

Praise for TIBCO® Architecture Fundamentals

“TIBCO® Architecture Fundamentals is a must-read for anybody involved with
the architecture and design of distributed systems, with system integration
issues, or with service-based application design. In particular, solution archi-
tects responsible for TIBCO-based systems architectures should consider
reading this book and its planned follow-on titles.

“The product portfolio of TIBCO today is simply too broad for anybody
to have an ongoing detailed understanding of what is in there and what ele-
ments of the portfolio are best suited in a given business scenario. Paul Brown
provides the required oversight in this book, helping both experienced solu-
tion architects and newcomers in the field find their way through the myriad
technology options TIBCO offers today.”

—Bert Hooyman, Chief Architect, Europe for MphasiS (an HP Company)

“In his previous books, Dr. Brown developed the ‘total architecture concept’ in
a generic setting. In this one, he presents a concrete application of it to the
TIBCO product line. It will be a valuable resource to anyone developing solu-
tions with those tools.”

—Glenn Smith, Principal Consultant, Appian

“This material is spot on for what is needed in enterprises today, to give a level
set to all the architecture teams and project teams they interact with, to out-
line what is expected, and the roles that each play. In addition, it is a timely
overview of the latest TIBCO product suites, and I am anxious to see the
follow-ups to this (BusinessEvents- and BPM-focused materials).

“This book provides a detailed look at what happens in the creation of an
integration architecture for a business problem. Paul’s attempt to capture in
words the years of project experience will be a benefit for groups getting
familiar with establishing an enterprise architecture standard, as well as a
refresher for those performing this function today.

“I would like for all the folks on my team to read this to ensure we are all
on the same page with the deliverables that are expected from architecture
teams involved in global projects, and the role that the TIBCO tools play in
implementing these solutions.”

—Joseph G. Meyer, Director of Architecture Services and R&D, Citi

“Brown’s approach to presenting the highly complex architectural issues is by
far the best I have encountered. While each of the individual areas has been
detailed in other texts, this is the only publication I have read that lays out
each aspect of the architectural issues and describes them in an easy-to-read,
comfortable style.”

—James G. Keegan Jr., President, Intrepico, Inc.

“I recommend the book wholeheartedly. The combination of breadth and
depth is not usually found in technical books.”

—Lloyd Fischer, Senior Software Architect, WellCare Health Plans

This page intentionally left blank

TIBCO® Architecture
Fundamentals

This page intentionally left blank

TIBCO® Architecture
Fundamentals

Paul C. Brown

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

TIB, TIBCO, TIBCO Software, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now,
TIBCO ActiveMatrix® Adapter for Database, TIBCO ActiveMatrix® Adapter for Files (Unix/Win), TIBCO
ActiveMatrix® Adapter for IBM I, TIBCO ActiveMatrix® Adapter for Kenan BP, TIBCO ActiveMatrix® Adapter
for Lotus Notes, TIBCO ActiveMatrix® Adapter for PeopleSoft, TIBCO ActiveMatrix® Adapter for SAP, TIBCO
ActiveMatrix® Adapter for Tuxedo, TIBCO ActiveMatrix® Adapter for WebSphere MQ, TIBCO ActiveMatrix®

Administrator, TIBCO ActiveMatrix® Binding Type for Adapter, TIBCO ActiveMatrix® Binding Type for EJB,
TIBCO ActiveMatrix® BPM, TIBCO ActiveMatrix BusinessWorks™, TIBCO ActiveMatrix BusinessWorks™ BPEL
Extension, TIBCO ActiveMatrix BusinessWorks™ Service Engine, TIBCO ActiveMatrix® Implementation Type
for C++, TIBCO ActiveMatrix® Lifecycle Governance Framework, TIBCO ActiveMatrix® Service Bus, TIBCO
ActiveMatrix® Service Grid, TIBCO® Adapter for CICS, TIBCO® Adapter for Clarify, TIBCO® Adapter for COM,
TIBCO® Adapter for CORBA, TIBCO® Adapter for EJB, TIBCO® Adapter for Files i5/OS, TIBCO® Adapter for
Files z/OS (MVS), TIBCO® Adapter for Infranet, TIBCO® Adapter for JDE OneWorld Xe, TIBCO® Adapter for
Remedy, TIBCO® Adapter SDK, TIBCO® Adapter for Siebel, TIBCO® Adapter for SWIFT, TIBCO® Adapter for
Teradata, TIBCO Business Studio™, TIBCO BusinessConnect™, TIBCO BusinessEvents™, TIBCO BusinessEvents™

