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PREFACE

If you are developing applications for the Mac, or are hoping to do so, this book
is just the resource you need. Does it cover everything you will ever want to
know about programming for the Mac? Of course not. But it does cover
probably 80% of what you need to know. You can find the remaining 20%—the
20% that is unique to you—in Apple’s online documentation.

"This book, then, acts as a foundation. It covers the Objective-C language and the
major design patterns of Cocoa. It will also get you started with the two most
commonly used developer tools: Xcode and Instruments. After reading this
book, you will be able to understand and utilize Apple’s online documentation.

There is a lot of code in this book. Through that code, we will introduce you to
the idioms of the Cocoa community. Our hope is that by presenting exemplary
code, we can help you to become more than a Cocoa developer—a stylish Cocoa
developer.

This fourth edition includes technologies introduced in Mac OS X 10.6 and
10.7. These include Xcode 4, ARC, blocks, view-based table views, and the Mac
App Store. We have also devoted one chapter to the basics of iOS development.

This book is written for programmers who already know some C programming
and something about objects. If you don’t know C or objects, you should first
read Objective-C Programming: The Big Nerd Ranch Guide. You are not expected to
have any experience with Mac programming. This hands-on book assumes that
you have access to Mac OS X and the developer tools. Xcode 4.2, Apple’s IDE, is
available for free. If you are a member of the paid Mac or iOS Developer
Programs, Xcode can also be downloaded from the Apple Developer Connection
Web site (http://developer.apple.com/). Enrollment in these programs enables
you to submit your applications to the Mac and iOS App Stores, respectively.

We have tried to make this book as useful for you as possible, if not indispensable.
That said, we’d love to hear from you at cocoabook@bignerdranch.com if you
have any suggestions for improving it.

—Aaron Hillegass and Adam Preble
xix
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Chapter 3
OBjecTIVE-C

Once upon a time, a man named Brad Cox decided that it was time for the world
to move toward a more modular programming style. C was a popular and powerful
language. Smalltalk was an elegant untyped object-oriented language. Starting
with C, Brad Cox added Smalltalk-like classes and message-sending mechanisms.
He called the result Objective-C. Objective-C is a very simple extension of the C
language. In fact, it was originally just a C preprocessor and a library.

Objective-C is not a proprietary language. Rather, it is an open standard that has
been included in the Free Software Foundation’s GNU C compiler (gcc) for many
years. More recently, Apple has become heavily involved in the clang/LLVM (Low
Level Virtual Machine) open source compiler projects, which are much faster and
more versatile than gece. In Xcode projects, LLVM is the default compiler.

Cocoa was developed using Objective-C, and most Cocoa programming is done
in Objective-C. Teaching C and basic object-oriented concepts could consume
an entire book. This chapter assumes that you already know a litde C and
something about objects and introduces you to the basics of Objective-C. If you
fit the profile, you will find learning Objective-C to be easy. If you do not, our
own Objective-C Programming: The Big Nerd Ranch Guide or Apple’s The
Objective-C Language offer more gentle introductions.

Creating and Using Instances

Chapter 1 mentioned that classes are used to create objects, that the objects have
methods, and that you can send messages to the objects to trigger these methods.
In this section, you will learn how to create an object and send messages to it.

As an example, we will use the class NSMutableArray. You can create a new
instance of NSMutableArray by sending the message alloc to the
NSMutableArray class like this:

[NSMutabTleArray alloc];

35
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"This method returns a pointer to the space that was allocated for the object. You
could hold onto that pointer in a variable like this:

NSMutableArray *foo;
foo = [NSMutableArray alloc];

While working with Objective-C, it is important to remember that foo is just a
pointer. In this case, it points to an object.

Before using the object that foo points to, you would need to make sure that it is
fully initialized. The init method will handle this task, so you might write code
like this:

NSMutableArray *foo;
foo = [NSMutableArray alloc];
[foo init];

Take a long look at the last line; it sends the message init to the object that foo
points to. We would say, “foo is the receiver of the message init.” Note thata
message send consists of a receiver (the object foo points to) and a message (init)
wrapped in brackets. You can also send messages to classes, as demonstrated by
sending the message alloc to the class NSMutableArray.

The method init returns the newly initialized object. As a consequence, you
will always nest the message sends like this:

NSMutableArray *foo;
foo = [[NSMutableArray alloc] 1init];

What about destroying the object when we no longer need it? We will talk about
this in the next chapter.

Some methods take arguments. If a method takes an argument, the method
name (called a selector) will end with a colon. For example, to add objects to the
end of the array, you use the addObject: method (assume that bar is a pointer to
another object):

[foo addObject:bar];

If you have multiple arguments, the selector will have multiple parts. For
example, to add an object at a particular index, you could use the following:

[foo insertObject:bar atIndex:5];

Note that insertObject:atIndex: is one selector, not two. It will trigger one
method with two arguments. This outcome seems strange to most C and Java
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programmers but should be familiar to Smalltalk programmers. The syntax also
makes your code easier to read. For example, it is not uncommon to see a C++

method call like this:
if (x.intersectsArc(35.0, 19.0, 23.0, 90.0, 120.0))
It is much easier to guess the meaning of the following code:

if ([x intersectsArcWithRadius:35.0
centeredAtX:19.0
Y:23.0
fromAngle:90.0
toAngle:120.0])

If it seems odd right now, just use it for a while. Most programmers grow to
appreciate the Objective-C messaging syntax.

You are now at a point where you can read simple Objective-C code, so it is time

to write a program that will create an instance of NSMutableArray and fill it with
ten instances of NSNumber.

Using Existing Classes

If it isn’t running, start Xcode. Close any projects that you were working on.
Under the File menu, choose New -> New Project.... When the panel pops up,
choose to create a Command Line Tool (Figure 3.1).

Choose a templare for your new project:

A os [
Application 0\\ .” |i|

Framework & Library ¥ %
Other
Locoa Application Locoa-Applescript
4 Mac 05X Application
Framework & Library
Application Plug-in
System Plug-in
Other
i, Command Line Tool
This template builds 2 command-line tool.
Cancel Pravious Maxt

Figure 3.1 Choose Project Type
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A command-line tool has no graphical user interface and typically runs on the
command line or in the background as a daemon. Unlike in an application
project, you will always alter the main function of a command-line tool.

Name the project lottery (Figure 3.2). Unlike the names of applications, most
tool names are lowercase. Set the Type to Foundation.

Choose options for your new project:

—

Product Name Iotler\{
Company Wentifier  com.bignerdranch
Bundle Identifier com.bignerdranch.lomery
Type | Foundation

.3' Use Automatic Reference Counting

Cancel Previous | |  MNext

Figure 3.2 Name Project

When the new project appears, select main.min the lottery group. Editmain.mto
look like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

@autoreleasepool {

NSMutableArray *array;
array = [[NSMutableArray alloc] init];
int 1i;
for (i = 0; i < 10; i++) {
NSNumber *newNumber =
[INSNumber alloc] initWithInt:(i * 3)];
[array addObject:newNumber];
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for (i =0; i< 10; i++) {
NSNumber *numberToPrint = [array objectAtIndex:i];
NSLog(@"The number at index %d is %@", i, numberToPrint);

}
return 0;

}
Here is the play-by-play for the code:
#import <Foundation/Foundation.h>

You are including the headers for all the classes in the Foundation framework.
The headers are precompiled, so this approach is not as computationally
intensive as it sounds.

int main (int argc, const char *argv[])
The main function is declared just as it would be in any Unix C program.
@autoreleasepool {

This code defines an autorelease pool for the code enclosed by the braces. We
will discuss the importance of autorelease pools in the next chapter.

NSMutableArray *array;

One variable is declared here: array is a pointer to an instance of
NSMutableArray. Note that no array exists yet. You have simply declared a
pointer that will refer to the array once it is created.

array = [[NSMutableArray alloc] init];

Here, you are creating the instance of NSMutab1eArray and making the array
variable point to it.

for (i = 0; i < 10; i++) {
NSNumber *newNumber = [[NSNumber alloc] initWithInt:(i*3)];
[array addObject:newNumber];

}

Inside the for loop, you have created a local variable called newNumber and set it
to point to a new instance of NSNumber. Then you have added that object to the
array.

The array does not make copies of the NSNumber objects. Instead, it simply keeps
a list of pointers to the NSNumber objects. Objective-C programmers make very
few copies of objects, because it is seldom necessary.



40

CHAPTER 3 = OBJeCTIVE-C

for (i =0; i < 10; i++) {
NSNumber *numberToPrint = [array objectAtIndex:i];
NSLog(@"The number at index %d is %@", i, numberToPrint);
}

Here, you are printing the contents of the array to the console. NSLog is a
function much like the C function printf(); it takes a format string and a
comma-separated list of variables to be substituted into the format string. When
displaying the string, NSLog prefixes the generated string with the name of the
application and a time stamp.

In printf, for example, you would use %x to display an integer in hexadecimal
form. With NSLog, we have all the tokens from printf and the token %@ to
display an object. The object gets sent the message description, and the string
it returns replaces %@ in the string. We will discuss the description method in
detail soon.

All the tokens recognized by NSLog() are listed in Table 3.1.

Table 3.1 Possible Tokens in Objective-C Format Strings

Symbol Displays

%@ id

%d, %D, %i long

%u, %U unsigned long

%hi short

%hu unsigned short

%0 long long

%au unsigned long long

%X, %X unsigned long printed as hexadecimal

%0, %0 unsigned long printed as octal

%f, %e, %E, %g, %G double

%c unsigned char as ASCII character

%C unichar as Unicode character

%s char * (a null-terminated C string of ASCII characters)

%S unichar * (a null-terminated C string of Unicode
characters)

%p void * (an address printed in hexadecimal with a leading 0x)

%% a % character

Note: If the @ symbol before the quotes in @' The number at index %d is %@"
looks a little strange, remember that Objective-C is the C language with a couple
of extensions. One of the extensions is that strings are instances of the class
NSString. In C, strings are just pointers to a buffer of characters that ends in the
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null character. Both C strings and instances of NSString can be used in the same
file. To differentiate between constant C strings and constant NSStrings, you
must put @ before the opening quote of a constant NSString.

// C string

char *foo;

// NSString

NSString *bar;

foo = "this is a C string";
bar = @"this is an NSString";

You will use mostly NSString in Cocoa programming. Wherever a string is
needed, the classes in the frameworks expect an NSString. However, if you
already have a bunch of C functions that expect C strings, you will find yourself
using char * frequently.

