
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321772633
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321772633
https://plusone.google.com/share?url=http://www.informit.com/title/9780321772633
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321772633
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321772633/Free-Sample-Chapter

Behavior-Driven
Development with
Cucumber

This page intentionally left blank

Behavior-Driven
Development with
Cucumber

Better Collaboration for Better Software

Richard Lawrence
with Paul Rayner

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town • Dubai
London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Publisher
Mark L. Taub

Acquisitions Editor
Haze Humbert

Development Editor
Ellie Bru

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Indexer
Erika Millen

Proofreader
Abigail Manheim

Technical Reviewers
Leslie Brooks
Matt Heuser
Nicole Forsythe
Matt Wynne

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019937018

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-77263-3
ISBN-10: 0-321-77263-6

1 19

Cover photograph © Food Travel Stockforlife/Shutterstock

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

v

Contents

Acknowledgments . ix

About the Authors . xi

Chapter 1: Focusing on Value . 1

When Scrum Isn’t Enough . 3
Finding a High-Value Feature to Start With . 5
Before You Start with Cucumber . 7

Finding the First MMF . 8
Slicing an MMF into User Stories . 10

Summary . 14
Reference . 14

Chapter 2: Exploring with Examples . 15

BDD Is a Cooperative Game . 19
BDD Is a Whole Team Thing . 20
Allow Time and Space to Learn . 21
Flesh Out the Happy Path First . 27
Use Real Examples . 27
Example Mapping Gives the Discussion Structure 28
Optimizing for Discovery . 32

Addressing Some Concerns . 33
Treat Resistance as a Resource . 39

Playing the BDD Game . 41
Opening . 42
Exploring . 42
Closing . 44

Summary . 45
References . 46

Contentsvi

Chapter 3: Formalizing Examples into Scenarios . 47

Moving from Examples to Scenarios . 47
Feature Files as Collaboration Points . 51
BDD Is Iterative, Not Linear . 65
Finding the Meaningful Variations . 66
Gherkin: A Language for Expressive Scenarios 66

Summary . 72
Resources . 72

Chapter 4: Automating Examples . 73

The Test Automation Stack . 76
Adjusting to Working Test-First . 82
Annotating Element Names in Mockups . 84
How Does User Experience Design Fit In to This? 85
Did They Really Just Hard Code Those Results? 89
Anatomy of a Step Definition . 90
Simple Cucumber Expressions . 91
Regular Expressions . 92

Anchors . 92
Wildcards and Quantifiers . 93
Capturing and Not Capturing . 93
Just Enough . 94

Custom Cucumber Expressions Parameter Types 94
Beyond Ruby . 96
Slow Is Normal (at First) . 101
Choose Cucumber Based on Audience, Not Scope 103
Summary . 104

Chapter 5: Frequent Delivery and Visibility . 105

How BDD Changes the Tester’s Role . 105
Exploratory Testing . 114
BDD and Automated Builds . 116
Faster Stakeholder Feedback . 119
How Getting to Done More Often Changes All Sorts of Things 123
Frequent Visibility and Legacy Systems . 125
Documentation: Integrated and Living . 127

Contents vii

Avoiding Mini-Waterfalls and Making the Change Stick 131
Summary . 135
References . 135

Chapter 6: Making Scenarios More Expressive . 137

Feedback About Scenarios . 137
How to Make Your Scenarios More Expressive 143

Finding the Right Level of Abstraction 144
Including the Appropriate Details . 146
Expressive Language in the Steps . 147
Refactoring Scenarios . 150
Good Scenario Titles . 151

Summary . 151
References . 152

Chapter 7: Growing Living Documentation . 153

What Is Living Documentation and Why Is It Better? 153
Cucumber Features and Other Documentation 154
Avoid Gherkin in User Story Descriptions . 155
The Unexpected Relationship Between Cucumber

Features and User Stories . 157
Stable Scenarios . 159

Growing and Splitting Features . 160
Split When Backgrounds Diverge . 160
Split When a New Domain Concept Emerges 161

Secondary Organization Using Tags . 161
Structure Is Emergent . 163
Summary . 163

Chapter 8: Succeeding with Scenario Data . 165

Characteristics of Good Scenarios . 168
Independent . 168
Repeatable . 168
Researchable . 169
Realistic . 169
Robust . 170

Contentsviii

Maintainable . 170
Fast . 171

Sharing Data . 174
When to Share Data . 175
Raising the Level of Abstraction with Data Personas 176

Data Cleanup . 177
Summary . 178
Reference . 178

Chapter 9: Conclusion . 179

Index . 183

ix

Acknowledgments

Writing this book was far and away the most difficult professional challenge I’ve ever
undertaken. The book would not exist without the help and support of many people
in my life.

I’m grateful to my business partner at Agile For All, Bob Hartman, for believing I
had something to say on this topic that was worth a book and for getting the ball
rolling on it.

Bob introduced me to Chris Guzikowski at Pearson, who took a risk on a new
author and showed remarkable patience when client work often got in the way of
writing.

I’m thankful for my friend Paul Rayner, who stepped in for a time as co-author
when the book was stalled and helped transform it to be much more interesting and
useful. Even after leaving the project to focus on other things, Paul still read drafts
and offered invaluable feedback.

My wife, Dawn, provided endless patience and support throughout this long
project. She read drafts, talked through ideas and challenges with me, and most of all
sustained me with unwavering belief that I actually could see the project through.
Thank you, Dawn.

My dad, Tom Lawrence, introduced me to software development as a child. He
encouraged me and helped me grow early in my career. And then he was willing to
take my ideas, apply them in his work, and help me make them better. To be able to
become a peer and even a coach to the man who inspired me to do this work at all is
a remarkable thing, and I’m so grateful for it.

I’m thankful to the many people who were willing to read unpolished drafts and
sacrifice time to contribute detailed feedback. Thank you, Ingram Monk, Kim
Barnes, Colin Deady, Dan Sharp, Sean Miller, Jen Dineen, David Madouros, Josh
Adams, David Watson, Seb Rose, Aslak Hellesøy, Brennan Lawrence, Donna
Hungarter, Nicole Forsythe, Matt Heusser, Matt Wynne, and Leslie Brooks. (And
apologies to anyone I missed in that list—so many people read bits of the book over
the eight years we worked on it.)

This is a book rather than just a bunch of words sitting on my computer because
of the many great people at my publisher, Pearson. Thank you to Chris Zahn, Payal
Sharotri, Mark Taub, Haze Humbert, and all those behind the scenes who I’ll never
interact with directly. Special thanks to my development editor Ellie Bru and

Acknowledgmentsx

copyeditor Tonya Simpson for carefully reading the book multiple times and helping
me get the thoughts clear and the words just right.

My Agile For All colleagues have been encouraging, patient, and supportive. I’m
thankful to work with such an amazing group of people.

I’m indebted to many in the BDD and Agile Testing communities who have
shaped my thinking on these topics, including Ward Cunningham, Kent Beck, Ron
Jeffries, Dan North, Liz Keogh, Matt Wynne, Aslak Hellesøy, Seb Rose, Gaspar
Nagy, Lisa Crispin, Dale Emery, Elisabeth Hendrickson, Gojko Adzic, and Jerry
Weinberg.

Finally, a huge thank you to my clients who have tried, challenged, and often
extended my ideas. I learn from you every time we work together.

—Richard Lawrence

xi

About the Authors

Richard Lawrence is co-owner of the consulting firm Agile For All. He trains and
coaches people to collaborate more effectively with other people to solve complex,
meaningful problems. He draws on a diverse background in software development,
engineering, anthropology, and political science.

Richard was an early adopter of behavior-driven development and led the devel-
opment of the first .NET version of Cucumber, Cuke4Nuke. He is a popular speaker
at conferences on BDD and Agile software development.

Paul Rayner co-founded and co-leads DDD Denver. He regularly speaks at local
user groups and at regional and international conferences. If you are looking for an
expert hands-on team coach and design mentor in domain-driven design (DDD),
BDD with Cucumber, or lean/agile processes, Paul is available for consulting and
training through his company, Virtual Genius LLC.

This page intentionally left blank

15

Chapter 2

Exploring with Examples

As we said in Chapter 1, “Focusing on Value,” the first and most important part of
BDD is exploring desired system behavior with examples in conversations.

We set the stage for conversations around examples by finding valuable slices of
functionality on which to focus in the form of MMFs and user stories. In this chapter,
we look at how to explore the behavior of a new user story by collaborating around
examples with a cross-functional team.

Involving the Team to Describe a Story with Examples

First Whole Team Meeting

ROBIN: A developer. Joined the team a month ago after working for several
startups in the Bay Area. She’s familiar with Agile and has a voracious appe-
tite for learning the latest tools, techniques, and applications.

RAJ: Senior developer on the team. Has an MSc in Computer Science and has
been working in library systems for many years.

JANE: Tester. She has a poster in her cube that says, “A failure to plan on your
part does not constitute an emergency on mine.” Very focused on her work
and enthusiastic about trying things that can help her be more effective and
efficient.

JESSIE: ScrumMaster. Started out as a web designer, but after seeing another
ScrumMaster in action she realized she might enjoy trying that. Fantastic at
digging in and helping the team solve their impediments, often so seamlessly
that the team doesn’t realize she did it, attributing it to coincidence or them-
selves. She’s OK with that.

Chapter 2 Exploring with Examples16

SAM: Business analyst. Sam is a late adopter, very pragmatic, structured, and
process-oriented. He was attracted to becoming a BA because he likes putting
things in order. After a few beers he might tell you he understands the library
processes better than the librarians do.

Setting: A small conference room in the library’s downtown office. There is
a conference table with eight chairs and a pile of sticky notes, and an empty
whiteboard along one wall.

(MARK, ROBIN, RAJ, JANE, JONAH, JESSIE, and SAM have assembled in
the conference room and are waiting for MARK to start the meeting.)