Data Modeling, TIBCO BusinessEvents™ Decision Manager, TIBCO BusinessEvents™ Event Stream Processing,
TIBCO BusinessEvents™ Standard Edition, TIBCO BusinessEvents™ Views, TIBCO BusinessWorks™, TIBCO
BusinessWorks™ BPEL Extension, TIBCO BusinessWorks™ SmartMapper, TIBCO BusinessWorks™ XA Transaction
Manager, TIBCO Collaborative Information Manager™, TIBCO Enterprise Message Service™, TIBCO Enterprise
Message Service™ Central Administration, TIBCO Enterprise Message Service™ OpenVMS Client, TIBCO
Enterprise Message Service™ OpenVMS C Client, TIBCO® EMS Client for AS/400, TIBCO® EMS Client for i5/
OS, TIBCO® EMS Client for IBM I, TIBCO® EMS Client for z/OS, TIBCO® EMS Client for z/OS (CICS), TIBCO®

EMS Client for z/OS (MVS), TIBCO® EMS Transport Channel for WCF, TIBCO® General Interface, TIBCO
Rendezvous®, and TIBCO Runtime Agent are either registered trademarks or trademarks of TIBCO Software Inc.
and/or its affiliates in the United States and/or other countries.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Brown, Paul C.
 TIBCO architecture fundamentals / Paul C. Brown.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-77261-9 (pbk. : alk. paper) 1. Service-oriented architecture (Computer
science) 2. Business—Data processing. I. Title.
 TK5105.5828.B76 2011
 00.5—dc22

2011006244

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-77261-9
ISBN-10: 0-321-77261-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2011

For Jessica and Philip,
my most prized creations.

This page intentionally left blank

ix

Contents

Preface xvii

Acknowledgments xxiii

About the Author xxv

PART I: Concepts 1

Chapter 1: The IT World Is Evolving 3

From Systems to Processes 3
Architecture and Architects 7
Summary 8

Chapter 2: The Scope of Total Architecture 9

Chapter 3: Aspects of Architecture 13

Process Models 13
Architecture Patterns 17
Process-Pattern Mapping 18
Why Should You Care about Architecture? 19
An ATM Architecture Example 20

ATM Architecture Pattern 20
ATM Withdraw Cash Process Model 21
ATM Withdraw Cash Process-Pattern Mapping 24

ATM Architecture Example with Services 25
Summary 26

Chapter 4: Reference Architecture 29

Reference Process Model 30
Reference Architecture Pattern 31

Contentsx

Reference Process-Pattern Mapping 32
Applications of Reference Architectures 32
Summary 33

Chapter 5: Architects and Their Roles 35

Business Processes and Organizational Silos 35
Development Processes 36
The Architecture Step 38
The Project Charter 40

Quantifying Business Expectations 40
Establishing Cost and Schedule Expectations 41
Quantifying Business Process Risks 41

The Integration Test Step 42
Architecture Improves Project Schedules 42
The Roles of Project and Enterprise Architects 44
Project Architect Responsibilities 45

Defining the End-to-End Business Process and Systems
Dialog 45

Identifying and Applying Reference Architectures 45
Identifying and Applying Existing Services 46
Identifying New Service Opportunities 46

Enterprise Architect Responsibilities 47
Defining the Target Architecture for the Enterprise 47
Defining a Practical Evolution Strategy 47
Defining Reference Architecture(s) Consistent with the

Target Architecture 48
Guiding Project Teams in Evolving toward the Enterprise

Architecture 48
Directly Participating in Projects Requiring Complex

Designs 49
Train and Mentor Project Architects 49

The Importance of Vision 50
Summary 51

Contents xi

Chapter 6: SCA Concepts and Notation 53

An Example Service Design 54
Components and Composites 55
Services 56
References 57
Component Type 58
Implementation Type 59
Complex Composites 59
Summary 60

PART II: TIBCO Product Architecture 61

Chapter 7: The TIBCO Product Suite 63

Chapter 8: TIBCO Enterprise Message Service™ 67

Enterprise Message Service™ Product Structure 67
Message Delivery Transports 69

Conventional Message Delivery 69
High-Fanout Message Delivery 69
Multicast Message Delivery 70
Enterprise Message Service Feature Highlights 72

Chapter 9: TIBCO ActiveMatrix® 73

The TIBCO ActiveMatrix Product Suite 73
 Basic TIBCO ActiveMatrix Architecture Patterns 74

Implementation Types 75
Binding Types 77
ActiveMatrix Node 78

TIBCO ActiveMatrix Service Bus 78
TIBCO ActiveMatrix Service Grid 81
ActiveMatrix Environments and Administration 82

Perspectives on Run-Time Environments 82
Logical Environments 83
Physical Environments 83

