
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321774101
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321774101
https://plusone.google.com/share?url=http://www.informit.com/title/9780321774101
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321774101
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321774101/Free-Sample-Chapter

Agile Application
Lifecycle Management

This page intentionally left blank

Agile Application
Lifecycle Management
Using DevOps to Drive
Process Improvement

Bob Aiello and Leslie Sachs

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016936588

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-77410-1
ISBN-10: 0-321-77410-8

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, June 2016

http://www.pearsoned.com/permissions/

In loving memory of:

Bob’s mother and grandmother, two exceptional women who
encouraged him to embrace all of life’s challenges and develop

an inner compass for the surest path forward,

and

IT expert and dear friend, Ben Weatherall, a pillar in the CM
community who was always eager to share his best practices
and tirelessly promoted the value of a modifi ed agile–scrum
development methodology. As an editor, I appreciated and

chuckled along with our readers at the many zany characters
he would weave into his articles for CM Crossroads. He was
proud of his involvement with both professional associations,

such as the IEEE and ASEE (Association of Software
Engineering Excellence—The SEI’s Dallas-based SPIN Affi liate),

and social and charitable organizations. An enthusiastic
resident of his Fort Worth, Texas, community, Ben was an

active participant in his local Shriners’ “Car-vettes” group and
could be counted on to lend a hand whenever their presence
was requested at an event. Ben was a man of deep faith and,

over the years, we had many engaging discussions about
matters much more signifi cant than confi guration management.

Each of these three individuals was dedicated to balancing
a strong work ethic with an equal commitment to their

personal relationships; we cherish their legacy.

This page intentionally left blank

vii

Contents

Preface ..xxiii

Acknowledgments ...xxxix

About the Authors ...xli

PART I DEFINING THE PROCESS ...1

Chapter 1 Introducing Application Lifecycle Management Methodology......3

1.1 Goals of Application Lifecycle Management4
1.2 Why Is ALM Important? ..5
1.3 Where Do I Start? ...7
1.4 What Is Application Lifecycle Management?8

1.4.1 Remember the SDLC? ...10
1.4.2 Business Focus ...11
1.4.3 Agile or Not? ..15
1.4.4 Mature Process or Fluid? ..16
1.4.5 Rapid Iterative Development ...17
1.4.6 Core Configuration Management Best Practices17
1.4.7 Automation ...21
1.4.8 Continuous Integration ...21
1.4.9 Continuous Deployment ...22
1.4.10 Change Management ..22
1.4.11 IT Operations ..22
1.4.12 DevOps ...23
1.4.13 Retrospectives ...23
1.4.14 IT Governance ..23
1.4.15 Audit and Regulatory Compliance24
1.4.16 ALM and the Cloud ..24
1.4.17 Mainframe ..25
1.4.18 Integration across the Enterprise25
1.4.19 Quality Assurance and Testing25
1.4.20 Role of Personality ..26

1.5 Conclusion ..26
References ...26

 Contentsviii

Chapter 2 Defining the Software Development Process27

2.1 Goals of Defining the Software Development Process 27
2.2 Why Is Defining the Software Development
 Process Important? ...28
2.3 Where Do I Start? ...29
2.4 Explaining the Software Development Lifecycle29
2.5 Systems versus Software Development Lifecycle32
2.6 Defining Requirements ..32

2.6.1 Managing Complexity and Change33
2.6.2 Validity of Requirements ...34
2.6.3 Testing Requirements ..35
2.6.4 Functional Requirements ...35
2.6.5 Nonfunctional Requirements ..36
2.6.6 Epics and Stories ...36
2.6.7 Planning for Changing Requirements36
2.6.8 Workflow for Defining Requirements37

2.7 Test-Driven Development ..37
2.8 Designing Systems ...37
2.9 Software Development ..38
2.10 Testing ..38

2.10.1 Testing the Application ...39
2.10.2 Testing the Process Itself ..39

2.11 Continuous Integration ...40
2.12 Continuous Delivery and Deployment41
2.13 Defining Phases of the Lifecycle ..41
2.14 Documentation Required ..42
2.15 DevOps ...43
2.16 Communicating with All Stakeholders44
2.17 Production Support ...45
2.18 Maintenance and Bugfixes ..46
2.19 Lifecycle in the Beginning ...46
2.20 Maintenance of the Lifecycle ..47
2.21 Creating the Knowledge Base ..47
2.22 Continuous Improvement ...48
2.23 Conclusion ..48

Contents ix

Chapter 3 Agile Application Lifecycle Management49

3.1 Goals of Agile Application Lifecycle Management49
3.2 Why Is Agile ALM Important? ...50
3.3 Where Do I Start? ...50
3.4 Understanding the Paradigm Shift ...51
3.5 Rapid Iterative Development...52
3.6 Remember RAD? ..53
3.7 Focus on 12 Agile Principles ...54
3.8 Agile Manifesto ...56
3.9 Fixed Timebox Sprints ..57
3.10 Customer Collaboration ...58
3.11 Requirements ..59
3.12 Documentation ...60
3.13 Conclusion ..60

Chapter 4 Agile Process Maturity ..61

4.1 Goals of Agile Process Maturity..62
4.2 Why Is Agile Process Improvement Important?62
4.3 Where Do I Start? ...63
4.4 Understanding Agile Process Maturity ..64

4.4.1 Adherence to the Principles ...65
4.4.2 Repeatable Process ..66
4.4.3 Scalability (Scrum of Scrums) ..66
4.4.4 Comprehensive (Items on the Right)66
4.4.5 Transparency and Traceability67
4.4.6 IT Governance ..67
4.4.7 Coexistence with Non-agile Projects68
4.4.8 Harmonization with Standards and Frameworks68
4.4.9 Following a Plan ...68
4.4.10 Continuous Process Improvement69

4.5 Applying the Principles ...69
4.6 Recognition by the Agile Community ...70
4.7 Consensus within the Agile Community71
4.8 What Agile Process Maturity Is Not ...71
4.9 What Does an Immature Agile Process Look Like?72
4.10 Problems with Agile ..72

 Contentsx

4.11 Waterfall Pitfalls..73
4.11.1 Mired in Process..74
4.11.2 Pretending to Follow the Process.................................74

4.12 The Items on the Right ...75
4.12.1 Adjusting Ceremony ...75

4.13 Agile Coexisting with Non-Agile ..75
4.14 IT Governance ..75

4.14.1 Providing Transparency ...76
4.15 ALM and the Agile Principles ...76
4.16 Agile as a Repeatable Process..76

4.16.1 Scalability ..77
4.16.2 Delivering on Time and within Budget77
4.16.3 Quality ..77

4.17 Deming and Quality Management ..77
4.17.1 Testing versus Building Quality In77
4.17.2 Productivity ...78

4.18 Agile Maturity in the Enterprise..78
4.18.1 Consistency across the Enterprise78
4.18.2 Marketing the New Approach79

4.19 Continuous Process Improvement ...79
4.19.1 Self-Correcting ..79

4.20 Measuring the ALM..79
4.20.1 Project Management Office (PMO) Metrics80

4.21 Vendor Management ...80
4.22 Hardware Development ..80

4.22.1 Firmware ...80
4.23 Conclusion ..81

Chapter 5 Rapid Iterative Development ..83

5.1 Goals of Rapid Iterative Development ..83
5.2 Why Is Rapid Iterative Development Important?84
5.3 Where Do I Start? ...84
5.4 The Development View ...85
5.5 Controlled Isolation ..85
5.6 Managing Complexity ..86
5.7 Continuous Integration ...86
5.8 It’s All About (Technology) Risk ...87
5.9 Taming Technology ...87

Contents xi

5.10 Designing Architecture ..87
5.11 Conclusion ..88
Further Reading ..88

PART II AUTOMATING THE PROCESS ..89

Chapter 6 Build Engineering in the ALM ..91

6.1 Goals of Build Engineering ...91
6.2 Why Is Build Engineering Important? ...92
6.3 Where Do I Start? ...92
6.4 Understanding the Build..93
6.5 Automating the Application Build ..94
6.6 Creating the Secure Trusted Base ..95
6.7 Baselining ..96
6.8 Version Identification ..97
6.9 Compile Dependencies ..98
6.10 Build in the ALM ..98
6.11 The Independent Build ..99
6.12 Creating a Build Robot ...99
6.13 Building Quality In ...100
6.14 Implementing Unit Tests ...100
6.15 Code Scans ..100
6.16 Instrumenting the Code...101
6.17 Build Tools ..101
6.18 Conclusion ..101

Chapter 7 Automating the Agile ALM ..103

7.1 Goals of Automating the Agile ALM ..103
7.2 Why Automating the ALM Is Important103
7.3 Where Do I Start? ...104
7.4 Tools ...104

7.4.1 Do Tools Matter? ..105
7.4.2 Process over Tools ...105
7.4.3 Understanding Tools in the Scope of ALM105
7.4.4 Staying Tools Agnostic ..106
7.4.5 Commercial versus Open Source106

7.5 What Do I Do Today? ..107
7.6 Automating the Workflow ..108
7.7 Process Modeling Automation ..108

 Contentsxii

7.8 Managing the Lifecycle with ALM..109
7.9 Broad Scope of ALM Tools ...109
7.10 Achieving Seamless Integration ..109
7.11 Managing Requirements of the ALM110
7.12 Creating Epics and Stories ..111
7.13 Systems and Application Design ...111
7.14 Code Quality Instrumentation ..111
7.15 Testing the Lifecycle ..112
7.16 Test Case Management ...112
7.17 Test-Driven Development ..113
7.18 Environment Management ..114

7.18.1 Gold Copies ..114
7.19 Supporting the CMDB ..115
7.20 Driving DevOps ..115
7.21 Supporting Operations ..116
7.22 Help Desk ...116
7.23 Service Desk ..117
7.24 Incident Management ...117
7.25 Problem Escalation ...117
7.26 Project Management ...118
7.27 Planning the PMO ..118
7.28 Planning for Implementation...119
7.29 Evaluating and Selecting the Right Tools119
7.30 Defining the Use Case ...119
7.31 Training Is Essential ..120
7.32 Vendor Relationships ..120
7.33 Keeping Tools Current ..120
7.34 Conclusion ..120

Chapter 8 Continuous Integration ...121

8.1 Goals of Continuous Integration ...121
8.2 Why Is Continuous Integration Important?122
8.3 Where Do I Start? ...123
8.4 Principles in Continuous Integration ...123
8.5 Challenges of Integration ..123
8.6 Commit Frequently ...124
8.7 Rebase and Build Before Commit ...125
8.8 Merge Nightmares ..125

Contents xiii

8.9 Smaller Units of Integration ..126
8.10 Frequent Integration Is Better ...126

8.10.1 Easier to Find Issues ..126
8.10.2 Easier to Fix Problems ..126
8.10.3 Fix Broken Builds ..127

8.11 Code Reviews ...127
8.12 Establishing a Build Farm ...127

8.12.1 Virtualization and Cloud Computing128
8.13 Preflight Builds ..129
8.14 Establishing the Build and Deploy Framework129
8.15 Establishing Traceability ...130
8.16 Better Communication ..131
8.17 Finger and Blame ..133
8.18 Is the Nightly Build Enough? ..133
8.19 Selecting the Right Tools ...134

8.19.1 Selecting the Right CI Server134
8.19.2 Selecting the Shared Repository135

8.20 Enterprise Continuous Integration ..135
8.21 Training and Support ..136
8.22 Deploy and Test ..136
8.23 Tuning the Process ..137

8.23.1 Getting Lean ...137
8.23.2 Interesting Builds ...138

8.24 CI Leads to Continuous Deployment138
8.25 Conclusion ..138

Chapter 9 Continuous Delivery and Deployment 139

9.1 Goals of Continuous Deployment ...139
9.2 Why Is Continuous Deployment Important?140
9.3 Where Do I Start? ...141
9.4 Establishing the Deployment Pipeline141
9.5 Rapid Incremental Deployment...143
9.6 Minimize Risk ...144
9.7 Many Small Deployments Better than a Big Bang145
9.8 Practice the Deploy ...146
9.9 Repeatable and Traceable ...147
9.10 Workflow Automation ..148

9.10.1 Kanban—Push versus Pull ...148

 Contentsxiv

9.11 Ergonomics of Deployments ...150
9.12 Verification and Validation of the Deployment150
9.13 Deployment and the Trusted Base ...151
9.14 Deploy to Environments that Mirror Production152
9.15 Assess and Manage Risk ...153
9.16 Dress Rehearsal and Walkthroughs ...154
9.17 Imperfect Deployments ...155
9.18 Always Have a Plan B ...155
9.19 Smoke Test ..156
9.20 Conclusion ..157

PART III ESTABLISHING CONTROLS ..159

Chapter 10 Change Management ..161

10.1 Goals of Change Management ..161
10.2 Why Is Change Management Important?162
10.3 Where Do I Start? ...163
10.4 Traceability for Compliance ..164
10.5 Assess and Manage Risk ...164
10.6 Communication ..165
10.7 Change in Application Lifecycle Management166
10.8 The Change Ecosystem ...167
10.9 QA and Testing ...167
10.10 Monitoring Events ..168
10.11 Establishing the Command Center ..169
10.12 When Incidents Occur...170
10.13 Problems and Escalation ...172
10.14 The Change Management Process ...173

10.14.1 Entry/Exit Criteria ...174
10.14.2 Post-Implementation ...175

10.15 Preapproved Changes ..175
10.16 Establishing the Change Management Function....................176

10.16.1 Change Control Board ..176
10.16.2 Change Advisory Board ..176

10.17 Change Control Topology ...176
10.17.1 A Priori ...177
10.17.2 Gatekeeping ..177
10.17.3 Configuration Control ..178

Contents xv

10.17.4 Emergency Change Control.....................................179
10.17.5 Process Change Control ..179
10.17.6 E-change Control ..179
10.17.7 Preapproved ..180

10.18 Coordinating across the Platform ...180
10.19 Coordinating across the Enterprise180
10.20 Beware of Fiefdoms...181
10.21 Specialized Change Control ..182
10.22 Vendor Change Control ..182
10.23 SaaS Change Control ..182
10.24 Continuous Process Improvement ...183
10.25 Conclusion ..184

Chapter 11 IT Operations ...185

11.1 Goals of IT Operations ...185
11.2 Why Is IT Operations Important? ...186
11.3 Where Do I Start? ...186
11.4 Monitoring the Environment ..188

11.4.1 Events..188
11.4.2 Incidents ..189
11.4.3 Problems ...190

11.5 Production Support ...191
11.6 Help Desk ...192

11.6.1 Virtual Help Desks ..193
11.6.2 Remote Work ..194
11.6.3 Virtual World Help Desk ..194
11.6.4 Developers on the Help Desk195

11.7 IT Process Automation..195
11.7.1 Knowledge Management ...195

11.8 Workflow Automation ..196
11.9 Communication Planning ..197

11.9.1 Silos within the Organization197
11.10 Escalation ...198

11.10.1 Level 1 ..198
11.10.2 Level 2 ..199
11.10.3 Level 3 ..199

11.11 DevOps ...200

 Contentsxvi

11.12 Continuous Process Improvement ...200
11.13 Utilizing Standards and Frameworks201

11.13.1 ITIL v3 ..201
11.13.2 Knowledge Management ...204
11.13.3 ISACA Cobit ..205

11.14 Business and Product Management205
11.15 Technical Management ...206
11.16 IT Operations Management ..206
11.17 IT Operations Controls ...206

11.17.1 Facilities Management ...207
11.18 Application Management ..208

11.18.1 Middleware Support ...208
11.18.2 Shared Services ..208

11.19 Security Operations ...208
11.19.1 Center for Internet Security209
11.19.2 Outsourcing ..209

11.20 Cloud-Based Operations ...209
11.20.1 Interfacing with Vendor Operations209

11.21 Service Desk ..210
11.21.1 Centralized ..210
11.21.2 Virtual ...211
11.21.3 Specialized ...211
11.21.4 Vendor Escalation ...211

11.22 Staffing the Service Desk ...211
11.23 Incidents and Problems ...212
11.24 Knowledge Management ..212
11.25 Conclusion ..212

Chapter 12 DevOps ...213

12.1 Goals of DevOps...213
12.2 Why Is DevOps Important? ..214
12.3 Where Do I Start? ...214
12.4 How Do I Implement DevOps? ...215
12.5 Developers and Operations Conflict216
12.6 Developers and Operations Collaboration216
12.7 Need for Rapid Change ..218
12.8 Knowledge Management ...219
12.9 The Cross-Functional Team ..220

Contents xvii

12.10 Is DevOps Agile?...221
12.11 The DevOps Ecosystem...222
12.12 Moving the Process Upstream ..223

12.12.1 Left-Shift ...223
12.12.2 Right-Shift ...224

12.13 DevOps in Dev..224
12.14 DevOps as Development ...225

12.14.1 Deployment Pipeline ...226
12.15 Dependency Control ...227
12.16 Configuration Control ..228
12.17 Configuration Audits ..228
12.18 QA and DevOps ...229
12.19 Information Security ...229
12.20 Infrastructure as Code...229
12.21 Taming Complexity...230
12.22 Automate Everything ..230
12.23 Disaster Recovery and Business Continuity...........................230
12.24 Continuous Process Improvement ...231
12.25 Conclusion ..231

Chapter 13 Retrospectives in the ALM ...233

13.1 Goals of Retrospectives ...234
13.2 Why Are Retrospectives Important?234
13.3 Where Do I Start? ...234
13.4 Retrospectives as Process Improvement235

13.4.1 Start with Assessing Success235
13.4.2 Incidents and Problems ...236
13.4.3 Mistakes Are Good ...237
13.4.4 Personality and Disposition237
13.4.5 Don’t Just Tell Me What I Want to Hear238

13.5 Which Mode Should You Use? ...238
13.5.1 In Person Is Best ..238
13.5.2 Online and Video Conferencing239
13.5.3 Teleconference ..239
13.5.4 Virtual Worlds ...239

