

CocoA® PROGRAMMING FOR
Mace OS X

FOURTH EDITION

This page intentionally left blank

CocoA® PROGRAMMING FOR
Mace OS X

FOURTH EDITION

Aaron Hillegass
Adam Preble

vvAddison-Wesley

Upper Saddle River, NJ ® Boston ® Indianapolis ® San Francisco
New York ® Toronto ® Montreal ® London ® Munich ® Paris ® Madrid
Capetown ® Sydney ® Tokyo ® Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hillegass, Aaron.
Cocoa programming for Mac OS X / Aaron Hillegass, Adam Preble.—4th ed.
. cm.
Includes index.
ISBN 978-0-321-77408-8 (pbk. : alk. paper)
1. Cocoa (Application development environment) 2. Operating systems
(Computers) 3. Mac OS. 4. Macintosh (Computer)—Programming. I. Preble, Adam. II. Title.

QA76.76.063H57145 2012
005.26'8—dc23
2011034459

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-77408-8
ISBN-10: 0-321-77408-6

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2011

For Aaron’s sons, Walden and Otto
and

For Adam’s daughter; Aimee

This page intentionally left blank

CONTENTS

Prefacecoiiiiiiiii i e i i Xxix
Acknowledgments it XXi
Chapter 1 Cocoa: WhatlIsIt?o, 1
ALittle Historyot 1
T00ls .« e 3
Languageo o 4
Objects, Classes, Methods, and Messagescoun... 5
Frameworks e 6
HowtoRead ThisBook i, 7
"Typographical Conventionsoiiiiiiiinniiiiieinan, 7
Common Mistakest i 8
HowtoLearn i e e 8
Chapter2 letsGetStartedooiintt. 11
InXcode ..o 11
Create a New Project.......... o i it 12
Themain Function 15
InInterface Builder........ 15
The Utlity Area.ot e 16

The Blank Window 16

Lay Outthe Interface i, 17
TheDock ..o 20

Create a Classottt e e 20
Createan Instanceotiinin ittt 22

Make Connectionsvvtttn ettt ettt et ie e 22
ALookat Objective-Co 25
Types and Constants in Objective-C, 26

vii

viii CONTENTS

Lookatthe Header File o i .. 26
Edit the Implementation File L. 27
Buildand Run o i 28
awakeFromNib oL 30
Documentationottt 31
What Have YouDone? o i 31
Chronology of an Applicationooiiitit it 32
Chapter 3 Objective-Ccoiiiiiiiiiiiiiiinnn.. 35
Creating and Using Instances, 35
Using Existing Classes 37
Sending Messagestonil i 41
NSObject, NSArray, NSMutableArray, and NSString 43
“Inherits from” versus “Uses” or “Knows About” 48
Creating Your Own Classes i, 48
Creating the LotteryEntry Class 49
Changing main.m ...ttt 51
Implementing a description Method 52
Writing Initializers o i i 55
Initializers with Argumentsooiiiiiinnn.... 56
The Debugger 58
What Have You Done? i 63
Meet the Static Analyzert 63
For the More Curious: How Does Messaging Work? 65
Challengeo 66
Chapter 4 Memory Managementcccu.n.. 67
Living with Manual Reference Counting 69
Leak-Free Lottery. ... 70
dealloc . ..o 72
Autoreleasing Objects 73
The Retain-CountRules i, 76
Accessor Methodsot 77
Livingwith ARC 80
Strong Referencest 81
Weak Referencescooiiuniiinn i 81

ARCOddsand Ends i 82

CONTENTS ix

Chapter 5 Target/Actioncoiiiiiiiininnn 83
Some Commonly Used Subclasses of NSControl 85
NSButton ... e 85
NSSHder . ..o 86
NSTextField 87

Start the SpeakLine Example o i 89
LayOutthe XIBFile. ... 90
Making Connections in Interface Builder 91
Implementing the SpeakLineAppDelegate Class 94
For the More Curious: Setting the Target Programmatically 96
Challenge 96
Debugging HIntst 98
Chapter 6 HelperObjectsccviiiiiiinnnnn. 99
Delegatesot 100
The NSTableView and Its dataSource 104
SpeakLineAppDelegate Interface File 105

Lay Out the User Interfacet 107
Make Connectionseuiuiiiiiiiiiiiinnneeeeeennn. 109
Edit SpeakLineAppDelegate.m, 110
Common Errors in Implementing a Delegate 112

Many Objects Have Delegates oo 112

For the More Curious: How Delegates Work 113
Challenge: Make a Delegate, 114
Challenge: Make a Data Source, 114
Chapter 7 Key-Value Coding and Key-Value Observing 117
Key-Value Codingo 117
Bindings . ..ot 119
Key-Value Observingouuiiiiiiiiiiiiiiinnnnaa... 120
Making Keys Observable i ... 121
Properties 124
Attributes of a Property oo 125

For the More Curious: Key Paths 126
For the More Curious: Key-Value Observing 127
Chapter 8 NSArrayController 129
Starting the RaiseMan Application 130

RMDocument.xibot 134

CONTENTS

Key-Value Codingandnil o i, 139
Add Sorting 140
For the More Curious: Sorting without NSArrayController.......... 141
Challenge 1 142
Challenge 2 i 142
Chapter9 NSUndoManagerccoviiiiiennnn. 145
NSINVOCAtION . ..ottt 145
How the NSUndoManager Workso oo 146
Adding UndotoRaiseMan, 148
Key-Value Coding and To-Many Relationships 148
Key-Value Observing 152
UndoforEditso 153
Begin EditingonInsert ... 156
For the More Curious: Windows and the Undo Manager............ 158
Chapter 10 Archivingo, 159
NSCoder and NSCoding ..., 160
Encodingo 160
Decodingoovviiiiii 162
The Document Architecture, 163
Info.plist and NSDocumentController 163
NSDocumentuiiuiiiniiiiiii i 164
NSWindowController, 167
Saving and NSKeyedArchiver o L. 167
Loading and NSKeyedUnarchiver 168
Setting the Extension and Icon for the File Type 170
For the More Curious: Preventing Infinite Loops 172
For the More Curious: Creating a Protocol 173
For the More Curious: Automatic Document Saving 174
For the More Curious: Document-Based Applications without Undo ...175
Universal Type Identifiers oo oo it 175
Chapter 11 BasicCoreDataccvvvuinn.. 177
NSManagedObjectModel, 177
Interface 179
View-Based Table Views, 180
Connections and Bindings oo o 183

How Core Data Works oo 189

CONTENTS xi

For the More Curious: View-Based versus Cell-Based Table Views 191

Challengeo 191
Chapter 12 NIB Files and NSWindowController 193
NSPanelo 193
Adding a Panel to the Applicationo i 194
Setting Upthe Menultem................t 197
AppControllermo i 198
Preferences.xib 198
PreferenceControllerm i 203
For the More Curious: NSBundle 204
Challenge 206
Chapter 13 User Defaults coiiiint. 207
NSDictionary and NSMutableDictionary 208
NSDictionaryooutiiiii i i 209
NSMutableDictionarycoiiiiiiiiiiiian.. 209
NSUserDefaults o i i i 210
Precedence of Types of Defaults 211
Setting Defaults o 212
The Identifier for the Application 212
Create Keys for the Names of the Defaults.................... 212
Register Defaults i i i 213
Letting the User Edit the Defaults 213
Using the Defaults. o i 215
Suppressing the Creation of Untitled Documents 215
Setting the Background Color on the Table View 216
For the More Curious: NSUserDefaultsController 217
For the More Curious: Reading and Writing Defaults from
the Command Line i 217
Challenge 219
Chapter 14 Using Notifications 221
What Notifications Are and Are NOt, 221
What Notifications Are NOt oviiii i 222
NSNotfIcationt e 222
NSNotificationCenter.uuuuuieiiiinn... 222
Posting a Notification, 224

Registering asan Observerooiiiiiiiiiiin... 225

xii CONTENTS

Handling the Notification When It Arrives 226
The userInfo Dictionaryo, 226
For the More Curious: Delegates and Notifications 227
Challenge 228
Chapter 15 Using AlertPanels 229
Make the User Confirm the Deletion 230
Challenge e 232
Chapter 16 Localization vttt 233
LocalizingaNIBFile i i, 234
String Tables 236
Creating String Tables 237
Using the String Table 238
For the More Curious: ibtool 239
For the More Curious: Explicit Ordering of Tokens
in FormatStrings 240
Chapter 17 CustomViewscciiiiiiiiennnn. 241
The View Hierarchy i 241
GetaViewtoDrawItself 243
Create an Instance of a View Subclass 243
SizeInspector 244
drawRect oo 246
Drawing with NSBezierPath oo o oo 248
NSScrollView 250
Creating Views Programmatically o ... 252
For the More Curious: Cellso, 253
For the More Curious: isFlippedo 255
Challenge 255
Chapter 18 Images and Mouse Events 257
NSResponder 257
NSEvent. ... 257
Getting Mouse Events i i 259
Using NSOpenPanelt 259
Changethe XIBFileo i 260

Editthe Code ... e 263

CONTENTS xiii

Composite an Image onto Your View 264
The View’s Coordinate System, 266
Autoscrollingo 268
For the More Curious: NSImage 269
Challenge 270
Chapter 19 KeyboardEventscccvvunn.. 271
NSResponderouiiiiiii 273
NSEvent ... 273
Create a New Project with a Custom View 274
Lay OuttheInterface, 274
Make Connectionsouueuiniiunneinnennnnnann. 276
Writethe Code oo i i i i i 278
For the More Curious: Rollovers 282
The Fuzzy Blue Box ... i 284
Chapter 20 Drawing Text with Attributes 285
NSFONt .. 285
NSAttributedString 286
Drawing Strings and Attributed Strings 289
Making Letters Appearouuuiniiiiiiiiaa 289
Getting Your View to Generate PDF Data 291
For the More Curious: NSFontManager 293
Challenge 1o 293
Challenge 2 294
Chapter 21 Pasteboards and Nil-Targeted Actions 295
NSPasteboard 296
Add Cut, Copy, and Paste to BigLetterView 298
Nil-Targeted Actionsottt 300
Lookingatthe XIBFileo i, 301

For the More Curious: Which Object Sends the Action Message? 303
For the More Curious: UTTs and the Pasteboard 303
Custom UTTs ... 303

For the More Curious: Lazy Copying 304
Challenge 1o 305

Challenge 2 305

Xiv CONTENTS

Chapter 22 Categoriescoiiiiiiiiiinenennnn. 307
Add a Method to NSString 307
For the More Curious: Declaring Private Methods 309

Chapter 23 Drag-and-Dropcciviiiiiinnnn. 311
Make BigLetterView a Drag Source 312

StartingaDrag 312
Afterthe Drop ... 314
Make BigLetterView a Drag Destination 315
registerForDraggedTypes: o .. 316
Add Highlighting oo ool 316
Implement the Dragging Destination Methods 317
Add a Second BigLetterView 318
For the More Curious: Operation Mask, 319

Chapter24 NSTimer..........cciiuiiiiiiiiiinnennnn. 321
Lay Out the Interface i i i, 323
Make CONNeCtionsvvvuunnn ettt 325
Add Code to TutorController 326
For the More Curious: NSRunLoop 328
Challenge 328

Chapter25 Sheets 329
AddingaSheet i 330

Add Outletsand Actionsl 331
Lay Out the Interface i 331
AddCode 334
For the More Curious: contextInfo.............................. 335
For the More Curious: Modal Windows 336

Chapter 26 Creating NSFormatters 339

ABasicFormatter i 341
Create ColorFormatter.h 341
Editthe XIBFile i, 342
NSColorListo 344
Searching Strings for Substrings o o 344
Implement the Basic Formatter Methods 345

The Delegate of the NSControl Class 347

CONTENTS XV

Checking Partial Strings o i 348
Formatters That Return Attributed Strings 350
For the More Curious: NSValueTransformer 351
Chapter27 Printingcoiiiiiiiiiiiiiiiinn.. 353
Dealing with Pagination oo i 353

For the More Curious: Are you Drawing to the Screen?............. 358
Challenge oottt 358
Chapter 28 Web Serviceso, 359
RanchForecast Project o i 360
NSURLCONNECHON . .o vovv vttt e 361

Add XML Parsing to ScheduleFetcher 363

Lay Out the Interfaceooo i, 366

Write Controller Code........... oo 368
Opening URLs i e 368
Challenge: Adda WebViewo L. 369
Chapter29 Blocksc.cvuiiiiiiiiiiiiiiiinnnn.. 371
Block Syntax 373
Memory and Objects within Blocks 375
Availability of Blocks o 376
RanchForecast: Going Asynchronous 376
Receiving the Asynchronous Response 377
Challenge: Designa Delegate 381
Chapter 30 Developing foriOSociivnn.. 383
Porting RanchForecast toiOSo oL, 383
ScheduleFetcher i i i 386
RootViewController i 386
Add a Navigation Controller, 388
ScheduleViewController o i i 391
Ul'TableViewController, 392
Pushing View Controllers 393
Challenge i 395
Chapter 31 ViewSwappingccviiiiiiinnnnnn.. 397
GetStartedoii 398
Create the ManagedViewController Class 399

Create ViewControllers and their XIB files 400

XVi CONTENTS

Add View Swapping to MyDocument 401
Resizing the Window i i i 403
Chapter 32 Core Data Relationships 407
Editthe Modelo 407
Create Custom NSManagedObject Classes, 409
Employee.o 409
Departmento 410

Lay Out the Interface o i i, 411
EmployeeView.xib o 413

Events and nextResponder i i, 414
Chapter 33 Core Animationcoiunnn. 417
Scattered 417
Implicit Animation and ACtONSiviiineiinn i, 423
Moreon CALayer.........., 425
Challenge 1 425
Challenge 2 ... 425
Chapter 34 Concurrencyceoeeieenennennenns 427
Multithreading o 427

A Deep Chasm Opens Before Youoooiiiiiaa.. 428

Simple Cocoa Background Threads, 429
Improving Scattered: Time Profiling in Instruments 431
Introducing Instruments 431
NSOperationQUEUE vttt 435
Multithreaded Scattered il 435

Thread Synchronizationo il 437

For the More Curious: Faster Scattered 438
Challenge 439
Chapter 35 CocoaandOpenGL 441
A Simple Cocoa/OpenGL Applicationccouvino... 442
Lay Outthe Interfaceco i, 442

Write Code ..ot 446

CONTENTS Xvii

Chapter 36 NSTaskccoiiiiiiiiiiiiiiinnnn.. 451
ZIPSPECTOT .« v vttt et et e e e e e e 451
Asynchronous Reads i il 456
IPIng ..o 456
Challenge: .tarand .tgzfilesl 460
Chapter 37 DistributingYour Appoooiiiiiin.. 461
Build Configurations 461
Preprocessor Macros and Using Build Configurations to
Change Behavior i 462
CreatingaRelease Build o oo 464
Application Sandboxing. o o oo 466
Entitlements 467
Mediated File Access and Powerbox 468
The Mac App StOre . . .o vttt e 468
Chapter38 TheEnd.............. ... o i, 471

This page intentionally left blank

PREFACE

If you are developing applications for the Mac, or are hoping to do so, this book
is just the resource you need. Does it cover everything you will ever want to
know about programming for the Mac? Of course not. But it does cover
probably 80% of what you need to know. You can find the remaining 20%—the
20% that is unique to you—in Apple’s online documentation.

"This book, then, acts as a foundation. It covers the Objective-C language and the
major design patterns of Cocoa. It will also get you started with the two most
commonly used developer tools: Xcode and Instruments. After reading this
book, you will be able to understand and utilize Apple’s online documentation.

