

Programming in Go

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

Programming in Go

Creating Applications for the 21st Century

Mark Summerfield

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco

p New York · Toronto ·Montreal · London ·Munich · Paris ·Madrid p

Capetown · Sydney · Tokyo · Singapore ·Mexico City

Many of the designations used by manufacturersand sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Summerfield, Mark.
 Programming in Go : creating applications for the 21st century / Mark Summerfield.
 p.mcm.
 Includes bibliographical references and index.
 ISBN 978-0-321-77463-7 (pbk. : alk. paper)
1. Go (Computer program language) 2. Computer programming 3. Application software—
Development I. Title.

 QA76.73.G63S86 2012
 005.13’3—dc23

2012001914

Copyright © 2012 Qtrac Ltd.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-77463-7
ISBN-10: 0-321-77463-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2012

This book is dedicated to
Jasmin Blanchette and Trenton Schulz

This page intentionally left blank

Contents at a Glance

Tables . xv

Introduction . 1

Chapter 1. An Overview in Five Examples . 7

Chapter 2. Booleans and Numbers . 51

Chapter 3. Strings . 81

Chapter 4. Collection Types . 139

Chapter 5. Procedural Programming . 185

Chapter 6. Object-Oriented Programming . 253

Chapter 7. Concurrent Programming . 315

Chapter 8. File Handling . 361

Chapter 9. Packages . 407

Appendix A. Epilogue . 435

Appendix B. The Dangers of Software Patents 437

Appendix C. Selected Bibliography . 441

Index . 443

www.qtrac.eu/gobook.html

www.qtrac.eu/gobook.html

This page intentionally left blank

Contents

Tables . xv

Introduction . 1
Why Go? . 1
The Structure of the Book . 4
Acknowledgments . 5

Chapter 1. An Overview in Five Examples . 7
1.1. Getting Going . 7
1.2. Editing, Compiling, and Running . 9
1.3. Hello Who? . 14
1.4. Big Digits—Two-Dimensional Slices . 16
1.5. Stack—Custom Types with Methods . 21
1.6. Americanise—Files,Maps, and Closures . 29
1.7. Polar to Cartesian—Concurrency . 40
1.8. Exercise . 48

Chapter 2. Booleans and Numbers . 51
2.1. Preliminaries . 51

2.1.1. Constants and Variables . 53
2.1.1.1. Enumerations . 54

2.2. Boolean Values and Expressions . 56
2.3. Numeric Types . 57

2.3.1. Integer Types . 59
2.3.1.1. Big Integers . 61

2.3.2. Floating-Point Types . 64
2.3.2.1. Complex Types . 70

2.4. Example: Statistics . 72
2.4.1. Implementing Simple Statistics Functions 73
2.4.2. Implementing a Basic HTTP Server . 75

2.5. Exercises . 78

ix

Chapter 3. Strings . 81
3.1. Literals, Operators, and Escapes . 83
3.2. Comparing Strings . 86
3.3. Characters and Strings . 87
3.4. Indexing and Slicing Strings . 90
3.5. String Formatting with the Fmt Package . 93

3.5.1. Formatting Booleans . 97
3.5.2. Formatting Integers . 98
3.5.3. Formatting Characters . 99
3.5.4. Formatting Floating-Point Numbers . 100
3.5.5. Formatting Strings and Slices . 101
3.5.6. Formatting for Debugging . 103

3.6. Other String-Related Packages . 106
3.6.1. The Strings Package . 107
3.6.2. The Strconv Package . 113
3.6.3. The Utf8 Package . 117
3.6.4. The Unicode Package . 118
3.6.5. The Regexp Package . 120

3.7. Example:M3u2pls . 130
3.8. Exercises . 135

Chapter 4. Collection Types . 139
4.1. Values, Pointers, and Reference Types . 140
4.2. Arrays and Slices . 148

4.2.1. Indexing and Slicing Slices . 153
4.2.2. Iterating Slices . 154
4.2.3. Modifying Slices . 156
4.2.4. Sorting and Searching Slices . 160

4.3. Maps . 164
4.3.1. Creating and Populating Maps . 166
4.3.2. Map Lookups . 168
4.3.3. Modifying Maps . 169
4.3.4. Key-Ordered Map Iteration . 170
4.3.5. Map Inversion . 170

4.4. Examples . 171
4.4.1. Example: Guess Separator . 171
4.4.2. Example:Word Frequencies . 174

4.5. Exercises . 180

x

Chapter 5. Procedural Programming . 185
5.1. Statement Basics . 186

5.1.1. Type Conversions . 190
5.1.2. Type Assertions . 191

5.2. Branching . 192
5.2.1. If Statements . 192
5.2.2. Switch Statements . 195

5.2.2.1. Expression Switches . 195
5.2.2.2. Type Switches . 197

5.3. Looping with For Statements . 203
5.4. Communication and Concurrency Statements 205

5.4.1. Select Statements . 209
5.5. Defer, Panic, and Recover . 212

5.5.1. Panic and Recover . 213
5.6. Custom Functions . 219

5.6.1. Function Arguments . 220
5.6.1.1. Function Calls as Function Arguments 220
5.6.1.2. Variadic Functions . 221
5.6.1.3. Functions with Multiple Optional Arguments 222

5.6.2. The init() and main() Functions . 224
5.6.3. Closures . 225
5.6.4. Recursive Functions . 227
5.6.5. Choosing Functions at Runtime . 230

5.6.5.1. Branching Using Maps and Function References 230
5.6.5.2. Dynamic Function Creation . 231

5.6.6. Generic Functions . 232
5.6.7. Higher Order Functions . 238

5.6.7.1. Memoizing Pure Functions . 241
5.7. Example: Indent Sort . 244
5.8. Exercises . 250

Chapter 6. Object-Oriented Programming . 253
6.1. Key Concepts . 254
6.2. Custom Types . 256

6.2.1. Adding Methods . 258
6.2.1.1. Overriding Methods . 261
6.2.1.2. Method Expressions . 263

6.2.2. Validated Types . 263

xi

6.3. Interfaces . 265
6.3.1. Interface Embedding . 270

6.4. Structs . 275
6.4.1. Struct Aggregation and Embedding . 275

6.4.1.1. Embedding Values . 276
6.4.1.2. Embedding Anonymous Values That Have Methods . . 277
6.4.1.3. Embedding Interfaces . 279

6.5. Examples . 282
6.5.1. Example: FuzzyBool—A Single-Valued Custom Type 282
6.5.2. Example: Shapes—A Family of Custom Types 289

6.5.2.1. Package-Level Convenience Functions 289
6.5.2.2. A Hierarchy of Embedded Interfaces 294
6.5.2.3. Freely Composable Independent Interfaces 294
6.5.2.4. Concrete Types and Methods . 295

6.5.3. Example: Ordered Map—A Generic Collection Type 302
6.6. Exercises . 311

Chapter 7. Concurrent Programming . 315
7.1. Key Concepts . 317
7.2. Examples . 322

7.2.1. Example: Filter . 322
7.2.2. Example: Concurrent Grep . 326
7.2.3. Example: Thread-Safe Map . 334
7.2.4. Example: Apache Report . 341

7.2.4.1. Synchronizing with a Shared Thread-Safe Map 341
7.2.4.2. Synchronizing with a Mutex-ProtectedMap 345
7.2.4.3. Synchronizing by Merging Local Maps via Channels 347

7.2.5. Example: Find Duplicates . 349
7.3. Exercises . 357

Chapter 8. File Handling . 361
8.1. Custom Data Files . 362

8.1.1. Handling JSON Files . 365
8.1.1.1. Writing JSON Files . 366
8.1.1.2. Reading JSON Files . 368

8.1.2. Handling XML Files . 371
8.1.2.1. Writing XML Files . 371
8.1.2.2. Reading XML Files . 375

8.1.3. Handling Plain Text Files . 377

xii

8.1.3.1. Writing Plain Text Files . 378
8.1.3.2. Reading Plain Text Files . 380

8.1.4. Handling Go Binary Files . 385
8.1.4.1. Writing Go Binary Files . 385
8.1.4.2. Reading Go Binary Files . 386

8.1.5. Handling Custom Binary Files . 387
8.1.5.1. Writing Custom Binary Files . 388
8.1.5.2. Reading Custom Binary Files . 392

8.2. Archive Files . 397
8.2.1. Creating Zip Archives . 397
8.2.2. Creating Optionally Compressed Tarballs 399
8.2.3. Unpacking Zip Archives . 401
8.2.4. Unpacking Optionally Compressed Tarballs 403

8.3. Exercises . 405

Chapter 9. Packages . 407
9.1. Custom Packages . 408

9.1.1. Creating Custom Packages . 408
9.1.1.1. Platform-Specific Code . 410
9.1.1.2. Documenting Packages . 411
9.1.1.3. Unit Testing and Benchmarking Packages 414

9.1.2. Importing Packages . 416
9.2. Third-Party Packages . 417
9.3. A Brief Survey of Go’s Commands . 418
9.4. A Brief Survey of the Go Standard Library . 419

9.4.1. Archive and Compression Packages . 419
9.4.2. Bytes and String-Related Packages . 419
9.4.3. Collection Packages . 421
9.4.4. File, Operating System, and Related Packages 423

9.4.4.1. File Format-Related Packages . 424
9.4.5. Graphics-Related Packages . 425
9.4.6. Mathematics Packages . 425
9.4.7. Miscellaneous Packages . 425
9.4.8. Networking Packages . 427
9.4.9. The Reflect Package . 427

9.5. Exercises . 431

xiii

Appendix A. Epilogue . 435

Appendix B. The Dangers of Software Patents 437

Appendix C. Selected Bibliography . 441

Index . 443

xiv

Tables

2.1. Go’s Keywords . 52
2.2. Go’s Predefined Identifiers . 52
2.3. Boolean and Comparison Operators . 57
2.4. Arithmetic Operators Applicable to All Built-In Numbers 59
2.5. Go’s Integer Types and Ranges . 60
2.6. Arithmetic Operators Applicable Only to Built-In Integer Types 60
2.7. Go’s Floating-Point Types . 64
2.8. The Math Package’s Constants and Functions #1 65
2.9. The Math Package’s Constants and Functions #2 66

2.10. The Math Package’s Constants and Functions #3 67
2.11. The Complex Math Package’s Functions . 71
3.1. Go’s String and Character Escapes . 84
3.2. String Operations . 85
3.3. The Fmt Package’s Print Functions . 94
3.4. The Fmt Package’s Verbs . 95
3.5. The Fmt Package’s Verb Modifiers . 96
3.6. The Strings Package’s Functions #1 . 108
3.7. The Strings Package’s Functions #2 . 109
3.8. The Strconv Package’s Functions #1 . 114
3.9. The Strconv Package’s Functions #2 . 115

3.10. The Utf8 Package’s Functions . 118
3.11. The Unicode Package’s Functions . 119
3.12. The Regexp Package’s Functions . 121
3.13. The Regexp Package’s Escape Sequences . 121
3.14. The Regexp Package’s Character Classes . 122
3.15. The Regexp Package’s Zero-Width Assertions 122
3.16. The Regexp Package’s Quantifiers . 123
3.17. The Regexp Package’s Flags and Groups . 123
3.18. The *regexp.Regexp Type’s Methods #1 . 124
3.19. The *regexp.Regexp Type’s Methods #2 . 125
4.1. Slice Operations . 151

xv

4.2. The Sort Package’s Functions . 161
4.3. Map Operations . 165
5.1. Built-In Functions . 187
8.1. Format Speed and Size Comparisons . 363
8.2. The Fmt Package’s Scan Functions . 383

xvi

Introduction

The purpose of this book is to teach solid idiomatic Go programming using
all the features the language provides, as well as the most commonly used Go
packages from Go’s standard library. The book is also designed to serve as a
useful reference once the language is learned. To meet both of these goals the
book is quite comprehensive and tries to cover every topic in just one place—and
with forward and backward cross-references throughout.

Go is quite C-like in spirit, being a small and efficient language with convenient
low-level facilities such as pointers. Yet Go also offersmany features associated
with high- or very high-level languages, such asUnicode strings, powerful built-
in data structures, duck typing, garbage collection, and high-level concurrency
support that uses communication rather than shared data and locks. Go also
has a large and wide-ranging standard library.

The reader is assumed to have programming experience in a mainstream pro-
gramming language such asC,C++,Java,Python,or similar,although all of Go’s
unique features and idioms are illustrated with complete runnable examples
that are fully explained in the text.

To successfully learn any programming language it is necessary to write pro-
grams in that language. To this end the book’s approach is wholly practical, and
readers are encouraged to experiment with the examples, try the exercises, and
write their own programs to get hands-on experience. As with all my previous
books, the quoted code snippets are of “live code”; that is, the code was auto-
matically extracted from .go source files and directly embedded in the PDF that
went to the publisher—so there are no cut and paste errors, and the code works.
Wherever possible, small but complete programs and packages are used as ex-
amples to provide realistic use cases. The examples, exercises, and solutions are
available online at www.qtrac.eu/gobook.html.

The book’s key aim is to teach the Go language, and although many of the
standard Go packages are used, not all of them are. This is not a problem, since
reading the book will provide enough Go knowledge for readers to be able to
make use of any of the standard packages, or any third-party Go package, and
of course, be able to create their own packages.

Why Go?

TheGo programming language began as an internal Google project in 2007.The
original designwasby RobertGriesemer andUnix luminariesRobPike andKen
Thompson. On November 10, 2009, Go was publicly unveiled under a liberal

1

www.qtrac.eu/gobook.html

2 Introduction

open source license. Go is being developed by a team at Google which includes
the original designers plus Russ Cox, Andrew Gerrand, Ian Lance Taylor, and
many others. Go has an open development model and many developers from
around the world contribute to it, with some so trusted and respected that they
have the same commit privileges as the Googlers. In addition,many third-party
Go packages are available from the Go Dashboard (godashboard.appspot.com/
project).

Go is the most exciting new mainstream language to appear in at least 15
years and is the first such language that is aimed squarely at 21st century
computers—and their programmers.

Go is designed to scale efficiently so that it can be used to build very big appli-
cations—and to compile even a large program in mere seconds on a single com-
puter. The lightning-fast compilation speed is made possible to a small extent
because the language is easy to parse, but mostly because of its dependency
management. If file app.go depends on file pkg1.go, which in turn depends on
pkg2.go, in a conventional compiled language app.go would need both pkg1.go’s
and pkg2.go’s object files. But in Go, everything that pkg2.go exports is cached
in pkg1.go’s object file, so pkg1.go’s object file alone is sufficient to build app.go.
For just three files this hardly matters, but it results in huge speedups for large
applications with lots of dependencies.

Since Go programs are so fast to build, it is practical to use them in situations
where scripting languages are normally used (see the sidebar “Go Shebang
Scripts”, ➤ 10). Furthermore, Go can be used to build web applications using
Google’s App Engine.

Go uses a very clean and easy-to-understand syntax that avoids the complexity
and verbosity of older languages like C++ (first released in 1983) or Java (first
released in 1995). And Go is a strongly statically typed language, something
which many programmers regard as essential for writing large programs. Yet
Go’s typing is not burdensome due to Go’s short “declare and initialize” variable
declaration syntax (where the compiler deduces the type so it doesn’t have to be
written explicitly), and because Go supports a powerful and convenient version
of duck typing.

Languages like C and C++ require programmers to do a vast amount of book-
keeping when it comes to memory management—bookkeeping that could be
done by the computer itself, especially for concurrent programs where keeping
track can be fiendishly complicated. In recent years C++ has greatly improved
in this area with various “smart” pointers, but is only just catching upwith Java
with regard to its threading library. Java relieves the programmer from the
burden of memory management by using a garbage collector. C has only third-
party threading libraries, although C++ now has a standard threading library.
However, writing concurrent programs in C, C++, or Java requires considerable

Introduction 3

bookkeeping by programmers to make sure they lock and unlock resources at
the right times.

TheGo compiler and runtime system takes care of the tedious bookkeeping. For
memory management Go has a garbage collector, so there’s no need for smart
pointers or for manually freeing memory. And for concurrency, Go provides a
form of CSP (Communicating Sequential Processes) based on the ideas of com-
puter scientist C. A. R. Hoare, that means that many concurrent Go programs
don’t need to do any locking at all. Furthermore, Go uses goroutines—very
lightweight processes which can be created in vast numbers that are automati-
cally load-balanced across the available processors and cores—to provide much
more fine-grained concurrency than older languages’ thread-based approach-
es. In fact, Go’s concurrency support is so simple and natural to use that when
porting single-threaded programs to Go it often happens that opportunities for
using concurrency arise that lead to improved runtimesand better utilization of
machine resources.

Go is a pragmatic language that favors efficiency and programmer convenience
over purity. For example, Go’s built-in types and user-defined types are not the
same, since the former can be highly optimized in ways the latter can’t be. Go
also provides two fundamental built-in collection types: slices (for all practical
purposes these are references to variable-length arrays) and maps (key–value
dictionaries or hashes). These collection types are highly efficient and serve
most purposes extremely well. However, Go supports pointers (it is a fully com-
piled language—there’s no virtual machine getting in the way of performance),
so it is possible to create sophisticated custom types, such as balanced binary
trees, with ease.

While C supports only procedural programming and Java forces programmers
to program everything in an object-oriented way, Go allows programmers to use
the paradigm best suited to the problem. Go can be used as a purely procedural
language, but also has excellent support for object-oriented programming. As
we will see, though, Go’s approach to object orientation is radically different
from, say, C++, Java, or Python—and is easier to use and much more flexible
than earlier forms.

Like C, Go lacks generics (templates in C++-speak); however, in practice the
other facilities that Go provides in many cases obviate the need for generics.
Go does not use a preprocessor or include files (which is another reason why it
compiles so fast), so there is no need to duplicate function signatures as there is
in C and C++. And with no preprocessor, a program’s semantics cannot change
behind a Go programmer’s back as it can with careless #defines in C and C++.

Arguably, C++, Objective-C, and Java have all attempted to be better Cs (the
latter indirectly as a better C++).Go can also be seen as an attempt to be a better
C, even thoughGo’s clean, light syntax is reminiscent of Python—andGo’s slices
and maps are very similar to Python’s lists and dicts. However, Go is closer in

4 Introduction

spirit to C than to any other language, and can be seen as an attempt to avoid C’s
drawbackswhile providing all that’s best in C, as well as adding many powerful
and useful features that are unique to Go.

Originally Gowas conceived as a systemsprogramming language for developing
large-scale programs with fast compilation that could take advantage of dis-
tributed systems and multicore networked computers. Go’s reach has already
gone far beyond the original conception and it is now being used as a highly
productive general-purpose programming language that’s a pleasure to use and
maintain.

The Structure of the Book

Chapter 1 begins by explaining how to build and run Go programs. The chapter
then provides a brief overview of Go’s syntax and features, as well as introduc-
ing some of its standard library. This is done by presenting and explaining a se-
ries of five very short examples, each illustrating a variety of Go features. This
chapter is designed to provide just a flavor of the language and to give readers a
feel for the scope of what is required to learn Go. (How to obtain and install Go
is also explained in this chapter.)

Chapters 2 to 7 cover the Go language in depth. Three chapters are devoted
to built-in data types: Chapter 2 covers identifiers, Booleans, and numbers;
Chapter 3 covers strings; and Chapter 4 covers Go’s collection types.

Chapter 5 describes and illustrates Go’s statements and control structures.
It also explains how to create and use custom functions, and completes the
chapters that show how to create procedural nonconcurrent programs in Go.

Chapter 6 shows how to do object-oriented programming in Go. This chapter
includes coverage of Go structs used for aggregating and embedding (delegat-
ing) values, and Go interfaces for specifying abstract types, as well as how to
produce an inheritance-like effect in some situations. The chapter presents
several complete fully explained examples to help ensure understanding, since
Go’s approach to object orientation may well be different frommost readers’ ex-
perience.

Chapter 7 covers Go’s concurrency features and has even more examples than
the chapter on object orientation, again to ensure a thorough understanding of
these novel aspects of the Go language.

Chapter 8 shows how to read and write custom binary, Go binary, text, JSON,
and XML files. (Reading and writing text files is very briefly covered in Chap-
ter 1 and several subsequent chapters since this makes it easier to have useful
examples and exercises.)

The book’s final chapter is Chapter 9. This chapter begins by showing how to
import and use standard library packages, custom packages, and third-party

Introduction 5

packages. It also shows how to document, unit test, and benchmark custom
packages. The chapter’s last sections provide brief overviews of the tools
provided with the gc compiler, and of Go’s standard library.

Although Go is quite a small language, it is a very rich and expressive language
(asmeasured in syntactic constructs, concepts,and idioms), so there is a surpris-
ing amount to learn. This book shows examples in good idiomatic Go style right
from the start.★ This approach, of course,means that some things are shown be-
fore being fully explained. We ask the reader to take it on trust that everything
will be explained over the course of the book (and, of course, cross-referencesare
provided for everything that is not explained on the spot).

Go is a fascinating language, and one that is really nice to use. It isn’t hard to
learnGo’s syntax and idioms,but it does introduce somenovel concepts thatmay
be unfamiliar to many readers. This book tries to give readers the conceptual
breakthroughs—especially in object-oriented Go programming and in concur-
rent Go programming—that might take weeks or even months for those whose
only guide is the good but rather terse documentation.

Acknowledgments

Every technical book I have ever written has benefited from the help and advice
of others, and this one is no different in this regard.

I want to give particular thanks to two friends who are programmers with
no prior Go experience: Jasmin Blanchette and Trenton Schulz. Both have
contributed to my books for many years, and in this case their feedback has
helped to ensure that this book will meet the needs of other programmers new
to Go.

The book was also greatly enhanced by the feedback I received from core Go
developer Nigel Tao. I didn’t always take his advice, but his feedback was
always illuminating and resulted in great improvements both to the code and to
the text.

I had additional help from others, including David Boddie, a programmer new
to Go, who gave some valuable feedback. And Go developers Ian Lance Taylor,
and especially Russ Cox, between them solved many problems both of code and
concepts, and provided clear and precise explanations that contributed greatly
to the book’s accuracy.

During the writing of the book I asked many questions on the golang-nuts mail-
ing list and always received thoughtful and useful replies from many different

★ The one exception is that in the early chapters we always declare channels to be bidirectional,
even when they are used only unidirectionally. Channels are declared to have a particular direction
wherever this makes sense, starting from Chapter 7.

6 Introduction

posters. I also received feedback from readers of the Safari “rough cut” preview
edition that led to some important clarifications.

The Italian software company www.develer.com, in the person of Giovanni Bajo,
was kind enough to provide me with free Mercurial repository hosting to aid
my peace of mind over the long process of writing this book. Thanks to Lorenzo
Mancini for setting it all up and looking after it for me. I’m also very grateful
to Anton Bowers and Ben Thompson who have been hosting my web site,
www.qtrac.eu, on their web server since early 2011.

Thanks to Russel Winder for his coverage of software patents in his blog, www
.russel.org.uk. Appendix B borrows a number of his ideas.

And as always, thanks to Jeff Kingston, creator of the lout typesetting sys-
tem that I have used for all my books and many other writing projects over
many years.

Particular thanks to my commissioning editor, Debra Williams Cauley, who so
successfully made the case for this book with the publisher, and who provided
support and practical help as the work progressed.

Thanks also to production manager Anna Popick, who once again managed the
production process so well, and to the proofreader, Audrey Doyle, who did such
excellent work.