Contentsxii

Administration Organization 84
ActiveMatrix File System Folder Structures 86

ActiveMatrix Solution Life Cycle 88
Deploying SCA Designs on ActiveMatrix Nodes 91

Service and Component Deployment 91
Service, Component, and Reference Deployment 92
Complex Composite 94

TIBCO ActiveMatrix BPM 96
BPM Functional Organization 96
BPM Solution Deployment 98

Summary 98

Chapter 10: TIBCO BusinessEvents™ 101

Complex Event Processing 101
Information Extraction, Caching, and Persistence 103
State Machine Modeling 103
Event Channels 104
Rules and Decisions 105
Queries 105
Visualization 105

BusinessEvents Solution Roles 106
Basic Solution Role of a Complex Event Processor 106
Director Role 106

TIBCO BusinessEvents Product Suite 107
TIBCO BusinessEvents™ Views 108
TIBCO BusinessEvents™ Data Modeling 108
TIBCO BusinessEvents™ Decision Manager 109
TIBCO BusinessEvents™ Event Stream Processing 109

BusinessEvents Solution Deployment 110
BusinessEvents Solution Life Cycle 112
Summary 114

Contents xiii

PART III: Design Patterns with TIBCO ActiveMatrix® 117

Chapter 11: Basic Interaction Patterns 119

Basic Interaction Pattern Overview 120
Example Case Study: A Newspaper 121
In-Only Example and Implementation Options 122
In-Out Example and Implementation Options 123

Synchronous Variation 124
Asynchronous Variations 125

Out-Only Example and Implementation Options 127
Out-In Example and Implementation Options 130
Summary 131

Chapter 12: Event-Driven Interaction Patterns 133

The Pub-Sub Architecture Pattern 134
Queue Semantics 135
Topic Semantics 137
Bridge Semantics 137
Other Sources of Events 139
Summary 139

Chapter 13: ActiveMatrix Policy Framework 141

Aspect-Oriented Design 141
The ActiveMatrix Policy Approach 143
Policies and Policy Sets 144

Policy 144
Policy Sets 144

Policy Set Templates 146
Policy Applicability 148
Policy Enforcement Points 148
Associating Policy Sets with Design Elements 148
Policies That Access External Systems 150
An Example: Implementing a Policy Accessing LDAP 153
Policy Intents 157
Summary 158

Contentsxiv

Chapter 14: Mediation Patterns 161

Straight-Wire Mapping 162
Mediation Flow Design 163
Use Case: Access Control 164
Use Case: Transport Mapping 164

Content Transformation 165
Data Augmentation 166
Routing 168
Mediation Capabilities and Limitations 170
Summary 171

Chapter 15: System Access Patterns 173

Approaches to Accessing External Systems 173
Application Programming Interface (API)

Interaction 174
Database Interaction 174
File-Based Interaction 175
Protocol-Based Interaction 175
The Event Recognition Challenge 175
Combining API and Database Interactions 177

Direct Interaction via ActiveMatrix-Supported
Protocols 177

Indirect Interaction via ActiveMatrix Adapters 179
Direct Interaction via Non-ActiveMatrix-Supported

Protocols 181
General Considerations 182

Database Interactions 182
File Interactions 183

Summary 183

Chapter 16: Two-Party Coordination Patterns 185

Fire-and-Forget Coordination 186
Request-Reply Coordination 187
Delegation 188

Contents xv

Delegation with Confirmation 189
Distributed Transactions 190

Two-Phase Commit 191
Messaging and Transactions 193
Distributed Transaction Limitations 193

Third-Party Process Coordinator 194
Compensating Transactions 195

Approximating a Two-Phase Commit with
Compensating Transactions 195

Compensating Transaction Strengths and
Limitations 195

Summary 197

Chapter 17: Multi-Party Coordination Patterns 199

Multi-Party Fire-and-Forget 200
Multi-Party Request-Reply 200
Multi-Party Delegation with Confirmation 201
Data Validation 202

Types of Validation 202
Where to Validate Impacts Coordination Pattern

Selection 203
Multi-Party Breakdown Detection 205

Adding Feedback to Improve Breakdown Detection 205
Third-Party Process Monitoring 206
Evaluating an Architecture for Breakdown Detection 207

Summary 207

PART IV: Building Solutions 209

Chapter 18: Services 211

Traditional Approach 211
Service-Oriented Architecture (SOA) Approach 212

Standardized Data Semantics: Common Data Models 213
Standardized Operation Semantics 213

Contentsxvi

Benefits of Services 213
Most SOA Benefits Require Service Interface Stability 214
Where Do Services Make Sense? 214
Service Granularity 216
Summary 217

