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Praise for 
Executable Specifications with Scrum

“This is a great book that demonstrates the value of putting effort behind re-
quirements in an Agile environment, including both the business and technical 
value. The book is well-written and flows nicely, approachable for both the 
manager and the developer. I am recommending this book to all Scrum teams 
who need to integrate business analysts and architects as active teammates.”

—Stephen Forte, Chief Strategy Officer at Telerik and 
Board Member at the Scrum Alliance

“Cardinal’s book brings to light one of the most important and neglected aspects 
of Scrum: Having user stories that are ready to sprint. Teams often complain 
about this, and the author offers practical advice on how to get it done right!”

—Steffan Surdek, co-author of A Practical Guide to Distributed Scrum

“Executable Specifications with Scrum doesn’t shine through its depth but its 
breadth. This compendium of proven agile practices describes an overarching 
process spike touching important aspects of product development in a cohesive 
way. In this compact book, Mario Cardinal clearly explains how he achieves 
a validated value stream by applying agile practices around executable 
specifications.”

—Ralph Jocham, Founder of agile consulting company effective agile. and 
Europe’s first Professional Scrum Master Trainer for Scrum.org

“Cardinal provides deep insights into techniques and practices that drive effec-
tive agile teams. As a practitioner of the craft Cardinal describes, I now have a 
written guide to share with those who ask, ‘What is this [ATDD/BDD/TDD/
Executable Specification/etc] thing all about?’ Regardless of the name de jour, 
Cardinal gives us what works.”

—David Starr, Senior Program Manager, Microsoft Visual Studio
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“Scrum is barely a process, only a framework. It is a tool, and you have to provide many complemen-
tary practices to reach true business agility. This book is perfect for teams that are using Scrum and 
want to learn about or get started with executable specifications.”

—Vincent Tencé and François Beauregard, Scrum Trainers at Pyxis Technologies

“This book maps out the important place of specifications in an agile landscape to the benefit of 
agilists of all roles.”

—Erik LeBel, Technology and Development Consultant at Pyxis Technologies   
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xvi

     Preface  

 There is a wide range of books that have been written about specifications. Un-
fortunately, most of them are not useful for software development teams. These 
books rely on traditional engineering practices. They assume requirements are 
known upfront and, once specified, will not change for the duration of the pro-
ject. And if changes happen, they presume they will be minor, so they could be 
tracked with a change management process. They promote a sequential process 
starting with a distinct requirements phase that delivers a detailed requirements 
specification before starting to design and build the product.  

  Goal of This Book  

 It is my belief that traditional engineering practices are not suitable for software 
development. Central to the process of software specification is a high level 
of uncertainty, which is not the case with traditional engineering. Fortunately, 
with the growth of the agile community in the past decade, a body of knowledge 
more suited to the reality of software development has emerged. Many books 
explaining agility have become must-read books for anyone interested in soft-
ware development. A large majority of them contain at least a chapter or two 
on requirements, some almost totally dedicated to this topic. Because I believe 
these  texts are important, I will include citations from them and reference them 
throughout this book.  

 I wrote this book to add to this body of knowledge. It is a compendium of 
the agile practices related to executable specifications. Executable specifications 
enable us to easily test the behavior of the software against the requirements. 
Throughout this book, I will explain how you can specify software when prereq-
uisites are not clearly defined and when requirements are both difficult to grasp 
and constantly evolving. Software development practitioners will learn how to 
trawl requirements incrementally, step-by-step, using a vision-centric and an 
emergent iterative practice. They will also learn how to specify as you go while 
writing small chunks of  requirements.  
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 This book aims to explain the technical mechanisms needed to obtain the 
benefits of executable specifications. It not only provides a sound case for itera-
tive discovery of requirements, it also goes one step further by teaching you how 
to connect the specifications with the software under construction. This whole 
process leads to the building of executable specifications.  

 It is important to recognize that even with the best intentions you cannot 
force agreement upon stakeholders. The following African proverb explains this 
succinctly: “You can’t make grass grow faster by pulling on it.” When knowl-
edge is incomplete and needs are constantly changing, we cannot rely on ap-
proaches based on traditional engineering. Instead, it is critical that you empha-
size empirical techniques based on the iterative discovery of the requirements. 
The objective sought is not only to solve the problem right, but also to solve the 
right problem—this is the paramount challenge of software construction.  

 This book is unique in that it teaches you how to connect requirements and 
architecture using executable specifications. You learn how to specify require-
ments as well as how to automate the requirements verification with a Scrum 
framework. As a result of reading this book, you can select a tool and start us-
ing executable specifications in future agile projects. Here are five advantages to 
reading this book:  

   •    You can understand how the work of business analysts changes when 
transitioning from traditional to agile practices.   

  •    You learn how to groom emergent requirements within the Scrum frame-
work.   

  •    You get insight about storyboarding and paper prototyping to improve 
conversations with stakeholders.   

  •    You discover how to build an emergent design while ensuring implementa-
tion correctness at all times   

  •    You can understand that software architects who are adopting agile 
practices are designing incrementally and concurrently with software 
development.     
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  Who Should Read This Book?  

 Readers of this book have already adopted the Scrum framework or are transi-
tioning to agile practices. They understand the fundamentals of agility but are 
unfamiliar with executable specifications. They want to understand why the 
executable specifications are useful and most important how to start with this 
new practice.  

 With the massive adoption of Scrum framework, the next major challenge 
facing agile teams is to integrate business analysts and architects as active team-
mates. Anyone who is a Scrum master, manager or decision maker who faces 
this challenge should read this book. In addition, all team members involved in 
agile projects will benefit from this book. It goes without saying that business 
analysts and software architects will be happy to find a book that directly ad-
dresses their concerns.  

 Advanced or expert agilists will be interested in the book’s concise overview 
of executable specifications. They could use this book to successfully guide their 
teammates down this path. In addition, the terminology used throughout the 
book can help leaders to communicate effectively with their peers.   

