book 1.indb 54 7/1/13 2:02 PM7/1/13 2:02 PM

Illustrating User Stories with Storyboards 55

 After collecting and visualizing ideas on how the user interface might
look, when there is a consensus on the user experience, it is desirable
to keep an electronic copy of the storyboard for future reference. The
simplest technique is to transform the paper prototype into a low-fidelity
computer-based storyboard. The storyboard can then be used as a visual
illustration of the user story, which will be shared with the development
team. It is important, however, to make sure that you do not use a soft-
ware tool that attempts to make the user interface similar to the final
product. These high-fidelity tools encourage precision, and specifying all
the details is time-consuming and deemed inappropriate at this time.

 Figure 5.4 shows a low-fidelity computerized storyboard for the fol-
lowing user story, “As a student, I want to select a transit fare so that I
can buy it.”

 Figure 5.4 A computerized low-fidelity storyboard.

9780321784131_Book 1.indb 559780321784131_Book 1.indb 55 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog56

 Designing the storyboards is always the responsibility of the product
owner. He may nonetheless be assisted by the team members while per-
forming his duties. For example, business analysts can help to complete
the computerized storyboards. However, this activity is essential for ob-
taining a healthy backlog, and the product owner must be fully involved.

 Sizing User Stories Using Comparison

 The biggest and most common problem product owners encounter is sto-
ries that are too big. If a story is too big and overly complex while being
a top priority, the sprint is at risk of not being properly completed. To
avoid this issue, product owners must identify, as early as possible, if a
user story is the right size and therefore ready to be built during a sprint.

 It is not the responsibility of the product owner to estimate the work
that needs to be done to complete each story. Only the development team
can identify the size of a story. After the development team makes those
estimates, the product owner can then determine if the story is too big.
If that is the case, with the help of the team, she will split it into smaller
stories.

 To estimate the size of the top stories in the backlog, the product own-
er must organize recurring backlog grooming meetings. All the members
of the development team must attend these meetings. To answer any
questions addressed during these meetings, subject matter experts (stake-
holders) should also participate. Before the meeting occurs, the product
owner prioritizes the story list, thereby ensuring the most important sto-
ries will be estimated. The meeting is then time-boxed, at usually one
hour, and each story is considered. Don’t worry if you don’t have time
to discuss all the stories in the backlog. They will be addressed in future
meetings.

 Sizing a story requires that the development team estimates the work
to be done to complete it. This should be simple, but unfortunately hu-
man beings are not good at estimating. Actually, we are not good at all.

9780321784131_Book 1.indb 569780321784131_Book 1.indb 56 7/1/13 2:02 PM7/1/13 2:02 PM

Sizing User Stories Using Comparison 57

Cognitive scientists tell us that our brain is wired to imagine the possible.
We are reluctant to identify limitations, especially if they are not obvi-
ous. It seems that we are too optimistic, and indeed, we would not have
survived the evolution of our species without this trait. With this bias
built into our genetic background, it is almost impossible for us to ac-
curately estimate, at least in a short time. It is obvious that with a lot of
resources and enough time, humans just get there. However, this is not
our case as we seek to estimate a user story in less than 5 minutes.

 Does this mean that the development team should not estimate? Yes,
at least according to what the word “estimate” means today. I propose
that you estimate differently. Stop measuring absolute values and start
comparing relative values. When estimating, you should not measure ef-
fort but instead compare efforts using a reference point.

 Humans are poor at estimating absolute sizes. However, we are great
at assessing relative sizes. For example, imagine that a team must esti-
mate the weight of a young child and an adult. It will be difficult to agree
on the exact weight of each. However, it will be extremely easy to decide
which one is heavier.

 When you measure stories, you need to be concerned with only rela-
tive sizes. You can easily do this by using the Fibonacci sequence or
series, which is “A sequence of numbers, such as 1, 1, 2, 3, 5, 8, 13..., in
which each successive number is equal to the sum of the two preceding
numbers” . What is of interest, in this sequence, is the ratio between any
number and its counterpart. This series gives you a relative size you can
work with to compare effectively.

 Our cultural tendency is to estimate based on how many hours it will
take to complete a story. Unfortunately, estimating using duration re-
duces the team to measuring absolute values, which is what we want
to avoid. Because of our incapacity to anticipate the unknown and to
predict risk, we should steer clear of estimating based on time. There are
three reasons for this:

9780321784131_Book 1.indb 579780321784131_Book 1.indb 57 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog58

• The time necessary for teams to build one unit of work fluctuates
from sprint to sprint. In a complex situation, there is no other choice
than to work collaboratively. When a member of the team is absent,
due to vacation periods or members leaving the team, the team’s
capacity to deliver changes. As a result, if you measure effort based
on the number of hours, you must perpetually revisit the estimates
in the backlog.

• Estimating based on time requires you to take into account the slack
time. This adds accidental complexity, which results in a more im-
precise measure. Factoring slack time appropriately is difficult. You
must take into consideration the fact that people have to check
their emails, participate in other meetings, eat lunch, take breaks
throughout the day, and so on.

• Each team will gauge risks differently. Some will plan for a large
cushion of time to mitigate risk, whereas others will approach the
challenge without compensation.

 The best way to evaluate effort is to use a degree of difficulty summa-
rizing numerically the effort, complexity, and risk. For every degree of
difficulty, you will assign points. Story points are independent of varia-
tions engendered by units of time. Furthermore, they are the perfect unit
for comparing relative values.