There is a lot of code in this book. Through that code, we will introduce you to
the idioms of the Cocoa community. Our hope is that by presenting exemplary
code, we can help you to become more than a Cocoa developer—a stylish Cocoa
developer.

This fourth edition includes technologies introduced in Mac OS X 10.6 and
10.7. These include Xcode 4, ARC, blocks, view-based table views, and the Mac
App Store. We have also devoted one chapter to the basics of iOS development.

This book is written for programmers who already know some C programming
and something about objects. If you don’t know C or objects, you should first
read Objective-C Programming: The Big Nerd Ranch Guide. You are not expected to
have any experience with Mac programming. This hands-on book assumes that
you have access to Mac OS X and the developer tools. Xcode 4.2, Apple’s IDE, is
available for free. If you are a member of the paid Mac or iOS Developer
Programs, Xcode can also be downloaded from the Apple Developer Connection
Web site (http://developer.apple.com/). Enrollment in these programs enables
you to submit your applications to the Mac and iOS App Stores, respectively.

We have tried to make this book as useful for you as possible, if not indispensable.
That said, we’d love to hear from you at cocoabook@bignerdranch.com if you
have any suggestions for improving it.

—Aaron Hillegass and Adam Preble
xix

http://developer.apple.com/

This page intentionally left blank

ACKNOWLEDGMENTS

Creating this book required the efforts of many people. We want to thank
them for their help. Their contributions have made this a better book than we
could have ever written alone.

Thanks to the students who took the Cocoa programming course at the Big
Nerd Ranch. They helped us work the kinks out of the exercises and explana-
tions that appear here. Their curiosity inspired us to make the book more
comprehensive, and their patience made it possible.

Thank you to all the readers of the first three editions, who made such great
suggestions on our forums (http://forums.bignerdranch.com/).

Thank you to all the instructors at the Ranch, who made great additions and
caught many of our most egregious errors.

A final shout out to the people at Addison-Wesley, who took our manuscript
and made it into a book. They put the book on trucks and convinced
bookstores to put it on the shelves. Without their help, it would still be just a
stack of paper.

XXi

http://forums.bignerdranch.com/

This page intentionally left blank

Chapter 3
OBjecTIVE-C

Once upon a time, a man named Brad Cox decided that it was time for the world
to move toward a more modular programming style. C was a popular and powerful
language. Smalltalk was an elegant untyped object-oriented language. Starting
with C, Brad Cox added Smalltalk-like classes and message-sending mechanisms.
He called the result Objective-C. Objective-C is a very simple extension of the C
language. In fact, it was originally just a C preprocessor and a library.

Objective-C is not a proprietary language. Rather, it is an open standard that has
been included in the Free Software Foundation’s GNU C compiler (gcc) for many
years. More recently, Apple has become heavily involved in the clang/LLVM (Low
Level Virtual Machine) open source compiler projects, which are much faster and
more versatile than gece. In Xcode projects, LLVM is the default compiler.

Cocoa was developed using Objective-C, and most Cocoa programming is done
in Objective-C. Teaching C and basic object-oriented concepts could consume
an entire book. This chapter assumes that you already know a litde C and
something about objects and introduces you to the basics of Objective-C. If you
fit the profile, you will find learning Objective-C to be easy. If you do not, our
own Objective-C Programming: The Big Nerd Ranch Guide or Apple’s The
Objective-C Language offer more gentle introductions.

Creating and Using Instances

Chapter 1 mentioned that classes are used to create objects, that the objects have
methods, and that you can send messages to the objects to trigger these methods.
In this section, you will learn how to create an object and send messages to it.

As an example, we will use the class NSMutableArray. You can create a new
instance of NSMutableArray by sending the message alloc to the
NSMutableArray class like this:

[NSMutabTleArray alloc];

35

36

CHAPTER 3 = OBJeCTIVE-C

"This method returns a pointer to the space that was allocated for the object. You
could hold onto that pointer in a variable like this:

NSMutableArray *foo;
foo = [NSMutableArray alloc];

While working with Objective-C, it is important to remember that foo is just a
pointer. In this case, it points to an object.

Before using the object that foo points to, you would need to make sure that it is
fully initialized. The init method will handle this task, so you might write code
like this:

NSMutableArray *foo;
foo = [NSMutableArray alloc];
[foo init];

Take a long look at the last line; it sends the message init to the object that foo
points to. We would say, “foo is the receiver of the message init.” Note thata
message send consists of a receiver (the object foo points to) and a message (init)
wrapped in brackets. You can also send messages to classes, as demonstrated by
sending the message alloc to the class NSMutableArray.

The method init returns the newly initialized object. As a consequence, you
will always nest the message sends like this:

NSMutableArray *foo;
foo = [[NSMutableArray alloc] 1init];

What about destroying the object when we no longer need it? We will talk about
this in the next chapter.

Some methods take arguments. If a method takes an argument, the method
name (called a selector) will end with a colon. For example, to add objects to the
end of the array, you use the addObject: method (assume that bar is a pointer to
another object):

[foo addObject:bar];

If you have multiple arguments, the selector will have multiple parts. For
example, to add an object at a particular index, you could use the following:

[foo insertObject:bar atIndex:5];

Note that insertObject:atIndex: is one selector, not two. It will trigger one
method with two arguments. This outcome seems strange to most C and Java

UsING ExisTING CLASSES 37

programmers but should be familiar to Smalltalk programmers. The syntax also
makes your code easier to read. For example, it is not uncommon to see a C++

method call like this:
if (x.intersectsArc(35.0, 19.0, 23.0, 90.0, 120.0))
It is much easier to guess the meaning of the following code:

if ([x intersectsArcWithRadius:35.0
centeredAtX:19.0
Y:23.0
fromAngle:90.0
toAngle:120.0])

If it seems odd right now, just use it for a while. Most programmers grow to
appreciate the Objective-C messaging syntax.

You are now at a point where you can read simple Objective-C code, so it is time

to write a program that will create an instance of NSMutableArray and fill it with
ten instances of NSNumber.

Using Existing Classes

If it isn’t running, start Xcode. Close any projects that you were working on.
Under the File menu, choose New -> New Project.... When the panel pops up,
choose to create a Command Line Tool (Figure 3.1).

Choose a templare for your new project:

A os [
Application 0\\ .” |i|

Framework & Library ¥ %
Other
Locoa Application Locoa-Applescript
4 Mac 05X Application
Framework & Library
Application Plug-in
System Plug-in
Other
i, Command Line Tool
This template builds 2 command-line tool.
Cancel Pravious Maxt

Figure 3.1 Choose Project Type

38

CHAPTER 3 = OBJeCTIVE-C

A command-line tool has no graphical user interface and typically runs on the
command line or in the background as a daemon. Unlike in an application
project, you will always alter the main function of a command-line tool.

Name the project lottery (Figure 3.2). Unlike the names of applications, most
tool names are lowercase. Set the Type to Foundation.

Choose options for your new project:

—

Product Name Iotler\{
Company Wentifier com.bignerdranch
Bundle Identifier com.bignerdranch.lomery
Type | Foundation

.3' Use Automatic Reference Counting

Cancel Previous | | MNext

Figure 3.2 Name Project

When the new project appears, select main.min the lottery group. Editmain.mto
look like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {

NSMutableArray *array;
array = [[NSMutableArray alloc] init];
int 1i;
for (i = 0; i < 10; i++) {
NSNumber *newNumber =
[INSNumber alloc] initWithInt:(i * 3)];
[array addObject:newNumber];

UsING ExisTING CLASSES 39

for (i =0; i< 10; i++) {
NSNumber *numberToPrint = [array objectAtIndex:i];
NSLog(@"The number at index %d is %@", i, numberToPrint);

}
return 0;

}
Here is the play-by-play for the code:
#import <Foundation/Foundation.h>

You are including the headers for all the classes in the Foundation framework.
The headers are precompiled, so this approach is not as computationally
intensive as it sounds.

int main (int argc, const char *argv[])
The main function is declared just as it would be in any Unix C program.
@autoreleasepool {

This code defines an autorelease pool for the code enclosed by the braces. We
will discuss the importance of autorelease pools in the next chapter.

NSMutableArray *array;

One variable is declared here: array is a pointer to an instance of
NSMutableArray. Note that no array exists yet. You have simply declared a
pointer that will refer to the array once it is created.

array = [[NSMutableArray alloc] init];

Here, you are creating the instance of NSMutab1eArray and making the array
variable point to it.

for (i = 0; i < 10; i++) {
NSNumber *newNumber = [[NSNumber alloc] initWithInt:(i*3)];
[array addObject:newNumber];

}

Inside the for loop, you have created a local variable called newNumber and set it
to point to a new instance of NSNumber. Then you have added that object to the
array.

The array does not make copies of the NSNumber objects. Instead, it simply keeps
a list of pointers to the NSNumber objects. Objective-C programmers make very
few copies of objects, because it is seldom necessary.

40

CHAPTER 3 = OBJeCTIVE-C

for (i =0; i < 10; i++) {
NSNumber *numberToPrint = [array objectAtIndex:i];
NSLog(@"The number at index %d is %@", i, numberToPrint);
}

Here, you are printing the contents of the array to the console. NSLog is a
function much like the C function printf(); it takes a format string and a
comma-separated list of variables to be substituted into the format string. When
displaying the string, NSLog prefixes the generated string with the name of the
application and a time stamp.

In printf, for example, you would use %x to display an integer in hexadecimal
form. With NSLog, we have all the tokens from printf and the token %@ to
display an object. The object gets sent the message description, and the string
it returns replaces %@ in the string. We will discuss the description method in
detail soon.

All the tokens recognized by NSLog() are listed in Table 3.1.

Table 3.1 Possible Tokens in Objective-C Format Strings

Symbol Displays

%@ id

%d, %D, %i long

%u, %U unsigned long

%hi short

%hu unsigned short

%0 long long

%au unsigned long long

%X, %X unsigned long printed as hexadecimal

%0, %0 unsigned long printed as octal

%f, %e, %E, %g, %G double

%c unsigned char as ASCII character

%C unichar as Unicode character

%s char * (a null-terminated C string of ASCII characters)

%S unichar * (a null-terminated C string of Unicode
characters)

%p void * (an address printed in hexadecimal with a leading 0x)

%% a % character

Note: If the @ symbol before the quotes in @' The number at index %d is %@"
looks a little strange, remember that Objective-C is the C language with a couple
of extensions. One of the extensions is that strings are instances of the class
NSString. In C, strings are just pointers to a buffer of characters that ends in the

UsING ExisTING CLASSES 41

null character. Both C strings and instances of NSString can be used in the same
file. To differentiate between constant C strings and constant NSStrings, you
must put @ before the opening quote of a constant NSString.

// C string

char *foo;

// NSString

NSString *bar;

foo = "this is a C string";
bar = @"this is an NSString";

You will use mostly NSString in Cocoa programming. Wherever a string is
needed, the classes in the frameworks expect an NSString. However, if you
already have a bunch of C functions that expect C strings, you will find yourself
using char * frequently.

You can convert between C strings and NSStrings:

const char *foo = "Blah blah";

NSString *bar;

// Create an NSString from a C string

bar = [NSString stringWithUTF8String:foo];

// Create a C string from an NSString
foo = [bar UTF8String];

Because NSString can hold Unicode strings, you will need to deal with the mul-
tibyte characters correctly in your C strings, and this can be quite difficult and
time consuming. (Besides the multibyte problem, you will have to wrestle with
the fact that some languages read from right to left.) Whenever possible, you
should use NSString instead of C strings.

Our main() function ends by returning 0, indiciating that no error occurred:

return 0;

}

Run the completed command-line tool (Figure 3.3). (If your console doesn’t
appear, use the View -> Show Debug Area menu item and ensure that the console,
the right half, is enabled.)

Sending Messages to nil

In most object-oriented languages, your program will crash if you send a
message to null. In applications written in those languages, you will see many

42 CHAPTER 3 = OBJeCTIVE-C

L. NaXe] | lottery - main.m =
() = = | | Eax
Run Stop Scheme Breakpoints Nalszues Editor View Organizer
MnmeA=wB [m < lottery + [lottery + |m| main.m » maing)

lattery NSMutableArray +array;
1 target, Mac 05 X 50K 106 array = [[NSMutableArray alloc] initl;
ortery int i;
[l for (1= 0; i< 18; i++) {
m| NSNumber #newNumber = [INSNumber allocl initWithInt:li = 3)1;
<) lottery.1 [array add0bject:newNumber];
Supporting Files 3
E — for {i=0; i«<10; i++) {
Products NSHumber *numberToPrint = [array objectAtIndex:il;
NSLog{@'The number at index %d is %", i, numberToPrint); 4

E um @ & & |NoSelection

All Qutput $ Clear | ([0 I [EY

GNU gdb 6.3.5P-28858B15 (Apple version ocb-1518) (Thu Jan 27 BB:34:47 UTC 2811)

Copyright 2804 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "xB_G64-apple-garwin'.tty fdev/ttyspes

[Switching to process 67174 thread BxB]
3:26:51

2011-93-04 2 676 lottery[67174:983] The number at index & is @
2011-83-04 2. 1.679 lottery[67174:903] The number at index 1 is 3
2011-03-04 H 1.68@ lottery[67174:903] The number at index 2 is 6
2011-083-04 23: 81 lottery[67174:903] The number at index 3 is 9
2011-983-04 23 lottery[67174:983] The number at index 4 is 12
2011-83-04 23: lottery[67174:903] The number at index 5 is 15
2011-03-04 23: lottery[67174:983] The number at index 6 is 1B
2011-83-04 23: lottery[67174:903] The number at index 7 is 21
2011-983-04 23: 1.683 lottery[67174:903] The number at index B is 24
2011-83-84 23:26:51.684 lottery[67174:903] The number at index 9 is 27

— Program ended with exit code: 8
+ 0OREF S

Figure 3.3 Completed Execution

checks for nu11 before sending a message. In Java, for example, you frequently
see the following:

if (foo != null) {
foo.doThatThingYouDo();
h

In Objective-C, it is okay to send a message to ni1. The message is simply
discarded, which eliminates the need for these sorts of checks. For example, this
code will build and run without an error:

id foo;
foo = nil;
int bar = [foo count];

This approach is different from how most languages work, but you will get used
to it.

You may find yourself asking over and over, “Argg! Why isn’t this method
getting called?” Chances are that the pointer you are using, convinced that it is
not nil,isin factnil.

In the preceding example, what is bar set to? Zero. If bar were a pointer, it
would be set to ni1 (zero for pointers). For other types, the value is less
predictable.

UsING ExisTING CLASSES 43

NSObject, NSArray, NSMutableArray,
and NSString

You have now used these standard Cocoa objects: NSObject, NSMutab1eArray,
and NSString. (All classes that come with Cocoa have names with the NS prefix.
Classes that you will create will #or start with NS.) These classes are all part of the
Foundation framework. Figure 3.4 shows an inheritance diagram for these
classes.

———— = — — —

Tlnherits from

L NSArray 1 L _ NSStrin

Jlnherits from

LNSMutabIeArra_y q
i

Figure 3.4 Inheritance Diagram

Let’s go through a few of the commonly used methods on these classes.
For a complete listing, you can access the online documentation in Xcode’s
Help menu.

NSObject

NSObject is the root of the entire Objective-C class hierarchy. Some commonly
used methods on NSObject are described next.