Chapter 19: Solutions 219

Solution Architecture 219
Membership Validation Service 220

Membership Validation Service Requirements 220
Membership Validation Solution Architecture 221

Refinement 224
Process Model Refinement 224
Architecture Pattern Refinement 224
Mapping Refinement 226

Reference Architecture as the Entire Solution 228
Process Model Refinement 228
Architecture Pattern Refinement 230
Mapping Refinement 230

Reference Architecture as a Solution Fragment 231
Architecture Pattern Refinement 232
Mapping Refinement 232

Summary 235

Chapter 20: Beyond Fundamentals 237

Recap 237
Looking Ahead 238

Index 239

xvii

Preface

About This Book

The subject matter for this book lies at the intersection of three very
broad topics: architecture, solutions, and TIBCO products (Figure P-1).
Each of these topics, individually, has been the subject of many vol-
umes. The purpose of this book is to begin to tie these three topics
together in a very pragmatic way, providing a foundation for architect-
ing solutions with TIBCO products.

This book is not intended to provide a comprehensive introduc-
tion into any one of the three broader topic areas. Nevertheless, some
coverage of these topics is a necessary prerequisite to discussing the
specifics of architecting solutions with TIBCO products. Part I pro-
vides an introduction to some of the essential concepts of architecture.
Part II provides a cursory overview of the TIBCO product stack and
explores the architecture of some of the most broadly used products,

Solutions

Architecture
TIBCO

Products

TIBCO®

Architecture
Fundamentals

Figure P-1: Subject Matter for TIBCO® Architecture Fundamentals

Prefacexviii

emphasizing information not readily found in the individual product
manuals. Part III takes a bottom-up approach to exploring the most
basic and commonly found design patterns used in architecting solu-
tions with TIBCO products. Part IV begins the discussion of services
and solutions, emphasizing the application of the design patterns dis-
cussed earlier.

Solutions built with TIBCO products tend to be distributed solu-
tions involving multiple systems, multiple data stores, and multiple
business processes along with the people participating in those busi-
ness processes. Thus, the discussion in this book covers the structure
and organization of both the participants and the work being per-
formed, with particular emphasis on the mapping of the work onto the
participants.

TIBCO® Architecture Fundamentals lays the groundwork for archi-
tecting these systems. Part I provides simple working definitions for
architecture and reference architecture. It discusses the roles to be
played by project and enterprise architects, and the measurable reduc-
tion in project duration (up to 25%) that can be achieved by paying
appropriate attention to architecture. Part II discusses the organization
of the major TIBCO products and describes how solutions progress
from design into production. Part III uses design patterns to explore
dozens of design choices defining how people and systems can interact
and coordinate their work. Part IV examines solution architecture,
exploring the notion of services and discussing how reference architec-
tures can be applied when building solutions.

TIBCO Architecture Book Series

As the first book in a series, TIBCO® Architecture Fundamentals only
begins the discussion of architecting solutions with TIBCO products
(Figure P-2). It lays the foundation for architecting TIBCO-based solu-
tions and serves as a common foundation for the series. Each of the
more advanced books explores a different style of solution, all based on
TIBCO technology. Each explores the additional TIBCO products rele-
vant to that style of solution. Each defines larger and more specialized
architecture patterns relevant to the style, all built on top of the founda-
tional set of design patterns presented in this book.

Preface xix

Intended Audience

TIBCO® Architecture Fundamentals is written for architects and lead
engineers designing solutions in which TIBCO products play a signifi-
cant role. Enterprise architects will also gain some insight as to how
they can employ reference architectures to document design patterns.
Such reference architectures give voice to their design intent and serve
to efficiently give direction to project teams.

To derive maximum benefit from this book, it is useful for the reader
to already have some familiarity with the TIBCO product set. The pro-
vided overview of the major TIBCO products and their organization is
supplementary and is intended to augment the information contained
in the product manuals.

Throughout this book the majority of the diagrams employ UML
notations, particularly Class, Activity, and Composite Structure dia-
grams, with occasional use of other UML notations. For the most part,
the meaning of these diagrams should be intuitively obvious, and thus
a formal understanding of the UML notation is not a requirement for
reading this book. On the other hand, the UML notations have a for-
mality and precision that, when properly understood, allow the reader
to extract even more information from the diagrams. The Unified
Modeling Language Reference Manual, Second Edition,1 is an excellent ref-
erence in this regard.

1. James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling Language
Reference Manual, Second Edition, Boston: Addison-Wesley (2004).