13.6 Perspective Is Essential ..240
13.6.1 Developers...240
13.6.2 Customers ...240

 Contentsxviii

13.6.3 Tester ..240
13.6.4 Operations ..241

13.7 DevOps: The Cross-Functional View241
13.8 Understanding the Use Case ...241

13.8.1 Epics and Stories ...241
13.9 Retrospectives as Leadership ...241

13.9.1 Removing Barriers ...241
13.10 Running the Meeting ..242

13.10.1 Probing and Questioning...242
13.11 Retrospectives Supporting ITIL ...242

13.11.1 Incidents ..242
13.11.2 Problems ...243

13.12 Retrospectives and Defect Triage ..243
13.13 Retrospectives as Crisis Management243
13.14 Supporting IT Governance ..244
13.15 Audit and Regulatory Compliance ..244
13.16 Retrospectives as Risk Management244
13.17 Vendor Management ...244
13.18 Too Much Process ...245
13.19 Corporate Politics ...245
13.20 Metrics and Measurement...245
13.21 Conclusion ..246

PART IV SCALING THE PROCESS ..247

Chapter 14 Agile in a Non-Agile World ..249

14.1 Goals of Hybrid Agile ...249
14.2 Why Is Hybrid Agile Important?...250
14.3 Where Do I Start? ...250
14.4 Pragmatic Choices ...251
14.5 The Best of Both Worlds ..251
14.6 Keeping It Agile ..252
14.7 Establishing the Agile Pilot ...253
14.8 Transitioning to Agile ...253
14.9 Having a Baby ..254
14.10 The Elephant in the Room ..254
14.11 Are We There Yet? ..255
14.12 Agile Disasters ..255

Contents xix

14.13 Developer View ...256
14.14 No Information Radiators Allowed256
14.15 Waterfall Is Iterative, Too ...256
14.16 Document Requirements as Much as Possible257
14.17 Last Responsible Moment ...257
14.18 Technology Risk..257
14.19 Understanding the Ecosystem..257
14.20 Mature Agile ...258
14.21 Meeting IT Governance Requirements258
14.22 Conclusion ..259

Chapter 15 IT Governance ..261

15.1 Goals of IT Governance ..261
15.2 Why Is IT Governance Important? ..262
15.3 Where Do I Start? ...262
15.4 Senior Management Makes Decisions263
15.5 Communicating Up ...264
15.6 How Much Work Is Going On?..265
15.7 Identify and Manage Risk ...266
15.8 Time and Resources ..267
15.9 Scalability with More Resources ...268
15.10 Delays Happen ..268
15.11 The Helicopter Mom ..269
15.12 I Told You That Already ..269
15.13 Learning from Mistakes ..270
15.14 Governance Ecosystem ..270
15.15 Continuous Process Improvement ...270
15.16 Governance and Compliance ..271
15.17 Conclusion ..271

Chapter 16 Audit and Regulatory Compliance ..273

16.1 Goals of Audit and Regulatory Compliance273
16.2 Why Are Audit and Regulatory
 Compliance Important? ..274
16.3 Where Do I Start? ...274
16.4 Compliance with What?..275
16.5 Establishing IT Controls ...275
16.6 Internal Audit ...276

 Contentsxx

16.7 External Audit ..277
16.8 Federally Mandated Guidelines ...278

16.8.1 Section 404 of the Sarbanes-Oxley Act of 2002278
16.8.2 Financial Industry Regulatory Authority280
16.8.3 Health Insurance Portability and
 Accountability Act of 1996 ..280
16.8.4 ISACA Cobit ...281
16.8.5 Government Accountability Office281
16.8.6 Office of the Comptroller of the Currency (OCC)282

16.9 Essential Compliance Requirements ..283
16.10 Improving Quality and Productivity
 through Compliance ...283
16.11 Conducting an Assessment ..283
16.12 Conclusion ..284

Chapter 17 Agile ALM in the Cloud ...285

17.1 Goals of ALM in the Cloud ..285
17.2 Why Is ALM in the Cloud Important?286
17.3 Where Do I Start? ...286
17.4 Understanding the Cloud ..287
17.5 Developing in the Cloud ...288

17.5.1 Source Code Management in the Cloud288
17.5.2 Build Automation in the Cloud289
17.5.3 Release Engineering in the Cloud289
17.5.4 Deployment in the Cloud ..290

17.6 Change Management in the Cloud..290
17.6.1 Service Provider Notification.....................................291

17.7 Managing the Lifecycle with ALM..292
17.8 Cloud-based ALM Tools ...292
17.9 Achieving Seamless Integrations ...292
17.10 Iterative Development in the Cloud293

17.10.1 Development Models in SaaS293
17.11 Interfacing with Your Customers ..293

17.11.1 Fronting Service Providers294
17.12 Managing with SLAs...294

17.12.1 Reliance upon Service Providers294
17.13 Managing Cloud Risk ...294

Contents xxi

17.14 Development and Test Environments for All295
17.14.1 Starting Small ..295

17.15 Environment Management ..295
17.15.1 Gold Copies ..295
17.15.2 CMDB in the Cloud ..296

17.16 DevOps in the Cloud ..296
17.17 Controlling Costs and Planning ..296
17.18 Conclusion ..297

Chapter 18 Agile ALM on the Mainframe ..299

18.1 Goals of Agile ALM on the Mainframe299
18.2 Why Is Agile ALM on the Mainframe Important?299
18.3 Where Do I Start? ...300
18.4 DevOps on the Mainframe ...302
18.5 Conclusion ..303

Chapter 19 Integration across the Enterprise ...305

19.1 Goals of Integration across the Enterprise305
19.2 Why Is Integration across the Enterprise Important?305
19.3 Where Do I Start? ...306
19.4 Multiplatform ...307
19.5 Coordinating across Systems ...307
19.6 Understanding the Interfaces ...307
19.7 The Enterprise Ecosystem ...308
19.8 Release Coordination ..308
19.9 Conclusion ..308

Chapter 20 QA and Testing in the ALM ...309

20.1 Goals of QA and Testing ..309
20.2 Why Are QA and Testing Important?309
20.3 Where Do I Start? ...310
20.4 Planning the Testing Process ...311
20.5 Creating the Test Cases ...313
20.6 Ensuring Quality ...313
20.7 Ensuring Quality from the Beginning313
20.8 Conclusion ..314

 Contentsxxii

Chapter 21 Personality and Agile ALM ...315

21.1 Goals of Personality and the Agile ALM.................................315
21.2 Why Are Personality and Agile ALM Important?315
21.3 Where Do I Start? ...316

21.3.1 Understanding the Culture ..316
21.3.2 Probing Deeper into the Organization’s Psyche318

21.4 Group Dynamics ...320
21.4.1 Using DevOps to Drive Out Silos320
21.4.2 Managing Power and Influence in DevOps321

21.5 Intergroup Conflict ...323
21.5.1 Overly Agreeable People and Other Challenges323
21.5.2 Learned Helplessness ...325
21.5.3 Introspection and the Postmortem327

21.6 Managing Stress and Dysfunctional Behavior 329
21.6.1 The Danger of Learned Complacency 329
21.6.2 Dealing with Aggressive Team Members331
21.6.3 Extremism in the Workplace333

21.7 Taking a Positive Approach ..335
21.7.1 How Positive Psychology Can Help
 Your Organization ..335
21.7.2 Three Pillars of Positive Psychology337
21.7.3 Using Positive Psychology to Motivate Your Team ...339
21.7.4 Learning from Mistakes ..340
21.7.5 Positive Psychology in DevOps342

21.8 Conclusion ..344
References ...344
Further Reading ..345

Chapter 22 The Future of ALM ..347

22.1 Real-World ALM ..347
22.2 ALM in Focus ...348
22.3 Conclusion ..349

Index ..351

xxiii

Preface

This is an amazing, and perhaps chaotic, time to be involved with the technol-
ogy industry. The demand for talent, skills, and commitment to excellence has
never been higher. Developing software and systems has become a remarkably
complex task, with many factors affecting the success of the development effort.
Learning new development frameworks and adapting legacy systems to meet the
need for continued growth and fl exibility require the modern IT professional
to be able to press forward, while understanding the limitations imposed by
earlier conditions. Teams may be located in one specifi c “war” room or dis-
tributed across the globe and frequently working at different hours of the day,
with varying languages, cultures, and expectations for how they will operate
on a daily basis. The project itself might involve writing complex application
software or customizing a vendor package as part of a systems (versus soft-
ware) development effort. The competition for specialized technical resources
motivates many organizations to allow fl exible work arrangements, including
telecommuting along with choosing offi ce locations convenient to attract local
candidates. Technology professionals must often choose between the demands
of high-paying (and often stressful) opportunities and trying to maintain a com-
fortable work-life balance. The Internet has clearly become the backbone of
commerce, and companies are expected to continuously align themselves with
growing Web capabilities in order to achieve and maintain success.

Pragmatic Focus

This book focuses on the real world of creating and implementing pro-
cesses and procedures to guide your software and systems delivery effort.
The views expressed in these pages may make you feel uncomfortable,
especially if you view yourself as an agile purist. We are going to chal-
lenge assumptions regarding the way things are being done today, and
we are going to encourage you to participate in a discussion on how we
can do a better job of developing software and systems. We are going to
stipulate up front that our views may not always be applicable in every

 Prefacexxiv

possible situation, but all that we write is based upon our real-world ex-
periences or that which we have heard about from reliable sources. This
is not a “feel-good” book about agile. This is a book about creating pro-
cesses and procedures to guide you in overcoming the day-to-day chal-
lenges of developing complex software and systems. We look forward to
hearing from you as you read through these chapters!

Successful organizations need to support complex technologies, most often
with a signifi cant Web presence. Even companies going out of business are ex-
pected to have a functioning Web presence capable of handling the peak trans-
action requirements of customers and other users. In practice, these complex
development efforts necessitate effective processes and methodologies to meet
both the demands of today and those that will surface in the future. This book
will describe best practices for designing the appropriate application lifecycle
management (ALM) processes necessary to successfully develop and implement
complex software systems, whether your team is writing the code or custom-
izing a system that you have purchased from a vendor. We will discuss both
agile and non-agile methodologies to empower the reader to choose the best
approach for your organization and the project that you are trying to complete.
Our goal is to increase and enhance the reader’s understanding and ability to
apply these principles and practices in your own environment. We often work
in the imperfect world of having to support lifecycle methodologies that are not
always optimal. In fact, we are usually called in when things get really bad and
an organization needs to fi gure out how to incrementally improve processes to
improve quality and productivity. In our opinion, the most effective methodol-
ogy to emerge in the last decade has been agile.

Agile confi guration management and, by extension, agile application lifecycle
management have become two of the most popular software development meth-
odologies in use today. Agile has resulted in indisputable successes boasting im-
proved productivity and quality. My 25-year (and counting) career has always
involved software process improvement with a particular focus on confi guration
management. As a practitioner, I am completely tools and process agnostic. I
have seen projects that successfully employed agile methods and other efforts
that thrived using an iterative waterfall approach. Still, all organizations need a
reliable and repeatable way to manage work, allowing full traceability and clear,
complete communication. Years ago, the IT community looked to the software
development lifecycle (SDLC) to guide us in understanding what needed to be
done by each member of the team on a daily basis, although the SDLC process

Preface xxv

documentation often sat on the shelf along with the outdated requirements
specifi cation from the latest software or systems development effort. When pur-
chasing commercial off-the-shelf (COTS) products became popular, we began
to use the term systems development lifecycle to refer to the work, at times
spanning months or even years, to customize and confi gure COTS systems. We
will discuss the differences between software and systems lifecycles further in
Chapter 1. Whether applied to software development or systems customiza-
tion and confi guration, the SDLC, in practice, generally only referred to the
required activities to create and maintain the system. Some vendors marketed
efforts to customize and confi gure their solution as production lifecycle manage-
ment (PLM) solutions. Many companies struggled with improving programmer
productivity, and some tried to use the Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM). These efforts often had limited success,
and even those that succeeded had limited return on their investment due to the
excessive cost and effort involved. The SEI chartered a series of Software Process
Improvement Networks (SPINs) throughout the United States, which provided
speakers and opportunities to meet with other professionals involved with soft-
ware process improvement. I had the pleasure of serving for many years on the
steering committee of one of the SPINs located in a major city. Today, most of
the SPIN presentations focus on agile practices, and most of the attendees are
interested in establishing scrums, iterative development, and agile testing. Agile
has certainly had a major impact on software process improvement, although
not without its own inherent challenges and limitations. Application lifecycle
management has emerged as an essential methodology to help clarify exactly
how software development is conducted, particularly in large-scale distributed
environments. ALM typically has a broader focus than was considered in scope
for an SDLC and helped to resolve many of the most common challenges, such
as providing a comprehensive software development methodology helping each
member of the team understand what needed to be done on a daily basis. At its
core, the ALM enhances collaboration and communication. DevOps is a closely
related approach that is particularly effective at driving the entire ALM.

DevOps and the ALM

DevOps is a set of principles and practices that improve communication be-
tween the development and operations teams. Many DevOps thought leaders
acknowledge that DevOps is also effective at helping development interact
with other groups, including quality assurance (QA) and information security

 Prefacexxvi

(InfoSec). In this book, we will broaden that defi nition to show that DevOps
is essential to enhancing communication between every other group that par-
ticipates in the ALM. We will be discussing DevOps throughout this book and
in detail in Chapter 12. DevOps principles and practices are applicable to the
interactions between any two or more groups within the organization and are
essential in driving the ALM.

The initial goal of any ALM is to provide the transparency required to enable
decision makers to understand what needs to be done and, most importantly,
approve the project, including its budget and initial set of goals and objectives.
Providing this transparency is precisely where IT governance plays an essential
role in helping to get the project approved and started.

IT Governance

Effective software methodology today must have a strong focus on IT gover-
nance, which is essentially the control of the organizational structures through
effective leadership and the hands-on management of organizational policies,
processes, and structures that affect information, information-related assets,
and technology. Fundamentally, IT governance provides the guidance neces-
sary to ensure that the information technology organization is performing suc-
cessfully and that policies, processes, and other organizational structures are
in place so that essential organizational strategies and objectives are achieved.
Organizations with excellent IT governance enjoy improved coordination,
communication, and alignment of goals throughout the entire enterprise. IT
governance is closely related to, and must align with, corporate governance in
order to ensure that information technology can help drive the business to suc-
cess and profi tability. The initial goals of IT governance are to defi ne policies,
clarify the objectives of corporate governance, and ensure that the information
technology organization aligns with the business to provide essential services
that enable the business to achieve its goals. From an IT service management
perspective, IT governance helps drive the development and deployment of
services that help achieve value; these include fi tness for purpose (utility) and
fi tness for use (warranty). IT governance is also concerned with establishing
the most effi cient organizational structure that will allow technology to be de-
livered successfully as a valued corporate asset. In this context, management is
also responsible for providing adequate resources while maintaining necessary
budget and fi nancial controls.

IT governance cannot exist in a vacuum. Management requires accurate and
up-to-date information in order to make the best possible decisions. Department

Preface xxvii

managers and teams must provide valid and relevant information so that man-
agement understands the risks, challenges, and resources required for success. IT
governance enables the business by ensuring that informed decisions are made,
that essential resources are available, and that barriers to success are removed
or identifi ed as risks. Risk management is essential to effective IT governance.
Risk is not always bad, and many organizations thrive on well-defi ned risk. IT
governance provides the essential information that is needed to enable senior
management to identify and mitigate risk so that the organization can success-
fully operate within the global business environment.

IT governance has the unique view of seeing the organization as part of an
ecosystem, with the focus on competitors and outside forces, including regula-
tory requirements that affect the business and business objectives. Information
security and business continuity are special areas of focus for IT governance,
as it is essential to ensure that the business can operate and thrive regardless of
challenges, such as competitive forces and other external pressures. Other con-
siderations of IT governance include data privacy, business process engineering,
and project governance.

Closely related to IT governance, and often mentioned in the same sentence,
is compliance with regulatory requirements, industry standards, and internal au-
dit requirements. IT governance helps all relevant stakeholders within the entire
organization understand what they need to do in order to meet and comply with
all regulatory requirements. Effective IT governance enables businesses to im-
plement organizations with organizational structures that operate successfully,
while providing the necessary information to help senior management make
the decisions, which then propel the organization to achieve improved quality,
productivity, and profi tability. With this guidance from senior management, the
next step is to ensure that all of the stakeholders understand their roles and
what needs to be done on a day-to-day basis. This is exactly where application
lifecycle management comes into the picture.

Application Lifecycle Management

Application lifecycle management (ALM) evolved from the early days of process
improvement to provide a comprehensive software development methodology
that provides guidance from requirements gathering, to design development,
all the way through to application deployment. In practice, ALM takes a wide
focus, with many organizations establishing an ALM to manage their entire
software and systems delivery effort. Even nondevelopment functions such
as operations and the help desk can benefi t from a well-defi ned ALM. Some

 Prefacexxviii

organizations implement ALM in a way that would not be considered agile,
using a waterfall model that has a heavy focus on completing the tasks in each
phase before moving on to the next. Confi guration management, consisting of
source code management, build engineering, environment confi guration, change
control, release management, and deployment, has been a key focus of ALM
for some time now. Another central theme has been applying agile principles to
support and improve confi guration management functions.

Agile CM in an ALM World

Agile confi guration management (CM) provides support for effective iterative
development, including fast builds, continuous integration, and test-driven de-
velopment (TDD), that is essential for successful agile development. In a com-
prehensive lifecycle methodology, agile CM can make the difference between
success and failure.