You can convert between C strings and NSStrings:

const char *foo = "Blah blah";

NSString *bar;

// Create an NSString from a C string

bar = [NSString stringWithUTF8String:foo];

// Create a C string from an NSString
foo = [bar UTF8String];

Because NSString can hold Unicode strings, you will need to deal with the mul-
tibyte characters correctly in your C strings, and this can be quite difficult and
time consuming. (Besides the multibyte problem, you will have to wrestle with
the fact that some languages read from right to left.) Whenever possible, you
should use NSString instead of C strings.

Our main() function ends by returning 0, indiciating that no error occurred:

return 0;

}

Run the completed command-line tool (Figure 3.3). (If your console doesn’t
appear, use the View -> Show Debug Area menu item and ensure that the console,
the right half, is enabled.)

Sending Messages to nil

In most object-oriented languages, your program will crash if you send a
message to null. In applications written in those languages, you will see many



42 CHAPTER 3 = OBJeCTIVE-C

L. NaXe] | lottery - main.m =
() = = | | Eax
Run  Stop Scheme Breakpoints Nalszues Editor View Organizer
MnmeA=wB [m < lottery + [ lottery + |m| main.m »  maing)

lattery NSMutableArray +array;
1 target, Mac 05 X 50K 106 array = [[NSMutableArray alloc] initl;
ortery int i;
[l for (1= 0; i< 18; i++) {
m| NSNumber #newNumber = [ INSNumber allocl initWithInt:li = 3)1;
<) lottery.1 [array add0bject:newNumber];
Supporting Files 3
E — for {i=0; i«<10; i++) {
Products NSHumber *numberToPrint = [array objectAtIndex:il;
NSLog{@'The number at index %d is %", i, numberToPrint); 4

E um @ & & |NoSelection

All Qutput $ Clear | ([0 I [EY

GNU gdb 6.3.5P-28858B15 (Apple version ocb-1518) (Thu Jan 27 BB:34:47 UTC 2811)

Copyright 2804 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type “show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "xB_G64-apple-garwin'.tty fdev/ttyspes

[Switching to process 67174 thread BxB]
3:26:51

2011-93-04 2 676 lottery[67174:983] The number at index & is @
2011-83-04 2. 1.679 lottery[67174:903] The number at index 1 is 3
2011-03-04 H 1.68@ lottery[67174:903] The number at index 2 is 6
2011-083-04 23: 81 lottery[67174:903] The number at index 3 is 9
2011-983-04 23 lottery[67174:983] The number at index 4 is 12
2011-83-04 23: lottery[67174:903] The number at index 5 is 15
2011-03-04 23: lottery[67174:983] The number at index 6 is 1B
2011-83-04 23: lottery[67174:903] The number at index 7 is 21
2011-983-04 23: 1.683 lottery[67174:903] The number at index B is 24
2011-83-84 23:26:51.684 lottery[67174:903] The number at index 9 is 27

— Program ended with exit code: 8
+ 0OREF S

Figure 3.3 Completed Execution

checks for nu11 before sending a message. In Java, for example, you frequently
see the following:

if (foo != null) {
foo.doThatThingYouDo();
h

In Objective-C, it is okay to send a message to ni1. The message is simply
discarded, which eliminates the need for these sorts of checks. For example, this
code will build and run without an error:

id foo;
foo = nil;
int bar = [foo count];

This approach is different from how most languages work, but you will get used
to it.

You may find yourself asking over and over, “Argg! Why isn’t this method
getting called?” Chances are that the pointer you are using, convinced that it is
not nil,isin factnil.

In the preceding example, what is bar set to? Zero. If bar were a pointer, it
would be set to ni1 (zero for pointers). For other types, the value is less
predictable.
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NSObject, NSArray, NSMutableArray,
and NSString

You have now used these standard Cocoa objects: NSObject, NSMutab1eArray,
and NSString. (All classes that come with Cocoa have names with the NS prefix.
Classes that you will create will #or start with NS.) These classes are all part of the
Foundation framework. Figure 3.4 shows an inheritance diagram for these
classes.

_—_——— = — — —

Tlnherits from

L NSArray 1 L _ NSStrin

Jlnherits from

LNSMutabIeArra_y q
i

Figure 3.4 Inheritance Diagram

Let’s go through a few of the commonly used methods on these classes.
For a complete listing, you can access the online documentation in Xcode’s
Help menu.

NSObject

NSObject is the root of the entire Objective-C class hierarchy. Some commonly
used methods on NSObject are described next.

- (id)init
Initializes the receiver after memory for it has been allocated. An init

message is generally coupled with an alloc message in the same line of
code:

TheClass *newObject = [[TheClass alloc] init];
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- (NSString *)description

Returns an NSString that describes the receiver. The debugger’s print
object command (“po”) invokes this method. A good description method
will often make debugging easier. Also, if you use %@ in a format string, the
object that should be substituted in is sent the message description. The
value returned by the description method is put into the log string. For
example, the line in your main function

NSLog(@"The number at index %d is %@", i, numberToPrint);
is equivalent to

NSLog(@"The number at index %d is %@", i,
[numberToPrint description]);

- (BOOL)isEqual: (id)anObject

Returns YES if the receiver and anObject are equal and NO otherwise. You
might use it like this:

if ([myObject isEqual:anotherObject]) {
NSLog(@"They are equal.");
b

But what does equal really mean? In NSObject, this method is defined to
return YES if and only if the receiver and anObject are the same
object—that is, if both are pointers to the same memory location.

Clearly, this is not always the “equal” that you would hope for, so this
method is overridden by many classes to implement a more appropriate
idea of equality. For example, NSString overrides the method to compare
the characters in the receiver and anObject. If the two strings have the
same characters in the same order, they are considered equal.

Thus, if x and y are NSStrings, there is a big difference between these two
expressions:

X =Yy
and
[x isEqual:y]

The first expression compares the two pointers. The second expression
compares the characters in the strings. Note, however, that if x and y are
instances of a class that has not overridden NSObject’s isEqual: method,
the two expressions are equivalent.
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NSArray

An NSArray is a list of pointers to other objects. It is indexed by integers. Thus,
if there are 7 objects in the array, the objects are indexed by the integers 0
through # — 1. You cannot puta ni1 in an NSArray. (This means that there are no
“holes” in an NSArray, which may confuse some programmers who are used to
Java’s Object[].) NSArray inherits from NSObject.

An NSArray is created with all the objects that will ever be in it. You can neither
add nor remove objects from an instance of NSArray. We say that NSArray is
immutable. (Its mutable subclass, NSMutab1eArray, will be discussed next.)
Immutability is nice in some cases. Because it is immutable, a horde of objects
can share one NSArray without worrying that one object in the horde might
change it. NSString and NSNumber are also immutable. Instead of changing a
string or number, you will simply create another one with the new value. (In the
case of NSString, there is also the class NSMutableString that allows its
instances to be altered.)

A single array can hold objects of many different classes. Arrays cannot, however,
hold C primitive types, such as int or float.

Here are some commonly used methods implemented by NSArray:

- (unsigned)count

Returns the number of objects currently in the array.

- (id)objectAtIndex: (unsigned)ii

Returns the object located at index 1. If i is beyond the end of the array,
you will get an error at runtime.

- (id)TastObject

Returns the object in the array with the highest index value. If the array is
empty, nil is returned.

- (BOOL)containsObject: (id)anObject

Returns YES if anObject is present in the array. This method determines
whether an object is present in the array by sending an isEqual: message
to each of the array’s objects and passing anObject as the parameter.

- (unsigned)index0fObject: (id)anObject

Searches the receiver for anObject and returns the lowest index whose
corresponding array value is equal to anObject. Objects are considered
equal if isEqual: returns YES. If none of the objects in the array are equal
to anObject, indexOfObject: returns NSNotFound.
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NSMutableArray

NSMutableArray inherits from NSArray but extends it with the ability to add and
remove objects. To create a mutable array from an immutable one, use NSArray’s
mutableCopy method.

Here are some commonly used methods implemented by NSMutableArray:

- (void)addObject: (id)anObject
Inserts anObject at the end of the receiver. You are not allowed to add ni1

to the array.

- (void)addObjectsFromArray: (NSArray *)otherArray

Adds the objects contained in otherArray to the end of the receiver’s array
of objects.

- (void)insertObject: (id)anObject atIndex: (unsigned)index

Inserts anObject into the receiver at index, which cannot be greater than
the number of elements in the array. If index is already occupied, the
objects at index and beyond are shifted up one slot to make room. You will
get an error if anObject is ni1 or if index is greater than the number of
elements in the array.

- (void)removeAll0bjects

Empties the receiver of all its elements.

- (void)removeObject: (id)anObject

Removes all occurrences of anObject in the array. Matches are determined
on the basis of anObject’s response to the isEqual: message.

- (void)removeObjectAtIndex: (unsigned)index

Removes the object at index and moves all elements beyond index down
one slot to fill the gap. You will get an error if index is beyond the end of
the array.

As mentioned earlier, you cannot add ni1 to an array. Sometimes, you will want
to put an object into an array to represent nothingness. The NSNu11 class exists

for exactly this purpose. There is exactly one instance of NSNu11, so if you want
to put a placeholder for nothing into an array, use NSNu11 like this:

[myArray addObject:[NSNull null]];
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NSString

An NSString is a buffer of Unicode characters. In Cocoa, all manipulations
involving character strings are done with NSString. As a convenience, the

Objective-C language also supports the @".." construct to create a string object

constant from a 7-bit ASCII encoding:
NSString *temp = @"this is a constant string";

NSString inherits from NSObject. Here are some commonly used methods
implemented by NSString:

- (id)initWithFormat: (NSString *)format,

Works like sprintf. Here, format is a string containing tokens, such as
%d. The additional arguments are substituted for the tokens:

int x = 5;
char *y = "abc";
id z = @"123";

NSString *aString = [[NSString alloc] initWithFormat:
@"The int %d, the C String %s, and the NSString %@",
X, Y, 2];

- (NSUInteger)length

Returns the number of characters in the receiver.

- (NSString *)stringByAppendingString: (NSString *)aString

Returns a string object made by appending aString to the receiver. The
following code snippet, for example, would produce the string “Error:
unable to read file.”

NSString *errorTag = @"Error: ";
NSString *errorString = @"unable to read file.";

NSString *errorMessage;

errorMessage = [errorTag stringByAppendingString:errorString];

- (NSComparisonResult)compare: (NSString *)otherString

Compares the receiver and otherString and returns NSOrderedAscend-
ing if the receiver is alphabetically prior to otherString, NSOrderedDe-
scending if otherString is comes before the receiver, or NSOrderedSame
if the receiver and otherString are equal.