- (id)init
Initializes the receiver after memory for it has been allocated. An init

message is generally coupled with an alloc message in the same line of
code:

TheClass *newObject = [[TheClass alloc] init];

44

CHAPTER 3 = OBJeCTIVE-C

- (NSString *)description

Returns an NSString that describes the receiver. The debugger’s print
object command (“po”) invokes this method. A good description method
will often make debugging easier. Also, if you use %@ in a format string, the
object that should be substituted in is sent the message description. The
value returned by the description method is put into the log string. For
example, the line in your main function

NSLog(@"The number at index %d is %@", i, numberToPrint);
is equivalent to

NSLog(@"The number at index %d is %@", i,
[numberToPrint description]);

- (BOOL)isEqual: (id)anObject

Returns YES if the receiver and anObject are equal and NO otherwise. You
might use it like this:

if ([myObject isEqual:anotherObject]) {
NSLog(@"They are equal.");
b

But what does equal really mean? In NSObject, this method is defined to
return YES if and only if the receiver and anObject are the same
object—that is, if both are pointers to the same memory location.

Clearly, this is not always the “equal” that you would hope for, so this
method is overridden by many classes to implement a more appropriate
idea of equality. For example, NSString overrides the method to compare
the characters in the receiver and anObject. If the two strings have the
same characters in the same order, they are considered equal.

Thus, if x and y are NSStrings, there is a big difference between these two
expressions:

X =Yy
and
[x isEqual:y]

The first expression compares the two pointers. The second expression
compares the characters in the strings. Note, however, that if x and y are
instances of a class that has not overridden NSObject’s isEqual: method,
the two expressions are equivalent.

UsING ExisTING CLASSES 45

NSArray

An NSArray is a list of pointers to other objects. It is indexed by integers. Thus,
if there are 7 objects in the array, the objects are indexed by the integers 0
through # — 1. You cannot puta ni1 in an NSArray. (This means that there are no
“holes” in an NSArray, which may confuse some programmers who are used to
Java’s Object[].) NSArray inherits from NSObject.

An NSArray is created with all the objects that will ever be in it. You can neither
add nor remove objects from an instance of NSArray. We say that NSArray is
immutable. (Its mutable subclass, NSMutab1eArray, will be discussed next.)
Immutability is nice in some cases. Because it is immutable, a horde of objects
can share one NSArray without worrying that one object in the horde might
change it. NSString and NSNumber are also immutable. Instead of changing a
string or number, you will simply create another one with the new value. (In the
case of NSString, there is also the class NSMutableString that allows its
instances to be altered.)

A single array can hold objects of many different classes. Arrays cannot, however,
hold C primitive types, such as int or float.

Here are some commonly used methods implemented by NSArray:

- (unsigned)count

Returns the number of objects currently in the array.

- (id)objectAtIndex: (unsigned)ii

Returns the object located at index 1. If i is beyond the end of the array,
you will get an error at runtime.

- (id)TastObject

Returns the object in the array with the highest index value. If the array is
empty, nil is returned.

- (BOOL)containsObject: (id)anObject

Returns YES if anObject is present in the array. This method determines
whether an object is present in the array by sending an isEqual: message
to each of the array’s objects and passing anObject as the parameter.

- (unsigned)index0fObject: (id)anObject

Searches the receiver for anObject and returns the lowest index whose
corresponding array value is equal to anObject. Objects are considered
equal if isEqual: returns YES. If none of the objects in the array are equal
to anObject, indexOfObject: returns NSNotFound.

46

CHAPTER 3 = OBJeCTIVE-C

NSMutableArray

NSMutableArray inherits from NSArray but extends it with the ability to add and
remove objects. To create a mutable array from an immutable one, use NSArray’s
mutableCopy method.

Here are some commonly used methods implemented by NSMutableArray:

- (void)addObject: (id)anObject
Inserts anObject at the end of the receiver. You are not allowed to add ni1

to the array.

- (void)addObjectsFromArray: (NSArray *)otherArray

Adds the objects contained in otherArray to the end of the receiver’s array
of objects.

- (void)insertObject: (id)anObject atIndex: (unsigned)index

Inserts anObject into the receiver at index, which cannot be greater than
the number of elements in the array. If index is already occupied, the
objects at index and beyond are shifted up one slot to make room. You will
get an error if anObject is ni1 or if index is greater than the number of
elements in the array.

- (void)removeAll0bjects

Empties the receiver of all its elements.

- (void)removeObject: (id)anObject

Removes all occurrences of anObject in the array. Matches are determined
on the basis of anObject’s response to the isEqual: message.

- (void)removeObjectAtIndex: (unsigned)index

Removes the object at index and moves all elements beyond index down
one slot to fill the gap. You will get an error if index is beyond the end of
the array.

As mentioned earlier, you cannot add ni1 to an array. Sometimes, you will want
to put an object into an array to represent nothingness. The NSNu11 class exists

for exactly this purpose. There is exactly one instance of NSNu11, so if you want
to put a placeholder for nothing into an array, use NSNu11 like this:

[myArray addObject:[NSNull null]];

UsING ExisTING CLASSES

NSString

An NSString is a buffer of Unicode characters. In Cocoa, all manipulations
involving character strings are done with NSString. As a convenience, the

Objective-C language also supports the @".." construct to create a string object

constant from a 7-bit ASCII encoding:
NSString *temp = @"this is a constant string";

NSString inherits from NSObject. Here are some commonly used methods
implemented by NSString:

- (id)initWithFormat: (NSString *)format,

Works like sprintf. Here, format is a string containing tokens, such as
%d. The additional arguments are substituted for the tokens:

int x = 5;
char *y = "abc";
id z = @"123";

NSString *aString = [[NSString alloc] initWithFormat:
@"The int %d, the C String %s, and the NSString %@",
X, Y, 2];

- (NSUInteger)length

Returns the number of characters in the receiver.

- (NSString *)stringByAppendingString: (NSString *)aString

Returns a string object made by appending aString to the receiver. The
following code snippet, for example, would produce the string “Error:
unable to read file.”

NSString *errorTag = @"Error: ";
NSString *errorString = @"unable to read file.";

NSString *errorMessage;

errorMessage = [errorTag stringByAppendingString:errorString];

- (NSComparisonResult)compare: (NSString *)otherString

Compares the receiver and otherString and returns NSOrderedAscend-
ing if the receiver is alphabetically prior to otherString, NSOrderedDe-
scending if otherString is comes before the receiver, or NSOrderedSame
if the receiver and otherString are equal.

- (NSComparisonResult)caselnsensitiveCompare: (NSString *)
otherString

Like compare:, except the comparison ignores letter case.

48

CHAPTER 3 = OBJeCTIVE-C

“Inherits from” versus “Uses” or “Knows About”

Beginning Cocoa programmers are often eager to create subclasses of NSString
and NSMutableArray. Don’t. Stylish Objective-C programmers almost never do.
Instead, they use NSString and NSMutableArray as parts of larger objects, a
technique known as composition. For example, a BankAccount class could be a
subclass of NSMutableArray. After all, isn’t a bank account simply a collection of
transactions? The beginner would follow this path. In contrast, the old hand
would create a class BankAccount that inherited from NSObject and has an
instance variable called transactions that would point to an NSMutableArray.

It is important to keep track of the difference between “uses” and “is a subclass
of.” The beginner would say, “BankAccount inherits from NSMutableArray.”
The old hand would say, “BankAccount uses NSMutableArray.” In the common
idioms of Objective-C, “uses” is much more common than “is a subclass of.”

You will find it much easier to use a class than to subclass one. Subclassing
involves more code and requires a deeper understanding of the superclass. By
using composition instead of inheritance, Cocoa developers can take advantage
of very powerful classes without really understanding how they work.

In a strongly typed language, such as C++, inheritance is crucial. In an untyped

language, such as Objective-C, inheritance is just a hack that saves the developer
some typing. There are only two inheritance diagrams in this entire book. All the
other diagrams are object diagrams that indicate which objects know about which
other objects. This is much more important information to a Cocoa programmer.

Creating Your Own Classes

Where 1 live, the state government has decided that the uneducated have
entirely too much money: You can play the lottery every week. Let’s imagine that
a lottery entry has two numbers between 1 and 100, inclusive. You will write a
program that will make up lottery entries for the next ten weeks. Each
LotteryEntry object will have a date and two random integers (Figure 3.5).

All Qutput * Clear) (IO I B
[Switching to process 69829 thread @x@]

2011-03-05 14:25:27.997 lottery[69829:983] Mar 85 2011 = 34 and 19
2011-083-05 14:25:28.001 lottery[69829:983] Mar 12 2011 = 29 and 93
2011-03-05 14:25:28.002 lottery[69829:983] Mar 19 2011 = 72 and 78
2011-083-05 14:25:28.003 lottery[69829:983] Mar 26 2011 = 75 and 38
2011-03-05 14:25:28.003 lottery[69829:983] Apr 82 2011 = 54 and 100
2011-03-05 14:25:28.004 lottery[69829:983] Apr @9 2011 = 92 and 97
2011-83-85 14:25:28.005 lottery[69829:903] Apr 16 2811 = &9 and 23
2011-03-05 14:25:28.005 lottery[69829:983] Apr 23 2011 = 74 and 26
2011-083-05 14:25:28.006 lottery[69829:983] Apr 38 2011 = 13 and 41 -
2011-03-05 14:25:28.007 lottery[69829:983] May @7 2011 = 65 and 51 v

Program ended with exit code: B

Figure 3.5 Completed Program

CREATING YOUR OWN CLASSES 49

Besides learning how to create classes, you will build a tool that will certainly
make you fabulously wealthy.

Creating the LotteryEntry Class

In Xcode, create a new file. Select Objective-C class as the type. Name the class
LotteryEntry, and set it to be a subclass of NSObject (Figure 3.6).

1 lottery.xcadeproj — m main.m o
) (m) [aomM.] (=] [Finished running lottery : lottery] @ m_ q
Rin Stop Scheme Breakpoints S Editor View O
|| =
[lottery Choose options for your new file:
= Y rarger, A
v | lottery =
| —
s low
> Sup
[Frame
» || Praduc
Class | LotteryEntng |
Subclass of | NSObject v |0 m
Cancel Previous | | MNext |
+ 0E@B

Figure 3.6 New LotteryEntry Class

Note that you are also causing LotteryEntry.h to be created. Drag both files
into the lottery group if they are not already there.

LotteryEntry.h

Edit the LotteryEntry.h file to look like this:

#import <Foundation/Foundation.h>

@interface LotteryEntry : NSObject {
NSDate *entryDate;
int firstNumber;
int secondNumber;

50

CHAPTER 3 = OBJeCTIVE-C

(void)prepareRandomNumbers ;
(void)setEntryDate: (NSDate *)date;
(NSDate *)entryDate;

- (int) firstNumber;

- (int)secondNumber;

@end

You have created a header file for a new class called LotteryEntry that inherits
from NSObject. It has three instance variables:

B entryDate is an NSDate.
® firstNumber and secondNumber are both ints.
You have declared five methods in the new class:
® prepareRandomNumbers will set firstNumber and secondNumber to

random values between 1 and 100. It takes no arguments and returns
nothing.

® entryDate and setEntryDate: will allow other objects to read and set
the variable entryDate. The method entryDate will return the value
stored in the entryDate variable. The method setEntryDate: will
allow the value of the entryDate variable to be set. Methods that allow
variables to be read and set are called accessor methods.

® You have also declared accessor methods for reading firstNumber and
secondNumber. (You have not declared accessors for setting these vari-
ables; you are going to set them directly in prepareRandomNumbers.)

LotteryEntry.m

Edit LotteryEntry.m to look like this:

#import "LotteryEntry.h"
@implementation LotteryEntry

- (void)prepareRandomNumbers

{
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;

}

- (void)setEntryDate: (NSDate *)date
{

}

entryDate = date;

CREATING YOUR OWN CLASSES

- (NSDate *)entryDate

{
return entryDate;
}
- (int) firstNumber
{
return firstNumber;
}
- (int)secondNumber
{
return secondNumber;
}
@end

Here is the play-by-play for each method:

prepareRandomNumbers uses the standard random function to generate a
pseudorandom number. You use the mod operator (%) and add 1 to get the

number in the range 1-100.

setEntryDate: sets the pointer entryDate to a new value.

entryDate, firstNumber, and secondNumber return the values of

variables.

Changing main.m

Now let’s look at main.m. Many of the lines have stayed the same, but several

have changed. The most important change is that we are using LotteryEntry

objects instead of NSNumber objects.

Here is the heavily commented code. (You don’t have to type in the comments.)

#import <Foundation/Foundation.h>
#import "LotteryEntry.h"

int main (int argc, const char *argv[]) {

@autoreleasepool {

// Create the date object

NSDate *now = [[NSDate alloc] init];

NSCalendar *cal = [NSCalendar currentCalendar];

NSDateComponents *weekComponents =
[[NSDateComponents alloc] init];

52

CHAPTER 3 =

OBJECTIVE-C

// Seed the random number generator
srandom((unsigned) time (NULL));
NSMutableArray *array;

array = [[NSMutableArray alloc] init];

int
for

for

}
}

i;
(i =0; 1 <10; i++) {

[weekComponents setWeek:i];

// Create a date/time object that is ‘i’ weeks from now
NSDate *iWeeksFromNow;
iWeeksFromNow = [cal dateByAddingComponents:weekComponents
toDate:now
options:0];

// Create a new instance of LotteryEntry
LotteryEntry *newEntry = [[LotteryEntry alloc] init];
[newEntry prepareRandomNumbers];

[newEntry setEntryDate:iWeeksFromNow];

// Add the LotteryEntry object to the array
[array addObject:newEntry];

(LotteryEntry *entryToPrint in array) {
// Display its contents
NSLog(@"%@", entryToPrint);

return 0;

}

Note the second loop. Here you are using Objective-C’s mechanism for
enumerating over the members of a collection.

"This program will create an array of LotteryEntry objects, as shown in Figure 3.7.

Implementing a description Method

Build and run your application. You should see something like Figure 3.8.

Hmm. Not quite what we hoped for. After all, the program is supposed to reveal
the dates and the numbers you should play on those dates, and you can’t see
either. (You are seeing the default description method as defined in NSObject.)
Next, you will make the LotteryEntry objects display themselves in a more
meaningful manner.