 The challenge of using a points system is calibrating what the number
of points means. Some team members may think a story is worth one
point, whereas others may think it is worth 10 points. So, how do you
solve such a problem? One of the ways of calibrating stories, and getting
a joint agreement by all team members, is to look at previous examples
of stories as a referential. The team ranks the stories from most difficult
to least difficult. The most difficult will have more story points than the
least difficult. The goal is to end up with representative stories of 1, 2,
3, 5, 8, 13, and 20 points. After those representative stories have been
identified, the team can then decide how many points the new stories

9780321784131_Book 1.indb 589780321784131_Book 1.indb 58 7/1/13 2:02 PM7/1/13 2:02 PM

Sizing User Stories Using Comparison 59

should be awarded. Calibrating by story points enables a team to easily
reach a consensus.

 During backlog grooming meetings, you want insights from all team
members. As a result, you should favor a consensus-based estimation
technique. A well-known and effective technique is the planning poker
technique. It was first introduced by James Grenning and later popular-
ized by Mike Cohn in his book, Agile Estimating and Planning [3] .

 Approach this technique as though you were playing a game of poker.
Each bet should target one story. Before each bet, the product owner
presents a short overview of the story and demonstrates the storyboard
to define the success criteria needed to finish it. While answering ques-
tions posed by team members, the product owner enhances these criteria,
which could double or even triple the work needed for each story. When
the question period is over, the Scrum master then chairs the meeting
and gives each team member a deck of Fibonacci cards, as shown in
 Figure 5.5 .

1

1
1

2 2 23 3 3

5 5 5

8

8
8

13

13
13

20

20
20

 Figure 5.5 Deck of Fibonacci cards.

9780321784131_Book 1.indb 599780321784131_Book 1.indb 59 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog60

 The idea is to have all participants use one of the Fibonacci cards to
give a rough estimate of how many points she thinks a story is worth.
When betting, everyone turns over their card simultaneously so as not to
influence others. Those who have placed high estimates, as well as those
who have low estimates, are given the opportunity to justify their reason-
ing. After the members have explained their choices, the team bets again
until a consensus is reached. This estimation period is usually time-boxed
at five minutes by the Scrum master to ensure structure and efficiency. If
consensus is not reached within the set time, the product owner moves
to the next story where the betting process begins again. The goal is to
address and reach an agreement on as many stories as possible within
one meeting.

 When the meeting is over, the product owner takes into consideration
the number of points assigned to each story. Some stories may be worth
20 points, whereas others are worth 5 points. The product owner must
determine which stories are too large and therefore need to be divided
into smaller stories. Splitting large stories allows the development team
to approach each smaller story in a more productive manner.

 Splitting User Stories Along Business Values

 Most user stories are too large; at least, this is the trend we noted with
teams transitioning to agile software development. We guess this is be-
cause it is difficult to understand the gist of what a user story is. We
must go back to basics and remember that it was initiated by Extreme
Programming (XP). In Planning Extreme Programming [4] by Kent Beck
and Martin Fowler, a user story is defined in the following way:

 “We demonstrate progress by delivering tested, integrated code
that implements a story. A story should be understandable to
customers and developers, testable, valuable to the customer
and small enough so that the programmers can build half a
dozen in an iteration.”

9780321784131_Book 1.indb 609780321784131_Book 1.indb 60 7/1/13 2:02 PM7/1/13 2:02 PM

Splitting User Stories Along Business Values 61

 A story is a short description of a unit of software that works, delivers
value, and generates feedback from stakeholders.

 A rule of thumb used to determine whether a story is small enough is
to take the average velocity of the team per iteration and divide it by two.
The velocity is the number of story points completed during a sprint. The
product owner should not plan stories that are bigger than one-half the
velocity.

 A common mistake made when splitting stories is to slice and dice
along technical issues, such as along the development process line (de-
sign, code, test, and deploy) or along the architectural line (user interface,
business logic, and database). In addition to being difficult to deliver and
deploy, technical decomposition creates stories that generate little feed-
back because they are incomprehensible by stakeholders. These stories
negatively affect the iterative discovery of the stakeholders’ desirements.
This is not the path to follow.

 You should focus on the perspective of stakeholders by thin slicing
stories that favor the business value. Thin slicing is based on evolution-
ary architecture; it provides stories that implement only a small bit of
functionality, but all the way through the architecture layers of the soft-
ware. Thin slicing always splits stories along self-contained increments
of value and along self-contained bundles of work that include “design,
code, tests, and deploy.” There are two usual patterns for thin slicing
stories in a self-contained unit:

• Division: The division pattern provides smaller stories, often of
equal size.

 When there are clear boundaries about operational workflow or
data manipulation, our first choice is to divide along these lines.
For example, if it makes sense, you should split along the work-
flow steps involved or split according to each variation in business
rules. If this is not a successful track, try to split by the type of data
the story manipulates or along create-read-update-delete (CRUD)
boundaries.

9780321784131_Book 1.indb 619780321784131_Book 1.indb 61 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog62

• Simplification: The simplification pattern aims to remove what is
not necessary.

• When division is not an option, you should reduce the scope of a
large story by keeping only the bare minimum. This is not a popular
choice with stakeholders. As always, everything seems essential, and
this requires more demanding conversations. Consider applying the
XP principle: Do the Simplest Thing That Could Possibly Work.
Remove from the large story everything that is not indispensable.
Create one or more stories to safeguard what is not essential. These
non-essential stories will be placed at the bottom of the backlog,
whereas the remainder and thinner story will continue its journey
to the top of the backlog.