MARK (Product Owner): Hi, everyone. As you all know, we’ve developed
a lot of great software and generally have done a good job of keeping
most of our library patrons happy. In our last project retrospective, we
said we wanted to get better at communicating about scope and reduc-
ing rework. This new project seemed like a good opportunity to experi-
ment with a new way of working together.

I mentioned yesterday that I would be bringing in Jonah to help coach
us in some new approaches and techniques to help us collaborate and
communicate better. Since you’ve all just come off a successful release,
Susan, Jessie, and I agreed it might be best to treat what we do here as
an experiment, as a “proof of concept” for these techniques.

We’ll still be developing production-ready software but “kicking the tires”
on learning BDD with Cucumber as we do it. So, we’ve set aside the next
week or so to work on our first feature, with coaching help from Jonah
along the way. It will be outside our regular sprint approach to give us a little
more freedom to experiment and learn. How does that sound to everyone?

(Nods of agreement around the room)

RAJ (Developer): Sounds great. This approach gives us a chance to try
some things without the regular pressure of deadlines and make mis-
takes as we learn. Plus, we’re still delivering real features.

I’ve been doing Scrum for so long now, though, it will feel a little weird
to not follow the sprint structure.

JESSIE (ScrumMaster): Agreed. It’s just something Mark and I thought might
help you all feel more comfortable as you ramp up. Let’s still meet for our
regular daily standups, but we’ll treat demos as something we do once we
feel like we’re ready, rather than trying to work to a regular sprint schedule.

17Exploring with Examples

MARK (Product Owner): Works for me. Looks like we’re all in agreement.

Jonah, you had a conversation with Robin, Raj, and Jane yesterday
afternoon about tooling for this, right? I assume we’re all on board with
using Cucumber to support testing the features as we develop them.

JONAH (Coach): Thanks, Mark. Yes, yesterday I stopped by the team area
and Robin, Raj, Jane, and I talked through the change in approach and
new tooling that you’ll be experimenting with as a team. They’ve also
each watched a BDD overview video online I had pointed out to them.

ROBIN (Developer): I can’t wait to try this out! Cucumber looks very cool
and I’ve wanted to play with Capybara for a long time now but not had
the chance.

RAJ (Developer): It looks intriguing.

JANE (Tester): I’m really hoping this will mean I won’t have to deal with
lots of functionality to test at the end of each sprint like the last release,
but we’ll see. It should at least reduce the amount of manual testing I do
and help with regression testing in the future.

MARK (Product Owner): Sam, how about you?

SAM (Business Analyst): I don’t know what you’re all talking about.

MARK (Product Owner): What?

JONAH (Coach): Sam, I apologize. I tried to loop you into yesterday’s
conversation, but your office door was shut and it looked like you were
meeting with someone at the time. It’s unfortunate that you weren’t
able to be part of the introduction. Are you available after this meeting
to talk through any questions you might have?

SAM (Business Analyst): Sure, no problem.

JONAH (Coach): Excellent. I’ll also talk you through the same things I
went through with the others and send you a link to the same video.

What we’re going to practice in this meeting is having a conversation
together about a new feature for the library website, talking about what
“done” means for that story, and gathering some examples that we’ll
later turn into test scenarios.

Chapter 2 Exploring with Examples18

MARK (Product Owner): Help me understand, Jonah. Is what you just
described the essentials of the “BDD process” you described to me earlier?

JONAH (Coach): Conversations about the user goals for features, exam-
ples of how the business works and how that feature fits into the busi-
ness processes are an important part of BDD for sure. We’ll be using
business examples to help us have a shared understanding of software
we need to build. There’s more to BDD than just those things, though.

One comment I’ll make is about BDD being a “process.” What comes to
mind when you think of “process?”

RAJ (Developer): I think of something heavyweight, like RUP. Something
that has a lot of steps and roles and approvals.

MARK (Product Owner): Before we adopted Scrum, our process was
really heavyweight: many approvals and lots of waste, and lots of com-
petition over scope between the business and our teams. We tried to
keep the scope under control, and the business tried to cram everything
they could into the requirements document because they got only one
shot at it. But, in terms of Agile, when I think of process I think of
Scrum. It has a minimal set of roles, artifacts, and meetings. It can seem
like a lot, but it’s not really. So process doesn’t have to be a bad word.

ROBIN (Developer): Right, me too. I think of overhead, and having to do
things just because the process says so, even when it doesn’t make sense.
One thing I liked about doing Agile in the startups I used to work for is
there was minimal process overhead compared with the first job I had
out of college.

JONAH (Coach): What about a game? What comes to mind when I say the
word “game?”

JANE (Tester): Something like basketball, I suppose. A team of people
working together, playing positions, helping each other, trying to win
against the other team.

SAM (Business Analyst): A game has a goal, like winning against the other
team. And you need skilled players used to playing together to achieve
the goal. The players have to adjust their strategy on the fly as the game
progresses.

BDD Is a Cooperative Game 19

ROBIN (Developer): A game should be fun.

JONAH (Coach): You’ve got it. Why do I ask this? Mainly because I view
BDD much more like a game than a process. BDD has a goal, it takes
a team working together, team members need to grow their skills over
time with individual and team practice, and the team positions and
strategy are fluid as the game progresses. And BDD, like any game
worth playing, can be very challenging and demanding, but the rewards
are worth it. As the team improves over time, playing the BDD game
should be fun and fulfilling.

SAM (Business Analyst): But games are trivial things; they are for children.
We should be software professionals, not “software hedonists.”

JONAH (Coach): Right. The goal isn’t the fun, that’s a good side effect,
though I do believe people who enjoy their work are much more likely
to be productive than those who don’t. Don’t mistake the word “game”
for something trivial or just for children, though. Games are invented
and used by many people, including novelists, military tacticians, math-
ematicians, game theorists, and corporate strategists.

So, think of BDD more like a game than a process as we move forward. Like
any game, it takes a bit of practice to learn it. And you shouldn’t expect to
be good at it right away, especially since it involves discerning goals and
learning to work more closely together as a team to achieve those goals.

Let me say again, in this meeting we’ll be trying an approach that is
going to feel new and different, maybe even weird and counterintuitive,
to most of you at first, so I’d encourage you to roll with it and see where
it takes us. Have fun with it. If any of you have concerns or questions
then feel free to grab me later and I’ll do my best to address them.

BDD Is a Cooperative Game

In Alistair Cockburn’s book Agile Software Development: The Cooperative Game,
he characterizes software development as a “cooperative game of invention and
communication.” In competitive games, like tennis, there is a clear notion of win-
ning and losing. Even in team games, like basketball, one team wins and the other
loses. But in cooperative games, people work to win together.

Chapter 2 Exploring with Examples20

Games can also be finite or infinite. A finite game, like chess, is one that intends to
have an end. On the other hand, an infinite game, like the game an organization or
nation typically plays, is about prolonging one’s existence.

Games can be finite and goal-seeking, like chess, or they can be finite and non-
goal-directed, like jazz, where the process is the focus—there’s not a defined goal
that would cause you to “win” the song.

If we combine these ideas to get a goal-seeking, finite, cooperative game, we
see activities like rock climbing or adventure racing, where a group of people work
together to reach a goal together as fast as possible. Software development, espe-
cially Agile software development, is a similar game. Software development is a
finite, goal-seeking, cooperative, group game.

BDD is an Agile subdiscipline of the game of software development. The empha-
sis in BDD is particularly placed on helping the team cooperate, innovate, and com-
municate during the game, all with the intention of achieving the goal of creating
valuable working software more quickly and effectively.

BDD Is a Whole Team Thing

Teams who find their way into BDD via a tool like Cucumber often get the misunder-
standing that BDD is a test automation approach that mostly concerns testers and
developers.

BDD is a whole-team practice. It’s a way of structuring the collaboration required
to build the right software. As such, it involves all the roles on the team.

Product owners bring an understanding of the customer and realistic examples
of a user doing something with the software. Testers bring their unique perspectives
about what could go wrong; they’re great at proposing examples outside the happy
path. Developers understand the implications of a particular example on implemen-
tation and often have a good understanding of the existing system and the problems
it solves. Technical writers contribute skills with language and often empathy for
how users talk about what they do in the system.

Early in adopting BDD, collaboration tends to occur as a whole team. This allows
the team to build a common language for their domain. Later, smaller groups can
leverage that language to collaborate, and the work they produce will be comprehen-
sible to the rest of the team.

Because we see so much value in the whole team participating in the collabora-
tion in BDD, we rarely teach public BDD classes. If only some team members under-
stand how to work in this way, the team is unlikely to experience the benefits. We’ve
seen cases where just the testers or just the developers get excited about a tool like
Cucumber and just end up doing test automation, the least valuable part of BDD, in
isolation.

BDD Is a Cooperative Game 21

Allow Time and Space to Learn

Did you notice how Jonah warned the team it wasn’t going to be easy? Adopting a
new way of working takes time and practice. It takes a willingness to muddle through
until the new skills become natural. It’s easy to forget what we went through to adopt
our current skills—they weren’t always as natural as they seem now.

Sometimes it feels like you can’t afford the time to learn something new. Maybe
someone committed you to deliver a big project (with defined scope) by a particular
date, and it doesn’t feel like you have any room to slow down. In that case, feature
mining from Chapter 1 is your secret weapon.

These big release or project commitments that feel so fixed and overwhelming are
usually fairly high-level. We know we have to deliver, say, the new sales reporting by
June 15. But within the bullet point of “new sales reporting,” there’s high-value work
and there’s low-value work. Feature mining gives us a way to focus on the high-value
work and avoid the low-value work, thereby making the deadline less scary and buy-
ing some extra capacity for improvement.

We also don’t recommend adopting a new practice like BDD for all your work all
at once. Instead, we recommend you use what we call the “slow lane” approach. Say
you’ve planned eight user stories in your sprint. Most stories will use your existing
definition of done, which doesn’t include BDD. Choose one or two to be in the “slow
lane” across your board (see Figure 2-1). For those, you’ll use the new practice. And
you won’t feel as pressured when you do it because you’ve already agreed those will
take longer.