CREATING YOUR OWN CLASSES 53

LotteryEntry
entrvDate — Eah 2 1075
NSMutableArray mJ LotteryEntry
A+ se
entryDate = Feb 9, 1975
firstNy LotteryEntry
secon
entryDate = Feb 16, 1975
Y firs LotteryEntry
— se
entryDate = Feb 23, 1975
— fir LotteryEntry
se
entryDate = Mar 2, 1975
array firstNumber = 80
secondNumber = 51
Figure 3.7 Object Diagram
All Qutput # Clear | (0| W O

[Switching to process BBB46 thread 8x@]

2011-83-85 14:17:15.347 lottery[68946:903] <LotteryEntry: 98x100110eB0=

2011-083-85 14:17:15.347 lottery[68946:903] <LotteryEntry: 9x10011108b0=

2011-83-85 14:17:15.348 lottery[68046:983] <LotteryEntry: 0x100111120>

2011-83-85 14:17:15.348 lottery[68946:903] <LotteryEntry: 8x18081111709=

2011-83-85 14:17:15.349 lottery[68946:903] <LotteryEntry: 9x18081111c@=

2011-983-85 14:17:15.349 lottery[68946:983] <LotteryEntry: 8x188111210>

2011-83-85 14:17:15.349 lottery[6B946:903] <LotteryEntry: 9x1808111100=

2011-03-85 14:17:15.350 lottery[68946:903] <LotteryEntry: @xleelllzfo=

2011-83-85 14:17:15.350 lottery[6B946:903] <LotteryEntry: 9x1808111340= *
2011-83-85 14:17:15.350 lottery[68946:903] <LotteryEntry: 8x1808111390= v
Program ended with exit code: B

Figure 3.8 Completed Execution

Add a description method to LotteryEntry.m:

- (NSString *)description
{

NSDateFormatter *df = [[NSDateFormatter alloc] init];

[df setTimeStyle:NSDateFormatterNoStyle];

[df setDateStyle:NSDateFormatterMediumStyle];

NSString *result;

result = [[NSString alloc] initWithFormat:@"%@ = %d and %d",
[df stringFromDate:entryDate],
firstNumber, secondNumber];

return result;

54 CHAPTER 3 = OBJeCTIVE-C

Build and run the application. Now you should see the dates and numbers:

All Qutput Clear) (IO N [EY
This GDB was configurec as "xBE_R4-apple-carwin'.tty /oev/ttysPBe

sharedlibrary apply-load-rules all

[Switching to process 42687 thread Bx8]

2011-83-16 20:45:21.063 lottery[42697:903] Mar 16, 2011 = 98 and 67
2011-93-16 20:45:21.066 lottery[42697:983]) Mar 23, 2011 = 10 and 73
2011-083-16 20:45:21.068 lottery[42697:903] Mar 30, 2011 = B@ and 61

2011-83-16 20:45:21.871 lottery[42697:9083] Apr 6, 2011 = 49 and 50
2011-93-16 20:45:21.076 lottery[42697:983] Apr 13, 28ll 65 and 4
2011-83-16 20:45:21.877 lottery[42697:9083] Apr 20, 2011 6 and 46
2811-83-16 28: .079 lottery[42697:903] Apr 27, 2011 26 and 53

2811-83-16 20: 1.080 lottery[42697:903] May 4, 2011 = 28 and BO@
2811-83-16 280: 1.881 lottery[42697:9@3] May 11, 2011 = 90 and 24 4
2011-93-16 20:4 1.882 lottery[42697:903] May 1B, 2011 = 72 and B6 v

Program ended with exit code: @

Figure 3.9 Execution with Description

NSDate

Before moving on to any new ideas, let’s examine NSDate in some depth.
Instances of NSDate represent a single point in time and are basically immutable:
You can’t change the day or time once it is created. Because NSDate is
immutable, many objects often share a single date object. There is seldom any
need to create a copy of an NSDate object.

Here are some of the commonly used methods implemented by NSDate:

+ (id)date
Creates and returns a date initialized to the current date and time.

This is a class method. In the interface file, implementation file, and docu-
mentation, class methods are recognizable because they start with +
instead of —. A class method is triggered by sending a message to the class
instead of an instance. This one, for example, could be used as follows:

NSDate *now;
now = [NSDate date];

- (id)dateByAddingTimeInterval: (NSTimeInterval)interval
Creates and returns a date initialized to the date represented by the
receiver plus the given interval.

- (NSTimeInterval)timeIntervalSinceDate: (NSDate *)anotherDate

Returns the interval in seconds between the receiver and anotherDate.
If the receiver is earlier than anotherDate, the return value is negative.
NSTimeInterval is the same as double.

CREATING YOUR OWN CLASSES 55

+ (NSTimeInterval)timeIntervalSinceReferenceDate

Returns the interval in seconds between the first instant of January 1, 2001
GMT and the receiver’ time.

- (NSComparisonResult)compare: (NSDate *)otherDate

Returns NSOrderedAscending if the receiver is earlier than otherDate,
NSOrderedDescending if otherDate is earlier, or NSOrderedSame if the
receiver and otherDate are equal.

Writing Initializers
Notice the following lines in your main function:

newEntry = [[LotteryEntry alloc] init];
[newEntry prepareRandomNumbers];

You are creating a new instance and then immediately calling prepareRandom-
Numbers to initialize firstNumber and secondNumber. This is something that
should be handled by the initializer, so you are going to override the init
method in your LotteryEntry class.

In the LotteryEntry.m file, change the method prepareRandomNumbers into an
init method:

- (id)1init
{
self = [super init];
if (self)
{
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;
}

return self;

}

The init method calls the superclass’s initializer at the beginning, initializes its
own variables, and then returns self, a pointer to the object itself (the object
that is running this method). (If you are a Java or C++ programmer, self is the
same as the this pointer.)

Now delete the following line in main.m:

[newEntry prepareRandomNumbers];

56

CHAPTER 3 = OBJeCTIVE-C

In LotteryEntry.h, delete the following declaration:
- (void)prepareRandomNumbers;
Build and run your program to reassure yourself that it still works.

"Take another look at our init method. Why do we bother to assign the return
value of the superclass’s initializer to se1f and then test the value of se1f? The
answer is that the initializers of some Cocoa classes will return ni1 if
initialization was impossible. In order to handle these cases gracefully, we must
both test the return value of [super init] and return the appropriate value for
self from our initiailizer.

"This pattern is debated among some Objective-C programmers. Some say that it
is unnecessary, since most classes’ initializers don’t fail, and most classes’
initializers don’t return a different value for sel1f. We believe it best to be in the
habit of assigning to self and testing that value. The effort required is minimal
compared to the debugging headaches that await you if you make an incorrect
assumption about the superclass’s behavior.

Initializers with Arguments
Look at the same place in main.m. It should now look like this:

LotteryEntry *newEntry = [[LotteryEntry alloc] init];
[newEntry setEntryDate:iWeeksFromNow];

It might be nicer if you could supply the date as an argument to the initializer.
Change those lines to look like this:

LotteryEntry *newEntry = [[LotteryEntry alloc]
initWithEntryDate: iWeeksFromNow] ;

You may see a compiler error; ignore it, as we are about to fix the problem.
Next, declare the method in LotteryEntry.h:

- (id)initWithEntryDate: (NSDate *)theDate;

Now, change (and rename) the init method in LotteryEntry.m:

- (id)initWithEntryDate: (NSDate *)theDate
{

self = [super init];

if (self)

CREATING YOUR OWN CLASSES 57

{
entryDate = theDate;
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;
}

return self;

}

Build and run your program. It should work correctly.

However, your class LotteryEntry has a problem. You are going to e-mail the
class to your friend Rex. Rex plans to use the class LotteryEntry in his program
but might not realize that you have written initWithEntryDate:. If he made
this mistake, he might write the following lines of code:

NSDate *today = [NSDate date];
LotteryEntry *bigWin = [[LotteryEntry alloc] init];
[bigWin setEntryDate:today];

This code will not create an error. Instead, it will simply go up the inheritance tree
until it finds NSObject’s init method. The problem is that firstNumber and
secondNumber will not get initialized properly—both will be zero.

"To protect Rex from his own ignorance, you will override init to call your
initializer with a default date:

- (id)init
{

}

return [self initWithEntryDate:[NSDate datel];

Add this method to your LotteryEntry.m file.

Note that initWithEntryDate: still does all the work. Because a class can have
multiple initializers, we call the one that does the work the designated initializer.
If a class has several initializers, the designated initializer typically takes the most
arguments. You should clearly document which of your initializers is the
designated initializer. Note that the designated initializer for NSObject is init.

Conventions for Creating Initializers (rules that Cocoa programmers try to
follow regarding initializers):

® You do not have to create any initializer in your class if the superclass’s
initializers are sufficient.

® Jfyou decide to create an initializer, you must override the superclass’s
designated initializer.

58 CHAPTER 3 = OBJeCTIVE-C

® Jfyou create multiple initializers, only one does the work—the desig-
nated initializer. All other initializers call the designated initializer.

The designated initializer of your class will call its superclass’s desig-
nated initializer.

The day will come when you will create a class that must, must, must have some

argument supplied. Override the superclass’s designated initializer to throw an
exception:

- (id)init
{
@throw [NSException exceptionWithName:@"BNRBadInitCall"

reason:@"Initialize Lawsuit with initWithDefendant:"
userInfo:nil];
return nil;

The Debugger

The Free Software Foundation developed the compiler (gec) and the debugger
(gdb) that come with Apple’s developer tools. Apple has made significant
improvements to both over the years. This section discusses the processes of
setting breakpoints, invoking the debugger, and browsing the values of variables.

While browsing code, you may have noticed a gray margin to the left of your
code. If you click in that margin, a breakpoint will be added at the corresponding
line. Add a breakpoint in main.m at the following line (Figure 3.10):

[array addObject:newEntry];

3 lottery - main.m

. | BlcsE mMaa (@

Estienr Wiew Crganizes

Tinished r

Enable

B LotteryErtry.h

breakpoints)

" loeary.k IveakConpenants setwanh:il;
Supporting Files y
Frimewarks ate wiseensFromhiou;

Produrty iwgeksFrosNow = [cal dateByhodinglomponentsiveckiomponents tolater
M locuary row opt ioms:bl;

Click to create
breakpoint

I

nt in wrray)

+I BB @ n o & & NoSteuon

Figure 3.10 Creating a Breakpoint

THE DEBUGGER 59

When you run the program, Xcode will start the program in the debugger if you
have any breakpoints. To test this, run it now. The debugger will take a few
seconds to get started, and then it will run your program untl it hits the
breakpoint.

When your application is running, the debugger bar will be shown below the
editor area. The debugger bar contains a button to toggle visibility of the full
debugger area, including the variables view and console, as well as buttons to
control the execution of your program and information about the current thread
and function.

Xcode’s default behavior is to show the full debugger area when a breakpoint is
hit. If you do not see the debugger area at the bottom of the window, use the
debugger area view toggle in the debugger bar (or toolbar), or the View->Show
Debugger Area menu item.

You should also see the Debug navigator on the left, which shows the threads in
our application and frames on the stack for each thread. Because the breakpoint
is in main(), the stack is not very deep. In the variables view on the left in the
debugger area, you can see the variables and their values (Figure 3.11).

Debug area toggle
Debug navigator

ana
() (W) (ot | EloC) o) (@)
Rum Swop Eaor View Organizer

eekCenponents tolateinew sationsill:

allee] LnitWithEntryOate: ineehsFroatiow] |

3 emaryToPriat = (Lomendm
1= fine1 0
[0 iweshaFromiow = |

Debugger bar Click to show
the variables

view (left) and
the console (right)

Figure 3.11 Stopped at a Breakpoint

Note that the variable i is currently 0.

Return your attention to the debugger bar. Four of the buttons above the
variables view are for pausing (or continuing) and stepping over, into, and out of

60

CHAPTER 3 = OBJeCTIVE-C

functions. Click the Continue button to execute another iteration of the loop.
Click the Step-Over button to walk through the code line by line.

The gdb debugger, being a Unix thing, was designed to be run from a terminal.
When execution is paused, the gdb terminal will appear in the Console panel.

In the debug console, you have full access to all of gdb’s capabilities. One very
handy feature is “print-object” (po). If a variable is a pointer to an object, when
you po it, the object is sent the message description, and the resultis printed in
the console. Try printing the newEntry variable.

po newEntry

You should see the result of your description method (Figure 3.12).

All Qutput » Clear | (] ‘NN [N

—— T = ===

ublic License, and you are
welcome to change it andfor distribute copies of 1
t under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDE. Type "sh
ow warranty'" for details.
This GDE was configured as "xB6_Bd-apple-carwin'.t
ty Sdev/ttysBRB
sharedlibrary apply-load-rules all
[Switching to process 42779 thread 8x@]

po newEntry
Mar 16, 2811 = 7@ and EBD v

Figure 3.12 Using the gdb Console

Exceptions are raised when something goes very wrong. To make the debugger
stop whenever an exception is thrown, you will want to add an exception
breakpoint. Click the Add button at the bottom of the breakpoint navigator and
select Add Exception Breakpoint.... Set the exception type to Objective-C and click
Done (Figure 3.13). Disable the existing breakpoint in main() by clicking on the
blue breakpoint icon in the breakpoint navigator. The breakpoint will be
dimmed when it is disabled.

You can test this exception breakpoint by asking for an index that is not in an
array. Immediately after the array is created, ask it what its first object is:

array = [[NSMutableArray alloc] init];
NSLog(@"first item = %@", [array objectAtIndex:0]);

THE DEBUGGER 61

| lottery - main.m

AN 1™ i
») (m (| [Finished running lottery }
%n)' Siu.p Scheme Breakpoints B bk s Editor View Organizer
DO A=E®B |- _|lottery lottery » |m| main.m main(}
= I;é:gzpu ats @ Exception Breakpoint
m| main.m Exception | Objective-C
Gt - Break (On Throw [
G e Action Click to add an acticn
Options | Automatically continue after evaluating actions

Done

*newEntry = [[Lotteryk alloc]l initWithEntryDate:iWeeksFromMow];
[newEntry setEntryDate:iWeeksFromNow];

> larray addObject:newEntryl;
}
for (Lot *entryToPrint in array) {
NSLogi@"%@", entryToPrint);
[pool drain];
return 9;

+ - @@

Figure 3.13 Adding an Exception Breakpoint

Rebuild and restart the program. It should stop when the exception is raised.

One of the challenging things about debugging Cocoa programs is that they
will often limp along in a broken state for quite a while. Using the macro
NSAssert(), you can get the program to throw an exception as soon as the train
leaves the track. For example, in setEntryDate:, you might want an exception
thrown if the argument is ni1. Add a call to NSAssertQ:

- (id)initWithEntryDate: (NSDate *)theDate

self = [super init];
if (self) {
NSAssert(theDate != nil, @"Argument must be non-nil");
entryDate = theDate;
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;
}

return self;
Build it and run it. Your code, being correct, will not throw an exception. So
change the assertion to something incorrect:
NSAssert(theDate == nil, @"Argument must be non-nil");

Now build and run your application. Note that a message, including the name of
the class and method, is logged and an exception is thrown. Wise use of
NSAssert() can help you hunt down bugs much more quickly.

62

CHAPTER 3 = OBJeCTIVE-C

You probably do not need your assert calls checked in your completed product.
On most projects, there are two build configurations: Debug and Release. In
the Debug version, you will want all your asserts checked. In the Release
configuration, you will not. You will typically block assertion checking in the
Release configuration (Figure 3.14).

enn | lottery - lottery.xcodeproj (=]
AN ™
(> D S = [FIIE]
Run Stop Scheme Breakpoints o lzxnes Editor View Organizer
M DO A= [0 < | tomtery
= Build Settings Build Phases Build Rules
—
ottery 2 lottery Basic @D | ZITITED Levels Q- preprocessor
h| LotteryEntry.h Setting i lactery
m LotteryEntry.m - Packaging
2} mainim Info.plist Other Preprocessor Flags
o lotery. 1 Info.plist Preprocessor Definitions
Supporting Files Infoplist Preprocessor Prefix File
Framewarks Preprocess Info.plist File No 3
Products Search Paths.
Always Search User Paths No:
LLVM compiler 2.0 - Preprocessing
Preprocessor Macros <Multiple values>
Debug DEBUG
Release NS_BLOCK_ASSERTIONS
Preprocessor Macras Not Used In Preco
+ 0ORE Add Target Add Build Setting

Figure 3.14 Disabling Assertion Checking

"To do this, bring up the build settings by selecting the lottery project in the
project navigator (topmost item). Then select the Tottery target, change to the
Build Settings tab, and find the Preprocessor Macros item. A quick way to find itis
to use the search field at the top of the Build Settings panel. The Preprocessor
Macros item will have one item beneath it for each build configuration: Debug
and Release. Set the Release item value to NS_BLOCK_ASSERTIONS.

Now, if you build and run the Release configuration, you’ll see that your
assertion is not getting checked. (Before going on, fix your assertion: It should
ensure that dates are not nil.)