- (NSComparisonResult)caselnsensitiveCompare: (NSString *)
otherString

Like compare:, except the comparison ignores letter case.
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“Inherits from” versus “Uses” or “Knows About”

Beginning Cocoa programmers are often eager to create subclasses of NSString
and NSMutableArray. Don’t. Stylish Objective-C programmers almost never do.
Instead, they use NSString and NSMutableArray as parts of larger objects, a
technique known as composition. For example, a BankAccount class could be a
subclass of NSMutableArray. After all, isn’t a bank account simply a collection of
transactions? The beginner would follow this path. In contrast, the old hand
would create a class BankAccount that inherited from NSObject and has an
instance variable called transactions that would point to an NSMutableArray.

It is important to keep track of the difference between “uses” and “is a subclass
of.” The beginner would say, “BankAccount inherits from NSMutableArray.”
The old hand would say, “BankAccount uses NSMutableArray.” In the common
idioms of Objective-C, “uses” is much more common than “is a subclass of.”

You will find it much easier to use a class than to subclass one. Subclassing
involves more code and requires a deeper understanding of the superclass. By
using composition instead of inheritance, Cocoa developers can take advantage
of very powerful classes without really understanding how they work.

In a strongly typed language, such as C++, inheritance is crucial. In an untyped

language, such as Objective-C, inheritance is just a hack that saves the developer
some typing. There are only two inheritance diagrams in this entire book. All the
other diagrams are object diagrams that indicate which objects know about which
other objects. This is much more important information to a Cocoa programmer.

Creating Your Own Classes

Where 1 live, the state government has decided that the uneducated have
entirely too much money: You can play the lottery every week. Let’s imagine that
a lottery entry has two numbers between 1 and 100, inclusive. You will write a
program that will make up lottery entries for the next ten weeks. Each
LotteryEntry object will have a date and two random integers (Figure 3.5).

All Qutput * Clear ) (IO I B
[Switching to process 69829 thread @x@]

2011-03-05 14:25:27.997 lottery[69829:983] Mar 85 2011 = 34 and 19
2011-083-05 14:25:28.001 lottery[69829:983] Mar 12 2011 = 29 and 93
2011-03-05 14:25:28.002 lottery[69829:983] Mar 19 2011 = 72 and 78
2011-083-05 14:25:28.003 lottery[69829:983] Mar 26 2011 = 75 and 38
2011-03-05 14:25:28.003 lottery[69829:983] Apr 82 2011 = 54 and 100
2011-03-05 14:25:28.004 lottery[69829:983] Apr @9 2011 = 92 and 97
2011-83-85 14:25:28.005 lottery[69829:903] Apr 16 2811 = &9 and 23
2011-03-05 14:25:28.005 lottery[69829:983] Apr 23 2011 = 74 and 26
2011-083-05 14:25:28.006 lottery[69829:983] Apr 38 2011 = 13 and 41 -
2011-03-05 14:25:28.007 lottery[69829:983] May @7 2011 = 65 and 51 v

Program ended with exit code: B

Figure 3.5 Completed Program
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Besides learning how to create classes, you will build a tool that will certainly
make you fabulously wealthy.

Creating the LotteryEntry Class

In Xcode, create a new file. Select Objective-C class as the type. Name the class
LotteryEntry, and set it to be a subclass of NSObject (Figure 3.6).

1 lottery.xcadeproj — m main.m o
) (m) [aomM.] (=] [ Finished running lottery : lottery ] @ m_ q
Rin Stop Scheme Breakpoints S Editor View O
|| =
[ lottery Choose options for your new file:
= Y rarger, A
v | lottery =
| —
s low
> Sup
[ Frame
» || Praduc
Class | LotteryEntng |
Subclass of | NSObject v |0 m
Cancel Previous | |  MNext |
+ 0E@B

Figure 3.6 New LotteryEntry Class

Note that you are also causing LotteryEntry.h to be created. Drag both files
into the lottery group if they are not already there.

LotteryEntry.h

Edit the LotteryEntry.h file to look like this:

#import <Foundation/Foundation.h>

@interface LotteryEntry : NSObject {
NSDate *entryDate;
int firstNumber;
int secondNumber;
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(void)prepareRandomNumbers ;
(void)setEntryDate: (NSDate *)date;
(NSDate *)entryDate;

- (int) firstNumber;

- (int)secondNumber;

@end

You have created a header file for a new class called LotteryEntry that inherits
from NSObject. It has three instance variables:

B entryDate is an NSDate.
® firstNumber and secondNumber are both ints.
You have declared five methods in the new class:
® prepareRandomNumbers will set firstNumber and secondNumber to

random values between 1 and 100. It takes no arguments and returns
nothing.

® entryDate and setEntryDate: will allow other objects to read and set
the variable entryDate. The method entryDate will return the value
stored in the entryDate variable. The method setEntryDate: will
allow the value of the entryDate variable to be set. Methods that allow
variables to be read and set are called accessor methods.

® You have also declared accessor methods for reading firstNumber and
secondNumber. (You have not declared accessors for setting these vari-
ables; you are going to set them directly in prepareRandomNumbers.)

LotteryEntry.m

Edit LotteryEntry.m to look like this:

#import "LotteryEntry.h"
@implementation LotteryEntry

- (void)prepareRandomNumbers

{
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;

}

- (void)setEntryDate: (NSDate *)date
{

}

entryDate = date;
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- (NSDate *)entryDate

{
return entryDate;
}
- (int) firstNumber
{
return firstNumber;
}
- (int)secondNumber
{
return secondNumber;
}
@end

Here is the play-by-play for each method:

prepareRandomNumbers uses the standard random function to generate a
pseudorandom number. You use the mod operator (%) and add 1 to get the

number in the range 1-100.

setEntryDate: sets the pointer entryDate to a new value.

entryDate, firstNumber, and secondNumber return the values of

variables.

Changing main.m

Now let’s look at main.m. Many of the lines have stayed the same, but several

have changed. The most important change is that we are using LotteryEntry

objects instead of NSNumber objects.

Here is the heavily commented code. (You don’t have to type in the comments.)

#import <Foundation/Foundation.h>
#import "LotteryEntry.h"

int main (int argc, const char *argv[]) {

@autoreleasepool {

// Create the date object

NSDate *now = [[NSDate alloc] init];

NSCalendar *cal = [NSCalendar currentCalendar];

NSDateComponents *weekComponents =
[[NSDateComponents alloc] init];
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// Seed the random number generator
srandom((unsigned) time (NULL));
NSMutableArray *array;

array = [[NSMutableArray alloc] init];

int
for

for

}
}

i;
(i =0; 1 <10; i++) {

[weekComponents setWeek:i];

// Create a date/time object that is ‘i’ weeks from now
NSDate *iWeeksFromNow;
iWeeksFromNow = [cal dateByAddingComponents:weekComponents
toDate:now
options:0];

// Create a new instance of LotteryEntry
LotteryEntry *newEntry = [[LotteryEntry alloc] init];
[newEntry prepareRandomNumbers];

[newEntry setEntryDate:iWeeksFromNow];

// Add the LotteryEntry object to the array
[array addObject:newEntry];

(LotteryEntry *entryToPrint in array) {
// Display its contents
NSLog(@"%@", entryToPrint);

return 0;

}

Note the second loop. Here you are using Objective-C’s mechanism for
enumerating over the members of a collection.

"This program will create an array of LotteryEntry objects, as shown in Figure 3.7.

Implementing a description Method

Build and run your application. You should see something like Figure 3.8.

Hmm. Not quite what we hoped for. After all, the program is supposed to reveal
the dates and the numbers you should play on those dates, and you can’t see
either. (You are seeing the default description method as defined in NSObject.)
Next, you will make the LotteryEntry objects display themselves in a more
meaningful manner.
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LotteryEntry
entrvDate — Eah 2 1075
NSMutableArray mJ LotteryEntry
A+ se
entryDate = Feb 9, 1975
firstNy LotteryEntry
secon
entryDate = Feb 16, 1975
Y firs LotteryEntry
— se
entryDate = Feb 23, 1975
— fir LotteryEntry
se
entryDate = Mar 2, 1975
array firstNumber = 80
secondNumber = 51
Figure 3.7 Object Diagram
All Qutput # Clear | (0| W O

[Switching to process BBB46 thread 8x@]

2011-83-85 14:17:15.347 lottery[68946:903] <LotteryEntry: 98x100110eB0=

2011-083-85 14:17:15.347 lottery[68946:903] <LotteryEntry: 9x10011108b0=

2011-83-85 14:17:15.348 lottery[68046:983] <LotteryEntry: 0x100111120>

2011-83-85 14:17:15.348 lottery[68946:903] <LotteryEntry: 8x18081111709=

2011-83-85 14:17:15.349 lottery[68946:903] <LotteryEntry: 9x18081111c@=

2011-983-85 14:17:15.349 lottery[68946:983] <LotteryEntry: 8x188111210>

2011-83-85 14:17:15.349 lottery[6B946:903] <LotteryEntry: 9x1808111100=

2011-03-85 14:17:15.350 lottery[68946:903] <LotteryEntry: @xleelllzfo=

2011-83-85 14:17:15.350 lottery[6B946:903] <LotteryEntry: 9x1808111340= *
2011-83-85 14:17:15.350 lottery[68946:903] <LotteryEntry: 8x1808111390= v
Program ended with exit code: B

Figure 3.8 Completed Execution

Add a description method to LotteryEntry.m:

- (NSString *)description
{

NSDateFormatter *df = [[NSDateFormatter alloc] init];

[df setTimeStyle:NSDateFormatterNoStyle];

[df setDateStyle:NSDateFormatterMediumStyle];

NSString *result;

result = [[NSString alloc] initWithFormat:@"%@ = %d and %d",
[df stringFromDate:entryDate],
firstNumber, secondNumber];

return result;
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Build and run the application. Now you should see the dates and numbers:

All Qutput Clear ) (IO N [EY
This GDB was configurec as "xBE_R4-apple-carwin'.tty /oev/ttysPBe

sharedlibrary apply-load-rules all

[Switching to process 42687 thread Bx8]

2011-83-16 20:45:21.063 lottery[42697:903] Mar 16, 2011 = 98 and 67
2011-93-16 20:45:21.066 lottery[42697:983]) Mar 23, 2011 = 10 and 73
2011-083-16 20:45:21.068 lottery[42697:903] Mar 30, 2011 = B@ and 61

2011-83-16 20:45:21.871 lottery[42697:9083] Apr 6, 2011 = 49 and 50
2011-93-16 20:45:21.076 lottery[42697:983] Apr 13, 28ll 65 and 4
2011-83-16 20:45:21.877 lottery[42697:9083] Apr 20, 2011 6 and 46
2811-83-16 28: .079 lottery[42697:903] Apr 27, 2011 26 and 53

2811-83-16 20: 1.080 lottery[42697:903] May 4, 2011 = 28 and BO@
2811-83-16 280: 1.881 lottery[42697:9@3] May 11, 2011 = 90 and 24 4
2011-93-16 20:4 1.882 lottery[42697:903] May 1B, 2011 = 72 and B6 v

Program ended with exit code: @

Figure 3.9 Execution with Description

NSDate

Before moving on to any new ideas, let’s examine NSDate in some depth.
Instances of NSDate represent a single point in time and are basically immutable:
You can’t change the day or time once it is created. Because NSDate is
immutable, many objects often share a single date object. There is seldom any
need to create a copy of an NSDate object.