The early adopters on your team who are excited about the new practice will tend
to sign up for those stories, working out the issues and establishing patterns for those
who prefer to “wait and see.”

After a while, expand the slow lane to three or four stories. Eventually, you’ll
notice that the stories with the new practice really aren’t that much slower (and
probably turn out faster in the end because they have fewer defects and less
rework). At that point, make the new practice part of your definition of done for
every story.

Some teams move from the slow lane to fully adopting BDD in just two or three
sprints. Others take their time and do it over four to six months. There’s no rush. It’s
better to adopt a practice slowly, deliberately, and well than to rush into it badly and
give up under pressure.

Chapter 2 Exploring with Examples22

Figure 2-1 A task board with two stories designated as slow lane stories

The Meeting Continues…

JONAH: Mark, how about you start by introducing the feature you’ll be
developing first?

MARK: Sure. Thanks, Jonah.

Well, the first minimal marketable feature, or MMF, is about borrowing
an ebook from Amazon. Our first story is implementing searching for
an ebook.

JONAH: Let’s use sticky notes to put some structure around our discus-
sion. Mark, use one of these yellow rectangle stickies to capture the
story at the top of the whiteboard.

MARK: (Writes on sticky note) In order to find the specific ebook I’m
looking for, as a library patron, I want to search the ebook catalog by
title. (Sticks it to the whiteboard)

BDD Is a Cooperative Game 23

ROBIN: We’ve been using user stories in our backlog, but they’re a little
different in form from this one. I like how you put the “In order…” first
to highlight the value to the library patron as a customer-facing feature.
This is nice.

JONAH: Good observation, Robin. That format is all about focusing on
“why” rather than just “what.” I’d encourage you all not to focus too
much on the format, though. A user story should function as a reminder
to have a conversation about the user need being met.

Mark, why don’t you give a little background on why we are going to
focus on this story in particular?

MARK: Sure. We’ve seen that people search on title about 80% of the
time. So, they know which book they want to find. Currently, the cata-
log search returns too many unrelated titles in its results, and even when
the correct title is returned near the top of the results, it takes too long,
and the results are presented in a way that’s confusing to our patrons.
It’s no surprise we’ve had complaints from library patrons about not
being able to find books we actually have in the catalog.

What we want to do is dip our toes in the waters of digital materials but do
it with a minimum investment in custom software development. We want
to offer a small set of ebooks and only for Kindle. That way, Amazon will
take care of the delivery and expiration of the books and we don’t need to
worry about that. So, Susan and I agreed we could start by building out a
new search by title for Kindle ebooks to see how our patrons use it.

JONAH: I wanted to let you know that Raj, Mark, and I talked yester-
day and instead of rewriting your legacy system, you’ll be adding
these new capabilities over the top of the existing system. Taking this
approach will dramatically reduce your risk while enabling you to get
the new work done quickly, since you won’t be bogged down in trying
to improve code that’s not associated with new value you’re adding.

RAJ: Yes, after talking with Mark earlier about this MMF I had expected
to spend a couple of weeks sketching out the architecture for a complete
ebook management system or figuring out how to rewrite the current
catalog module in our legacy integrated library system.

I’ve wanted to rewrite our legacy ILS for years, but I always suspected
we’d never finish it and would soon find ourselves with two legacy ILSs
to support.

Chapter 2 Exploring with Examples24

JONAH: (Laughs) Yes, that’s the typical outcome of that approach. Avoid
it wherever possible. Better to take a more strategic approach to replac-
ing capabilities within an older system.

RAJ: Instead of rewriting, we’re going pull the Kindle ebook metadata
directly from Amazon and use it to enrich our existing catalog in our
ILS, rather than try to track the digital inventory separately from our
current ILS catalog inventory. So, the first thing is to augment our leg-
acy system rather than try to rewrite it. That will save us a lot of time
and minimize our risk, especially when we are trying to learn BDD as
well.

JONAH: A second approach you’re taking that will help a lot is to leverage
open source for the generic parts of your system—right, Raj?

RAJ: Yes, absolutely. I’ve found a great open-source library to use for
search. The catalog team has already configured the backend system to
exclude ebooks from regular searches. Jonah and I sketched it all out on
the whiteboard in the team area if anyone’s interested.

JONAH: Raj was able to come up with a really elegant and clean way of
integrating this open-source search framework with your current ILS,
avoiding having to write your own search code or try to rewrite any of
your ILS. Double win!

ROBIN: That’s great news.

JONAH: Let’s capture assumptions and questions on pink stickies next
to the story to keep us focused. I’ve heard three key assumptions so far.
(Writes on stickies as he talks)

Using Amazon Kindle ebook metadata

Adding to the current ILS

Using OS search framework

(Sticks them to whiteboard next to the story card)

ROBIN: OK, dumb question time. I’m looking at the story and, as you
know, I’m pretty new on the team and haven’t done development work
for a library before, so I want to be clear on what you mean by “title.”

BDD Is a Cooperative Game 25

Are you talking about the name of a book or what comes back in the
search results, or is it something else? And how does this work with
ebooks? Are you meaning Kindle, epub, mobi, audiobooks, mp3…or
are there other formats?

MARK: No, those are fundamental library concepts we all need to under-
stand. There’s no dumb question there.

JONAH: Robin is asking some great questions about the library domain. I
suggest that rather than ask for definitions, let’s focus on specific exam-
ples. For example, let’s pretend Robin asked, “I don’t really know what
you mean by title—can you give me a typical example of an ebook title?”

SAM: Well, there are actually some nuances about title that we don’t really
need to worry about now. Mark, I suggest for now we just use title to be
the name of the book, and we can come back later and talk about the
other ways title gets used around here.

ROBIN: No problem.

JANE: Actually, Jonah’s suggestion about using examples is a good one. It
would help us all get on the same page about how the search needs to
work. I’m typically working off specific examples in my current test plans.

JONAH: Right. To build on that a little: Since we are talking about Kindle
ebooks… Mark, for starters, can you give us an example of an ebook
that one of our library patrons would actually be searching for?

MARK: OK. Sure, hmmm. What’s a good example? Let’s say fantasy fic-
tion author Brandon Sanderson releases a new title in his Stormlight
Archive series and it gets released on Kindle. Each of these has been a
bestseller in the past, so we know any new book in the series is going
to be in very high demand. For example, Words of Radiance debuted
at #1 on the New York Times Hardcover Fiction Bestseller list in early
2014, and the ebook reached #1 on the combined print/ebook bestseller
list. So, how about we use Words of Radiance as our example?

ROBIN: Good choice! I’ve been enjoying that series.

(JANE picks up a marker to write the example. JONAH hands Jane a pad
of green sticky notes.)

Chapter 2 Exploring with Examples26

JANE: (Writes “Find an ebook by the exact title: Words of Radiance” and
sticks it on the whiteboard.)

I’m not much of a fantasy reader, but (Looking meaningfully in Robin’s
direction) I have friends who are. Sounds like a good one to start with.
Let me capture this on the whiteboard.

(Writing on a pink sticky note) I’ll also capture Robin’s earlier question
about titles, so we can get that up on the whiteboard for later too.

SAM: So, we’re assuming we already have Words of Radiance in the cata-
log, right? Cause if we don’t, then the search results would be different.

MARK: Well, we need to handle the situation where it doesn’t show up in
the search results. That’s part of assumptions for this story.

JONAH: Sam and Mark both have a good point, I’d encourage you to stick
with the simple case for now—the “happy path”—so we can dig into its
nuances. We can capture any other scenarios and come back to them later.

Let’s capture the rule for the happy path. I’ll call it “Matches title word
for word” and put that above the example on the board. (Writes on a
blue sticky note)

This makes me want the counter example. I’ll call it “Doesn’t find the
book: Words Radiance”. (Writes on a green sticky note)

JANE: I just noticed something: Since Words of Radiance will be in the cata-
log, this choice of example means we won’t have to do test data setup and
teardown for this story. We can simply test against the real catalog because
the Amazon Kindle ebook metadata will have been loaded into it.

JONAH: It’s a nice outcome from taking Raj’s approach. It’s not a long-
term approach, of course—we’re going to need to figure out how to
get the catalog into a particular state for scenarios later—but it will
help you get up and running quickly without getting bogged down in
technical issues.

At this point, you have complexity in a lot of areas: you’re building a
whole new set of capabilities for your customers, solving new techni-
cal problems, and exploring a new way of working together. Deferring
technical complexity for now is a nice way to get to customer value
faster. However, we’ll want to set up a time soon to talk about how
you’ll handle the data setup problem when you get there.

BDD Is a Cooperative Game 27

Flesh Out the Happy Path First

It’s often easy to come up with a bunch of examples right away, but we recommend
talking all the way through at least one core example before getting deep in varia-
tions. By talking through a “happy path” example, a common case where things
work as they should, the team gets a shared understanding of what the user story is
about. What does it look like when the user is able to do what they want to do?

This complete slice also helps validate the story. Sometimes a story that sounds
quite reasonable in the abstract reveals mistaken assumptions when you get into a core
example. “Wait a minute,” someone says, “no user would actually do it that way.”

Once everyone understands the happy path, it often becomes more clear which
variations are reasonable and likely. Instead of brainstorming every possible varia-
tion and edge case, realistic examples float to the top and focus the team on getting
to value quickly. (The less likely variations and edge cases can be useful for explora-
tory testing, by the way. More on this and how it relates to BDD in Chapter 3, “For-
malizing Examples into Scenarios.”)

Use Real Examples

Notice the team’s happy path example wasn’t just about “a book” or “Title ASDF”;
it was an example of a real book that a real library patron might borrow. Good
examples put you in the user’s shoes, building empathy for what the user is trying to
do and helping you think more accurately about how they’ll do it.

It wasn’t a coincidence that using Words of Radiance for the example led the team
to realize they already had test data to use. A real example connected the team to the
system full of real inventory they already had at the library. This is not unusual. One
real thing connects to other real things. We frequently see teams make discoveries
about functionality, design, and architecture when they get into concrete, realistic
examples.