The Defi nition of Agile ALM

Agile ALM is a comprehensive software development lifecycle that embodies the
essential agile principles and provides guidance on all activities needed to suc-
cessfully implement the software and systems development lifecycle. Agile ALM
embodies agile CM and much more. Agile ALM starts with tracking require-
ments with “just-enough process” to get the job done without any extra steps,
or what agile enthusiasts often call “ceremony.” This is often accomplished by
creating user stories, which need to be under version control just like any other
artifact. Testing throughout the lifecycle also plays a signifi cant role in agile
ALM and may even be used to supplement requirements documents that are
often intentionally kept brief in an agile world. Agile ALM focuses on iterative
development that requires a minimum amount of process, with an emphasis on
proven practices that include iterative development, strong communication, and
customer collaboration. Understanding agility is much easier when we examine
the process methodologies that have come before.

Understanding Where We Have Come From

Understanding where we have come from should always start with reviewing
the essential principles of process improvement. For example, most practitioners
will confi rm that process improvement needs to be iterative, pragmatic, and con-
tinuous. One excellent source of valid principles for process improvement may

Preface xxix

be found in the work of W. Edwards Deming. Many of Deming’s teachings1
provide principles that are practical and form the basis of quality management.

Principles of Process Improvement

Process engineering focuses on defi ning the roles, responsibilities, and essential
tasks that need to be accomplished in order for the process to be completed
successfully. Processes themselves need to be understood, clearly defi ned, and
communicated to all stakeholders. Complex processes are most often created in
a collaborative way and usually take several iterations before they are compre-
hensive or complete. Processes may need to change over time and may be loosely
defi ned early in the lifecycle, but usually require greater clarity and discipline
as the target delivery date approaches. Too much process is just as bad as not
enough. Therefore, the best processes are Lean with few, if any, extra unneces-
sary steps. Quality must be built into the process from the very beginning, and it
is essential to maintain an honest and open culture to achieve effective processes
and process improvement.

Mired in Process

Bob worked in an international fi nancial services fi rm that was deeply
mired in process. The CEO of the company once commented in a town
hall meeting that they realized they had too much process, and their so-
lution was, unfortunately, to add more process. The organization had a
deeply held belief in process, which also had a high degree of ceremony.
The dark unspoken secret, however, was that many people simply chose
to work around the burdensome processes, which required far too many
documents. Most people in the organization become quite clever at gam-
ing the system to deal with the burdensome requirements of the organi-
zational processes. But because the culture was so focused on process,
it was considered disloyal to complain or attempt to push back on this.
The organization wanted to grow, but just about every effort took far
too long to complete.

1. Deming, W. Edwards. (1982). Out of the Crisis. Cambridge, MA: Massachusetts Institute
of Technology, Center for Advanced Engineering Study.

 Prefacexxx

Right-sizing processes is essential for organizational success, as is effective com-
munication. Application lifecycle management has its own terminology, which
needs to be understood for effective communication among all stakeholders.

Terminology

Every effort has been made to use terms that are consistent with industry stand-
ards and frameworks. Please contact us via social media with any questions or
via the website for this book as noted on the next page.

Use of “I” versus “We”

Although we do everything as a team, there were quite a few places where it was
much easier to write in the fi rst-person singular. Bob is also much more technical
and “hands-on” than Leslie, so when you see fi rst-person singular “I” or “my”
you can safely assume that this is a fi rst-person account from Bob.

Why I Write About Agile CM, DevOps,
and Agile ALM

Agile confi guration management and agile application lifecycle management
provide the basis for essential best practices that help a software or system devel-
opment team improve their productivity and quality in many signifi cant ways.
DevOps and the agile ALM help ensure that teams can produce systems that are
reliable and secure while maintaining high levels of productivity and quality. As
is often the case, early life experiences have greatly shaped my view of the world.

Blindness and Process Improvement

Much of how I have approached my life and career has been infl uenced by the
fact that I had a signifi cant visual handicap growing up that could not be safely
corrected until I was in my late teens. Consequently, I used Braille, a white cane,
and lots of taped recordings (“talking books”). Even when I gained useable vi-
sion, at fi rst it was only for short amounts of time because my eyes would fatigue
quickly, and then for all practical purposes I would be temporarily blind again
(or what we blind guys like to refer to as “blinking” out). My beloved ophthal-
mologist, Dr. Helen Grady Cole, once noted that my handicap made me success-
ful because I learned to achieve against all odds and “move mountains” when
necessary. No doubt, you will hear some of that fi erce determination in these

Preface xxxi

pages. I am very comfortable when approaching the seemingly impossible and
viewing it as quite doable. You will get to hear about some of my experiences in
the motorcycle gang of para- and quadriplegics with whom I proudly associated
during my most formative years.

Classroom Materials

University professors who would like to use our book for a class in software
engineering or software methodology are encouraged to contact us directly. We
are glad to review classroom materials and would guest lecture (via Skype where
travel is impractical) if appropriate and feasible. Obviously, we are glad to an-
swer any and all questions related to the material in the book.

Website for this Book

Please register on our website at http://agilealmdevops.com and connect with us
on social media to engage in discussions on Agile ALM and DevOps!

Who Should Read This Book

This book will be relevant for a wide variety of stakeholders involved in applica-
tion lifecycle management.

Development managers will fi nd guidance regarding best practices that they
need to implement in order to be successful. We also discuss the many people
issues involved with managing the software development process.

How This Book Is Organized

This book is organized into 22 chapters divided into four parts. Part I consists
of fi ve chapters defi ning the software development process, agile ALM and agile
process maturity, and rapid iterative development. Part II covers automation, in-
cluding build engineering, automating the ALM, continuous integration, deliv-
ery, and deployment. Part III covers establishing essential IT controls, including
change management, operations, DevOps, retrospectives, agile in non-agile en-
vironments, IT governance, and audit and regulatory compliance. Part IV covers
scalability, including integration across the enterprise, agile ALM in the cloud,
ALM on the mainframe, QA and testing, personality, and the future of ALM.

http://agilealmdevops.com

 Prefacexxxii

Part I: Defi ning the Process

Chapter 1: Introducing Application Lifecycle Methodology
This chapter introduces application lifecycle management by explaining what
you need to know in order to defi ne an ALM that will help you implement a
comprehensive and effective software or systems lifecycle. We discuss how to
implement the ALM using agile principles in a real-world, pragmatic way that
will help guide the activities of each member of your team, whether you are
creating new software or customizing a commercial package. Systems lifecycles
are a little different than a software development lifecycle and are usually as-
sociated with obtaining (and customizing) a project from a solution vendor.
Commercial off-the-shelf (COTS) software is commonly used today to deliver
robust technology solutions, but they often require some effort to customize and
implement. In this chapter, we introduce the core concepts and then build upon
them throughout the rest of the book

Chapter 2: Defi ning the Software Development Process
This chapter helps you understand the basic skills of how to defi ne the software
development process. Defi ning the software development process always sounds
straightforward until you actually start trying to do the work. Many tasks are
involved with any software or systems lifecycle, and a well-defi ned process must
provide guidance on exactly what needs to get done and who is responsible for
completing each task.

Chapter 3: Agile Application Lifecycle Management
In this chapter we discuss the core strategies that will help you create a fl exible
and robust software and systems development lifecycle while ensuring that the
values and principles of agility are understood and maintained.

Chapter 4: Agile Process Maturity
In this chapter, we will examine the factors that affect agile process maturity
from a number of different perspectives. Many technology professionals fi nd
that they must implement agile processes in a large organizational context, in-
cluding managing teams that are composed of many scrums, totaling scores or
even hundreds of developers working from a variety of locations. Scalability is
certainly an essential aspect of agile process maturity. Mature agile processes
must be repeatable for each project in the organization and have suffi cient sup-
port for project planning. We also need to understand how process maturity
affects non-agile development methodologies, including waterfall and other pro-
cess models.

Preface xxxiii

Chapter 5: Rapid Iterative Development
In this chapter, we discuss rapid iterative development and its impact on soft-
ware methodology that came long before agile development reached its level of
popularity common today. We consider what we learned from rapid iterative
development and how it may be applied in practical situations today.

Part II: Automating the Process

Chapter 6: Build Engineering in the ALM
This chapter helps you understand the build within the context of application
lifecycle management. We discuss essential aspects of automating the applica-
tion build, with particular attention on techniques for creating the trusted appli-
cation base. We also discuss baselining, compile dependencies, and embedding
version IDs as required for version identifi cation. We discuss the independent
build and creating a fully automated build process. Building quality into the
build through automated unit tests, code scans, and instrumenting the code is an
important part of this effort. Finally, we will discuss the ever-challenging task of
selecting and implementing the right build tools.

Chapter 7: Automating the Agile ALM
In this chapter we discuss how application lifecycle management touches every
aspect of the software and systems lifecycle. This includes requirements gather-
ing, design, development, testing, application deployment, and operations sup-
port. Automation plays a major role in the agile ALM, which sets it apart in
many ways from other software development methodologies. We also explain
why it is essential to appreciate the big picture at all times so that the functions
that you implement are in alignment with the overall goals and structure of
your ALM.

Chapter 8: Continuous Integration
In this chapter we explain that continuous integration (CI) is an essential prac-
tice that involves putting together code that has been created by different de-
velopers and ascertaining if the code components can compile and run together
successfully. CI requires a robust automated testing framework, which we will
discuss further in Chapter 20 and provides the basis for ensuring code quality
through both static and instrumented code scanning. Continuous integration
often involves merging together code that has been written by different devel-
opers and is essential for code quality. The fundamental value of this practice
is that integrating a small amount of code as early as possible can avoid much

 Prefacexxxiv

bigger issues later. It would be diffi cult to imagine an effective ALM that does
not embrace integrating code frequently, although I will also discuss a couple of
situations where it is diffi cult or even impossible to achieve. When code cannot
be integrated early and often, there is increased risk, which must be identifi ed
and addressed. It is also important to understand that continuous integration
relies upon many other practices, including continuous testing, effective build
engineering, static and instrumented code analysis, and continuous deployment,
discussed in Chapter 9.

Chapter 9: Continuous Delivery and Deployment
In this chapter we explain how continuous deployment (CD) is a methodology
for updating production systems as often as necessary and generally in very
small increments on a continuous basis. It would be diffi cult to understand con-
tinuous deployment without discussing continuous integration and delivery.
The terminology for CD has been confusing at best, with many thought leaders
using the terms continuous delivery and continuous deployment interchange-
ably. We discussed continuous integration in Chapter 8. Continuous delivery
focuses on ensuring that the code baseline is always in a state of readiness to be
deployed at any time. With continuous delivery, we may choose to perform a
technical deployment of code without actually exposing it to the end user, using
a technique that has become known as feature toggle. Continuous deployment
is different from continuous delivery in that the focus is on immediate promo-
tion to a production environment, which may be disruptive and a poor choice
from a business perspective. We will help you fi nd the right balance so that
you can support your business by promoting changes to production as often
as desired.

Part III: Establishing Controls

Chapter 10: Change Management
In this chapter we examine how change management is a broad function that
helps us plan, review, and communicate many different types of planned and
emergency (unplanned) system modifi cations. Changes may be bugfi xes or new
features and can range from a trivial confi guration modifi cation to a huge infra-
structure migration. The goal of change control is to manage all changes to the
production (and usually QA) environments. Part of this effort is just coordina-
tion, and that is very important. But part of this effort is also managing changes
to the environment that could potentially affect all of the systems in the envi-
ronment. It is also essential to control which releases are promoted to QA and

Preface xxxv

production. Change control can act as the stimulus to all other confi guration
management–related functions as well. Throughout this chapter we will discuss
how to apply change management in the ALM.

Chapter 11: IT Operations
In this chapter, we will discuss how to create an effective IT operation group
that is aligned with your agile ALM. The IT operations organization is respon-
sible for maintaining a secure and reliable production environment. In large
organizations, operations often resembles a small army with too many divisions
to navigate that is also often held responsible when things go wrong. Develop-
ers, working on the bleeding edge of technology, often regard their colleagues
in operations as lacking technical skills and ability, which is true in so far as
operations resources tend to focus more on the day-to-day running of the sys-
tems. Understanding these different perspectives is a key aspect of our DevOps
approach to the agile ALM.

Chapter 12: DevOps
In this chapter, we discuss DevOps as a set of principles and practices intended
to help development and operations collaborate and communicate more effec-
tively. DevOps is truly taking the industry by storm and, in some circles, reach-
ing almost mythical proportions. I hear folks suggesting that DevOps can help
solve almost any issue, which given the versatility of its cross-functional ap-
proach, is a view that has some merit, but some groups are losing sight of what
this methodology is all about and how it can really help us implement the ALM.

Chapter 13: Retrospectives in the ALM
This chapter discusses the practical application of retrospectives to support ap-
plication lifecycle management. The fi rst section of this chapter will examine the
main function of retrospectives, namely, to evaluate what went well and what
needs to be improved. But that’s just the beginning. Getting accurate informa-
tion from all stakeholders in a retrospective can be very challenging. If you are
successful, the retrospective can help drive the entire ALM process. Retrospec-
tives require leadership, and this chapter will provide guidance on how to suc-
ceed if you are responsible for implementing this function. We will discuss how
to employ retrospectives to support ITIL incidents and problem management,
along with other industry standards and frameworks. Crisis and risk manage-
ment are also key considerations along with IT governance and compliance.
Retrospectives take on a different tone when used as vendor management tool.
We will complete this chapter by considering how much process is necessary,

 Prefacexxxvi

how to deal with politics (or, more accurately, relationships), and the use of ef-
fective metrics to drive the process improvement journey.

Part IV: Scaling the Process

Chapter 14: Agile in a Non-Agile World
In this chapter we discuss that being agile in a non-agile world can be very dif-
fi cult, and at times even seem impossible to accomplish. We have often found
ourselves in organizations that insisted on a waterfall approach. What is most
diffi cult is trying to predict things that are just not possible to ascertain up-front.
Many are unaware that waterfall was originally envisioned as an iterative pro-
cess because today it seems that some organizations expect their employees to
be able to predict the future to a degree that is simply not reasonable. The real
problem is that these are the same organizations that expect you to make the
project actually conform to the plan once it has been developed and approved.
Any deviations may be perceived as a lack of planning and proper management.
Being agile in a non-agile world can be very challenging and is fraught with its
own set of risks and pitfalls.

Chapter 15: IT Governance
In this chapter we discuss how IT governance provides transparency to senior
management so that they can make the best decisions based upon the most ac-
curate and up-to-date information. The ALM provides unique capabilities for
ensuring that managers have the essential information necessary for evaluating
their options. From the CEO to the board of directors, information must often
be compartmentalized due to the practical constraints of just how much infor-
mation can be consumed at any point in time. Achieving this balance empowers
your leadership to make informed decisions that help steer your organization
to success.

Chapter 16: Audit and Regulatory Compliance
This chapter explains that audit and regulatory compliance require that you
establish IT controls to guide the way in which the team works. Your auditors
may be internal employees or external consultants engaged by your fi rm. The
internal audit team usually focuses on internal policy, whereas external audi-
tors are often engaged to ensure compliance with federal regulatory guidelines.
Although many technology professionals look at audit and regulatory compli-
ance as just something that you have to do, others view it as an obligatory yet
unfortunate waste of time and effort. Our focus is on establishing effective
IT controls that help avoid both defects and risk. This chapter will help you

Preface xxxvii

understand how to use audit and regulatory compliance to ensure that you
prevent the sorts of major systems glitches and outages that we read about all
too often.

Chapter 17: Agile ALM in the Cloud
This chapter explains how cloud-based computing promises, and often delivers,
capabilities such as scalable, virtualized enterprise solutions; elastic infrastruc-
tures; robust services; and mature platforms. Cloud-based architecture presents
the potential of limitless scalability, but it also presents many challenges and
risks. The scope of cloud-based computing ranges from development tools to
elastic infrastructures that make it possible for developers to use full-size test
environments that are both inexpensive and easy to construct and tear down, as
required. The fi rst step to harnessing its potential is to understand how applica-
tion lifecycle management functions within the cloud.

Chapter 18: Agile ALM on the Mainframe
This chapter explains how to apply the agile ALM in a mainframe environ-
ment. Application lifecycle management on the mainframe typically enjoys
a specifi c workfl ow. Despite a culture that lends itself well to step-by-step
defi ned procedures, ALM on the mainframe often falls short of its potential.
Sure, we can specify steps of a process, and everyone accepts that process toll-
gates are necessary on the mainframe. But that does not mean that our main-
frame processes help to improve productivity and quality. It is essential that
ALM on the mainframe be agile and help the team reach their goals and the
business achieve success.

Chapter 19: Integration across the Enterprise
This chapter explains that understanding the ALM across the entire organiza-
tion requires an understanding of the organization at a very broad level. It also
requires that you understand how each structure within the company interfaces
with the others. In DevOps, we call this systems thinking when we are examin-
ing an application from its inception to implementation, operation, and even
its deprecation. DevOps principles and practices are essential in integrating the
ALM across the organization.

Chapter 20: QA and Testing in the ALM
In this chapter we discuss how quality assurance (QA) and testing are essential
to any software or systems lifecycle. Most technology professionals view the
QA and testing process as simply executing test cases to verify and validate that
requirements have been met and that the system functions as expected. But there

 Prefacexxxviii

is a lot more to QA and testing, and this chapter will help you understand how
to establish effective processes that help ensure your system functions as needed.
DevOps helps us build, package, and deploy software much more quickly. Too
often, the QA and testing process cannot keep up with the accelerated deploy-
ment pipeline. DevOps cannot succeed without excellent QA and testing.

Chapter 21: Personality and Agile ALM
In this chapter we examine key aspects of human personality in the context of
the agile ALM. Top technology professionals often have remarkable analytical
and technical skills. However, even the most skilled professionals often have
great diffi culty dealing with some of the interesting behaviors and personalities
of their colleagues. Implementing an agile ALM requires that you are able to
work with all of the stakeholders and navigate the frequently thorny people is-
sues inherent in dealing with diverse groups of very intelligent, albeit somewhat
idiosyncratic, and often equally opinionated, people

Chapter 22: The Future of ALM
In this chapter we discuss what lies ahead for the agile ALM.