As ever, I want to thank my wife, Andrea, for her love and support.

www.develer.com
www.qtrac.eu
www.russel.org.uk
www.russel.org.uk

1 An Overview in Five
Examples

§1.1. Getting Going ➤ 7

§1.2. Editing, Compiling, and Running ➤ 9

§1.3. Hello Who? ➤ 14

§1.4. Big Digits—Two-Dimensional Slices ➤ 16

§1.5. Stack—Custom Types with Methods ➤ 21

§1.6. Americanise—Files,Maps, and Closures ➤ 29

§1.7. Polar to Cartesian—Concurrency ➤ 40

This chapter provides a series of five explained examples. Although the exam-
ples are tiny, each of them (apart from “Hello Who?”) does something useful,
and between them they provide a rapid overview of Go’s key features and some
of its key packages. (What other languages often call “modules” or “libraries”
are called packages in Go terminology, and all the packages supplied with Go as
standard are collectively known as the Go standard library.) The chapter’s pur-
pose is to provide a flavor of Go and to give a feel for the scope of what needs to
be learned to program successfully in Go. Don’t worry if some of the syntax or
idiomsare not immediately understandable;everything shown in this chapter is
covered thoroughly in subsequent chapters.

Learning to program Go the Go way will take a certain amount of time and
practice. For those wanting to port substantial C, C++, Java, Python, and other
programs to Go, taking the time to learn Go—and in particular how its object-
orientation and concurrency featureswork—will save time and effort in the long
run. And for those wanting to create Go applications from scratch it is best to
do so making the most of all that Go offers, so again the upfront investment in
learning time is important—and will pay back later.

1.1. Getting Going

Goprogramsare compiled rather than interpreted so as to have the best possible
performance. Compilation is very fast—dramatically faster than can be the
case with some other languages, most notably compared with C and C++.

7

8 Chapter 1. An Overview in Five Examples

The Go Documentation i
Go’s official web site is golang.org which hosts the most up-to-date Go docu-
mentation. The “Packages” link provides access to the documentation on all
the Go standard library’s packages—and to their source code, which can be
very helpful when the documentation itself is sparse. The “Commands” link
leads to the documentation for the programs distributed with Go (e.g., the
compilers, build tools, etc.). The “Specification” link leads to an accessible, in-
formal, and quite thorough Go language specification. And the “EffectiveGo”
link leads to a document that explains many best practices.

The web site also features a sandbox in which small (somewhat limited) Go
programs can be written, compiled, and run, all online. This is useful for be-
ginners for checking odd bits of syntax and for learning the Go fmt package’s
sophisticated text formatting facilities or the regexp package’s regular expres-
sion engine. The Go web site’s search box searches only the Go documenta-
tion; to search for Go resources generally, visit go-lang.cat-v.org/go-search.

The Go documentation can also be viewed locally, for example, in a web
browser. To do this, run Go’s godoc tool with a command-line argument that
tells it to operate as a web server. Here’s how to do this in a Unix console
(xterm, gnome-terminal, konsole, Terminal.app, or similar):

$ godoc -http=:8000

Or in a Windows console (i.e., a Command Prompt or MS-DOS Prompt window):

C:\>godoc -http=:8000

The port number used here is arbitrary—simply use a different one if it
conflicts with an existing server. This assumes that godoc is in your PATH.

To view the served documentation, open a web browser and give it a location
of http://localhost:8000. This will present a page that looks very similar to
the golang.org web site’s front page. The “Packages” link will show the docu-
mentation for Go’s standard library, plus any third-party packages that have
been installed under GOROOT. If GOPATH is defined (e.g., for local programs and
packages), a link will appear beside the “Packages” link through which the
relevant documentation can be accessed. (The GOROOT and GOPATH environment
variables are discussed later in this chapter and in Chapter 9.)

It is also possible to view the documentation for a whole package or a single
item in a package in the console using godoc on the command line. For ex-
ample, executing godoc image NewRGBA will output the documentation for the
image.NewRGBA() function, and executing godoc image/png will output the docu-
mentation for the entire image/png package.

1.1. Getting Going 9

The standard Go compiler is called gc and its toolchain includes programs such
as 5g, 6g, and 8g for compiling, 5l, 6l, and 8l for linking, and godoc for viewing the
Go documentation. (These are 5g.exe, 6l.exe, etc., on Windows.) The strange
names follow the Plan 9 operating system’s compiler naming conventionswhere
the digit identifies the processor architecture (e.g., “5” for ARM, “6” for AMD-
64—including Intel 64-bit processors—and “8” for Intel 386.) Fortunately, we
don’t need to concern ourselveswith these tools, since Go provides the high-level
go build tool that handles the compiling and linking for us.

All the examples in this book—available from www.qtrac.eu/gobook.html—have
been tested using gc on Linux, Mac OS X, and Windows using Go 1. The Go
developers intend to make all subsequent Go 1.x versions backward compatible
with Go 1, so the book’s text and examples should be valid for the entire 1.x
series. (If incompatible changes occur, the book’s examples will be updated to
the latest Go release, so as time goes by, they may differ from the code shown in
the book.)

To download and install Go, visit golang.org/doc/install.html which provides
instructions and download links. At the time of thiswriting,Go 1 is available in
source and binary form for FreeBSD 7+, Linux 2.6+, Mac OS X (Snow Leopard
and Lion), and Windows 2000+, in all cases for Intel 32-bit and AMD 64-bit
processor architectures. There is also support for Linux on ARMprocessors. Go
prebuilt packages are available for the Ubuntu Linux distribution, and may be
available for other Linuxes by the time you read this. For learning to program
in Go it is easier to install a binary version than to build Go from scratch.

Programs built with gc use a particular calling convention. This means that
programs compiled with gc can be linked only to external libraries that use the
same calling convention—unless a suitable tool is used to bridge the difference.
Go comeswith support for using externalCcode fromGoprograms in the formof
the cgo tool (golang.org/cmd/cgo), and at least on Linux and BSD systems, both C
and C++ code can be used in Go programs using the SWIG tool (www.swig.org).

In addition to gc there is also the gccgo compiler. This is a Go-specific front end
to gcc (the GNU Compiler Collection) available for gcc from version 4.6. Like gc,
gccgo may be available prebuilt for some Linux distributions. Instructions for
building and installing gccgo are given at golang.org/doc/gccgo_install.html.

1.2. Editing, Compiling, and Running

Go programs are written as plain text Unicode using the UTF-8 encoding.★

Most modern text editors can handle this automatically, and some of the most
popular may even have support for Go color syntax highlighting and automatic

★ Some Windows editors (e.g., Notepad) go against the Unicode standard’s recommendation and
insert the bytes 0xEF, 0xBB, 0xBF, at the start of UTF-8 files. This book’s examples assume that UTF-8
files do not have these bytes.

www.qtrac.eu/gobook.html
www.swig.org

10 Chapter 1. An Overview in Five Examples

Go Shebang Scripts i
One side effect of Go’s fast compilation is that it makes it realistic to write
Go programs that can be treated as shebang #! scripts on Unix-like systems.
This requires a one-off step of installing a suitable tool. At the time of this
writing, two rival tools provide the necessary functionality:gonow (github.com/
kless/gonow), and gorun (wiki.ubuntu.com/gorun).

Once gonow or gorun is available, we can make any Go program into a
shebang script. This is done with two simple steps. First, add either
#!/usr/bin/env gonow or #!/usr/bin/env gorun, as the very first line of the .go
file that contains the main() function (in package main). Second, make the file
executable (e.g., with chmod +x). Such files can only be compiled by gonow or
gorun rather than in the normal way since the #! line is not legal in Go.

When gonow or gorun executes a .go file for the first time, it will compile the
file (extremely fast, of course), and then run it. On subsequent uses, the
programwill only be recompiled if the .go source file has been modified since
the previous compilation. This makes it possible to use Go to quickly and
conveniently create various small utility programs, for example, for system
administration tasks.

indentation. If your editor doesn’t have Go support, try entering the editor’s
name in the Go search engine to see if there are suitable add-ons. For editing
convenience, all of Go’s keywords and operators use ASCII characters; however,
Go identifiers can start with any Unicode letter followed by any Unicode letters
or digits, so Go programmers can freely use their native language.

To get a feel for how we edit, compile, and run a Go program we’ll start with
the classic “Hello World” program—although we’ll make it a tiny bit more
sophisticated than usual. First we will discuss compiling and running, then in
the next section we will go through the source code—in file hello/hello.go—in
detail, since it incorporates some basic Go ideas and features.

All of the book’s examples are available from www.qtrac.eu/gobook.html and
unpack to directory goeg. So file hello.go’s full path (assuming the exam-
ples were unpacked in the home directory—although anywhere will do) is
$HOME/goeg/src/hello/hello.go.When referring to files the book always assumes
the first three components of the path, which is why in this case the path is giv-
en only as hello/hello.go. (Windows users must, of course, read “/”s as “\”s and
use the directory they unpacked the examples into, such as C:\goeg or %HOME-
PATH%\goeg.)

If you have installed Go from a binary package or built it from source and in-
stalled it as root or Administrator, you should have at least one environment
variable, GOROOT, which contains the path to the Go installation, and your PATH
should now include $GOROOT/bin or %GOROOT%\bin. To check that Go is installed

www.qtrac.eu/gobook.html

1.2. Editing,Compiling,and Running 11

correctly, enter the following in a console (xterm, gnome-terminal, konsole, Termi-
nal.app, or similar):

$ go version

Or on Windows in an MS-DOS Prompt or Command Prompt window:

C:\>go version

If you get a “command not found” or “ ‘go’ is not recognized…” error message
then it means that Go isn’t in the PATH. The easiest way to solve this on Unix-like
systems (including Mac OS X) is to set the environment variables in .bashrc
(or the equivalent file for other shells). For example, the author’s .bashrc file
contains these lines:

export GOROOT=$HOME/opt/go
export PATH=$PATH:$GOROOT/bin

Naturally, you must adjust the values to match your own system. (And, of
course, this is only necessary if the go version command fails.)

On Windows, one solution is to create a batch file that sets up the environment
for Go, and to execute this every time you start a console for Go programming.
However, it is much more convenient to set the environment variables once and
for all through the Control Panel. To do this, click Start (the Windows logo), then
Control Panel, then System and Security, then System, then Advanced system settings,
and in the System Properties dialog click the Environment Variables button, then the
New… button, and add a variable with the name GOROOT and a suitable value,
such as C:\Go. In the same dialog, edit the PATH environment variable by adding
the text ;C:\Go\bin at the end—the leading semicolon is vital! In both cases
replace the C:\Go path component with the actual path where Go is installed if
it isn’t C:\Go. (Again, this is only necessary if the go version command failed.)

From now on we will assume that Go is installed and the Go bin directory
containing all the Go tools is in the PATH. (It may be necessary—once only—to
open a new console window for the new settings to take effect.)

Two steps are required to build Go programs: compiling and linking.★ Both of
these steps are handled by the go tool which can not only build local programs
and packages, but can also fetch, build, and install third-party programs
and packages.

★ Since the book assumes the use of the gc compiler, readers using gccgo will need to follow the
compile and link process described in golang.org/doc/gccgo_install.html. Similarly, readers using
other compilers will need to compile and link as per their compiler’s instructions.

12 Chapter 1. An Overview in Five Examples

For the go tool to be able to build local programs and packages, there are three
requirements. First, the Go bin directory ($GOROOT/bin or %GOROOT%\bin) must be
in the path. Second, there must be a directory tree that has an src directory
and under which the source code for the local programs and packages resides.
For example, the book’s examples unpack to goeg/src/hello, goeg/src/bigdigits,
and so on. Third, the directory above the src directory must be in the GOPATH
environment variable. For example, to build the book’s hello example using the
go tool, we must do this:

$ export GOPATH=$HOME/goeg

$ cd $GOPATH/src/hello

$ go build

We can do almost exactly the same on Windows:

C:\>set GOPATH=C:\goeg

C:\>cd %gopath%\src\hello

C:\goeg\src\hello>go build

In both caseswe assume that the PATH includes $GOROOT/bin or %GOROOT%\bin.Once
the go tool has built the program we can run it. By default the executable is
given the samenameas the directory it is in (e.g.,hello onUnix-like systemsand
hello.exe on Windows). Once built, we can run the program in the usual way.

$./hello

Hello World!

Or:

$./hello Go Programmers!

Hello Go Programmers!

On Windows it is very similar:

C:\goeg\src\hello>hello Windows Go Programmers!

Hello Windows Go Programmers!

We have shown what must be typed in bold and the console’s text in roman. We
have also assumed a $ prompt, but it doesn’t matter what it is (e.g., C:\>).

Note that we do not need to compile—or even explicitly link—any other pack-
ages (even though aswewill see, hello.go uses three standard library packages).
This is another reason why Go programs build so quickly.

1.2. Editing,Compiling,and Running 13

If we have several Go programs, it would be convenient if all their executables
could be in a single directory that we could add to our PATH. Fortunately, the go
tool supports this as follows:

$ export GOPATH=$HOME/goeg

$ cd $GOPATH/src/hello

$ go install

Again, we can do the same on Windows:

C:\>set GOPATH=C:\goeg

C:\>cd %gopath%\src\hello

C:\goeg\src\hello>go install

The go install command does the same as go build only it puts the executable
in a standard location ($GOPATH/bin or %GOPATH%\bin). This means that by adding
a single path ($GOPATH/bin or %GOPATH%\bin) to our PATH, all the Go programs that
we install will conveniently be in the PATH.

In addition to the book’s examples, we are likely to want to develop our own
Go programs and packages in our own directory. This can easily be accom-
modated by setting the GOPATH environment variable to two (or more) colon-
separated paths (semicolon-separated on Windows); for example, export
GOPATH=$HOME/app/go:$HOME/goeg or SET GOPATH=C:\app\go;C:\goeg.★ In this case
we must put all our program and package’s source code in $HOME/app/go/src or
C:\app\go\src. So, if we develop a program called myapp, its .go source files would
go in $HOME/app/go/src/myapp or C:\app\go\src\myapp. And if we use go install to
build a program in a GOPATH directory where the GOPATH has two or more directo-
ries, the executable will be put in the corresponding directory’s bin directory.

Naturally, it would be tedious to export or set the GOPATH every time we wanted
to build a Go program,so it is best to set this environment variable permanently.
This can be done by setting GOPATH in the .bashrc file (or similar) on Unix-like
systems (see the book’s example’s gopath.sh file). On Windows it can be done
either by writing a batch file (see the book’s example’s gopath.bat file), or by
adding it to the system’s environment variables: Click Start (the Windows logo),
then Control Panel, then System and Security, then System, then Advanced system
settings, and in the System Properties dialog click the Environment Variables button,
then the New… button, and add a variable with the name GOPATH and a suitable
value, such as C:\goeg or C:\app\go;C:\goeg.

Although Go uses the go tool as its standard build tool, it is perfectly possible to
use make or some of themodern build tools, or to use alternativeGo-specific build

★ From now on we will almost always show Unix-style command lines only, and assume that
Windows programmers can mentally translate.

14 Chapter 1. An Overview in Five Examples

tools, or add-ons for popular IDEs (Integrated Development Environments)
such as Eclipse and Visual Studio.

1.3. Hello Who?
Now that we have seen how to build the hello programwe will look at its source
code. Don’t worry about understanding all the details—everything shown
in this chapter (and much more!) is covered thoroughly in the subsequent
chapters. Here is the complete hello program (in file hello/hello.go):

// hello.go
package main

import (➊

"fmt"
"os"
"strings"

)

func main() {
 who := "World!" ➋

if len(os.Args) > 1 { /* os.Args[0] is "hello" or "hello.exe" */ ➌

 who = strings.Join(os.Args[1:], " ") ➍

 }
 fmt.Println("Hello", who) ➎

}

Go uses C++-style comments: // for single-line comments that finish at the end
of the line and /* … */ for comments that can span multiple lines. It is conven-
tional in Go to mostly use single-line comments, with spanning comments often
used for commenting out chunks of code during development.★

Every piece of Go code exists inside a package, and every Go programmust have
a main packagewith a main() function which serves as the program’s entry point,
that is, the function that is executed first. In fact, Go packages may also have
init() functions that are executed before main(), as we will see (§1.7, ➤ 40); full
details are given later (§5.6.2, ➤ 224). Notice that there is no conflict between
the name of the package and the name of the function.

Go operates in termsof packages rather than files. Thismeans that we can split
a package across asmany files as we like, and from Go’s point of view if they all
have the same package declaration, they are all part of the same package and
no different than if all their contentswere in a single file. Naturally,we can also

★ We use some simple syntax highlighting and sometimes highlight lines or annotate them with
numbers (➊, ➋, …), for ease of reference in the text. None of this is part of the Go language.

1.3. Hello Who? 15

break our applications’ functionality into as many local packages as we like, to
keep everything neatly modularized, something we will see in Chapter 9.

The import statement (14 ➤, ➊) imports three packages from the standard li-
brary. The fmt package provides functions for formatting text and for read-
ing formatted text (§3.5, ➤ 93), the os package provides platform-independent
operating-system variables and functions, and the strings package provides
functions for manipulating strings (§3.6.1, ➤ 107).

Go’s fundamental types support the usual operators (e.g., + for numeric addition
and for string concatenation),and theGo standard library supplements these by
providing packages of functions for working with the fundamental types, such
as the strings package importedhere. It isalsopossible to create our own custom
types based on the fundamental types and to provide our own methods—that
is, custom type-specific functions—for them. (We will get a taste of this in §1.5,
➤ 21, with full coverage in Chapter 6.)

The reader may have noticed that the program has no semicolons, that the im-
ports are not comma-separated, and that the if statement’s condition does not
require parentheses. In Go, blocks, including function bodies and control struc-
ture bodies (e.g., for if statements and for for loops), are delimited using braces.
Indentation is used purely to improve human readability. Technically,Go state-
ments are separated by semicolons, but these are put in by the compiler, so we
don’t have to use them ourselves unless we want to put multiple statements on
the same line. No semicolons and fewer commas and parentheses give Go pro-
grams a lighter look and require less typing.

Go functions and methods are defined using the func keyword. The main pack-
age’s main() function always has the same signature—it takes no arguments
and returnsnothing. When main.main() finishes the programwill terminate and
return 0 to the operating system. Naturally, we can exit whenever we like and
return our own choice of value, as we will see (§1.4, ➤ 16).

The first statement in the main() function (14 ➤, ➋; using the := operator) is
called a short variable declaration in Go terminology. Such a statement both
declares and initializes a variable at the same time. Furthermore,we don’t need
to specify the variable’s type because Go can deduce that from the initializing
value. So in this case we have declared a variable called who of type string, and
thanks to Go’s strong typing we may only assign strings to who.

As with most languages the if statement tests a condition—in this case, how
many strings were entered on the command-line—which if satisfied executes
the corresponding brace-delimited block. We will see a more sophisticated
if statement syntax later in this chapter (§1.6, ➤ 29), and further on (§5.2.1,
➤ 192).

The os.Args variable is a slice of strings (14 ➤, ➌). Arrays, slices, and other col-
lection data types are covered in Chapter 4 (§4.2,➤ 148). For now it is sufficient

16 Chapter 1. An Overview in Five Examples

to know that a slice’s length can be determined using the built-in len() function
and its elements can be accessed using the [] index operator using a subset of
the Python syntax. In particular,slice[n] returns the slice’s nth element (count-
ing from zero), and slice[n:] returns another slice which has the elements from
the nth element to the last element. In the collections chapter we will see the
full generality of Go’s syntax in this area. In the case of os.Args, the slice should
always have at least one string (the program’sname), at index position 0. (All Go
indexing is 0-based.)

If the user has entered one or more command line arguments the if condition
is satisfied and we set the who string to contain all the arguments joined up as a
single string (14 ➤, ➍). In this case we use the assignment operator (=), since if
we used the short variable declaration operator (:=) we would end up declaring
and initializing a new who variable whose scopewas limited to the if statement’s
block. The strings.Join() function takes a slice of strings and a separator
(which could be empty, i.e., ""), and returns a single string consisting of all the
slice’s strings with the separator between each one. Here we have joined them
using a single space between each.

Finally, in the last statement (14 ➤, ➎), we print Hello, a space, the string held
in the who variable, and a newline. The fmt package has many different print
variants, some like fmt.Println() which will neatly print whatever they are
given, and others like fmt.Printf() that use placeholders to provide very fine
control over formatting. The print functions are covered in Chapter 3 (§3.5,
➤ 93).

The hello programpresentedherehas shown farmore of the language’s features
than such programs conventionally do. The subsequent examples continue in
this vein, covering more advanced featureswhile keeping the examples as short
as possible. The idea here is to simply acquire some basic familiarity with the
language and to get to grips with building, running, and experimenting with
simpleGo programs,while at the same time getting a flavor of Go’s powerful and
novel features. And, of course, everything presented in this chapter is explained
in detail in the subsequent chapters.

1.4. Big Digits—Two-Dimensional Slices

The bigdigits program (in file bigdigits/bigdigits.go) reads a number entered
on the command line (as a string), and outputs the same number onto the
console using “big” digits. Back in the twentieth century, at sites where lots of
users shared a high-speed line printer, it used to be common practice for each
user’s print job to be preceded by a cover page that showed some identifying
details such as their username and the name of the file being printed,using this
kind of technique.

1.4. Big Digits—Two-Dimensional Slices 17

Wewill review the code in three parts:first the imports, then the static data, and
then the processing. But right now, let’s look at a sample run to get a feel for
how it works:

$./bigdigits 290175493

222 9999 000 1 77777 55555 4 9999 333
2 2 9 9 0 0 11 7 5 44 9 9 3 3
 2 9 9 0 0 1 7 5 4 4 9 9 3
 2 9999 0 0 1 7 555 4 4 9999 33
2 9 0 0 1 7 5 444444 9 3
2 9 0 0 1 7 5 5 4 9 3 3
22222 9 000 111 7 555 4 9 333

Each digit is represented by a slice of strings, with all the digits together repre-
sented by a slice of slices of strings. Before looking at the data, here is how we
could declare and initialize single-dimensional slices of strings and numbers:

longWeekend := []string{"Friday", "Saturday", "Sunday", "Monday"}
var lowPrimes = []int{2, 3, 5, 7, 11, 13, 17, 19}

Slices have the form []Type, and if we want to initialize them we can immedi-
ately follow with a brace-delimited comma-separated list of elements of the cor-
responding type. We could have used the same variable declaration syntax for
both, but have used a longer form for the lowPrimes slice to show the syntactic
difference and for a reason that will be explained in a moment. Since a slice’s
Type can itself be a slice type we can easily create multidimensional collections
(slices of slices, etc.).

The bigdigits program needs to import only four packages.

import (
"fmt"
"log"
"os"
"path/filepath"

)

The fmt package provides functions for formatting text and for reading format-
ted text (§3.5, ➤ 93). The log package provides logging functions. The os pack-
age provides platform-independent operating-system variables and functions
including the os.Args variable of type []string (slice of strings) that holds the
command-line arguments. And the path package’s filepath package provides
functions for manipulating filenames and paths that work across platforms.
Note that for packages that are logically inside other packages, we only specify
the last component of their name (in this case filepath) when accessing them in
our code.

18 Chapter 1. An Overview in Five Examples

For the bigdigits program we need two-dimensional data (a slice of slices of
strings). Here is how we have created it, with the strings for digit 0 laid out to
illustrate how a digit’s strings correspond to rows in the output, and with the
strings for digits 3 to 8 elided.

var bigDigits = [][]string{
 {" 000 ",

" 0 0 ",
"0 0",
"0 0",
"0 0",
" 0 0 ",
" 000 "},

 {" 1 ", "11 ", " 1 ", " 1 ", " 1 ", " 1 ", "111"},
 {" 222 ", "2 2", " 2 ", " 2 ", " 2 ", "2 ", "22222"},

// ... 3 to 8 ...
 {" 9999", "9 9", "9 9", " 9999", " 9", " 9", " 9"},
}

Variables declared outside of any function or method may not use the := oper-
ator, but we can get the same effect using the long declaration form (with key-
word var) and the assignment operator (=) aswe have done here for the bigDigits
variable (and did earlier for the lowPrimes variable).We still don’t need to specify
bigDigits’ type since Go can deduce that from the assignment.