Here are some of the commonly used methods implemented by NSDate:

+ (id)date
Creates and returns a date initialized to the current date and time.

This is a class method. In the interface file, implementation file, and docu-
mentation, class methods are recognizable because they start with +
instead of —. A class method is triggered by sending a message to the class
instead of an instance. This one, for example, could be used as follows:

NSDate *now;
now = [NSDate date];

- (id)dateByAddingTimeInterval: (NSTimeInterval)interval
Creates and returns a date initialized to the date represented by the
receiver plus the given interval.

- (NSTimeInterval)timeIntervalSinceDate: (NSDate *)anotherDate

Returns the interval in seconds between the receiver and anotherDate.
If the receiver is earlier than anotherDate, the return value is negative.
NSTimeInterval is the same as double.
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+ (NSTimeInterval)timeIntervalSinceReferenceDate

Returns the interval in seconds between the first instant of January 1, 2001
GMT and the receiver’ time.

- (NSComparisonResult)compare: (NSDate *)otherDate

Returns NSOrderedAscending if the receiver is earlier than otherDate,
NSOrderedDescending if otherDate is earlier, or NSOrderedSame if the
receiver and otherDate are equal.

Writing Initializers
Notice the following lines in your main function:

newEntry = [[LotteryEntry alloc] init];
[newEntry prepareRandomNumbers];

You are creating a new instance and then immediately calling prepareRandom-
Numbers to initialize firstNumber and secondNumber. This is something that
should be handled by the initializer, so you are going to override the init
method in your LotteryEntry class.

In the LotteryEntry.m file, change the method prepareRandomNumbers into an
init method:

- (id)1init
{
self = [super init];
if (self)
{
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;
}

return self;

}

The init method calls the superclass’s initializer at the beginning, initializes its
own variables, and then returns self, a pointer to the object itself (the object
that is running this method). (If you are a Java or C++ programmer, self is the
same as the this pointer.)

Now delete the following line in main.m:

[newEntry prepareRandomNumbers];
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In LotteryEntry.h, delete the following declaration:
- (void)prepareRandomNumbers;
Build and run your program to reassure yourself that it still works.

"Take another look at our init method. Why do we bother to assign the return
value of the superclass’s initializer to se1f and then test the value of se1f? The
answer is that the initializers of some Cocoa classes will return ni1 if
initialization was impossible. In order to handle these cases gracefully, we must
both test the return value of [super init] and return the appropriate value for
self from our initiailizer.

"This pattern is debated among some Objective-C programmers. Some say that it
is unnecessary, since most classes’ initializers don’t fail, and most classes’
initializers don’t return a different value for sel1f. We believe it best to be in the
habit of assigning to self and testing that value. The effort required is minimal
compared to the debugging headaches that await you if you make an incorrect
assumption about the superclass’s behavior.

Initializers with Arguments
Look at the same place in main.m. It should now look like this:

LotteryEntry *newEntry = [[LotteryEntry alloc] init];
[newEntry setEntryDate:iWeeksFromNow];

It might be nicer if you could supply the date as an argument to the initializer.
Change those lines to look like this:

LotteryEntry *newEntry = [[LotteryEntry alloc]
initWithEntryDate: iWeeksFromNow] ;

You may see a compiler error; ignore it, as we are about to fix the problem.
Next, declare the method in LotteryEntry.h:

- (id)initWithEntryDate: (NSDate *)theDate;

Now, change (and rename) the init method in LotteryEntry.m:

- (id)initWithEntryDate: (NSDate *)theDate
{

self = [super init];

if (self)
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{
entryDate = theDate;
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;
}

return self;

}

Build and run your program. It should work correctly.

However, your class LotteryEntry has a problem. You are going to e-mail the
class to your friend Rex. Rex plans to use the class LotteryEntry in his program
but might not realize that you have written initWithEntryDate:. If he made
this mistake, he might write the following lines of code:

NSDate *today = [NSDate date];
LotteryEntry *bigWin = [[LotteryEntry alloc] init];
[bigWin setEntryDate:today];

This code will not create an error. Instead, it will simply go up the inheritance tree
until it finds NSObject’s init method. The problem is that firstNumber and
secondNumber will not get initialized properly—both will be zero.

"To protect Rex from his own ignorance, you will override init to call your
initializer with a default date:

- (id)init
{

}

return [self initWithEntryDate:[NSDate datel];

Add this method to your LotteryEntry.m file.

Note that initWithEntryDate: still does all the work. Because a class can have
multiple initializers, we call the one that does the work the designated initializer.
If a class has several initializers, the designated initializer typically takes the most
arguments. You should clearly document which of your initializers is the
designated initializer. Note that the designated initializer for NSObject is init.

Conventions for Creating Initializers (rules that Cocoa programmers try to
follow regarding initializers):

® You do not have to create any initializer in your class if the superclass’s
initializers are sufficient.

® Jfyou decide to create an initializer, you must override the superclass’s
designated initializer.
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® Jfyou create multiple initializers, only one does the work—the desig-
nated initializer. All other initializers call the designated initializer.

The designated initializer of your class will call its superclass’s desig-
nated initializer.

The day will come when you will create a class that must, must, must have some

argument supplied. Override the superclass’s designated initializer to throw an
exception:

- (id)init
{
@throw [NSException exceptionWithName:@"BNRBadInitCall"

reason:@"Initialize Lawsuit with initWithDefendant:"
userInfo:nil];
return nil;

The Debugger

The Free Software Foundation developed the compiler (gec) and the debugger
(gdb) that come with Apple’s developer tools. Apple has made significant
improvements to both over the years. This section discusses the processes of
setting breakpoints, invoking the debugger, and browsing the values of variables.

While browsing code, you may have noticed a gray margin to the left of your
code. If you click in that margin, a breakpoint will be added at the corresponding
line. Add a breakpoint in main.m at the following line (Figure 3.10):

[array addObject:newEntry];
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Figure 3.10 Creating a Breakpoint
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When you run the program, Xcode will start the program in the debugger if you
have any breakpoints. To test this, run it now. The debugger will take a few
seconds to get started, and then it will run your program untl it hits the
breakpoint.

When your application is running, the debugger bar will be shown below the
editor area. The debugger bar contains a button to toggle visibility of the full
debugger area, including the variables view and console, as well as buttons to
control the execution of your program and information about the current thread
and function.

Xcode’s default behavior is to show the full debugger area when a breakpoint is
hit. If you do not see the debugger area at the bottom of the window, use the
debugger area view toggle in the debugger bar (or toolbar), or the View->Show
Debugger Area menu item.

You should also see the Debug navigator on the left, which shows the threads in
our application and frames on the stack for each thread. Because the breakpoint
is in main(), the stack is not very deep. In the variables view on the left in the
debugger area, you can see the variables and their values (Figure 3.11).

Debug area toggle
Debug navigator
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view (left) and
the console (right)

Figure 3.11 Stopped at a Breakpoint

Note that the variable i is currently 0.

Return your attention to the debugger bar. Four of the buttons above the
variables view are for pausing (or continuing) and stepping over, into, and out of
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functions. Click the Continue button to execute another iteration of the loop.
Click the Step-Over button to walk through the code line by line.

The gdb debugger, being a Unix thing, was designed to be run from a terminal.
When execution is paused, the gdb terminal will appear in the Console panel.

In the debug console, you have full access to all of gdb’s capabilities. One very
handy feature is “print-object” (po). If a variable is a pointer to an object, when
you po it, the object is sent the message description, and the resultis printed in
the console. Try printing the newEntry variable.

po newEntry

You should see the result of your description method (Figure 3.12).
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sharedlibrary apply-load-rules all
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po newEntry
Mar 16, 2811 = 7@ and EBD v

Figure 3.12 Using the gdb Console

Exceptions are raised when something goes very wrong. To make the debugger
stop whenever an exception is thrown, you will want to add an exception
breakpoint. Click the Add button at the bottom of the breakpoint navigator and
select Add Exception Breakpoint.... Set the exception type to Objective-C and click
Done (Figure 3.13). Disable the existing breakpoint in main() by clicking on the
blue breakpoint icon in the breakpoint navigator. The breakpoint will be
dimmed when it is disabled.

You can test this exception breakpoint by asking for an index that is not in an
array. Immediately after the array is created, ask it what its first object is:

array = [[NSMutableArray alloc] init];
NSLog(@"first item = %@", [array objectAtIndex:0]);
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Figure 3.13 Adding an Exception Breakpoint

Rebuild and restart the program. It should stop when the exception is raised.

One of the challenging things about debugging Cocoa programs is that they
will often limp along in a broken state for quite a while. Using the macro
NSAssert(), you can get the program to throw an exception as soon as the train
leaves the track. For example, in setEntryDate:, you might want an exception
thrown if the argument is ni1. Add a call to NSAssertQ:

- (id)initWithEntryDate: (NSDate *)theDate

self = [super init];
if (self) {
NSAssert(theDate != nil, @"Argument must be non-nil");
entryDate = theDate;
firstNumber = ((int)random() % 100) + 1;
secondNumber = ((int)random() % 100) + 1;
}

return self;
Build it and run it. Your code, being correct, will not throw an exception. So
change the assertion to something incorrect:
NSAssert(theDate == nil, @"Argument must be non-nil");

Now build and run your application. Note that a message, including the name of
the class and method, is logged and an exception is thrown. Wise use of
NSAssert() can help you hunt down bugs much more quickly.
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You probably do not need your assert calls checked in your completed product.
On most projects, there are two build configurations: Debug and Release. In
the Debug version, you will want all your asserts checked. In the Release
configuration, you will not. You will typically block assertion checking in the
Release configuration (Figure 3.14).
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Preprocessor Macras Not Used In Preco
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Figure 3.14 Disabling Assertion Checking

"To do this, bring up the build settings by selecting the lottery project in the
project navigator (topmost item). Then select the Tottery target, change to the
Build Settings tab, and find the Preprocessor Macros item. A quick way to find itis
to use the search field at the top of the Build Settings panel. The Preprocessor
Macros item will have one item beneath it for each build configuration: Debug
and Release. Set the Release item value to NS_BLOCK_ASSERTIONS.