Register your copy of Agile Application Lifecycle Management at informit.com
for convenient access to downloads, updates, and corrections as they become
available. To start the registration process, go to informit.com/register and log
in or create an account. Enter the product ISBN (9780321774101) and click
Submit. Once the process is complete, you will fi nd any available bonus content
under “Registered Products.”

xxxix

Acknowledgments

Many people assisted me during the writing and publishing of this book, begin-
ning with a family who tolerates my obsession with writing and broadcasting
about confi guration management and application lifecycle management best
practices. I also need to acknowledge the amazing folks at Addison-Wesley, es-
pecially Chris Guizikowski who graciously supported my insatiable requests for
books and online materials to read during my writing and gently nudged me to
get this work completed. I also have to thank the many thousands of colleagues
who collaborate with me on the ground implementing these best practices and
all those who shared their thoughts and ideas online. I especially want to thank
the thousands of people who have written to me commenting on the books and
articles that I have written over what has been more than a decade. Writing,
for me, is a team sport, and I am grateful for everyone who connected with me
via the various social networks and especially everyone who dropped me a note
commenting on what I had written. I have learned from each one of these ex-
changes, and I am grateful for your collaboration and collegiality.

This page intentionally left blank

xli

About the Authors

Bob Aiello has more than twenty-fi ve years of prior experience as a technical
manager at leading fi nancial services fi rms, with company-wide responsibility
for CM and DevOps. He often provides hands-on technical support for enter-
prise source code management tools, SOX/Cobit compliance, build engineer-
ing, continuous integration, and automated application deployment. He serves
on the IEEE Software and Systems Engineering Standards Committee (S2ESC)
management board and served as the technical editor for CM Crossroads for
more than 15 years. Bob is also editor of the Agile ALM DevOps journal and
coauthor of Confi guration Management Best Practices (Addison-Wesley, 2011).

Leslie Sachs is a New York State certifi ed school psychologist and COO of CM
Best Practices Consulting. She has more than twenty years of experience in psy-
chology, intervening in diverse clinical and business settings to improve individ-
ual and group functioning. Leslie is assistant editor of the Agile ALM DevOps
journal and coauthor of Confi guration Management Best Practices.

This page intentionally left blank

PART I

Defi ning the Process

This page intentionally left blank

61

Chapter 4

Agile Process Maturity

Agile process maturity is a very important consideration when implementing
an agile ALM. But what exactly does process maturity really mean in an agile
context? We know that agile is defi ned by specifi c values and principles,1 so
obviously the agile ALM must be—well—agile. To begin with, we know from
the agile manifesto that agile ALM values individuals and interactions over pro-
cesses and tools.2 But this does not mean that we don’t need to focus on pro-
cesses and tools. Similarly, the agile ALM focuses on creating working software
over comprehensive documentation and customer collaboration over contract
negotiation. Still, documentation is often absolutely necessary, and signed con-
tracts are rarely optional in the business world. It is equally true that successful
professionals do not hide behind a contract and make every effort to delight
their customers with excellent value and service.

The agile ALM also emphasizes responding to change over following a plan,
although many of the places where we work will not fund any effort without
a comprehensive plan. Those who provide the funds for a development project
want to know exactly what they are getting into and when they will see results.

In this chapter, we will examine the factors that affect agile process maturity
from a number of different perspectives. Many technology professionals fi nd
that they must implement agile processes in a large organizational context, in-
cluding managing teams that are composed of many scrums, totaling scores or
even hundreds of developers working from a variety of locations. Scalability is
certainly an essential aspect of agile process maturity. Mature agile processes
must be repeatable for each project in the organization and have suffi cient sup-
port for project planning. We also need to understand how process maturity
affects non-agile development methodologies, including waterfall and other

1. http://agilemanifesto.org/principles.html
2. http://agilemanifesto.org

http://agilemanifesto.org/principles.html
http://agilemanifesto.org

Chapter 4 Agile Process Maturity62

process models. There are other important considerations as well and any dis-
cussion of ALM should start with a clear understanding of the goals involved.

4.1 Goals of Agile Process Maturity

This chapter focuses on helping you establish an agile development process that is
light but effective and, most importantly, repeatable. This is not an easy goal to ac-
complish. In many ways, agile shifts the focus away from implementing processes
that contain comprehensive controls, or as agile enthusiasts describe as being high
in ceremony. Ceremony, in this context, really means bureaucracy or, more spe-
cifi cally, laden with excess controls and “red tape.” The goal of this chapter is
to help you implement agile processes that are Lean,3 repeatable, clearly defi ned,
measureable, and adhere to the principles defi ned in the agile manifesto.4 We will
also discuss how to coexist (or perhaps survive) in non-agile environments. The
fi rst step is to understand process maturity in an agile development environment.

4.2 Why Is Agile Process Improvement Important?

Any software or systems development process must continually evolve to meet
the ever-changing challenges and requirements of the real world. Agile is no dif-
ferent in this respect. Agile practitioners also know that agile is not perfect and
many agile projects have failed for a variety of reasons. Agile processes need to
evolve and improve using the very same values and principles that are expected
in any agile development effort.

Getting Started with Agile Process Maturity

• Assess your existing practices.

• What works well?

• What needs to be improved?

• Process improvement must be inclusive.

• Prioritize based upon risk.

• Process improvement is a marathon—not a sprint.

• Process improvement must be pragmatic, agile, and Lean.

3. www.poppendieck.com
4. http://agilemanifesto.org/principles.html

http://www.poppendieck.com
http://agilemanifesto.org/principles.html

4.3 Where Do I Start? 63

In some ways agile process maturity could be understood almost in terms of a
purity measure. Agile processes that adhere closely to agile principles would, in
these terms, be considered a more agile process and, obviously, processes that just
embrace some agile processes would be more of a hybrid waterfall-agile process.

In order for this measure to be valid, we need to operationalize these princi-
ples by considering the extent to which processes embrace agile principles and
practices. So how agile are you?

Many organizations want to embrace agile practices and may even recognize
the value of agility. They also may fi nd themselves unable to immediately shed
their existing processes, especially in terms of corporate governance. This does
not mean that they don’t want to start the journey, and they may actually reach
a very high level of agile process maturity eventually. So how do you start to
adopt agile practices and begin the journey?

4.3 Where Do I Start?

The toughest part of implementing mature agile processes is fi guring out where
to start. I usually start by assessing existing practices and fully understand what
works well and what needs to be improved. It is common for me to fi nd that
some practices work just fi ne in one organization that I would have expected
were the source of problems. I fi nd that sometimes less-than-perfect processes
and procedures may not really be the pain point that one would expect—usually
because of the organizational culture. Obviously, trying to fi x something that
isn’t broken will not be very successful, and you will likely fi nd that you do not
have much credibility with the key stakeholders if they just don’t feel that you are
focused on solving the most important problems. In these situations, I commu-
nicate my concerns and then focus on what they want me to work on, although
I know that they will come back to me and ask for help when things go wrong.

Cludgy Version Control

I recall working with a small software development team supporting an
equities trading system. The developers used ClearCase and wanted my
help with implementing some branching methods. While I was working
with them, I discovered that they had integrated ClearCase with bugzilla
in a very unreliable way. They had written the scripts (e.g., ClearCase

Chapter 4 Agile Process Maturity64

triggers) themselves and were very proud of their achievement. I looked
at the scripts and realized that these would not work if they had more
than one or two developers on the project. I communicated my concerns
to the development manager, who assured me that “his” scripts worked
just fi ne. There was no point in trying to fi x something that my colleague
did not view as broken. The manager approached me a year later, right
after he added two more developers to his team and he ran into the
problems that I had explained could occur. This time he was more than
willing to work with me and accept my help.

Getting started with agile process maturity is certainly an essential fi rst step.
Being successful with agile ALM requires that you understand what agile pro-
cess maturity is all about.

4.4 Understanding Agile Process Maturity

Agile process maturity can be understood in many different ways. The most
obvious measure of agile process maturity could be in terms of the degree to
which the practices adhere to the agile manifesto and the agile principles.5 I usu-
ally refer to this as a purity measure to indicate the degree to which the process
follows authentic agile principles. As a consultant, I am usually called in to help
with situations that are less than perfect. This pragmatic reality does change the
fact that we want to approach implementing the agile ALM in a manner that
adheres to and benefi ts from agile values and principles.

Agile Process Maturity

Agile process maturity may be understood in terms of

• Adherence to agile principles

• Repeatable process

• Scalability (scrum of scrums)

• Comprehensive (the items on the right)

5. Ibid.

4.4 Understanding Agile Process Maturity 65

• Transparency and traceability

• IT governance

• Coexistence with non-agile

• Harmonization with standards and frameworks

• Planning

• Continuous process improvement

These need to occur without compromising individuals and interac-
tions, working software, customer collaboration, and responding to
change.

In order for this measure to be valid, we need to operationalize these princi-
ples. So let’s consider what following agile values and principles really means
in practice and how we can strive for the most effective agile practices possible.

4.4.1 Adherence to the Principles

Mature agile requires that we adhere to the agile principles that we reviewed in
Section 3.7. In this book we seek to educate you on software methodology in a
way that empowers you to apply these principles and create a software lifecycle
that is best for your project and your organization. One of the ironies that we of-
ten see is that some agile practitioners are the least “agile” people in the world,
insisting on there being only one right way to become truly agile. I disagree, and
we hope to share the best practices in creating an agile ALM that you can tailor
to your own special requirements.

Dysfunctional Agile

In our consulting practice, we often see groups adopting agile practices
and actually getting lost along the way. Becoming agile does not happen
overnight and, in practice, maybe it shouldn’t. Many groups have legacy
processes in place that cannot be abandoned without affecting projects
already underway. We view organically transitioning to agile as being
more practical. In order to be successful, your team needs to understand
agile principles and how to create a mature agile application lifecycle.
Above all, right-sizing your processes is your most critical success factor.

Chapter 4 Agile Process Maturity66

4.4.2 Repeatable Process

Agile processes, just like any other process, must be repeatable. It does not help
to have an agile ALM unless it can be used repeatedly to achieve the desired
results. We have seen many agile teams struggle with repeatability because they
depended upon the guidance of individual players rather than understanding
that agile is still a process that should yield the same results, regardless of who is
performing the task—assuming the proper level of skills and training.

Agile and Law Enforcement

Bob has long had a passion for serving as a volunteer in both law en-
forcement and emergency medical services. From responding to fi res,
to medical emergencies, and especially to crimes in progress, police and
emergency personnel must provide a predictable consistent response
while still maintaining the fl exibility to deal with the situation at hand.
When you call because a bad guy is breaking into your car in front of
your house, you expect the same results regardless of which police offi cer
happens to respond. You also realize that the situation can be dynamic,
and police must be the very model of agility. Law enforcement, emer-
gency medical, and fi re response must provide repeatable processes while
maintaining the fl exibility to respond to the situation at hand.

Agile process maturity should be understood in terms of repeatability. An-
other important issue is scalability.

4.4.3 Scalability (Scrum of Scrums)

Organizations often pilot agile methodologies in one particular group with spec-
tacular results. The truth is that the participants in the agile pilot are often hand-
picked and among the best resources in the organization. But agile processes
must be scalable so that other teams within the organization can also be success-
ful. We discuss the critical success factors for scalability throughout this book
and then tie them together in Chapter 19, “Integration across the Enterprise.”
If you want a scalable process, then you need to start by ensuring that your ap-
proach is comprehensive.

4.4.4 Comprehensive (Items on the Right)

Agile processes must be comprehensive so that everyone understands what
needs to be accomplished, including interdependencies and deadlines. The agile
manifesto aptly notes the following:

4.4 Understanding Agile Process Maturity 67

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.6

Mature agile processes value the items on the right so that we can ensure
our processes are comprehensive, including processes and tools, comprehensive
documentation, contract negotiation, and following a plan.

Comprehensive processes are essential, as are transparency and traceability.

4.4.5 Transparency and Traceability

Mature agile processes are transparent and traceable. Transparency is funda-
mental because you want everyone to understand what is being done and how
their work impacts (and is impacted by) the work of others. You also want to be
able to verify that steps have been completed. Processes that are transparent are
easier to understand and follow, ensuring that everyone understands the rules
of the road. Being able to go back and verify that each step was completed suc-
cessfully is also essential, particularly when regulatory compliance is required.
In addition, you want to be able to provide transparency to senior management
through effective IT governance.

4.4.6 IT Governance

IT governance provides visibility into the organizational processes and exist-
ing operations so that senior management can make accurate decisions based
upon the information that is available. I always explain to my colleagues that
IT governance is essential because this function enables senior management
to make the right decisions based upon accurate and up-to-date information.
You can even look at IT governance as managing the right information “up”
to those who are in the position of making decisions. In some large organiza-
tions, agile projects may be in progress at the same time as non-agile projects.

6. http://agilemanifesto.org/

http://agilemanifesto.org/

Chapter 4 Agile Process Maturity68

Mature agile processes must be able to successfully coexist in these real-world
hybrid environments.

4.4.7 Coexistence with Non-agile Projects

The elephant in the room for agile is the number of non-agile projects that exist
within an organization that is working to implement agile. We have seen many
organizations where existing non-agile projects were already underway, or per-
haps existing team members were just not comfortable with taking an agile
approach. Mature agile application lifecycle management often requires coex-
istence with non-agile projects. Coexistence is a sign of maturity, as is aligning
with industry standards and frameworks.

4.4.8 Harmonization with Standards and Frameworks

Many organizations must follow the guidance provided in industry standards,
including ISO 9000 or frameworks such as ISACA COBIT or the ITIL v3 frame-
work. Mature agile processes can easily align and harmonize with the guidelines
provided by these well-respected industry standards and frameworks. This in-
cludes meeting the requirements of Section 404 of the Sarbanes-Oxley Act of
2002 or safety standards such as those commonly required by the automotive,
medical engineering, or defense industries. Mature agile helps improve quality
and can align well with IT controls that are reasonable and appropriate.

The agile manifesto notes that it is more important to be able to respond to
change than to simply follow a plan. However, mature agile processes must still
be able to create adequate plans that will help guide the development effort.

4.4.9 Following a Plan

Planning is essential for the success of any signifi cant endeavor. Too many ag-
ile enthusiasts erroneously think that they don’t need to create comprehensive
plans to guide the software and systems development effort. The dark side of
planning is that sometimes those creating the plan refuse to admit what they
do not know. Mature agile processes plan as much as possible and commu-
nicate those plans effectively. Unknowns should be identifi ed as risks, which
are then mitigated as part of the risk management process. Many years ago
W. Edwards Deming noted the importance of “driving out fear.” Agility ad-
mits when it does not have enough information to specify the details of a plan.
Decisions are made at the “last responsible moment.” Mature agile processes

4.5 Applying the Principles 69

embrace comprehensive plans but also do not attempt to plan out details that
cannot yet be specifi ed.

4.4.10 Continuous Process Improvement

Process improvement is a journey that must be continuously harnessed through-
out the software and systems lifecycle. The mature agile process embraces con-
tinuous process improvement at both a deep technical level and at a pragmatic
business level. Improving your technical processes is mostly focused on avoiding
human error while maintaining a high level of productivity and quality. Improv-
ing your business processes can be a bit more complicated.

Do you make satisfying the customer through early and continuous delivery
of valuable software your highest priority? Does your agile ALM process har-
ness change for the customer’s competitive advantage and welcome changing re-
quirements, even late in development? Your delivery cycle should favor shorter
iterations, with delivering working software frequently, from every couple of
weeks to every couple of months. Developers and businesspeople should be
working together daily throughout the project. Projects are built around moti-
vated individuals, and they are provided the environment and support they need
and are trusted to get the job done. Information is best conveyed face to face,
and working software is the primary measure of progress.

The agile ALM should help all the stakeholders maintain a constant pace in-
defi nitely in what is known as sustainable development. There is also continuous
attention to technical excellence and good design, including a focus on simplic-
ity—the art of maximizing the amount of work not done. Self-organizing teams
produce the best architectures, requirements, and designs. At regular intervals,
the team refl ects on how to become more effective and then tunes and adjusts its
behavior accordingly. These principles have formed the basis of agile develop-
ment for many years now. In order to understand them, you need to consider
how to operationalize and implement these principles in practice. Then we will
show how they fi t into and, of course, facilitate the agile ALM.

4.5 Applying the Principles

Implementing the agile ALM requires that you understand the agile values
and principles and, more importantly, how to utilize them in practical terms.
Technology projects require a deep understanding of exactly what the system
should do and how it should work. These are important details that are typ-
ically expressed in terms of requirements. There are many different types of

Chapter 4 Agile Process Maturity70

requirements, from system-level response time to functional usage, including
navigation. Many professionals use epics7 and stories8 to describe requirements
in high-level terms. Writing and maintaining a requirements document is often
less than fruitful, with most requirements documents out of date even before
they have been approved by the user. Agile takes a pragmatic approach to re-
quirements management that focuses on working software instead of writing
requirements documents that are often of limited value.

One very effective way to manage requirements is to supplement them with
well-written test cases and test scripts. Test cases often contain exactly the same
information that you might expect in a requirements document.

Test Cases for Trading Systems

Many years ago I requested that the testers work with me to write test
cases for a major trading system in use on the fl oor of the New York
Stock Exchange. The user representative was hesitant at fi rst to focus on
testing early in the software development process. I managed to persuade
one of the senior representatives to give me one hour. During that ses-
sion I simply asked him to say what he would test and what he expected
the results to be. Within that fi rst hour, this business expert actually
picked up the phone and told the head of development that “what he
had asked for was not what he needed.” I had caused the business expert
to start actively thinking about how he was really going to use the sys-
tem. The requirements phase had been long and thorough, yet the real
breakthrough occurred when we started writing test cases. Well-written
tests can be very effective at supplementing, and even completing, re-
quirements descriptions that are often incomplete because all of the us-
age details may not be initially understood.