We leave the bean counting to the Go compiler, so there is no need to specify the
dimensions of the slice of slices. One of Go’s many conveniences is its excellent
support for composite literals using braces, so we don’t have to declare a data
variable in one place and populate it with data in another—unless we want to,
of course.

The main() function that reads the command line and uses the data to produce
the output is only 20 lines.

func main() {
if len(os.Args) == 1 { ➊

 fmt.Printf("usage: %s <whole-number>\n", filepath.Base(os.Args[0]))
 os.Exit(1)
 }

 stringOfDigits := os.Args[1]
for row := range bigDigits[0] { ➋

 line := ""
for column := range stringOfDigits { ➌

 digit := stringOfDigits[column] - '0' ➍

if 0 <= digit && digit <= 9 { ➎

1.4. Big Digits—Two-Dimensional Slices 19

 line += bigDigits[digit][row] + " " ➏

 } else {
 log.Fatal("invalid whole number")
 }
 }
 fmt.Println(line)
 }
}

The programbegins by checking to see if it was invoked with any command-line
arguments. If it wasn’t, len(os.Args) will be 1 (recall that os.Args[0] holds the
program’s name, so the slice’s length is normally at least 1), and the first if
statement (18 ➤, ➊) will be satisfied. In this case we output a suitable usage
message using the fmt.Printf() function that accepts % placeholders similar to
those supported by the C/C++ printf() function or by Python’s% operator. (See
§3.5, ➤ 93 for full details.)

The path/filepath package provides path manipulation functions—for example,
the filepath.Base() function returns the basename (i.e., the filename) of the
given path. After outputting the message the program terminates using the
os.Exit() function and returns 1 to the operating system. On Unix-like systems
a return value of 0 is used to indicate success, with nonzero values indicating a
usage error or a failure.

The use of the filepath.Base() function illustrates a nice feature of Go:When a
package is imported,nomatter whether it is top-level or logically inside another
package (e.g., path/filepath), we always refer to it using only the last component
of its name (e.g., filepath). It is also possible to give packages local names to
avoid name collisions; Chapter 9 provides the details.

If at least one command-line argument was given, we copy the first one into
the stringOfDigits variable (of type string). To convert the number that the
user entered into big digits we must iterate over each row in the bigDigits slice
to produce each line of output, that is, the first (top) string for each digit, then
the second, and so on. We assume that all the bigDigits’ slices have the same
number of rows and so take the row count from the first one. Go’s for loop has
various syntaxes for different purposes;here (18 ➤,➋ and 18 ➤,➌) we have used
for … range loops that return the index positions of each item in the slices they
are given.

The row and column loops part of the code could have been written like this:

for row := 0; row < len(bigDigits[0]); row++ {
 line := ""

for column := 0; column < len(stringOfDigits); column++ {
 ...

20 Chapter 1. An Overview in Five Examples

This is a form familiar to C, C++, and Java programmers and is perfectly valid
in Go.★ However, the for … range syntax is shorter and more convenient. (Go’s
for loops are covered in §5.3, ➤ 203.)

At each row iteration we set that row’s line to be an empty string. Then we
iterate over the columns (i.e., the characters) in the stringOfDigits string we
received from the user. Go strings hold UTF-8 bytes, so potentially a character
might be represented by two or more bytes. This isn’t an issue here because we
are only concerned with the digits 0, 1, …, 9 each of which is represented by a
single byte in UTF-8 and with the same byte value as in 7-bit ASCII. (We will
see how to iterate over a string character by character—regardless of whether
the characters are single- or multibyte—in Chapter 3.)

When we index a particular position in a string we get the byte value at that
position. (InGo the byte type is a synonym for the uint8 type.) Sowe retrieve the
byte value of the command-line string at the given column and subtract the byte
value of digit 0 from it to get the number it represents (18 ➤, ➍). In UTF-8 (and
7-bit ASCII) the character '0' is code point (character) 48 decimal, the character
'1' is code point 49, and so on. So if, for example,we have the character '3' (code
point 51), we can get its integer value by doing the subtraction '3' - '0' (i.e., 51
− 48) which results in an integer (of type byte) of value 3.

Go uses single quotes for character literals, and a character literal is an integer
that’s compatible with any of Go’s integer types. Go’s strong typing means
we cannot add, say, an int32 to an int16 without explicit conversion, but Go’s
numeric constants and literals adapt to their context, so in this context '0' is
considered to be a byte.

If the digit (of type byte) is in range (18 ➤,➎) we can add the appropriate string
to the line. (In the if statement the constants 0 and 9 are considered to be bytes
because that’s digit’s type, but if digit was of a different type, say, int, they
would be treated as that type instead.) Although Go strings are immutable (i.e.,
they cannot be changed), the += append operator is supported to provide a nice
easy-to-use syntax. (It works by replacing the original string under the hood.)
There is also support for the + concatenate operator which returns a new string
that is the concatenation of its left and right string operands. (The string type
is covered fully in Chapter 3.)

To retrieve the appropriate string (19 ➤, ➏) we access the bigDigits’s slice that
corresponds to the digit, and then within that to the row (string) we need.

If the digit is out of range (e.g., due to the stringOfDigits containing a nondigit),
we call the log.Fatal() function with an error message. This function logs the

★ Unlike C, C++, and Java, in Go the ++ and -- operators may only be used as statements, not
expressions. Furthermore, they may only be used as postfix operators, not prefix operators. This
means that certain order of evaluation problems cannot occur in Go—so thankfully,expressions like
f(i++) and a[i] = b[++i] cannot be written in Go.

1.4. Big Digits—Two-Dimensional Slices 21

date, time, and error message—to os.Stderr if no other log destination is explic-
itly specified—and calls os.Exit(1) to terminate the program. There is also a
log.Fatalf() function that does the same thing and which accepts % placehold-
ers. We didn’t use log.Fatal() in the first if statement (18 ➤, ➊) because we
want to print the program’s usage message without the date and time that the
log.Fatal() function normally outputs.

Once all the number’s strings for the given row have been accumulated the
complete line is printed. In this example, seven lines are printed because each
digit in the bigDigits slice of strings is represented by seven strings.

One final point is that the order of declarationsand definitionsdoesn’t generally
matter. So in the bigdigits/bigdigits.go file we could declare the bigDigits
variable before or after the main() function. In this case we have put main() first
since for the book’s examples we usually prefer to order things top-down.

The first two examples have covered a fair amount of ground, but both of them
show material that is familiar from other mainstream languages even though
the syntax is slightly different. The following three examples take us beyond
the comfort zone to illustrate Go-specific features such as custom Go types, Go
file handling (including error handling) and functions as values, and concurrent
programming using goroutines and communication channels.

1.5. Stack—Custom Types with Methods

Although Go supports object-oriented programming it provides neither class-
es nor inheritance (is-a relationships). Go does support the creation of custom
types, and Go makes aggregation (has-a relationships) extremely easy. Go also
allows for the complete separation of a type’s data from its behavior, and sup-
portsduck typing.Duck typing is a powerful abstractionmechanism thatmeans
that values can be handled (e.g., passed to functions), based on themethods they
provide, regardless of their actual types. The terminology is derived from the
phrase, “If it walks like a duck, and quacks like a duck, it is a duck”. All of this
produces a more flexible and powerful alternative to the classes and inheritance
approach—but does require those of us used to themore traditional approach to
make some significant conceptual adjustments to really benefit fromGo’s object
orientation.

Go representsdata using the fundamental built-in types such as keyword!!struct
bool, int, and string, or by aggregations of types using structs.★ Go’s custom
types are based on the fundamental types, or on structs, or on other custom
types. (We will see some simple examples later in this chapter; §1.7, ➤ 40.)

★Unlike C++,Go’s structs are not classes in disguise. For example,Go’s structs support aggregation
and delegation, but not inheritance.

22 Chapter 1. An Overview in Five Examples

Go supports both named and unnamed custom types. Unnamed types with
the same structure can be used interchangeably; however, they cannot have
any methods. (We will discuss this more fully in §6.4, ➤ 275.) Any named cus-
tom type can have methods and these methods together constitute the type’s
interface. Named custom types—even with the same structure—are not inter-
changeable. (Throughout the book any reference to a “custom type” means a
named custom type, unless stated otherwise.)

An interface is a type that can be formally defined by specifying a particular
set of methods. Interfaces are abstract and cannot be instantiated. A concrete
(i.e., noninterface) type that has the methods specified by an interface fulfills
the interface, that is, values of such a concrete type can be used as values of the
interface’s type as well as of their own actual type. Yet no formal connection
need be established between an interface and a concrete type that provides the
methods specified by the interface. It is sufficient for a custom type to have the
interface’s methods for it to satisfy that interface. And, of course, a type can
satisfy more than one interface simply by providing all the methods for all the
interfaces we want it to satisfy.

The empty interface (i.e., the interface that has no methods) is specified as
interface{}.★ Since the empty interface makes no demands at all (because it
doesn’t require any methods), it can stand for any value (in effect like a pointer
to any value),whether the value is of a built-in type or is of a custom type. (Go’s
pointers and references are explained later; §4.1, ➤ 140.) Incidentally, in Go
terminology we talk about types and values rather than classes and objects or
instances (since Go has no classes).

Function and method parameters can be of any built-in or custom type—or of
any interface type. In the latter case this means that a function can have a
parameter that says, for example, “pass a value that can read data”, regardless
of what that value’s type actually is. (We will see this in practice shortly; §1.6,
➤ 29.)

Chapter 6 covers all of these matters in detail and presents many examples to
ensure that the ideas are understood. For now, let’s just look at a very simple
custom type—a stack—starting with how values are created and used, and then
looking at the implementation of the custom type itself.

We will start with the output produced by a simple test program:

$./stacker

81.52
[pin clip needle]
-15
hay

★Go’s empty interface can serve the same role as a reference to a Java Object or as C/C++’s void*.

1.5. Stack—CustomTypes with Methods 23

Each item was popped from the custom stack and printed on its own line.

The simple test program that produced this output is stacker/stacker.go. Here
are the imports it uses:

import (
"fmt"
"stacker/stack"

)

The fmt package is part of Go’s standard library, but the stack package is a local
package specific to the stacker application. A Go program or package’s imports
are first searched for under the GOPATH path or paths, and then under GOROOT.
In this particular case the program’s source code is in $HOME/goeg/src/stacker/
stacker.go and the stack package is in $HOME/goeg/src/stacker/stack/stack.go.
The go tool will build both of them so long as the GOPATH is (or includes) the path
$HOME/goeg/.

Import paths are specified using Unix-style “/”s, even on Windows. Every local
package should be stored in a directory with the same name as the package.
Local packages can have their own packages (e.g., like path/filepath), in exactly
the same way as the standard library. (Creating and using custom packages is
covered in Chapter 9.)

Here’s the simple test program’s main() function that produced the output:

func main() {
var haystack stack.Stack

 haystack.Push("hay")
 haystack.Push(-15)
 haystack.Push([]string{"pin", "clip", "needle"})
 haystack.Push(81.52)

for {
 item, err := haystack.Pop()

if err != nil {
break

 }
 fmt.Println(item)
 }
}

The function begins by declaring the haystack variable of type stack.Stack. It is
conventional in Go to always refer to types, functions, variables, and other items
in packages using the syntax pkg.item, where pkg is the last (or only) component
of the package’s name. This helps prevent name collisions. We then push some
items onto the stack and then pop them off and print each one until there are
no more left.

24 Chapter 1. An Overview in Five Examples

One amazingly convenient aspect of our custom stack is that despiteGo’s strong
typing, we are not limited to storing homogeneous items (items all of the same
type), but can freely mix heterogeneous items (items of various types). This
is because the stack.Stack type simply stores interface{} items (i.e., values
of any type) and doesn’t care what their types actually are. Of course, when
those items are used,then their type doesmatter. Here, though,we only use the
fmt.Println() function and this uses Go’s introspection facilities (from the re-
flect package) to discover the types of the items it is asked to print. (Reflection
is covered in a later chapter; §9.4.9, ➤ 427.)

Another niceGo feature illustrated by the code is the for loopwith no conditions.
This is an infinite loop, so in most situations we will need to provide a means
of breaking out of the loop—for example, using a break statement as here, or
a return statement. We will see an additional for syntax in the next example
(§1.6, ➤ 29); the complete range of for syntaxes is covered in Chapter 5.

Go functions and methods can return a single value or multiple values. It is
conventional in Go to report errors by returning an error value (of type error)
as the last (or only) value returned by a function or method. The custom stack.
Stack type respects this convention.

Now that we have seen the custom stack.Stack type in use we are ready to
review its implementation (in file stacker/stack/stack.go).

package stack

import "errors"

type Stack []interface{}

The file starts conventionally by specifying its package name. Then it imports
other packages that it needs—in this case just one, errors.

When we define a named custom type in Go what we are doing is binding an
identifier (the type’s name) to a new type that has the same underlying rep-
resentation as an existing (built-in or custom) type—and which is treated by
Go as different from the underlying representation. Here, the Stack type is a
new name for a slice (i.e., a reference to a variable-length array) of interface{}
values—and is considered to be different from a plain []interface{}.

Because all Go types satisfy the empty interface, values of any type can be
stored in a Stack.

The built-in collection types (maps and slices), communication channels (which
can be buffered), and strings, can all return their length (or buffer size) using
the built-in len() function. Similarly, slices and channels can also report their
capacity (which may be greater than the length being used) using the built-in
cap() function. (All of Go’s built-in functions are listed in Table 5.1,➤ 187,with
cross-references to where they are covered; slices are covered in Chapter 4; §4.2,

1.5. Stack—CustomTypes with Methods 25

➤ 148.) It is conventional for custom collection types—our own, and those in the
Go standard library—to support corresponding Len() and Cap() methods when
these make sense.

Since the Stack type uses a slice for its underlying representation it makes sense
to provide Stack.Len() and Stack.Cap() methods for it.

func (stack Stack) Len() int {
return len(stack)

}

Both functions andmethodsare defined using the func keyword.However, in the
case of methods the type of value to which the method applies is written after
the func keyword and before the method’s name, enclosed in parentheses. After
the function or method’s name comes a—possibly empty—parenthesized list of
comma-separatedparameters (eachwritten in the form variableName type).After
the parameters comes the function or method’s opening brace (if it has no return
value), or a single return value (e.g., as a type name such as the int returned by
the Stack.Len() method shown here), or a parenthesized list of return values,
followed by an opening brace.

In most cases a variable name for the value on which themethod is called is also
given—as here where we have used the name stack (and with no conflict with
the package’s name). The value on which the method is called is known in Go
terminology as the receiver.★

In this example the type of the receiver is Stack, so the receiver is passed by
value. This means that any changes made to the receiver would be made on a
copy of the original value and in effect lost. This is no problem for methods that
don’t modify the receiver, such as the Stack.Len() method shown here.

The Stack.Cap() method is almost identical to the Stack.Len() method (and so
is not shown). The only difference is that the Stack.Cap() method returns the
cap() rather than the len() of the receiver stack. The source code also includes
a Stack.IsEmpty() method, but this is so similar to Stack.Len()—it just returns a
bool indicating whether the stack’s len() equals 0—that again it isn’t shown.

func (stack *Stack) Push(x interface{}) {

*stack = append(*stack, x)
}

The Stack.Push() method is called on a pointer to a Stack (explained in a mo-
ment), and is passed a value (x) of any type. The built-in append() function takes
a slice and one or more values and returns a (possibly new) slice which has the

★ In other languages the receiver is typically called this or self ; using such names works fine in Go,
but is not considered to be good Go style.

26 Chapter 1. An Overview in Five Examples

original slice’s contents, plus the given value or values as its last element or ele-
ments. (See §4.2.3, ➤ 156.)

If the stack has previously had items popped from it (➤ 28), the underlying
slice’s capacity is likely to be greater than its length, so the push could be very
cheap: simply a matter of putting the x item into the len(stack) position and
increasing the stack’s length by one.

The Stack.Push()method always works (unless the computer runs out of memo-
ry), so we don’t need to return an error value to indicate success or failure.

If we want to modify a value we must make its receiver a pointer.★ A pointer
is a variable that holds the memory address of another value. One reason that
pointers are used is for efficiency—for example, if we have a value of a large type
it is much cheaper to pass a pointer to the value as a parameter than to pass the
value itself. Another use is to make a value modifiable. For example, when a
variable is passed into a function the function gets a copy of the value (e.g., the
stack passed into the stack.Len() function; 25 ➤). This means that if we make
any changes to the variable inside the function, they will have no effect on the
original value. If we need to modify the original value—as here where we want
to append to the stack—we must pass a pointer to the original value, and then
inside the function we can modify the value that the pointer points to.

A pointer is declared by preceding the type namewith a star (i.e., an asterisk, *).
So here, in the Stack.Push() method, the stack variable is of type *Stack, that is,
the stack variable holds a pointer to a Stack value and not an actual Stack value.
We can access the actual Stack value that the pointer points to by dereferencing
the pointer—this simply means that we access the value the pointer points to.
Dereferencing is done by preceding the variable namewith a star. So here,when
wewrite stackwe are referring to a pointer to a Stack (i.e., to a *Stack), and when
we write *stack we are dereferencing the pointer, that is, referring to the actual
Stack that the pointer points to.

So, in Go (and C and C++ for that matter), the star is overloaded to mean multi-
plication (when between a pair of numbers or variables, e.g., x * y), pointer dec-
laration (when preceding a type name, e.g., z *MyType), and pointer dereference
(when preceding a pointer variable’s name, e.g., *z).Don’t worry toomuch about
these matters for now: Go’s pointers are fully explained in Chapter 4.

Note that Go’s channels, maps, and slices are all created using the make() func-
tion, and make() always returns a reference to the value it created. References
behave very much like pointers in that when they are passed to functions any
changes made to them inside the function affect the original channel, map, or
slice. However, references don’t need to be dereferenced, so in most cases there’s
no need to use stars with them. But if we want to modify a slice inside a func-

★Go pointers are essentially the same as in CandC++except that pointer arithmetic isn’t supported
—or necessary; see §4.1, ➤ 140.

1.5. Stack—CustomTypes with Methods 27

tion or method using append() (as opposed to simply changing one of its existing
items), then wemust either pass the slice by pointer, or return the slice (and set
the original slice to the function or method’s return value), since append() some-
times returns a different slice reference than the one it was passed.

The Stack type uses a slice for its representation and therefore Stack values
can be used with functions that operate on a slice, such as append() and len().
Nonetheless, Stack values are values in their own right, distinct from their
representation, so they must be passed by pointer if we want to modify them.

func (stack Stack) Top() (interface{}, error) {
if len(stack) == 0 {

return nil, errors.New("can't Top() an empty stack")
 }

return stack[len(stack)-1], nil

}

The Stack.Top() method returns the item at the top of the stack (the item that
was added last) and a nil error value; or a nil item and a non-nil error value,
if the stack is empty. The stack receiver is passed by value since the stack
isn’t modified.

The error type is an interface type (§6.3,➤ 265)which specifies a singlemethod,
Error() string. In general, Go’s library functions return an error as their last (or
only) return value to indicate success (where error is nil) or failure. Here, we
have made our Stack type work like a standard library type by creating a new
error value using the errors package’s errors.New() function.

Go uses nil for zero pointers (and for zero references); that is, for pointers that
point to nothing and for references that refer to nothing.★ Such pointers should
be used only in conditions or assignments; methods should not normally be
called on them.

Constructorsarenever called implicitly inGo. InsteadGoguarantees thatwhen
a value is created it is always initialized to its zero value. For example, numbers
are initialized to 0, strings to the empty string, pointers to nil, and the fields
inside structs are similarly initialized. So there is no uninitialized data in Go,
thus eliminating a major source of errors that afflicts many other program-
ming languages. If the zero value isn’t suitable we can write a construction
function—and call it explicitly—as we do here to create a new error. It is also
possible to prevent values of a type being created without using a constructor
function, as we will see in Chapter 6.

★Go’s nil is in effect the same asNULL or 0 in C and C++, null in Java, and nil in Objective-C.

28 Chapter 1. An Overview in Five Examples

If the stack isnonemptywe return its topmost value and a nil error value. Since
Go uses 0-based indexing the first element in a slice or array is at position 0 and
the last element is at position len(sliceOrArray) - 1.

There is no formality when returning more than one value from a function or
method;we simply list the typeswe are returning after the function or method’s
name and ensure that we have at least one return statement that has a corre-
sponding list of values.

func (stack *Stack) Pop() (interface{}, error) {
 theStack := *stack

if len(theStack) == 0 {
return nil, errors.New("can't Pop() an empty stack")

 }
 x := theStack[len(theStack)-1] ➊

*stack = theStack[:len(theStack)-1] ➋

return x, nil

}

The Stack.Pop() method is used to remove and return the top (last added) item
from the stack. Like the Stack.Top() method it returns the item and a nil error,
or if the stack is empty, a nil item and a non-nil error.

The method must have a receiver that is a pointer since it modifies the stack by
removing the returned item. For syntactic convenience, rather than referring
to *stack (the actual stack that the stack variable points to) throughout the
method, we assign the actual stack to a local variable (theStack), and work with
that variable instead. This is quite cheap, because *stack is pointing to a Stack,
which uses a slice for its representation, so we are really assigning little more
than a reference to a slice.

If the stack is empty we return a suitable error. Otherwise we retrieve the
stack’s top (last) item and store it in a local variable (x). Then we take a slice of
the stack (which itself is a slice). The new slice has one less element than the
original and is immediately set to be the value that the stack pointer points to.
And at the end,we return the retrieved value and a nil error. We can reasonably
expect any decent Go compiler to reuse the slice, simply reducing the slice’s
length by one, while leaving its capacity unchanged, rather than copying all the
data to a new slice.

The item to return is retrieved using the [] index operator with a single index
(➊); in this case the index of the slice’s last element.

The new slice is obtained by using the [] slice operator with an index range
(➋). An index range has the form first:end. If first is omitted—as here—0 is
assumed, and if end is omitted, the len() of the slice is assumed. The slice thus
obtained has elements with indexes from and including the first up to and

1.5. Stack—CustomTypes with Methods 29

excluding the end. So in this case, by specifying the last index as one less than
the length, we slice up to the last but one element, effectively removing the last
element from the slice. (Slice indexing is covered in Chapter 4, §4.2.1, ➤ 153.)

In this examplewe used Stack receivers rather than pointers (i.e., of type *Stack)
for thosemethods that don’t modify the Stack.For custom typeswith lightweight
representations (say, a few ints or strings), this is perfectly reasonable. But for
heavyweight custom types it is usually best to alwaysuse pointer receivers since
a pointer is much cheaper to pass (typically a simple 32- or 64-bit value), than
a large value, even for methods where the value isn’t modified.

A subtle point to note regarding pointers andmethods is that if we call a method
on a value, and the method requires a pointer to the value it is called on, Go
is smart enough to pass the value’s address rather than a copy of the value
(providing the value is addressable; §6.2.1, ➤ 258). Correspondingly, if we call
a method on a pointer to a value, and the method requires a value, Go is smart
enough to dereference the pointer and give the method the pointed-to value.★

As this example illustrates, creating custom types in Go is generally straight-
forward, and doesn’t involve the cumbersome formalities that many other lan-
guages demand. Go’s object-oriented features are covered fully in Chapter 6.

1.6. Americanise—Files, Maps, and Closures

To have any practical use a programming language must provide some means
of reading and writing external data. In previous sections we had a glimpse of
Go’s versatile and powerful print functions from its fmt package; in this section
we will look at Go’s basic file handling facilities. We will also look at somemore
advanced features such asGo’s treatment of functionsandmethodsasfirst-class
values which makes it possible to pass them as parameters. And in addition we
will make use of Go’s map type (also known as a data dictionary or hash).