Now, if you build and run the Release configuration, you’ll see that your
assertion is not getting checked. (Before going on, fix your assertion: It should
ensure that dates are not nil.)

You can change your current build configuration to Release by opening the
scheme editor (in the Product menu, click Edit Scheme...). Select the Run action;
on the Info panel, change Build Configuration to Release. Now when you build
and run your application, it will be built using the Release configuration. Note
that the default build configuration for the Archive action is Release. We will
discuss build configurations in more detail in Chapter 37.

NSAssert() works only inside Objective-C methods. If you need to check an
assertion in a C function, use NSCAssert().
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That’s enough to get you started with the debugger. For more in-depth
information, refer to the documentation from the Free Software Foundation
(www.gnu.org/).

What Have You Done?

You have written a simple program in Objective-C, including a main() function that
created several objects. Some of these objects were instances of LotteryEntry, a
class that you created. The program logged some information to the console.

At this point, you have a fairly complete understanding of Objective-C.
Objective-C is not a complex language. The rest of the book is concerned with
the frameworks that make up Cocoa. From now on, you will be creating event-
driven applications, not command-line tools.

Meet the Static Analyzer

One of the handiest tools in Xcode is the static analyzer. The static analyzer uses
Apple’s LLVM compiler technology to analyze your code and find bugs.
Traditionally, developers have relied on compiler warnings for hints on potential
trouble areas in their code. The static analyzer goes much deeper, looking past
syntax and tracing how values are used within your code.

Because of the default compiler settings and our careful typing, you should find,
if you run the analyzer now, that our application has no issues as it stands. Let’s
modify our project settings so that we can better see the static analyzer at work.

As we did before, open the project’s build settings by selecting the project in the
project navigator on the left. Then select the lottery target. In the Build Settings
tab, find the setting for Objective-C Automatic Reference Counting. Change its
value to No (Figure 3.15).

Now analyze the lottery application. In the Product menu, click Analyze. In the
issues navigator, you will see several issues found by the static analyzer; select

one and drill down in the tree to examine the analyzer’s thought process
(Figure 3.16).

In this case, the static analyzer has found a number of memory-related problems
in our program because we disabled a feature called automatic reference
counting, which we will discuss in the next chapter. This is one of the more
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Figure 3.16 The Static Analyzer at Work

useful aspects of the static analyzer: It knows the rules for retain-count memory
management in Objective-C, and it can also identify other dangerous patterns in
your code.

Leave automatic reference counting disabled for now.
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For the More Curious: How Does Messaging Work?

As mentioned earlier, an object is like a C struct. NSObject declares an instance
variable called 1isa. Because NSObject is the root of the entire class inheritance
tree, every object has an isa pointer to the class structure that created the object
(Figure 3.17). The class structure includes the names and types of the instance
variables for the class. It also has the implementation of the class’s methods. The
class structure has a pointer to the class structure for its superclass.

NSObiject i
isa : Class

superclass
LotteryEntry L LotteryEntry |
entryDate = Feb 2, 1975 ;r entryDate: NSCalendarDate
firstNumber = 32 isa  firstNumber:int '
secondNumber = 78 L secondNumber:int _:

Figure 3.17 Each Object Has a Pointer to Its Class

.............

method
list

.............

The methods are indexed by the selector. The selector is of type SEL. Although
SEL is defined to be char *, it is most useful to think of it as an int. Each
method name is mapped to a unique int. For example, the method name
addObject: might map to the number 12. When you look up methods, you will

use the selector, not the string @"addObject:".

As part of the Objective-C data structures, a table maps the names of methods to

their selectors. Figure 3.18 shows an example.

selectors strings
12 -~ addObiject:
753 -~ setEntryDate:
352 -~ count
4547 <-— insertObject:atIndex:

Figure 3.18 The Selector Table
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At compile time, the compiler looks up the selectors wherever it sees a message send.
Thus,

[myObject addObject:yourObject];
becomes (assuming that the selector for addObject: is 12)
objc_msgSend(myObject, 12, yourObject);

Here, objc_msgSend() looks at myObject’s isa pointer to get to its class
structure and looks for the method associated with 12. If it does not find the
method, it follows the pointer to the superclass. If the superclass does not have a
method for 12, it continues searching up the tree. If it reaches the top of the tree
without finding a method, the function throws an exception.

Clearly, this is a very dynamic way of handling messages. These class structures
can be changed at runtime. In particular, using the NSBund1e class makes it
relatively easy to add classes and methods to your program while it is running.
"This very powerful technique has been used to create applications that can be
extended by other developers.

Challenge

Use NSDateFormatter’s setDateFormat: to customize the format string on the
date objects in your LotteryEntry class.
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dataSource outlet, NSTableView
make connections, 109
date method, NSDate, 54-55
dateByAddingTimeInterval method,
NSDate, 54
dealloc method
in ARC, 81
overview of, 72-73
deallocating objects, debugging hints, 98
Debug build configuration
using in development, 98
assertion checking, 62
overview of, 461
Debug navigator, 59
debugger (gdb)
adding exception breakpoints, 60-61
console, 29
debugger bar, 59-60
defined, 5
hints for, 98
print-object feature, 60
using NSAssert(), 61
debugging, with static analyzer, 63-64
DebugLog function, preprocessor macros,
463-464
decoding data, NSCoder, 162-163
defaults. See user defaults
defaults tool, 217-218

delegates
AppKit framework classes, 112
creating, 114
creating helper objects, 100-104
designing, 381
errors in implementing, 112
notifications and, 227
of NSControTl, 347-348
NSTableView and, 104-107
pasteboards, nil-targeted actions and, 301
understanding, 113-114
dequeueReusableCellWithIdentifier:
method, UITableView in iOS, 393
description method
autoreleasing objects, 73-74
implementing, 52-53
NSObject, 44
printing in debug console, 60
designated initializer, 57
destination, drag, 315-319
dictionaries, 208-209
disk image (DMG), packaging application for
download, 466
distributing your application
application sandboxing, 466-468
build configurations, 461-462
Mac App Store, 468-470
preprocessor macros and changing behavior
with build configurations, 462-464
release build, 464466
DMG (disk image), packaging application for
download, 466
dock, Interface Builder, 20
document architecture
defined, 131
Info.plist and NSDocumentController,
163-164
NSDocument, 164-167
NSWindowController, 167
overview of, 163
document controller, 163-164
document type information, setting, 170
Documentation and API Reference, 31
documents. See also NSDocument
applications based on, 131
suppressing creation of untitled, 215-216
domains, setting precedence of defaults, 212
dot notation, accessors, 124
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drag-and-drop

drag destination, 315-319

drag source, 312-315

operation mask, 319

overview of, 311-312
draggingEntered: message, 316-317
draggingExited: message, 315, 318
draggingSourceOperationMaskForLocal:

message, 312-317, 319
draggingUpdated: message, 315,316, 319
drawInRect: method,
NSAttributedString, 309

drawLayer:inContext:, CALayer, 425
drawRect: method

adding highlighting, 316-317

adding printing, 355

compositing of image, 265

coordinate system of views, 268

drawing text with attributes, 291

getting view to draw itself, 246-248

getting view to generate PDF data, 291-293

rollovers, 283

using keyboard events, 280

E
encodeWithCoder: method, NSCoder, 160-161
encoding data
NSCoder, 160-161
preventing infinite loops, 172-173
endSheet: method, 329
en.1proj directory, localizing app in English,
233,237
entities
Core Data model, 180, 407
editing model, 407-408
in NSManagedObjectModel, 177-179
equality, in NSObject, 44
events
images and mouse. See images and mouse
events
keyboard. See keyboard events
nextResponder and, 414415
role of window server, 33
timer. See NSTimer
exceptions
adding breakpoints, 60-61
debugging hints, 98
key-value coding and ni1, 139-140

exported UTTs

configuring, 170-171

customized, 303

storing in UTExportedTypeDeclarations, 175
Extended Detail pane, Instruments, 433
extensions

Objective-C, 40-41

setting for file types, 170-172

F

file formats

copying data onto pasteboard, 295
File Inspector, 234, 237-238
file system, NSUserDefaults and, 210-211
file wrappers, 165-167
File’s Owner

dock icon, 20

NIB files and NSWindowController, 198
First Responder, dock icon, 20
flagsChanged event, NSResponder, 273
floats, ni1 value and, 139
fonts

NSFont. See NSFont

NSFontManager, 293

typographical conventions in this book, 7-8
format strings, explicit ordering of

tokens in, 240

formatters. See a/so number formatters

creating. See NSFormatters

NSTextField, 88

overview of, 339-340
forwardInvocation: method, 145
Foundation framework

creating command-line tool, 38-41

defined, 6
.framework extension, 6
fr.1proj directory, localizing app in French,

233-238,237-238

fromValue property, CABasicAnimation, 424
focus ring, fuzzy blue box, 284

G
garbage collector, 67-68
gce (GNU C compiler), 35, 58-59
GCD (See Grand Central Dispatch)
and blocks, 376
faster performance and, 439
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gdb. See debugger (gdb)
general pasteboard, 296
generalPasteboard method,
NSPasteboard, 296
genstrings tool, 239
global variables
creating keys for names of defaults, 212
NSAtrributedString, 287-288
NSPasteboard, 297
notifications, 225
GNU C compiler (gec), 35, 58-59
gradients, CAGradientLayer, 425
Grand Central Dispatch (GCD)
and blocks, 376
faster performance and, 439
graphics. See Core Animation

H
header file
creating classes, 20
creating new class, 50
in Objective-C, 26-27
helper objects
classes with delegate outlets, 112
delegates, 100-104
errors implementing delegates, 112
how delegates work, 113114
making connections, 109
NSTableView and its dataSource, 104-107
overview of, 99
hidesOnDeactivate variable, windows, 194
hierarchy, views, 241-243
highlights
for color well, 204
for erroneous line of code, 28
drag destination, 316-317
for rollovers, 283
HTTP, Web services, 359