4.6 Recognition by the Agile Community

Agile development is part of a large ecosystem with an active and involved com-
munity. Mature agile processes are aligned with agile principles and are recog-
nized by the agile community. Much of my work involves taking innovative

7. Epics are a description of a group of features (e.g., stories) that help document requirements
in agile development.
8. Stories are descriptions of features from an end-user perspective, which serve to document
requirements in agile development.

4.8 What Agile Process Maturity Is Not 71

and even risky approaches when I customize software methodology to meet
the unique needs of often complex organizations. Although I always maintain
confi dentiality, I fi nd it effective to write and publish articles that describe my
approach to DevOps and agile process maturity. Sometimes, my views are well
accepted by the agile community, and other times the reaction can be quite
signifi cant. I actually use my esteemed colleagues in the agile community as a
feedback loop to continuously improve my own process methodologies.

Recognition within the agile community is a worthy goal. However, gaining
consensus may be much more diffi cult to achieve.

4.7 Consensus within the Agile Community

The agile community can be both opinionated and very vocal. It can also be dif-
fi cult to gain consensus. You need to expect that there will always be a diversity
of views and opinions expressed in the agile community. Sometimes, views are
expressed in rather emphatic terms. In fact, it is the great irony that some agile
practitioners are the least agile people I have ever worked with, insisting that agil-
ity can be practiced in only one particular way. My view is to enjoy the plurality
of opinions, looking for consensus when I can fi nd it and also understand that
sometimes experienced practitioners will have differing points of view. This is es-
pecially true when confronting some of the more thorny issues in understanding
agility. One of these considerations is what agile process maturity is not.

4.8 What Agile Process Maturity Is Not

The agile process is not an excuse to skip documenting and tracking require-
ments, so agile process maturity is also not an excuse for failing to implement
enough “ceremony” to get the job done. Although agile has boasted many fabu-
lous successes, it is also not without its failures. One of the biggest problems
with agile today is folks just going along with what they are told without ques-
tioning and refl ecting upon the effectiveness of the agile process.

Emperor’s Clothes

Hans Christian Andersen tells the age-old story of the Emperor’s New
Clothes in which a team of conmen come into a town and convince
everyone there that they can create a set of clothes that can only be seen

Chapter 4 Agile Process Maturity72

by those subjects who are truly loyal to the emperor and are invisible to
those unfi t for their positions, are stupid, or are incompetent. As the story
goes, the emperor is sitting on his throne in his underwear while these
two men pretend to be tailoring him a fi ne suit. Predictably, everyone is
silent because they are afraid to speak up and have the emperor think
that they are not loyal to him. Finally, a young child blurts out that the
emperor is not wearing any clothes and the townspeople realize that they
are being fooled.

Too often folks involved with the agile transformation are silent even
though they may have well-founded misgivings. The young child in this
fable innocently speaks up. We should all have the courage to express
our own misgivings. Remember Deming teaches us to drive out fear.

Immature agile processes can create many challenges for the develop-
ment team.

4.9 What Does an Immature Agile Process Look Like?

Immature agile processes can resemble software development in the Wild, Wild
West. If your team delivers in an inconsistent way and lacks transparency and
predictability, then you are likely dealing with a lack of process maturity. You
might even be successful from time to time—but maturity involves a lot more
than occasional heroics. There are many other potential problems with agile.

4.10 Problems with Agile

Too often agile has become an excuse to work in a very loose and ineffective
way. We have seen agile teams use the agile manifesto as an excuse to not plan
out their projects and also to not communicate their plans with others. Some-
times teams also fail to document and track requirements, which can lead to
many problems, including a high incidence of defects. We have also seen teams
that used agile as an excuse to not document their work. Mature agile processes
provide the right balance of planning, requirements management, and documen-
tation to avoid mistakes and get the job done. We recall one major incident in a
large bank where a vendor claimed to be employing agile and shipped a release
that was not really ready to be seen by the customer.

4.11 Waterfall Pitfalls 73

One CIO’s View of Agile

During a confi guration management (CM) assessment, which I con-
ducted as a consultant, I had the opportunity to speak with the CIO
of a large international bank, who described his recent experience with
a software vendor who had represented their development practices as
being agile. The vendor did a lot of development offshore with teams
of only four or fi ve developers using scrum and sprints that lasted only
two or three weeks. Because the team adhered to fi xed iterations, they
were delivering code that was incomplete or, as the CIO described it,
“half-baked.” I spoke with the vendor’s development manager, who es-
sentially admitted that they did adhere strictly to fi xed timebox itera-
tions and, as a result, occasionally some features were not completely
implemented. The vendor saw no problem with this and viewed their
development methodology as quite excellent, completely ignoring the
viewpoint of the customer.

Although agile has its challenges, let’s not lose sight of the challenges often
seen in waterfall.

4.11 Waterfall Pitfalls

Agile enthusiasts have long described the many pitfalls and problems inherent
in following the waterfall software methodology. In Chapter 14, “Agile in a
Non-Agile World,” we will discuss these and other challenges as well, but also
acknowledge that there are times when waterfall is the only choice. From the
perspective of agile process maturity, we need to understand exactly where wa-
terfall is problematic so that we do not make the same mistakes in our agile or
hybrid agile processes.

Waterfall, as envisioned by Winston Royce,9 was iterative in nature. But wa-
terfall fails when you try to defi ne requirements that are not yet understood.
Many organizations go through exhaustive planning exercises that are essen-
tially an effort to plan what is not yet known and understood. When creating a
plan, you need to identify the things that are not yet well understood as project
risks. Risk itself is not inherently bad. Many organizations, including trading

9. Royce, Winston W. (1970). “Managing the Development of Large Software Systems.” In:
Technical Papers of Western Electronic Show and Convention (WesCon) August 25–28, 1970,
Los Angeles, USA.

Chapter 4 Agile Process Maturity74

fi rms, actually thrive on risk. It is also essential to create adequate documenta-
tion and to keep it updated as necessary. Many organizations spend so much
time trying to track requirements and create exhaustive project plans that they
leave no time to actually get to software development and have to rush to make
project deadlines. This dysfunctional approach can result in defects and signifi -
cant technical debt.

Mature agile processes take a pragmatic approach to requirements defi nition
and tracking while also establishing enough of a project plan to communicate
dates and deliverables to all stakeholders. There are times when documentation
is not negotiable, whether your project is using agile or waterfall.

Essentials

• Planning the unknown

• Failing to manage risk

• Documentation outdated

• No time for coding since we spent our time planning

4.11.1 Mired in Process

We often see organizations that are simply mired in their waterfall processes.
These groups typically take a very rigid approach to planning and requirements
gathering. Although sometimes waterfall makes sense, it is essential to always be
pragmatic and avoid getting mired in your own processes. When this happens,
we have seen teams where it actually became part of the culture to pretend to be
following the process.

4.11.2 Pretending to Follow the Process

One of the most dysfunctional behaviors we often see is organizations that re-
quire complete adherence to waterfall processes, which results in team members
being forced to pretend to be following these rigid waterfall processes. In these
circumstances we fi nd people who feel pressured into creating and following
plans even when they really do not have all of the necessary details, or cre-
ating requirements specifi cations that document features that are not yet well
understood. If management forces employees to follow waterfall in a rigid and
dysfunctional way, then they really have no choice but to smile and pretend to
follow the process. The better way is to create mature agile processes that in-
clude both the items on the left of the agile manifesto and the items on the right.

4.14 IT Governance 75

4.12 The Items on the Right

The agile manifesto teaches us to value individuals and interactions over pro-
cesses and tools, working software over comprehensive documentation, cus-
tomer collaboration over contract negotiation, and responding to change over
following a plan. But mature agile processes must have robust processes and
tools, adequate documentation, and plans. You also don’t want to try to engage
with customers without well-written contracts and clear agreements. The items
on the right side of the agile manifesto are actually very important. It is also im-
portant to adjust your ceremony for the environment and culture in which your
organization is operating.

4.12.1 Adjusting Ceremony

Agile processes are said to be “light” in terms of ceremony, which means that
they are not overly burdensome with rigid verbose rules and required proce-
dures, which are inherent in creating IT controls. Mature agile processes are
able to adjust the amount of ceremony required to avoid mistakes and still get
the job done. Although right-sizing the amount of process is a must-have, so is
coexisting with non-agile processes when necessary.

4.13 Agile Coexisting with Non-Agile

There are many times when agile simply must exist with non-agile processes.
This is the real world that many agile practitioners fi nd so diffi cult to accept.
We work with many large banks and fi nancial services fi rms where agile must
coexist with non-agile processes. This is often the case when large organizations
must have IT governance in place to ensure that senior management can make
decisions based upon adequate information.

4.14 IT Governance

IT governance is all about providing information to senior management so that
the right decisions can be made. Many agile processes suffer from failing to pro-
vide adequate information to senior managers. Mature agile processes provide
enough information so that senior management can make the right decisions in
support of the development effort. IT governance is closely aligned with provid-
ing transparency.

Chapter 4 Agile Process Maturity76

4.14.1 Providing Transparency

Mature agile processes provide the transparency that is essential to help all
stakeholders understand the tasks that they have to complete and especially
how their work affects the work of other members of the team. Processes, and
especially workfl ows, help the entire team understand what needs to be done on
a day-to-day basis. This is exactly where having just enough process can help
you get the job done and avoid costly mistakes. Above all, you want to have an
ALM that follows the agile principles.

4.15 ALM and the Agile Principles

Mature agile processes should obviously adhere to agile principles. The agile
ALM is customer-centric and facilitates the early and continuous delivery of val-
uable software. We welcome changing requirements, even late in development,
and harness change for the customer’s competitive advantage. The agile ALM
should help deliver working software by frequently facilitating daily collabora-
tion between all stakeholders, including businesspeople and developers. Projects
should be built around motivated individuals with the environment and support
they need while encouraging face-to-face interactions. Working software is the
primary measure of progress.

The agile ALM should promote sustainable development, including a con-
stant pace throughout the duration of the project. There also should be con-
tinuous attention to technical excellence and good design enhancing agility,
along with valuing simplicity instead of overly complex design and processes.
The agile ALM empowers the cross-functional self-organizing team, resulting
in the best architectures, requirements, and designs. The mature agile ALM
also includes regular opportunities to refl ect on how the process can become
more effective, tuning and adjusting its processes and behavior. The mature
agile process adheres to these agile principles on a constant and reliable ba-
sis. This is why you need to start off with processes that are repeatable and
predictable.

4.16 Agile as a Repeatable Process

Mature agile processes must be repeatable above all else. Even the best pro-
cess will be of little value if it cannot be used reliably across all of the projects
and groups involved with completing the work. Closely related is the need for
scalability.

4.17 Deming and Quality Management 77

4.16.1 Scalability

Scalability means that the mature agile process can be used reliably across the en-
terprise. We often fi nd that this is exactly where organizations struggle the most.
We will review some tactics to help ensure that your processes can scale to the
enterprise in Chapter 19, “Integration across the Enterprise.” Another key aspect
of agile process maturity is ensuring that you deliver on time and within budget.

4.16.2 Delivering on Time and within Budget

We see many agile teams struggling with the reality that no one is going to give
them a blank check and tell them to take their time on delivering results. Mature
agile processes should provide enough planning and structure to help ensure
that the software can be delivered on time and within budget. Unless your senior
management team is clairvoyant and just anticipates your team’s every whim,
you will need to communicate what you need to get the job done. This should
include a clear idea of the timeframe required and the budget that will help
ensure success of the project. This is particularly essential when considering the
quality of the software that you deliver.

4.16.3 Quality

Mature agile processes must ensure that quality is a top priority. This requires
a strong focus on robust automated testing and benefi ts greatly from thorough
test planning. Well-written test cases can help supplement even incomplete re-
quirements documents. Mature agile processes cannot survive without a strong
focus on quality and testing. W. Edwards Deming, regarded by many as the
father of quality management, was well known for explaining that quality must
be built in from the very beginning of the software and systems lifecycle. This is
particularly true in mature agile processes.

4.17 Deming and Quality Management

Many of the lessons from Deming are a main focus of the agile ALM, and we
will point them out throughout this book. Testing is essential, but there are
many other ways to build quality into the agile ALM.

4.17.1 Testing versus Building Quality In

Application testing is a must-have. But quality has to be built in from the very
beginning. Code reviews and inspections are among the tools that help ensure

Chapter 4 Agile Process Maturity78

quality is built into the product from the very beginning. Ensuring that require-
ments are well defi ned is essential for ensuring high-quality systems. The agile
ALM provides a comprehensive framework of best practices to help build qual-
ity into the product from the very beginning. It is also the best way to help
improve productivity.

4.17.2 Productivity

Technology professionals often fi nd themselves mired in the quagmire of trying
to get work done effi ciently. The mature agile ALM helps avoid mistakes and
rework that is so often the reality of today’s software and systems development
effort. One of the most effective practices to improve productivity is rapid itera-
tive development.

4.18 Agile Maturity in the Enterprise

Implementing processes across any large organization can be very challenging,
and agile process maturity should be measured across the enterprise. While
we are not advocating comparing groups to each other, which could actually
be counterproductive, we do want to have common criteria to help each team
plan their own process improvement efforts. It is best to understand processes
within the group context itself. We have seen teams that had technical fl aws in
their processes, tools, or procedures and in one group these issues presented a
signifi cant challenge, but for another it was almost irrelevant. For example, we
have seen teams lack strong version control procedures but somehow manage
to avoid problems that we would have expected through sheer force of will
or even manual controls. Obviously these situations are optimal, but still each
team may have a very different view of their priorities and pain points. We
implement agile processes consistently across the enterprise, while still under-
standing that each team may have a somewhat different culture, environment,
and priorities. We can manage this balance by establishing the goals and ob-
jectives while understanding that there could be some difference in processes,
tools, and procedures.

4.18.1 Consistency across the Enterprise

Process maturity models can be helpful in establishing common criteria to help
ensure consistency across the enterprise. We also use industry standards and
frameworks as a source of consistent best practices to implement across the

4.20 Measuring the ALM 79

enterprise. For example, we might ask a team to explain how they implement
automated build, package, and deployment, including their procedures to verify
and validate that the correct code has been deployed. Teams are often quite up-
front about what they are doing well and what could be improved. Helping each
team to focus on its own perceived priorities is essential for successful process
improvement. But there is also room for ensuring that industry best practices
are implemented consistently across the fi rm. This work requires excellent com-
munication and even some good marketing of the new approach.

4.18.2 Marketing the New Approach

We never assume that teams will just automatically agree to implement the
best practices that we advocate. Sometimes, it is best to help a team create its
own plan. We balance this approach with enterprise process improvement ef-
forts to essentially market industry best practices using the latest processes and
tools. Throughout this effort it is essential to continuously focus on process
improvement.

4.19 Continuous Process Improvement

The most effective way to implement mature agile processes is to take an agile
and iterative approach to implementing the agile ALM itself. This means that
you need to be continuously working toward excellence. Learning from mis-
takes is par for the course, and effective processes should also be self-correcting.

4.19.1 Self-Correcting

Process improvement is not without its challenges. The important thing is to
ensure that your processes correct themselves and evolve. Being able to improve
your processes is much easier if you are able to measure them and demonstrate
progress over time.

4.20 Measuring the ALM

We tend to be wary of overengineering the measurement process, as some
teams tend to try to game the measurement. With any measurement approach,
it is important to consider validation up-front. This is especially true with
regard to metrics.

Chapter 4 Agile Process Maturity80

4.20.1 Project Management Offi ce (PMO) Metrics

Metrics, including those used in project management, can be very important.
More importantly, selecting valid and verifi able metrics is key to ensuring a
successful measurement approach leading to quantifi able process improvement.
Our experience has been that less is more in this case, and the best approach
is to select a few metrics that are valid and verifi able. Establishing an in-house
metrics program is very important. It is also important to ensure that your ven-
dors do the same.

4.21 Vendor Management

Vendors often have strong sales and marketing functions that sometimes include
information on their processes, which can include metrics. It is important for
you to review and understand your vendors’ criteria. We have had many times
when we were asked to review vendor programs and give our recommendations
on ensuring that the vendor approach was aligned with our client’s require-
ments. It has been our experience that many vendors welcome this input and
where there are gaps, they should be understood as well. Although agile process
maturity is typically focused on software, we often review processes around
hardware development as well.

4.22 Hardware Development

Hardware development is often dependent upon a waterfall approach because
half an incomplete circuit chip is often not very helpful. Our effort is to align the
agile ALM with the engineering lifecycle required to design and implement hard-
ware. This is often required when we consult with fi rms that create fi rmware.

4.22.1 Firmware

Firmware is software that must be created and embedded in the hardware that
consists of the complete hardware-software component. We view agile process
maturity as part of this alignment and have seen teams succeed quite well even
when using a hybrid waterfall approach for the hardware and an agile approach
for the fi rmware.

4.23 Conclusion 81

4.23 Conclusion

There are many factors to consider when creating a mature agile process. We
have introduced and reviewed many of the issues involved with creating mature
agile processes. The agile ALM needs to be aligned with the technology, envi-
ronment, and culture of the team and the organization within which it will oper-
ate. Rarely do we see teams get this right the fi rst time, and the most successful
groups take an agile iterative approach to creating their agile ALM.

This page intentionally left blank

351

Index

Note: Locators followed by an italicized
n indicate a footnote.

A
A priori change control, 19
A priori changes, 177
Aggressive team members, 331–333
Agile ALM

agile manifesto, 56–57
agile principles, 54–56, 76
customer collaboration, 58–59
designing circuit chips, real-world

example, 58
DevOps for customers, 59
documentation, 60
fi xed timebox sprints, 57–58
getting started, 50–51
goals of, 49–50
hybrid of agile and non-agile methods.