  Road Map for This Book  

 Executable specifications require a change in mindset. This book focuses on this 
issue. Executable specifications help reduce the gap between what stakeholders 
want the software to do (the “What”), and what the software really does (the 
“How”). Executable specifications address requirements in a way that makes it 
easy for the development team to verify the software against the specifications 
and this as often as requirement changes occur.  

 To facilitate this change in mindset, this book offers a unique approach to the 
process that spans nine chapters:  

   •     Chapter   1   : Solving the Right Problem   

 This chapter explains the need to respond efficiently to the constantly 
changing requirements using iterative discovery and executable specifica-
tions.   
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  •     Chapter   2   : Relying on a Stable Foundation   

 This chapter explains how to identify what will hardly change: the core 
certainties on which the team should rely. Those certainties are not re-
quirements. They are high-level guardrails that ensure a solution can be 
built. They create a stable foundation to ensure that an iterative require-
ments discovery is possible.   

  •      Chapter   3   : Discovering Through Short Feedback Loops and Stakeholders’ 

Desirements   

 This chapter shows that to tackle uncertainties, teams must discover stake-
holders’ desires and requirements (desirements) through short feedback 
loops.   

  •     Chapter   4   : Expressing Desirements with User Stories   

 This chapter teaches you how to express desirements with user stories and 
how to record them using the product backlog.   

  •     Chapter   5   : Refining User Stories by Grooming the Product Backlog   

 This chapter explains how to groom the product backlog so that you can 
plan sprints that can increase the likelihood of success of the feedback 
loops.   

  •     Chapter   6   : Confirming User Stories with Scenarios   

 This chapter demonstrates how to confirm user stories by scripting behav-
iors with scenarios.   

  •     Chapter   7   : Automating Confirmation with Tests   

 This chapter explains how to turn scenarios into automated tests so that 
you can easily confirm the expected behavior of the software against the 
evolving specifications.   

  •     Chapter   8   : Addressing Nonfunctional Requirements   

 This chapter teaches you how to ensure quality software by specifying 
nonfunctional requirements.   

  •     Chapter   9   : Conclusion   

 This last chapter summarizes the key elements of the book.        
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  Chapter 5 

 Refining User Stories by 
Grooming the Product 
Backlog  

    You learned in the previous chapter that iterative discovery of desire-
ments involves expressing user stories with the help of a product back-
log. The purpose of this chapter is to learn how to groom the product 
backlog so that you can plan sprints that will increase the quality of 
feedback loops.  

 In this chapter, you will learn the importance of the product owner for 
the product backlog. This chapter discusses how the team refines user 
stories by grooming the product backlog. Grooming is the act of rank-
ing, illustrating, sizing, and splitting user stories. You will see how to 
use collaboration boards to make explicit the grooming process, with a 
minimum of formality. Finally, it concludes by explaining how to organ-
ize effective sprints with story mapping.   

45
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Chapter 5 Refi ning User Stories by Grooming the Product Backlog4646

     Managing the Product Backlog  

 Nowadays, it is unlikely that new software must address the needs of a 
single stakeholder. On average, there are easily between 10 and 20 stake-
holders. This requires the involvement of several people. If the product 
backlog is an ordered list, and the stakeholders are responsible for set-
ting the priority, how do you ensure the list actually gets sorted and that 
every item does not end up being poorly defined? Assigning the product 
backlog ownership to a group of people is not a viable solution. Scrum 
recognizes this issue by defining a specific role for this responsibility, the 
product owner.  

 The product owner is responsible for ensuring that the product back-
log is always in a healthy state. He is the primary interface between the 
development team and the stakeholders. The product owner is the defini-
tive authority on all that concerns requirements. His main responsibility 
is to decide the ordering of what will be built and list these decisions into 
the product backlog.  

 One of the primary qualities of the product owner is to be the bearer 
of the vision. He understands the big picture. This knowledge gives that 
person the authority to prioritize the importance of the desirements ex-
pressed by stakeholders. Faced with the unexpected, the product own-
er knows how to stay the course and is responsive to the stakeholders’ 
changes.  

 There is a lot of responsibility (both explicit and implicit) involved in 
managing the product backlog. Work will not get done without someone 
actively collaborating with stakeholders to understand customer/market 
needs and then communicating with the development team to ensure 
those needs are met. Being the product owner does not mean that he 
decides alone. The development team actively takes a hand in backlog 
management.    
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Managing the Product Backlog 47

  Is the Product Owner the New Role for Analysts?  

 Within an agile framework, creating a new user story is an activity 
open to all. It can be done either by a stakeholder or by a team mem-
ber. It is strongly recommended that stakeholders write the stories 
without requiring business analysts to act as a proxy between them 
and the team. There are cases in which the product owner creates a 
story in response to a request from stakeholders, but this scenario 
is not mandatory.  

 Because of her experience and know-how, there are similarities 
between the analyst and product owner roles. However, they are 
two different roles in the Scrum team. There is a major difference 
between a true analyst and a product owner. Product owners repre-
sent the business and have the authority to make decisions that af-
fect their product. Typically, an analyst does not have this decision-
making authority.  

 To have a true business analyst step into the role of product own-
er is possible but not always the best option. For example, here is a 
scenario in which a business analyst is probably not the best choice 
for owning and maintaining the product backlog. Say you are an 
independent software vendor selling software to thousands of users. 
In this case, someone must focus on both the customer and market, 
adapting the iteration plan and evolving the product roadmap. An 
analyst is not trained for that job.  

 You must realize that the evolving role of the analyst does not 
necessarily consist of being a product owner. Someone else with 
stronger marketing skills than the business analyst could also in-
herit this responsibility. In the next chapter, you will learn that, by 
default, the role of the analyst is now more tactical. He handles a 
myriad of details and still does analysis, but now mostly focuses 
inward on the delivery team.   
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 This new, strategic role is more than just  backlog prioritization . It is 
about facilitating software development over successive sprints and en-
suring appropriate customer/market needs are inserted into that process.  