 Tracking User Stories with a Collaboration Board

 Backlog grooming is a team effort. Everyone, including stakeholders,
must collaborate to evolve user stories from the bottom to the top of the
backlog. As shown in Figure 5.6 , it is a dynamic and active workflow
where stories are constantly enhanced.

New
User Story

Ready to
Confirm

Rank Illustrate Size

Split

Is small
enough

No

Yes
Is top

element

Yes

No

 Figure 5.6 The backlog grooming workflow.

 The team must master each step of the workflow; otherwise, the story
will not progress as expected. Team members must synchronize their ef-
forts on a daily basis. Unfortunately, the backlog is of little use to guide
this work. At best, you can add a status field to follow the process, but it

9780321784131_Book 1.indb 629780321784131_Book 1.indb 62 7/1/13 2:02 PM7/1/13 2:02 PM

Tracking User Stories with a Collaboration Board 63

does not encourage collaboration. Instead, it is more efficient to use vis-
ual aids inspired by collaboration boards such as those offered through
the Slingboards [5] platform.

 A collaboration board communicates information by using sticky
notes instead of texts or other written instructions. As shown in Fig-
ure 5.7 , a collaboration board is a two-dimensional grid on which you
move yellow stickies from column to column to guide the actions of team
members.

. . .Column 1 Column 2 Column 3 Column N

Row 1

Row 2

Row N

. . .

 Figure 5.7 A collaboration board is a two-dimensional grid.

 Each column represents a state of the process, and each sticky note
is a visual signal for guiding the collaboration. The aim is to move each
sticky note from state to state to accomplish a workflow. The rows are
used to group and organize the yellow stickies in a logical manner. If you
expect to have only a few stickies, you can have a single row without any
grouping.

9780321784131_Book 1.indb 639780321784131_Book 1.indb 63 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog64

 A well-known example of a collaboration board heavily used by agile
teams is a task board. A task board is a visual aid that guides the work
of a team during a sprint. As shown in Figure 5.8 , a task board is a con-
stantly evolving summary of the team’s forecasts for the current sprint.
It enables you to see at a glance what is done, what remains to be done,
and who is working on what.

Task

Task

Task Task

Task Task Task

Task Task

Task Task

Task Task

User
Story

User
Story

User
Story

To Do DoneIn Progress

Task

Task

Task

Task

Task Task Task

Task

Task

Task

Task

 Figure 5.8 A task board is a well-known example of a collaboration board.

 When a sticky note is moved from column to column, it serves as a
signal for guiding the collaboration. More and more teams consider a
task board as essential to ensuring a rich collaboration during the sprint.
I believe the same is true during backlog grooming except that we must
use a different collaboration board. Now see how you could create a
grooming board to get the same benefits.

9780321784131_Book 1.indb 649780321784131_Book 1.indb 64 7/1/13 2:02 PM7/1/13 2:02 PM

Tracking User Stories with a Collaboration Board 65

 The most important items in a collaboration board are the columns
because they make it possible to visualize the process. Several options are
available to define the columns. As shown in Figure 5.9 , a simple option
would be to have a column for each step. A major disadvantage of this
option is that you can hardly know when a step is completed. There is no
visual signal to initiate collaboration between teammates.

New
User
Story

Ranking Sizing Splitting
Ready

to
Confirm

Illustrating

 Figure 5.9 A collaboration board with no signals.

 A second option, as shown in Figure 5.10 , is to alert collaborators by
being explicit when a step is done. There are two disadvantages to this
approach for grooming. First, this approach assumes that the process is
linear, which is not true. Grooming requires a lot of backtracking, such
as when splitting a story. Second, we are uncomfortable with a condition
that states that the ranking is completed. Ranking is never completely
finished and can occur at any time during the grooming.

New
User
Story

Ranking
Done

Ranking
Sizing

Done
Sizing

Done
Splitting

Splitting
Ready

to
Confirm

Illustrating
Done

Illustrating

 Figure 5.10 A collaboration board with “Done” signals.

 A third option is to alert collaborators by signaling that a step is ready
for processing. This is the option that you can adopt, as it applies well to
the grooming process. Figure 5.11 shows what the collaboration board
would look like with one row for the backlog.

9780321784131_Book 1.indb 659780321784131_Book 1.indb 65 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog66

New
User
Story

Ready
to

Rank
Ranking

Ready
to

Size
Sizing Splitting

Ready
to

Split

Ready
to

Confirm

Ready
to

Illustrate
Illustrating

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

 Figure 5.11 A collaboration board with “Ready” signals.

 The contents of the sticky note, which are moved from column to col-
umn, should display relevant information to help teammates understand
what is going on. Significant information improves communication and
reduces interruptions. As shown in Figure 5.12 , there are nine potential
display areas on a collaboration sticker.

Top RightTop Left

Middle Left

Bottom Left

Middle Centered

MIddle Right

Bottom Right

Top Centered

Bottom Centered

 Figure 5.12 A collaboration sticker has nine display areas.

 When we want to create a collaboration board to facilitate the groom-
ing process, each sticky note is going to represent a user story. Figure
 5.13 shows the final result for this type of sticker. Note that we have not
used all display areas, only those that we considered necessary.