RAJ: Yes, it’s a big relief. I was worried about how we would handle the
whole test data side of things.

JONAH: Exactly. Let’s not bite off too much infrastructure stuff at this
point. We’ll deal with it soon enough.

JESSIE: OK, I’ll capture that “missing title” scenario for later reference
then. (Writes “Search for an ebook by exact title but missing from our
catalog” on a sticky note and puts it on the whiteboard)

Chapter 2 Exploring with Examples28

Example Mapping Gives the Discussion Structure

Our favorite way to add some light structure to this kind of discussion is with Matt
Wynne’s Example Mapping technique.1 In Example Mapping, the group builds a
tree: the story has rules that are illustrated by examples. Assumptions and questions
are captured on the side so the core discussion about examples doesn’t get blocked by
side conversations. The result looks something like Figure 2-2.

Discussions about examples necessarily lead to rabbit trails—side topics that could
distract from the core topic—because reality is complex and interlinked. In the meet-
ing we just looked at, the team allowed side topics to naturally emerge but retained
focus on the core topic with a facilitation tool called a parking lot. The parking lot is
simply a place to capture things that are worth talking about but not right now.

1. https://docs.cucumber.io/bdd/example-mapping/

Figure 2-2 Example Mapping

https://docs.cucumber.io/bdd/example-mapping/

BDD Is a Cooperative Game 29

In Example Mapping, pink stickies typically function as the parking lot—the
questions and assumptions that otherwise might take over the discussion. But yellow,
green, or blue stickies could capture stories, examples, or rules to be included in a
future discussion.

Jane captured a note about audiobooks, for example. Audiobooks were explicitly out
of scope for the current feature, but they were worth thinking about. Mark will proba-
bly take that note, convert it into a product backlog item, and prioritize it appropriately.

Using a parking lot balances the needs to be open to diverse contributions and to
capture important discussion topics with the need to respect meeting participants’
time by keeping the meeting focused. We use variations on this technique in almost
everything we facilitate.

Back to the Meeting…

RAJ: Back to Robin’s question again, there are multiple formats we sup-
port, so we might have Words of Radiance in mobi for the Kindle and
epub for Apple, and as an audiobook in mp3.

ROBIN: That’s what I thought: The first two are alternatives to getting the
hardcover or paperback book, for people looking for electronic reading
formats, whereas mp3 is for people who would rather listen to the book.

MARK: You’re right that there are multiple formats, but that’s not a con-
cern for us with this story. As I mentioned before, Susan and I agreed
to focus just on Kindle ebooks for now, so let’s keep the reading aspect
primary and only worry about Kindle format for now.

(JANE writes “no audiobooks for now” on a pink sticky and sticks it to
the whiteboard.)

RAJ: I’ve done a lot with search in the past, and there are many ways to
search our catalog: keyword, author, title, and so on. Are we talking
about a keyword search here?

MARK: I actually talked about this earlier with Susan, and when we
looked at the traditional searches over 80% of them were by title, and
the patron picked the book with the matching title.

JESSIE: (Writing on a sticky note) Got it, search by title only.

OK, some user experience kinds of questions here: We are assuming the
library patron is on our catalog page, correct?

Chapter 2 Exploring with Examples30

MARK: Yes, catalog page.

JESSIE: OK, good. Also, I’d like us to talk a little about what we can assume
or expect about the patron’s typical background, goals, and pain points.

JONAH: That’s where I was hoping we would head too. What Jessie is
concerned about is moving beyond an impersonal notion of the “role”
of the system user to something a bit more human, a “persona.”

SAM: What do you mean, persona? Isn’t this just a story that says some-
thing like, “As a library patron, I want to search the library catalog for
an ebook”?

JESSIE: True. Jonah and I talked yesterday about starting to incorporate
personas into how we do our user experience work. Basically, a persona
is a short description of the important characteristics of a certain kind
of user—their goals, background, experience, and pain points. Putting
together personas will really help us do a better job of user experience
going forward, rather than our UI treating all of our users as if they
are the same, which they’re not. Using personas encourages us to think
more from a customer perspective and avoid implementing features our
customers won’t really need.

JONAH: Right, as a friend of mine says, “A persona’s biggest benefit is
not to tell us what to include, but to tell us what not to.”

Yes, Sam, the story will probably look something very similar to that in
the product backlog. A story is a placeholder for a team conversation,
so I suggest we take a moment to dig a little deeper and put more of a
face to whom we mean by library patron for this feature.

Mark, can you give us a little background on the library patron you
would like this MMF to target?

MARK: Sure. Most of our search users are familiar with Google search and
using websites but not much beyond that. They are used to being able to
easily find the book they want on Amazon. We would much rather they
come to our library than go somewhere else, and so would they.

You mentioned their goal, and I guess it’s to find the book they want
with as little hassle, and encountering as little confusing technical
jargon, as possible. And we decided in that previous meeting that we

BDD Is a Cooperative Game 31

would only target Kindle users for this story, as Kindle is the most pop-
ular platform.

JESSIE: (Sketching notes about persona on whiteboard) So we can assume
some basic technical background for our typical library patron, but not
much. And we want to avoid confusing technical or library-specific jargon
in the UI where possible. Are most of them coming through a web browser?

MARK: Yes, correct on all counts. Overly technical jargon in search is a
current pain point for many of our users.

ROBIN: So when the user, I mean library patron, sees the search results,
there will be other books listed, but Words of Radiance should be at the
top? Words of Radiance won’t be the only result, right?

MARK and SAM: Right.

JONAH: OK, good. So we can make it simple because this first search sce-
nario should talk about having Words of Radiance at the top of the
search results, but it doesn’t need to say anything about what the rest of
the search results might be.

MARK: Makes sense to me.

JONAH: It seems like we probably have a good enough shared understand-
ing of the happy path scenarios to stop here. We don’t need everyone
involved to start formalizing them up a bit for the Cucumber feature
file; a few of us can tackle that later.

It would be helpful to take a photo of the whiteboard to capture what
we’ve done so far and send it around. Raj and Robin, would you like me
to help you take an initial pass at writing up the scenarios as a feature file?

RAJ: Sure. Jonah, how about you, Robin, and I try doing that right after
lunch and we all meet back here to review what we come up with? What
do you all think? 3 p.m. work for everyone? Good.

I’ll take care of taking the photo of the whiteboard and sending it
around too.

MARK: Sounds great. I’ll send everyone another meeting invite for this
room at 3 p.m. This approach is pretty new to me, so I’m looking
forward to seeing what you come up with.

Chapter 2 Exploring with Examples32

Optimizing for Discovery

You might be surprised that the team proceeds with work on this user story before
nailing down all the rules and examples. Rather than working in a series of phases—
planning, analysis, development, testing—the team is working iteratively in very
small cycles. They’re planning and analyzing a little, doing some test design, devel-
oping some production code, doing a little more testing, going back to planning, and
so on.

The traditional approach to software development assumes we not only have a
clear understanding of the goal of a software system but also the means to achieve
that goal, and that we know both well ahead of when the software needs to be
delivered to the customer. This implies that there is no need to further explore the
customer’s space, since we already know what the customer requires. The water-
fall development process is the logical outcome of this kind of thinking: the means
of accomplishing the goal are called requirements, and all that is needed is for us
to implement the requirements as software features. In industrial work, we want to
manage for consistent, repeatable, predictable results; we want our goals to be as
clear and unambiguous as possible. Waterfall development takes the same approach
as industrial work.

In knowledge work we need to manage for creativity. We are generating something
new rather than just incrementally improving on the past. This means there is no
way to precisely define the goal in advance, because there are too many unknowns.
Software development is knowledge work, and Agile development is fundamentally
a considered response to this situation of not knowing the exact goal and how to
reach it. Agile promotes embracing and adapting to change to be the chief concern
of the development process. Thus, teams doing Agile development optimize for dis-
covery, as the Manifesto for Agile Software Development says, valuing “responding
to change over following a plan.” Furthermore, “Agile processes harness change for
the customer’s competitive advantage.”

This ability to respond quickly to new learning is thus at the heart of agility in
software development. “The path to the goal is not clear, and the goal may in fact
change.”2 An Agile team will often start out with the intention of solving a cus-
tomer’s problem in a certain way but discover their assumptions about that customer
need are wrong. They might discover that the real need is actually different from
what they thought, which then leads to a very different solution.

There is no such thing as “requirements”; there are only unvalidated assumptions.
The goal of delivering MMFs is to validate our assumptions as soon as possible, in
case they turn out to be false and we need to change direction. Agile development
assumes that the specific destination is unknown, so we need to iterate our way there.
Software development is inherently a discovery process.

2. Gamestorming, p. 5

Addressing Some Concerns 33

In knowledge work we need to imagine a world that doesn’t exist yet and embrace
exploration, experimentation, and trial and error. We are bringing fuzzy goals into
reality. A fuzzy goal is one that “motivates the general direction of the work, with-
out blinding the team to opportunities along the journey.”3 This is the journey we
hope to demonstrate in this book, as the library development team adopts BDD and
employs it to enable them to get better at delivering predictably in the face of fuzzy
goals. “Fuzzy goals must give a team a sense of direction and purpose while leaving
team members free to follow their intuition.”4

Addressing Some Concerns

3. Gamestorming, p. 5

4. Gamestorming, p. 5

Sam and Jonah Discuss Sam’s Concerns

Setting: Sam’s office, right after the previous meeting. There are large, color-
ful, highly detailed business process diagrams plastered over the walls, a cou-
ple of comfy chairs, and the scent of fresh coffee.

JONAH: So after I ground the coffee I put it in the Aeropress and made
my espresso. And the guy in the seat next to me said, “What on earth is
that? Some kind of crazy airpump?”

SAM: (Laughs) Seriously? You made your own coffee? Right on the flight
here?