You can change your current build configuration to Release by opening the
scheme editor (in the Product menu, click Edit Scheme...). Select the Run action;
on the Info panel, change Build Configuration to Release. Now when you build
and run your application, it will be built using the Release configuration. Note
that the default build configuration for the Archive action is Release. We will
discuss build configurations in more detail in Chapter 37.

NSAssert() works only inside Objective-C methods. If you need to check an
assertion in a C function, use NSCAssert().

MEET THE STATIC ANALYZER 63

That’s enough to get you started with the debugger. For more in-depth
information, refer to the documentation from the Free Software Foundation
(www.gnu.org/).

What Have You Done?

You have written a simple program in Objective-C, including a main() function that
created several objects. Some of these objects were instances of LotteryEntry, a
class that you created. The program logged some information to the console.

At this point, you have a fairly complete understanding of Objective-C.
Objective-C is not a complex language. The rest of the book is concerned with
the frameworks that make up Cocoa. From now on, you will be creating event-
driven applications, not command-line tools.

Meet the Static Analyzer

One of the handiest tools in Xcode is the static analyzer. The static analyzer uses
Apple’s LLVM compiler technology to analyze your code and find bugs.
Traditionally, developers have relied on compiler warnings for hints on potential
trouble areas in their code. The static analyzer goes much deeper, looking past
syntax and tracing how values are used within your code.

Because of the default compiler settings and our careful typing, you should find,
if you run the analyzer now, that our application has no issues as it stands. Let’s
modify our project settings so that we can better see the static analyzer at work.

As we did before, open the project’s build settings by selecting the project in the
project navigator on the left. Then select the lottery target. In the Build Settings
tab, find the setting for Objective-C Automatic Reference Counting. Change its
value to No (Figure 3.15).

Now analyze the lottery application. In the Product menu, click Analyze. In the
issues navigator, you will see several issues found by the static analyzer; select

one and drill down in the tree to examine the analyzer’s thought process
(Figure 3.16).

In this case, the static analyzer has found a number of memory-related problems
in our program because we disabled a feature called automatic reference
counting, which we will discuss in the next chapter. This is one of the more

www.gnu.org/

64 CHAPTER 3 = OsjecTIVE-C
800 |7 lottery - lottery.xcodeproj "
A Analyze lottery: Succeeded | Today at 3:57 PM
») (= (=] T @oo
u Project D2 ” |
Run Stop Scheme Breakpoints Suiae Editor Wiew Organizer
Mm@ a=m>0 [m a4 > [Noey [ETS
u e s s e PROJECT | Build Settings | Build Phases Build Rules
v ‘DHE.W [lottery Basic (.1 | Levels Q- automatic ref
'h. LotteryEntry.h TARGETS Setting M [ottery
m| LotteryEntry.m - ¥ Apple LLVM compiler 3.0 - Automatic Reference Counting - Code Migration
';- main.m Migrate code from MRR to ARC Do not run any phase of the migration to... +
lottery.1 vApple LLVM compiler 3.0 - Code Generation Yes
¥ || Supperting Files P Objective-C Automatic Reference Counting No
b || Frameworks v Apple LLVM compiler 3.0 - Warnings
Fl Other. §
¥ |_|Products Objective-C++ Automatic Reference Counting AL)
™ lottery
Add Target Add Build Setting
+ DEE @ £ m m & 1t |NoSelection
Figure 3.15 Disable Automatic Reference Counting
enn 7 lottery - LottaryEntry.m e
o | Analyze lottery: Succeeded | Today at 3:57 PM
() (m) [Lomym. B yze olery Y Bla =z @M= o (=
i Project @2 8 .
Run Stop Scheme Breakpoints Editor View Organizer
BT @& A= = B ‘ | 4 | lotery [|lottery i [m| LotteryEntry.m : [-descriptien | o »
[B) By Type 1. Method returns an Objective-C object with a +1 retain count (ownin... ¥ [P Dane
lottery " return firstNumber;
vl 2 issues
¥ m| LotteryEntry.m
¥ (@ Memory (Core Foundation/Objective-C) = {int)secondNumber
Potential leak of an object allecated on lin... 1
return secondNumber;
& Object allocated on line 47 and stored i...
» (@ Memory (Core Foundation/Objective-C) - (NSString =)description
Potential leak of an object allecated on lin...
(-] ShateFormatter xdateFormatter = & 1. Methad returns an Objective-C o,
[[NSDateFormatter alloc] initl;
[dateFormatter setTimeStyle:NSDateFormatterNoStylel;
[dateFormatter setDateStyle:NSDateFormatterMediumStyle];
NSString *result;
result = [[NS5tring alloc] initWithFormat:@"s@ = %d and %d",
[dateFormatter stringFromDate:entrybDate],
firstMumber; secondNumber];
return result;
} & 2 Object allocated on line 47 and stored into 'dateFormarter is not referenced later in this execution path and has ..
@end
OHO S & m = % % |NoSelection

Figure 3.16 The Static Analyzer at Work

useful aspects of the static analyzer: It knows the rules for retain-count memory
management in Objective-C, and it can also identify other dangerous patterns in
your code.

Leave automatic reference counting disabled for now.

For THE MoRre Curious: How Does MESSAGING WORK? 65

For the More Curious: How Does Messaging Work?

As mentioned earlier, an object is like a C struct. NSObject declares an instance
variable called 1isa. Because NSObject is the root of the entire class inheritance
tree, every object has an isa pointer to the class structure that created the object
(Figure 3.17). The class structure includes the names and types of the instance
variables for the class. It also has the implementation of the class’s methods. The
class structure has a pointer to the class structure for its superclass.

NSObiject i
isa : Class

superclass
LotteryEntry L LotteryEntry |
entryDate = Feb 2, 1975 ;r entryDate: NSCalendarDate
firstNumber = 32 isa firstNumber:int '
secondNumber = 78 L secondNumber:int _:

Figure 3.17 Each Object Has a Pointer to Its Class

.............

method
list

.............

The methods are indexed by the selector. The selector is of type SEL. Although
SEL is defined to be char *, it is most useful to think of it as an int. Each
method name is mapped to a unique int. For example, the method name
addObject: might map to the number 12. When you look up methods, you will

use the selector, not the string @"addObject:".

As part of the Objective-C data structures, a table maps the names of methods to

their selectors. Figure 3.18 shows an example.

selectors strings
12 -~ addObiject:
753 -~ setEntryDate:
352 -~ count
4547 <-— insertObject:atIndex:

Figure 3.18 The Selector Table

66

CHAPTER 3 = OBJeCTIVE-C

At compile time, the compiler looks up the selectors wherever it sees a message send.
Thus,

[myObject addObject:yourObject];
becomes (assuming that the selector for addObject: is 12)
objc_msgSend(myObject, 12, yourObject);

Here, objc_msgSend() looks at myObject’s isa pointer to get to its class
structure and looks for the method associated with 12. If it does not find the
method, it follows the pointer to the superclass. If the superclass does not have a
method for 12, it continues searching up the tree. If it reaches the top of the tree
without finding a method, the function throws an exception.

Clearly, this is a very dynamic way of handling messages. These class structures
can be changed at runtime. In particular, using the NSBund1e class makes it
relatively easy to add classes and methods to your program while it is running.
"This very powerful technique has been used to create applications that can be
extended by other developers.

Challenge

Use NSDateFormatter’s setDateFormat: to customize the format string on the
date objects in your LotteryEntry class.

INDEX

Symbols
: (colon), method name with arguments, 36
@“...” construct, 47
@ symbol
C strings vs. NSStrings, 40-41
Objective-C keywords, 27
Noperator, blocks, 372, 374

A
abstract class
defined, 160
NSCoder as, 160
NSController as, 129-130
acceptsFirstResponder method, keyboard
events, 272-275, 280, 282
accessor methods
declaring for new class, 50-51
defined, 50
implementing, 123-125
actions
implicit animation and, 423-424
targets and. See target/action
actions dictionary, 423
addObject method
add objects to end of array, 36
NSMutableArray, 46
addObjectsFromArray: method,
NSMutableArray, 46
addOperationWithBlock: method,
NSOperationQueue, 436-437
Alert panel
as modal window, 336-337
overview of, 229-230
using string table, 241
alloc method
coupling with init message, 43—-44
retain-count rules for ownership, 76
retain count using, 69

AppKit framework.
classes with delegates in, 112
defined, 6
UIKit vs. See iOS development
applications
debugging hints, 98
as directories, 172
distributing your. See distributing your
application
ARC (automatic reference counting)
benefits and limitations, 68-69
defined, 68
disabling, 63-64
overview of, 80-81
strong references, 81
weak references, 81-82
archiving
automatic document saving, 174
document architecture, 163-167
loading and NSKeyedArchiver, 168-169
NSCoder and NSCoding, 160-163
overview of, 159-160
preventing infinite loops, 172-173
saving and NSKeyedArchiver, 167-168
arguments
initializers with, 56-58
methods taking, 36-37
arrangedObjects controller key, array
controller, 136
array controllers
NSArrayController. See NSArrayController
arrays
methods implemented by NSArray, 45
methods implemented by
NSMutableArray, 46
asserts, debugging with, 61-62
assign attribute, properties, 125
Assistant Editor
editing implementation file, 27

473

474 INDEX

Assistant Editor, continued

layout XIB file, 91

making connections, 92-94
asynchronous connections

NSURLConnection, 362-363

receiving response, 377-381

solving I/O- bound problems with, 434
asynchronous reads, NSTask, 456
attributed strings. See NSAtrributedString
attributes

NSAtrributedString, 287-288

in NSManagedObjectModel, 178-179
Attributes Inspector. See attributes
automatic document saving, 174
automatic reference counting. See ARC

(automatic reference counting)

autorelease message

accessor methods for instance variables, 79

overview of, 74-76

retain-count rules, 76-77
autorelease pools

background threads, 430-431

simplifying release of objects, 74-76
autosavesInPlace method, NSDocument, 174
autoscrol1: method, 268-269
autoscrolling

adding timer to, 328

adding to application, 268-269
Autosizing, Size Inspector, 244, 445
awakeFromNib message

chronology of applications, 32

overview of, 30-31

B
background color
table views, 216-217
background threads
overview of, 427-428
race conditions in, 428-429
using NSOperationQueue, 435-438
becomeF1irstResponder method, 272-275, 281
Behaviors in Preferences panel, configuring to
show log in, 29
bindings
attaching value transformers to, 351
on cell-based vs. view-based table views, 191
Core Data, 177, 183-188
creating programmatically, 127

removing, 127
using key-value coding, 119-120
Bindings Inspector. See bindings
_block type specifier, 374-375
blocks
availability of, 376
memory and objects within, 375-376
overview of, 371-373
receiving asynchronous response, 377-381
syntax for, 373-375
bold, drawing text with attributes, 294
BOOL, defined, 26
box
binding, 187-188
view swapping. See view swapping
breakpoint navigator, 60
breakpoints, 58-61
build configurations
assertion checking, 62
changing behavior, 462-464
changing to Release configuration, 62
distributing app, 461-462
bundles. See NSBundle
buttons
NSButton, 85-86
target and action of, 83-84

C

C++ language, Objective-C vs., 2
C programming language
assertion checking, 62
interaction with ARC, 82
strings in Objective-C vs., 40-41
CAAnimation class, 417
CABasicAnimation class, 424
CALayer class, Core Animation
configuring project, 417-423
custom drawing, 425
implicit animation and actions, 423-424
overview of, 417
CAOpenGLLayer, 425
case sensitivity, 7-8, 21
caseInsensitiveCompare: method
NSString, 47
sorting with array controllers, 140-141
CAShapelayer, 425
categories
adding method to NSString, 307-309

INDEX 475

creating, 307

declaring private methods, 309
CATextLayer, Core Animation, 420-421, 425
CATransaction, Core Animation, 417, 424
cell-based table views

bindings in, 183

limitations of, 180

view-based table views vs., 191
center-justify button, text field Attributes

Inspector, 19

changeBackgroundColor: message

adding panel to application, 204

editing defaults, 214-215

notifications, 224-227
characters method, NSEvent, 273
characters with accents

Option key, 235, 237
clang/LLVM open source compiler projects, 35
class method, 54
classes

creating in Interface Builder, 20-22

creating own. See Objective-C, creating own

classes
creating/using existing. See Objective-C, using
existing classes

declaring in Objective-C vs. Java, 25-26

denoting with NS prefix, 43

framework as collection of, 6

implementing protocols, 160-163

overview of, 5

typographical conventions for, 7
clearContents method, NSPasteboard, 296
close button, panels, 194
Cocoa Touch

defined, 3

developing for iOS. See iOS development
Cocoa, understanding

common mistakes, 8

frameworks, 6

history of, 1-3

how to learn, 8-9

language, 4-5

objects, classes, methods, and messages, 5-6

tools, 3-4
Code Signing and Application Sandboxing

Guide, 468

colon (:), method name with arguments, 36
command line tool, creating, 37-41

compare: method, sorting array controllers,
140-141
compositing image onto view, 264-265
concludeDragOperation: message, drag
destination, 316, 318
concurrency
multithreading, 427-429
NSOperationQueue and, 435-438
overview of, 427
simple background threads, 429431
time profiling in Instruments, 431-435
Connection panel
make connections in Interface Builder, 93-95
Connection to Action, 92
Connection to Outlet, 92-93
connections
Interface Builder, 15, 22-25
console, debugging with, 29, 98
constants, Objective-C, 26
containsObject method, NSArray, 45
content view, view hierarchy, 241-243
contentsGravity property, Core
Animation, 423
context pointer, using defensively, 153
contextInfo, sheets, 329, 335-336
Continue button, debugger bar, 60
controller classes
NSArrayController. See NSArrayController
NSController, 129
NSObjectController, 129-130
controls
layout XIB file, 90-94
NSButton, 85-86
NSSTider, 86-87
NSTextField, 87-89
setting target programmatically, 96
target/action of, 83
Convert to Objective-C Automatic Reference
Counting, 82
coordinate system, views, 266-268
copy. See also drag-and-drop
blocks, when assigning to instance
variables, 375
copy attribute, properties, 125
copy method, retain-count rules for
ownership, 76
Core Animation
CALayer, 425

476 INDEX

Core Animation, continued
implicit animation and actions, 423-424
overview of, 417
creating custom NSManagedObject classes,
409-411
editing model, 407-408
Core Data framework
creating applications, 130
defined, 6
NSManagedObjectModel, 177-179
overview of, 177
Core Graphics framework. See Quartz
count method, NSArray, 45
currentContext, drawing to screen, 358
currentEvent method, NSApplication, 328
cut, adding, 298-300

D
dataOfType:error: method, 168, 455
dataSource outlet, NSTableView
make connections, 109
date method, NSDate, 54-55
dateByAddingTimeInterval method,
NSDate, 54
dealloc method
in ARC, 81
overview of, 72-73
deallocating objects, debugging hints, 98
Debug build configuration
using in development, 98
assertion checking, 62
overview of, 461
Debug navigator, 59
debugger (gdb)
adding exception breakpoints, 60-61
console, 29
debugger bar, 59-60
defined, 5
hints for, 98
print-object feature, 60
using NSAssert(), 61
debugging, with static analyzer, 63-64
DebugLog function, preprocessor macros,
463-464
decoding data, NSCoder, 162-163
defaults. See user defaults
defaults tool, 217-218

delegates
AppKit framework classes, 112
creating, 114
creating helper objects, 100-104
designing, 381
errors in implementing, 112
notifications and, 227
of NSControTl, 347-348
NSTableView and, 104-107
pasteboards, nil-targeted actions and, 301
understanding, 113-114
dequeueReusableCellWithIdentifier:
method, UITableView in iOS, 393
description method
autoreleasing objects, 73-74
implementing, 52-53
NSObject, 44
printing in debug console, 60
designated initializer, 57
destination, drag, 315-319
dictionaries, 208-209
disk image (DMG), packaging application for
download, 466
distributing your application
application sandboxing, 466-468
build configurations, 461-462
Mac App Store, 468-470
preprocessor macros and changing behavior
with build configurations, 462-464
release build, 464466
DMG (disk image), packaging application for
download, 466
dock, Interface Builder, 20
document architecture
defined, 131
Info.plist and NSDocumentController,
163-164
NSDocument, 164-167
NSWindowController, 167
overview of, 163
document controller, 163-164
document type information, setting, 170
Documentation and API Reference, 31
documents. See also NSDocument
applications based on, 131
suppressing creation of untitled, 215-216
domains, setting precedence of defaults, 212
dot notation, accessors, 124