9780321784131_Book 1.indb 669780321784131_Book 1.indb 66 7/1/13 2:02 PM7/1/13 2:02 PM

Tracking User Stories with a Collaboration Board 67

Size
Holder

URL to
visualize

storyboard

User
Story

Blocked
indicator

As a student, I want to buy a pass
valid only on school days so that I

can go to school

20

View Storyboard

 Figure 5.13 A collaboration sticker representing a user story.

 The blocked indicator is visually pinning a status tag to the sticker.
This status tag enables you to visualize work that is not directly asso-
ciated with the value-added steps being performed. It creates visibility
and awareness and enables the right people to react quickly to that new
status. A visual alternative to pinning is creating special columns in your
collaboration board that fulfill the same purpose. Although this is valid,
and many people do it, we prefer pinning to expose that something is
going wrong, or not happening. Board real estate is expensive. If you
start creating special columns for each status a sticky note can have, you
might quickly fill the board with empty zones.

 A collaboration board is a clear, simple, and effective way to organize
and present work during grooming. It increases the efficiency and ef-
fectiveness of the work by making visible the rules of collaboration and
thus facilitating the flow. Flow is the mental state of operation in which
a person performing an activity is fully immersed in a feeling of energized
focus, full involvement, and enjoyment in the process of the activity.

 Visual collaboration keeps the group members in the flow united
around common performance measures. It enhances communication
and reduces friction by making explicit the information teammates care
about. It helps teammates

9780321784131_Book 1.indb 679780321784131_Book 1.indb 67 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog68

• Understand and indicate priorities.

• Identify the flow of work and what is being done.

• Identify when something is going wrong or not happening.

• Cut down on meetings to discuss work issues.

• Provide real-time feedback to everyone involved in the whole
process.

• See whether performance criteria is met.

 Collaboration boards increase accountability and positively influ-
ence the behavior and attitude of team members and stakeholders. Team
members define and choose their own work instead of having work as-
signed to them. High-visibility and clear guidelines ensure teammates
cannot hide work (or nonwork) from each other. They know that at
any moment, if they want to, they can, with zero overhead and without
causing any discomfort to anyone, see exactly what everybody is do-
ing. Boards tend to expose the flow, but it is done with ground rules
that people find quite reasonable. Thus, accountability is achieved in a
harmonious way because it boils down to the individual responsibility
of updating the board. This builds transparency among team members,
which in turn builds trust.

 Delivering a Coherent Set of User Stories

 Unfortunately, in an iterative and empirical process, it is not because
collaborative work produces high-value desirements that you necessarily
get a “usable” sprint. Often, collaboration also requires prioritizing low-
value desirements to obtain a coherent whole with optimal value. The
use of a visual aid is essential in achieving this know-how. In this regard,
over the years, experienced practitioners have acknowledged the neces-
sity of structuring the backlog along a two-dimensional collaboration

9780321784131_Book 1.indb 689780321784131_Book 1.indb 68 7/1/13 2:02 PM7/1/13 2:02 PM

Delivering a Coherent Set of User Stories 69

board. This way of organizing the stories to avoid half-baked incremen-
tal iterations was initially promoted by Jeff Patton [6] and is now known
as story mapping .

 Story mapping is the act of using a collaboration board to help in
planning sprints and ordering the backlog. As illustrated in Figure 5.14 ,
it combines high-value and low-value user stories in a coherent set, there-
by revealing sprints that are of perceptible value to the stakeholders.

Split along
“Level of Necessity”

Split along “Process Lines”

1

2

Start End

Low

High

Bare Necessity

Usefulness

Delightfulness

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

Sprint 1

Feature
A

Feature
B

Feature
C

Feature
D

Feature
E

Feature
…

Feature
F

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

Sprint 2

User
Story

User
Story

User
Story

User
Story

Sprint N

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

User
Story

. . .

 Figure 5.14 Planning sprints with story mapping.

 The yellow stickies are the user stories from the backlog. They are dis-
tributed along the process line on the horizontal axis and simultaneously
along the level of necessity on the vertical axis. Finally, they are ordered
in “usable” sprints by assessing the expected necessity. Visualizing the
desirements according to the process lines enables you to iteratively cut
ever closer to the heart of the prioritization challenge. By doing this, you
can combine the low-value functionalities and hold everything together.

9780321784131_Book 1.indb 699780321784131_Book 1.indb 69 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog70

 As is always the case with a collaboration board, it all starts by iden-
tifying the columns. Create as many columns as there are features in the
process lines. A feature is a piece of high-level functionality; a business
activity that delivers value and separates into several stories. Arrange
features by usage sequence, with features used early on, on the left, and
later on, on the right.

 Continue by creating as many rows as there are upcoming sprints. In
each sprint, split stories along its feature by placing them in the appropri-
ate column and make them overlap if they are numerous.

 Even if the horizontal axis organizes stories along process lines, it does
not ensure small and testable stories. Small stories should typically rep-
resent a few days of work. Initially, this is not the case as almost all new
user stories are too big. They are desirements that need to be disaggre-
gated into a set of constituent stories. Splitting desirements along the
level of necessity ensures the identification of simple stories that can be
forecast in a sprint. By differentiating the bare minimum necessity from
usefulness and delightfulness, the product owner can divide large stories
into smaller ones. These smaller stories provide immediate value and can
be delivered in a sprint.

 Even if desirements expressed as user stories are a starting point in
understanding requirements, because they help determine the scope of
work during sprints, they are mainly used as a unit of planning and de-
livery. This is why the overall goal of story mapping is to create a suitable
scope to establish a delivery plan.