JONAH: (Laughs) Sounds a little extreme, I know. I usually take the Aero-
press when I travel, but that’s actually the first time I’ve used it and the
grinder on a plane. I’ll probably try it on Friday’s flight home—life’s
too short for in-flight service coffee. Plus it made the cabin smell so
much better!

SAM: Ha! No question.

JONAH: Mmmm…This is great coffee, by the way. What is it?

Chapter 2 Exploring with Examples34

SAM: Huehuetenango.

JONAH: “Way Way Tenango”? What is that, Ethiopian?

SAM: No, Guatemalan. It’s spelled differently from how it sounds. My
wife and I vacationed down there last summer and happened to tour
through the area where it’s grown. Guatemala was an amazing experi-
ence, I’ll tell you more some other day.

Our day in the village was the highlight, though. We learned so much
about the whole coffee process by talking with the people who actually
grow it. We’ve been huge fans of Huehuetenango ever since. It tastes so
good, and always brings back those same good memories.

JONAH: I bet. I’ll be sure to track down some of my own. Thanks for the tip!

SAM: You’re welcome. Anyway, about that last meeting…I might have
come off a little strong in there. I don’t want you to get the wrong idea,
I’m actually very supportive of anything that can help us improve. I just
don’t like coming into a meeting as the only one not knowing what’s
going on.

JONAH: No worries. I figured that was the case. Once again, that was not
my intention. I’ll do everything I can to help get you up to speed.

SAM: Great. As a BA, I tend to work with all the development teams, and
sometimes it can be a little hard to keep up with every new thing they’re
trying. We’ve had some good success with Scrum recently, but we’ve
also had a lot of tools and initiatives die on the vine. It’s hard to know
ahead of time what’s going to work and what’s not. I’m very pragmatic,
so I tend to adopt a wait-and-see posture with new things, to see if they
deliver on the promise.

As you can see (Gestures around) I’m very process-oriented and always
want to keep the bigger picture in mind, so I’m curious as to how this
BDD stuff will fit into how the teams work. If this can help bring more
structure and discipline to our process, I’m all in favor of it. Will it do that?

JONAH: I expect so. I’d be very surprised if it didn’t.

SAM: So, I have some questions. First, what’s a feature file?

JONAH: It’s what we use to record our test scenarios.

Addressing Some Concerns 35

SAM: What? Now I’m confused again. I thought you, Raj, and Robin
were going to be writing up the scenarios we captured in this morning’s
meeting; didn’t you say you would be “formalizing them” or something
like that?

JONAH: I see. Let me try to clear up some confusion here. Yes, after lunch
Raj and Robin and I will do some work formalizing the scenarios we
came up with this morning. We’ll write them up in what we call a “fea-
ture file,” which is simply a plain-text description of how we expect the
feature to work.

We want to do this formalization to clear up any ambiguities in our lan-
guage, make sure we captured all the important details, and help us ensure
we’re all on the same page with you, Mark, and Jane about how it should
work. The whole team, actually. It also lets us see if we missed anything.

SAM: Is this where Raj’s vegetable makes an appearance? The “cucumber?”

JONAH: Correct! Though cucumbers, like tomatoes, are actually fruit.
But that’s not important right now.

Anyway, I got us a little off track there. Let’s try that again.

There’s a software tool called Cucumber that Raj, Robin, and Jane will
use in development to treat our scenarios as a kind of “living specifica-
tion” for the search feature. With Cucumber we’ll be able to verify the
search feature as they write it. In other words, Raj and Robin will code
to the scenarios we create, one by one, running them as tests as they do.
The feature file is what Cucumber uses as the place to record the sce-
narios we are using to specify what the feature should do for this story.

SAM: So this “feature file” is a specification document? We’re all in a room
just writing a specification document? This is insane. I could do this by
myself. We don’t need a meeting with the whole team.

Why do we need any meetings for this? Isn’t this the kind of thing I
would normally do on my own as a business analyst? Actually, on Jes-
sie’s team, doesn’t someone write all these details in the product back-
log item anyway?

JONAH: Good questions. The last thing we want to do is take up every-
one’s valuable time with useless meetings. We are having more meetings

Chapter 2 Exploring with Examples36

than usual at the moment, since we’re getting everyone on the same
page with the new techniques, but don’t think of BDD as a series of
meetings. It’s more like something a team just does in the course of
development. In other words, in the course of the team doing their
work, they collaborate; the right people get together whenever they see
the need to figure out details.

SAM: OK, good. I have to admit, the meeting we had earlier today was
not like many of the boring meetings we have. Everyone was pretty
engaged, and I thought we had some pretty important insights and
caught some important cases. I could see how it would be helpful to
have the developers and testers as part of that conversation.

JONAH: Exactly. And as you’d expect, I’d love to see you all get to the
point where you wouldn’t even refer to this sort of thing as “having a
meeting,” since with BDD if you’re describing it as a “meeting” it’s usu-
ally an indication that something’s wrong with your collaboration.

The goal for this morning’s conversation was to get the right people in
the room to discuss what the story meant and how we’ll know it’s done,
and to make sure we don’t miss any important details. It’s also critical
with a complex business domain like this to ensure the product owner,
BAs, developers, and testers—the whole team—are all on the same page
with the terminology, how the feature should work, and how it fits in
with the rest of the application.

SAM: Yes, there is a lot of complexity in the library domain. More than
people appreciate. And all the systems, applications, and integrations
we have add a lot of technical complexity too. It’s especially hard to
build things on top of our legacy ILS.

JONAH: Ah, OK. So, yeah, I would expect that it’s hard to build new fea-
tures on your legacy ILS. Most of the teams I work with are doing BDD
over the top of some kind of legacy system. It’s a challenge, but it’s not
a unique one. Or, as I tell people, “Yes, you are a special snowflake, but
not in this area.”

SAM: (Laughs)

JONAH: Jessie’s background in UXD is also very helpful in understanding
the flow of user actions and moving beyond just thinking about the role

Addressing Some Concerns 37

without considering the person using the software and the actual needs
the new software feature is intended to meet. I really value having some-
one who can bring that perspective to the table.

So yes, a feature file is a kind of specification documentation. More like
an executable specification. At least, that’s what we’re aiming for.

SAM: I’m not sure what you mean by “executable specification.”

JONAH: In a traditional kind of approach often a product owner, or busi-
ness analyst such as yourself, would be documenting these scenarios as
acceptance criteria, and a tester would perhaps be using them as the
basis for their test plan. The acceptance criteria would be captured in
the product backlog as stories and their details, and then the test plans
and other information would likely be separate supporting documents.

SAM: That’s pretty much how we do it now.

JONAH: Right, and much of that part of the process will not change.
However, as you can see, feature files are more dynamic than that.
They’re meant to be more than just a document.

With BDD we’re aiming for a living document, one that grows and
changes as the software matures.

Because the scenarios run as tests, they end up automating much of
what would normally be recorded in manual test plans and regression
tests, and because the developers code to the scenarios with Jane’s early
input, there is less chance of missing things and introducing bugs.

SAM: OK, but won’t the feature file have to be constantly changing, such
as when we update the UI?

JONAH: If we put a lot of UI-specific language in the feature file, then yes,
it certainly would. Many teams fall into that trap by referring to “Sub-
mit buttons” and the like. But we won’t. We’ll take the time to keep only
business language in the feature file. That’s one area where your input
will be invaluable. Help keep us honest!

Teams who do a good job at keeping the feature file language focused
on business concerns find the scenarios remain much the same over
time. The application’s UI may change, and the underlying libraries and
applications may too, but the Cucumber scenarios would change only

Chapter 2 Exploring with Examples38

when the actual features change, since they describe the behavior of the
application in business language, not the implementation. That’s a lot
to think about. Hopefully, I’m not jumping ahead too much.

SAM: A little. But I’m actually more concerned about where I fit in.

JONAH: Of course. Let’s talk about the more important concern, which is
your role in this kind of approach.

Let’s see. Mark understands the big goals, your business goals. But he
depends on your understanding of the nuances of business processes,
systems, and your domain—all the stuff you’re really good at—which
is all the stuff that helps the team make sure we have all the right exam-
ples for each feature.

SAM: Yes, he does. Mark realizes that no one knows the business pro-
cesses, technical ecosystem, and even all the library acronyms better
than I do. In fact, Mark and Susan kid that after a few beers I might say
I understand the library processes better than the librarians do. (Grins)
But even I wouldn’t go that far.

JONAH: (Laughs) In terms of what we’re doing this week, this first meeting
focused on the happy path, which wasn’t really the part where you add the
most value. But the next few conversations are where we’ve got the happy
path down, and we’ll be going through all the interesting variations.
These will be where you’re really going to contribute a lot more to this,
since it’s the part that’s really going to depend on you and what you know.

SAM: This first story seems relatively straightforward to me, which is why
I’m having some trouble understanding why we’re taking so much time
on it. At least, it’s simple compared to what we’ll have to do for track-
ing what ebooks each library patron is borrowing.

JONAH: Agreed. This first story is less involved when compared to what is
coming. Part of that is deliberate, to help your team get up and running
with BDD. To start practicing the skills with a simpler example so it’s
achievable. We’ll move to more involved ones once you all have the basic
skills down.

SAM: That makes sense. Sometimes I’m the one writing the stories, and
sometimes Mark does that. Jessie pitches in, too, from time to time.

Addressing Some Concerns 39

Treat Resistance as a Resource

If you’re reading this book, you’re likely to be an advocate for BDD on your team,
which means you’re likely to run into resistance from other people who aren’t as
excited about the change.

You might see that resistance as something you need to fight against to suc-
cessfully adopt BDD on your team. Or you might write it off as just “resistance to
change.” We’d like to suggest an alternative: Gratefully accept that resistance as a
useful resource.5

For the most part, people don’t actually resist change per se. People make changes
all the time—and that person you think of as “resistant to change” would eagerly
change many things in their life if they were to win the lottery. But people do resist
particular changes, changes where they don’t, for whatever reason, see a likely net
positive outcome. This means that when you encounter resistance, you have an
opportunity to learn something that might improve your proposed change. When

5. Emery, “Resistance as a Resource”

Will Mark and I be writing the feature files from now on, or will Raj
and Robin do that?