See Hybrid agile.
importance of, 50
organizational culture, 51–52
paradigm shift, 51–52
RAD (rapid application development),

52–54
rapid iterative development, 52–53
requirements, 59–60
standard terminology, 51
user test cases, 59–60

Agile manifesto
items on the left, 56
items on the right, 56, 75
principles of, 56–57. See also specifi c

principles.
responding to change over valuing a

plan, 118
standards and frameworks, 68
working software over comprehensive

documentation, 110–111

Agile principles
agile process maturity, 69–70, 76
under ALM, 76
in IT operations, real-world example,

210
list of, 54–56
service desks, 210

Agile process maturity
adjusting ceremony, 75
agile principles, 76
applying the principles, 69–70
coexisting with non-agile projects, 75
consensus within the agile community,

71
consistency across the enterprise,

78–79
continuous process improvement, 79
delivering on time within budget, 77
in the enterprise, 78–79
epics and stories, 70
fi rmware development, 80
getting started, 62–64
goals of, 62
hardware development, 80
importance of, 62
IT governance, 75–76
in law enforcement, real-world exam-

ple, 66
marketing the new approach, 79
measuring the ALM, 79–80
one CIO’s view, real-world example,

73
PMO (project management offi ce)

metrics, 80
problems with, 71–73
quality, 77
recognition by the agile community,

70–71
recognizing an immature process, 72

352 Index

Agile process maturity, continued
repeatable processes, 76–77
requirements, 69–70
scalability, 77
self correction, 79
test cases for trading systems, real-

world example, 70
transparency, 76
vendor management, 80
version control, real-world example,

63
Agile process maturity, overview

coexistence with non-agile projects,
68

comprehensive processes, 66–67
continuous process improvement, 69
dysfunctional agile, 65
IT governance, 67–68
planning, 68–69
principles of, 64–65
purity measure, 64
scalability, 66
standards and frameworks, 68
traceability, 67
transparency, 67

Agile processes
agile development versus iterative

development, 16–17
disasters, transitioning from hybrid

agile to agile, 255
hybrid of agile and non-agile methods.

See Hybrid agile.
Agile service catalog, real-world example,

186
ALM (application lifecycle management)

agile methodology. See Agile ALM.
build engineering, 98–99
change management. See Change

management.
future of, 347–349
getting started, 7–8
goals of, 4–5
importance of, 5–6
mainframe. See Mainframe ALM.
purpose of, 6
versus software delivery lifecycle, 7
versus systems delivery lifecycle, 7

ALM (application lifecycle management),
overview

addressing the business silo, 13
audit and regulatory compliance, 24
automation, 21
build engineering, best practices, 18
business focus, 11–15
change management, best practices, 19
change management, goal of, 22
CI (continuous integration), 21–22
cloud-based computing, 24–25
core confi guration management,

17–21
defi nition of ALM, 8–10
deployment, best practices, 20–21
deployment, continuous. See CD (con-

tinuous deployment).
versus development lifecycle, 9
DevOps, 23
environment management, best prac-

tices, 19
fi nancial systems infrastructure, real-

world example, 14
integration across the enterprise, 25
IT governance, 23
IT operations, 22–23
mature processes versus fl uid, 16–17
QA (quality assurance), 25
rapid iterative development, 17
release management, best practices,

19–20
retrospectives, 23
risk, from a business focus, 13–15
role of personality, 26
scope of, 9
SDLC (software development life

cycle), 10–11
source code management, best prac-

tices, 17–18
testing, 25

Ambler, Scott, 347
American Foundation for the Blind

(AFB), 218
Anderson, Hans Christian, 71–72
Application design, automating, 111
Application management, IT operations,

208

353Index

Applications, testing, 39
Archetypes, 319
Assessing success, with retrospectives,

235–236
Attended automation

agile ALM, 104
continuous deployment, 145
DevOps, real-world example, 226

A-type personality, 331–333
Audit and regulatory compliance

assessing existing practices, 283–284
audit and accountability, 277
essential requirements, 283
external audits, 277
getting started, 274–275
goals of, 273–274
identifying standards and frameworks,

275
importance of, 274
improving quality and productivity,

283
internal audits, 275–276
IT controls, 275–276
IT governance, 271
overview, 24
retrospectives, 244

Audit and regulatory compliance, federal
guidelines

banking oversight, 282
Cobit as framework for IT controls,

280
COSO (Committee of Sponsoring

Organizations), 279
essential components of internal con-

trol, 279
FINRA (Financial Industry Regulatory

Authority, Inc.), 280
GAO (Government Accountability Of-

fi ce), 281–282
guidelines on internal controls, 282
HIPAA (Health Insurance Portability

and Accountability Act) (1966),
280–281

ISACA Cobit, 281. See also Sarbanes-
Oxley Act of 2002.

management assessment of internal
controls, 278–279

OCC (Offi ce of the Comptroller of the
Currency), 282

oversight of securities fi rms, 280
Sarbanes-Oxley Act of 2002, 278–280.

See also ISACA Cobit.
self-administered risk assessment

surveys, 280
for senior management responsibility,

278–280
Audit and regulatory compliance, real-

world examples
audit and accountability, 277
internal audits, 276

Automation
application design, 111
attended automation, 104
change management, real-world exam-

ple, 173
code quality instrumentation, 111–112
deployment, 225–227
DevOps, 115–116, 230
environment management, 114–115
epics and stories, creating, 111
getting started, 104, 107
goals of, 103
gold copies, 114–115
help desks, 116–117
for implementation, 119
importance of, 103–104
incident management, 117
IT operations, 195–196
IT workfl ow, real-world example, 196
keyman risk, 108
lifecycle management, 109
operations, 116
overview, 21
PMO (project management offi ce), 118
problem escalation, 117–118
process modeling, 108
project management, 118
requirements management, 110–111
seamless integration, 109–110
service desk, 117
systems design, 111
TDD (test-driven development),

113–114
test case management, 112–113

354 Index

Automation, continued
testing the lifecycle, 112
tool agnosticism, 106
tools for. See Tools, for automation.
use cases, defi ning, 119
workfl ow, 108
workfl ow, continuous deployment,

148–150
Automation, build engineering

the application build, 94–95
automation tools, 94
build robots, 99
code scans, 100
detection of unauthorized changes,

96–97
unit tests, 100

Autonomy, 339

B
Banking oversight, federal guidelines,

282
Banking systems

change management, real-world exam-
ple, 165–166

continuous deployment, real-world
example, 156

Baseball players and mistakes, real-world
example, 236

Baselining, 96–97
Bimonthly deployments, real-world

example, 146–147
Blaming, 132–133
The blind, real-world example of deliver-

ing retrospectives, 238–239
Boehm, Barry, 53
Books and publications

Confi guration Management Best
Practices: Practical Methods that
Work in the Real World, 18, 348

The Software Project Manager’s
Bridge to Agility, 6

Broderick, Stacia, 6
B-type personality, 331–333
Build engineering

in the ALM, 98–99
automation. See Automation, build

engineering.
baselining, 96–97
best practices, 18

build robots, creating, 99–100
build tools, 101
building quality in, 100
code scans, 100
compile dependencies, 98
components of the build, 93–94
cryptographic hashes, 96
defi nition, 91
detecting unauthorized changes,

96–97
failing fast, 94–95
failure, real-world example, 94
getting started, 92–93
goals of, 91–92
hackers, 95
IDEs (integrated development environ-

ments), 93
importance of, 92
independent builds, 99–100
instrumenting the code, 101
physical confi guration audit, 98
secure trusted base, creating, 95–96
stopping the line, 94–95
unit tests, 100
version IDs, 97–98

Build farms. See CI (continuous integra-
tion), build farms.

Build management, cloud-based ALM,
289

Build robots, creating, 99–100
Build servers. See CI (continuous integra-

tion), build farms.
Build tools, 101
Building quality in, build engineering,

100
Business continuity, 230
Business focus, overview, 11–15
Business management, IT operations,

205–206
Business silos. See Silo mentality.

C
CAB (change advisory board), 176,

202. See also CCB (change control
board).

Canary deployment, cloud-based ALM
real-world example, 290

CASE (computer-aided software engi-
neering), 53

355Index

CBOE (Chicago Board Options Ex-
change) shut down, real-world
example, 329

CCB (change control board), 176, 291.
See also CAB (change advisory
board).

CD (continuous deployment)
addressing the culture, 141
attended automation, 145
banking system, real-world example,

156
bimonthly deployments, real-world

example, 146–147
breaking into smaller pieces, 145–146
CI (continuous integration), 138
container-based deployment, 144
versus continuous delivery, 22,

139–140
copying fi les, 142
data processing director, real-world

example, 149
defi nition, 22
deployment pipeline, 141–142
dress rehearsal, 154–155
eliminating problems, real-world

example, 41
emergency medical tech, real-world

example, 142
environments that mirror production,

152–153
ergonomics, 150
failure, 155
getting started, 141
goals of, 139–140
Hibernate, real-world example,

153–154
identifying dependencies, 152
importance of, 140
Kanban, 148–150
Maven, real-world example, 153–154
monitoring, real-world example, 152
moving targets, real-world example,

143–144
nuclear power plant, real-world exam-

ple, 150
overview, 22
plan B, 155–156
police force, real-world example, 149
practicing, 146–147

rapid incremental deployment,
143–144

repeatability, 147–148
risk assessment, 153–154
risk management, 153–154
risk management container-based

deployment, 144–145
sarin gas, real-world example,

154–155
smoke testing, 156–157
in the software development process,

41
traceability, 147–148
training, 147
trusted base, 151–152
validation, 150–151
verifi cation, 150–151
walkthroughs, 154–155
WIP (work in progress), 149
workfl ow automation, 148–150

Center for Internet Security (CIS), 209
Centralized service desks, 210
Ceremony

adjusting, 75
in agile process maturity, 62
defi nition, 12
retrospectives, 245

Change advisory board (CAB), 176,
202. See also CCB (change control
board).

Change control
bypassing on mainframe ALM, 301
in the software development process,

47
Change control board (CCB), 176, 291.

See also CAB (change advisory
board).

Change evaluation, standards and frame-
works, 204

Change management
in ALM, 166
best practices, 19
CAB (change advisory board), 176
CCB (change control board), 176
change ecosystem, 167
cloud-based ALM, 290–292
collecting feedback, 171–172
command center, 169–170
communication, 165–166

356 Index

Change management, continued
compliance, 164
continuous process improvement,

183–184
cross-enterprise coordination, 180–181
cross-platform coordination, 180
escalating problems, 172–173
event monitoring, 168–169
feedback loops, 171
fi efdoms, 181
getting started, 163–164, 177
goal of, 22, 161
importance of, 162
incident response, 170–172
IT operations, 205–206
last responsible moment, 118
normal changes, 175
organizational structure, 176
overview, 22
pre-approved changes, 174, 175
a priori change control, 19
problem management, 172–173
problems versus incidents, 172–173
publishing changes back to the system.

See Rebasing.
QA (quality assurance), 167–168
real-world example, 205–206
risk assessment, 164–165
risk management, 164–165
SaaS change control, 182–183
SEPG (software engineering process

group), 166
in the software development process,

33–34
specialized change control, 182
standard changes, 175
standards and frameworks, 202, 205
testing, 167–168
traceability, 164
troubleshooting, 169
vendor change control, 182

Change management, change control
topology

confi guration control, 178–179
E-change control, 179–180
emergency change control, 179
gatekeeping, 177
normal changes, 180
overview, 176–177

preapproved changes, 180
a priori changes, 177
process change control, 179
RFC (requests for change), 177–178
SEPG (software engineering process

group), 179
standard changes, 180

Change management, process description
change request boards, 174. See also

CAB (change advisory board);
CCB (change control board).

entry/exit criteria, 174–175
overview, 173–174
post-implementation reviews, 175. See

also Retrospectives.
pre-approved changes, 174

Change management, real-world
examples

automation system, 173
banking systems, 165–166
collecting feedback, 171–172
global incident response, 170
in a government agency, 181
mainframe outage, 171
negative attitudes towards, 163
problems, learning from, 173
QA (quality assurance), 168
service providers, 183
storage, 162
technical debt, 165
troubleshooting, 169
upgrading a GPS, 183

Change planning, software development
process requirements, 36

Change request boards, change manage-
ment, 174

Chaos monkeys, real-world example, 227
Cherry picking, 124
Chicago Board Options Exchange

(CBOE) shut down, real-world
example, 329

CI (confi guration item)
change status, tracking, 202
versus CI (continuous integration),

151n
naming conventions, 203
status accounting, 203
version IDs, embedding, 97
version IDs, verifying, 151

357Index

CI (continuous integration)
across the enterprise, 135–136
blaming, 132–133
build and deploy framework, 129
challenges of, 123–124
cherry picking, 124
code reviews, 127
collaboration, 131–132
communication, 131–132
continuous deployment, 138
defi nition, 121
deployment, 136
fi ngering, 132–133
getting started, 123
goals of, 121–122
identifying milestone releases, 138
importance of, 122–123
integrating smaller units, 126
late-binding integration, 122, 124
Lean processes, 137–138
left-shift prefl ight builds, 129
merges, problems with, 125
overview, 21–22
prefl ight builds, 129
principles of, 123
rapid iterative development, 86–87
real-world example, 40
rebasing, 125
right-shift prefl ight builds, 129
server, selecting, 134–135
in the software development process,

39
testing, 136
traceability, 130–131
training and support, 136
tuning, 137–138
vendor-provided resources, 129
version control, 124–125

CI (continuous integration)
versus CI (confi guration item), 151n

CI (continuous integration), build farms
cloud computing, 128–129
defi nition, 127
ON-PREM (on premises) hypervisors,

128–129
real-world example, 128
virtualization, 128–129

CI (continuous integration), frequency
benefi ts of, 126–127

best practices, 124–125
broken builds, fi xing, 127
fi nding issues, 126
nightly builds, 133–134
problems, fi xing, 126–127

CI (continuous integration), real-world
examples

build farms, 128
information overload, 131
merges, 122
off-shore support and collaboration,

132
process managers, 137
stock trading, 124
tax preparation, 134

CI (continuous integration), tools for
CI server, selecting, 134–135
shared repositories, selecting, 135

CIRT (critical incident response team),
189–190

CIS (Center for Internet Security), 209
Cloud capabilities, 287–288
Cloud-based ALM

build farms, 128–129
change management, 290–292
cloud capabilities, 287–288
CMDB (confi guration management

database), 296
community editions of vendor tools,

287
cost control, 296
customer interface, 293–294
development environments, 295
DevOps, 296
DML (defi nitive media library), 296
environment management, 295–296
getting started, 286–287
goals of, 285–286
gold copies, 295–296
importance of, 286
IT operations, 209
iterative development, 293
managing the lifecycle, 292
overview, 24–25
PaaS (Platform-as-a-Service), 287
planning, 296
risk management, 294
SaaS (Software-as-a-Service),

287, 293

358 Index

Cloud-based ALM, continued
seamless integrations, 292–293
service provider change notifi cation,

291
SLAs (service-level agreements), 294
test environments, 295
tools, 292

Cloud-based ALM, developing in the
cloud

build management, 289
canary deployment, real-world exam-

ple, 290
deployment, 290
nonrepudiation, 290
overview, 288
release engineering, 289–290
source code management, 288–289

Cloud-based ALM, real-world examples
bad service, 292
upselling, 292

CM (confi guration management)
assessment, 263
in ISACA Cobit, 205
source code management, 17–18

CMDB (confi guration management data-
base), 115, 296

Cobit as framework for IT controls,
280

Code quality instrumentation, automat-
ing, 111–112

Code reviews, CI (continuous integra-
tion), 127

Code scans, 100
Collaboration. See also Communication;

DevOps.
CI (continuous integration), 131–132
DevOps developers and operations,

216–218
off-shore support, real-world example,

132
Collective unconscious, 318–319
Command center for change manage-

ment, 169–170
Commercial off-the-shelf (COTS) soft-

ware, 32
Commercial tools versus open source,

106–107
Committee of Sponsoring Organizations

(COSO), 279

Communication. See also Collaboration;
DevOps; Personality and ALM.

anecdote: the ship and the lighthouse,
45

change management, 165–166
CI (continuous integration), 131–132
delivering bad news, 238
with management, real-world exam-

ple, 14–15
planning, 197–198
rhythms, 319
siloed mentality, 44–45
with stakeholders, 44–45
styles, 317
transparency to senior management.

See IT governance.
up the chain of command, 264–265

Compile dependencies, build engineer-
ing, 98

Complexity management
rapid iterative development, 86
in the software development process,

33–34
Compliance, change management, 164
Comprehensive processes, agile process

maturity, 66–67
Computer-aided software engineering

(CASE), 53
Confi guration audits, 203, 228
Confi guration change control, standards

and frameworks, 203
Confi guration control, 178–179, 228
Confi guration identifi cation, standards

and frameworks, 203
Confi guration item (CI). See CI (confi gu-

ration item).
Confi guration management (CM). See

CM (confi guration management).
Confi guration Management Best Prac-

tices: Practical Methods that Work
in the Real World, 18, 348

Confi guration management database
(CMDB), 115, 296

Confi guration verifi cation, standards and
frameworks, 203

Confl icts, DevOps developers and opera-
tions, 216

Consensus within the agile community,
agile process maturity, 71

359Index

Consistency
across the enterprise, agile process

maturity, 78–79
of purpose, 48

Container-based deployment, 144–145,
227–228

Continuous delivery
versus continuous deployment, 22,

139–140
feature toggle, 22, 139
hiding new features from the users. See

Feature toggle.
in the software development process, 41

Continuous deployment (CD). See CD
(continuous deployment).

Continuous integration (CI). See CI (con-
tinuous integration).