This section provides enough of the basics so that programs that read and write
text files can be written—thus making the examples and exercises more inter-
esting. Chapter 8 provides much more coverage of Go’s file handling facilities.

By about the middle of the twentieth century, American English surpassed
British English as the most widely used form of English. In this section’s
example we will review a program that reads a text file and writes out a copy of
the file into a new filewith any wordsusing British spellings replacedwith their
U.S. counterparts. (This doesn’t help with differences in semantics or idioms,
of course.) The program is in the file americanise/americanise.go, and we will
review it top-down, starting with its imports, then its main() function, then the
functions that main() calls, and so on.

★This is why Go does not have or need the -> indirection operator used by C and C++.

30 Chapter 1. An Overview in Five Examples

import (
"bufio"
"fmt"
"io"
"io/ioutil"
"log"
"os"
"path/filepath"
"regexp"
"strings"

)

All the americanise program’s imports are from Go’s standard library. Packages
can be nested inside one another without formality, as the io package’s ioutil
package and the path package’s filepath package illustrate.

The bufio package provides functions for buffered I/O, including ones for read-
ing and writing strings from and to UTF-8 encoded text files. The io package
provides low-level I/O functions—and the io.Reader and io.Writer interfaces we
need for the americanise() program. The io/ioutil package provides high-level
file handling functions. The regexp package provides powerful regular expres-
sion support. The other packages (fmt,log, filepath, and strings) have beenmen-
tioned in earlier sections.

func main() {
 inFilename, outFilename, err := filenamesFromCommandLine() ➊

if err != nil {
 fmt.Println(err) ➋

 os.Exit(1)
 }
 inFile, outFile := os.Stdin, os.Stdout ➌

if inFilename != "" {
if inFile, err = os.Open(inFilename); err != nil {

 log.Fatal(err)
 }

defer inFile.Close() ➍

 }
if outFilename != "" {

if outFile, err = os.Create(outFilename); err != nil {
 log.Fatal(err)
 }

defer outFile.Close() ➎

 }

if err = americanise(inFile, outFile); err != nil {
 log.Fatal(err)

1.6. Americanise—Files,Maps,and Closures 31

 }
}

The main() function gets the input and output filenames from the command line,
creates corresponding file values, and then passes the files to the americanise()
function to do the work.

The function begins by retrieving the names of the files to read andwrite and an
error value. If therewas a problemparsing the command linewe print the error
(which contains the program’s usage message), and terminate the program.
Some of Go’s print functions use reflection (introspection) to print a value using
the value’s Error() stringmethod if it has one, or its String() stringmethod if it
has one, or as best they can otherwise. If we provide our own custom typeswith
one of these methods, Go’s print functions will automatically be able to print
values of our custom types, as we will see in Chapter 6.

If err is nil, we have inFilename and outFilename strings (which may be empty),
and we can continue. Files in Go are represented by pointers to values of
type os.File, and so we create two such variables initialized to the standard
input and output streams (which are both of type *os.File). Since Go functions
and methods can return multiple values it follows that Go supports multiple
assignments such as the ones we have used here (30 ➤, ➊, ➌).

Each filename is handled in essentially the same way. If the filename is empty
the file has already been correctly set to os.Stdin or os.Stdout (both of which are
of type *os.File, i.e., a pointer to an os.File value representing the file); but if
the filename is nonempty we create a new *os.File to read from or write to the
file as appropriate.

The os.Open() function takes a filename and returns an *os.File value that can
be used for reading the file. Correspondingly, the os.Create() function takes a
filename and returns an *os.File value that can be used for reading or writing
the file, creating the file if it doesn’t exist and truncating it to zero length if
it does exist. (Go also provides the os.OpenFile() function that can be used to
exercise complete control over the mode and permissions used to open a file.)

In fact, the os.Open(), os.Create(), and os.OpenFile() functions return two
values: an *os.File and nil if the file was opened successfully, or nil and an
error if an error occurred.

If err is nil we know that the file was successfully opened so we immediately
execute a defer statement to close the file. Any function that is the subject of a
defer statement (§5.5, ➤ 212) must be called—hence the parentheses after the
functions’ names (30 ➤, ➍, ➎)—but the calls only actually occur when the func-
tion in which the defer statements are written returns. So the defer statement
“captures” the function call and sets it aside for later. This means that the de-
fer statement itself takes almost no time at all and control immediately passes
to the following statement. Thus, the deferred os.File.Close() method won’t

32 Chapter 1. An Overview in Five Examples

actually be called until the enclosing function—in this case, main()—returns
(whether normally or due to a panic,discussed in a moment), so the file is open
to be worked on and yet guaranteed to be closed when we are finished with it, or
if a panic occurs.

If we fail to open the file we call log.Fatal() with the error. As we noted in a
previous section, this function logs the date, time, and error (to os.Stderr un-
less another log destination is specified), and calls os.Exit() to terminate the
program. When os.Exit() is called (directly, or by log.Fatal()), the program is
terminated immediately—and any pending deferred statements are lost. This
is not a problem, though, since Go’s runtime systemwill close any open files, the
garbage collector will release the program’s memory, and any decent database
or network that the application might have been talking to will detect the ap-
plication’s demise and respond gracefully. Just the same as with the bigdigits
example,we don’t use log.Fatal() in the first if statement (30 ➤,➋), because the
err contains the program’s usagemessage and we want to print this without the
date and time that the log.Fatal() function normally outputs.

In Go a panic is a runtime error (rather like an exception in other languages).
We can cause panics ourselves using the built-in panic() function, and can stop
a panic in its tracks using the recover() function (§5.5, ➤ 212). In theory, Go’s
panic/recover functionality can be used to provide a general-purpose exception
handling mechanism—but doing so is considered to be poor Go practice. The
Go way to handle errors is for functions and methods to return an error value
as their sole or last return value—or nil if no error occurred—and for callers to
always check the error they receive. The purpose of panic/recover is to deal with
genuinely exceptional (i.e., unexpected) problems and not with normal errors.★

With both files successfully opened (the os.Stdin, os.Stdout, and os.Stderr files
are automatically opened by the Go runtime sytem), we call the americanise()
function to do the processing, passing it the files on which to work. If ameri-
canise() returns nil the main() function terminates normally and any deferred
statements—in this case, ones that close the inFile and outFile if they are not
os.Stdin and os.Stdout—are executed. And if err is not nil, the error is printed,
the program is exited, and Go’s runtime system closes any open files.

The americanise() function accepts an io.Reader and an io.Writer, not *os.Files,
but this doesn’t matter since the os.File type supports the io.ReadWriter inter-
face (which simply aggregates the io.Reader and io.Writer interfaces) and can
therefore be used wherever an io.Reader or an io.Writer is required. This is
an example of duck typing in action—the americanise() function’s parameters
are interfaces, so the function will accept any values—no matter what their
types—that satisfy the interfaces, that is, any values that have the methods the

★Go’s approach is very different fromC++, Java, and Python,where exception handling is often used
for both errors and exceptions. The discussion and rationale for Go’s panic/recover mechanism is at
https://groups.google.com/group/golang-nuts/browse_thread/thread/1ce5cd050bb973e4?pli=1.

https://groups.google.com/group/golang-nuts/browse_thread/thread/1ce5cd050bb973e4?pli=1

1.6. Americanise—Files,Maps,and Closures 33

interfaces specify. The americanise() function returns nil, or an error if an error
occurred.

func filenamesFromCommandLine() (inFilename, outFilename string,
 err error) {

if len(os.Args) > 1 && (os.Args[1] == "-h" || os.Args[1] == "--help") {
 err = fmt.Errorf("usage: %s [<]infile.txt [>]outfile.txt",
 filepath.Base(os.Args[0]))

return "", "", err
 }

if len(os.Args) > 1 {
 inFilename = os.Args[1]

if len(os.Args) > 2 {
 outFilename = os.Args[2]
 }
 }

if inFilename != "" && inFilename == outFilename {
 log.Fatal("won't overwrite the infile")
 }

return inFilename, outFilename, nil

}

The filenamesFromCommandLine() function returns two strings and an error
value—and unlike the functions we have seen so far, here the return values are
given variable names, not just types. Return variables are set to their zero val-
ues (empty strings and nil for err in this case) when the function is entered, and
keep their zero values unless explicitly assigned to in the body of the function.
(We will say a bit more on this topic when we discuss the americanise() func-
tion, next.)

The function begins by seeing if the user has asked for usage help.★ If they have,
we create a new error value using the fmt.Errorf() function with a suitable
usage string, and return immediately. As usual with Go code, the caller is
expected to check the returned error and behave accordingly (and this is exactly
what main() does).The fmt.Errorf() function is like the fmt.Printf() function we
saw earlier, except that it returns an error value containing a string using the
given format string and arguments rather than writing a string to os.Stdout.
(The errors.New() function is used to create an error given a literal string.)

If the user did not request usage informationwe check to see if they entered any
command-line arguments, and if they did we set the inFilename return variable
to their first command-line argument and the outFilename return variable

★ The Go standard library includes a flag package for handling command-line arguments.
Third-party packages for GNU-compatible command-line handling are available from godashboard.
appspot.com/project. (Using third-party packages is covered in Chapter 9.)

34 Chapter 1. An Overview in Five Examples

to their second command-line argument. Of course, they may have given no
command-line arguments, in which case both inFilename and outFilename remain
empty strings; or they may have entered just one, in which case inFilename will
have a filename and outFilename will be empty.

At the end we do a simple sanity check to make sure that the user doesn’t over-
write the input file with the output file, exiting if necessary—but if all is well,
we return.★ Functions or methods that return one or more valuesmust have at
least one return statement. It can be useful for clarity, and for godoc-generated
documentation, to give variable names for return types, as we have done in this
function. If a function or method has variable names as well as types listed for
its return values, then a bare return is legal (i.e., a return statement that doesnot
specify any variables). In such cases, the listed variables’ values are returned.
We do not use bare returns in this book because they are considered to be poor
Go style.

Go takes a consistent approach to reading and writing data that allows us to
read and write to files, to buffers (e.g., to slices of bytes or to strings), and to
the standard input, output, and error streams—or to our own custom types—so
long as they provide the methods necessary to satisfy the reading and writing
interfaces.

For a value to be readable it must satisfy the io.Reader interface. This interface
specifies a single method with signature, Read([]byte) (int, error). The Read()
method reads data from the value it is called on and puts the data read into the
given byte slice. It returns the number of bytes read and an error value which
will be nil if no error occurred, or io.EOF (“end of file”) if no error occurred
and the end of the input was reached, or some other non-nil value if an error
occurred. Similarly, for a value to be writable it must satisfy the io.Writer
interface. This interface specifies a singlemethod with signature, Write([]byte)
(int, error). The Write() method writes data from the given byte slice into the
value the method was called on, and returns the number of bytes written and
an error value (which will be nil if no error occurred).

The io package provides readers and writers but these are unbuffered and
operate in termsof rawbytes. The bufio packageprovidesbuffered input/output
where the inputwill work on any value that satisfies the io.Reader interface (i.e.,
provides a suitable Read() method), and the output will work on any value that
satisfies the io.Writer interface (i.e., provides a suitable Write() method). The
bufio package’s readers and writers provide buffering and can work in terms of
bytes or strings, and so are ideal for reading and writing UTF-8 encoded text
files.

★ In fact, the user could still overwrite the input file by using redirection—for example,
$./americanise infile > infile—but at least we have prevented an obvious accident.

1.6. Americanise—Files,Maps,and Closures 35

var britishAmerican = "british-american.txt"

func americanise(inFile io.Reader, outFile io.Writer) (err error) {
 reader := bufio.NewReader(inFile)
 writer := bufio.NewWriter(outFile)

defer func() {
if err == nil {

 err = writer.Flush()
 }
 }()

var replacer func(string) string ➊

if replacer, err = makeReplacerFunction(britishAmerican); err != nil {
return err

 }
 wordRx := regexp.MustCompile("[A-Za-z]+")
 eof := false

for !eof {
var line string ➋

 line, err = reader.ReadString('\n')
if err == io.EOF {

 err = nil // io.EOF isn't really an error
 eof = true // this will end the loop at the next iteration
 } else if err != nil {

return err // finish immediately for real errors
 }
 line = wordRx.ReplaceAllStringFunc(line, replacer)

if _, err = writer.WriteString(line); err != nil { ➌

return err
 }
 }

return nil

}

The americanise() function buffers the inFile reader and the outFile writer.
Then it reads lines from the buffered reader and writes each line to the buffered
writer, having replaced any British English words with their U.S. equivalents.

The function begins by creating a buffered reader and a bufferedwriter through
which their contents can be accessedasbytes—ormore conveniently in this case,
as strings. The bufio.NewReader() construction function takes as argument any
value that satisfies the io.Reader interface (i.e., any value that has a suitable
Read() method) and returns a new buffered io.Reader that reads from the given
reader. The bufio.NewWriter() function is synonymous. Notice that the ameri-
canise() function doesn’t know or carewhat it is reading from or writing to—the
reader and writer could be compressed files, network connections, byte slices

36 Chapter 1. An Overview in Five Examples

([]byte), or anything else that supports the io.Reader and io.Writer interfaces.
This way of working with interfaces is very flexible and makes it easy to com-
pose functionality in Go.

Next we create an anonymous deferred function that will flush the writer’s
buffer before the americanise() function returns control to its caller. The anony-
mous function will be called when americanise() returns normally—or abnor-
mally due to a panic. If no error has occurred and the writer’s buffer contains
unwritten bytes, the bytes will be written before americanise() returns. Since it
is possible that the flush will fail we set the err return value to the result of the
writer.Flush() call. A less defensive approach would be to have a much simpler
defer statement of defer writer.Flush() to ensure that the writer is flushed be-
fore the function returnsand ignoring any error thatmight have occurred before
the flush—or that occurs during the flush.

Go allows the use of named return values, and we have taken advantage of this
facility here (err error), just as we did previously in the filenamesFromCommand-
Line() function. Be aware, however, that there is a subtle scoping issue wemust
consider when using named return values. For example, if we have a named
return value of value, we can assign to it anywhere in the function using the as-
signment operator (=) aswe’d expect. However, if we have a statement such as if
value :=…,because the if statement starts a new block, the value in the if state-
ment will be a new variable, so the if statement’s value variable will shadow the
return value variable. In the americanise() function,err is a named return value,
so we have made sure that we never assign to it using the short variable decla-
ration operator (:=) to avoid the risk of accidentally creating a shadow variable.
One consequence of this is that we must declare the other variables we want to
assign to at the same time, such as the replacer function (35 ➤, ➊) and the line
we read in (35 ➤, ➋). An alternative approach is to avoid named return values
and return the required value or values explicitly, as we have done elsewhere.

One other small point to note is that we have used the blank identifier,_ (35 ➤,
➌). The blank identifier serves as a placeholder for where a variable is expected
in an assignment, and discards any value it is given. The blank identifier is
not considered to be a new variable, so if used with :=, at least one other (new)
variable must be assigned to.

The Go standard library contains a powerful regular expression package
called regexp (§3.6.5, ➤ 120). This package can be used to create pointers to
regexp.Regexp values (i.e., of type *regexp.Regexp). These values provide many
methods for searching and replacing. Here we have chosen to use the reg-
exp.Regexp.ReplaceAllStringFunc()methodwhich given a string and a “replacer”
function with signature func(string) string, calls the replacer function for every
match,passing in thematched text,and replacing thematched textwith the text
the replacer function returns.

1.6. Americanise—Files,Maps,and Closures 37

If we had a very small replacer function, say, one that simply uppercased the
words it matched, we could have created it as an anonymous function when we
called the replacement function. For example:

line = wordRx.ReplaceAllStringFunc(line,
func(word string) string { return strings.ToUpper(word) })

However, the americanise program’s replacer function, although only a few lines
long, requires some preparation, so we have created another function, makeRe-
placerFunction(), that given the name of a file that contains lines of original and
replacement words, returns a replacer function that will perform the appropri-
ate replacements.

If the makeReplacerFunction() returns a non-nil error,we return and the caller is
expected to check the returned error and respond appropriately (as it does).

Regular expressions can be compiled using the regexp.Compile() function which
returns a *regexp.Regexp and nil, or nil and error if the regular expression is
invalid. This is ideal for when the regular expression is read from an external
source such as a file or received from the user. Here, though, we have used the
regexp.MustCompile() function—this simply returns a *regexp.Regexp, or panics
if the regular expression, or “regexp”, is invalid. The regular expression used
in the example matches the longest possible sequence of one or more English
alphabetic characters.

With the replacer function and the regular expression in place we start an infi-
nite loop that begins by reading a line from the reader. The bufio.Reader.Read-
String() method reads (or, strictly speaking, decodes) the underlying reader’s
raw bytes asUTF-8 encoded text (which also works for 7-bit ASCII) up to and in-
cluding the specified byte (or up to the end of the file).The function conveniently
returns the text as a string, along with an error (or nil).

If the error returned by the call to the bufio.Reader.ReadString() method is not
nil, either we have reached the end of the input or we have hit a problem. At the
end of the input err will be io.EOF which is perfectly okay, so in this case we set
err to nil (since there isn’t really an error), and set eof to true to ensure that the
loop finishes at the next iteration, so wewon’t attempt to read beyond the end of
the file. We don’t return immediately we get io.EOF, since it is possible that the
file’s last line doesn’t end with a newline, in which case we will have received a
line to be processed, in addition to the io.EOF error.

For each line we call the regexp.Regexp.ReplaceAllStringFunc()method, giving it
the line and the replacer function. We then try to write the (possibly modified)
line to thewriter using the bufio.Writer.WriteString()method—thismethod ac-
cepts a string and writes it out as a sequence of UTF-8 encoded bytes, returning
the number of byteswritten and an error (whichwill be nil if no error occurred).
We don’t care howmany bytes are written so we assign the number to the blank

38 Chapter 1. An Overview in Five Examples

identifier, _. If err is not nil we return immediately, and the caller will receive
the error.

Using bufio’s reader and writer as we have done here means that we can work
with convenient high level string values, completely insulated from the raw
bytes which represent the text on disk. And, of course, thanks to our deferred
anonymous function, we know that any buffered bytes are written to the writer
when the americanise() function returns, providing that no error has occurred.

func makeReplacerFunction(file string) (func(string) string, error) {
 rawBytes, err := ioutil.ReadFile(file)

if err != nil {
return nil, err

 }
 text := string(rawBytes)

 usForBritish := make(map[string]string)
 lines := strings.Split(text, "\n")

for _, line := range lines {
 fields := strings.Fields(line)

if len(fields) == 2 {
 usForBritish[fields[0]] = fields[1]
 }
 }

return func(word string) string {
if usWord, found := usForBritish[word]; found {

return usWord
 }

return word
 }, nil

}

The makeReplacerFunction() takes the name of a file containing original and
replacement strings and returns a function that given an original string returns
its replacement, along with an error value. It expects the file to be a UTF-8
encoded text file with one whitespace-separated original and replacement word
per line.

In addition to the bufio package’s readers and writers, Go’s io/ioutil package
provides some high level convenience functions including the ioutil.ReadFile()
function used here. This function reads and returns the entire file’s contents as
raw bytes (in a []byte) and an error. As usual, if the error is not nil we immedi-
ately return it to the caller—along with a nil replacer function. If we read the
bytes okay,we convert them to a string using a Go conversion of form type(vari-
able).Converting UTF-8 bytes to a string is very cheap sinceGo’s stringsuse the
UTF-8 encoding internally. (Go’s string conversions are covered in Chapter 3.)

1.6. Americanise—Files,Maps,and Closures 39

The replacer function we want to create must accept a string and return a
corresponding string, so what we need is a function that uses some kind of
lookup table. Go’s built-in map collection data type is ideal for this purpose (§4.3,
➤ 164). A map holds key–value pairs with very fast lookup by key. So here we will
store British words as keys and their U.S. counterparts as values.

Go’smap, slice, and channel types are created using the built-in make() function.
This creates a value of the specified type and returns a reference to it. The
reference can be passed around (e.g., to other functions) and any changes made
to the referred-to value are visible to all the code that accesses it. Here we have
created an empty map called usForBritish, with string keys and string values.

With themap in placewe then split the file’s text (which is in the form of a single
long string) into lines, using the strings.Split() function. This function takes a
string to split and a separator string to split on and does as many splits as pos-
sible. (If we want to limit the number of splits we can use the strings.SplitN()
function.)

The iteration over the lines uses a for loop syntax that we haven’t seen before,
this time using a range clause. This form can be conveniently used to iterate
over a map’s keys and values, over a communication channel’s elements, or—as
here—over a slice’s (or array’s) elements. When used on a slice (or array),
the slice index and the element at that index are returned on each iteration,
starting at index 0 (if the slice is nonempty). In this example we use the loop to
iterate over all the lines, but since we don’t care about the index of each line we
assign it to the blank identifier (_) which discards it.

We need to split each line into two: the original string and the replacement
string. We could use the strings.Split() function but that would require us to
specify an exact separator string, say, " ", which might fail on a hand-edited file
where sometimes users accidentally put in more than one space, or sometimes
use tabs. Fortunately, Go provides the strings.Fields() function which splits
the string it is given on whitespace and is therefore much more forgiving of
human-edited text.

If the fields variable (of type []string) has exactly two elements we insert the
corresponding key–value pair into the map. Once the map is populated we are
ready to create the replacer function that we will return to the caller.

We create the replacer function as an anonymous function given as an argument
to the return statement—along with a nil error value. (Of course, we could
have been less succinct and assigned the anonymous function to a variable and
returned the variable.) The function has the exact signature required by the
regexp.Regexp.ReplaceAllStringFunc() method that it will be passed to.

Inside the anonymous replacer function all we do is look up the given word. If
we access a map element with one variable on the left-hand side, that variable
is set to the corresponding value—or to the value type’s zero value if the given

40 Chapter 1. An Overview in Five Examples

key isn’t in the map. If the map value type’s zero value is a legitimate value,
then how can we tell if a given key is in the map? Go provides a syntax for
this case—and that is generally useful if we simply want to know whether a
particular key is in themap—which is to put two variables on the left-hand side,
the first to accept the value and the second to accept a bool indicating if the key
was found. In this example we use this second form inside an if statement that
has a simple statement (a short variable declaration), and a condition (the found
Boolean). So we retrieve the usWord (which will be an empty string if the given
word isn’t a key in themap), and a found flag of type bool. If theBritishwordwas
found we return the U.S. equivalent; otherwise we simply return the original
word unchanged.

There is a subtlety in the makeReplacerFunction() function that may not be
immediately apparent. In the anonymous function created inside it we access
the usForBritishmap, yet thismapwas created outside the anonymous function.
This works because Go supports closures (§5.6.3, ➤ 225). A closure is a function
that “captures” some external state—for example, the state of the function it
is created inside, or at least any part of that state that the closure accesses. So
here, the anonymous function that is created inside the makeReplacerFunction()
is a closure that has captured the usForBritish map.

Another subtlety is that the usForBritish map is a local variable and yet we will
be accessing it outside the function in which it is declared. It is perfectly fine to
return local variables in Go. Even if they are references or pointers, Go won’t
delete them while they are in use and will garbage-collect them when they are
finished with (i.e., when every variable that holds, refers, or points to them has
gone out of scope).

This section has shown some basic low-level and high-level file handling func-
tionality using os.Open(), os.Create(), and ioutil.ReadFile(). In Chapter 8
there is much more file handling coverage, including the writing and reading
of text, binary, JSON, and XML files. Go’s built-in collection types—slices and
maps—largely obviate the need for custom collection types while providing ex-
tremely good performance and great convenience. Go’s collection types are cov-
ered in Chapter 4. Go’s treatment of functions as first-class values in their own
right and its suppport for closures makes it possible to use some advanced and
very useful programming idioms. And Go’s defer statement makes it straight-
forward to avoid resource leakage.