I
IBAction
adding cut, copy and paste, 300
defined, 26
making connections, 92
IBOutTet, 26
ibtool command, 239-240
.icns file, 170-172

icons
copying into project directory, 170
dock, 20
setting for file types, 170-172
id, 26
identifier
interface layout for Web service, 367
setting document type in archiving, 170
setting for defaults, 212
Identity Inspector
instance of view subclass, 244
labeling objects, 180
image view
binding, 186-187
view-based table views, 181-184
images and mouse events
autoscrolling, 268-269
composite images, 264-265
getting mouse events, 259
NSEvent, 257-258
NSImage, 269
NSOpenPanel, 259-264
NSResponder, 257
view’s coordinate system, 266268
immutable, NSArray as, 45
implementation file
creating classes, 20
editing, 27-28
#import
creating keys for names of defaults, 212
header file and, 26-27
Info.plist, NSDocumentController, 163-164
inheritance
“inherits from”, vs. “uses” or “knows about”, 48
NSControl and, 84-85
in Objective-C, 26
in Objective-C vs. C++, 48
init method
creating and using instances, 36
as designated initializer for NSObject, 57
initializers with arguments and, 56-58
NSObject, 43
writing initializers, 55-56
initialFirstResponder method, keyboard
events, 276-278
initialize method, registering defaults, 213
initializers. See also init method
with arguments, 56-58
conventions for creating, 57-58
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initWithCoder: method, NSCoder, 160, 163
initWithFormat method, NSString, 47
insertObject method, NSMutableArray, 46
Inspection Range, Instruments, 433
Inspector panel, 16
installers, 464-466
instance variables
adding to classes, 21
archiving, 159
defined, §
designing classes with, 148-149
enabling accessor methods for, 77-80
header files in Objective-C and, 26-27
isa pointer, 65-66
naming conventions for, 22
protected in Objective-C, 27
instances, creating, 5, 22, 35-37
Instruments
time profiling in, 431-434
defined, 4
Interface Builder
common mistakes, 8
creating an instance, 22
creating class, 20-22
dock, 20
functionality of, 15-16
interface layout, 17-19
making connections in, 22-25, 91-94
XIBs and NIBs, 17
interface layout
in Interface Builder, 17-19
overview of, 17-19
panels, 201-202
sheets, 331-334
International pane, System Preferences, 235
interpretKeyEvents method,
NSResponder, 281
Invert Call Tree, Time Profiler, 433
invocations, 145-148
iOS development
adding navigation controller, 388-390
overview of, 383
pushing view controllers, 393-395
UITableViewController, 391-393
iOS SDK, 3
iPad apps, 383
iPhone apps, 383
isa pointer, messaging, 65-66

isARepeat method, NSEvent, 273

isEqual: message, NSArray, 45

isEqual: message, NSObject, 44

isF11ipped, flipping views, 255

isOpaque method, project with keyboard
events, 280

Issue navigator, 28

italics, drawing text with attributes, 294

J

Jump to Next Counterpart command, editing
implementation file, 27

K

key paths
key-value observing, 127
overview of, 126-127
sorting people, 142
key-value coding
for bindings, 119-120
making keys observable, 123
and nil, 139-140
overview of, 117-119
to-many relationships and, 148-152
key-value observing
enabling undo for edits, 152-153
key paths, 126-127
making keys observable, 121-123
overview of, 120-121
properties, 124-126
understanding, 127
key-value pairs
dictionaries, 208
string table as collection of, 236
keyboard events
nextResponder, 414415
NSEvent, 273-274
NSResponder, 273
overview of, 271-272
keyCode method, NSEvent, 274
keyDown event, 273, 281
keyUp event, NSResponder, 273
keywords, Objective-C, 27
KITT the super car, 99
Knight Industries, 99
“knows about”, “inherits from” vs., 48
KVC. See key-value coding
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L macros
labels hardcoding behavioral settings with
objects in Interface Builder editor, 180 preprocessor, 462-464
language using string table, 238-239
Objective-C, 4-5 main fur}ction
Objective-C vs. C++, 2 Changlng, 51-52 .
Language and Text pane, System creating command-line tool, 38-41
Preferences, 236 initializers with arguments, 56-58
lastObject method, NSArray, 45 overview of, 15
layers MainMenu.xib
Core Animation, 417, 419-421 menu item setup for adding panels, 197
implicit animation and actions, 423424 Interface Builder, 15
lazy copying, drag and drop, 295-298, 304-305 man command, for ibtool, 240
length member, NSRange, 286 managed object model, NSManagedObjectModel,
level indicator, 181-184 177-181, 189
libraries. See framework manual reference counting
library of code, bundles, 205 ARC working with, 82
Library panel, 17-19 autoreleasing objects, 73-76
LLVM (Low Level Virtual Machine) compiler fjef‘ﬂ Toc method, 72-73
compiling Objective C-2, 5 n 1.05.5, 383
defined, 35 limitations of, 68
static analyzer using, 63—-64 memory management, 67
loading overview of, 69-70
NIB files. See NIB files and retain-count rules, 76-77
NSWindowController matrices, creating with cells, 253-254
NSKeyedUnarchiver and, 168-169 mediated file access, and Powerbox, 468
using NSDocument, 166167 memory management
Localizable.strings, 236-238 accessor methods, 77-80
localization ARC, 80-82
explicit ordering of tokens in format strings Wlthln blocks, 375-376
and, 240 i0S 5, 383
ibtool and, 239-240 manual reference counting. See manual
Nib file and, 234-236 r‘eference counting
overview of, 233-234 overview of, 67-69
string tables and, 236-239 static analyzer troubleshooting, 63—64
location member, NSRange, 286 thin}dng locally for, 77
lock focus on view, drawRect, 246-247 menu items, target/action of, 95
Low Level Virtual Machine. See LLVM (Low messages ) )
Level Virtual Machine) compiler calling methods by sending objects, 6

handling, 65-66
sending to ni1, 41-42

M syntax for, 35-37

Mac App Store method name (selector)
distributing app, 468-469 adding colon when taking arguments to, 36-37
for Mac developers, 3 methods indexed by, 65-66
receipt validation, 469-470 methods

Mac OS X adding to class, 21

Developer Tools, 3-4 adding to NSString, 307-309
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calling by sending objects messages, 6
conventions for naming, 22
declaring in new class, 50
declaring private, 309
misspelling when implementing
delegates, 112
NSAtrributedString, 289
NSDictionary, 209
NSFont, 285-286
NSMutableDictionary, 209
NSNotificationCenter, 222-224
NSOpenGLView, 441
NSPasteboard, 296-298
NSResponder, 274
NSString, 289
NSUserDefaults, 210-211
NSView, 241-243
as public in Objective-C, 27
retain-count rules for, 76-77
taking arguments, 36-37
modal windows, 336-337
model classes, 129
Model-View-Controller design pattern
Cocoa and, 129-130
document architecture relating to, 163
in object-oriented programming, 129
modifierFlags method, NSEvent, 274
mouse events
autoscrolling, 268-269
composite images, 264-265
nextResponder, 414-415
NSEvent, 257-258
NSResponder, 257
rollovers, 282-283
view’s coordinate system, 266-268
mouseDown : method
adding timer to autoscrolling, 328
coordinate system of views, 267
getting mouse events, 259
NSResponder, 257
mouseDragged: method
adding autoscrolling, 268-269
adding timer to autoscrolling, 328
coordinate system of views, 267
getting mouse events, 259
NSResponder, 257
mouseEntered event, rollovers, 283
mouseExited event, rollovers, 283
mouseMoved event, rollovers, 282-283

mouseUp: method
adding timer to autoscrolling, 328
coordinate system of views, 267
getting mouse events, 259
NSResponder, 257
multicore processors, and multithreading, 428
multithreading
time profiling, 431-435
faster performance and, 438-439
overview of, 427428
race condition problem in, 428-429
simple Cocoa background threads, 429-431
using NSOperationQueue, 435-437
mutableCopy method, NSArray, 45
mutex locks, thread synchronization and, 438

N

naming conventions
delegates and notifications, 227
keys for names of defaults, 212
methods and instance variables, 22
navigation bar, 386-387
navigation controller, i0S
adding, 388-390
pushing view controllers, 393-395
New File menu item, creating classes, 20
new method, retain-count rules for ownership, 76
New Project, create new project, 12-14
nextKeyView, project with keyboard events,
276-278
nextResponder
and events, 414-415
pasteboards and nil-targeted actions, 300
NeXTSTEP, 1-3
NIB files
awakeFromNib called automatically, 30-31
chronology of applications, 32
localizing, 234-235
overview of, 17
NIB files and NSWindowController
adding panel to application, 194-196
menu item setup, 197
NSBundle, 204-205
overview of, 193
nil
ARC setting weak references to, 81-82
defined, 26
key-value coding and, 139-140
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nil, continued
not adding to arrays, 46
representing nothingness in array with
NSNuT1, 46
sending messages to, 41-42
nil-targeted actions, pasteboards and, 300-302
NO, 26
nonatomic properties, 125
notifications
delegates and, 227
handling upon arrival, 226
NSNotification, 222
NSNotificationCenter, 222-224
overview of, 221
passing between applications, 222
posting, 224-225
registering as observer, 225-226
userInfo dictionary and, 226-227
NS prefix, defined, 43
NSAppTication object
chronology of applications, 32-33
defined, 20
suppressing creation of untitled documents,
215-216
NSApp1icationMain()function, 15, 32
NSArray, 45,212,371
NSArrayController
add sorting, 140-141
binding view-based table views, 183188
key-value coding and ni1, 139-140
overview of, 129-130
rewriting RaiseMan without using,
142-144
sorting without, 141-142
NSAssert(), 61
NSAtrributedString
drawing text with attributes, 286-288
drawInRect: as category for, 309
formatters returning attributed strings, 350
methods for drawing onto view, 289
NSBezierPath, 247-250
NS_BLOCK_ASSERTIONS macro, 62, 462-464
NSBox
subviews of, 241-242
view hierarchy, 242
in view swapping, 398-399
NSBundle
creating string tables for localization, 236
using string table, 238-239
working with, 204-205