TIBCO® Architecture Fundamentals

Architecting Composite Applications
and Services with TIBCO®

Architecting Complex Event Processing
Solutions with TIBCO®

Architecting BPM Solutions with TIBCO®

Figure P-2: Initial TIBCO Architecture Book Series

Prefacexx

Detailed Learning Objectives

After reading this book, you should be able to:

• Explain the design perspective required for modern IT projects and
the concepts of total architecture, architecture, and reference
architecture

• Predict the positive impact that architecture can have upon project
duration, and explain the roles of project and enterprise architects
in achieving this benefit

• Explain the basic SCA concepts and read an SCA diagram
• Describe the core TIBCO products: TIBCO Enterprise Message Ser-

vice™, TIBCO ActiveMatrix® Service Bus, TIBCO ActiveMatrix® Ser-
vice Grid, TIBCO ActiveMatrix® BPM, and TIBCO Business Events™

• Select appropriate design patterns for basic system interactions and
identify and select the appropriate TIBCO products to be used

• Outline the capabilities of policies in TIBCO ActiveMatrix Service
Bus

• Select appropriate design patterns for mediation, external system
interaction, and coordination of activities

• Explain the concept of a service and the criteria for deciding when
an investment in a service is warranted

• Explain how a solution architecture should be characterized and
how reference architectures can be applied to the building of
solutions

Organization of the Book

The book is structured into four parts, as shown in Figure P-3. Part I
covers foundational concepts: architecture, reference architecture, solu-
tion architecture, the role of architects, and Service-Component
Architecture (SCA). The discussions in this portion of the book are rela-
tively abstract (high level) and technology independent.

Part II covers the architecture of the most commonly used TIBCO
products: TIBCO Enterprise Message Service (EMS), the TIBCO Active-
Matrix product suite, and TIBCO BusinessEvents. The discussions in

Preface xxi

this section are technology specific and detailed, getting into the prod-
uct structure and architecture. Although the discussions are specific to
the current version of the products (TIBCO Enterprise Message Service
6.x, TIBCO ActiveMatrix Service Bus and Service Grid 3.x, TIBCO

«structured»
Part I: Concepts

Service
Component
Architecture

(SCA)

«structured»
Part IV: Building Solutions

Applying Reference
Architectures

«structured»
Part II: TIBCO Product

Architecture

TIBCO BusinessEvents Solution Architecture

Refinement

Services

«structured»
Part III: Design Patterns

with TIBCO ActiveMatrix®

Participant
Coordination

Interaction
Patterns

Event-Driven
Interactions

Policies

Mediation

System Access

TIBCO Enterprise
Message Service (EMS)

TIBCO ActiveMatrix
Product Suite

Architects and
Their Roles

Reference
Architecture

Architecture

Figure P-3: Book Structure

Prefacexxii

ActiveMatrix BusinessWorks 5.9, TIBCO ActiveMatrix BPM 1.x, and
TIBCO BusinessEvents 4.x), most of the discussions will remain valid
as these products evolve. Most product changes will result in augmen-
tations rather than alterations.

Part III examines foundational design patterns: interactions between
pairs of components, event-driven interactions, policies, mediation,
external system access, and the coordination of activities. The discus-
sions in this section are a mixture of technology-neutral design patterns
and product-specific implementation choices for these patterns. Some
discussions, particularly those surrounding policies, get quite detailed.

Part IV looks at building solutions, examining the concept of ser-
vices, building solutions through the process of refinement, and apply-
ing reference architectures (design patterns). The discussions in this
section are, once again, abstract (high level) and technology independent.

The book is intended to be read linearly, but there is some flexibility
in this. Parts I and II can be read independently, but the discussions in
Part III require an understanding of both prior parts. Part IV can be
read after Part I, but the reader will find its discussion more compelling
if Parts II and III have been read first.

xxiii

Acknowledgments

Presenting material that touches on as many topics as this book does is,
to say the least, challenging. This book series, and in fact the entire
approach to presenting the material, would never have occurred with-
out the persistent combination of challenge and encouragement pro-
vided by Michael Fallon, Madan Mashalkar, and Alan Brown over the
past decade. Through them I have learned a great deal about both the
challenges and techniques of knowledge transfer.

The design patterns presented in this book are a synthesis of the
collective experience of the TIBCO global architects with whom I
have worked over the years: Dave Ashton, Pong-Ning Ching, Richard
Flather, Ben Gundry, Nochum Klein, Dave Leigh, Marco Malva, and
Janet Strong. It is through their collaboration and the efforts of the
other field architects that these patterns have been explored, refined,
and tested.

I have received much support from TIBCO Software Inc. in the pro-
duction of this book. For this I would like to thank Wen Miao, Paul
Asmar, Jan Plutzer, and Murray Rode.