 Planning Work with User Stories

 There is a close link between executable specifications and agile project
management. The purpose of this book is not to discuss agile project
management. There are good books that cover this topic . [7] That being

9780321784131_Book 1.indb 709780321784131_Book 1.indb 70 7/1/13 2:02 PM7/1/13 2:02 PM

Summary 71

said, we cannot ignore that desirements provide an effective unit of plan-
ning. As shown in story mapping, we plan sprints around desirements.
Actually, the strong adoption of story mapping by the agile community
leads me to believe that we are not alone in thinking that agile planning
is closely linked to requirements discovery.

 Summary

 In this chapter, you saw how to groom the product backlog by ranking,
illustrating, sizing, and splitting user stories. You learned the importance
of having a product owner—someone who not only leads backlog groom-
ing, but also ensures that it is done in collaboration with stakeholders
and the development team. You learned how to use collaboration boards
to track user stories during the grooming process. Finally, this chapter
concluded by explaining how to organize a delivery plan that provides
immediate value to the stakeholders through the use of story mapping.

 When a story has gone through the process of grooming, you have
reached an important milestone, which is the transition from conversa-
tion to confirmation. If user stories and their storyboards help monitor
conversations with stakeholders, success criteria help confirm expecta-
tions. Success criteria convey additional information about the story and
establish the conditions of acceptation. They enable the team to know
when it is done and they say, in the words of the stakeholders, how they
expect to verify the desirable outcome. In this perspective, success criteria
are a specification as important, if not more important, than the story.
Success criteria are a key element of executable specifications. Therefore,
the next chapter is dedicated specifically to the issue of confirming user
stories.

9780321784131_Book 1.indb 719780321784131_Book 1.indb 71 7/1/13 2:02 PM7/1/13 2:02 PM

Chapter 5 Refi ning User Stories by Grooming the Product Backlog72

References

[1] Snyder, Carolyn. (2003). Paper Prototyping: The Fast and Easy

Way to Design and Refine User Interfaces . San Francisco, CA:
Morgan Kaufmann.

[2] http://science.yourdictionary.com/fibonacci-sequence

[3] Cohn, Mike (2005). Agile Estimating and Planning . Boston, MA:
Addison-Wesley.

[4] Beck, Ken, Martin Fowler (2000). Planning Extreme Programming .
Boston, MA: Addison-Wesley.

[5] http://slingboards-lab.com

 [6] Patton, Jeff (2005, January). “It’s All in How You Slice It.” Better

Software Magazine . www.agileproductdesign.com/writing/how_
you_slice_it.pdf

[7] Highsmith, Jim (2009). Agile Project Management: Creating Inno-

vative Products . Boston, MA: Addison-Wesley.

9780321784131_Book 1.indb 729780321784131_Book 1.indb 72 7/1/13 2:02 PM7/1/13 2:02 PM

159

Index

 Numbers
 80/20 rule, 3

 A
 Acceptance Test-Driven

Development (ATDD), 77
 acceptance tests, converting

scenarios to, 98 - 101
 CI (continuous integration)

versus, 118 - 119
 connecting with interface,

110 - 114
 enhancing with test results,

119 - 120
 implementing the interface,

115 - 117
 internal DSL (domain-specific

language), 104 - 109
 red-green-refactor cycle,

101 - 103
 refactor stage, 117

 accessibility
 defined, 125
 testing practice for, 135

 actions, defined, 75
 adaptation events, 15 - 16
 Adzic, Gojko, 77 , 86 , 87
 agile, origin of term, 1
 Agile Estimating and Planning

(Cohn), 59

 agile zone (uncertainty diagram)
 described, 6
 handling uncertainty in, 7 - 9

 analysts
 defined, 149
 product owners versus, 46
 role in specification workshops,

 88 - 89
 anarchy zone (uncertainty

diagram), described, 6
 annotations, 106
 architects

 defined, 150
 role in nonfunctional

requirements, 126
 Are Your Lights On? (Weinberg

and Gauss), 31
 assumptions, verifying, 98 - 101
 ATDD (Acceptance Test-Driven

Development), 77
 automating scenario confirmation,

 101 - 103

 B
 BDD (Behavior-Driven Develop-

ment), 77 , 79 , 105 , 107 - 108
 Beck, Kent, 60 , 101
 benefits in user stories, 38 - 40
 boundaries (guardrails)

 “can-exist” assumption, 22
 common goal, 20
 high-level feature set, 21 - 22

9780321784131_Book 1.indb 1599780321784131_Book 1.indb 159 7/1/13 2:02 PM7/1/13 2:02 PM

Index160

 list of, 14
 shared vision, 17 - 20
 stakeholder involvement, 16 - 17
 team creation, 14 - 16

 bugs in product backlog, 42
 burn-down charts, 120
 business analysts. See analysts
 business value, splitting user stories

along, 60 - 62

 C
 calibrating tests, 114
“ can-exist” assumption for

software, 22
 chaining context, 113
 chaotic zone (uncertainty diagram),

described, 6
 Chelimsky, David, 79
 CI (continuous integration), accept-

ance tests versus, 118 - 119
 Cohn, Mike, 35 - 36 , 42 , 59
 collaboration

 confirming scenarios, 85 - 89
 grooming product backlog,

48 - 49
 collaboration boards

 story mapping with, 68 - 70
 tracking user stories, 62 - 68

 collaborative construction,
140 - 141

 collective code ownership, 140
 commands, splitting scenarios into,

 83 - 84
 common goal for software, 20
 comparison method, sizing user

stories, 56 - 60

 complexity zone (uncertainty
diagram)

 described, 6
 handling uncertainty in, 7 - 9

 concepts, naming, 81
 confirmation, automating, 101 - 103
 conflicting scenarios, merging,