1.7. Polar to Cartesian—Concurrency

One key aspect of the Go language is its ability to take advantage of modern
computerswithmultiple processorsandmultiple cores,and to do sowithout bur-
dening programmers with lots of bookkeeping. Many concurrent Go programs
can bewrittenwithout any explicit locking at all (althoughGo does have locking

1.7. Polar to Cartesian—Concurrency 41

primitives for when they’re needed in lower-level code, as we will see in Chap-
ter 7).

Two featuresmake concurrent programming in Go a pleasure. First,goroutines
(in effect very lightweight threads/coroutines) can easily be created at will with-
out the need to subclass some “thread” class (which isn’t possible in Go anyway).
Second,channelsprovide type-safe one-way or two-way communicationwith gor-
outines and which can be used to synchronize goroutines.

The Go way to do concurrency is to communicate data, not to share data. This
makes it much easier to write concurrent programs than using the traditional
threads and locks approach, since with no shared data we can’t get race condi-
tions (such as deadlocks), and we don’t have to remember to lock or unlock since
there is no shared data to protect.

In this section we will look at the fifth and last of the chapter’s “overview”
examples. This section’s example program uses two communication channels
and does its processing in a separate Go routine. For such a small program this
is complete overkill, but the point is to illustrate a basic use of these Go features
in as clear and short a way as possible. More realistic concurrency examples
that showmany of the different techniques that can be used with Go’s channels
and goroutines are presented in Chapter 7.

The programwewill review is called polar2cartesian; it is an interactive console
program that prompts the user to enter two whitespace-separated numbers—a
radius and an angle—which the program then uses to compute the equivalent
cartesian coordinates. In addition to illustrating one particular approach to con-
currency, it also shows some simple structs and how to determine if the program
is running on aUnix-like systemor onWindows for when the differencematters.
Here is an example of the program running in a Linux console:

$./polar2cartesian

Enter a radius and an angle (in degrees), e.g., 12.5 90, or Ctrl+D to quit.
Radius and angle: 5 30.5

Polar radius=5.00 θ=30.50° → Cartesian x=4.31 y=2.54
Radius and angle: 5 -30.25

Polar radius=5.00 θ=-30.25° → Cartesian x=4.32 y=-2.52
Radius and angle: 1.0 90

Polar radius=1.00 θ=90.00° → Cartesian x=-0.00 y=1.00
Radius and angle: ^D

$

The program is in file polar2cartesian/polar2cartesian.go, and we will review
it top-down, starting with the imports, then the structs it uses, then its init()
function, then its main() function, and then the functions called by main(), and so
on.

42 Chapter 1. An Overview in Five Examples

import (
"bufio"
"fmt"
"math"
"os"
"runtime"

)

The polar2cartesian program imports several packages, some of which have
been mentioned in earlier sections, so we will only mention the new ones here.
The math package provides mathematical functions for operating on floating-
point numbers (§2.3.2, ➤ 64) and the runtime package provides functions that
access the program’s runtime properties, such as which platform the program is
running on.

type polar struct {
 radius float64

θ float64
}

type cartesian struct {
 x float64
 y float64
}

InGo a struct is a type that holds (aggregatesor embeds) one ormore data fields.
These fields can be built-in types as here (float64), or structs, or interfaces, or
any combination of these. (An interface data field is in effect a pointer to an
item—of any kind—that satisfies the interface, i.e., that has the methods the
interface specifies.)

It seems natural to use the Greek lowercase letter theta (θ) to represent the
polar coordinate’s angle, and thanks to Go’s use of UTF-8 we are free to do so.
This is because Go allows us to use any Unicode letters in our identifiers, not
just English letters.

Although the two structs happen to have the same data field types they are dis-
tinct typesandno automatic conversion between them ispossible. This supports
defensive programming; after all, it wouldn’t make sense to simply substitute a
cartesian’s positional coordinates for polar coordinates. In some cases such con-
versions do make sense, in which case we can easily create a conversionmethod
(i.e., a method of one type that returned a value of another type) that made use
of Go’s composite literal syntax to create a value of the target type populated by
the fields from the source type. (Numeric data type conversions are covered in
Chapter 2; string conversions are covered in Chapter 3.)

1.7. Polar to Cartesian—Concurrency 43

var prompt = "Enter a radius and an angle (in degrees), e.g., 12.5 90, " +
"or %s to quit."

func init() {
if runtime.GOOS == "windows" {

 prompt = fmt.Sprintf(prompt, "Ctrl+Z, Enter")
 } else { // Unix-like
 prompt = fmt.Sprintf(prompt, "Ctrl+D")
 }
}

If a package has one or more init() functions they are automatically executed
before the main package’s main() function is called. (In fact,init() functionsmust
never be called explicitly.) So when our polar2cartesian program is invoked
this init() function is the first function that is called. We use init() to set the
prompt to account for platform differences in how end of file is signified—for
example, on Windows end of file is given by pressing Ctrl+Z then Enter. Go’s run-
time package provides the GOOS (GoOperating System) constantwhich is a string
identifying the operating system the program is running on. Typical values are
darwin (Mac OS X), freebsd, linux, and windows.

Before diving into the main() function and the rest of the program we will
briefly discuss channels and show some toy examples before seeing them in
proper use.

Channels are modeled on Unix pipes and provide two-way (or at our option,
one-way) communication of data items. Channels behave like FIFO (first in,
first out) queues, hence they preserve the order of the items that are sent into
them. Items cannot be dropped from a channel, but we are free to ignore any or
all of the items we receive. Let’s look at a very simple example. First we will
make a channel:

messages := make(chan string, 10)

Channels are created with the make() function (Chapter 7) and are declared us-
ing the syntax, chan Type.Here we have created the messages channel to send and
receive strings. The second argument to make() is the buffer size (which defaults
to 0); herewe havemade it big enough to accept ten strings. If a channel’s buffer
is filled it blocks until at least one item is received from it. This means that any
number of items can pass through a channel, providing the items are retrieved
to make room for subsequent items. A channel with a buffer size of 0 can only
send an item if the other end is waiting for an item. (It is also possible to get
the effect of nonblocking channels using Go’s select statement, as we will see in
Chapter 7.)

Now we will send a couple of strings into the channel:

44 Chapter 1. An Overview in Five Examples

messages <- "Leader"
messages <- "Follower"

When the <- communication operator is used as a binary operator its left-hand
operand must be a channel and its right-hand operand must be a value to send
to the channel of the type the channel was declaredwith. Here,we first send the
string Leader to the messages channel, and then we send the string Follower.

message1 := <-messages
message2 := <-messages

When the <- communication operator is used as a unary operator with just a
right-hand operand (which must be a channel), it acts as a receiver, blocking
until it has a value to return. Here, we retrieve two messages from the messages
channel. The message1 variable is assigned the string Leader and the message2
variable is assigned the string Follower; both variables are of type string.

Normally channels are created to provide communication between goroutines.
Channel sends and receives don’t need locks, and the channel blocking behavior
can be used to achieve synchronization.

Now that we have seen some channel basics, let’s see channels—and goroutines
—in practical use.

func main() {
 questions := make(chan polar)

defer close(questions)
 answers := createSolver(questions)

defer close(answers)
 interact(questions, answers)
}

Once any init() functions have returned, Go’s runtime system then calls the
main package’s main() function.

Here, the main() function begins by creating a channel (of type chan polar) for
passing polar structs, and assigns it to the questions variable. Once the channel
has been created we use a defer statement to call the built-in close() function
(➤ 187) to ensure that it is closed when it is no longer needed. Next we call the
createSolver() function, passing it the questions channel and receiving from it
an answers channel (of type chan cartesian). We use another defer statement to
ensure that the answers channel is closed when it is finished with. And finally,
we call the interact() function with the two channels, and in which the user
interaction takes place.

1.7. Polar to Cartesian—Concurrency 45

func createSolver(questions chan polar) chan cartesian {
 answers := make(chan cartesian)

go func() {
for {

 polarCoord := <-questions ➊

θ := polarCoord.θ * math.Pi / 180.0 // degrees to radians
 x := polarCoord.radius * math.Cos(θ)
 y := polarCoord.radius * math.Sin(θ)
 answers <- cartesian{x, y} ➋

 }
 }()

return answers
}

The createSolver() function begins by creating an answers channel to which it
will send the answers (i.e., cartesian coordinates) to the questions (i.e., polar
coordinates) that it receives from the questions channel.

After creating the channel, the function then hasa go statement. A go statement
is given a function call (syntactically just like a defer statement), which is exe-
cuted in a separate asynchronous goroutine. Thismeans that the flow of control
in the current function (i.e., in the main goroutine) continues immediately from
the following statement. In this case the go statement is followed by a return
statement that returns the answers channel to the caller. Aswenoted earlier, it is
perfectly safe and good practice in Go to return local variables, since Go handles
the chore of memory management for us.

In this case we have (created and) called an anonymous function in the go state-
ment. The function has an infinite loop that waits (blocking its own goroutine,
but not any other goroutines, and not the function in which the goroutine was
started), until it receives a question—in this case a polar struct on the questions
channel. When a polar coordinate arrives the anonymous function computes the
corresponding cartesiancoordinateusing somesimplemath (andusing the stan-
dard library’s math package), and then sends the answer as a cartesian struct
(created using Go’s composite literal syntax), to the answers channel.

In ➊ the <- operator is used as a unary operator, retrieving a polar coordinate
from the questions channel. And in ➋ the <- operator is used as a binary opera-
tor; its left-hand operand being the answers channel to send to, and its right-hand
operand being the cartesian to send.

Once the call to createSolver() returnswe have reached the point wherewehave
two communication channels set up and where a separate goroutine is waiting
for polar coordinates to be sent on the questions channel—andwithout any other
goroutine, including the one executing main(), being blocked.

46 Chapter 1. An Overview in Five Examples

const result = "Polar radius=%.02f θ=%.02f° → Cartesian x=%.02f y=%.02f\n"

func interact(questions chan polar, answers chan cartesian) {
 reader := bufio.NewReader(os.Stdin)
 fmt.Println(prompt)

for {
 fmt.Printf("Radius and angle: ")
 line, err := reader.ReadString('\n')

if err != nil {
break

 }
var radius, θ float64
if _, err := fmt.Sscanf(line, "%f %f", &radius, &θ); err != nil {

 fmt.Fprintln(os.Stderr, "invalid input")
continue

 }
 questions <- polar{radius, θ}
 coord := <-answers
 fmt.Printf(result, radius, θ, coord.x, coord.y)
 }
 fmt.Println()
}

This function is called with both channels passed as parameters. It begins by
creating a buffered reader for os.Stdin sincewewant to interact with the user in
the console. It then prints the prompt that tells the user what to enter and how
to quit. We could have made the program terminate if the user simply pressed
Enter (i.e., didn’t type in any numbers), rather than asking them to enter end of
file. However, by requiring the use of end of file we have made polar2cartesian
more flexible, since it is also able to read its input from an arbitrary external file
using file redirection (providing only that the file has two whitespace-separated
numbers per line).

The function then starts an infinite loop which begins by prompting the user to
enter a polar coordinate (a radiusand an angle).After asking for the user’s input
the functionwaits for the user to type some text and pressEnter, or to pressCtrl+D
(or Ctrl+Z, Enter on Windows) to signify that they have finished. We don’t bother
checking the error value; if it isn’t nil we break out of the loop and return to the
caller (main()),which in turnwill return (and call its deferred statements to close
the communication channels).

We create two float64s to hold the numbers the user has entered and then use
Go’s fmt.Sscanf() function to parse the line. This function takesa string to parse,
a format—in this case two whitespace-separated floating-point numbers—and
one or more pointers to variables to populate. (The & address of operator is used
to get a pointer to a value; see §4.1, ➤ 140.) The function returns the number of

1.7. Polar to Cartesian—Concurrency 47

items it successfully parsed and an error (or nil). In the case of an error,we print
an error message to os.Stderr—this is to make the error message visible on the
console even if the program’s os.Stdout is redirected to a file. Go’s powerful and
flexible scan functionsare shown in use in Chapter 8 (§8.1.3.2,➤ 380), and listed
in Table 8.2 (➤ 383).

If valid numberswere input and sent to the questions channel (in a polar struct),
we block themain goroutine waiting for a response on the answers channel. The
additional goroutine created in the createSolver() function is itself blockedwait-
ing for a polar on the questions channel, so when we send the polar, the addi-
tional goroutine performs the computation, sends the resultant cartesian to the
answers channel, and then waits (blocking only itself) for another question to
arrive. Once the cartesian answer is received in the interact() function on the
answers channel, interact() is no longer blocked. At this point we print the re-
sult string using the fmt.Printf() function, and passing the polar and cartesian
values as the arguments that the result string’s % placeholders are expecting.
The relationship between the goroutines and the channels is illustrated in Fig-
ure 1.1.

Main goroutine

init()

main()

createSolver()

interact()

Solver goroutine

func() // anonymous

Questions

Answers

Figure 1.1 Two communicating goroutines

The interact() function’s for loop is an infinite loop, so as soon as a result is
printed the user is once again asked to enter a radius and angle, with the loop
being broken out of only if the reader reads end of file—either interactively from
the user or because the end of a redirected input file has been reached.

The calculations in polar2cartesian are very lightweight, so there was no real
need to do them in a separate goroutine. However, a similar program that
needed to do multiple independent heavyweight calculations as the result of
each input might well benefit from using the approach shown here, for example,
with one goroutine per calculation. We will see more realistic use cases for
channels and goroutines in Chapter 7.

We have now completed our overview of the Go language as illustrated by the
five example programs reviewed in this chapter. Naturally, Go has much more
to offer than there has been space to show here, as we will see in the subsequent
chapters, each of which focuses on a specific aspect of the language and any
relevant packages from the standard library. This chapter concludes with a
small exercise, which despite its size, requires some thought and care.

48 Chapter 1. An Overview in Five Examples

1.8. Exercise
Copy the bigdigits directory to, say, my_bigdigits, and modify my_bigdigits/big-
digits.go to produce a version of the bigdigits program (§1.4, 16 ➤) that can
optionally output the number with an overbar and underbar of “*”s, and with
improved command-line argument handling.

The original program output its usage message if no number was given; change
this so that the usagemessage is also output if the user gives an argument of -h
or --help. For example:

$./bigdigits --help

usage: bigdigits [-b|--bar] <whole-number>
-b --bar draw an underbar and an overbar

If the --bar (or -b) option is not present the program should have the same
behavior as before. Here is an example of the expected output if the option is
present:

$./bigdigits --bar 8467243

888 4 666 77777 222 4 333
8 8 44 6 7 2 2 44 3 3
8 8 4 4 6 7 2 4 4 3
888 4 4 6666 7 2 4 4 33
8 8 444444 6 6 7 2 444444 3
8 8 4 6 6 7 2 4 3 3
888 4 666 7 22222 4 333

The solution requiresmore elaborate command-line processing than the version
shown in the text, although the code producing the output only needs a small
change to output the overbar before the first row and the underbar after the
last row. Overall, the solution needs about 20 extra lines of code—the solution’s
main() function is twice as long as the original (~40 vs. ~20 lines), mostly due to
the code needed to handle the command line. A solution is provided in the file
bigdigits_ans/bigdigits.go.

Hints:The solution also has a subtle difference in theway it builds up each row’s
line to prevent the bars extending too far. Also, the solution imports the strings
package and uses the strings.Repeat(string, int) function. This function
returnsa string that contains the string it is given as itsfirst argument repeated
by the number of times of the int given as its second argument. Why not look
this function up either locally (see the sidebar “The Go Documentation”, 8 ➤),
or at golang.org/pkg/strings, and start to become familiar with the Go standard
library’s documentation.

1.8. Exercise 49

It would bemuch easier to handle command-line argumentsusing a package de-
signed for the purpose. Go’s standard library includes a rather basic command
line parsing package, flag, that supports X11-style options (e.g., -option). In ad-
dition, several option parsers that support GNU-style short and long options
(e.g., -o and --option) are available from godashboard.appspot.com/project.

This page intentionally left blank

Index

Symbols & Numbers
! logical NOT operator, 57
!= inequality operator, 56–57, 68–69,

70, 164
" " double quotes, 83
#! shebang scripts, 10
$ replacements in regular expres-

sions, 120, 126, 129
% modulus operator and formatting

placeholder, 47, 60, 69; see also
format specifier

%= augmented modulus operator, 60
& address of and bitwise AND opera-

tor, 45, 46, 55, 60, 142, 143, 144,
167, 246, 247, 248, 267, 269, 284,
382, 383, 384, 387, 393, 394, 395

&& logical AND operator, 56, 57
&= augmented bitwise AND operator,

60
&^ bitwise clear operator, 60
&^= augmented bitwise clear opera-

tor, 60
* multiplication, dereference, point-

er declaration operator and for-
matting placeholder, 26, 59, 69,
96, 100, 142, 143, 144, 178, 247,
248, 249, 259, 284, 305, 370, 382,
394

*= augmented multiplication opera-
tor, 59, 147

+ addition, concatenation, and unary
plus operator, 20, 59, 84, 85, 226

++ increment operator, 20, 59, 186,
188

+= augmented addition and string
append operator, 20, 59, 84, 85,
88, 140; see also append()

- subtraction and unary minus oper-
ator, 59

-- decrement operator, 20, 59, 186,
188

-= augmented subtraction operator,
59

. selector operator, 148, 275

... ellipsis operator, 149, 156, 158,
160, 176, 219, 221, 222, 233, 242,
268, 287, 378

/ division operator, 59
/* */ multiline comments, 14, 51
// single-line comments, 14, 51
/= augmented division operator, 59
:= short variable declaration opera-

tor, 15, 18, 36, 53, 188, 189, 198,
203

; semicolon, 15, 186
< less than comparison operator,

56–57
<- send/receive communication oper-

ator, 44, 45, 207, 210, 318–357
<< bitwise shift left operator, 55, 60
<<= augmented bitwise shift left op-

erator, 60
<= less than or equal comparison op-

erator, 56–57
= assignment operator, 16, 18, 36,

188, 212
== equality operator, 56–57, 68–69,

70, 164
> greater than comparison operator,

56–57
>= greater than or equal comparison

operator, 56–57
>> bitwise right shift operator, 60
>>= augmented bitwise right shift

operator, 60
[] index and slice operator,16,28,85,

91, 203, 242, 339, 355, 357, 393

443

444 Index

\ (backslash), 84
\a (alert or bell), 84
\b (backspace), 84
\f (form feed), 84
\n (newline), 51, 84
\r (carriage return), 84
\t (tab), 84
\Uhhhhhhhh (rune literal), 84
\uhhhh (rune literal), 84
\v (vertical tab), 84
\xhh (rune literal), 84
^ bitwise XOR and complement opera-

tor, 60
^= augmented bitwise XOR operator,

60
_ blank identifier, 36, 52–53, 154,

170, 188, 291, 358, 417; see also
identifiers

` ` backticks, 75, 78, 96
{ } braces, 15, 186
| bitwise OR operator, 55, 60
|= augmented bitwise OR operator,

60
|| logical OR operator, 56, 57, 178
5g, 6g, 8g (tool), 9
5l, 6l, 8l (tool), 9
7-bit ASCII encoding, 82

A
Abs()

cmplx package, 71
math package, 65, 68

abstract vs. concrete types, 22
abstraction and abstract types; see

interfaces
access operator; see [] index oper-

ator
access, serialized, 318–319, 335, 341
accessing maps, 39, 168–169, 231
accuracy, floating-point, 64
Acos()

cmplx package, 71
math package, 65

Acosh()
cmplx package, 71
math package, 65

Add()
Int type, 63
WaitGroup type, 350, 351, 352, 354

address; see pointers
After() (time package), 332, 333, 426
aggregation, 254–256, 275–282; see

also embedding
alert or bell (\a), 84
aliasing, package names, 409, 418
americanise (example), 29–40
and, logical; see && operator
anonymous fields, struct keyword
anonymous functions, 36, 37, 110,

112, 206, 208, 212, 216, 218, 225,
226, 239, 240, 243, 290

anonymous struct, 275
apachereport (example), 341–349
API (Application Programming In-

terface); see interfaces
App Engine, Google, 2, 435
append() (built-in), 25, 27, 55, 77, 129,

132, 150, 151, 156–157,158, 159,
160, 170, 176, 178, 179, 187, 232,
240, 247, 249, 272, 355, 374, 382,
392, 410; see also +=

AppendBool() (strconv package), 114
AppendFloat() (strconv package), 114
AppendInt() (strconv package), 114
AppendQuote() (strconv package), 114
AppendQuoteRune() (strconv package),

114
AppendQuoteRuneToASCII() (strconv

package), 114
AppendUInt() (strconv package), 114
archive files; see .tar files and .zip

files
archive (package)

tar (package); see top-level entry
zip (package); see top-level entry

archive_file_list (exercise), 250

Index 445

Args slice (os package), 14, 15, 17, 19,
131–132, 232

arguments, command line, 16, 17, 19,
232; see also flag package and
commandLineFiles()

arguments, function and method;
see parameters

arrays, 140, 148–150; see also slices
iterating, 203
multidimensional, 148
mutability, 149

ASCII encoding, 82
Asin()

cmplx package, 71
math package, 65

Asinh()
cmplx package, 71
math package, 65

assertions, type; see type assertions
assertions, zero-width in regular ex-

pressions, 122
assignment operators; see = and :=

operators
assignments,multiple, 31, 188
associative array; see map type
asynchronous, channel, 207; see also

channels
Atan()

cmplx package, 71
math package, 65

Atan2() (math package), 65
Atanh()

cmplx package, 71
math package, 65

Atoi() (strconv package), 116, 134,
390

atomic updates, 338
audio format, Vorbis, 130

B
backslash (\), 84
backreferences, in regular expres-

sions, 126

backspace (\b), 84
backticks (̀ `), 75, 96
backtracking,in regular expressions,

120
balanced binary tree; see omap exam-

ple
bare returns, 34, 189, 219
Base() (filepath package), 19,

131–132, 194, 327
benchmarking, 415–416
big (package; math package)

Int (type); see top-level entry
NewInt(), 63
ProbablyPrime(), 425
Rat (type); see top-level entry

big-O notation, 89
bigdigits (example), 16–21, 48
bigdigits (exercise), 48
BigEndian (variable; binary package),

389
binary files, 387–397; see also .gob

files
binary number, formatting as, 98
binary (package; encoding package),

388, 391
BigEndian (variable), 389
LittleEndian (variable), 388, 389
Read(), 391, 393, 395
Write(), 388

binary tree; see omap example
binary vs. linear search, 162–163
bisectLeft() (example), 314
blank identifier (_), 36, 52–53, 154,

170, 188, 291, 358, 417; see also
identifiers

blocking, channel, 207–208, 209; see
also channels

bool (type; built-in), 53, 56–57, 195,
204, 318

formatting, 97
Bool() (Value type), 428
Boolean expressions, 193, 204
braces ({ }), 15, 186

446 Index

branching, 192–202
break (statement), 24, 177, 186, 204,

205, 331
Buffer (type; bytes package), 111,

200, 201, 243
ReadRune(), 113
String(), 88, 200, 243
WriteRune(), 111
WriteString(), 88, 111, 200, 243

buffers; see bufio package and File
type

bufio (package), 30, 34, 38
NewReader(), 35, 176, 333, 380
NewWriter(), 35, 378
Reader (type); see top-level entry
Writer (type); see top-level entry

building Go programs, 11–13
built-in functions

append(), 25, 27, 55, 77, 129, 132,
150, 151, 156–157, 158, 159,
160, 170, 176, 178, 179, 187,
232, 240, 247, 249, 272, 355,
374, 382, 392, 410; see also
+=

cap(), 24, 149, 151, 152, 157, 187,
324

close(), 44, 187, 211, 320, 321,
324, 325, 329, 330, 340, 343

complex(), 58, 187; see also cmplx
package

copy(), 157–158, 159, 187, 268
delete(), 165, 169, 187, 339
imag(), 70, 101, 187
len(), 15, 20, 24, 27, 69, 85, 90,