INDEX 477

drag-and-drop

drag destination, 315-319

drag source, 312-315

operation mask, 319

overview of, 311-312
draggingEntered: message, 316-317
draggingExited: message, 315, 318
draggingSourceOperationMaskForLocal:

message, 312-317, 319
draggingUpdated: message, 315,316, 319
drawInRect: method,
NSAttributedString, 309

drawLayer:inContext:, CALayer, 425
drawRect: method

adding highlighting, 316-317

adding printing, 355

compositing of image, 265

coordinate system of views, 268

drawing text with attributes, 291

getting view to draw itself, 246-248

getting view to generate PDF data, 291-293

rollovers, 283

using keyboard events, 280

E
encodeWithCoder: method, NSCoder, 160-161
encoding data
NSCoder, 160-161
preventing infinite loops, 172-173
endSheet: method, 329
en.1proj directory, localizing app in English,
233,237
entities
Core Data model, 180, 407
editing model, 407-408
in NSManagedObjectModel, 177-179
equality, in NSObject, 44
events
images and mouse. See images and mouse
events
keyboard. See keyboard events
nextResponder and, 414415
role of window server, 33
timer. See NSTimer
exceptions
adding breakpoints, 60-61
debugging hints, 98
key-value coding and ni1, 139-140

exported UTTs

configuring, 170-171

customized, 303

storing in UTExportedTypeDeclarations, 175
Extended Detail pane, Instruments, 433
extensions

Objective-C, 40-41

setting for file types, 170-172

F

file formats

copying data onto pasteboard, 295
File Inspector, 234, 237-238
file system, NSUserDefaults and, 210-211
file wrappers, 165-167
File’s Owner

dock icon, 20

NIB files and NSWindowController, 198
First Responder, dock icon, 20
flagsChanged event, NSResponder, 273
floats, ni1 value and, 139
fonts

NSFont. See NSFont

NSFontManager, 293

typographical conventions in this book, 7-8
format strings, explicit ordering of

tokens in, 240

formatters. See a/so number formatters

creating. See NSFormatters

NSTextField, 88

overview of, 339-340
forwardInvocation: method, 145
Foundation framework

creating command-line tool, 38-41

defined, 6
.framework extension, 6
fr.1proj directory, localizing app in French,

233-238,237-238

fromValue property, CABasicAnimation, 424
focus ring, fuzzy blue box, 284

G
garbage collector, 67-68
gce (GNU C compiler), 35, 58-59
GCD (See Grand Central Dispatch)
and blocks, 376
faster performance and, 439

478 INDEX

gdb. See debugger (gdb)
general pasteboard, 296
generalPasteboard method,
NSPasteboard, 296
genstrings tool, 239
global variables
creating keys for names of defaults, 212
NSAtrributedString, 287-288
NSPasteboard, 297
notifications, 225
GNU C compiler (gec), 35, 58-59
gradients, CAGradientLayer, 425
Grand Central Dispatch (GCD)
and blocks, 376
faster performance and, 439
graphics. See Core Animation

H
header file
creating classes, 20
creating new class, 50
in Objective-C, 26-27
helper objects
classes with delegate outlets, 112
delegates, 100-104
errors implementing delegates, 112
how delegates work, 113114
making connections, 109
NSTableView and its dataSource, 104-107
overview of, 99
hidesOnDeactivate variable, windows, 194
hierarchy, views, 241-243
highlights
for color well, 204
for erroneous line of code, 28
drag destination, 316-317
for rollovers, 283
HTTP, Web services, 359

I
IBAction
adding cut, copy and paste, 300
defined, 26
making connections, 92
IBOutTet, 26
ibtool command, 239-240
.icns file, 170-172

icons
copying into project directory, 170
dock, 20
setting for file types, 170-172
id, 26
identifier
interface layout for Web service, 367
setting document type in archiving, 170
setting for defaults, 212
Identity Inspector
instance of view subclass, 244
labeling objects, 180
image view
binding, 186-187
view-based table views, 181-184
images and mouse events
autoscrolling, 268-269
composite images, 264-265
getting mouse events, 259
NSEvent, 257-258
NSImage, 269
NSOpenPanel, 259-264
NSResponder, 257
view’s coordinate system, 266268
immutable, NSArray as, 45
implementation file
creating classes, 20
editing, 27-28
#import
creating keys for names of defaults, 212
header file and, 26-27
Info.plist, NSDocumentController, 163-164
inheritance
“inherits from”, vs. “uses” or “knows about”, 48
NSControl and, 84-85
in Objective-C, 26
in Objective-C vs. C++, 48
init method
creating and using instances, 36
as designated initializer for NSObject, 57
initializers with arguments and, 56-58
NSObject, 43
writing initializers, 55-56
initialFirstResponder method, keyboard
events, 276-278
initialize method, registering defaults, 213
initializers. See also init method
with arguments, 56-58
conventions for creating, 57-58

INDEX 479

initWithCoder: method, NSCoder, 160, 163
initWithFormat method, NSString, 47
insertObject method, NSMutableArray, 46
Inspection Range, Instruments, 433
Inspector panel, 16
installers, 464-466
instance variables
adding to classes, 21
archiving, 159
defined, §
designing classes with, 148-149
enabling accessor methods for, 77-80
header files in Objective-C and, 26-27
isa pointer, 65-66
naming conventions for, 22
protected in Objective-C, 27
instances, creating, 5, 22, 35-37
Instruments
time profiling in, 431-434
defined, 4
Interface Builder
common mistakes, 8
creating an instance, 22
creating class, 20-22
dock, 20
functionality of, 15-16
interface layout, 17-19
making connections in, 22-25, 91-94
XIBs and NIBs, 17
interface layout
in Interface Builder, 17-19
overview of, 17-19
panels, 201-202
sheets, 331-334
International pane, System Preferences, 235
interpretKeyEvents method,
NSResponder, 281
Invert Call Tree, Time Profiler, 433
invocations, 145-148
iOS development
adding navigation controller, 388-390
overview of, 383
pushing view controllers, 393-395
UITableViewController, 391-393
iOS SDK, 3
iPad apps, 383
iPhone apps, 383
isa pointer, messaging, 65-66

isARepeat method, NSEvent, 273

isEqual: message, NSArray, 45

isEqual: message, NSObject, 44

isF11ipped, flipping views, 255

isOpaque method, project with keyboard
events, 280

Issue navigator, 28

italics, drawing text with attributes, 294

J

Jump to Next Counterpart command, editing
implementation file, 27

K

key paths
key-value observing, 127
overview of, 126-127
sorting people, 142
key-value coding
for bindings, 119-120
making keys observable, 123
and nil, 139-140
overview of, 117-119
to-many relationships and, 148-152
key-value observing
enabling undo for edits, 152-153
key paths, 126-127
making keys observable, 121-123
overview of, 120-121
properties, 124-126
understanding, 127
key-value pairs
dictionaries, 208
string table as collection of, 236
keyboard events
nextResponder, 414415
NSEvent, 273-274
NSResponder, 273
overview of, 271-272
keyCode method, NSEvent, 274
keyDown event, 273, 281
keyUp event, NSResponder, 273
keywords, Objective-C, 27
KITT the super car, 99
Knight Industries, 99
“knows about”, “inherits from” vs., 48
KVC. See key-value coding

480 INDEX

L macros
labels hardcoding behavioral settings with
objects in Interface Builder editor, 180 preprocessor, 462-464
language using string table, 238-239
Objective-C, 4-5 main fur}ction
Objective-C vs. C++, 2 Changlng, 51-52 .
Language and Text pane, System creating command-line tool, 38-41
Preferences, 236 initializers with arguments, 56-58
lastObject method, NSArray, 45 overview of, 15
layers MainMenu.xib
Core Animation, 417, 419-421 menu item setup for adding panels, 197
implicit animation and actions, 423424 Interface Builder, 15
lazy copying, drag and drop, 295-298, 304-305 man command, for ibtool, 240
length member, NSRange, 286 managed object model, NSManagedObjectModel,
level indicator, 181-184 177-181, 189
libraries. See framework manual reference counting
library of code, bundles, 205 ARC working with, 82
Library panel, 17-19 autoreleasing objects, 73-76
LLVM (Low Level Virtual Machine) compiler fjef‘ﬂ Toc method, 72-73
compiling Objective C-2, 5 n 1.05.5, 383
defined, 35 limitations of, 68
static analyzer using, 63—-64 memory management, 67
loading overview of, 69-70
NIB files. See NIB files and retain-count rules, 76-77
NSWindowController matrices, creating with cells, 253-254
NSKeyedUnarchiver and, 168-169 mediated file access, and Powerbox, 468
using NSDocument, 166167 memory management
Localizable.strings, 236-238 accessor methods, 77-80
localization ARC, 80-82
explicit ordering of tokens in format strings Wlthln blocks, 375-376
and, 240 i0S 5, 383
ibtool and, 239-240 manual reference counting. See manual
Nib file and, 234-236 r‘eference counting
overview of, 233-234 overview of, 67-69
string tables and, 236-239 static analyzer troubleshooting, 63—64
location member, NSRange, 286 thin}dng locally for, 77
lock focus on view, drawRect, 246-247 menu items, target/action of, 95
Low Level Virtual Machine. See LLVM (Low messages))
Level Virtual Machine) compiler calling methods by sending objects, 6

handling, 65-66
sending to ni1, 41-42

M syntax for, 35-37

Mac App Store method name (selector)
distributing app, 468-469 adding colon when taking arguments to, 36-37
for Mac developers, 3 methods indexed by, 65-66
receipt validation, 469-470 methods

Mac OS X adding to class, 21

Developer Tools, 3-4 adding to NSString, 307-309

INDEX 481

calling by sending objects messages, 6
conventions for naming, 22
declaring in new class, 50
declaring private, 309
misspelling when implementing
delegates, 112
NSAtrributedString, 289
NSDictionary, 209
NSFont, 285-286
NSMutableDictionary, 209
NSNotificationCenter, 222-224
NSOpenGLView, 441
NSPasteboard, 296-298
NSResponder, 274
NSString, 289
NSUserDefaults, 210-211
NSView, 241-243
as public in Objective-C, 27
retain-count rules for, 76-77
taking arguments, 36-37
modal windows, 336-337
model classes, 129
Model-View-Controller design pattern
Cocoa and, 129-130
document architecture relating to, 163
in object-oriented programming, 129
modifierFlags method, NSEvent, 274
mouse events
autoscrolling, 268-269
composite images, 264-265
nextResponder, 414-415
NSEvent, 257-258
NSResponder, 257
rollovers, 282-283
view’s coordinate system, 266-268
mouseDown : method
adding timer to autoscrolling, 328
coordinate system of views, 267
getting mouse events, 259
NSResponder, 257
mouseDragged: method
adding autoscrolling, 268-269
adding timer to autoscrolling, 328
coordinate system of views, 267
getting mouse events, 259
NSResponder, 257
mouseEntered event, rollovers, 283
mouseExited event, rollovers, 283
mouseMoved event, rollovers, 282-283

mouseUp: method
adding timer to autoscrolling, 328
coordinate system of views, 267
getting mouse events, 259
NSResponder, 257
multicore processors, and multithreading, 428
multithreading
time profiling, 431-435
faster performance and, 438-439
overview of, 427428
race condition problem in, 428-429
simple Cocoa background threads, 429-431
using NSOperationQueue, 435-437
mutableCopy method, NSArray, 45
mutex locks, thread synchronization and, 438

N

naming conventions
delegates and notifications, 227
keys for names of defaults, 212
methods and instance variables, 22
navigation bar, 386-387
navigation controller, i0S
adding, 388-390
pushing view controllers, 393-395
New File menu item, creating classes, 20
new method, retain-count rules for ownership, 76
New Project, create new project, 12-14
nextKeyView, project with keyboard events,
276-278
nextResponder
and events, 414-415
pasteboards and nil-targeted actions, 300
NeXTSTEP, 1-3
NIB files
awakeFromNib called automatically, 30-31
chronology of applications, 32
localizing, 234-235
overview of, 17
NIB files and NSWindowController
adding panel to application, 194-196
menu item setup, 197
NSBundle, 204-205
overview of, 193
nil
ARC setting weak references to, 81-82
defined, 26
key-value coding and, 139-140

482 INDEX

nil, continued
not adding to arrays, 46
representing nothingness in array with
NSNuT1, 46
sending messages to, 41-42
nil-targeted actions, pasteboards and, 300-302
NO, 26
nonatomic properties, 125
notifications
delegates and, 227
handling upon arrival, 226
NSNotification, 222
NSNotificationCenter, 222-224
overview of, 221
passing between applications, 222
posting, 224-225
registering as observer, 225-226
userInfo dictionary and, 226-227
NS prefix, defined, 43
NSAppTication object
chronology of applications, 32-33
defined, 20
suppressing creation of untitled documents,
215-216
NSApp1icationMain()function, 15, 32
NSArray, 45,212,371
NSArrayController
add sorting, 140-141
binding view-based table views, 183188
key-value coding and ni1, 139-140
overview of, 129-130
rewriting RaiseMan without using,
142-144
sorting without, 141-142
NSAssert(), 61
NSAtrributedString
drawing text with attributes, 286-288
drawInRect: as category for, 309
formatters returning attributed strings, 350
methods for drawing onto view, 289
NSBezierPath, 247-250
NS_BLOCK_ASSERTIONS macro, 62, 462-464
NSBox
subviews of, 241-242
view hierarchy, 242
in view swapping, 398-399
NSBundle
creating string tables for localization, 236
using string table, 238-239
working with, 204-205