NSButton

creating views programmatically, 252-253

first responders, 302

keyboard events, 271

NSButtonCelTl, 253

overview of, 85-86

as subclass of NSControl, 83-84

as view, 241

view hierarchy, 242
NSButtonCell, 253
NSCAssert(), assertion checking in C, 62
NSCoder

decoding data, 162-163

encoding data, 160-161

overview of, 160
NSCoding protocol, 160-163
NSColor

creating with basic formatter, 341

registering defaults, 213

using NSCoTorList, 344-345
NSColorList, 341, 344-345
NSColorWell

as subclass of NSContro1, 83

as view, 241

view hierarchy, 242
NSComparisonResult, NSDate, 55
NSCond1ition, thread synchronization, 438
NSControl

commonly used subclasses of, 85-89

delegate of, 347-348

inheriting from NSView, 253

overview of, 83-85

setting target programmatically, 96
NSControlKeyMask, 258
NSController, 129-130
NSData object

loading using NSDocument, 166-167

as property list class, 212

saving and NSKeyedArchiver, 167-168

saving using NSDocument, 165-166

user defaults, 213-214

Web services, 359-362, 363-364
NSDate

create, 54-55

current time, 30-31

formatter, 88

initializers with arguments, 56-58

methods, 54-55

as property list class, 212
NSDateComponents, 51-52, 70
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NSDateFormatter

attaching to text field, 88

overview of, 339-340
NSDatePicker, 112, 181-183
NSDecimaTNumber, 139-140
NSDictionary

drawing text with attributes, 288

NSPasteboard using, 297

NSUserDefaults and, 211

overview of, 208-209

as property list class, 212

userInfo dictionary and, 226-227
NSDistributedNotificationCenter, 222
NSDocument

automatic document saving, 174

defined, 163

document architecture, 164

document-based applications without

undo, 175

loading document, 166-167

nil-targeted actions and, 301

printing documents, 353

saving document, 164-166

undo manager for, 148
NSDocumentController, 163-164
NSDraggingInfo protocol, 315,317-319
NSDragOperationCopy, 312-317, 319
NSDragOperationDelete, 312,315
NSDragPboard, 296
NSEntityDescription, 189
NSError object, 165-167
NSEvent

defined, 257

keyboard events, 273-274

mouse events, 257-258

NSResponder methods, 273
NSFileHandleNotificationDataltem, 459
NSFileWrapper object, 165-167
NSFindPboard, 296
NSFont

drawing text with attributes, 285-286

NSAtrributedString, 287-288
NSFontManager, 293
NSFontPboard, 296
NSFormatters

checking partial strings, 348-350

defined, 88

implementing, 345-347

NSValueTransformer vs., 351

overview of, 339-341

returning attributed strings, 350
NSGeneralPasteboard, 296
NSGraphicsContext

drawing with Quartz using, 441

printing, 358
NSImage

compositing image onto your view, 264-265

coordinate system of views, 266-268

representations of, 269

using, 269
NSImageRep, 269
NSImageView

binding, 186-187

view-based table views, 181-184
NSInputManager, 293
NSInvocation, NSUndoManager, 145
NSKeyedArchiver, 167-168
NSKeyedUnarchiver, 168-169
NSLevelIndicator, view-based table

views, 181-184

NSLock, thread synchronization, 438
NSLog () function

defined, 40
NSManagedObject, 409411
NSManagedObjectContext

accessing for view swapping, 397

creating, 178

defined, 177

how Core Data works, 189

interface, 179-180
NSManagedObjectModel, 177-181, 189
NSMatrix

working with cells, 253-254
NSMenuItem, 95
NSMutableArray

in compositions, 48

defined, 45

instances, 35-37

methods, 46

sorting with, 141-142

thread synchronization and, 438
NSMutableAtrributedString, 286-288
NSMutableDictionary

overview of, 208-209
NSMutableString, 45
NSMutableURLRequest class, 361-363
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NSNotification, 222
NSNot1ificationCenter, 221-224
NSNu1T1, 46
NSNumber

as immutable, 45

key-value coding, 118

key-value coding and ni1, 139-140

as property list class, 212
NSNumberFormatter, 340
NSObject

creating class, 20-22

header files and, 26-27

init as designated initializer for, 57

isa pointer and, 65-66

as root of Objective-C class hierarchy, 43
NSObjectController, 129
NSOffState, buttons, 86
NSOnState, buttons, 86
NSOpenGLView

working with OpenGL, 441
NSOpenPanel

using, 263-264

mediated file access and Powerbox, 468
NSOperationQueue

overview of, 435

thread synchronization, 437-438
NSOrderedAscending, 47
NSOrderedDescending, 47
NSPanel

creating, 193-194
NSPasteboard

adding cut, copy and paste, 298-300

methods, 296-298

overview of, 295
NSPasteboardItem

lazy copying, 304-305

creating custom UTTs, 303

defined, 297
NSPasteboardReading protocol, 297, 299, 303
NSPasteboardwriting protocol, 297, 299, 303
NSPersistentDocument, 178, 189
NSPersistentStoreCoordinator, 189
NSPipe, NSTask, 453-454, 456-460
NSPoint

coordinate system of views, 266-268

drawing with NSBezierPath using, 248-250

drawRect: method, 247

NSPrintOperation, 353-357
NSProgressIndicator, 321, 324-325
NSRange

dealing with range of numbers, 286

searching strings for substrings, 344-345
NSRect, 247-248
NSResponder

keyboard events and, 273
NSRulerPboard, 296
NSRunAlertPanel () function, 229-230
NSRunAppTlication(), 16
NSSavePanel, 468
NSScrol1View, 242, 250-252
NSSecureTextField, 88
NSSize, 247
NSS1ider

NSSTiderCell, 253

overview of, 86-87

as subclass of NSContro1, 83, 85
NSSortDescriptor objects, 141-142
NSSpeechSynthesizer

delegate methods of, 100-104
NSSpeechSynthesizerDelegate protocol,

100-102, 106

NSSp1itView, 242
NSSRunLoop, 328
NSString

converting strings to other objects. See

NSFormatters

defined, 47

as immutable, 45

methods, 47

methods for drawing onto view, 289

NSMutableString, 45

overview of, 40-41

as property list class, 212

using compare: to sort strings, 371
NSTableCel1View

binding view-based table views, 185

creating view-based table views, 181

defined, 254
NSTableDataSource, 104-107
NSTableView

connections, 109

dataSource of, 104-107

view hierarchy, 241-243
NSTableViewDataSource methods, 368
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NSTask
asynchronous reads, 456
overview of, 451
NSTextField
binding view-based table views, 187-188
creating view-based table views, 181
first responders, 271-274, 302
keyboard events, 271
NSTextFieldCel1l view, 253
overview of, 87-89
as subclass of NSControl, 83, 85
view hierarchy, 241-242
NSTextView
first responders, 302
inheritance diagram for NSControl, 85
keyboard events, 271
NSUndoManager and, 158
NSThread, 429431
NSTimeInterval, NSDate, 54-55
NSTimer
NSSRunLoop used with, 328
overview of, 321-323
NSUndoManager
document-based applications without, 174
for edits, 153-155
how it works, 146-148, 189
key-value observing, 152-153
NSInvocation and, 145
overview of, 145
windows and, 158
NSURL class, 359
NSURLConnection
fetching data from Web service, 361-363
asynchronous, 377-381
NSURLRequest, 359, 361-363
NSUserDefaults, 207, 210-211
NSUserDefaultsController, 217
NSValueTransformer, 351
NSView
with cells, 253-254
custom views with, 241
drawing with NSBezierPath, 248-250
drawRect, 246-248
generating PDF data, 291-293
inheritance diagram for NSContro1, 84-85
inheriting from NSResponder, 257
keyboard events. See keyboard events
Size Inspector, 244-246
starting drag, 312-313

NSViewController, 397, 399, 403
NSWindow
sheets. See sheets
becoming firstResponder, 271-272
initialfirstresponder outlet, 94
view hierarchy, 241-242
NSWindowController
defined, 163
document architecture, 167
loading NIB file without, 205
loading NIB files with. See NIB files and
NSWindowController
pasteboards and nil-targeted actions, 301
NSWorkspace, 369
NSXMLDocument, 359-360
NSXMLNode, 359-360
NSXMLParser, 360, 363-366
NSXMLParserDelegate, 362, 364-366

O
Object Library, 17-18
object-oriented programming, Cocoa as, 5-6
object relationships, as focus of ARC, 81-82
objectAtIndex method, NSArray, 45
Objective-C
awakeFromNib method, 30-31
declaring classes in, 25
editing implementation file, 27-28
header file, 26-27
how messaging works, 65-66
instances, 35-37
Objective-C 2 features, 4
overview of, 35
single inheritance in, 26
static analyzer, 63-64
types and constants in, 26
Objective-C, creating own classes
implement description method, 52-53
initializers with arguments, 56-58
overview of, 48-49
initializers, 55-56
objects
archiving. See archiving
within blocks, 375-376
creating, sending messages to and
destroying, 35-37
overview of, 5-6
retain count system, 69-70
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observers
defined, 221
NSNot1ificationCenter methods, 222-224
one-to-one relationship in Core Data 407-408
Open menu item, NSDocument, 166-167
Open Recent menu item, NSDocument,
166-167
OpenGL
Core Animation. See Core Animation
overview of, 441
OpenOffice, NSAtrributedString file
format, 288
OpenStep, 2-3
operators, in key paths, 126-127
opt-in garbage collector, Objective-C 2, 4
@optional, protocol, 173
ordered to-many relationships, key-value
coding, 148-149
outlets
defined, 21
making connections, 23-25, 91-94
ownership, object, 76

P
pagination when printing, 353-357
panels

adding to application, 194-196

general windows vs., 193-194
parse method, NSXMLParser, 365-366
parse XML document, Web services, 359-360
partial strings, formatter that checks, 348-350
paste, 298-302. See also drag-and-drop
pasteboards

lazy copying, 304-305

nil-targeted actions and, 300-302

NSPasteboard, 296-298

overview of, 295-296

UTTs and, 303
PDFs

copying image on pasteboard as, 295

getting your view to generate, 291-293

printing, 353

Quartz generating, 2

using Cartesian coordinate system, 255
performance overhead

autorelease message, 79

garbage collector, 68
performDragOperation: message, 316, 318

performSelectorInBackground:withObject:
method, 430431, 435
performSelectorOnMainThead:withObject:
waitUntilDone: method, 430-431
placeholder string, text fields, 87-89
plist
dumping localized strings into, 239-240
specifying application entitlements, 467
PNG image, copying data onto pasteboard as, 295
po (print-object)
debug console, 60
NSObject, 44
pointer
ni1 value and, 139
NSArray as list of, 45
using contextInfo when starting sheet as,
335-336
Pop-up button, 397-399, 402-403
posting notifications, 224-227
Powerbox, and mediated file access, 468
#pragma, 259
Preferences panel, creating
adding to application, 194-196
user defaults. See user defaults
prepareForDragOperation: message,
315-318
prepareWithInvocationTarget: method,
NSUndoManager, 146-147
preprocessor macros, 62, 462-464
print-object (po)
debug console, 60
NSObject, 44
printing
drawing differently on screen, 358
overview of, 353
pagination when, 353-357
printOperationWithSettings:error:
method, 353, 357
private methods, declaring, 309
programmatically creating custom views, 252
project directory, 13
Project Navigator, 27, 62
projects, creating new, 12-14
properties
attributes of, 125-126
eliminating code with, 124
in NSManagedObjectModel, 177-179
@property, declaring properties, 125
property list classes, registering defaults, 213
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protocols
creating own, 173-174
as lists of method declarations, 160
NSCoding, 160-163