 94 - 95
 consequences, defined, 75
 context, chaining, 113
 context-specification testing, 116
 continuous integration (CI), accept-

ance tests versus, 118 - 119
 correctness

 defined, 125
 testing practice for, 135

 Cunningham, Ward, 76

 D
 Definition of Done checklist, 138
 deliberate discovery. See trial-and-

error process
 desirements . See also product

backlog
 communicating via feedback

loops, 31 - 33
 describing with user stories,

 35 - 38
 discovering with roles and

benefits, 38 - 40
 establishing ubiquitous

language, 40 - 41
 planning with, 71
 prioritizing in product backlog,

 41 - 43 , 49 - 52
 desires, perceptions versus, 32
 developers, as team members, 15

9780321784131_Book 1.indb 1609780321784131_Book 1.indb 160 7/1/13 2:02 PM7/1/13 2:02 PM

Index 161

 division pattern (splitting user
stories), 61

 documenting scenarios by
feature, 93

 domain models, connecting
acceptance tests with, 112

 Domain-Driven Design (Evans), 40
 dot voting method, 49 - 52
 DSL (domain-specific language),

 104 - 109 , 112
 duplicate scenarios, avoiding,

94 - 95

 E
 Edison, Thomas A., 27
 80/20 rule, 3
 estimating user story size, 56 - 60
 Evans, Eric, 40
 examples, scenarios versus, 77
 executable specifications

 described, 4
 need for, 2

 extensibility
 defined, 137
 whether to consider, 139

 external quality
 defined, 124
 nonfunctional requirements

affecting, 125
 translating nonfunctional

requirements to restrictions,
 127 - 136

 external stakeholders, 17
 Extreme Programming (XP), 60

 F
 failed tests, calibrating with, 114
 failure. See trial-and-error process
 features

 defined, 70
 documenting scenarios, 93
 high-level feature set,

identifying, 21 - 22
 organizing scenarios by, 92
 usage statistics, 2

 feedback loops, 29 - 30
 communicating stakeholder

desirements, 31 - 33
 prioritizing, 31

 Fibonacci sequence, 57 , 59
 FIT tabular format

 Given-When-Then syntax
versus, 77 - 79

 scripting scenarios, 76 - 78
 Fleming, Alexander, 26 - 27
 fluent interfaces, 107
 formalizing

 in scenarios, 76
 ubiquitous language, 81 - 83

 Fowler, Martin, 60 , 105 , 112
 functional quality, defined, 124

 G
 Gauss, Don, 31
 Given-When-Then syntax

 FIT tabular format versus, 79 - 81
 scripting scenarios, 79 - 80

 goals, common goal for
software, 20

 God Complex, 26
 green stage for acceptance tests,

 115 - 117
 Grenning, James, 59

9780321784131_Book 1.indb 1619780321784131_Book 1.indb 161 7/1/13 2:02 PM7/1/13 2:02 PM

Index162

 grooming product backlog, 48 - 49
 guardrails

 “can-exist” assumption, 22
 common goal, 20
 high-level feature set, 21 - 22
 list of, 14
 shared vision, 17 - 20
 stakeholder involvement, 16 - 17
 team creation, 14 - 16

 H
 Harford, Tim, 26
 high-level feature set, 21 - 22
 “How.” See solutions

 I
 illustrating user stories, 52 - 56
 inspection events, 15 - 16
 interfaces

 connecting acceptance tests with,
 110 - 114

 implementing, 115 - 117
 internal DSL (domain-specific

language), 104 - 109 , 112
 internal quality

 collaborative construction and,
 140 - 141

 defined, 124
 improving software with proven

practices, 137 - 139
 nonfunctional requirements

affecting, 137
 internal stakeholders, 16 - 17
 INVEST mnemonic, 37

 J
 Jeffries, Ron, 38
 Jobs, Steve, 27
 Joyce, James, 27

 K
 Keepence, Barry, 127

 L
 language, ubiquitous

 establishing, 40 - 41
 formalizing, 81 - 83

 M
 maintainability

 defined, 137
 proven practices for, 138

 managing product backlog, 46 - 48
 Mannion, Mike, 127
 Matisse, Henri, 28
 measurable quality objectives, set-

ting for restrictions, 131 - 135
 merging scenarios, 94 - 95
 Model-View-Controller design

pattern, 110
 Model-View-Presenter design

pattern, 110
 Model-View-ViewModel design

pattern, 110
 Mugridge, Rick, 76
 music, trial-and-error process

in, 28

9780321784131_Book 1.indb 1629780321784131_Book 1.indb 162 7/1/13 2:02 PM7/1/13 2:02 PM

Index 163

 N
 naming

 concepts, 81
 projects, 17 - 20

 nonfunctional requirements
 affecting external quality, 125
 affecting internal quality, 137
 collaborative construction and,

 140 - 141
 defined, 124 - 125
 improving software with proven

practices, 137 - 139
 translating to restrictions,

127 - 136
 as user stories, 127

 North, Dan, 77

 O
 ordering. See prioritizing
 organizing scenarios, 91 - 95

 P
 painting, trial-and-error process

in, 28
 pair programming, 141
 paper prototyping, 54
 Pareto Principle, 3
 pattern matching, 106 - 107
 Patterns of Enterprise Application