Continuous process improvement. See
also Retrospectives, as process
improvement.

agile process maturity, 69, 79
change management, 183–184
DevOps, 231
IT governance, 270
IT operations, 200
in the software development process,

48
Continuous testing, 311
Controlled isolation, rapid iterative

development, 85–86
Copying fi les, continuous deployment,

142
Core confi guration management, over-

view, 17–21
Corporate politics, retrospectives, 245
COSO (Committee of Sponsoring Or-

ganizations), 279
Cost control, cloud-based ALM, 296
COTS (commercial off-the-shelf) soft-

ware, 32
Crisis management, retrospectives,

243–244
Critical incident response team (CIRT),

189–190
Cross-enterprise coordination, change

management, 180–181
Cross-functional teams, 220–221
Cross-platform coordination, change

management, 180

Cryptographic hashes, 96
Csikszentmihalyi, Mihaly, 335–336
Customer collaboration, in agile ALM,

58–59
Customer interface, cloud-based ALM,

293–294
Customers, retrospective participation,

240
Cutting corners, real-world example, 44
Cybersecurity and the future of ALM,

348–349

D
Data processing director, real-world

example, 149
Database administrators, real-world ex-

ample of communication with, 198
The deaf, real-world example of deliver-

ing retrospectives, 238–239
Defect triage with retrospectives, 243
Defects, linking to requirements, 110
Defi nitive media library (DML), 115, 296
Delivering on time within budget, agile

process maturity, 77
Deming, W. Edwards

consistency of purpose, 48
importance of healthy behaviors,

335–336
productivity, 78
quality management, 77–78
testing versus building quality in,

77–78
Deming, W. Edwards, driving out fear

agile transformation, 72
communicating up the chain of com-

mand, 265
communicating with stakeholders, 44
fear of criticism, 224
organizational culture, 328
planning, 68
testing requirements, 34

Dependencies, identifying for continuous
deployment, 152

Dependency control, DevOps, 227–228
Deployment

automating, 225–227
automation, DevOps, 225
best practices, 20–21
CI (continuous integration), 129, 136

360 Index

Deployment, continued
cloud-based ALM, 290
continuous. See CD (continuous

deployment).
goal of, 21
rolling back a promotion, 20–21

Deployment pipeline, 141–142, 225–227
Designing circuit chips, real-world exam-

ple, 58
Designing systems, in the software devel-

opment process, 37–38
Developer and operations collaboration,

real-world example, 217, 218
Developer view, on transitioning from

hybrid agile to agile, 256
Developers, retrospective participation,

240
Developing software. See Software devel-

opment process.
Development environments, cloud-based

ALM, 295
Development lifecycle, versus ALM, 9
DevOps

agile development, 221–222
automating, 115–116
automating deployment, 225–227
automation, 230
business continuity, 230
cloud-based ALM, 296
complexity, 230
confi guration audits, 228
confi guration control, 228
container-based deployments,

227–228
continuous process improvement, 231
cross-functional teams, 220–221
for customers, 59
dependency control, 227–228
deployment automation, 225
deployment pipeline, 225–227
developers and operations, collabora-

tion and confl icts, 216–218
in development, 224–227
disaster recovery, 230
document review, 218
driving out silo mentality, 119
getting started, 214–215
goals of, 213
implementing, 215–216

importance of, 214
information security, 229
infrastructure as code, 229–230
IT operations, 200
knowledge management, 219–220
mainframe ALM, 302
managing power and infl uence,

321–323
microservices, 227
need for rapid change, 218–219
organizational ecosystem, 222–223
overview, 23
positive psychology, 342–344
QA (quality assurance), 229
retrospectives, 241
secure trusted application base, 228
in the software development process,

43–44
stakeholders, earlier involvement,

223–224
team size, 219
two-pizza theory, 219
waterfall development, 222

DevOps, moving the process upstream
left-shift, 223–224
overview, 223
right-shift, 224

DevOps, real-world examples
AFB (American Foundation for the

Blind), 218
attended automation, 226
chaos monkeys, 227
cross-functional teams, 221
deployment automation, 226
developer and operations collabora-

tion, 217, 218
DevOps in development, 225
document review, 218
earlier team involvement, 223
getting started, 214, 215
implementing DevOps, 215–216
knowledge management, 220
management, effects on team behavior,

221
moving the process upstream, 223
team size, 219
two-pizza theory, 219
volleyball behaviors, 221
waterfall development, 222

361Index

DevOps in development, real-world
example, 225

Disaster recovery, 230
Disciplined Agile Delivery, 347
Disk space shortage, troubleshooting,

189
DML (defi nitive media library), 115, 296
Document review, 218
Documentation

agile ALM, 60
on an ambulance, real-world example,

12
requirements for transitioning from

hybrid agile to agile, 257
in the software development process,

42–43
working software over comprehensive

documentation, 56, 110–111
writing, real-world example, 43

Dress rehearsal, continuous deployment,
154–155

Driving out fear
agile transformation, 72
communicating up the chain of com-

mand, 265
communicating with stakeholders, 44
fear of criticism, 224
organizational culture, 328
planning, 68
testing requirements, 34

Dysfunctional agile, agile process matu-
rity, 65

E
Eccentric behavior in the workplace,

333–335
E-change control, 179–180
Embedding testers, 312
Emergency change control, 179
Emergency medical tech, real-world

example, 142
Emperor’s New Clothes, anecdote, 71–72
Enterprise

agile process maturity, 78–79
cross-enterprise change management,

180–181
Environment management

automating, 114–115
best practices, 19

cloud-based ALM, 295–296
overview, 19

Epics and stories
agile process maturity, 70
automating creation of, 111
defi nition, 70
in the software development process,

36
Ergonomics, continuous deployment, 150
Escalating problems, change manage-

ment, 172–173
Event monitoring, change management,

168–169
Events

defi nition, 168
monitoring, 188–189

External audits, 277
Extremism in the workplace, 333–335

F
Facilitating training, in the software

development process, 47–48
Facilities management, IT operations,

207
Failing fast, defi nition, 94–95
False positives, 96–97
Family vacation, real-world example of

hybrid agile, 255
Feature toggle, 22, 139
Federal guidelines. See Audit and regula-

tory compliance, federal guidelines.
Feedback

change management, real-world exam-
ple, 171–172

from change management, 171–172
Feedback loops, change management,

171
Fiefdoms, change management, 181
Financial systems infrastructure, real-

world example, 14
Fingering, 132–133
Finley, Michael, 332
FINRA (Financial Industry Regulatory

Authority, Inc.), 280
Firmware

aligning software to, real-world exam-
ple, 84

development, agile process maturity,
80

362 Index

Five-factor model of intergroup confl ict,
323–324

Fixed timebox sprints, 57–58
Fixing what isn’t broken, real-world

example in retrospectives, 235
Flooding in an IT facility, real-world

example, 207
Football player, real-world example of

retrospectives, 236–237
Friedman, Meyer, 331
Functional requirements, 35–36
Functional testing, 39
Future of ALM, 347–349

G
GAO (Government Accountability Of-

fi ce), 281–282
Gatekeeping, 177
Gold copies, 114–115, 295–296
Government agency, real-world example

of change management, 181
GPS upgrade, real-world example of

change management, 183
Group dynamics. See Personality and

ALM, group dynamics.

H
Hackers, 95
Hardware development, agile process

maturity, 80
Health Insurance Portability and Ac-

countability Act (HIPAA) (1966),
280–281

Hedge fund trading systems, real-world
examples

IT governance, 268
IT operations, 188

Help desks. See also Service desks.
automating, 116–117
avatars, real-world example, 194–195
real-world example, 193
virtual, real-world example, 194–195

Help desks, IT operations
developers on, 195
overview, 192–193
remote work, 194
virtual, 193–195

Hibernate, real-world example, 153–154
Hidden agile, real-world example, 250

Hierarchy of needs and drives, 339
HIPAA (Health Insurance Portability

and Accountability Act) (1966),
280–281

Hybrid agile
coexisting with non-agile projects, 68
defi nition, 15, 249
getting started, 250–251
goals of, 249
importance of, 250
pragmatic choices, 251
versus waterfall method, 251–252,

254, 256
Hybrid agile, real-world examples

family vacation, 255
hidden agile, 250
making a baby in one month, 254
management decision making, 258
measuring agility, 252

Hybrid agile, transitioning to agile
agile disasters, 255
choosing an agile pilot, 253
decisions at last responsible moment,

257
defi ning requirements, 254
developer view, 256
documenting requirements, 257
information radiators, 256
IT governance requirements, 258
mature agile, 258
organizational ecosystem, 257–258
overview, 252–253
securing sensitive information, 256
technology risk, 257
tracking progress, 255
versus waterfall method, 256

I
IDEs (integrated development environ-

ments), 93
Immature processes, recognizing, 72
Incident escalation, real-world example,

199
Incident management, automating, 117
Incident response, 170–172, 190
Incidents. See also Problems.

CIRT (critical incident response team),
189–190

escalating, 198–200

363Index

identifying with retrospectives,
242–243

IT operations, 212
monitoring, 189–190
versus problems, 172–173
retrospectives, 236–237

Information overload, real-world exam-
ple, 131

Information radiators, 256
Information security, DevOps, 229
Infrastructure as code, 229–230
In-group behaviors, 320–321
Instrumenting code, 101
Insurance company use of RAD, real-

world example, 53
Integrated development environments

(IDEs), 93
Integration across the enterprise

coordinating across systems, 307
enterprise ecosystem, 308
getting started, 306–307
goals of, 305
importance of, 305–306
interfaces, 307–308
multiplatform, 307
overview, 25
procurement and standards, real-world

example, 306
release coordination, 308

Intergroup confl ict. See Personality and
ALM, intergroup confl ict.

Internal audits, 275–276
International corporations, cultures of,

317
Introspection and the postmortem,

327–329
ISACA Cobit, 205, 281
ISO 12207, 30–31
ISO 15288, 32
IT controls, audit and regulatory compli-

ance, 275–276
IT governance

agile process maturity, 67–68, 75–76
audit and regulatory compliance, 271
communicating up the chain of com-

mand, 264–265
continuous process improvement, 270
delays, 268–269
getting started, 262–263

goals of, 261–262
importance of, 262
learning from mistakes, 270
organizational ecosystem, 270
overview, 23
requirements for transitioning hybrid

agile to agile, 258
retrospectives, 244
risk management, 266–267
scalability and resources, 268
time and resource management,

267–268
workload assessment, 265–266

IT governance, real-world examples
confi guration management assessment,

263
hedge funds, 268
police force, 265
reporting risks, 267
senior management, best practices,

270
senior management, decision making,

263
senior management, role of, 264
tool selection, 266
trading fi rms, 268

IT governance, senior management
communicating up the chain of com-

mand, 264–265
decision making, 263
excessive direct involvement, 269
reporting risks, 267, 269

IT operations
application management, 208
automating, 116
automation, 195–196
business management, 205–206
change management, 205–206
CIRT (critical incident response team),

189–190
CIS (Center for Internet Security), 209
cloud based, 209
communication planning, 197
continuous process improvement, 200
controls, 206
DevOps, 200
facilities management, 207
getting started, 186–187
goals of, 185–186

364 Index

IT operations, continued
importance of, 186
incident escalation, 198–200
incidents, 212
interfacing with vendor operations,

209
knowledge management, 195–196,

212
management, 206–207
middleware support, 208
organizational silos, 197
outsourcing, 209
overview, 22–23
problem escalation, 198–200
problems, 212
product management, 205–206
production support, 191–192
retrospective participation, 241
security, 208–209
shared services, 208
technical management, 206
workfl ow automation, 196

IT operations, help desks. See also IT
operations, service desks.

developers on, 195
overview, 192–193
remote work, 194
virtual, 193–194
virtual world, 194–195

IT operations, monitoring the
environment

events, 188–189
incidents, 189–190
problem management, 190–191

IT operations, real-world examples
agile principles, 210
agile service catalog, 186
change management, 205–206
communication planning, 197–198
database administrators, communica-

tion with, 198
escalating problems and incidents,

199
fi xing what’s not broken, 187
fl ooding, 207
hedge fund trading systems, 188
help desk avatars, 194–195
help desks, 193
incident response, 190

IT facilities management, 207
KCG (Knight Capital Group), 187
knowledge management, 195–196
mainframe programmers, 191–192
offshoring production support,

191–192
outsourcing service desks, 211–212
rebooting the system, 190
segregation of duties, 207
standards and frameworks, 201
troubleshooting disk space shortage,

189
VCS (version control system) failure,

197
virtual help desks, 194–195
workfl ow automation, 196
working across time zones, 193

IT operations, service desks. See also IT
operations, help desks.

agile principles, 210
centralized, 210
outsourcing, 211–212
overview, 210
specialized, 211
staffi ng, 211–212
vendor escalation, 211
virtual, 211

IT operations, standards and frameworks
CAB (change advisory board), 202
change evaluation, 204
change management, 205
change management processes, 202
confi guration audit, 203
confi guration change control, 203
confi guration identifi cation, 203
confi guration management, 205
confi guration verifi cation, 203
ISACA Cobit, 205
ITIL v3, 201–204
knowledge management, 204–205
need for, 201
overview, 201
RCV (release control and validation

framework). See ITIL v3.
RDM (release and deployment man-

agement), 203–204
request fulfi llment, 204
SACM (service asset and confi guration

management), 202–203

365Index

SCMP (software confi guration man-
agement plan), 203

service management processes. See
ITIL v3.

status accounting, 203
Items on the left, agile manifesto, 56
Items on the right, agile manifesto, 56
Iterative development, 16–17, 293
ITIL, retrospectives, 242–243
ITIL v3, 201–204

J
Jung, Carl, 319

K
Kanban, in continuous deployment,

148–150
KCG (Knight Capital Group), real-world

example, 187
Keyman risk, 108, 317
Knowledge base, creating in the software

development process, 47–48
Knowledge management

DevOps, 219–220
IT operations, 212
real-world example, 195–196
standards and frameworks, 204–205

L
Last responsible moment

decisions on transitioning from hybrid
agile to agile, 257

defi nition, 118, 257
planning decisions, 68

Late-binding integration, 122, 124
Law enforcement, real-world process

maturity example, 66
Lean processes, CI (continuous integra-

tion), 137–138
Learned complacency, 329–331
Learned helplessness, 325–327
Leffi ngwell, Dean, 347
Left-shift

moving the process upstream,
223–224

prefl ight builds, 129
Lifecycle management

automating, 109
cloud-based ALM, 292

Lifecycle phases, defi ning in the software
development process, 41–42

Lifecycle testing, automating, 112
Lifeguard rule, QA and testing real-world

example, 310
The lighthouse and the ship, anecdote, 45

M
Mainframe ALM

DevOps, 302
getting started, 300–302
goals of, 299
importance of, 299–300
overview, 25

Mainframe ALM, real-world examples
bypassing change control, 301
defi ning the ALM, 300–301
mainframe culture, 300
outages, 171
programmers, 191–192
root access, 302
tribal knowledge, 300–301

Mainframe culture, 300
Maintenance and bugfi xes, in the soft-

ware development process, 46
Maintenance of the lifecycle, in the soft-

ware development process, 47
Making a baby in one month, hybrid

agile real-world example, 254
Management. See also Senior

management.
decision making, hybrid agile real-

world example, 258
effects on team behavior, real-world

example, 221
traits of strong leaders, 336

Marketing the new agile approach, 79
Martin, James, 53
Maslow, Abraham, 339
Mature agile

hybrid agile, transitioning to agile,
258

one CIO’s view of agile process matu-
rity, real-world example, 73

Mature processes versus fl uid, 16–17
Maven, real-world example, 153–154
Measuring agility, real-world example,

252
Meetings, retrospectives, 241

366 Index

Merges
continuous integration problems with,

125
real-world example, 122

Metrics
measuring agility, real-world example,

252
measuring the ALM, 79–80
PMO (project management offi ce)

metrics, 80
retrospectives, 245

Microservices, 227
Middleware support, IT operations, 208
Milestone releases, identifying, 138
Mistakes

as feedback loops, retrospectives, 236,
237

management reaction to, 327
Mistakes, learning from

crises as opportunities, 48
IT governance, 270
in a police force, real-world example, 52
positive psychology of, 340–342

Monitoring continuous deployment, real-
world example, 152

Motivation through threats, 334
Moving the process upstream

left-shift, 223–224
overview, 223
real-world example, 223
right-shift, 224

N
New York Stock Exchange crash, 97–98
Nonfunctional requirements, 36
Nonrepudiation, 290
Normal changes, 175, 180
Nuclear power plant

continuous deployment, real-world
example, 150

testing, real-world example, 39

O
OCC (Offi ce of the Comptroller of the

Currency), 282
OCEAN (openness, conscientiousness,

extraversion, agreeableness, neuroti-
cism) model of intergroup confl ict,
323–324

Off-shore support and collaboration,
real-world example, 132

Offshoring production support, real-
world example, 191–192

ON-PREM (on premises) hypervisors,
128–129

Open source tools versus commercial,
106–107

Operations. See IT operations.
Organizational culture, agile ALM, 51–52
Out-group behaviors, 320–321
Outsourcing

IT operations, 209
service desks, 211–212

Overly agreeable people, 323–325
Oxley, Michael, 278

P
PaaS (Platform-as-a-Service), 287
Paradigm shift for agile ALM, 51–52
Personality and ALM

archetypes, 319
collective unconscious, 318–319
communication rhythms, 319
communication styles, 317
goals of, 315
importance of, 315–316
international corporations, 317
keyman risk, 317
managerial confl icts, real-world exam-

ple, 316
organizational structures, 317–318
in retrospectives, 237
role of, overview, 26

Personality and ALM, getting started
organizational psyche, 318–319
understanding the culture, 316–318

Personality and ALM, group dynamics
driving out silos, 320–321
in-group and out-group behaviors,

320–321
managing power and infl uence,

321–323
overview, 320

Personality and ALM, intergroup confl ict
desired personality traits, 328
fi ve-factor model, 323–324
introspection and the postmortem,

327–329

367Index

learned helplessness, 325–327
management reaction to mistakes, 327
OCEAN (openness, conscientiousness,

extraversion, agreeableness, neu-
roticism) model, 323–324

overly agreeable people, 323–325
Personality and ALM, positive

psychology
autonomy, 339
benefi ts of, 335–337
in DevOps, 342–344
hierarchy of needs and drives, 339
learning from mistakes, 340–342
pillars of, 337–338
team motivation, 339–340
traits of strong leaders, 336

Personality and ALM, stress management
aggressive team members, 331–333
eccentric behavior in the workplace,

333–335
extremism in the workplace, 333–335
learned complacency, 329–331
motivation through threats, 334
personality types, 331–333
type A and B personalities, 331–333

Personality types, 331–333
Physical confi guration audit, 98, 115
Pilot system. See Proof of technology.
Planning

agile process maturity, 68–69
as a barrier to effi ciency, 5
cloud-based ALM, 296
testing processes, 311–313

Platform-as-a-Service (PaaS), 287
Platforms, cross-platform change man-

agement, 180
PMO (project management offi ce)

automating, 118
metrics, 80

POC (proof-of-concept), 106, 119
Police force, real-world examples

continuous deployment, 149
IT governance, 265

Positive psychology. See Personality and
ALM, positive psychology.