JONAH: There’s nothing that says a certain role has to be the one that
ends up documenting the scenarios. It’s an important process question,
so I recommend we hold off on some questions like that for now and
see what the team figures out.

Like learning any new team skill, a lot of this is going to be harder to
explain ahead of time than just to learn it together by doing it. I’ll do
my best to answer any questions that come up, and I do really under-
stand how you may be skeptical about trying this approach. I certainly
would be if I was in your place. Since you trust the team, I’m sure you
can also talk with any of them if you have more concerns.

Why not give it a go, at least for the next few sprints, and see how it
works out?

SAM: (Shrugs and nods) OK. I’m willing to give it a try for now, support
it, and see what happens.

JONAH: Excellent. Thanks again for the brew! See you after lunch.

Chapter 2 Exploring with Examples40

someone resists your proposed change, ask yourself, “What do they know that
I don’t know?”

To answer that question, we’ve found it useful to think in terms of different layers
of resistance, or layers of buy-in, based on a model from Eli Goldratt’s Theory of
Constraints. There are several different formulations of this, with different numbers
of layers, but we like Dr. K. J. Youngman’s:

 1. We don’t agree about the extent or nature of the problem.

 2. We don’t agree about the direction or completeness of the solution.

 3. We can see additional negative outcomes.

 4. We can see real obstacles.

 5. We doubt the collaboration of others.6

Start at the beginning of the list and look for where the resistance begins. Maybe
the person agrees there’s a problem to solve but they’re not convinced your proposal
actually solves it. Find out what they know about the solution; perhaps they’ve seen
something similar in the past that didn’t work. You might be able to learn some-
thing from that failure. Or, you might be able to persuade them that this solution is
different.

Maybe they agree the solution will work but they also see potential side effects.
Again, what do they know that you don’t? Perhaps you need to add something to
your proposed change to mitigate the side effects.

In the previous conversation, Jonah engaged Sam to explore Sam’s resistance.
Sam had three main objections, all at level 3:

 • BDD will cause us to spend too much time in meetings.

 • Feature files will have to change too often.

 • My role will be marginalized or unappreciated in this new approach.

Notice that Sam wasn’t objecting that things were fine and there was no need to
change (level 1) or that BDD wouldn’t solve their problems (level 2). He was saying
that, even if it worked, BDD would cause negative side effects. So, Jonah engaged Sam
in conversation about those potential side effects and how to prevent or mitigate them.
Had Jonah focused on the problem and how BDD would solve it, he wouldn’t have

6. Youngman, http://www.dbrmfg.co.nz/Bottom%20Line%20Agreement%20to%20Change.htm

http://www.dbrmfg.co.nz/Bottom%20Line%20Agreement%20to%20Change.htm

Playing the BDD Game 41

won Sam’s willingness to participate in the experiment. Sam might even have worked
against the experiment. But because Jonah heard and engaged Sam’s concerns, Sam’s
on board and his feedback can help make the experiment stronger.

One pleasant surprise with this approach to resistance is how often the person
putting up the biggest resistance becomes the biggest supporter of the change once
you listen to them and incorporate what they know.

Playing the BDD Game

Jonah introduced the idea that BDD, like Agile, is a cooperative game. Let’s dig in to
some of the practical implications of this as we think about exploring examples. The
book Gamestorming presents the idea that every game has a common shape. This
shape has three different stages, and each stage has a different purpose. This shape
looks like that shown in Figure 2-3.

In a game, a team wants to get from their known point A to fuzzy goal B, but they
don’t know how. So they apply this game framework to get there. We believe BDD
includes this kind of game, with the same structure and accompanying mindsets.
BDD is so much more than just this collaborative game, but this aspect of BDD is
typically the hardest part for most teams to understand and master. Let’s look at the
three stages of the game structure.

Open

A

Act 1

Set the Stage

Develop Themes

Ideas

Information

Act 2

Examine

Explore and

Experiment

Act 3

Conclusions

Decisions

Action

B

Explore Close

Figure 2-3 Game Design

Chapter 2 Exploring with Examples42

Opening

The opening phase of the game is all about opening people’s minds, opening up pos-
sibilities and ideas for later exploration. The opening is divergent, as illustrated in
Figure 2-4. Generating new ideas is maximized and all critique is deliberately set
aside. It’s about getting as many ideas out in the open as possible and avoiding criti-
cal thinking and skepticism.

The opening stage in BDD involves brainstorming examples that help the team
understand the business domain. These examples are focused on the customer expe-
rience and are as close as possible to the reality of the business domain. The goal is
to generate a variety of examples that help the team understand the business domain
and the customer need they are trying to address. Some teams split into pairs or
triads to maximize the diversity of perspectives and ideas. This stage may take only
a few minutes or much longer, depending on the complexity of the domain being
considered.

Exploring

The keyword for the exploring stage is emergent. Exploration and experimentation
are the focus. You want to create the conditions where “unexpected, surprising, and
delightful things” emerge.7 Figure 2-5 illustrates the nonlinear, emergent nature of
the exploring stage.

In BDD, this stage builds on the energy and ideas that flowed into the room dur-
ing the previous divergent stage, exploring the examples generated to see patterns
and missing concepts and scenarios. If the team split into subgroups, this is when

7. Gamestorming, p. 11

?

Figure 2-4 Opening (Divergent)

Playing the BDD Game 43

the subgroups each take turns presenting their findings to the rest of the team, then
the team looks for patterns, misunderstandings, missing concepts, and themes in the
examples.

The exploring stage can feel chaotic, directionless, and confusing to those not
used to it. Thus, this stage can be very uncomfortable for teams that aren’t used to
exploring in this way. One facilitation book, the Facilitator’s Guide to Participatory
Decision Making, even refers to the exploring stage as “The Groan Zone,” because
the creative tension necessary for this stage takes effort to maintain and is discom-
forting for those not used to it.

Because of this tension, in the exploration stage of the game the temptation to
critique options and converge on solutions as soon as possible can be very strong. If
this happens, it can mean an early death to creativity, but this “groan zone” is a vital,
normal, and necessary part of the creative process. Sam is used to formalizing pro-
posed solutions early, which makes the exploration stage a big part of why he felt so
uncomfortable playing the BDD game.

The right thing to do in exploration is to keep the creative tension and suspend
judgment as long as necessary. This enables a team to pursue full participation,
mutual understanding, inclusive solutions, and shared responsibility. We saw Jonah
do this with the team, supporting and encouraging active dialogue about the various
scenarios while not being afraid to dig a little deeper when necessary.

As we saw with the team, being very concrete is critical at this stage: who the user
is in terms of background and experience, what they’re trying to accomplish, what
struggles they might have in getting their need met, where they are, and so on. All
these kinds of details might seem quite incidental and unimportant, but they are

Figure 2-5 Exploring (Emergent)

Chapter 2 Exploring with Examples44

vital in helping everyone visualize each scenario and identify what’s missing, which
then helps the team see other scenarios.

The focus in the exploration stage is on integrating the various ideas and perspec-
tives rather than critiquing them. This is where the whole is greater than the sum of
the parts. The team may analyze certain examples and discard them, or at least post-
pone further discussion on them. They may discover other examples that illuminate
the domain more, and thus are pursued further. The team talks together about each
example to make sure they understand it, filling in missing pieces and making note of
things requiring further investigation.

Closing

The closing stage is where a game converges on conclusions, decisions, and action.
It’s finally the time to bring in critical thinking and rigor, evaluating which ideas are
the most promising to pursue and worth an investment of time and energy. The key-
word for this stage is convergent, as illustrated in Figure 2-6. It’s about narrowing the
field “in order to select the most promising things for whatever comes next.”

For the BDD “game,” this means converging on a decision about which examples
to carry through the rest of the BDD process. It involves starting to formalize the sce-
narios, looking for which details are significant and which are incidental. This leads
us naturally to returning to our team in Chapter 3.

As we stated earlier, playing the BDD game is fundamentally about intentional
discovery and growing a shared understanding. The overall BDD game structure
looks like that shown in Figure 2-7, with divergent, emergent, and convergent stages.

Figure 2-6 Closing (Convergent)

Summary 45

Summary

 • BDD is a collaborative game of exploring the desired behavior of a software
system.

 • People with different roles—usually product owner, developer, and tester—use
examples to emerge this behavior rather than one individual trying to specify
the behavior up front in isolation.

 • Example mapping is a good technique for structuring a discussion around
examples.

 • Use real, concrete examples, not unrealistic dummy data.

 • Use a common or happy path example to get to work on a real, concrete thing
right away. Come back later to handle variations rather than trying to fully
specify a story up front.

 • Not everyone will be on board with trying a new way of working. Treat resist-
ance as a resource, a source of information to engage rather than something to
fight or avoid.

 • Games like BDD have a natural structure—opening, exploring, and closing.
Don’t rush through the stages.

Emergent

Convergent

Closing

Divergent

Opening

New

Topic

Decision

Point

A B

Exploring

Figure 2-7 BDD game structure

Chapter 2 Exploring with Examples46

References

Cockburn, Alistair. Agile Software Development: The Cooperative Game. Boston:
Pearson Education, Inc., 2007.

Emery, Dale H. “Resistance as a Resource.” http://dhemery.com/articles/resistance
_as_a_resource/

Gray, David, Sunni Brown, and James Macanufo. Gamestorming: A Playbook for
Innovators, Rulebreakers, and Changemakers. Sebastopol, CA: O’Reilly, 2010.