 Though this role is typically assigned to someone with technical back-
ground, someone from marketing or product management is probably 
just as qualified. If any of these people cannot fulfill the role, someone 
with a solid understanding of end users, the marketplace, the compe-
tition, or future trends can become the product owner. This is not a 
solitary role—the product owner is most likely part of a larger team—
perhaps in product management (if an independent software vendor) or 
in a client-facing team (if in consulting).   

  Collaborating to Groom the Product Backlog  

 When dealing with emerging needs, it is impossible to keep the entire 
backlog in a ready state; only the top elements need to be. A healthy 
backlog provides a set of high-value, ready desirements, about equal in 
size, that are small enough so that the team can deliver them in the up-
coming sprints. To obtain desirements that are ready to iterate, you need 
to periodically groom the backlog.  

 Even with all the improvements wrought by the Scrum framework, 
grooming the backlog remains, and likely will remain, a fundamentally 
human endeavor, fueled by the insights, ideas, passions, and perceptions 
of people looking for the best. Rather than letting stakeholders work of 
their own free will, the product owner must lead everyone by using a 
sequence of activities that promotes deliberate discovery. Grooming the 
backlog boils down to a sequence of four activities: ranking, illustrating, 
sizing, and splitting user stories, as shown in  Figure   5.1   .  
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 Figure 5.1   Grooming the backlog.         

 These activities are never performed solo by the product owner. To ac-
complish these activities, the product owner must collaborate: first with 
stakeholders and then with the development team. Backlog grooming is 
a team effort.   

  Ranking User Stories with a Dot Voting Method  

 Although, according to the development team, the product owner is per-
ceived as the one who decides the ordering of the backlog, it is actually 
not his decision. He must rely on stakeholders who are the ones who 
decide the importance of each story.  

 For the product owner, ranking user stories is actually a contact sport 
with stakeholders. It requires that he brings all his senses to the task and 
applies the best of his thinking, his feelings, and his communication skills 
to the challenge of facilitating decision making. The product owner is a 
facilitator, not a decider. Because he understands the process of groom-
ing the backlog, he can guide stakeholders.  
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 As mentioned in  Chapter   3   , “Discovering Through Short Feedback 
Loops and Stakeholders’ Desirements,” you can picture the communica-
tion between builders and stakeholders as a large room swathed in dark-
ness. The product owner is in the room having conversations with stake-
holders and what he hears is a cacophony of dissident voices. Because 
there is no light, little knowledge is derived from the situation. Now, 
imagine that the voice of each stakeholder emits a color when speaking.  

 The product owner steers the conversation by asking stakeholders 
what is the most important desirement. Soon, he will be surrounded with 
multicolored fireflies representing stakeholders’ desirements. By forcing 
the writing of the desirements as a user story, this can simplify the an-
swers and increase the likelihood that the same desirement can repeated 
by several stakeholders. When user stories begin to accumulate, all the 
different colors merge, creating sparkling white lights. Order springs 
from the cacophony. These white lights are the important stories, those 
that the product owner must rank at the top of the backlog.  

 So far, the ranking process as described may seem abstract. Forget the 
abstract to be more practical. Usually, when discussing ranking, authors 
prefer to present the most common techniques, such as binary search tree, 
Kano analysis, MoSCoW (Must-Should-Could-Would), or other numer-
al assignment techniques. Now do the same by using one of the preferred 
methods: the dot voting technique (also known as spending your dollar 
technique). This established facilitation method is widely used by work-
shop facilitators for prioritizing ideas among a large number of people, 
and for deciding which are the most important to take forward.  

 The method is summarized as follows:  

   1.   Post the user stories on the wall using yellow stickies or in some 
manner that enables each item to receive votes.   

  2.   Give four to five dots to each stakeholder.   
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  3.   Ask the stakeholders to place their votes. Stakeholders should apply 
dots (using pens, markers, or, most commonly, stickers) under or 
beside written stories to show which ones they prefer.   

  4.   Order the product backlog from the most number of dots to the 
least.    

 When you are done with this first pass, it is almost certain that the 
stakeholders will not be completely happy with the outcome of the vote. 
If that is the case, you should review the voting and optimize it. Here’s 
what you can do:  

   1.   Arrange the votes into three groups to represent high, medium, and 
low priorities.   

  2.   Discuss stories in each group.   

  3.   Move items around to create a high-priority list.   

  4.   Make a new vote with items in the high-priority list.    

 The goal during this review is to start a discussion about each group. 
Discuss which user stories are a low or medium priority, and which must 
be delivered in the near future. Why are they low priority? After discus-
sion, stakeholders may agree to move them into the high-priority list. 
Also, discuss the stories that are almost high priority and decide if you 
should move them in the high-priority list. When you are done with the 
discussion, repeat voting, this time using only the items that belong to the 
high-priority list. Finish this second vote by ordering the product backlog 
from  the most number of dots to the least.  

 Identifying the user stories that are top priorities is the first step of a 
two-step process. The second step is to ensure that the stories are small 
enough so that the team can build them in a sprint. To achieve this goal, 
the product owner must shift focus and start discussions with the devel-
opment team. Unlike stakeholders, the team members are the ones who 
can measure the size of user stories.  
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 Sizing requires a rough understanding by the development team of the 
user experience. The user experience enables stakeholders to discuss the 
success criteria. These criteria say in the words of the stakeholders how 
they expect the software to behave.  

 During this second step, seek to quickly define success criteria, so the 
team estimates the size of stories as soon as possible and with minimum 
effort. A storyboard is the perfect medium for achieving this goal. If user 
stories help monitor conversations with stakeholders, storyboards help 
to illustrate expectations rapidly and cheaply. They are concrete exam-
ples that provide the explicit information required by the development 
team.   