Architecture (Fowler), 112
 Patton, Jeff, 69
 perceptions, desires versus, 32
 performance

 defined, 125
 testing practice for, 135

 planning
 sprints, 68 - 70
 with user stories, 71

 Planning Extreme Programming
(Beck and Fowler), 60

 planning poker technique (estimat-
ing user story size), 59 - 60

 portability
 defined, 137
 proven practices for, 138

 preconditions, defined, 75
 prioritizing

 sprints, 31
 user stories in product backlog,

 41 - 43 , 49 - 52
 problems, defined, 31
 problem-solving (trial-and-error

process)
 feedback loops, 29 - 30

 communicating stakeholder
desirements, 31 - 33

 prioritizing, 31
 for software requirements, 25 - 29

 process summary, 148
 product backlog

 grooming, 48 - 49
 managing, 46 - 48
 prioritizing user stories in,

41 - 43 , 49 - 52
 story mapping, 68 - 70
 tracking user stories, 62 - 68

 product owners, 15
 analysts versus, 46
 defined, 149
 designing storyboards, 52 - 56
 grooming product backlog,

48 - 49

9780321784131_Book 1.indb 1639780321784131_Book 1.indb 163 7/1/13 2:02 PM7/1/13 2:02 PM

Index164

 managing product backlog,
46 - 48

 sizing user stories, 56 - 60
 programmers, defined, 150
 programming interface

 Model-View-Controller design
pattern for, 110

 purpose of, 112
 proven practices

 improving software with,
137 - 139

 testing restrictions, 135 - 136

 Q
 quality

 defined, 123
 functional quality, defined, 124
 measurable quality objectives,

setting for restrictions,
131 - 135

 nonfunctional requirements
 affecting external quality, 125
 affecting internal quality, 137
 collaborative construction and,

 140 - 141
 defined, 124 - 125
 improving software with

proven practices, 137 - 139
 translating to restrictions,

127 - 136
 Quality Is Free (Crosby), 123
 Quality Software Management

Systems Thinking
(Weinberg), 123

 queries, splitting scenarios into,
 83 - 84

 R
 R&D (Research & Development),

handling uncertainty in, 7 - 9
 ranking. See prioritizing
 red stage for acceptance tests,

110 - 114
 red-green-refactor cycle, 101 - 103

 green stage, 115 - 117
 red stage, 110 - 114
 refactor stage, 117

 refactor stage for acceptance
tests, 117

 releases, sprints versus, 30
 reliability

 defined, 125
 testing practice for, 135

 removing technical considerations
from scenarios, 89 - 91

 requirements . See also product
backlog

 describing with user stories,
 35 - 38

 discovering with roles and
benefits, 38 - 40

 distinguishing from solutions, 4
 establishing ubiquitous lan-

guage, 40 - 41
 feedback loops on, 29 - 30

 communicating stakeholder
desirements, 31 - 33

 prioritizing, 31
 guardrails

 “can-exist” assumption, 22
 common goal, 20
 high-level feature set, 21 - 22
 list of, 14
 shared vision, 17 - 20

9780321784131_Book 1.indb 1649780321784131_Book 1.indb 164 7/1/13 2:02 PM7/1/13 2:02 PM

Index 165

 stakeholder involvement, 16 - 17
 team creation, 14 - 16

 prioritizing in product backlog,
 41 - 43 , 49 - 52

 trial-and-error process, 25 - 29
 uncertainty

 handling, 7 - 9
 impact of, 5 - 7

 Research & Development (R&D),
handling uncertainty in, 7 - 9

 restrictions
 linking with scenarios, 129 - 131
 setting measurable quality

objectives, 131 - 135
 testing with proven practices,

 135 - 136
 translating nonfunctional

requirements to, 127 - 136
 robustness

 defined, 125
 testing practice for, 135

 roles in user stories, 38 - 40

 S
 scalability

 defined, 125
 testing practice for, 135

 scenarios, 74
 confirming collaboratively,

85 - 89
 converting to acceptance tests,

 98 - 101
 CI (continuous integration)

versus, 118 - 119
 connecting with interface,

110 - 114
 enhancing with test results,

 119 - 120

 implementing the interface,
 115 - 117

 internal DSL (domain-specific
language), 104 - 109

 red-green-refactor cycle,
101 - 103

 refactor stage, 117
 linking restrictions with,

129 - 131
 organizing, 91 - 95
 removing technical considera-

tions from, 89 - 91
 scripting user stories, 74 - 84

 FIT tabular format, 76 - 78
 formalism in, 76
 Given-When-Then syntax,

 79 - 80
 language formalization, 81 - 83
 splitting scenarios into

commands/queries, 83 - 84
 Schwaber, Ken, 1
 scripting user stories with

scenarios, 74 - 84
 FIT tabular format, 76 - 78
 formalism in, 76
 Given-When-Then syntax, 79 - 80
 language formalization, 81 - 83
 splitting scenarios into

commands/queries, 83 - 84
 Scrum, origin of term, 1
 security

 defined, 125
 testing practice for, 135

 shared vision, 17 - 20
 simple/complicated zone

(uncertainty diagram)
 described, 6
 handling uncertainty in, 7 - 9

9780321784131_Book 1.indb 1659780321784131_Book 1.indb 165 7/1/13 2:02 PM7/1/13 2:02 PM