Many people reviewed the draft manuscript and provided valuable
feedback. Comments from Bert Hooyman, Ignacio Silva-Lepe, and Lee
Kleir led to significant improvements in the structure and content of
the book. Feedback from Jose Carlos Estefania Aulet, Michael Blaha,
Massimiliano Bonaveri, Antonio Bruno, Lloyd Fischer, Alex Garrison,
Yuri Gogolitsyn, Jose Maria Lopez Higuera, Brian Hinsley, Alexandre
Jeong, James Keegan, Joseph Meyer, Alexander Orsini, Mohan Sidda,
Mark Shelton, and Moritz Weinrich helped to further refine the con-
tent. I thank you all for your support.

Finally, I would like to thank my wife, Maria, for supporting me in
the writing of yet another book. Without her support, nothing is possible.

This page intentionally left blank

xxv

About the Author

Dr. Paul C. Brown is a principal software architect
at TIBCO Software Inc., author of Succeeding with
SOA: Realizing Business Value Through Total Archi-
tecture (Addison-Wesley, 2007) and Implementing
SOA: Total Architecture In Practice (Addison- Wesley,
2008), and a coauthor of the SOA Manifesto (soa-
manifesto.org). His model-based tool architectures

are the foundation of a diverse family of applications that design dis-
tributed control systems, process control interfaces, internal combus-
tion engines, and NASA satellite missions. Dr. Brown’s extensive design
work on enterprise-scale information systems led him to develop the
total architecture concept: Business processes and information systems
are so intertwined that they must be architected together. Dr. Brown
received his Ph.D. in computer science from Rensselaer Poly technic
Institute and his BSEE from Union College. He is a member of IEEE
and ACM.

This page intentionally left blank

119

Chapter 11

Basic Interaction
Patterns

This chapter examines the simplest possible interactions between two
parties. The architecture pattern for these discussions (Figure 11-1) is,
as you would expect, trivial. It consists of the two parties, here referred
to as the service consumer and service provider. Despite the fact that
we are referring to services, the patterns being discussed can be gener-
alized to represent any interactions between two parties.

The examination of interactions will consider four of the most com-
mon ActiveMatrix protocol and transport options: SOAP over HTTP,
SOAP over JMS, SOAP over ActiveMatrix Virtualization, and XML
over JMS.

Protocoal/Transport Options:

SOAP/HTTP
SOAP/JMS
SOAP/AMX Virtualization
XML/JMS

Service Consumer Service Provider

Figure 11-1: Architecture Pattern for Two-Party Interactions

Chapter 11 Basic Interaction Patterns120

Basic Interaction Pattern Overview

There are four basic message exchange patterns between the two par-
ties: In-Only, In-Out, Out-Only, and Out-In. The In-Only pattern is
shown in Figure 11-2. In it, the service consumer sends a single mes-
sage to the service provider and expects no response. The intent is gen-
erally that the arrival of the input will trigger the service provider to do
something useful. Common examples of this pattern include e-mails
and text messages.

The In-Out pattern (Figure 11-3), also referred to as the request-
reply pattern, is a simple extension of the In-Only pattern that adds a
response (the output) from the service provider. Here the intent is a bit
more explicit: The service consumer provides the input and expects the
arrival of the input to trigger the service provider to do something and
then send a response. This is the pattern you encounter when you exe-
cute a search online: You submit the search terms (the input) and expect
a list of “hits” as a response (the output).

The Out-Only pattern (Figure 11-4) is very similar to the In-Only
pattern, the distinction being that the single message is an output going
from the service provider to the service consumer. Common examples
of this pattern include announcements of various sorts. It is common in
this pattern for there to be many service consumers for a given input
(this will be discussed further in Chapter 12). When the service pro-
vider is a system of record for some information, this pattern is suitable
for announcing changes to this information.

: Service Consumer : Service Provider

1: Input

Figure 11-2: In-Only Pattern

: Service Consumer : Service Provider

1: Input

2: Output

Figure 11-3: In-Out Pattern

Example Case Study: A Newspaper 121

The Out-In pattern (Figure 11-5) extends the Out-Only pattern to
include a response back to the service provider. A common example of
this is an automobile recall notice: The manufacturer sends you a noti-
fication that there is a defect in your automobile that requires correc-
tion. The manufacturer expects a response from you to schedule an
appointment and get the defect corrected. Another example is an offer
that requires a response.

Example Case Study: A Newspaper

To illustrate these four interaction patterns and their implementation
options we will use a simple example based on a newspaper business
(Figure 11-6). In this example there are three participants: the newspa-
per itself, a party acting as a news source, and a customer of the
newspaper.