  Illustrating User Stories with Storyboards  

 As experience teaches, stakeholders love to envision the software from 
the user interface standpoint. As a result, often they specify how the soft-
ware should work, rather than just what it is supposed to do. This is why 
illustrating user stories with a storyboard is so efficient.  

 Storyboards, as we know them today, were developed at the Walt 
Disney Studios in the 1930s. The first storyboards evolved from comic 
book-like story sketches. They were used to “preview” an animation 
before a single animated cartoon was produced.  

  Figure   5.2    shows an example of a storyboard for an animated film. 
Not only does a storyboard make possible a dress rehearsal of the final 
product, but also by posting it on the wall, it elicits early feedback and 
encourages quick, painless editing, leading to significant savings in time 
and resources.  
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 Figure 5.2   An example of a storyboard for an animated film.         

 For the general public, a storyboard means drawing pre-production 
pictures for video production, animation, and film making. Unfortunate-
ly, too few know that storyboarding also applies to software develop-
ment. It helps to illustrate the important steps of the user experience.  

 It is tough to capture the big picture without visually depicting the 
user story. Explaining requirements from the perspective of the user in-
terface helps to turn unspoken assumptions into explicit information. In 
addition, explicit information helps stakeholders think and communicate 
effectively. To keep up a healthy conversation between stakeholders, the 
product owner, and the development team, each user story should be en-
hanced with a storyboard. During specifications, the screens required to 
illustrate the user story are roughly sketched, either on paper or through 
the use of computer-based software.  

 Do not expect the storyboard to be a visual prototype that looks like 
the final user interface. It is an artistic rendition in which many details 
are missing. A storyboard is a low-fidelity visual aid that communicates 
the visible behaviors of a user story.  
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 The process of visual thinking enables stakeholders and the product 
owner to brainstorm together, placing their ideas on storyboards and 
then arranging them in a structured way. This fosters more ideas and 
generates consensus within the group. The reason for the usefulness of 
a storyboard is that it helps stakeholders, as well as the development 
team, understand exactly how the user story will work. It is also more 
cost-effective to make changes to a storyboard than to an implemented 
user story.  

 The simplest technique for creating storyboards is  paper prototyping 

[1]   . It involves creating rough, even hand-sketched, drawings of the user 
interface to use as throwaway prototypes. All interactions within the 
prototype are simulated. Although paper prototyping is sketchy and in-
complete, this simple method of communication with stakeholders can 
provide a great deal of useful feedback that can result in the design of 
better user stories.  Figure   5.3    demonstrates how you can easily sketch 
ideas, test them almost instantaneously with stakeholders, and get rapid 
feedback on what does and does not work.  

 

 Figure 5.3   An example of a paper prototype.         
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 After collecting and visualizing ideas on how the user interface might 
look, when there is a consensus on the user experience, it is desirable 
to keep an electronic copy of the storyboard for future reference. The 
simplest technique is to transform the paper prototype into a low-fidelity 
computer-based storyboard. The storyboard can then be used as a visual 
illustration of the user story, which will be shared with the development 
team. It is important, however, to make sure that you do not use a soft-
ware tool that attempts to make the user interface similar to the final 
product. These high-fidelity  tools encourage precision, and specifying all 
the details is time-consuming and deemed inappropriate at this time.  

  Figure   5.4    shows a low-fidelity computerized storyboard for the fol-
lowing user story, “As a student, I want to select a transit fare so that I 
can buy it.”  

 

 Figure 5.4   A computerized low-fidelity storyboard.         
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 Designing the storyboards is always the responsibility of the product 
owner. He may nonetheless be assisted by the team members while per-
forming his duties. For example, business analysts can help to complete 
the computerized storyboards. However, this activity is essential for ob-
taining a healthy backlog, and the product owner must be fully involved.   

  Sizing User Stories Using Comparison  

 The biggest and most common problem product owners encounter is sto-
ries that are too big. If a story is too big and overly complex while being 
a top priority, the sprint is at risk of not being properly completed. To 
avoid this issue, product owners must identify, as early as possible, if a 
user story is the right size and therefore ready to be built during a sprint.  

 It is not the responsibility of the product owner to estimate the work 
that needs to be done to complete each story. Only the development team 
can identify the size of a story. After the development team makes those 
estimates, the product owner can then determine if the story is too big. 
If that is the case, with the help of the team, she will split it into smaller 
stories.  

 To estimate the size of the top stories in the backlog, the product own-
er must organize recurring backlog grooming meetings. All the members 
of the development team must attend these meetings. To answer any 
questions addressed during these meetings, subject matter experts (stake-
holders) should also participate. Before the meeting occurs, the product 
owner prioritizes the story list, thereby ensuring the most important sto-
ries will be estimated. The meeting is then time-boxed, at usually one 
hour, and each story is considered. Don’t worry if you don’t have time 
to discuss all the stories in the backlog. They will be addressed in  future 
meetings.  

 Sizing a story requires that the development team estimates the work 
to be done to complete it. This should be simple, but unfortunately hu-
man beings are not good at estimating. Actually, we are not good at all. 
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Cognitive scientists tell us that our brain is wired to imagine the possible. 
We are reluctant to identify limitations, especially if they are not obvi-
ous. It seems that we are too optimistic, and indeed, we would not have 
survived the evolution of our species without this trait. With this bias 
built into our genetic background, it is almost impossible for us to ac-
curately  estimate, at least in a short time. It is obvious that with a lot of 
resources and enough time, humans just get there. However, this is not 
our case as we seek to estimate a user story in less than 5 minutes.  

 Does this mean that the development team should not estimate? Yes, 
at least according to what the word “estimate” means today. I propose 
that you estimate differently. Stop measuring absolute values and start 
comparing relative values. When estimating, you should not measure ef-
fort but instead compare efforts using a reference point.  