NSButton

creating views programmatically, 252-253

first responders, 302

keyboard events, 271

NSButtonCelTl, 253

overview of, 85-86

as subclass of NSControl, 83-84

as view, 241

view hierarchy, 242
NSButtonCell, 253
NSCAssert(), assertion checking in C, 62
NSCoder

decoding data, 162-163

encoding data, 160-161

overview of, 160
NSCoding protocol, 160-163
NSColor

creating with basic formatter, 341

registering defaults, 213

using NSCoTorList, 344-345
NSColorList, 341, 344-345
NSColorWell

as subclass of NSContro1, 83

as view, 241

view hierarchy, 242
NSComparisonResult, NSDate, 55
NSCond1ition, thread synchronization, 438
NSControl

commonly used subclasses of, 85-89

delegate of, 347-348

inheriting from NSView, 253

overview of, 83-85

setting target programmatically, 96
NSControlKeyMask, 258
NSController, 129-130
NSData object

loading using NSDocument, 166-167

as property list class, 212

saving and NSKeyedArchiver, 167-168

saving using NSDocument, 165-166

user defaults, 213-214

Web services, 359-362, 363-364
NSDate

create, 54-55

current time, 30-31

formatter, 88

initializers with arguments, 56-58

methods, 54-55

as property list class, 212
NSDateComponents, 51-52, 70

INDEX 483

NSDateFormatter

attaching to text field, 88

overview of, 339-340
NSDatePicker, 112, 181-183
NSDecimaTNumber, 139-140
NSDictionary

drawing text with attributes, 288

NSPasteboard using, 297

NSUserDefaults and, 211

overview of, 208-209

as property list class, 212

userInfo dictionary and, 226-227
NSDistributedNotificationCenter, 222
NSDocument

automatic document saving, 174

defined, 163

document architecture, 164

document-based applications without

undo, 175

loading document, 166-167

nil-targeted actions and, 301

printing documents, 353

saving document, 164-166

undo manager for, 148
NSDocumentController, 163-164
NSDraggingInfo protocol, 315,317-319
NSDragOperationCopy, 312-317, 319
NSDragOperationDelete, 312,315
NSDragPboard, 296
NSEntityDescription, 189
NSError object, 165-167
NSEvent

defined, 257

keyboard events, 273-274

mouse events, 257-258

NSResponder methods, 273
NSFileHandleNotificationDataltem, 459
NSFileWrapper object, 165-167
NSFindPboard, 296
NSFont

drawing text with attributes, 285-286

NSAtrributedString, 287-288
NSFontManager, 293
NSFontPboard, 296
NSFormatters

checking partial strings, 348-350

defined, 88

implementing, 345-347

NSValueTransformer vs., 351

overview of, 339-341

returning attributed strings, 350
NSGeneralPasteboard, 296
NSGraphicsContext

drawing with Quartz using, 441

printing, 358
NSImage

compositing image onto your view, 264-265

coordinate system of views, 266-268

representations of, 269

using, 269
NSImageRep, 269
NSImageView

binding, 186-187

view-based table views, 181-184
NSInputManager, 293
NSInvocation, NSUndoManager, 145
NSKeyedArchiver, 167-168
NSKeyedUnarchiver, 168-169
NSLevelIndicator, view-based table

views, 181-184

NSLock, thread synchronization, 438
NSLog () function

defined, 40
NSManagedObject, 409411
NSManagedObjectContext

accessing for view swapping, 397

creating, 178

defined, 177

how Core Data works, 189

interface, 179-180
NSManagedObjectModel, 177-181, 189
NSMatrix

working with cells, 253-254
NSMenuItem, 95
NSMutableArray

in compositions, 48

defined, 45

instances, 35-37

methods, 46

sorting with, 141-142

thread synchronization and, 438
NSMutableAtrributedString, 286-288
NSMutableDictionary

overview of, 208-209
NSMutableString, 45
NSMutableURLRequest class, 361-363

484 INDEX

NSNotification, 222
NSNot1ificationCenter, 221-224
NSNu1T1, 46
NSNumber

as immutable, 45

key-value coding, 118

key-value coding and ni1, 139-140

as property list class, 212
NSNumberFormatter, 340
NSObject

creating class, 20-22

header files and, 26-27

init as designated initializer for, 57

isa pointer and, 65-66

as root of Objective-C class hierarchy, 43
NSObjectController, 129
NSOffState, buttons, 86
NSOnState, buttons, 86
NSOpenGLView

working with OpenGL, 441
NSOpenPanel

using, 263-264

mediated file access and Powerbox, 468
NSOperationQueue

overview of, 435

thread synchronization, 437-438
NSOrderedAscending, 47
NSOrderedDescending, 47
NSPanel

creating, 193-194
NSPasteboard

adding cut, copy and paste, 298-300

methods, 296-298

overview of, 295
NSPasteboardItem

lazy copying, 304-305

creating custom UTTs, 303

defined, 297
NSPasteboardReading protocol, 297, 299, 303
NSPasteboardwriting protocol, 297, 299, 303
NSPersistentDocument, 178, 189
NSPersistentStoreCoordinator, 189
NSPipe, NSTask, 453-454, 456-460
NSPoint

coordinate system of views, 266-268

drawing with NSBezierPath using, 248-250

drawRect: method, 247

NSPrintOperation, 353-357
NSProgressIndicator, 321, 324-325
NSRange

dealing with range of numbers, 286

searching strings for substrings, 344-345
NSRect, 247-248
NSResponder

keyboard events and, 273
NSRulerPboard, 296
NSRunAlertPanel () function, 229-230
NSRunAppTlication(), 16
NSSavePanel, 468
NSScrol1View, 242, 250-252
NSSecureTextField, 88
NSSize, 247
NSS1ider

NSSTiderCell, 253

overview of, 86-87

as subclass of NSContro1, 83, 85
NSSortDescriptor objects, 141-142
NSSpeechSynthesizer

delegate methods of, 100-104
NSSpeechSynthesizerDelegate protocol,

100-102, 106

NSSp1itView, 242
NSSRunLoop, 328
NSString

converting strings to other objects. See

NSFormatters

defined, 47

as immutable, 45

methods, 47

methods for drawing onto view, 289

NSMutableString, 45

overview of, 40-41

as property list class, 212

using compare: to sort strings, 371
NSTableCel1View

binding view-based table views, 185

creating view-based table views, 181

defined, 254
NSTableDataSource, 104-107
NSTableView

connections, 109

dataSource of, 104-107

view hierarchy, 241-243
NSTableViewDataSource methods, 368

INDEX

485

NSTask
asynchronous reads, 456
overview of, 451
NSTextField
binding view-based table views, 187-188
creating view-based table views, 181
first responders, 271-274, 302
keyboard events, 271
NSTextFieldCel1l view, 253
overview of, 87-89
as subclass of NSControl, 83, 85
view hierarchy, 241-242
NSTextView
first responders, 302
inheritance diagram for NSControl, 85
keyboard events, 271
NSUndoManager and, 158
NSThread, 429431
NSTimeInterval, NSDate, 54-55
NSTimer
NSSRunLoop used with, 328
overview of, 321-323
NSUndoManager
document-based applications without, 174
for edits, 153-155
how it works, 146-148, 189
key-value observing, 152-153
NSInvocation and, 145
overview of, 145
windows and, 158
NSURL class, 359
NSURLConnection
fetching data from Web service, 361-363
asynchronous, 377-381
NSURLRequest, 359, 361-363
NSUserDefaults, 207, 210-211
NSUserDefaultsController, 217
NSValueTransformer, 351
NSView
with cells, 253-254
custom views with, 241
drawing with NSBezierPath, 248-250
drawRect, 246-248
generating PDF data, 291-293
inheritance diagram for NSContro1, 84-85
inheriting from NSResponder, 257
keyboard events. See keyboard events
Size Inspector, 244-246
starting drag, 312-313

NSViewController, 397, 399, 403
NSWindow
sheets. See sheets
becoming firstResponder, 271-272
initialfirstresponder outlet, 94
view hierarchy, 241-242
NSWindowController
defined, 163
document architecture, 167
loading NIB file without, 205
loading NIB files with. See NIB files and
NSWindowController
pasteboards and nil-targeted actions, 301
NSWorkspace, 369
NSXMLDocument, 359-360
NSXMLNode, 359-360
NSXMLParser, 360, 363-366
NSXMLParserDelegate, 362, 364-366

O
Object Library, 17-18
object-oriented programming, Cocoa as, 5-6
object relationships, as focus of ARC, 81-82
objectAtIndex method, NSArray, 45
Objective-C
awakeFromNib method, 30-31
declaring classes in, 25
editing implementation file, 27-28
header file, 26-27
how messaging works, 65-66
instances, 35-37
Objective-C 2 features, 4
overview of, 35
single inheritance in, 26
static analyzer, 63-64
types and constants in, 26
Objective-C, creating own classes
implement description method, 52-53
initializers with arguments, 56-58
overview of, 48-49
initializers, 55-56
objects
archiving. See archiving
within blocks, 375-376
creating, sending messages to and
destroying, 35-37
overview of, 5-6
retain count system, 69-70

486 INDEX

observers
defined, 221
NSNot1ificationCenter methods, 222-224
one-to-one relationship in Core Data 407-408
Open menu item, NSDocument, 166-167
Open Recent menu item, NSDocument,
166-167
OpenGL
Core Animation. See Core Animation
overview of, 441
OpenOffice, NSAtrributedString file
format, 288
OpenStep, 2-3
operators, in key paths, 126-127
opt-in garbage collector, Objective-C 2, 4
@optional, protocol, 173
ordered to-many relationships, key-value
coding, 148-149
outlets
defined, 21
making connections, 23-25, 91-94
ownership, object, 76

P
pagination when printing, 353-357
panels

adding to application, 194-196

general windows vs., 193-194
parse method, NSXMLParser, 365-366
parse XML document, Web services, 359-360
partial strings, formatter that checks, 348-350
paste, 298-302. See also drag-and-drop
pasteboards

lazy copying, 304-305

nil-targeted actions and, 300-302

NSPasteboard, 296-298

overview of, 295-296

UTTs and, 303
PDFs

copying image on pasteboard as, 295

getting your view to generate, 291-293

printing, 353

Quartz generating, 2

using Cartesian coordinate system, 255
performance overhead

autorelease message, 79

garbage collector, 68
performDragOperation: message, 316, 318

performSelectorInBackground:withObject:
method, 430431, 435
performSelectorOnMainThead:withObject:
waitUntilDone: method, 430-431
placeholder string, text fields, 87-89
plist
dumping localized strings into, 239-240
specifying application entitlements, 467
PNG image, copying data onto pasteboard as, 295
po (print-object)
debug console, 60
NSObject, 44
pointer
ni1 value and, 139
NSArray as list of, 45
using contextInfo when starting sheet as,
335-336
Pop-up button, 397-399, 402-403
posting notifications, 224-227
Powerbox, and mediated file access, 468
#pragma, 259
Preferences panel, creating
adding to application, 194-196
user defaults. See user defaults
prepareForDragOperation: message,
315-318
prepareWithInvocationTarget: method,
NSUndoManager, 146-147
preprocessor macros, 62, 462-464
print-object (po)
debug console, 60
NSObject, 44
printing
drawing differently on screen, 358
overview of, 353
pagination when, 353-357
printOperationWithSettings:error:
method, 353, 357
private methods, declaring, 309
programmatically creating custom views, 252
project directory, 13
Project Navigator, 27, 62
projects, creating new, 12-14
properties
attributes of, 125-126
eliminating code with, 124
in NSManagedObjectModel, 177-179
@property, declaring properties, 125
property list classes, registering defaults, 213

INDEX 487

protocols
creating own, 173-174
as lists of method declarations, 160
NSCoding, 160-163

Python, 4

Quartz, 2
QuartzCore framework, 418
Quit command, 33

R
race conditions
problems in multithreading, 428-429
thread synchronization and, 437-438
random function, 51
readFromData: ofType:error: method
loading and NSKeyedArchiver, 168-169
readFromPasteboard: method, 299, 308
readFromURL:ofType:error: method,
NSTask o, 453
reading and writing defaults, 210-214, 217-218
readonly attribute, properties, 125
readwri te attribute, properties, 125
receipt validation, Mac App Store, 469470
Received actions panel, connections, 25
Redo stack, NSUndoManager, 146-147
registerForDraggedTypes: method, 315-316
registering
defaults, 210-213
as observer, 222-226
relationships
Core Data. See Core Data relationships
in NSManagedObjectModel, 178
Release build configurations
blocking assertion checking, 62
changing current build configuration to, 62
creating, 464-466
overview of, 461-462
release message
autoreleasing objects, 73-76
calling dealloc method, 72-73
deallocating objects, 70-71
decrementing retain count, 69
enabling accessor methods for instance
variables, 78-79
retain-count rules, 76-77

removeObject method, NSMutableArray, 46
removeObjectAtIndex method,
NSMutableArray, 46
resignFirstResponder method, 272, 273, 280
resources, Xcode tracking application, 12
responder chain, 300-301
respondsToSelector: method, delegates,
113-114
retain counts, 64, 81-82. See also manual reference
counting
retain cycles, 68-69
retain message
accessor methods for instance variables,
78-79
incrementing retain count, 69
memory management, 71-72
retain-count rules, 76-77
Revert To Saved menu item, NSDocument,
166-167
Rich Text Format (RTF), 288
Rich Text Format with attachments (RTFD), 288
RoboCop, 99
rollovers, 282-283
RTF (Rich Text Format), 288
RTFD (Rich Text Format with attachments), 288
Ruby, 4
Run action
changing current build configuration to, 62
run application, 28-29
Run toolbar, 13

S

sandboxing, application

mediated file access and Powerbox, 468

overview of, 466

specifying entitlements, 467-468
Save Al1 menu item, NSDocument, 165-166
Save As menu item, NSDocument, 165-166
Save menu item, NSDocument, 165-166
saving

automatic document, 174

and NSKeyedArchiver, 167-168

PDFs, 292

using NSDocument, 164-166
Scheme Editor

build configurations, 461-462

changing build configuration, 62

creating release build, 464-466

488 INDEX

scroll view
hierarachy, 242
resizing with window, 250-252
security, and application sandboxing, 466-468
selector table, 65
self, writing initializers, 55-56
setAcceptsMouseMovedEvents: message,
rollovers, 282
setEnabled message, buttons, 86
setFloatValue methods, sliders, 86
setImage: method, NSImage, 268
setNeedsDisplay: message, redrawing view,
246-248
setNeedsDisplayInRect: message, 248
set NilValueForKey: key-value coding, 140
setState message, buttons, 86
setString: method, drawing text with
attributes, 290
setValue: forKey method
bindings, 120
key-value coding, 117
setWantslayer, Core Animation, 419-420
shadows, 293
shapes, CAShapeLayer, 425
Share button, Release build configuration,
464-465
sheets
adding, 330
code for, 334-335
creating modal windows, 336-337
defined, 329
interface layout, 331-334
NSApplication methods, 329
outlets and actions for, 331
using contextInfo, 335-336
showWindow, panels, 203
simple attributes, key-value coding for, 148-149
Size Inspector
customizing views, 244-246
resizing NSScroll1View, 251-252
sliders. See also NSSlider
binding value of, 119-120
making keys observable, 121-123
for sheets, 332-334
Smalltalk, 35
sort descriptors, 141-142
sortedArrayUsingSelector: method, 374

sortedArrayUsingFunction: context:
method, 371
sortedArrayUsingSelector: method, 371
sorting
add to NSArrayController, 140-141
people, based on names, 142
with sortedArrayUsingSelector:, 371
using blocks, 372-373
without NSArrayController, 141-142
source code display, Instruments, 433-434
source, drag, 312-315
split view, hierarachy, 242
state message, buttons, 86
static analyzer, 63-64
Step-Over button, debugger bar, 60
string tables
creating, 237-238
localization using, 236
using, 238-239
stringByAppendingString method,
NSString, 47
strings
converting with formatters.
See NSFormatters
drawing strings and attributed, 289
explicit ordering of tokens in format, 240
NSAtrributedString, 286-288
Objective-C vs. C, 4041
searching for substrings, 344-345
translated, getting into XIBs with ibtool,
239-240
.strings extension, string table, 236
stringWithFormat, NSString, 75-76
strong attribute, properties, 125
strong references
in ARC, 81-82
in manual reference counting, 72
subclasses
creating instance of view, 243-244
“inherits from” vs. “uses” or “knows about”
and, 48
NSControl, 85-89
NSImageRep, 269
substrings, searching strings for, 344-345
subviews, view hierarchy, 241-243
superview, Size Inspector, 244-246
symbols, Time Profiler, 432-433

INDEX 489

synchronous connections
multithreading in, 427-428
NSURLConnection, 361-363

@synthesize
accessor methods, 124-125
connections in Interface Builder, 93
as Objective-C keyword, 27
property attributes, 125-126