Index166

 simplicity
 defined, 137
 proven practices for, 138

 simplification pattern (splitting user
stories), 62

 sizing user stories, 56 - 60
 SMART principle, 127
 software features, usage statistics, 2
 solutions

 distinguishing from
requirements, 4

 guardrails
 "can-exist" assumption, 22
 common goal, 20
 high-level feature set, 21 - 22
 list of, 14
 shared vision, 17 - 20
 stakeholder involvement, 16 - 17
 team creation, 14 - 16

 uncertainty
 handling, 7 - 9
 impact of, 5 - 7

 sorting. See prioritizing
 SpecFlow automation

framework, 108
 Specification by Example

(Adzic), 77
 specification workshops, 87 - 89
 specifications

 described, 4
 need for, 2

 splitting
 scenarios, 83 - 84
 user stories, 60 - 62

 sprints, 29 - 30
 communicating stakeholder

desirements, 31 - 33
 organizing scenarios for, 91 - 95

 planning with story mapping,
 68 - 70

 prioritizing, 31
 stable foundation. See guardrails
 stakeholders

 common goal, 20
 confirming scenarios with, 85 - 89
 desirements

 describing with user stories,
 35 - 38

 discovering with roles and
benefits, 38 - 40

 establishing ubiquitous
language, 40 - 41

 prioritizing in product backlog,
 41 - 43 , 49 - 52

 feedback loops with, 29 - 30
 communicating stakeholder

desirements, 31 - 33
 prioritizing, 31

 involvement of, 16 - 17
 shared vision, 17 - 20
 splitting user stories, 60 - 62
 in trial-and-error process for

requirements, 25 - 29
 state machines, 75 - 76
 states in scenarios, 81 - 82
 stories. See user stories
 story mapping, 68 - 70
 storyboards, 52 - 56 , 74
 StoryQ automation

framework, 109
 Sutherland, Jeff, 1

9780321784131_Book 1.indb 1669780321784131_Book 1.indb 166 7/1/13 2:02 PM7/1/13 2:02 PM

Index 167

 T
 task boards, 64
 TDD (Test-Driven Development)

 context-specification testing, 116
 red-green-refactor cycle,

101 - 103
 unit testing with, 115

 team
 confirming scenarios with

stakeholders, 85 - 89
 creating, 14 - 16
 members of, 149 - 150

 technical considerations, removing
from scenarios, 89 - 91

 testability
 defined, 137
 proven practices for, 138

 testers, defined, 149
 tests

 acceptance tests
 CI (continuous integration)

versus, 118 - 119
 connecting with interface,

110 - 114
 converting scenarios to, 98 - 101
 enhancing scenarios with test

results, 119 - 120
 implementing the interface,

 115 - 117
 internal DSL (domain-specific

language), 104 - 109
 red-green-refactor cycle,

 101 - 103
 refactor stage, 117

 calibrating, 114
 on restrictions, 135 - 136
 scenarios versus, 77

 time, estimating based on, 57 - 58
 tracking user stories, 62 - 68
 traditional zone (uncertainty

diagram)
 described, 6
 handling uncertainty in, 7 - 9

 transitions, 81
 trial-and-error process, 9

 feedback loops, 29 - 30
 communicating stakeholder

desirements, 31 - 33
 prioritizing, 31

 for software requirements, 25 - 29

 U
 ubiquitous language

 establishing, 40 - 41
 formalizing, 81 - 83

 uncertainty
 guardrails

 “can-exist” assumption, 22
 common goal, 20
 high-level feature set, 21 - 22
 list of, 14
 shared vision, 17 - 20
 stakeholder involvement, 16 - 17
 team creation, 14 - 16

 handling, 7 - 9
 impact of, 5 - 7

 unit testing
 replacing with context-

specification testing, 116
 with TDD, 115

 usability
 defined, 125
 testing practice for, 135

 usage statistics for software
features, 2

9780321784131_Book 1.indb 1679780321784131_Book 1.indb 167 7/1/13 2:02 PM7/1/13 2:02 PM

Index168

 user stories, 35 - 38 . See also
product backlog

 confirming scenarios
collaboratively, 85 - 89

 illustrating with storyboards,
 52 - 56

 nonfunctional requirements
as, 127

 organizing scenarios, 91 - 95
 planning with, 71
 prioritizing in product backlog,

 41 - 43 , 49 - 52
 removing technical considera-

tions from scenarios, 89 - 91
 roles and benefits in, 38 - 40
 scripting with scenarios, 74 - 84

 FIT tabular format, 76 - 78
 formalism in, 76
 Given-When-Then syntax,

 79 - 80
 language formalization, 81 - 83
 splitting scenarios into

commands/queries, 83 - 84
 sizing, 56 - 60
 splitting, 60 - 62
 story mapping, 68 - 70
 tracking, 62 - 68
 ubiquitous language with, 40 - 41

 User Stories Applied (Cohn), 35

 V
 verifying assumptions, 98 - 101
 vision, clarifying, 17 - 20

 W
 Walt Disney Studios, 52
 Weinberg, Gerald, 31 , 123
 “What,” See requirements

 X
 XP (Extreme Programming), 60

9780321784131_Book 1.indb 1689780321784131_Book 1.indb 168 7/1/13 2:02 PM7/1/13 2:02 PM

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

9780321784131_Book 1.indb 1699780321784131_Book 1.indb 169 7/1/13 2:02 PM7/1/13 2:02 PM

	Contents
	Figure List
	Preface
	Acknowledgments
	About the Author
	Chapter 5 Refining User Stories by Grooming the Product Backlog
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