 Humans are poor at estimating absolute sizes. However, we are great 
at assessing relative sizes. For example, imagine that a team must esti-
mate the weight of a young child and an adult. It will be difficult to agree 
on the exact weight of each. However, it will be extremely easy to decide 
which one is heavier.  

 When you measure stories, you need to be concerned with only rela-
tive sizes. You can easily do this by using the Fibonacci sequence or 
series, which is “A sequence of numbers, such as 1, 1, 2, 3, 5, 8, 13..., in 
which each successive number is equal to the sum of the two preceding 
numbers”  . What is of interest, in this sequence, is the ratio between any 
number and its counterpart. This series gives you a relative size you can 
work with to compare effectively.  

 Our cultural tendency is to estimate based on how many hours it will 
take to complete a story. Unfortunately, estimating using duration re-
duces the team to measuring absolute values, which is what we want 
to avoid. Because of our incapacity to anticipate the unknown and to 
predict risk, we should steer clear of estimating based on time. There are 
three reasons for this:  
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•      The time necessary for teams to build one unit of work fluctuates 
from sprint to sprint. In a complex situation, there is no other choice 
than to work collaboratively. When a member of the team is absent, 
due to vacation periods or members leaving the team, the team’s 
capacity to deliver changes. As a result, if you measure effort based 
on the number of hours, you must perpetually revisit the estimates 
in the backlog.   

•     Estimating based on time requires you to take into account the slack 
time. This adds accidental complexity, which results in a more im-
precise measure. Factoring slack time appropriately is difficult. You 
must take into consideration the fact that people have to check 
their emails, participate in other meetings, eat lunch, take breaks 
throughout the day, and so on.   

•     Each team will gauge risks differently. Some will plan for a large 
cushion of time to mitigate risk, whereas others will approach the 
challenge without compensation.    

 The best way to evaluate effort is to use a degree of difficulty summa-
rizing numerically the effort, complexity, and risk. For every degree of 
difficulty, you will assign points. Story points are independent of varia-
tions engendered by units of time. Furthermore, they are the perfect unit 
for comparing relative values.  

 The challenge of using a points system is calibrating what the number 
of points means. Some team members may think a story is worth one 
point, whereas others may think it is worth 10 points. So, how do you 
solve such a problem? One of the ways of calibrating stories, and getting 
a joint agreement by all team members, is to look at previous examples 
of stories as a referential. The team ranks the stories from most difficult 
to least difficult. The most difficult will have more story points than the 
least difficult. The goal is to end up with  representative stories of 1, 2, 
3, 5, 8, 13, and 20 points. After those representative stories have been 
identified, the team can then decide how many points the new stories 
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should be awarded. Calibrating by story points enables a team to easily 
reach a consensus.  

 During backlog grooming meetings, you want insights from all team 
members. As a result, you should favor a consensus-based estimation 
technique. A well-known and effective technique is the planning poker 
technique. It was first introduced by James Grenning and later popular-
ized by Mike Cohn in his book,  Agile Estimating and Planning [3]   .  

 Approach this technique as though you were playing a game of poker. 
Each bet should target one story. Before each bet, the product owner 
presents a short overview of the story and demonstrates the storyboard 
to define the success criteria needed to finish it. While answering ques-
tions posed by team members, the product owner enhances these criteria, 
which could double or even triple the work needed for each story. When 
the question period is over, the Scrum master then chairs the meeting 
and gives each team member a deck of Fibonacci cards, as shown in 
 Figure   5.5   .  
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 Figure 5.5   Deck of Fibonacci cards.         
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 The idea is to have all participants use one of the Fibonacci cards to 
give a rough estimate of how many points she thinks a story is worth. 
When betting, everyone turns over their card simultaneously so as not to 
influence others. Those who have placed high estimates, as well as those 
who have low estimates, are given the opportunity to justify their reason-
ing. After the members have explained their choices, the team bets again 
until a consensus is reached. This estimation period is usually time-boxed 
at five minutes by the Scrum master to ensure structure and efficiency. If 
consensus  is not reached within the set time, the product owner moves 
to the next story where the betting process begins again. The goal is to 
address and reach an agreement on as many stories as possible within 
one meeting.  

 When the meeting is over, the product owner takes into consideration 
the number of points assigned to each story. Some stories may be worth 
20 points, whereas others are worth 5 points. The product owner must 
determine which stories are too large and therefore need to be divided 
into smaller stories. Splitting large stories allows the development team 
to approach each smaller story in a more productive manner.   

  Splitting User Stories Along Business Values  

 Most user stories are too large; at least, this is the trend we noted with 
teams transitioning to agile software development. We guess this is be-
cause it is difficult to understand the gist of what a user story is. We 
must go back to basics and remember that it was initiated by Extreme 
Programming (XP). In  Planning Extreme Programming [4]    by Kent Beck 
and Martin Fowler, a user story is defined in the following way:  

   “We demonstrate progress by delivering tested, integrated code 
that implements a story. A story should be understandable to 
customers and developers, testable, valuable to the customer 
and small enough so that the programmers can build half a 
dozen in an iteration.”    
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 A story is a short description of a unit of software that works, delivers 
value, and generates feedback from stakeholders.  

 A rule of thumb used to determine whether a story is small enough is 
to take the average velocity of the team per iteration and divide it by two. 
The velocity is the number of story points completed during a sprint. The 
product owner should not plan stories that are bigger than one-half the 
velocity.  

 A common mistake made when splitting stories is to slice and dice 
along technical issues, such as along the development process line (de-
sign, code, test, and deploy) or along the architectural line (user interface, 
business logic, and database). In addition to being difficult to deliver and 
deploy, technical decomposition creates stories that generate little feed-
back because they are incomprehensible by stakeholders. These stories 
negatively affect the iterative discovery of the stakeholders’ desirements. 
This is not the path to follow.  