Postmortems, introspection, 327–329
Preapproved changes, 174, 175, 180
Prefl ight builds, 129
Principles, of agile process maturity, 64–65

Probing and questioning, retrospectives,
241

Problem escalation
automating, 117–118
IT operations, 198–200
real-world example, 199

Problem management
change management, 172–173
CIRT (critical incident response team),

189–190
Problems. See also Incidents.

CIRT (critical incident response team),
189–190

escalating, 198–200
identifying with retrospectives,

242–243
versus incidents, 172–173
IT operations, 212
learning from, real-world example,

173
monitoring, 189–191
versus problems, 172–173
retrospectives, 236–237

Process change control, 179
Process managers, real-world example,

137
Process maturity. See Agile process

maturity.
Process modeling, automating, 108
Processes

adjusting ceremony, 75
testing, 39

Product management, IT operations,
205–206

Production support
IT operations, 191–192
in the software development process,

45–46
Productivity, improving through audit

and regulatory compliance, 283
Project management, automating, 118
Project management offi ce (PMO)

automating, 118
metrics, 80

Proof of technology, real-world example,
8

Proof-of-concept (POC), 106, 119
Psychology of personality. See Personal-

ity and ALM, positive psychology.

368 Index

Publishing changes back to the system.
See Rebasing.

Purity measure, agile process maturity,
64

Q
QA (quality assurance). See also Testing.

change management, 167–168
continuous testing, 311
DevOps, 229
ensuring quality, 313–314
getting started, 310–311
goals of, 309
importance of, 309–310
overview, 25
planning the testing process, 311–313
test cases, creating, 313
withholding information from, real-

world example, 113
QA (quality assurance), real-world

examples
bypassing quality assurance, 311
embedding testers, 312
fi rst rule for lifeguards, 310
testing framework, creating, 312

Quality
building in, build engineering, 100
building in versus testing, 77
improving through audit and regula-

tory compliance, 283

R
RAD (rapid application development),

52–54
Rapid incremental deployment, 143–144
Rapid iterative development

agile ALM, 52–53
in ALM, overview, 17
CI (continuous integration), 86–87
controlled isolation, 85–86
designing architecture, 87
development view, 85
getting started, 84–85
goals of, 83
importance of, 84
managing complexity, 86
technical risk, 85, 87
technology, 87
VCS (version control system), 87

RDM (release and deployment manage-
ment), 203–204

Repeatability, continuous deployment,
147–148

Rebasing, 125
Rebooting the system, real-world exam-

ple, 190
Recognition by the agile community,

agile process maturity, 70–71
Red tape. See Ceremony.
Regulatory compliance. See Audit and

regulatory compliance.
Release engineering, cloud-based ALM,

289–290
Release management

best practices, 19–20
goal of, 20
overview, 19–20

Repeatable processes, agile process matu-
rity, 76–77

Request fulfi llment, standards and frame-
works, 204

Requests for change (RFCs), 177–178
Requirements

agile ALM, 59–60
agile process maturity, 69–70
ALM effect on, 12–13
for audit and regulatory compliance,

283
linking to defects, 110
in the software development process.

See Software development pro-
cess, requirements.

tracking to test cases, 110
for transitioning from hybrid agile to

agile, 254, 257
Requirements management, automating,

110–111
Resource and time management, IT gov-

ernance, 267–268
Responding to change over valuing a

plan, 56, 118
Retrospectives. See also Reviews.

audit and regulatory compliance,
244

corporate politics, 245
as crisis management, 243–244
defect triage, 243
DevOps, cross-functional view, 241

369Index

epics and stories, 241
getting started, 234
goals of, 234
importance of, 234
incidents and problems, 242–243
as leadership, 241–242
metrics and measurement, 245
overview, 23
probing and questioning, 241
red tape, 245
risk management, 244
running the meeting, 241
supporting IT governance, 244
supporting ITIL, 242–243
use cases, 241–242
vendor management, 244–245

Retrospectives, as process improve-
ment. See also Continuous process
improvement.

assessing success, 235–236
delivering bad news, 238
incidents and problems, 236–237
mistakes as feedback loops, 236,

237
overview, 235
personality factors, 237

Retrospectives, delivery modes
online, 239
in person, 238–239
teleconference, 239
video conferencing, 239
virtual worlds, 239–240

Retrospectives, participant perspective
customers, 240
developers, 240
operations, 241
testers, 240

Retrospectives, real-world examples
baseball players and mistakes, 236
delivery by the blind or deaf,

238–239
fi xing what isn’t broken, 235
football player, 236–237
mistakes as feedback loops, 236

Reviews. See also Retrospectives.
after change management, 175
code, 127
document, 218
post-implementation, 175

RFCs (requests for change), 177–178
Right-shift

moving the process upstream, 224
prefl ight builds, 129

Risk assessment
change management, 164–165
continuous deployment, 153–154
vendor risks, 32

Risk management
change management, 164–165
cloud-based ALM, 294
continuous deployment, 153–154
IT governance, 266–267
retrospectives, 244
self-administered risk assessment

surveys, 280
Risks

from a business focus, 13–15
cloud-based resources, 129
keyman, 108
reporting, real-world example, 267
technical risk, rapid iterative develop-

ment, 85, 87
vendor-provided resources, 129

Robbins, Harvey, 332
Root access, mainframe ALM, 302
Rosenman, Ray, 331
Royce, Winston, 256
Rubin, Ken, 347

S
SaaS (Software-as-a-Service), 287, 293
SaaS change control, change manage-

ment, 182–183
SACM (service asset and confi guration

management), 202–203
SAFE (Scaled Agile Framework), 347
Sarbanes, Paul, 278
Sarbanes-Oxley Act of 2002, 278–280
Sarin gas, real-world example of continu-

ous deployment, 154–155
Scalability

agile process maturity, 66, 77
and resources, IT governance, 268

Scientifi c Management, 10
SCMP (software confi guration manage-

ment plan), 203
Scope, of ALM, 9
Scope creep, real-world example, 11

370 Index

SDLC (software development life cycle),
29. See also ALM (application
lifecycle management); Software
development process.

developing, real-world example, 42
managing, real-world example, 30
overview, 10–11
versus software development process,

29–31
versus systems development, 32

Seamless integrations, cloud-based ALM,
292–293

Secure trusted base
creating, 95–96
DevOps, 228

Securities fi rms, federal guidelines on
oversight of, 280

Security
CIS (Center for Internet Security), 209
cryptographic hashes, 96
cybersecurity and the future of ALM,

348–349
detecting unauthorized changes,

96–97
false positives, 96–97
hackers, 95
information security, DevOps, 229
IT operations, 208–209
physical confi guration audit, 98, 115
securing sensitive information, 256

Segregation of duties, real-world exam-
ple, 207

Self correction, agile process maturity, 79
Seligman, Martin, 326, 335–336, 337,

343
Senior management of banking, fed-

eral guidelines on responsibility,
278–280. See also Management.

Senior management of IT governance
communicating up the chain of com-

mand, 264–265
decision making, 263
excessive direct involvement, 269
reporting risks, 267, 269

Senior management of IT governance,
real-world examples

best practices, 270
decision making, 263
role of, 264

SEPG (software engineering process
group), 47, 166, 179

Service asset and confi guration manage-
ment (SACM), 202–203

Service desk, automating, 117
Service desks. See also Help desks.

agile principles, 210
centralized, 210
outsourcing, 211–212
overview, 210
specialized, 211
staffi ng, 211–212
vendor escalation, 211
virtual, 211

Service providers, real-world example of
change management, 183

Service-level agreements (SLAs), 294
Shared services, IT operations, 208
The ship and the lighthouse, anecdote, 45
Silo mentality

business silos, overview, 13
communication, 44–45
driving out, 119, 320–321
IT operations, 197
when selecting automation tools,

119
SLAs (service-level agreements), 294
Sliger, Michele, 6
Smoke testing, continuous deployment,

156–157
Software, real-world example of aligning

to fi rmware, 84
Software confi guration management plan

(SCMP), 203
Software delivery lifecycle, versus ALM, 7
Software development life cycle (SDLC).

See SDLC (software development
life cycle).

Software development process. See also
ALM (application lifecycle manage-
ment); SDLC (software development
life cycle).

change control, 47
CI (continuous integration), 39
continuous delivery, 41
continuous deployment, 41
continuous process improvement, 48
creating the knowledge base, 47–48
creating the right size process, 46

371Index

cutting corners, real-world example, 44
designing systems, 37–38
DevOps, 43–44
documentation, 42–43
facilitating training, 47–48
lifecycle phases, defi ning, 41–42
maintenance and bugfi xes, 46
maintenance of the lifecycle, 47
production support, 45–46
SEPG (software engineering process

group), 47
software development, 38
technical debt, 46

Software development process, defi ning
change management, 33–34
complexity management, 33–34
COTS (commercial off-the-shelf)

software, 32
epics and stories, 36
getting started, 29
goals of, 27–28
importance of, 28
SDLC (software development life

cycle), 29
versus SDLC (software development

life cycle), 29–31
test cases, real-world example, 35
use cases, 35–36
vendor risk analysis, 32

Software development process,
requirements

change planning, 36
defi ning, 32–33
functional, 35–36
nonfunctional, 36
testing, 35
validity, 34
workfl ow for defi ning, 37

Software development process, testing.
See also QA (quality assurance);
TDD (test-driven development);
Testing.

applications, 39
functional, 39
nuclear power plants, real-world

example, 39
overview, 38–39
processes, 39
unit, 39

Software engineering process group
(SEPG), 47, 166, 179

The Software Project Manager’s Bridge
to Agility, 6

Software-as-a-Service (SaaS), 287,
293

Source code management
best practices, 17–18
cloud-based ALM, 288–289
goal of, 18
overview, 17–18

Specialized change control, 182
Specialized service desks, 211
Staffi ng service desks, 211–212
Stakeholders

communicating with, 44–45
earlier involvement, 223–224

Standard changes, 175, 180
Standards and frameworks

agile process maturity, 68
common lifecycle processes. See ISO

15288.
for IT operations. See IT operations,

standards and frameworks.
real-world example, 201
software lifecycle processes. See ISO

12207.
Status accounting, standards and frame-

works, 203
Stock trading, real-world continuous

integration example, 124
Stopping the line

build engineering, 94–95
TDD (test-driven development), 37

Storage, real-world example of change
management, 162

Stories. See Epics and stories.
Stress management. See Personality and

ALM, stress management.
Sullivan, Harry Stack, 333
Systems delivery lifecycle, versus ALM, 7
Systems design, automating, 111
Systems development, versus SDLC, 32
Systems thinking, defi nition, 25

T
Tax preparation, continuous integration

real-world example, 134
Taylor, Winslow, 10

372 Index

TDD (test-driven development). See also
Testing.

automated test scripts, 37
automating, 113–114
overview, 37
stopping the line, 37

Teams. See also Personality and ALM.
aggressive team members, 331–333
cross-functional, 220–221
earlier involvement, 223–224. See also

Moving the process upstream.
management, effects on team behavior,

221
motivating, 339–340
optimal size, 219
two-pizza theory of team size, 219

Technical debt
change management, real-world exam-

ple, 165
in the software development process,

46
Technical management, IT operations,

206
Technical risk, rapid iterative develop-

ment, 85, 87
Technology, rapid iterative development,

87
Technology risk, transitioning from

hybrid agile to agile, 257
Terminology pollution, 140
Test case management, automating,

112–113
Test cases. See also Use cases.

linking to defects, 110
real-world example, 35
tracking requirements to, 109
for trading systems, real-world exam-

ple, 70
user written, 59–60

Test environments, cloud-based ALM,
295

Test-driven development (TDD). See
TDD (test-driven development).

Testers
embedding, 312
retrospective participation, 240
withholding information from, real-

world example, 113

Testing. See also QA (quality assurance);
Software development process, test-
ing; TDD (test-driven development).

change management, 167–168
CI (continuous integration), 136
continuous testing, 311
ensuring quality, 313–314
getting started, 310–311
goals of, 309
importance of, 309–310
overview, 25
planning the testing process, 311–313
requirements, 35
test cases, creating, 313
testing framework, creating, 312

Testing, real-world examples
bypassing testing, 311
embedding testers, 312
fi rst rule for lifeguards, 310

Time and motion studies, 10
Time and resource management, IT gov-

ernance, 267–268
Time zones, working across, 193
Tool agnosticism, 106
Tools

for CI (continuous integration),
134–135

cloud-based ALM, 287, 292
selecting for IT governance, real-world

example, 266
Tools, for automation

build engineering, 101
commercial versus open source,

106–107
evaluating, 106, 119. See also POC

(proof-of-concept).
keeping current, 120
POC (proof-of-concept), 106, 119
scope of, 109
seamless integration, 109–110
selecting, 119
tool agnosticism, 106
uses for, 94

Traceability
agile process maturity, 67
change management, 164
CI (continuous integration), 130–131
continuous deployment, 147–148

373Index

Trading fi rms, real-world example of IT
governance, 268

Training and support
CI (continuous integration), 136
continuous deployment, 147
programs, developing, 120

Transitioning to agile. See Hybrid agile,
transitioning to agile.

Transparency, agile process maturity,
67, 76

Tribal knowledge, mainframe ALM,
300–301

Troubleshooting, real-world examples
change management, 169
disk space shortage, 189

Trusted base, continuous deployment,
151–152

Tuning, CI (continuous integration),
137–138

Two-pizza theory of team size, 219
Type A and B personalities, 331–333

U
Unauthorized changes, detecting, 96–97
Unit testing, 39
Unit tests, build engineering, 100
Upselling from cloud-based ALM, real-

world examples, 292
Use cases. See also Test cases.

automating creating of, 119
defi nition, 35–36
retrospectives, 241–242

User stories. See Epics and stories.
Utilities. See Tools.

V
Validation, continuous deployment,

150–151
Validity, requirements, 34
VCS (version control system), 87,

124–125, 197
Vendor change control, 182

Vendor management
agile process maturity, 80
with retrospectives, 244–245

Vendor operations, interfacing with
escalating problems, 211
IT operations, 209

Vendor relationships, 120
Vendor-provided resources, CI (continu-

ous integration), 129
Verifi cation, continuous deployment,

150–151
Version control

CI (continuous integration), 124–125
real-world example, 63
VCS (version control system), 87,

124–125, 197
Version IDs, build engineering, 97–98
Virtual help desks, 193–194
Virtualization, build farms, 128–129
Volleyball behaviors, real-world exam-

ple, 221

W
Walkthroughs, continuous deployment,

154–155
Waterfall development

DevOps, 222
dysfunctional processes, 73–74
versus hybrid agile, 251–252, 254, 256
pitfalls, 73–74
predicting the future, 16
real-world example, 222

Winston, Royce, 57, 73
WIP (work in progress), 149
Workfl ow, defi ning requirements, 37
Workfl ow automation

continuous deployment, 148–150
overview, 108

Working software over comprehensive
documentation, 56, 110–111

Workload assessment, IT governance,
265–266

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Authors
	PART I: Defining the Process
	Chapter 4 Agile Process Maturity
	4.1 Goals of Agile Process Maturity
	4.2 Why Is Agile Process Improvement Important?
	4.3 Where Do I Start?
	4.4 Understanding Agile Process Maturity
	4.4.1 Adherence to the Principles
	4.4.2 Repeatable Process
	4.4.3 Scalability (Scrum of Scrums)
	4.4.4 Comprehensive (Items on the Right)
	4.4.5 Transparency and Traceability
	4.4.6 IT Governance
	4.4.7 Coexistence with Non-agile Projects
	4.4.8 Harmonization with Standards and Frameworks
	4.4.9 Following a Plan
	4.4.10 Continuous Process Improvement

	4.5 Applying the Principles
	4.6 Recognition by the Agile Community
	4.7 Consensus within the Agile Community
	4.8 What Agile Process Maturity Is Not
	4.9 What Does an Immature Agile Process Look Like?
	4.10 Problems with Agile
	4.11 Waterfall Pitfalls
	4.11.1 Mired in Process
	4.11.2 Pretending to Follow the Process

	4.12 The Items on the Right
	4.12.1 Adjusting Ceremony

	4.13 Agile Coexisting with Non-Agile
	4.14 IT Governance
	4.14.1 Providing Transparency

	4.15 ALM and the Agile Principles
	4.16 Agile as a Repeatable Process
	4.16.1 Scalability
	4.16.2 Delivering on Time and within Budget
	4.16.3 Quality

	4.17 Deming and Quality Management
	4.17.1 Testing versus Building Quality In
	4.17.2 Productivity

	4.18 Agile Maturity in the Enterprise
	4.18.1 Consistency across the Enterprise
	4.18.2 Marketing the New Approach

	4.19 Continuous Process Improvement
	4.19.1 Self-Correcting

	4.20 Measuring the ALM
	4.20.1 Project Management Office (PMO) Metrics

	4.21 Vendor Management
	4.22 Hardware Development
	4.22.1 Firmware

	4.23 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [1224.000 792.000]
>> setpagedevice