Python, 4

Quartz, 2
QuartzCore framework, 418
Quit command, 33

R
race conditions
problems in multithreading, 428-429
thread synchronization and, 437-438
random function, 51
readFromData: ofType:error: method
loading and NSKeyedArchiver, 168-169
readFromPasteboard: method, 299, 308
readFromURL:ofType:error: method,
NSTask o, 453
reading and writing defaults, 210-214, 217-218
readonly attribute, properties, 125
readwri te attribute, properties, 125
receipt validation, Mac App Store, 469470
Received actions panel, connections, 25
Redo stack, NSUndoManager, 146-147
registerForDraggedTypes: method, 315-316
registering
defaults, 210-213
as observer, 222-226
relationships
Core Data. See Core Data relationships
in NSManagedObjectModel, 178
Release build configurations
blocking assertion checking, 62
changing current build configuration to, 62
creating, 464-466
overview of, 461-462
release message
autoreleasing objects, 73-76
calling dealloc method, 72-73
deallocating objects, 70-71
decrementing retain count, 69
enabling accessor methods for instance
variables, 78-79
retain-count rules, 76-77

removeObject method, NSMutableArray, 46
removeObjectAtIndex method,
NSMutableArray, 46
resignFirstResponder method, 272, 273, 280
resources, Xcode tracking application, 12
responder chain, 300-301
respondsToSelector: method, delegates,
113-114
retain counts, 64, 81-82. See also manual reference
counting
retain cycles, 68-69
retain message
accessor methods for instance variables,
78-79
incrementing retain count, 69
memory management, 71-72
retain-count rules, 76-77
Revert To Saved menu item, NSDocument,
166-167
Rich Text Format (RTF), 288
Rich Text Format with attachments (RTFD), 288
RoboCop, 99
rollovers, 282-283
RTF (Rich Text Format), 288
RTFD (Rich Text Format with attachments), 288
Ruby, 4
Run action
changing current build configuration to, 62
run application, 28-29
Run toolbar, 13

S

sandboxing, application

mediated file access and Powerbox, 468

overview of, 466

specifying entitlements, 467-468
Save Al1 menu item, NSDocument, 165-166
Save As menu item, NSDocument, 165-166
Save menu item, NSDocument, 165-166
saving

automatic document, 174

and NSKeyedArchiver, 167-168

PDFs, 292

using NSDocument, 164-166
Scheme Editor

build configurations, 461-462

changing build configuration, 62

creating release build, 464-466
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scroll view
hierarachy, 242
resizing with window, 250-252
security, and application sandboxing, 466-468
selector table, 65
self, writing initializers, 55-56
setAcceptsMouseMovedEvents: message,
rollovers, 282
setEnabled message, buttons, 86
setFloatValue methods, sliders, 86
setImage: method, NSImage, 268
setNeedsDisplay: message, redrawing view,
246-248
setNeedsDisplayInRect: message, 248
set NilValueForKey: key-value coding, 140
setState message, buttons, 86
setString: method, drawing text with
attributes, 290
setValue: forKey method
bindings, 120
key-value coding, 117
setWantslayer, Core Animation, 419-420
shadows, 293
shapes, CAShapeLayer, 425
Share button, Release build configuration,
464-465
sheets
adding, 330
code for, 334-335
creating modal windows, 336-337
defined, 329
interface layout, 331-334
NSApplication methods, 329
outlets and actions for, 331
using contextInfo, 335-336
showWindow, panels, 203
simple attributes, key-value coding for, 148-149
Size Inspector
customizing views, 244-246
resizing NSScroll1View, 251-252
sliders. See also NSSlider
binding value of, 119-120
making keys observable, 121-123
for sheets, 332-334
Smalltalk, 35
sort descriptors, 141-142
sortedArrayUsingSelector: method, 374

sortedArrayUsingFunction: context:
method, 371
sortedArrayUsingSelector: method, 371
sorting
add to NSArrayController, 140-141
people, based on names, 142
with sortedArrayUsingSelector:, 371
using blocks, 372-373
without NSArrayController, 141-142
source code display, Instruments, 433-434
source, drag, 312-315
split view, hierarachy, 242
state message, buttons, 86
static analyzer, 63-64
Step-Over button, debugger bar, 60
string tables
creating, 237-238
localization using, 236
using, 238-239
stringByAppendingString method,
NSString, 47
strings
converting with formatters.
See NSFormatters
drawing strings and attributed, 289
explicit ordering of tokens in format, 240
NSAtrributedString, 286-288
Objective-C vs. C, 4041
searching for substrings, 344-345
translated, getting into XIBs with ibtool,
239-240
.strings extension, string table, 236
stringWithFormat, NSString, 75-76
strong attribute, properties, 125
strong references
in ARC, 81-82
in manual reference counting, 72
subclasses
creating instance of view, 243-244
“inherits from” vs. “uses” or “knows about”
and, 48
NSControl, 85-89
NSImageRep, 269
substrings, searching strings for, 344-345
subviews, view hierarchy, 241-243
superview, Size Inspector, 244-246
symbols, Time Profiler, 432-433
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synchronous connections
multithreading in, 427-428
NSURLConnection, 361-363

@synthesize
accessor methods, 124-125
connections in Interface Builder, 93
as Objective-C keyword, 27
property attributes, 125-126

T
tab view, hierarachy, 242-243
table selector, 65
table view. See also view-based table views
NSTableView and its dataSource, 104-107
setting background color, 216-217
UITableViewController, 392-393
.tar files, 460
target/action
debugging hints, 98
defined, 21, 83
making connections, 24-25
NSMatrix, 254
NSTimer, 323
overview of, 83-85
pasteboards and nil-targeted actions, 300-302
set target programmatically, 96
target, defined, 83
targeted actions, pasteboards and nil-, 300-302
terminate: message, 33
text, drawing on layer with CATextLayer, 425
text, drawing with attributes
bold and italics, 294
getting view to generate PDF, 291-293
giving shadows to letters, 293
making letters appear, 289-291
NSAtrributedString, 286-288
NSFont, 285-286
NSFontManager, 293
overview of, 285
strings and attributed strings, 289
text fields. See also NSTextField
awakeFromNib and, 30-31
create outlet connection for, 92-93
creating basic formatter, 342-344
Text Table Cell View, 181-182
.tgz files, 460
Objective-C language, 5, 35
threads, 427-429

Time Profiler, 431-435
timeIntervalSinceDate method, NSDate, 54
timeIntervalSinceReferenceDate method,
NSDate, 55
timers. See NSTimer
title
changing button, 18
to-many relationships
Core Data, 407
key-value coding for, 148-152
tokens, format strings, 40, 240
Tool project, 12
tools, 3—4
toValue property, CABasicAnimation, 424
troubleshooting, common problems, 98
types
in Objective-C, 26

U
UIKit, 383
UINavigationController, iOS, 390
UITableView, iOS, 391-393
UITableViewController, iOS, 391-393
UITableViewDataSource methods,
UITableViewController, 392
UIViewController
creating RootViewController subclass,
386-387
creating Web view, 395
porting RanchForecast to i10S, 383-385
UIWebView, iOS, 395
unarchiveObjectWithData: method, loading
and NSKeyedArchiver, 168-169
unarchiving, 159, 168-169
unbind method, 127
undo manager. See NSUndoManager
Undo stack, NSUndoManager, 146-147
Unicode (UTF-8) file encoding, 238
universal type identifiers. See UTTs (universal type
identifiers)
Unix processes, 1-3
NSTask and, 451
unordered to-many relationships, key-value
coding, 149-150
untitled documents, suppressing creation of,
215-216
updateChangeCount method, NSDocument, 174
uppercaseString, NSString, 75-76
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URLs
adding WebView to application, 369-370
opening for Web service, 368-369
user defaults
enabling user to edit, 213-215
NSUserDefaults, 210-211
NSUserDefaultsController, 217
overview of, 207-208
precedence of types, 211
reading and writing from command line,
217-218
setting, 212-213
user interface. See interface layout
userInfo dictionary, 226-227
“uses”, “inherits from” vs., 48
UTExportedTypeDeclarations key, exported
UTIs, 175
UTF-8 (Unicode) file encoding, 238
utility area, Interface Builder, 16
UTTs (universal type identifiers)
configuring exported, 170-171
customizing, 303
pasteboards and, 297-300, 303
understanding, 175

\%

value transformers, 351
valueForKey method

bindings, 120

key-value coding, 117

key-value observing, 122
variables

inside objects, 5

reading and setting with accessor

methods, 50

viewing in debugger, 59-60
view-based table views

bindings, 183-188

vs. cell-based, 191
view classes, object-oriented programming, 129
view controllers. See view swapping
view controllers, in i0OS

overview of, 383-385

pushing, 393-395

UITableViewController, 391-393
view swapping

creating view controllers and XIB files,

400401

overview of, 397-398

resizing window, 403405
viewDidMoveToWindow, rollovers, 283
views

drag-and-drop to. See drag-and-drop

images and mouse events. See images and

mouse events

layers vs., 417
views, custom

cells, 253-254

creating programmatically, 252

drawing with NZBezierPath, 248-250

flipping with isF1ipped, 255

keyboard events, 274

overview of, 241

that draw themselves, 243-248

view hierarchy, 241-243

w
weak attribute, properties, 125
_weak variable, blocks, 375-376
__weak qualifier, ARC, 82
weak references
ARC, 81-82
manual reference counting, 72
platforms not supporting ARC, 82
Web services
NSURLConnection class, 361-363
overview of, 359-360
Web view, 369-372, 395
Window Inspector, setting hidesOnDeactivate,
194
window server, 2, 33
windowControllerDidLoadNib: method,
166-169
windowD1idLoad method, 203, 214-215
windows
adding sheets to. See sheets
collection of views for, 241
firstResponder of key, 271
iOS app, 383-384
NSUndoManager and, 158
NSWindowController, 167
panels vs.main, 193-194
Word, NSAtrributedString file format, 288
write code, keyboard events, 278-282
writeObjects method, NSPasteboard, 297
writeToPasteboard: method, 298
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X
X window server, 2
Xcode
creating new project, 12-14
getting started, 11-12
Interface Builder editor, 4
iPhone and iPad apps using, 383
overview of, 4
XIB files
creating NSFormatters, 342-344
defined, 15
Interface Builder, 17
overview of, 17
translating strings, 239-240
view swapping, 400-401, 403405

XML parsing
Web services, 359-360

Y

YES
defined, 26
NSArray, 45

NSObject, 44

V4
ZIP archives
listing tar files with .tar and .tgz vs., 460
packaging application for download, 466
zombies, debugging hints, 98
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