Wynne, Matt. “Example Mapping”: https://docs.cucumber.io/bdd/example-mapping/

Youngman, Dr. K. J. http://www.dbrmfg.co.nz/Bottom%20Line%20Agreement%20
to%20Change.htm

http://dhemery.com/articles/resistance_as_a_resource/
http://dhemery.com/articles/resistance_as_a_resource/
https://docs.cucumber.io/bdd/example-mapping/
http://www.dbrmfg.co.nz/Bottom%20Line%20Agreement%20to%20Change.htm
http://www.dbrmfg.co.nz/Bottom%20Line%20Agreement%20to%20Change.htm

183

Index

Symbols
* (asterisk), 93
^ (caret), 93
$ (dollar sign), 93
() (parentheses), 94
| (pipe), 94
+ (plus sign), 93

A
abstraction

concrete domain example, 145–146
data personas, 176–177
detail, level of, 146–147
expressive language, 147–149

attributes, 149–150
entities, 149–150
filler words, removing, 149
verb tense, 147–149

tautological scenarios, 144
technical scenarios, 144–145

actors, 147–149
Agile

Agile Manifesto
measure of progress, 10–11
values, 2

Agile Testing Quadrants, 51–56
Scrum, limitations of, 3–4

Agile Software Development (Cockburn), 19
Agile Testing (Crispin and Gregory), 51
anchors, 92–93
And keyword, 67
annotating element names, 84–85
API testing, 102–103
approach, data, 171–174
arguments

multiline string step, 68
table step, 68–70

asterisk (*), 93
attributes, 149–150
audience, Cucumber and, 103–104

automation
adjusting to working test first, 82
API testing, 102–103
automated builds, 115–116
Cucumber Expressions

advantages of, 93–94
anchors, 92–93
associating code with regular

expressions, 96
capturing, 93–94
custom parameter types, 94–96
quantifiers, 93
regular expressions, 92
simple expressions, 91–92
wildcards, 92–93

mockups
annotating element names in, 84–85
incorporating, 82–84

scenarios
implementation of, 97–98
slow lane approach, 99–101

step definitions
creating, 78–81
driving implementation with, 86–89
hard coding results, 89–90
pairing on first, 73–76
structure of, 90–91

test automation pyramid, 76–78
user experience design (UXD), 85–86

B
Background sections, 70–71, 107, 155–156,

160–161
BDD (behavior-driven development). See also

automation; examples; library case study;
living documentation; scenarios

cooperative nature of, 19–20
Cucumber Expressions

advantages of, 93–94
anchors, 92–93

Index184

associating code with regular
expressions, 96

audience and, 103–104
capturing, 93–94
custom parameter types, 94–96
misuse of, 55
quantifiers, 93
regular expressions, 92
scope and, 103–104
simple expressions, 91–92
wildcards, 92–93

definition of, 1
frequent delivery, 105

automated builds, 115–116
exploratory testing and, 114–115
legacy system challenges, 124–126
opportunities, creation of, 120–123
stakeholder feedback, 116–119
tester’s role in, 105

game structure, 19, 41–42
closing stage, 44–45
cooperative nature of, 19–20
exploring stage, 42–44
opening stage, 42

iterative nature of, 65
MMFs (minimum marketable features).

See also user stories
definition of, 8
feature mining, 8–10
high-value feature, finding, 5–7
splitting, 160–161

as process, 18
resistance to, 39–41
retrospective analysis, 179–181
slow lane approach, 21, 99–101
teams

participation in, 20
resistance to BDD (behavior-driven

development), 39–41
slow lane approach, 21, 99–101
team workshops, 47–51, 57–61,

63–64
test data curators, 175

testing
API testing, 102–103
exploratory, 114–115
Quadrant 3, 55–56
test automation pyramid, 76–78
test data curators, 175
test plans, 56, 154
test plans, replacing with Cucumber

scenarios, 154

tester’s role, 105
testing activity mapping, 54

user stories
Cucumber features and, 157–159
definition of, 11
essential stories, 14
Gherkin scenarios in, 155–157
library case study, 7, 128–129
prioritizing, 13–14
splitting features into, 11–13

Brooks, Leslie, 145
But keyword, 67

C
capturing expressions, 93–94
caret (^), 93
cleanup, data, 170–177
closing stage (game structure), 44–45
Cockburn, Alistair, 19
Cohn, Mike, 77
collaboration, 49–55, 62–63
concrete domain example, 145–146
Constraints, Theory of, 40
convergence, in closing state, 44
cooperation, 19–20
Crispin, Lisa, 51
Cucumber Expressions

advantages of, 93–94
anchors, 92–93
associating code with regular expressions, 96
audience and, 103–104
capturing, 93–94
custom parameter types, 94–96
misuse of, 55
quantifiers, 93
regular expressions, 92
scope and, 103–104
simple expressions, 91–92
wildcards, 92–93

Cucumber scenarios. See scenarios
custom parameter types, 94–96

D
Daily Scrum, 63
data, scenario

cleanup, 170–177
data approach, agreement on, 171–174
good scenarios, characteristics of, 168

fast speed, 171
independence, 168

Index 185

maintainability, 170–171
realism, 169–170
repeatability, 168
researchability, 168–169
robustness, 170

issues across scenarios, 165–167
personas, 176–177
sharing, 174–176

dead documentation, 153
delivery, frequent, 105. See also living

documentation
automated builds, 115–116
exploratory testing and, 114–115
legacy system challenges, 124–126
opportunities, creation of, 120–123
stakeholder feedback, 116–119
tester’s role in, 105

detail, level of, 146–147
discovery, optimizing examples for, 29–33
diverging backgrounds, 160
documentation, dead, 153
documentation, living

advantages of, 153–154
concept of, 127–128
Cucumber scenarios as

avoiding in user story descriptions,
155–157

Background sections, 160–161
organization by feature areas, 157–159
organization with tags, 161–163
splitting of features into, 160–161
stability, 159–160
when to use, 154–155

definition of, 153–154
emergent structure of, 163
library case study, 126–127

dollar sign ($), 93
domain concepts, scenarios and, 161
Domain-Driven Design, 145

E
element names, annotating, 84–85
emergence, in exploring stage, 42–44
Emery, Dale, 170
entities, 149–150
Ericcson, Anders, 143
essential user stories, 14
Evans, Eric, 145
Example Mapping technique, 28–31
examples. See also automation; scenarios

avoiding excess, 62
concerns, addressing, 33–39
Cucumber Expressions

advantages of, 93–94
anchors, 92–93
associating code with regular

expressions, 96
capturing, 93–94
custom parameter types, 94–96
quantifiers, 93
regular expressions, 92
simple expressions, 91–92
wildcards, 92–93

Example Mapping technique, 28–31
formalizing into scenarios, 47. See also

Gherkin
Background sections, 70–71, 107,

155–156, 160–161
But keyword, 67
collaboration, 49–55, 62–63
Cucumber misuse, 55
feature title and description, 61–62, 67
Given steps, 67, 94, 107–109, 147
iterative nature of, 65
And keyword, 67
meaningful variations, 66
multiline string step arguments, 68
Quadrant 3 testing and, 55–56
Scenario keyword, 67
scenario outlines, 71–72
table step arguments, 68–70
team workshops, 47–51, 57–61, 63–64
testing activity mapping, 54
Then steps, 67, 94, 148–149
When steps, 67–68, 94, 148

happy path, 27
library case study

formulating, 15–19, 22–27
optimizing for discovery, 29–31

optimizing for discovery, 29–33
realism of, 27

exploratory testing, 114–115
Explore It! (Hendrickson), 114
exploring stage of game, 42–44
expressions (Cucumber)

advantages of, 93–94
anchors, 92–93
associating code with regular expressions, 96
audience and, 103–104
capturing, 93–94
custom parameter types, 94–96

Index186

misuse of, 55
quantifiers, 93
regular expressions, 92, 96
scope and, 103–104
simple expressions, 91–92
wildcards, 92–93

expressive language
actors, 147–149
attributes, 149–150
entities, 149–150
filler words, removing, 149
verb tense, 147–149

expressive scenarios, creating, 143–144
abstraction

concrete domain example,
145–146

detail, level of, 146–147
expressive language, 147–150
tautological scenarios, 144
technical scenarios, 144–145

refactoring, 150–151
titles, 151
ubiquitous language, 145

F
factory_bot library, 177
feature files, 76–77

collaboration, 49–55, 62–63
Cucumber misuse, 55
feature description, 61–62
Quadrant 3 testing and, 55–56
testing activity mapping, 54

Feature keyword, 67
feature mining, 8–10
features. See MMFs (minimum marketable

features)
feedback, 116–119, 137–143
file systems, ZFS, 178
files, feature, 76–77

collaboration, 54–55, 62–63
as collaboration points, 49–54
Cucumber misuse, 55
feature title and description, 61–62
Quadrant 3 testing and, 55–56
testing activity mapping, 54

files, step definition
creating, 78–81
Cucumber Expressions

advantages of, 93–94
anchors, 92–93
associating code with regular

expressions, 96

audience and, 103–104
capturing, 93–94
custom parameter types, 94–96
misuse of, 55
quantifiers, 93
regular expressions, 92, 96
scope and, 103–104
simple, 91–92
simple expressions, 91–92
wildcards, 92–93

definition of, 76–77
driving implementation with, 86–89
hard coding results, 89–90
pairing on first, 73–76
structure of, 90–91

filler words, removing, 149
formalizing examples

overview of, 47
team workshops, 47–51, 57–61

frequent delivery, 105. See also living
documentation

automated builds, 115–116
exploratory testing and, 114–115
legacy system challenges, 124–126
opportunities, creation of, 120–123
stakeholder feedback, 116–119
tester’s role in, 105

functional documentation, 153

G
game structure, 19, 41–42

closing stage, 44–45
cooperative nature of, 19–20
exploring stage, 42–44
opening stage, 42

Gamestorming (Gray, Brown, and Macanufo),
41

Gherkin, 90. See also scenarios
feature title and description, 67
keywords

And, 67
Background, 70–71, 107, 155–156,

160–161
But, 67
Feature, 67
Given, 67, 94, 107–109, 147
Scenario, 67
Then, 67, 94, 148–149
When, 67, 94, 148

multiline string step arguments, 68
overview of, 66–67
table step arguments, 68–70