We will examine four use cases (processes) involving these
participants:

• The news source delivering a news tip to the newspaper (In-Only)
• The customer subscribing to the newspaper (In-Out)
• The newspaper sending the news electronically to the customer

(Out-Only)
• The newspaper sending an offer to the customer that requires a

response (Out-In)

: Service Consumer : Service Provider

1: Output

Figure 11-4: Out-Only Pattern

: Service Consumer : Service Provider

1: Output

2: Input

Figure 11-5: Out-In Pattern

Chapter 11 Basic Interaction Patterns122

In-Only Example and Implementation Options

The In-Only example from the newspaper is the news source sending a
news tip to the newspaper (Figure 11-7). Here the news source invokes
a receiveTip() operation provided by the newspaper’s service
interface.

If you were to implement both the news source and the newspaper
as ActiveMatrix components and indicate the news source’s reference
of the newspaper’s service, the result would be a design similar to that
shown in Figure 11-8.

For this design you have four transportation options in ActiveMatrix:

• SOAP over HTTP
• SOAP over JMS

News Source Newspaper Customer

Figure 11-6: Newspaper Example Architecture Pattern

News Source Newspaper

receiveTip

(Recipient Interface::)

theTip

send tip Tip

Figure 11-7: Send Tip Process

Figure 11-8: ActiveMatrix Design for Send Tip Process

In-Out Example and Implementation Options 123

• SOAP over ActiveMatrix Virtualization
• XML over JMS

The first of these options uses HTTP as a transport. The implication is
that both parties need to be active simultaneously in order for an inter-
action to occur. The SOAP over JMS and XML over JMS options, because
they use a JMS server as a communications intermediary, make it pos-
sible for the news source to send the tip when the newspaper is not
actively receiving communications. The JMS server will forward the
message when the newspaper becomes active.

Despite the fact that ActiveMatrix Virtualization also uses JMS as
its underlying communications mechanism, it will not be able to for-
ward a message if the newspaper is not active at the time it is sent. For
an explanation, see the “ActiveMatrix Virtualization Transport
Limitations” sidebar.

There are five implementation types that would be appropriate for
the News Source: TIBCO ActiveMatrix BusinessWorks, Java, C++,
Spring, and WebApp. There are four that would be appropriate for the
Newspaper: BusinessWorks, Java, C++, and Spring. Note that WebApp
would not be appropriate since its input is just the raw HTTP
protocol.

ActiveMatrix Virtualization Transport Limitations
When the ActiveMatrix Virtualization transport is used, ActiveMatrix determines
the routing between the service consumer and service provider. If the two parties
are on different nodes (or if directed by policy), this communication will occur via
the JMS server being automatically administered by ActiveMatrix.

When both parties are active, the communications will occur as expected.
However, when one or both parties are stopped or undeployed, or the node is
stopped, the JMS destination being used for communications between them will
be destroyed and any pending messages will be lost.

In-Out Example and Implementation Options

There are two variations on the In-Out pattern: synchronous and asyn-
chronous. In the synchronous pattern, the service consumer (the
Subscriber in the example) waits for the response from the service pro-
vider (the Newspaper). In the asynchronous variation, the service

Chapter 11 Basic Interaction Patterns124

consumer does not have to wait for the response. Since there are signifi-
cant differences between these variations in both behavior and imple-
mentation options, they will be discussed separately.

Synchronous Variation

The subscribe In-Out process, implemented as a synchronous interaction,
is shown in Figure 11-9. The subscriber is invoking the subscribe()
operation on the newspaper, sending a SubscribeRequest and
expecting a SubscribeResponse in return. In the synchronous vari-
ation, the subscriber is actively waiting for the response.

If both subscriber and newspaper were to be implemented as
ActiveMatrix components, the result would be a design similar to
Figure 11-10.

For this design you have four transportation options in ActiveMatrix:

• SOAP over HTTP
• SOAP over JMS
• SOAP over ActiveMatrix Virtualization
• XML over JMS

For this synchronous variation, the assumption is that both parties are
active for the duration of the exchange. The loss of communications or

Newspaper

subscribe
(Subscription Interface::)

subscribeMessage

request
subscription

wait for
response

Subscriber

: SubscribeResponse

: SubscribeRequest

This control flow
indicates a
synchronous
response.

Figure 11-9: Synchronous Subscribe Process

In-Out Example and Implementation Options 125

the restart of either party may cause exceptions, and both parties should
be designed to handle these exceptions gracefully.

There are five implementation types that would be appropriate for
the subscriber: BusinessWorks, Java, C++, Spring, and WebApp. There
are four that would be appropriate for the Newspaper: BusinessWorks,
Java, C++, and Spring. Note that WebApp would not be appropriate
since its input is just the raw HTTP protocol.