148, 149, 151, 152, 157, 159,
165, 169, 187, 340

make(), 26, 38, 39, 43, 44, 127, 129,
150, 151, 152, 157, 159, 165,
172, 176, 178, 179, 187, 207,
208, 209, 211, 240, 242, 246,
247, 323, 324, 328, 337, 339,
341, 346, 348, 355, 374, 392,
393, 395, 410

new(), 145, 146, 152, 187, 346

panic(), 32, 69, 70, 113, 187, 191,
196, 213–218, 219, 220, 243

real(), 70, 101, 187
recover(), 32, 187, 213–218
see also functions and special

functions
built-in types; see bool, byte, error,

int, map, rune, string, uint; see
also standard library’s types

byte ordering, 83, 389
byte (type; built-in), 20, 59, 60, 82,

104, 132, 190
conversion from string, 89–90,

164, 373, 391
conversion of []byte to string, 38,

85, 164, 334, 395
formatting, 102
see also rune and string types

bytes (package), 419
Buffer (type); see top-level entry
TrimRight(), 333, 334

C
C code, external, 9
Call() (Value type), 429, 430
Caller() (runtime package), 291
calling functions, 220–221; see also

functions
CanBackquote() (strconv package),

114
CanSet() (Value type), 428
cap() (built-in), 24, 149, 151, 152,

157, 187, 324
carriage return (\r), 84
case (keyword); see select and switch

statements
Cbrt() (math package), 65
Ceil() (math package), 65
cgo (tool), 9
cgrep (example), 326–334
chan (keyword), 43, 44, 208, 209, 210,

318–357; see also channels

Index 447

channels, 41, 43–44, 206–212,
318–357

infinite, 208
iterating, 203

character; see rune type
character classes in regular expres-

sions, 122
character encoding,fixed vs.variable

width, 83
character literal, 20; see also rune

type
checked type assertion; see type as-

sertions
class, 254; see also type keyword
close() (built-in), 44, 187, 211, 320,

321, 324, 325, 329, 330, 340, 343
Close() (File type), 31, 176, 213, 293,

333, 343, 353, 398, 400
closures, 40, 163, 225–227, 239, 240,

243, 244, 352
cmplx (package; math package), 70

Abs(), 71
Acos(), 71
Acosh(), 71
Asin(), 71
Asinh(), 71
Atan(), 71
Atanh(), 71
Conj(), 71
Cos(), 71
Cosh(), 71
Cot(), 71
Exp(), 71
Inf(), 71
IsInf(), 71
IsNaN(), 71
Log(), 71
Log10(), 71
NaN(), 71
Phase(), 71
Polar(), 71
Pow(), 71
Rect(), 71

Sin(), 71
Sinh(), 71
Sqrt(), 71
Tan(), 71
Tanh(), 71

code point, Unicode; see rune type
collection packages, 421–423
collections, slices, map type, and omap

example
color (package)

RGBA (type); see top-level entry
command-line arguments, 16, 17, 19,

232; see also flag package
commandLineFiles() (example), 176,

410
commas() (example), 357
comments, Go, 14, 51
CommonPathPrefix() (exercise), 250
CommonPrefix() (exercise), 250
Communicating Sequential Process-

es (CSP), 3, 315
communication,between goroutines;

see channels,goroutines,and the
chan and go keywords

comparisons, 56–57, 70, 84, 86–87;
see also <, <=, ==, !=, >=, and > op-
erators

compilation speed, 2
Compile() (regexp package), 37, 121,

214, 327
CompilePOSIX() (regexp package), 121
complex() (built-in), 58, 70, 187; see

also cmplx package
Complex() (Value type), 428
complex64 (type; built-in), 64, 70
complex128 (type; built-in), 64, 70,

101, 187
comparisons, 70
conversion to complex64, 70
formatting, 101
literals, 53, 70
see also cmplx package and imag()

and real()

448 Index

composing functionality, 35
composite literals, 18, 45, 150, 152,

153, 166, 167
compositing, image, 290
composition;seeaggregationand em-

bedding
compress (package)

gzip (package), see top-level en-
try

concatenation, fast string, 88
concatenation,string;see+ and += op-

erators
concrete vs. abstract types, 22
concurrency; see channels, gorou-

tines, and the chan and go key-
words

conditional branching, 192–202
Conj() (cmplx package), 9
console; see Stderr, Stdin, and Std-

out streams
const (keyword), 45, 53, 54, 58, 133,

336, 364, 379, 390
constant expressions, 58
constants,numeric;seeunder literals

and specific types
construction functions, 27, 263, 264,

306
constructors; see construction func-

tions
container (package), 421–423

heap (package), 421–422
list (package), 422–423
ring (package), 423

containers; see slices, map type, and
omap example

Contains() (strings package), 108
contents of; see pointers and * deref-

erence operator
continue (statement), 132, 133, 186,

204, 205, 324
conversions,42, 57, 61, 162,190–191,

288
[]byte to string, 38, 85, 164, 334,

395

[]rune to string, 91, 272
complex128 to complex64, 70
downsizing, 58, 61
float64 to int, 69
int to float64, 61, 73
int to int64, 63
rune to string, 87–88, 246
string to []byte, 85, 164, 373, 391
string to []rune, 85
string to float64, 77
see also the strconv package

copy() (built-in), 157–158, 159, 187,
268

Copy() (io package), 353, 354, 399,
401, 402, 405

copy on write, of strings, 140
Copysign() (math package), 65
coroutines; see channels, goroutines,

and the chan and go keywords
Cos()

cmplx package, 71
math package, 45, 65

Cosh()
cmplx package, 71
math package, 65

Cot() (cmplx package), 9
Count() (strings package), 108, 172,

173
Cox, Russ, 2, 120, 436
Create() (File type), 31, 293, 397,

400
CreateHeader() (Writer type), 398,

399
cross-platform code, 410–411
crypto (package), 425

rand (package), see top-level en-
try

sha1 (package), see top-level en-
try

.csv files, 424
csv (package; encoding package), 424
currying; see closures

Index 449

custom packages, 24–29, 408–417;
see also packages

custom types, 55, 103, 255–282
named vs. unnamed, 22
see also type

D
Dashboard, Go, 2
data structures, slices, map type, and

struct
database (package)

sql (package), 423
deadlock, 317–318, 340
debugging, 55, 103–106
decimal number, formatting as, 99;

see also int type
declarations, order of, 21
Decode()

gob package
Decoder type, 387

json package
Decoder type, 369, 370

xml package
Decoder type, 375, 377

DecodeConfig() (image package), 358
DecodeLastRune() (utf8 package), 118
DecodeLastRuneInString() (utf8 pack-

age), 91, 118, 229, 230
Decoder (type)

gob package
Decode(), 387

json package), 369
Decode(), 369, 370

xml package
Decode(), 375, 377

DecodeRune() (utf8 package), 118
DecodeRuneInString() (utf8 package),

91, 92, 93, 118, 203, 229, 230
DeepEqual() (reflect package), 57,

236, 427
default (keyword); see select and

switch statements

defer (statement), 31–32, 35, 36, 44,
97, 176, 211–213, 216, 218, 333,
343, 353, 378, 398, 400

defining methods, 25
definitions, order of, 21
delegation; see embedding
delete() (built-in), 165, 169, 187,

339
dereferencing pointers; see pointers
dictionary; see map type
Dim() (math package), 65
Div() (Int type), 63
division by zero, 68
documentation, Go, 8
documentation, package, 411–413
domain name resolution; see net

package
Done() (WaitGroup type), 350, 352,

354
double quotes (" "), 83
doubly linked list; see list package
downloading Go, 9
downsizing; see conversions
Draw() (draw package), 290
draw (package; image package)

Draw(), 290
Image (interface), 290, 293, 319

duck typing, 21, 32, 254–255, 268
Duration (type; time package), 332,

333

E
E (constant; math package), 65, 104,

105
Elem() (Value type), 429
else (keyword); see if statement
embedding, 254–256, 261, 270–274,

275–282, 294, 300; see also ag-
gregation

empty interface; see interface{}
empty struct, 328

450 Index

Encode()
gob package

Encoder type, 385, 386
json package

Encoder type, 367, 370
xml package

Encoder type, 373, 375
Encoder (type)

gob package
Encode(), 385, 386

json package, 367
Encode(), 367, 370

xml package, 373
Encode(), 373, 375

EncodeRune() (utf8 package), 118
encoding

ASCII (7-bit, US-), 82
of characters, fixed vs. variable

width, 83
UTF-8; seeUnicode

encoding (package)
binary (package), see top-level en-

try
csv (package); see top-level entry
gob (package); see top-level entry
json (package), see top-level en-

try
xml (package); see top-level entry

end of file; see EOF
endianness, 83, 389
endsoftpatents.org (web site), 439
entry point, 14, 224–225
enumerations, 54–56; see also const

and iota
environment variables

GOPATH, 8, 13, 23, 408, 409, 410,
411, 417, 418

GOROOT, 8, 10, 11, 23, 408, 410, 418,
424

PATH, 10
see also variables

EOF (io package), 34, 35, 37, 113, 177,
268, 333, 343, 381, 404

EqualFloat() (example), 68–69
EqualFloatPrec() (example), 69
EqualFold() (strings package), 108,

163
equality comparisons (==, !=), 56–57,

68–69, 70, 164
Erf() (math package), 65
Erfc() (math package), 65
error handling, 24, 32, 145, 213
Error() (method), 31
error (type; built-in), 24, 27, 34, 58,

93, 134, 145, 213, 214, 216, 284,
285

Errorf() (fmt package), 33, 58, 94, 97,
216, 285, 293, 365, 382, 384

errors (package), 24
New(), 27, 33, 194, 384

escapes, 84, 102, 375, 377; see also
regexp package’s escapes

EscapeString() (html package), 78
examples, 10

americanise, 29–40
apachereport, 341–349
bigdigits, 16–21, 48
bisectLeft(), 314
cgrep, 326–334
commandLineFiles(), 176, 410
commas(), 357
EqualFloat(), 68–69
EqualFloatPrec(), 69
filter, 322–326
Filter(), 240–241
findduplicates, 349–357
FuzzyBool, 282–288
guess_separator, 171–174
hello, 14–16
Humanize(), 100
indent_sort, 244–249
InsertStringSlice(), 158
InsertStringSliceCopy(),

157–158
invoicedata, 362–397
logPanics(), 218

Index 451

m3u2pls, 130–135
Memoize(), 242–244
omap, 302–310, 409, 412–413,

414–416
pack, 397–405
Pad(), 99
palindrome, 232
pi_by_digits, 62–64
polar2cartesian, 40–47
RemoveStringSlice(), 160
RemoveStringSliceCopy(),

159–160
RomanForDecimal(), 243–244
safemap, 334–340
shaper, 289–301
SimplifyWhitespace(), 111
SliceIndex(), 238–239
stacker, 21–29, 408–409
statistics, 72–78
statistics_nonstop, 216–218
unpack, 397–405
wordfrequencies, 174–180

exceptions; see panic() and recov-
er()

exec (package; os package), 426
exercises

archive_file_list, 250
bigdigits, 48
CommonPathPrefix(), 250
CommonPrefix(), 250
Flatten(), 181
font, 311
imagetag, 358
.ini file to map, 181
invoicedata, 406
IsPalindrome(), 250
linkcheck, 432
linkutil, 431–432
Make2D(), 181
map to .ini file, 182
oslice, 313–314
playlists, 135–136
quadratic, 79
safeslice, 357–358

shaper, 311–313
sizeimages, 359
soundex, 136–137
statistics, 79
UniqueInts(), 180
unpack, 405
utf16-to-utf8, 405

Exit() (os package), 19, 20, 32,
131–132, 327

exiting; see termination and Exit()
Exp()

cmplx package, 71
Int type, 63
math package, 65

Exp2() (math package), 65
Expand() (Regexp type), 124
ExpandString() (Regexp type), 124
Expm1() (math package), 65
exponential notation, 64, 101
exported identifiers, 52, 202, 264
expression switches, 195–197
Ext() (filepath package), 293, 324,

325
extension, file, 194
external C code, 9

F
factory function, 226, 291, 298
fallthrough (statement), 186, 195,

196–197
false (built-in); see bool type
fast compilation, 2
fast string concatenation, 88
Fatal() (log package), 19, 20, 32,

131–132, 342
Fatalf() (log package), 20, 327
FieldByName() (Value type), 428
fields; see struct keyword
Fields() (strings package), 38, 39,

76, 77, 107–110, 108, 111
FieldsFunc() (strings package), 108,

178

452 Index

file globbing, 176, 410–411
file suffix, 194
File (type; os package), 31, 32, 176

Close(), 31, 176, 213, 293, 333,
343, 353, 398, 400

Create(), 31, 293, 397, 400
Open(), 31, 176, 212, 333, 342, 353,

398, 400
OpenFile(), 31, 397
ReadAt(), 397
Readdir(), 361
Readdirnames(), 361
Seek(), 397
Stat(), 397, 398, 399, 400
WriteAt(), 397

file types
.csv, 424
.go, 84, 408, 410
.gob, 385–387
.ini, 131, 181–182
.jpg and .jpeg, 293
.m3u, 130–135
.pls, 130–135
.png, 293
.tar, 399–401, 403–405
.txt, 377–384
.zip, 397–399, 401–403

FileInfo (interface; os package), 351,
361, 397, 399

Mode(), 351, 401
ModTime(), 401
Size(), 351, 353, 401

FileInfoHeader() (zip package), 398,
399

filepath (package; path package), 17,
19, 424

Base(), 19, 131–132, 194, 327
Ext(), 293, 324, 325
FromSlash(), 135
Glob(), 176, 410
Separator (constant), 134, 135
ToSlash(), 399
Walk(), 349, 352

filter (example), 322–326
Filter() (example), 240–241
Find() (Regexp type), 124
FindAll() (Regexp type), 124
FindAllIndex() (Regexp type), 124
FindAllString() (Regexp type), 124,

127
FindAllStringIndex() (Regexp type),

124
FindAllStringSubmatch() (Regexp

type), 124, 127
FindAllStringSubmatchIndex() (Regexp

type), 124, 128
FindAllSubmatch() (Regexp type), 124
FindAllSubmatchIndex() (Regexp type),

124
findduplicates (example), 349–357
FindIndex() (Regexp type), 124
FindReaderIndex() (Regexp type), 124
FindReaderSubmatchIndex() (Regexp

type), 124
FindString() (Regexp type), 124
FindStringIndex() (Regexp type), 124
FindStringSubmatch() (Regexp type),

124, 127, 343, 344, 348
FindStringSubmatchIndex() (Regexp

type), 124
FindSubmatch() (Regexp type), 125
FindSubmatchIndex() (Regexp type),

125
fixed vs. variable-width character

encoding, 83
flag (package), 426
flags, regular expression, 123
Flatten() (exercise), 181
Float() (Value type), 428
float32 (type; built-in), 61, 64, 70,

283, 285, 427
Float32bits() (math package), 65
Float32frombits() (math package), 65
float64 (type; built-in), 61, 62, 64–70,

73, 100, 187, 221, 304, 318
accuracy, 64

Index 453

comparisons, 57, 68–69
conversion from int, 61, 69, 73
conversion from string, see Parse-

Float()
formatting, 100–101
literals, 53, 58
see also math package

Float64bits() (math package), 65
Float64frombits() (math package), 65
Float64s() (sort package), 73, 161
Float64sAreSorted() (sort package),

161
Floor() (math package), 66
Flush() (Writer), 35, 36, 378
fmt (package), 55, 93–106, 192

Errorf(), 33, 58, 94, 97, 216, 285,
293, 365, 382, 384

format specifier, 96, 97; see also
% symbol

Fprint(), 76, 94, 96
Fprintf(), 76, 94, 97, 200, 201,

378
Fprintln(), 45, 94, 96
Fscan(), 383
Fscanf(), 383, 384
Fscanln(), 383
Print(), 94, 96
Printf(), 19, 47, 94–106, 113, 178,

192
Println(), 19, 24, 45, 53, 72,

94–106
Scan(), 383
Scanf(), 383
Scanln(), 383
Sprint(), 94, 99, 178, 242, 357
Sprintf(), 43, 55, 69, 78, 85, 94,

97, 100, 101, 242, 286, 355
Sprintln(), 94
Sscan(), 383
Sscanf(), 45, 46, 382, 383
Sscanln(), 383
Stringer (interface), 265,

266–267, 286
font (exercise), 311

for loop, 19, 23, 24, 38, 39, 74, 89,
110, 132, 147, 154, 155, 168, 170,
172, 177, 186, 200, 203–205,320,
321, 324, 325, 330, 331, 339, 343,
355, 390

form feed (\f), 84
Form (field; Request type), 76
format specifier, fmt package, 96, 97;

see also % symbol
Format() (Time type), 368, 379, 390
FormatBool() (strconv package), 114,

116
FormatFloat() (strconv package), 114
FormatInt() (strconv package), 114,

117
formatting

bools, 97
complex numbers, 101
floating-point numbers, 100–101
for debugging, 103–106
integers, 98–99
maps, 106
pointers, 96, 104
runes, 99
slices, 101–103
strings, 101–103

FormatUInt() (strconv package), 114
Fprint() (fmt package), 76, 94, 96
Fprintf() (fmt package), 76, 94, 97,

200, 201, 378
Fprintln() (fmt package), 45, 94, 96
Frexp() (math package), 66
FromSlash() (filepath package), 135
Fscan() (fmt package), 383
Fscanf() (fmt package), 383, 384
Fscanln() (fmt package), 383
FullRune() (utf8 package), 118
FullRuneInString() (utf8 package),

118

454 Index

func (keyword), 14, 15, 25, 35, 45, 55,
208, 216, 218, 219, 223, 226, 232,
238, 240, 241, 243, 246, 291, 303,
305, 323, 324, 343, 378, 379, 388,
389, 413

FuncForPC() (runtime package), 291,
292

functionality, composing, 35
functions, 219–244

anonymous, 36, 37, 110, 112, 206,
208, 212, 216, 218, 225, 226,
239, 240, 243, 290

calling, 220–221
closures, 40, 163, 225–227, 239,

240, 243, 244
construction, 27, 306
factory, 226, 291, 298
generic, 232–238; see also higher

order functions
higher order, 37, 38, 238–244,

257
literal; see closures
optional parameters, 222–223
parameters, 220–223, 254–255
pure, 241; see alsomemoizing
recursive, 227–230, 247, 307
references to, 92, 110, 112, 140,

148, 223, 226, 230–231, 242,
310

variadic, 198, 219, 221–222
wrapper, 218, 226
see also built-in functions and

special functions
FuzzyBool (example), 282–288

G
Gamma() (math package), 66
garbage collector, 3, 32, 40, 139, 141
gc (tool), 9
gccgo (tool), 9
generic functions, 232–238; see also

higher order functions
Gerrand, Andrew, 2, 207

Getgid() (os package), 401
getters, 264–265
Getuid() (os package), 401
GID; see Getgid()
Glob() (filepath package), 176, 410
globbing, file, 176, 410–411
Go

building programs, 11–13
comments, 14, 51
Dashboard, 2
documentation, 8
downloading, 9
history of, 1
identifiers, 9, 42, 52–53, 58; see

also blank identifier
installing, 9, 10–11
shebang (#!) scripts, 10
source code encoding, 9
specification, 69

go build (tool), 11–12, 23, 409, 411
.go files, 84, 408, 410
go fix (tool), 418
go get (tool), 417–418
go install (tool), 1, 13, 409
go (statement), 45, 206, 208, 209,

211, 224, 320–357; see also gor-
outines

go test (tool), 415–416
go version (tool), 11
go vet (tool), 418
GOARCH (constant; runtime package),

410, 424
.gob files, 385–387
gob (package; encoding package), 385

GobDecoder (interface), 386
GobEncoder (interface), 386
NewDecoder(), 386
NewEncoder(), 385

godashboard.appspot.com (web site),
407, 417, 423, 426

godoc (tool), 8, 411–413, 419
gofmt (tool), 186, 188, 419
golang.org (web site), 8, 436

Index 455

GOMAXPROCS() (runtime package), 327
gonow (third-party tool), 10
Google, 1–2

App Engine, 2, 435
GOOS (constant; runtime package), 43,

176, 399, 410, 424
GOPATH (environment variable), 8, 13,

23, 408, 409, 410, 411, 417, 418
GOROOT (environment variable), 8, 10,

11, 23, 408, 410, 418, 424
GOROOT() (runtime package), 424
goroutines, 3, 41, 45, 206–212,

318–357
gorun (third-party tool), 10
goto (statement), 205
greedy matching in regular expres-

sions, 123, 127
Griesemer, Robert, 1
grouping constants, imports, and

variables, 54
grouping in regular expressions,

123
guard, type switch, 198, 199
guess_separator (example), 171–174
gzip (package; compress package),

400
NewReader(), 403
NewWriter(), 400
Reader (type), 403
Writer (type), 400

H
HandleFunc() (http package), 75, 218
handling errors, 24, 32, 213
hash table; see map type
HasPrefix() (strings package), 108,

132, 194, 246, 260, 382
HasSuffix() (strings package), 108,

131–132, 226, 400, 403
Header (constant; xml package), 373
Header (type; tar package), 401, 404
heap (package; container package),

421–422

hello (example), 14–16
hexadecimal number, formatting as,

98, 102
higher order functions, 37, 38,

238–244, 257
history, of Go, 1
Hoare, C. A. R, 3
html (package)

EscapeString(), 78
template (package), see top-level

entry
HTMLEscape() (template package), 78
http (package; net package)

HandleFunc(), 75, 218
ListenAndServe(), 75
Request (type); see top-level entry
ResponseWriter (interface), 76

Humanize() (example), 100
Hyphen (constant; unicode package),

272
Hypot() (math package), 66, 304

I
identifiers, Go, 9, 42, 52–53, 58; see

also blank identifier
IEEE-754 floating-point format, 64
if (statement), 15, 189, 192–194,

220; see also switch statement
Ilogb() (math package), 66
imag() (built-in), 70, 101, 187
Image (interface)

draw package, 290, 293, 319
image package, 289, 293, 319

image (package), 289, 425
DecodeConfig(), 358
draw (package), 290
Image (interface), 289, 293, 319
jpeg (package), 293
NewRGBA(), 290, 319
png (package), 293
RGBA (type), 290
Uniform(), 290

456 Index

image (package) (continued)
ZP (zero Point), 290

imagetag (exercise), 358
imaginary numbers; see complex128

type and imag()
immutability, of strings, 84
import paths, 23
import (statement), 14, 15, 358, 409,

416–417, 418
indent_sort (example), 244–249
Index()

reflect package, 235, 236, 428
strings package, 92, 103, 108,

133, 134, 383
index operator; see [] index and slice

operator
IndexAny() (strings package), 108,

133, 134
IndexFunc() (strings package), 92,

93, 108
indexing slices, 153–154
indexing strings, 20, 90–93
IndexRune() (strings package), 108
indirection; see pointers and * deref-

erence operator
Inf()

cmplx package, 71
math package, 66

inferred type, 53, 70
infinite channel, 208
infinite loop, 24, 203, 208; see also

for loop
inheritance, 240, 294, 300, 436
.ini file to map (exercise), 181
.ini files, 131, 181–182
init() (special function), 43, 215,