T
tab view, hierarachy, 242-243
table selector, 65
table view. See also view-based table views
NSTableView and its dataSource, 104-107
setting background color, 216-217
UITableViewController, 392-393
.tar files, 460
target/action
debugging hints, 98
defined, 21, 83
making connections, 24-25
NSMatrix, 254
NSTimer, 323
overview of, 83-85
pasteboards and nil-targeted actions, 300-302
set target programmatically, 96
target, defined, 83
targeted actions, pasteboards and nil-, 300-302
terminate: message, 33
text, drawing on layer with CATextLayer, 425
text, drawing with attributes
bold and italics, 294
getting view to generate PDF, 291-293
giving shadows to letters, 293
making letters appear, 289-291
NSAtrributedString, 286-288
NSFont, 285-286
NSFontManager, 293
overview of, 285
strings and attributed strings, 289
text fields. See also NSTextField
awakeFromNib and, 30-31
create outlet connection for, 92-93
creating basic formatter, 342-344
Text Table Cell View, 181-182
.tgz files, 460
Objective-C language, 5, 35
threads, 427-429

Time Profiler, 431-435
timeIntervalSinceDate method, NSDate, 54
timeIntervalSinceReferenceDate method,
NSDate, 55
timers. See NSTimer
title
changing button, 18
to-many relationships
Core Data, 407
key-value coding for, 148-152
tokens, format strings, 40, 240
Tool project, 12
tools, 3—4
toValue property, CABasicAnimation, 424
troubleshooting, common problems, 98
types
in Objective-C, 26

U
UIKit, 383
UINavigationController, iOS, 390
UITableView, iOS, 391-393
UITableViewController, iOS, 391-393
UITableViewDataSource methods,
UITableViewController, 392
UIViewController
creating RootViewController subclass,
386-387
creating Web view, 395
porting RanchForecast to i10S, 383-385
UIWebView, iOS, 395
unarchiveObjectWithData: method, loading
and NSKeyedArchiver, 168-169
unarchiving, 159, 168-169
unbind method, 127
undo manager. See NSUndoManager
Undo stack, NSUndoManager, 146-147
Unicode (UTF-8) file encoding, 238
universal type identifiers. See UTTs (universal type
identifiers)
Unix processes, 1-3
NSTask and, 451
unordered to-many relationships, key-value
coding, 149-150
untitled documents, suppressing creation of,
215-216
updateChangeCount method, NSDocument, 174
uppercaseString, NSString, 75-76

490 INDEX

URLs
adding WebView to application, 369-370
opening for Web service, 368-369
user defaults
enabling user to edit, 213-215
NSUserDefaults, 210-211
NSUserDefaultsController, 217
overview of, 207-208
precedence of types, 211
reading and writing from command line,
217-218
setting, 212-213
user interface. See interface layout
userInfo dictionary, 226-227
“uses”, “inherits from” vs., 48
UTExportedTypeDeclarations key, exported
UTIs, 175
UTF-8 (Unicode) file encoding, 238
utility area, Interface Builder, 16
UTTs (universal type identifiers)
configuring exported, 170-171
customizing, 303
pasteboards and, 297-300, 303
understanding, 175

\%

value transformers, 351
valueForKey method

bindings, 120

key-value coding, 117

key-value observing, 122
variables

inside objects, 5

reading and setting with accessor

methods, 50

viewing in debugger, 59-60
view-based table views

bindings, 183-188

vs. cell-based, 191
view classes, object-oriented programming, 129
view controllers. See view swapping
view controllers, in i0OS

overview of, 383-385

pushing, 393-395

UITableViewController, 391-393
view swapping

creating view controllers and XIB files,

400401

overview of, 397-398

resizing window, 403405
viewDidMoveToWindow, rollovers, 283
views

drag-and-drop to. See drag-and-drop

images and mouse events. See images and

mouse events

layers vs., 417
views, custom

cells, 253-254

creating programmatically, 252

drawing with NZBezierPath, 248-250

flipping with isF1ipped, 255

keyboard events, 274

overview of, 241

that draw themselves, 243-248

view hierarchy, 241-243

w
weak attribute, properties, 125
_weak variable, blocks, 375-376
__weak qualifier, ARC, 82
weak references
ARC, 81-82
manual reference counting, 72
platforms not supporting ARC, 82
Web services
NSURLConnection class, 361-363
overview of, 359-360
Web view, 369-372, 395
Window Inspector, setting hidesOnDeactivate,
194
window server, 2, 33
windowControllerDidLoadNib: method,
166-169
windowD1idLoad method, 203, 214-215
windows
adding sheets to. See sheets
collection of views for, 241
firstResponder of key, 271
iOS app, 383-384
NSUndoManager and, 158
NSWindowController, 167
panels vs.main, 193-194
Word, NSAtrributedString file format, 288
write code, keyboard events, 278-282
writeObjects method, NSPasteboard, 297
writeToPasteboard: method, 298

INDEX

491

X
X window server, 2
Xcode
creating new project, 12-14
getting started, 11-12
Interface Builder editor, 4
iPhone and iPad apps using, 383
overview of, 4
XIB files
creating NSFormatters, 342-344
defined, 15
Interface Builder, 17
overview of, 17
translating strings, 239-240
view swapping, 400-401, 403405

XML parsing
Web services, 359-360

Y

YES
defined, 26
NSArray, 45

NSObject, 44

V4
ZIP archives
listing tar files with .tar and .tgz vs., 460
packaging application for download, 466
zombies, debugging hints, 98

This page intentionally left blank

	Contents
	Preface
	Acknowledgments
	Chapter 1 Cocoa: What Is It?
	A Little History
	Tools
	Language
	Objects, Classes, Methods, and Messages
	Frameworks
	How to Read This Book
	Typographical Conventions
	Common Mistakes
	How to Learn

	Chapter 2 Let’s Get Started
	In Xcode
	Create a New Project
	The main Function

	In Interface Builder
	The Utility Area
	The Blank Window
	Lay Out the Interface
	The Dock
	Create a Class
	Create an Instance
	Make Connections

	A Look at Objective-C
	Types and Constants in Objective-C
	Look at the Header File
	Edit the Implementation File
	Build and Run
	AwakeFromNib

	Documentation
	What Have You Done?
	Chronology of an Application

	Chapter 3 Objective-C
	Creating and Using Instances
	Using Existing Classes
	Sending Messages to nil
	NSObject, NSArray, NSMutableArray, and NSString
	“Inherits from” versus “Uses” or “Knows About”

	Creating Your Own Classes
	Creating the LotteryEntry Class
	Changing main.m
	Implementing a description Method
	Writing Initializers
	Initializers with Arguments

	The Debugger
	What Have You Done?
	Meet the Static Analyzer
	For the More Curious: How Does Messaging Work?
	Challenge

	Chapter 4 Memory Management
	Living with Manual Reference Counting
	Leak-Free Lottery
	dealloc
	Autoreleasing Objects
	The Retain-Count Rules

	Accessor Methods
	Living with ARC
	Strong References
	Weak References
	ARC Odds and Ends

	Chapter 5 Target/Action
	Some Commonly Used Subclasses of NSControl
	NSButton
	NSSlider
	NSTextField

	Start the SpeakLine Example
	Lay Out the XIB File
	Making Connections in Interface Builder

	Implementing the SpeakLineAppDelegate Class
	For the More Curious: Setting the Target Programmatically
	Challenge
	Debugging Hints

	Chapter 6 Helper Objects
	Delegates
	The NSTableView and Its dataSource
	SpeakLineAppDelegate Interface File

	Lay Out the User Interface
	Make Connections
	Edit SpeakLineAppDelegate.m
	Common Errors in Implementing a Delegate
	Many Objects Have Delegates

	For the More Curious: How Delegates Work
	Challenge: Make a Delegate
	Challenge: Make a Data Source

	Chapter 7 Key-Value Coding and Key-Value Observing
	Key-Value Coding
	Bindings
	Key-Value Observing
	Making Keys Observable
	Properties
	Attributes of a Property

	For the More Curious: Key Paths
	For the More Curious: Key-Value Observing

	Chapter 8 NSArrayController
	Starting the RaiseMan Application
	RMDocument.xib

	Key-Value Coding and nil
	Add Sorting
	For the More Curious: Sorting without NSArrayController
	Challenge 1
	Challenge 2

	Chapter 9 NSUndoManager
	NSInvocation
	How the NSUndoManager Works
	Adding Undo to RaiseMan
	Key-Value Coding and To-Many Relationships

	Key-Value Observing
	Undo for Edits
	Begin Editing on Insert
	For the More Curious: Windows and the Undo Manager

	Chapter 10 Archiving
	NSCoder and NSCoding
	Encoding
	Decoding

	The Document Architecture
	Info.plist and NSDocumentController
	NSDocument
	NSWindowController

	Saving and NSKeyedArchiver
	Loading and NSKeyedUnarchiver
	Setting the Extension and Icon for the File Type
	For the More Curious: Preventing Infinite Loops
	For the More Curious: Creating a Protocol
	For the More Curious: Automatic Document Saving
	For the More Curious: Document-Based Applications without Undo
	Universal Type Identifiers

	Chapter 11 Basic Core Data
	NSManagedObjectModel
	Interface
	View-Based Table Views
	Connections and Bindings
	How Core Data Works

	For the More Curious: View-Based versus Cell-Based Table Views
	Challenge

	Chapter 12 NIB Files and NSWindowController
	NSPanel
	Adding a Panel to the Application
	Setting Up the Menu Item
	AppController.m
	Preferences.xib
	PreferenceController.m

	For the More Curious: NSBundle
	Challenge

	Chapter 13 User Defaults
	NSDictionary and NSMutableDictionary
	NSDictionary
	NSMutableDictionary

	NSUserDefaults
	Precedence of Types of Defaults

	Setting Defaults
	The Identifier for the Application
	Create Keys for the Names of the Defaults
	Register Defaults

	Letting the User Edit the Defaults
	Using the Defaults
	Suppressing the Creation of Untitled Documents
	Setting the Background Color on the Table View

	For the More Curious: NSUserDefaultsController
	For the More Curious: Reading and Writing Defaults from the Command Line
	Challenge

	Chapter 14 Using Notifications
	What Notifications Are and Are Not
	What Notifications Are Not
	NSNotification
	NSNotificationCenter
	Posting a Notification
	Registering as an Observer
	Handling the Notification When It Arrives
	The userInfo Dictionary
	For the More Curious: Delegates and Notifications
	Challenge

	Chapter 15 Using Alert Panels
	Make the User Confirm the Deletion
	Challenge

	Chapter 16 Localization
	Localizing a NIB File
	String Tables
	Creating String Tables
	Using the String Table

	For the More Curious: ibtool
	For the More Curious: Explicit Ordering of Tokens in Format Strings

	Chapter 17 Custom Views
	The View Hierarchy
	Get a View to Draw Itself
	Create an Instance of a View Subclass
	Size Inspector
	drawRect

	Drawing with NSBezierPath
	NSScrollView
	Creating Views Programmatically
	For the More Curious: Cells
	For the More Curious: isFlipped
	Challenge

	Chapter 18 Images and Mouse Events
	NSResponder
	NSEvent
	Getting Mouse Events
	Using NSOpenPanel
	Change the XIB File
	Edit the Code

	Composite an Image onto Your View
	The View’s Coordinate System
	Autoscrolling
	For the More Curious: NSImage
	Challenge

	Chapter 19 Keyboard Events
	NSResponder
	NSEvent
	Create a New Project with a Custom View
	Lay Out the Interface
	Make Connections
	Write the Code

	For the More Curious: Rollovers
	The Fuzzy Blue Box

	Chapter 20 Drawing Text with Attributes
	NSFont
	NSAttributedString
	Drawing Strings and Attributed Strings
	Making Letters Appear
	Getting Your View to Generate PDF Data
	For the More Curious: NSFontManager
	Challenge 1
	Challenge 2

	Chapter 21 Pasteboards and Nil-Targeted Actions
	NSPasteboard
	Add Cut, Copy, and Paste to BigLetterView
	Nil-Targeted Actions
	Looking at the XIB File

	For the More Curious: Which Object Sends the Action Message?
	For the More Curious: UTIs and the Pasteboard
	Custom UTIs

	For the More Curious: Lazy Copying
	Challenge 1
	Challenge 2

	Chapter 22 Categories
	Add a Method to NSString
	For the More Curious: Declaring Private Methods

	Chapter 23 Drag-and-Drop
	Make BigLetterView a Drag Source
	Starting a Drag
	After the Drop

	Make BigLetterView a Drag Destination
	RegisterForDraggedTypes:
	Add Highlighting
	Implement the Dragging Destination Methods
	Add a Second BigLetterView

	For the More Curious: Operation Mask

	Chapter 24 NSTimer
	Lay Out the Interface
	Make Connections
	Add Code to TutorController
	For the More Curious: NSRunLoop
	Challenge

	Chapter 25 Sheets
	Adding a Sheet
	Add Outlets and Actions
	Lay Out the Interface
	Add Code

	For the More Curious: contextInfo
	For the More Curious: Modal Windows

	Chapter 26 Creating NSFormatters
	A Basic Formatter
	Create ColorFormatter.h
	Edit the XIB File
	NSColorList
	Searching Strings for Substrings
	Implement the Basic Formatter Methods

	The Delegate of the NSControl Class
	Checking Partial Strings
	Formatters That Return Attributed Strings
	For the More Curious: NSValueTransformer

	Chapter 27 Printing
	Dealing with Pagination
	For the More Curious: Are you Drawing to the Screen?
	Challenge

	Chapter 28 Web Services
	RanchForecast Project
	NSURLConnection
	Add XML Parsing to ScheduleFetcher
	Lay Out the Interface
	Write Controller Code

	Opening URLs
	Challenge: Add a WebView

	Chapter 29 Blocks
	Block Syntax
	Memory and Objects within Blocks
	Availability of Blocks
	RanchForecast: Going Asynchronous
	Receiving the Asynchronous Response

	Challenge: Design a Delegate

	Chapter 30 Developing for iOS
	Porting RanchForecast to iOS
	ScheduleFetcher

	RootViewController
	Add a Navigation Controller
	ScheduleViewController
	UITableViewController
	Pushing View Controllers
	Challenge

	Chapter 31 View Swapping
	Get Started
	Create the ManagedViewController Class
	Create ViewControllers and their XIB files

	Add View Swapping to MyDocument
	Resizing the Window

	Chapter 32 Core Data Relationships
	Edit the Model
	Create Custom NSManagedObject Classes
	Employee
	Department

	Lay Out the Interface
	EmployeeView.xib

	Events and nextResponder

	Chapter 33 Core Animation
	Scattered
	Implicit Animation and Actions
	More on CALayer

	Challenge 1
	Challenge 2

	Chapter 34 Concurrency
	Multithreading
	A Deep Chasm Opens Before You
	Simple Cocoa Background Threads

	Improving Scattered: Time Profiling in Instruments
	Introducing Instruments

	NSOperationQueue
	Multithreaded Scattered
	Thread Synchronization

	For the More Curious: Faster Scattered
	Challenge

	Chapter 35 Cocoa and OpenGL
	A Simple Cocoa/OpenGL Application
	Lay Out the Interface
	Write Code

	Chapter 36 NSTask
	ZIPspector
	Asynchronous Reads
	iPing

	Challenge: .tar and .tgz files

	Chapter 37 Distributing Your App
	Build Configurations
	Preprocessor Macros and Using Build Configurations to Change Behavior

	Creating a Release Build
	Application Sandboxing
	Entitlements
	Mediated File Access and Powerbox

	The Mac App Store

	Chapter 38 The End
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