 You should focus on the perspective of stakeholders by thin slicing 
stories that favor the business value.  Thin slicing  is based on evolution-
ary architecture; it provides stories that implement only a small bit of 
functionality, but all the way through the architecture layers of the soft-
ware. Thin slicing always splits stories along self-contained increments 
of value and along self-contained bundles of work that include “design, 
code, tests, and deploy.” There are two usual patterns for thin slicing 
stories in a self-contained unit:  

•       Division:     The division pattern provides smaller stories, often of 
equal size.  

 When there are clear boundaries about operational workflow or 
data manipulation, our first choice is to divide along these lines. 
For example, if it makes sense, you should split along the work-
flow steps involved or split according to each variation in business 
rules. If this is not a successful track, try to split by the type of data 
the story manipulates or along create-read-update-delete (CRUD) 
boundaries.   
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•      Simplification:     The simplification pattern aims to remove what is 
not necessary.  

•  When division is not an option, you should reduce the scope of a 
large story by keeping only the bare minimum. This is not a popular 
choice with stakeholders. As always, everything seems essential, and 
this requires more demanding conversations. Consider applying the 
XP principle: Do the Simplest Thing That Could Possibly Work. 
Remove from the large story everything that is not indispensable. 
Create one or more stories to safeguard what is not essential. These 
non-essential stories will be placed at the bottom of the backlog, 
whereas the remainder and thinner story will continue its journey 
to the top of  the backlog.     

  Tracking User Stories with a Collaboration Board  

 Backlog grooming is a team effort. Everyone, including stakeholders, 
must collaborate to evolve user stories from the bottom to the top of the 
backlog. As shown in  Figure   5.6   , it is a dynamic and active workflow 
where stories are constantly enhanced.  
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 Figure 5.6   The backlog grooming workflow.         

 The team must master each step of the workflow; otherwise, the story 
will not progress as expected. Team members must synchronize their ef-
forts on a daily basis. Unfortunately, the backlog is of little use to guide 
this work. At best, you can add a status field to follow the process, but it 
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does not encourage collaboration. Instead, it is more efficient to use vis-
ual aids inspired by collaboration boards such as those offered through 
the Slingboards [5]   platform.  

 A collaboration board communicates information by using sticky 
notes instead of texts or other written instructions. As shown in  Fig-
ure   5.7   , a collaboration board is a two-dimensional grid on which you 
move yellow stickies from column to column to guide the actions of team 
members.  

 

. . .Column 1 Column 2 Column 3 Column N

Row  1

Row  2

Row N

. . .

 Figure 5.7   A collaboration board is a two-dimensional grid.         

 Each column represents a state of the process, and each sticky note 
is a visual signal for guiding the collaboration. The aim is to move each 
sticky note from state to state to accomplish a workflow. The rows are 
used to group and organize the yellow stickies in a logical manner. If you 
expect to have only a few stickies, you can have a single row without any 
grouping.  
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 A well-known example of a collaboration board heavily used by agile 
teams is a task board.  A task board  is a visual aid that guides the work 
of a team during a sprint. As shown in  Figure   5.8   , a task board is a con-
stantly evolving summary of the team’s forecasts for the current sprint. 
It enables you to see at a glance what is done, what remains to be done, 
and who is working on what.  
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 Figure 5.8   A task board is a well-known example of a collaboration board.         

 When a sticky note is moved from column to column, it serves as a 
signal for guiding the collaboration. More and more teams consider a 
task board as essential to ensuring a rich collaboration during the sprint. 
I believe the same is true during backlog grooming except that we must 
use a different collaboration board. Now see how you could create a 
grooming board to get the same benefits.  
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 The most important items in a collaboration board are the columns 
because they make it possible to visualize the process. Several options are 
available to define the columns. As shown in  Figure   5.9   , a simple option 
would be to have a column for each step. A major disadvantage of this 
option is that you can hardly know when a step is completed. There is no 
visual signal to initiate collaboration between teammates.  
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 Figure 5.9   A collaboration board with no signals.         

 A second option, as shown in  Figure   5.10   , is to alert collaborators by 
being explicit when a step is done. There are two disadvantages to this 
approach for grooming. First, this approach assumes that the process is 
linear, which is not true. Grooming requires a lot of backtracking, such 
as when splitting a story. Second, we are uncomfortable with a condition 
that states that the ranking is completed. Ranking is never completely 
finished and can occur at any time during the grooming.  
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to
Confirm

Illustrating
Done

Illustrating

 Figure 5.10   A collaboration board with “Done” signals.         

 A third option is to alert collaborators by signaling that a step is ready 
for processing. This is the option that you can adopt, as it applies well to 
the grooming process.  Figure   5.11    shows what the collaboration board 
would look like with one row for the backlog.  

9780321784131_Book 1.indb   659780321784131_Book 1.indb   65 7/1/13   2:02 PM7/1/13   2:02 PM



Chapter 5 Refi ning User Stories by Grooming the Product Backlog66

 

New
User
Story

Ready
to

Rank
Ranking 

Ready
to

Size
Sizing Splitting

Ready
to

Split

Ready
to

Confirm

Ready
to

Illustrate
Illustrating

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

User
Story 

 Figure 5.11   A collaboration board with “Ready” signals.         

 The contents of the sticky note, which are moved from column to col-
umn, should display relevant information to help teammates understand 
what is going on. Significant information improves communication and 
reduces interruptions. As shown in  Figure   5.12   , there are nine potential 
display areas on a collaboration sticker.  

 

Top RightTop Left

Middle Left

Bottom Left

Middle Centered

MIddle Right

Bottom Right

Top Centered

Bottom Centered

 Figure 5.12   A collaboration sticker has nine display areas.         