224–225, 231–232, 241, 242,
243, 290, 417

initializing, 27
slices, 17
variables, 15, 74

input/output (I/O); see File type and
fmt package

InsertStringSlice() (example), 158
InsertStringSliceCopy() (example),

157–158
installing Go, 9, 10–11
instances; see values
Int (type; big package), 57, 61–64

Add(), 63
Div(), 63
Exp(), 63
Mul(), 63
Sub(), 63

int (type; built-in), 55, 57, 58, 59–61,
69, 116, 117, 188, 208, 215, 237,
318, 390, 394

comparisons, 57
conversion from int64, 63
conversion to float64, 61, 69
conversion to string, 85
formatting, 98–99
literals, 53, 58
see also strconv package

Int() (Value type), 428, 430
int8 (type; built-in), 60, 391, 395
int16 (type; built-in), 60, 392
int32 (type;built-in), 59, 60, 388, 390,

395; see also rune type
int64 (type;built-in), 60, 61, 116, 117,

215, 241, 356, 391, 401, 430
conversion from int, 63

integer literals, 53, 58
integers; see int and similar types

and Int and Rat types
Interface (interface; sort package),

161, 162, 246, 249, 421
interface (keyword), 220, 237,

265–274, 294, 295, 335, 364
interface{}, 24, 27, 150, 165, 191,

192, 197, 198, 199, 220, 234,
235, 237, 241, 242, 243, 255,
265, 284, 303, 337, 378, 388, 389,
421–423

Interface() (reflect package), 235

Index 457

interfaces, 22, 202, 255, 265–274,
301, 319

see also Image, Interface, Reader,
ReaderWriter, ResponseWriter,
Stringer, and Writer inter-
faces

interpreted string literals, 83
Intn() (rand package), 209, 426
introspection; see reflect package
Ints() (sort package), 161, 180
IntsAreSorted() (sort package), 161
inversion, map, 170–171, 179
invoicedata (example), 362–397
invoicedata (exercise), 406
io (package), 30, 34, 424

Copy(), 353, 354, 399, 401, 402,
405

EOF, 34, 35, 37, 113, 177, 268, 333,
343, 381, 404

Pipe(), 322
ReadCloser (interface), 403
Reader (interface), 32, 34, 35, 255,

268, 269–270, 364, 365, 369,
375, 380, 384, 386, 392, 393

ReaderWriter (interface), 32
WriteCloser (interface), 400
Writer (interface), 32, 34, 35, 93,

255, 354, 364, 366, 373, 378,
385, 388, 399

iota (keyword), 54, 336
ioutil (package; io package), 30,

424
ReadAll(), 424
ReadFile(), 38, 131–132, 424
TempFile(), 424
WriteFile(), 424

Is() (unicode package), 118, 119, 258,
272

IsControl() (unicode package), 119
IsDigit() (unicode package), 119
IsGraphic() (unicode package), 119
IsInf()

cmplx package, 71
math package, 66

IsLetter() (unicode package), 119,
178

IsLower() (unicode package), 119
IsMark() (unicode package), 119
IsNaN()

cmplx package, 71
math package, 66

IsOneOf() (unicode package), 119
IsPalindrome() (exercise), 250
IsPrint() (strconv package), 114
IsPrint() (unicode package), 119
IsPunct() (unicode package), 119
IsSorted() (sort package), 161
IsSpace() (unicode package), 92, 111,

119, 272
IsSymbol() (unicode package), 119
IsTitle() (unicode package), 119
IsUpper() (unicode package), 119
IsValid() (Value type), 430
iterating; see for loop and range
iterating arrays, 203
iterating channels, 203
iterating maps, 170, 203
iterating slices, 154–156, 203
iterating strings, 88–90, 203
Itoa() (strconv package), 85, 114,

117

J
J0() (math package), 66
J1() (math package), 66
JavaScript Object Notation; see

JSON
Jn() (math package), 66
Join() (strings package), 14, 16, 55,

108, 111, 180, 414
.jpeg and .jpg files, 293
jpeg (package; image package), 293
JSON (JavaScript Object Notation),

199–202, 363, 365–371
json (package; encoding package),

202, 366

458 Index

json (package; encoding package)
(continued)

Decoder (type); see top-level entry
Encoder (type); see top-level entry
Marshal(), 368, 370
NewDecoder(), 369
NewEncoder(), 367
Unmarshal(), 199, 201, 202, 369,

370
justification, of output, 96, 98

K
keywords, 52

case; see select and switch state-
ments

chan, 43, 44, 208, 209, 210,
318–357; see also channels

const, 45, 53, 58, 133, 336, 364,
379, 390

default; see select and switch
statements

else; see if statement
func, 14, 15, 25, 35, 45, 55, 208,

216, 218, 219, 223, 226, 232,
238, 240, 241, 243, 246, 291,
303, 305, 323, 324, 343, 378,
379, 388, 389, 413

interface, 220, 237, 265–274, 294,
295, 335, 364

iota, 54, 336
nil, 27, 216, 257, 305
range, 19, 38, 39, 74, 89, 110, 147,

154, 155, 168, 170, 172, 200,
203–205, 324, 325, 330, 331,
339, 343, 355, 390

struct, 42, 73, 96, 104, 132, 167,
199, 202, 222, 223, 233, 237,
241, 245, 255, 259–260,
261–262, 275–282, 284, 285,
305, 308, 326, 328, 330, 335,
337, 343, 350, 354, 362, 366,
372, 387

type, 24, 42, 55, 73, 132, 198–199,
202, 223, 245, 246, 254, 255,
256–257, 265, 284, 294, 295,
305, 335, 366, 379, 389, 412

var, 23, 53, 188, 192, 201, 241,
257, 272, 378, 382, 388

see also statements
Kind (type; reflect package), 430
Kind() (Value type), 235

L
label, 205, 331
LastIndex() (strings package), 92,

108, 194
LastIndexAny() (strings package),

108
LastIndexFunc() (strings package),

92, 108
Ldexp() (math package), 66
left-justification, of output, 96, 98
left-leaning red-black tree; see omap

example
len() (built-in), 15, 20, 24, 27, 69, 85,

90, 148, 149, 151, 152, 157, 159,
165, 169, 187, 340

Len() (reflect package), 235, 430
Lgamma() (math package), 66
library types; see standard library’s

types
linear vs. binary search, 162–163
linefeed; see newline
linkcheck (exercise), 432
linkutil (exercise), 431–432
list (package; container package),

422–423
ListenAndServe() (http package), 75
LiteralPrefix() (Regexp type), 125
literals, 58

character, 20
complex, 53, 70
composite, 18, 45, 150, 152, 153,

166, 167

Index 459

floating point, 53; see also float64
type

function; see closures
integer, 53; see also int and simi-

lar types
string, 75, 83

LittleEndian (variable; binary pack-
age), 388

Ln2 (constant; math package), 66
Ln10 (constant; math package), 66
local variables, 40, 45, 141
Lock() (RWMutex type), 346
Log()

cmplx package, 71
math package, 66

log (package), 426
Fatal(), 19, 20, 32, 131–132, 342
Fatalf(), 20, 327
Printf(), 134, 217, 291
Println(), 176, 177, 353
SetFlags(), 426
SetOutput(), 426

Log2E (constant; math package), 66
Log10()

cmplx package, 71
math package, 66

Log10E (constant; math package), 66
Log1p() (math package), 66
Log2() (math package), 66
Logb() (math package), 66
logic, short circuit, 56
logical operators; see !, &&, ^, and ||

operators
logPanics() (example), 218
lookups, map, 39, 168–169, 231
looping; see for loop

M
.m3u files, 130–135
m3u2pls (example), 130–135
main (package), 14, 15, 206, 224

main() (special function), 14, 15, 206,
214, 215, 224–225, 327

make() (built-in), 26, 38, 39, 43, 44,
127, 129, 150, 151, 152, 157, 159,
165, 172, 176, 178, 179, 187, 207,
208, 209, 211, 240, 242, 246, 247,
323, 324, 328, 337, 339, 341, 346,
348, 355, 374, 392, 393, 395, 410

Make2D() (exercise), 181
Map() (strings package), 108,

111–112, 132, 133, 258
map to .ini file (exercise), 182
map (type; built-in), 38, 39, 77, 127,

146, 164–171, 175–180, 199,
242, 243, 298, 318, 335, 339, 345,
346, 348, 355, 356

accessing, 39, 168–169, 231
formatting, 106
inversion, 170–171, 179
iterating, 170, 203
modifying, 169
multivalued, 175
operations, 165
see also omap example

Marshal() (json package), 368, 370
Match()

regexp package, 121
Regexp type, 125, 333, 334

MatchReader()
regexp package, 121
Regexp type, 125

MatchString()
regexp package, 121
Regexp type, 125

math (package), 69
Abs(), 65, 68
Acos(), 65
Acosh(), 65
Asin(), 65
Asinh(), 65
Atan(), 65
Atan2(), 65
Atanh(), 65

460 Index

math (package) (continued)
big (package); see top-level entry
Cbrt(), 65
Ceil(), 65
cmplx (package), see top-level en-

try
Copysign(), 65
Cos(), 45, 65
Cosh(), 65
Dim(), 65
E (constant), 65, 104, 105
Erf(), 65
Erfc(), 65
Exp(), 65
Exp2(), 65
Expm1(), 65
Float32bits(), 65
Float32frombits(), 65
Float64bits(), 65
Float64frombits(), 65
Floor(), 66
Frexp(), 66
Gamma(), 66
Hypot(), 66, 304
Ilogb(), 66
Inf(), 66
IsInf(), 66
IsNaN(), 66
J0(), 66
J1(), 66
Jn(), 66
Ldexp(), 66
Lgamma(), 66
Ln2 (constant), 66
Ln10 (constant), 66
Log(), 66
Log2E (constant), 66
Log10(), 66
Log10E (constant), 66
Log1p(), 66
Log2(), 66
Logb(), 66
Max(), 66

MaxInt32 (constant), 69, 215, 239
MaxUint8 (constant), 58
Min(), 66, 68
MinInt32 (constant), 69, 215
Mod(), 66, 68
Modf(), 67, 68, 69, 70, 100
NaN(), 67, 68
Nextafter(), 67, 68
Phi (constant), 67, 105
Pi (constant), 45, 67, 105
Pow(), 67
Pow10(), 67
rand (package), see top-level en-

try
Remainder(), 67
Signbit(), 67
Sin(), 45, 67
SinCos(), 67
Sinh(), 67
SmallestNonzeroFloat64 (con-

stant), 68
Sqrt(), 67, 221
Sqrt2 (constant), 67
SqrtE (constant), 67
SqrtPhi (constant), 67
SqrtPi (constant), 67
Tan(), 67
Tanh(), 67
Trunc(), 67
Y0(), 67
Y1(), 67
Yn(), 67

Max() (math package), 66
maximum characters to output, 96,

103
MaxInt32 (constant;math package),69,

215, 239
MaxRune (constant; unicode package),

82
MaxUint8 (constant; math package),

58
Memoize() (example), 242–244
memoizing, 241–244

Index 461

memory management; see garbage
collection

method expressions, 263
method sets, 22, 191, 260
MethodByName() (Value type), 430
methods, 29, 255, 258–265, 277–278

defining, 25
Error(), 31
overriding, 261–262
String(), 31, 55, 96, 103, 155, 166,

260, 265, 266–267, 286
Min() (math package), 66, 68
minimum field width, 96, 103
MinInt32 (constant; math package),

69, 215
MkdirAll() (os package), 401, 402,

404
Mod() (math package), 66
Mode() (FileInfo interface), 351, 401
ModeType (constant; os package), 351,

352
Modf() (math package), 67, 69, 70, 100
modifying maps, 169
modifying slices, 147, 156–160
ModTime() (FileInfo interface), 401
Mul() (Int type), 63
multidimensional arrays, 148
multidimensional slices, 17–18, 150,

204–205
multiple assignments, 31, 188
multivalued maps, 175
MustCompile() (regexp package), 35,

37, 121, 126, 214, 343, 348
MustCompilePOSIX() (regexp package),

121
mutability, of arrays, 149
mutability, of slices, 140
mutual recursion, 227, 228–229

N
Name (type; xml package), 372, 374
named fields; see struct keyword

named replacements in regular ex-
pressions, 126

named return values, 36, 189, 212,
219, 221, 309

named vs. unnamed custom types,
22

NaN()
cmplx package, 71
math package, 67

net (package), 427
http (package), see top-level en-

try
rpc (package), 427
smtp (package), 427
url (package), 427

New()
errors package, 27, 33, 194, 384
sha1 package, 353, 354

new() (built-in), 145, 146, 152, 187,
346

NewDecoder()
gob package, 386
json package, 369
xml package, 375

NewEncoder()
gob package, 385
json package, 367
xml package, 373

NewInt() (big package), 63
newline (\n), 51, 84
NewReader()

bufio package, 35, 45, 176, 333,
380

gzip package, 403
strings package, 108
tar package, 403

NewReplacer() (strings package), 108
NewRGBA() (image package), 290, 319
NewTicker() (time package), 426
NewWriter()

bufio package, 35, 378
gzip package, 400
tar package, 400

462 Index

NewWriter() (continued)
zip package, 398

Nextafter() (math package), 67
nil (keyword), 27, 216, 257, 305
nonblocking, channel, 207, 209; see

also channels
nongreedy matching in regular ex-

pressions, 123, 127
normalization, of whitespace, 111
normalization, Unicode, 86
not, logical; see ! operator
null; see nil
number formatting, 98–101
numbers; see float64, int, and other

specific numeric types
NumCPU() (runtime package), 327, 328
NumGoroutine() (runtime package),

351, 353
NumSubexp() (Regexp type), 125

O
O_RDWR (constant; os package), 397
objects; see values
octal number, formatting as, 98
Ogg container, 130
omap (example), 302–310, 409,

412–413, 414–416
Open() (File type), 31, 176, 212, 333,

342, 353, 398, 400
OpenFile() (File type), 31, 397
OpenReader() (zip package), 401, 402
operations on maps, 165
operations on slices, 151
operators

! logical NOT, 57
!= inequality, 56–57, 68–69, 70,

164
% modulus and formatting place-

holder, 47, 60, 69; see also for-
mat specifier

%= augmented modulus, 60

& address of and bitwise AND, 45,
46, 55, 60, 142, 143, 144, 167,
246, 247, 248, 267, 269, 284,
382, 383, 384, 387, 393, 394,
395

&& logical AND, 56, 57
&= augmented bitwise AND, 60
&^ bitwise clear, 60
&^= augmented bitwise clear, 60
* multiplication, dereference,

pointer declaration and for-
matting placeholder, 26, 59,
69, 96, 100, 142, 143, 144,
178, 247, 248, 249, 259, 284,
305, 370, 382, 394

*= augmented multiplication, 59,
147

+ addition, concatenation, and
unary plus, 20, 59, 85, 226

++ increment, 20, 59, 186, 188
+= augmented addition and

string append, 20, 59, 84, 85,
88, 140

- subtraction and unary minus,
59

-- decrement, 20, 59, 186, 188
-= augmented subtraction, 59
. selector, 148, 275
... ellipsis, 149, 156, 158, 160,

176, 219, 221, 222, 233, 242,
268, 287, 378

/ division, 59
/= augmented division, 59
:= short variable declaration, 15,

18, 36, 53, 140, 188, 189, 198,
203

< less than comparison, 56–57
<- send/receive communication,

44, 45, 207, 210, 318–357
<< bitwise shift left, 55, 60
<<= augmented bitwise shift left,

60
<= less than or equal comparison,

56–57

Index 463

= assignment, 16, 18, 36, 188,
212

== equality, 56–57, 68–69, 70,
164

> greater than comparison,
56–57

>= greater than or equal compari-
son, 56–57

>> bitwise right shift, 60
>>= augmented bitwise right

shift, 60
[] index and slice, 15, 28, 85, 91,

203, 242, 339, 355, 357, 393
^ bitwise XOR and complement,

60
^= augmented bitwise XOR, 60
| bitwise OR, 55, 60
|= augmented bitwise OR, 60
|| logical OR, 56, 57, 178
overloading, 61

optional parameters, 222–223
optional statement, 193, 195, 198,

203
or, logical; see || operator
order of declarationsand definitions,

21
ordered comparisons (<, <=, >=, >),

56–57
ordered map; see omap example
os (package), 423

Args (slice), 14, 15, 17, 19,
131–132, 232

exec (package), see top-level en-
try

Exit(), 19, 20, 32, 131–132, 327
File (type); see top-level entry
FileInfo (interface), see top-level

entry
Getgid(), 401
Getuid(), 401
MkdirAll(), 401, 402, 404
ModeType (constant), 351, 352
O_RDWR (constant), 397
Stderr (stream), 20, 32, 46

Stdin (stream), 31, 32
Stdout (stream), 31, 32, 46, 94,

131
oslice (exercise), 313–314
overloading, 258
overloading, operator, 61
overriding methods, 261–262

P
pack (example), 397–405
package, 14, 215–216, 407–431

aliasing names, 409, 418
collection, 421–423; see also con-

tainer package
custom, 24–29, 408–417
documenting, 411–413
main, 14, 15
third-party, 417–418
variables, 18
see also bufio, bytes, cmplx, con-

tainer, crypto, draw, encoding,
errors, filepath, fmt, http, im-
age, io, ioutil, json, math, net,
os, rand, regexp, reflect, run-
time, sha1, sort, strings, sync,
and time packages

package (statement), 408, 412
Pad() (example), 99
padding, of output, 96, 98
palindrome (example), 232
panic() (built-in), 32, 69, 70, 113,

187, 191, 196, 213–218,219, 220,
243

parameters, 22, 141–142, 220–223,
254–255

Parse() (time package), 370, 376, 377,
383, 395

ParseBool() (strconv package), 98,
115, 116

ParseFloat() (strconv package), 77,
115, 116

ParseForm() (Request type), 76

464 Index

ParseInt() (strconv package), 115,
116

ParseUInt() (strconv package), 115,
116

patents, software, 437–439
PATH (environment variable), 10
path, import, 23
path (package), 424
path/filepath package; see filepath

package
Phase() (cmplx package), 9
Phi (constant; math package), 67, 105
Pi (constant; math package), 45, 67,

105
pi_by_digits (example), 62–64
Pike, Rob, 1, 385, 431
Pipe() (io package), 322
placeholder (%, *); see %, Printf(), and

Sprintf(); see also blank identi-
fier

plain text files; see .txt files
platform-specific code, 410–411
playlists (excercise), 135–136
.pls files, 130–135
.png files, 293
png (package; image package), 293
pointers, 26, 27, 28, 29, 139, 141–148,

152, 167, 247–248,260, 267, 285,
318, 362, 369

formatting, 96, 104
Polar() (cmplx package), 9
polar2cartesian (example), 40–47
polymorphism, 198
Porter-Duff image compositing, 290
Pow()

cmplx package, 71
math package, 67

Pow10() (math package), 67
predefined identifiers, 52
Print() (fmt package), 94, 96
Printf()

fmt package, 19, 47, 94–106, 113,
178, 192

log package, 134, 217, 291
Println()

fmt package, 19, 24, 45, 53, 72,
94–106

log package, 176, 177, 353
private; see unexported identifiers
ProbablyPrime() (big package), 425
public; see exported identifiers
pure functions, 241; see alsomemo-

izing

Q
quadratic (exercise), 79
quantifiers in regular expressions,

123
Quote() (strconv package), 115, 117
QuoteMeta() (regexp package), 121,

128
QuoteRune() (strconv package), 115
QuoteRuneToASCII() (strconv pack-

age), 115
quotes; see" " double quotes and raw

strings

R
rand (package)

crypto package, 426
math package, 426

Intn(), 209, 426
range (keyword), 19, 38, 39, 74, 89,

110, 147, 154, 155, 168, 170, 172,
200, 203–205,324, 325, 330, 331,
339, 343, 355, 390

Rat (type; big package), 57, 61
rationals; see Rat type
raw string (̀ `), 75, 96
RE2 regular expression engine; see

regexp package
Read() (binary package), 391, 393,

395
ReadAll() (ioutil package), 424
ReadAt() (File type), 397

Index 465

ReadBytes() (Reader type), 333, 334
ReadCloser (interface; io package),

403
ReadCloser (type; zip package), 401
Readdir() (File type), 361
Readdirnames() (File type), 361
Reader (interface; io package), 32, 34,

35, 255, 268, 269–270, 364, 365,
369, 375, 380, 384, 386, 392, 393

Reader (type)
bufio package, 35, 38, 177

ReadBytes(), 333, 334
ReadString(), 35, 37, 45, 177,

343, 381
gzip package, 403
strings package, 113
tar package, 403, 405

ReaderWriter (interface; io package),
32

ReadFile() (ioutil package), 38,
131–132

reading files; see File type and ioutil
package

ReadRune() (Buffer type), 113
ReadString() (Reader type), 35, 37, 45,

177, 343, 381
real() (built-in), 70, 101, 187
real numbers; see float64 and com-

plex128 types and real()
receive, channel; see channels, <- op-

erator, and chan keyword
receiver, 25, 28, 258, 261, 266, 267,

269, 277, 367
recover() (built-in), 32, 187,

213–218
Rect() (cmplx package), 9
recursion, mutual, 227, 228–229
recursive functions, 227–230, 247,

307
red-black tree; see omap example
references, 26, 27, 39, 92, 110, 112,

140, 141, 146, 148, 150, 153, 223,
226, 230–231, 242, 310, 318

reflect (package), 235–236,
427–431

DeepEqual(), 57, 236, 427
Kind (type), 430
Slice (constant), 235
TypeOf(), 427, 428, 430
Value (type); see top-level entry
ValueOf(), 235, 427, 428, 429, 430

regexp (package), 36, 120–129, 214
assertions, zero-width, 122
character classes, 122
Compile(), 37, 121, 214, 327
CompilePOSIX(), 121
escapes, 121
flags, 123
greedy and nongreedy matching,

123, 127
grouping, 123
Match(), 121
MatchReader(), 121
MatchString(), 121
MustCompile(), 35, 37, 121, 126,

214, 343, 348
MustCompilePOSIX(), 121
quantifiers, 123
QuoteMeta(), 121, 128
Regexp (type); see top-level entry
zero-width assertions, 122

Regexp (type; regexp package), 35, 37,
318, 328, 344

Expand(), 124
ExpandString(), 124
Find(), 124
FindAll(), 124
FindAllIndex(), 124
FindAllString(), 124, 127
FindAllStringIndex(), 124
FindAllStringSubmatch(), 124, 127
FindAllStringSubmatchIndex(),

124, 128
FindAllSubmatch(), 124
FindAllSubmatchIndex(), 124
FindIndex(), 124

466 Index

Regexp (type; regexp package) (contin-
ued)

FindReaderIndex(), 124
FindReaderSubmatchIndex(), 124
FindString(), 124
FindStringIndex(), 124
FindStringSubmatch(), 124, 127,

343, 344, 348
FindStringSubmatchIndex(), 124
FindSubmatch(), 125
FindSubmatchIndex(), 125
LiteralPrefix(), 125
Match(), 125, 333, 334
MatchReader(), 125
MatchString(), 125
NumSubexp(), 125
ReplaceAll(), 120, 125
ReplaceAllFunc(), 125
ReplaceAllLiteral(), 125
ReplaceAllLiteralString(), 125,

128–129
ReplaceAllString(), 120, 125, 126,

129
ReplaceAllStringFunc(), 35,

36–37, 125, 129, 359
String(), 125
SubexpNames(), 125

Remainder() (math package), 67
remote procedure call (RPC), 427
RemoteAddr (field; Request type), 217
RemoveStringSlice() (example), 160
RemoveStringSliceCopy() (example),

159–160
Repeat() (strings package), 48, 99,

108, 243, 246
Replace() (strings package), 76, 77,

109, 110, 399
ReplaceAll() (Regexp type), 120, 125
ReplaceAllFunc() (Regexp type), 125
ReplaceAllLiteral() (Regexp type),