Index 187

Given steps, 67, 94, 107–109, 147
glossary scenarios, 177
Goldratt, Eli, 40
good scenarios, characteristics of, 168

fast speed, 171
independence, 168
maintainability, 170–171
realism, 169–170
repeatability, 168–169
researchability, 168–169
robustness, 170

Gregory, Janet, 51

H–I
“happy path” examples, 27
hard coding results, 89–90
Hellesoy, Aslak, 55
Hendrickson, Elisabeth, 114
independence, 168
iterations, 65

J–K
Keogh, Liz, 1
keywords

And, 67
Background, 70–71, 107, 155–156, 160–161
But, 67
Feature, 67
Given, 67, 94, 107–109, 147
Scenario, 67
Then, 67, 94, 148–149
When, 67, 94, 148

L
language

actors, 147–149
attributes, 149–150
entities, 149–150
filler words, removing, 149
ubiquitous, 145
verb tense, 147–149

legacy system challenges, 124–126
libraries, factory_bot, 177
library case study

automated build, integrating Cucumber
into, 115–116

background, 2–3
data approach, agreement on, 171–174

examples
concerns, addressing, 33–39
formalizing into scenarios, 47–51, 57–61,

63–64
formulating, 15–19, 22–27
optimizing for discovery, 29–31

feedback about scenarios, 137–143
final team check-in, 179–181
first meeting, 5–7
legacy system challenges, 124–125
living documentation, 126–127
mini-waterfalls, avoidance of, 131–135
MMFs (minimum marketable features)

closing loop on, 129–130
hallway conversation, 10
high-value feature, finding, 5–7

mockups, 82–84
opportunities, creation of, 120–123
scenarios

API testing, 102–103
data issues across, 165–167
formalizing examples into, 47–51,

57–61, 63–64
implementation of, 97–98
organization of, 157–159, 161–163
refining, 106–114
slow lane approach, 99–101
in user story descriptions, 154–156

stakeholder feedback, 116–119
step definitions

creating, 78–81
driving implementation with, 86–89
pairing on first, 73–76

team workshops, 47–51, 57–61, 63–64
user stories, 7, 128–129

living documentation
advantages of, 153–154
concept of, 127–128
Cucumber scenarios as, 160–161

avoiding in user story descriptions,
155–157

organization by feature areas, 157–159
organization with tags, 161–163
splitting of features into, 160–161
stability, 159–160
when to use, 154–155

definition of, 153–154
emergent structure of, 163
library case study, 126–127

logical OR, 94

Index188

M
maintainability, 170–171
Manifesto for Agile Software Development, 2
manual regression testing, 114
mapping

examples, 28–29
testing activity, 54

meaningful variations, 66
MED (minimum effective dose), 8
meetings

final team check-in, 179–181
first meeting, 5–7
importance of, 62–63
team workshops, 47–51, 57–61, 63–64

minimum effective dose (MED), 8
minimum marketable features. See MMFs

(minimum marketable features)
mining, feature, 8–10
mini-waterfalls, 4, 131–135
MMFs (minimum marketable features). See also

examples; scenarios
advantages of, 62
closing loop on, 129–130
definition of, 8
descriptions of, 61–62
feature files, 76–77

collaboration, 49–55, 62–63
Cucumber misuse, 55
feature descriptions, 61–62
Quadrant 3 testing and, 55–56
testing activity mapping, 54

feature mining, 8–10
high-value feature, finding, 5–7
splitting, 160–161
user stories

Cucumber features and, 157–159
definition of, 11
essential stories, 14
finished story demo, 128–129
Gherkin scenarios in, 155–157
library case study, 7, 128–129
prioritizing, 13–14
splitting features into, 11–13

mockups
annotating element names in, 84–85
incorporating, 82–84

multiline string step arguments, 68

N–O
names, annotating, 84–85
North, Dan, 1

opening stage of game, 42
optimizing examples, 29–33
lOR, logical, 94
organization, scenario, 163

by feature areas, 157–159
with tags, 161–163

outlines, scenario, 71–72

P
parameters, expression, 94–96
parentheses, 94
participation, team, 20
Peak (Ericcson), 143
personas, data, 176–177
pidgin languages, 66–67
pipe (|), 94
plus sign (+), 93
prioritizing user stories, 13–14
progress, measure of, 10–11
public library case study. See library case study
pyramid, test automation, 76–78

Q
quadrants, Agile testing, 51–56

Quadrant 2 collaboration capabilities, 54–55
Quadrant 3 testing, 55–56

quantifiers, 93

R
realism

of examples, 27
of scenarios, 169–170

refactoring scenarios, 150–151
refining scenarios, 57–61, 106–114
regression testing, 114
regular expressions, 96
repeatability, 168
requirements specifications, replacing with

Cucumber scenarios, 154
researchability, 168–169
resistance to BDD (behavior-driven

development), 39–41
robustness, 170
roles, test data curator, 175

S
Scenario keyword, 67
scenarios. See also automation; examples; step

definitions

Index 189

abstraction
concrete domain example, 145–146
detail, level of, 146–147
tautological scenarios, 144
technical scenarios, 144–145

characteristics of good, 168
fast speed, 171
independence, 168
maintainability, 170–171
realism, 169–170
repeatability, 168–169
researchability, 168–169
robustness, 170

Cucumber Expressions
advantages of, 93–94
anchors, 92–93
associating code with regular

expressions, 96
audience and, 103–104
capturing, 93–94
custom parameter types, 94–96
misuse of, 55
quantifiers, 93
regular expressions, 92
scope and, 103–104
simple expressions, 91–92
wildcards, 92–93

data
cleanup, 170–177
data approach, 171–174
data approach, agreement on, 171–174
data issues across scenarios, 165–167
good scenarios, characteristics of,

168–171
issues across scenarios, 165–167
personas, 176–177
sharing, 174–176

expressive language
actors, 147–149
attributes, 149–150
entities, 149–150
filler words, removing, 149
verb tense, 147–149

expressive scenarios, creating, 143–144
abstraction, 144–146
detail, level of, 146–147
expressive language, 147–150
refactoring, 150–151
titles, 151
ubiquitous language, 145

feedback about, 137–143

formalizing examples into, 47. See also
Gherkin
Background sections, 70–71, 107,

155–156, 160–161
But steps, 67
collaboration capabilities, growing, 54–55
collaboration for understanding, 62–63
collaboration points, feature files as,

49–54
Cucumber misuse, 55
feature title and description, 61–62, 67
Given steps, 67, 94, 107–109, 147
iterative nature of, 65
meaningful variations, 66
multiline string step arguments, 68
Quadrant 3 testing and, 55–56
Scenario keyword, 67
scenario outlines, 71–72
And steps, 67
table step arguments, 68–70
team workshops, 47–51, 57–61, 63–64
testing activity mapping, 54
Then steps, 67, 94, 148–149
When steps, 67–68, 94, 148

glossary, 177
implementation of, 97–98
organization

by feature areas, 157–159
with tags, 161–163

outlines, 71–72
refactoring, 150–151
refining, 57–61, 106–114
splitting features into, 160–161
stability of, 159–160
tautological, 144
technical, 144–145
titles, 151
when to avoid, 155–157
when to use, 154–155

scope, Cucumber and, 103–104
Scrum, limitations of, 3–4
sharing data, 174–176
slow lane approach, 21, 99–101
speed of development, 21, 99–101, 171
splitting features, 160–161
sprints, mini-waterfalls in, 4, 131–135
stability, in Cucumber scenarios, 159–160
stakeholder feedback, 116–119
step definitions

creating, 78–81
Cucumber Expressions

Index190

advantages of, 93–94
anchors, 92–93
associating code with regular

expressions, 96
audience and, 103–104
capturing, 93–94
custom parameter types, 94–96
misuse of, 55
quantifiers, 93
regular expressions, 92, 96
scope and, 103–104
simple expressions, 91–92
wildcards, 92–93

definition of, 76–77
driving implementation with, 86–89
hard coding results, 89–90
pairing on first, 73–76
structure of, 90–91

stories. See user stories
Succeeding with Agile (Cohn), 77

T
table step arguments, 68–70
tags, organizing scenarios with, 161–163
tautological scenarios, 144
teams

participation in, 20
resistance to BDD (behavior-driven

development), 39–41
slow lane approach, 21, 99–101
team workshops, 47–51, 57–61,

63–64
test data curators, 175

technical scenarios, 144–145
test automation pyramid, 76–78
test data curators, 175
test plans, 50, 56
testing

API testing, 102–103
exploratory, 114–115
Quadrant 3, 55–56
test automation pyramid, 76–78
test data curators, 175

test plans, 56, 154
tester’s role, 105
testing activity mapping, 54

Then steps, 67, 94, 148–149
Theory of Constraints, 40
titles, scenario, 151
traceability documents, replacing with Cucumber

scenarios, 154

U
ubiquitous language, 145
user experience design (UXD), 85–86, 176–177
user stories. See also examples

Cucumber features and, 157–159
definition of, 11
essential stories, 14
Gherkin scenarios in, 155–157
library case study, 7, 128–129
prioritizing, 13–14
splitting features into, 11–13

UXD (user experience design), 85–86,
176–177

V
variations, meaningful, 66
verb tense, 147–149
virtuous cycles, 85

W
waterfalls, 4, 131–135
When steps, 67–68, 94, 148
wildcards, 92–93
working test first, adjusting to, 82
workshops, team, 47–51, 57–61, 63–64
Wynne, Matt, 28

X–Y–Z
Youngman, K. J.40
Zawinski, Jamie, 90
ZFS file system, 178

	Cover
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	About the Authors
	Chapter 2: Exploring with Examples
	BDD Is a Cooperative Game
	BDD Is a Whole Team Thing
	Allow Time and Space to Learn
	Flesh Out the Happy Path First
	Use Real Examples
	Example Mapping Gives the Discussion Structure
	Optimizing for Discovery

	Addressing Some Concerns
	Treat Resistance as a Resource

	Playing the BDD Game
	Opening
	Exploring
	Closing

	Summary
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H–I
	J–K
	L
	M
	N–O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Y–Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