 When we want to create a collaboration board to facilitate the groom-
ing process, each sticky note is going to represent a user story.  Figure 
  5.13    shows the final result for this type of sticker. Note that we have not 
used all display areas, only those that we considered necessary.  
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20

View Storyboard

 Figure 5.13   A collaboration sticker representing a user story.         

 The blocked indicator is visually pinning a status tag to the sticker. 
This status tag enables you to visualize work that is not directly asso-
ciated with the value-added steps being performed. It creates visibility 
and awareness and enables the right people to react quickly to that new 
status. A visual alternative to pinning is creating special columns in your 
collaboration board that fulfill the same purpose. Although this is valid, 
and many people do it, we prefer pinning to expose that something is 
going wrong, or not happening. Board real estate is expensive. If you 
start creating special columns for  each status a sticky note can have, you 
might quickly fill the board with empty zones.  

 A collaboration board is a clear, simple, and effective way to organize 
and present work during grooming. It increases the efficiency and ef-
fectiveness of the work by making visible the rules of collaboration and 
thus facilitating the flow. Flow is the mental state of operation in which 
a person performing an activity is fully immersed in a feeling of energized 
focus, full involvement, and enjoyment in the process of the activity.  

 Visual collaboration keeps the group members in the flow united 
around common performance measures. It enhances communication 
and reduces friction by making explicit the information teammates care 
about. It helps teammates  

9780321784131_Book 1.indb   679780321784131_Book 1.indb   67 7/1/13   2:02 PM7/1/13   2:02 PM



Chapter 5 Refi ning User Stories by Grooming the Product Backlog68

•      Understand and indicate priorities.   

•     Identify the flow of work and what is being done.   

•     Identify when something is going wrong or not happening.   

•     Cut down on meetings to discuss work issues.   

•     Provide real-time feedback to everyone involved in the whole 
process.   

•   See whether performance criteria is met.    

 Collaboration boards increase accountability and positively influ-
ence the behavior and attitude of team members and stakeholders. Team 
members define and choose their own work instead of having work as-
signed to them. High-visibility and clear guidelines ensure teammates 
cannot hide work (or nonwork) from each other. They know that at 
any moment, if they want to, they can, with zero overhead and without 
causing any discomfort to anyone, see exactly what everybody is do-
ing. Boards tend to expose the flow, but it is done with ground rules 
that people find quite reasonable. Thus, accountability is achieved in a 
harmonious way because  it boils down to the individual responsibility 
of updating the board. This builds transparency among team members, 
which in turn builds trust.   

  Delivering a Coherent Set of User Stories  

 Unfortunately, in an iterative and empirical process, it is not because 
collaborative work produces high-value desirements that you necessarily 
get a “usable” sprint. Often, collaboration also requires prioritizing low-
value desirements to obtain a coherent whole with optimal value. The 
use of a visual aid is essential in achieving this know-how. In this regard, 
over the years, experienced practitioners have acknowledged the neces-
sity of structuring the backlog along a two-dimensional collaboration 
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board. This way of organizing the stories to avoid half-baked incremen-
tal iterations was initially promoted by Jeff Patton [6]   and is now known 
as  story mapping .  

 Story mapping is the act of using a collaboration board to help in 
planning sprints and ordering the backlog. As illustrated in  Figure   5.14   , 
it combines high-value and low-value user stories in a coherent set, there-
by revealing sprints that are of perceptible value to the stakeholders.  
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 Figure 5.14   Planning sprints with story mapping.         

 The yellow stickies are the user stories from the backlog. They are dis-
tributed along the process line on the horizontal axis and simultaneously 
along the level of necessity on the vertical axis. Finally, they are ordered 
in “usable” sprints by assessing the expected necessity. Visualizing the 
desirements according to the process lines enables you to iteratively cut 
ever closer to the heart of the prioritization challenge. By doing this, you 
can combine the low-value functionalities and hold everything together.  
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 As is always the case with a collaboration board, it all starts by iden-
tifying the columns. Create as many columns as there are features in the 
process lines. A feature is a piece of high-level functionality; a business 
activity that delivers value and separates into several stories. Arrange 
features by usage sequence, with features used early on, on the left, and 
later on, on the right.  

 Continue by creating as many rows as there are upcoming sprints. In 
each sprint, split stories along its feature by placing them in the appropri-
ate column and make them overlap if they are numerous.  

 Even if the horizontal axis organizes stories along process lines, it does 
not ensure small and testable stories. Small stories should typically rep-
resent a few days of work. Initially, this is not the case as almost all new 
user stories are too big. They are desirements that need to be disaggre-
gated into a set of constituent stories. Splitting desirements along the 
level of necessity ensures the identification of simple stories that can be 
forecast in a sprint. By differentiating the bare minimum necessity from 
usefulness and delightfulness, the product owner can divide large stories 
into smaller ones. These smaller stories  provide immediate value and can 
be delivered in a sprint.  

 Even if desirements expressed as user stories are a starting point in 
understanding requirements, because they help determine the scope of 
work during sprints, they are mainly used as a unit of planning and de-
livery. This is why the overall goal of story mapping is to create a suitable 
scope to establish a delivery plan.   

  Planning Work with User Stories  

 There is a close link between executable specifications and agile project 
management. The purpose of this book is not to discuss agile project 
management. There are good books that cover this topic  . [7] That being 
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said, we cannot ignore that desirements provide an effective unit of plan-
ning. As shown in story mapping, we plan sprints around desirements. 
Actually, the strong adoption of story mapping by the agile community 
leads me to believe that we are not alone in thinking that agile planning 
is closely linked to requirements discovery.    

     Summary  

 In this chapter, you saw how to groom the product backlog by ranking, 
illustrating, sizing, and splitting user stories. You learned the importance 
of having a product owner—someone who not only leads backlog groom-
ing, but also ensures that it is done in collaboration with stakeholders 
and the development team. You learned how to use collaboration boards 
to track user stories during the grooming process. Finally, this chapter 
concluded by explaining how to organize a delivery plan that provides 
immediate value to the stakeholders through the use of story mapping.  