125
ReplaceAllLiteralString() (Regexp

type), 125, 128–129

ReplaceAllString() (Regexp type),
120, 125, 126, 129

ReplaceAllStringFunc() (Regexp type),
35, 36–37, 125, 129, 359

replacement character, Unicode
(U+FFFD), 85, 118

replacements, $ in regular expres-
sions, 120, 126, 129

reporting errors; see error handling
Request (type; http package), 76

Form (field), 76
ParseForm(), 76
RemoteAddr (field), 217

ResponseWriter (interface; http pack-
age), 76

return (statement), 28, 34, 70, 186,
189, 194, 219, 220, 240, 309

return values, 24, 28, 31, 33, 40, 45,
53, 145, 189, 219

bare, 34, 189, 219
named, 36, 212, 221, 309
unnamed, 190

RGBA (color type), 147
RGBA (image type), 290
right-justification, of output, 96, 98
ring (package; container package),

423
RLock() (RWMutex type), 346
RomanForDecimal() (example),

243–244
rpc (package; net package), 427
rune (type; built-in), 59, 60, 82, 83,

87–90, 104, 190, 230, 246, 420
conversion to string, 87–88,

89–90, 91, 246, 272
formatting, 96, 99
literal, 84
see also int32 and string types

RuneCount() (utf8 package), 118
RuneCountInString() (utf8 package),

85, 99, 177, 178, 229
RuneLen() (utf8 package), 118

Index 467

RuneStart() (utf8 package), 118
RUnlock() (RWMutex type), 346
runtime (package), 424

Caller(), 291
FuncForPC(), 291, 292
GOARCH (constant), 410, 424
GOMAXPROCS(), 327
GOOS (constant), 43, 176, 399, 410,

424
GOROOT(), 424
NumCPU(), 327, 328
NumGoroutine(), 351, 353
Version(), 424

runtime system, Go’s, 32
RWMutex (type; sync package), 345,

346
Lock(), 346
RLock(), 346
RUnlock(), 346
Unlock(), 346

S
safemap (example), 334–340
safeslice (exercise), 357–358
Scan() (fmt package), 383
Scanf() (fmt package), 383
Scanln() (fmt package), 383
scientific notation, 64, 101
scope, 141, 225, 239, 240
scoping problem; see shadow vari-

ables
Search() (sort package), 161, 163
SearchFloat64s() (sort package), 161
searching, slices, 162–164
searching, strings, 87
SearchInts() (sort package), 161
SearchStrings() (sort package), 161
Seek() (File type), 397
select (statement), 209–212, 321,

331, 333
self; see receiver
semicolon (;), 15, 186

send, channel; see channels,<- opera-
tor, and chan keyword

Separator (constant; filepath pack-
age), 134, 135

serialized access, 318–319, 335, 341
SetFlags() (log package), 426
SetInt() (Value type), 429
SetOutput() (log package), 426
SetString() (Value type), 428
setters, 264–265
SHA-1 (Secure Hash Algorithm),

349, 354–53
sha1 (package; crypto package)

New(), 353, 354
Size (constant), 355

shadow variables, 36, 189, 192, 200,
201, 281, 282, 300, 301

shaper (example), 289–301
shaper (exercise), 311–313
shebang (#!) scripts, 10
short circuit logic, 56
short variable declaration, 15, 53,

140, 188
Signbit() (math package), 67
Simple Mail Transport Protocol

(SMTP), 427
simple statement, 193, 195, 203
SimpleFold() (unicode package), 119
simplification, of whitespace, 111,

128–129
SimplifyWhitespace() (example), 111
Sin()

cmplx package, 71
math package, 45, 67

SinCos() (math package), 67
Sinh()

cmplx package, 71
math package, 67

Size (constant; sha1 package), 355
Size() (FileInfo interface), 351, 353,

401
sizeimages (exercise), 359

468 Index

Slice (constant; reflect package),
235

slice operator; see [] index and slice
operator

SliceIndex() (example), 238–239
slices, 17, 140, 146–147, 149–164,

232, 234, 318
formatting, 101–103
indexing, 153–154
initializing, 17
iterating, 154–156, 203
modifying, 147, 156–160
multidimensional, 17–18, 150,

204–205
mutability, 140
operations on, 151
searching, 162–164
slicing, 153–154
sorting, 160–164
see also under types, e.g., byte

for []byte and string for
[]string

slicing, slices, 153–154
slicing, strings, 90–93
SmallestNonzeroFloat64 (constant;

math package), 68
smtp (package; net package), 427
sockets; see net package
software patents, 437–439
sort (package), 160–164, 246

Float64s(), 73, 161
Float64sAreSorted(), 161
Interface (interface), 161, 162,

246, 249, 421
Ints(), 161, 180
IntsAreSorted(), 161
IsSorted(), 161
Search(), 161, 163
SearchFloat64s(), 161
SearchInts(), 161
SearchStrings(), 161
Sort(), 161, 162, 248, 249

Strings(), 160, 161, 163, 170, 178,
180, 356

StringsAreSorted(), 161
Sort() (sort package), 161, 162, 248,

249
sorted map; see omap example
sorting, slices, 160–164
sorting, strings, 87
soundex (exercise), 136–137
source code encoding, Go, 9
special functions

init(), 43, 215, 224–225,
231–232, 241, 242, 243, 290,
417

main(), 14, 15, 206, 214, 215,
224–225, 327

see also built-in functions and
functions

specification, Go, 69
Split() (strings package), 38, 39,

107, 109, 132, 133, 422
SplitAfter() (strings package), 107,

109
SplitAfterN() (strings package), 107,

109
SplitN() (strings package), 39, 107,

109
Sprint() (fmt package), 94, 99, 178,

242, 357
Sprintf() (fmt package), 43, 55, 69,

78, 85, 94, 97, 100, 101, 242, 286,
355

Sprintln() (fmt package), 94
sql (package; database package), 423
Sqrt()

cmplx package, 71
math package, 67

Sqrt2 (constant; math package), 67
SqrtE (constant; math package), 67
SqrtPhi (constant; math package), 67
SqrtPi (constant; math package), 67
Sscan() (fmt package), 383
Sscanf() (fmt package), 45, 46, 382,

383

Index 469

Sscanln() (fmt package), 383
stack trace, 214
stacker (example), 21–29, 408–409
standard library, 419–431

types; see File, Int, Rat, Reader,
Regexp, and Writer

startup, application; see entry point
stat call; see FileInfo interface
Stat() (File type), 397, 398, 399, 400
statements

break, 24, 177, 186, 204, 205, 331
continue, 132, 133, 186, 204, 205,

324
defer, 31–32, 35, 36, 44, 176,

211–213, 216, 218, 333, 343,
353, 378, 398, 400

fallthrough, 186, 195, 196–197
for loop, 19, 23, 24, 38, 39, 74,

89, 110, 132, 147, 154, 155,
168, 170, 172, 177, 186, 200,
203–205, 320, 321, 324, 325,
330, 331, 339, 343, 355, 390

go, 45, 206, 208, 209, 211, 224,
320–357; see also goroutines

goto, 205
if, 15, 189, 192–194, 220; see also

switch statement
import, 14, 15, 358, 409, 416–417,

418
optional, 193, 195, 198, 203
package, 408, 412
return, 28, 34, 70, 186, 189, 194,

219, 220, 240, 309
select, 209–212, 321, 331, 333
simple, 193, 195, 203
switch, 110, 129, 174, 195–202,

220, 233, 235, 282, 285, 365;
see also if statement

terminator, (;), 186
see also keywords

statistics (example), 72–78
statistics (exercise), 79
statistics_nonstop (example),

216–218

Stderr stream (os package), 20, 32,
46

Stdin stream (os package), 31, 32, 46
Stdout stream (os package), 31, 32,

94, 131
strconv (package), 113–117

AppendBool(), 114
AppendFloat(), 114
AppendInt(), 114
AppendQuote(), 114
AppendQuoteRune(), 114
AppendQuoteRuneToASCII(), 114
AppendUInt(), 114
Atoi(), 116, 134, 390
CanBackquote(), 114
FormatBool(), 114, 116
FormatFloat(), 114
FormatInt(), 114, 117
FormatUInt(), 114
IsPrint(), 114
Itoa(), 85, 114, 117
ParseBool(), 98, 115, 116
ParseFloat(), 77, 115, 116
ParseInt(), 115, 116
ParseUInt(), 115, 116
Quote(), 115, 117
QuoteRune(), 115
QuoteRuneToASCII(), 115
Unquote(), 115, 117
UnquoteChar(), 115
see also conversions

String()
Buffer type, 88, 200, 243
Regexp type, 125
Value type, 428, 429

String() (method), 31, 55, 96, 103,
155, 166, 260, 265, 266–267,
286

string (type; built-in), 20, 81–129,
140, 190, 238, 318

comparisons, 57, 84, 86–87
concatenation; see + and += oper-

ators
concatenation, fast, 88

470 Index

string (type; built-in) (continued)
conversion from []byte, 38, 85,

164, 334, 373, 395
conversion from []rune, 85, 91
conversion from float64; see

ParseFloat()
conversion from rune, 89–90, 246
conversion to []byte, 85, 89–90,

164, 391
conversion to []rune, 85, 87–88,

246, 272
conversion to int, 85
formatting, 101–103
immutability, 84, 140
indexing, 20, 90–93
interpreted literals, 83
iterating, 88–90, 203
literals, 75, 83
raw (̀ `), 75, 78, 96
searching, 87
slicing, 90–93
sorting, 87
see also byte and rune types

Stringer (interface; fmt package),
265, 266–267, 286

strings package, 91, 107–113, 419
Contains(), 108
Count(), 108, 172, 173
EqualFold(), 108, 163
Fields(), 38, 39, 76, 77, 107–110,

108, 111
FieldsFunc(), 108, 178
HasPrefix(), 108, 132, 194, 246,

260, 382
HasSuffix(), 108, 131–132, 226,

400, 403
Index(), 92, 103, 108, 133, 134,

383
IndexAny(), 108, 133, 134
IndexFunc(), 92, 93, 108
IndexRune(), 108
Join(), 14, 16, 55, 108, 111, 180,

414

LastIndex(), 92, 108, 194
LastIndexAny(), 108
LastIndexFunc(), 92, 108
Map(), 108, 111–112, 132, 133,

258
NewReader(), 108, 113
NewReplacer(), 108
Reader (type); see top-level entry
Repeat(), 48, 99, 108, 243, 246
Replace(), 76, 77, 109, 110, 399
Split(), 38, 39, 107, 109, 132, 133,

422
SplitAfter(), 107, 109
SplitAfterN(), 107, 109
SplitN(), 39, 107, 109
Title(), 109
ToLower(), 109, 162, 163, 177, 194,

246, 259, 293, 306, 324
ToTitle(), 109
ToUpper(), 37, 109, 259, 302
Trim(), 109
TrimFunc(), 109
TrimLeft(), 109, 399
TrimLeftFunc(), 109
TrimRight(), 109, 127
TrimRightFunc(), 109
TrimSpace(), 111, 132, 177, 246,

376, 383
Strings() (sort package), 160, 161,

163, 170, 178, 180, 356
StringsAreSorted() (sort package),

161
strong typing, 15, 20, 24
struct (keyword), 42, 73, 96, 104,

132, 167, 199, 202, 222, 223, 245,
254, 255, 259–260, 261–262,
275–282, 284, 285, 305, 308, 326,
328, 330, 335, 337, 343, 350, 354,
362, 366, 372, 387

Sub() (Int type), 63
SubexpNames() (Regexp type), 125
substrings; see string type’s slicing
suffix, file, 194
swapping values, 188

Index 471

switch (statement), 110, 174,
195–202, 220, 233, 235, 282, 285,
365; see also if statement

sync (package)
RWMutex (type); see top-level entry
WaitGroup (type), see top-level en-

try
synchronization, 44, 315, 318, 321
synchronous, channel, 207; see also

channels

T
tab (\t), 84
tags, struct, 279, 371, 372, 428
Tan()

cmplx package, 71
math package, 67

Tanh()
cmplx package, 71
math package, 67

.tar files, 399–401, 403–405
tar (package; archive package),

399–401, 403–405
Header (type), 401, 404
NewReader(), 403
NewWriter(), 400
Reader (type), 403, 405
Writer (type); see top-level entry

Taylor, Ian Lance, 2
TCP/IP; see net package
TempFile() (ioutil package), 424
template (package; html package),

420–421
template (package; text package),

420–421
HTMLEscape(), 78

terminal; see Stderr, Stdin, and Std-
out streams

Terminal_Punctuation (constant; uni-
code package), 258

termination, 15, 317, 321
terminator, statement (;), 186
testing (package), 414–416

text; see string type
text files; see .txt files
text (package)

template (package), see top-level
entry

third-party packages, 417–418
this; see receiver
Thompson, Ken, 1
threads; see channels, goroutines,

and the chan and go keywords
Tick() (time package), 426
time (package), 426

After(), 332, 333, 426
Duration (type), 332, 333
NewTicker(), 426
Parse(), 370, 376, 377, 383, 395
Tick(), 426
Time (type); see top-level entry
Unix(), 391

Time (type; time package), 362, 363,
368, 377, 383, 390, 394, 395, 426

Format(), 368, 379, 390
Unix(), 391

Title() (strings package), 109
To() (unicode package), 119
ToLower()

strings package, 109, 162, 163,
177, 194, 246, 259, 293, 306,
324

unicode package, 119, 272
tools

5g, 6g, 8g, 9
5l, 6l, 8l, 9
cgo, 9
gc, 9
gccgo, 9
go build, 11–12, 23, 409, 411
go fix, 418
go get, 417–418
go install, 1, 13, 409
go test, 415–416
go version, 11
go vet, 418

472 Index

tools (continued)
godoc, 8, 411–413, 419
gofmt, 186, 188, 419

tools (third-party)
gonow, 10
gorun, 10

ToSlash() (filepath package), 399
ToTitle()

strings package, 109
unicode package, 119

ToUpper()
strings package, 37, 109, 259,

302
unicode package, 119, 272

trace, stack, 214
Trim() (strings package), 109
TrimFunc() (strings package), 109
TrimLeft() (strings package), 109,

399
TrimLeftFunc() (strings package),

109
TrimRight()

bytes package, 333, 334
strings package, 109, 127

TrimRightFunc() (strings package),
109

TrimSpace() (strings package), 111,
132, 177, 246, 376, 383

true (built-in); see bool type
Trunc() (math package), 67
.txt files, 377–384
type

abstract vs. concrete, 22
deduction, 18
method sets; see 22, 191, 260; see

alsomethods
see also built-in types, custom

types, and standard library’s
types

type assertions, 191–192, 200, 233,
234, 237, 242, 300, 319

type conversions, 190–191; see also
conversions and the strconv
package

type, inference, 53, 70
type (keyword), 24, 42, 55, 73, 132,

161, 190, 198–199, 202, 223,
233, 237, 241, 245, 246, 254, 255,
256–257, 265, 284, 294, 295, 305,
335, 366, 379, 389, 412

type modifier; see pointers and *
pointer declaration operator

type safety; see duck typing and in-
terfaces

type switch guard, 198, 199
type switches, 197–202, 233, 235,

282, 285; see also switch state-
ment

TypeOf() (reflect package), 427, 428,
430

typing, duck, 21, 32, 268
typing, strong, 15, 20, 24

U
UDP; see net package
UID; see Getuid()
uint (type; built-in), 60, 69
uint8 (type; built-in); see byte type
uint16 (type; built-in), 60, 388, 393
uint32 (type; built-in), 60, 388, 393
uint64 (type; built-in), 60
uintptr (type; built-in), 60
unbound methods (method expres-

sions), 263
unchecked type assertion; see type

assertions
unexported identifiers, 52, 264
Unicode, 52, 82–84, 86–87

normalization, 86
U+FFFD replacement character, 85,

118
whitespace, 92

Unicode code point; see rune type
unicode (package), 118, 420

Hyphen (constant), 272
Is(), 118, 119, 258, 272
IsControl(), 119

Index 473

IsDigit(), 119
IsGraphic(), 119
IsLetter(), 119, 178
IsLower(), 119
IsMark(), 119
IsOneOf(), 119
IsPrint(), 119
IsPunct(), 119
IsSpace(), 92, 111, 119, 272
IsSymbol(), 119
IsTitle(), 119
IsUpper(), 119
MaxRune (constant), 82
SimpleFold(), 119
Terminal_Punctuation (constant),

258
To(), 119
ToLower(), 119, 272
ToTitle(), 119
ToUpper(), 119, 272
utf8 (package), see top-level en-

try
utf16 (package), 420

Uniform() (image package), 290
UniqueInts() (exercise), 180
unit testing, 414–415
Unix()

time package, 391
Time type, 391

Unlock() (RWMutex type), 346
Unmarshal() (json package), 199, 201,

202, 369, 370
unnamed return values, 190, 219
unnamed struct, 275
unnamed vs. named custom types,

22
unpack (example), 397–405
unpack (exercise), 405
Unquote() (strconv package), 115,

117
UnquoteChar() (strconv package), 115
untyped constants; seeunder literals

and specific types

url (package; net package), 427
US-ASCII encoding, 82
UTF-8; see string type and Unicode
utf8 (package; unicode package), 117,

420
DecodeLastRune(), 118
DecodeLastRuneInString(), 91,

118, 229, 230
DecodeRune(), 118
DecodeRuneInString(), 91, 92, 93,

203, 229, 230
EncodeRune(), 118
FullRune(), 118
FullRuneInString(), 118
RuneCount(), 118
RuneCountInString(), 85, 99, 177,

178, 229
RuneLen(), 118
RuneStart(), 118
UTFMax (constant), 177
Valid(), 118
ValidString(), 118

utf16 (package; unicode package),
420

utf16-to-utf8 (exercise), 405
UTFMax (constant; utf8 package), 177

V
Valid() (utf8 package), 118
validation, 263–265
ValidString() (utf8 package), 118
Value (type; reflect package), 235,

427–431
Bool(), 428
Call(), 429, 430
CanSet(), 428
Complex(), 428
Elem(), 429
FieldByName(), 428
Float(), 428
Index(), 235, 236, 428
Int(), 428, 430
Interface(), 235

474 Index

Value (type; reflect package) (contin-
ued)

IsValid(), 430
Kind(), 235
Len(), 235, 430
MethodByName(), 430
SetInt(), 429
SetString(), 428
String(), 428, 429

ValueOf() (reflect package), 235,
427, 428, 429, 430

values, 140–148, 255; see also vari-
ables

values, swapping, 188
var (keyword), 23, 53, 188, 192, 201,

241, 257, 272, 378, 382, 388
variable vs. fixed-width character

encoding, 83
variables, 140–148, 242, 265, 290

declaration, short, 15, 53, 140,
188

initializing, 15, 74
local, 40, 45, 141
package, 18
shadow, 36, 189, 192, 200, 201,

281, 282, 300, 301
see also environment variables

variadic function, 198, 219, 221–222
variant; see interface{}
Version() (runtime package), 424
vertial tab (\v), 84
virtual functions, 254
Vorbis audio format, 130

W
Wait() (WaitGroup type), 317, 350,

354
WaitGroup (type; sync package), 317,

350
Add(), 350, 351, 352, 354
Done(), 350, 352, 354
Wait(), 317, 350, 354

Walk() (filepath package), 349, 352

web applications, 2, 72, 79–80
web sites

endsoftpatents.org, 439
godashboard.appspot.com, 407,

417, 423, 426
golang.org, 8, 436
www.nosoftwarepatents.com, 439
www.qtrac.eu, 1

while loop; see for loop
whitespace, 92, 111, 128–129
wordfrequencies (example), 174–180
wrapper function, 218, 226
Write() (binary package), 388
WriteAt() (File type), 397
WriteCloser (interface; io package),

400
WriteFile() (ioutil package), 424
WriteHeader() (Writer type), 401
Writer (interface; io package), 32, 34,

35, 93, 255, 354, 364, 366, 373,
378, 385, 388, 399

Writer (type)
bufio package, 35, 38

Flush(), 35, 36, 378
WriteString(), 35, 37

gzip package, 400
tar package, 400

WriteHeader(), 401
zip package, 397, 398

CreateHeader(), 398, 399
WriteRune() (Buffer type), 111
WriteString()

Buffer type, 88, 111, 200, 243
Writer type, 35, 37

writing files; see File type and ioutil
package

X
XML format, 363, 371–377
xml (package; encoding package), 371,

372
Decoder (type); see top-level entry

www.nosoftwarepatents.com
www.qtrac.eu

Index 475

Encoder (type); see top-level entry
Header (constant), 373
Name (type), 372, 374
NewDecoder(), 375
NewEncoder(), 373

xor, logical; see ^ operator

Y
Y0() (math package), 67
Y1() (math package), 67
Yn() (math package), 67

Z
zero, division by, 68
zero value, 27, 33, 39, 53, 54, 149,

150, 152, 168, 173, 189, 191, 216,
222, 257, 263, 275, 308, 346, 383

zero-width assertions in regular ex-
pressions, 122

.zip files, 397–399, 401–403
zip (package; archive package),

397–399, 401–403
FileHeader (type), 399
FileInfoHeader(), 398, 399
NewWriter(), 398
OpenReader(), 401, 402
ReadCloser (type), 401
Writer (type); see top-level entry

ZP (zero Point; image package), 290

Mark Summerfield

Mark is a computer science graduate with many years of experience working
in the software industry, primarily as a programmer. He has also spent many
years writing and editing technical documentation. Mark owns Qtrac Ltd.
(www.qtrac.eu), where he works as an independent programmer, author, editor,
and trainer, specializing in the C++, Go, and Python languages, and the Qt,
PyQt, and PySide libraries.

Other books by Mark Summerfield:

•Advanced Qt Programming (2011, ISBN-13: 978-0-321-63590-7)
•Programming in Python 3 (First Edition, 2009, ISBN-13:
978-0-13-712929-4; Second Edition, 2010, ISBN-13: 978-0-321-68056-3)

•Rapid GUI Programming with Python and Qt (2008, ISBN-13:
978-0-13-235418-9)

Other books by Jasmin Blanchette and Mark Summerfield:

•C++ GUI Programming with Qt 4 (First Edition, 2006, ISBN-13:
978-0-13-187249-3; Second Edition, 2008, ISBN-13: 978-0-13-235416-5)

•C++ GUI Programming with Qt 3 (2004, ISBN-13:!978-0-13-124072-8)

Production

The text waswritten using gvim. The typesetting—including all the diagrams—
wasdoneusing the lout typesetting language. All of the code snippetswereauto-
matically extracted directly from the example programsand from test programs
using a custom tool written in Go. The index was compiled by the author. The
text and source code was version-controlled using Mercurial. The monospaced
code font was derived from a condensed version of DejaVu Mono and modified
using FontForge. The book was previewed using evince and gv,and converted to
PDF by Ghostscript. The cover was provided by the publisher. Note that only
printed editions are definitive: eBook versions are not under the author’s control
and are often retypeset, which can introduce errors.

All the editing and processing was done on Debian and Ubuntu systems. All
the example programs have been tested using the official gc Go compiler on
Linux,Mac OSX, andWindowsusing Go 1 and should work with all subsequent
Go 1.x versions.

www.qtrac.eu

	Contents
	Tables
	Introduction
	Why Go?
	The Structure of the Book
	Acknowledgments

	Chapter 1. An Overview in Five Examples
	1.1. Getting Going
	1.2. Editing, Compiling, and Running
	1.3. Hello Who?
	1.4. Big Digits—Two-Dimensional Slices
	1.5. Stack—Custom Types with Methods
	1.6. Americanise—Files, Maps, and Closures
	1.7. Polar to Cartesian—Concurrency
	1.8. Exercise

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