 When a story has gone through the process of grooming, you have 
reached an important milestone, which is the transition from conversa-
tion to confirmation. If user stories and their storyboards help monitor 
conversations with stakeholders, success criteria help confirm expecta-
tions. Success criteria convey additional information about the story and 
establish the conditions of acceptation. They enable the team to know 
when it is done and they say, in the words of the stakeholders, how they 
expect to verify the desirable outcome. In this perspective, success criteria 
are a specification as important, if not more important, than the story. 
Success criteria  are a key element of executable specifications. Therefore, 
the next chapter is dedicated specifically to the issue of confirming user 
stories.     
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  "can-exist" assumption,   22  
  common goal,   20  
  high-level feature set,   21 - 22  
  list of,   14  
  shared vision,   17 - 20  
  stakeholder involvement,   16 - 17  
  team creation,   14 - 16  

  uncertainty  
  handling,   7 - 9  
  impact of,   5 - 7   

   sorting.     See  prioritizing  
   SpecFlow automation 

framework,   108   
      Specification by Example    

(Adzic),   77   
   specification workshops,   87 - 89   
   specifications  

  described,   4  
  need for,   2   

   splitting  
  scenarios,   83 - 84  
  user stories,   60 - 62   

   sprints,   29 - 30  
  communicating stakeholder 

desirements,   31 - 33  
  organizing scenarios for,   91 - 95  

  planning with story mapping, 
  68 - 70  

  prioritizing,   31   
   stable foundation.     See  guardrails  
   stakeholders  

  common goal,   20  
  confirming scenarios with,   85 - 89  
  desirements  

  describing with user stories, 
  35 - 38  

  discovering with roles and 
benefits,   38 - 40  

  establishing ubiquitous 
language,   40 - 41  

  prioritizing in product backlog, 
  41 - 43 ,  49 - 52  

  feedback loops with,   29 - 30  
  communicating stakeholder 

desirements,   31 - 33  
  prioritizing,   31  

  involvement of,   16 - 17  
  shared vision,   17 - 20  
  splitting user stories,   60 - 62  
  in trial-and-error process for 

requirements,   25 - 29   
   state machines,   75 - 76   
   states in scenarios,   81 - 82   
   stories.     See  user stories  
   story mapping,   68 - 70   
   storyboards,   52 - 56 ,  74   
   StoryQ automation 

framework,   109   
   Sutherland, Jeff,   1    
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  T 
   task boards,   64   
   TDD (Test-Driven Development)  

  context-specification testing,   116  
  red-green-refactor cycle,   

101 - 103  
  unit testing with,   115   

   team  
  confirming scenarios with 

stakeholders,   85 - 89  
  creating,   14 - 16  
  members of,   149 - 150   

   technical considerations, removing 
from scenarios,   89 - 91   

   testability  
  defined,   137  
  proven practices for,   138   

   testers, defined,   149   
   tests  

  acceptance tests  
  CI (continuous integration) 

versus,   118 - 119  
  connecting with interface,   

110 - 114  
  converting scenarios to,   98 - 101  
  enhancing scenarios with test 

results,   119 - 120  
  implementing the interface, 

  115 - 117  
  internal DSL (domain-specific 

language),   104 - 109  
  red-green-refactor cycle, 

  101 - 103  
  refactor stage,   117  

  calibrating,   114  
  on restrictions,   135 - 136  
  scenarios versus,   77   

   time, estimating based on,   57 - 58   
   tracking user stories,   62 - 68   
   traditional zone (uncertainty 

diagram)  
  described,   6  
  handling uncertainty in,   7 - 9   

   transitions,   81   
   trial-and-error process,   9  

  feedback loops,   29 - 30  
  communicating stakeholder 

desirements,   31 - 33  
  prioritizing,   31  

  for software requirements,   25 - 29    

  U 
   ubiquitous language  

  establishing,   40 - 41  
  formalizing,   81 - 83   

   uncertainty  
  guardrails  

  “can-exist” assumption,   22  
  common goal,   20  
  high-level feature set,   21 - 22  
  list of,   14  
  shared vision,   17 - 20  
  stakeholder involvement,   16 - 17  
  team creation,   14 - 16  

  handling,   7 - 9  
  impact of,   5 - 7   

   unit testing  
  replacing with context-

specification testing,   116  
  with TDD,   115   

   usability  
  defined,   125  
  testing practice for,   135   

   usage statistics for software 
features,   2   
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   user stories,   35 - 38  .   See also  
product backlog 

  confirming scenarios 
collaboratively,   85 - 89  

  illustrating with storyboards, 
  52 - 56  

  nonfunctional requirements 
as,   127  

  organizing scenarios,   91 - 95  
  planning with,   71  
  prioritizing in product backlog, 

  41 - 43 ,  49 - 52  
  removing technical considera-

tions from scenarios,   89 - 91  
  roles and benefits in,   38 - 40  
  scripting with scenarios,   74 - 84  

  FIT tabular format,   76 - 78  
  formalism in,   76  
  Given-When-Then syntax, 

  79 - 80  
  language formalization,   81 - 83  
  splitting scenarios into 

commands/queries,   83 - 84  
  sizing,   56 - 60  
  splitting,   60 - 62  
  story mapping,   68 - 70  
  tracking,   62 - 68  
  ubiquitous language with,   40 - 41   

      User Stories Applied    (Cohn),   35    

  V 
   verifying assumptions,   98 - 101   
   vision, clarifying,   17 - 20    

  W 
   Walt Disney Studios,   52   
   Weinberg, Gerald,   31 ,  123   
   “What,”     See  requirements   

  X 
   XP (Extreme Programming),   60     
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