Asynchronous Variations

There are actually two asynchronous variations for a request-reply
exchange. One is the checkpoint pattern shown in Figure 11-11. In this
pattern the requestor does not necessarily wait for the reply, but gener-
ally must take steps to ensure that, when the reply arrives, it is in a
position to handle it. This generally means creating a checkpoint, a

Figure 11-10: ActiveMatrix Design for Subscribe Process

Subscriber

request service and create
recoverable checkpoint

(optional)
suspend
process

resume
process and

handle
response

perform service

subscribeMessage

Newspaper

checkpoint

: Response

: Request

Figure 11-11: Checkpoint Asynchronous In-Out Pattern

Chapter 11 Basic Interaction Patterns126

recoverable snapshot of the requestor’s state. In addition, the requestor
(in this case the Subscriber) must be implemented in such a way that,
should the requestor be halted for any reason, it is resurrected from the
checkpoint and is ready to receive the response. Optionally, the process
may be suspended to free up resources while waiting for the response.

The checkpoint asynchronous In-Out pattern is typically used
when the performance of the requested service is expected to take sig-
nificant time (minutes or longer). The idea is that, because of the long
wait, there is a reasonable possibility that the requestor may be inter-
rupted and you do not want the interruption to adversely impact the
execution of the business process. Note, however, that this pattern ties
up some resources for each outstanding request.

The other major variation is the third-party asynchronous In-Out
pattern shown in Figure 11-12. Here the response is handled by a third
party, either a different thread in the requesting process or a completely
independent application. In this case there is usually a need for some
additional communications between the party sending the request and
the party receiving the response.

This additional communication conveys the context information
required to handle the response. The content of this context varies from
solution to solution, but typically includes information such as:

• Notification that there is an outstanding request. This information
(in conjunction with a response-time SLA) enables the response
handler to determine when responses are missing or overdue.

Subscriber

Response ThreadRequest Thread

request service

perform service

subscribeMessage

process
response

Newspaper

«datastore»
context information

: Request

: Response

Figure 11-12: Third-Party Asynchronous In-Out Pattern

Out-Only Example and Implementation Options 127

• An identifier for the request that will be returned as part of the
response. This allows the response handler to correlate a particular
request-response pair.

• Information about the nature of the request needed to properly
handle the response. This can be the information itself or a refer-
ence to a location (database, file, etc.) in which this information can
be found.

The communication of the context information is a design task that
should not be overlooked when selecting this pattern. It always requires
design and implementation work.

At present the only transport in ActiveMatrix that can support
these asynchronous interaction patterns is XML over JMS. When using
this transport, the JMSCorrelationID should be used in the request to
uniquely identify the request. The value for this field is provided by the
requestor and should be returned in the JMSCorrelationID field of
the response. Also required is the JMSReplyTo field in the request. Its
value should indicate the JMS destination to which the response should
be sent.

There are four implementation types that would be appropriate for
the subscriber: BusinessWorks, Java, C++, and Spring. The Business
Works implementation type is particularly well suited to implementing
the request side (e.g., the subscriber) of the checkpoint asynchronous
In-Out pattern, as all the mechanisms required for checkpoint ing and
recovery are provided as part of the product. There are four that would
be appropriate for the Newspaper: BusinessWorks, Java, C++, and
Spring. Note that WebApp would not be appropriate for either role
since its input is just the raw HTTP protocol.

Out-Only Example and Implementation Options

The process for delivering the newspaper is shown in Figure 11-13.
This Out-Only interaction is inherently asynchronous—the Subscriber
is not actively waiting for the paper to be delivered.

The only ActiveMatrix transport that can support this pattern today
is XML over JMS.

Chapter 11 Basic Interaction Patterns128

The Out-Only pattern is, unfortunately, not well represented in the
current version of the SCA notation.1 The closest you can come in the
present notation is the design shown in Figure 11-14. There are two
problems with this representation. One is that the diagram implies that
it is the subscriber providing the service and the newspaper referenc-
ing the service, when in reality the opposite is true. The other is that, for
most publications, it is unlikely that the wiring between the Out-Only
service provider and service consumer would be done at design time.
In other words, it is unlikely that you would ever show both the service
provider and service consumer in the same SCA composite. Instead,
this wiring would be done either at deployment time or at run time.

What you would create in ActiveMatrix today (until such time as
the SCA Event Processing Specification is completed) is a composite
containing just the service provider (Figure 11-15). Note that the

1. The SCA Event Processing Specification is presently under development (see www.
osoa.org).

Newspaper

deliver paper

Result

Subscriber

receive paper

Paper

create paper

Figure 11-13: Deliver Paper Process

Figure 11-14: Inappropriate Attempt to Represent Out-Only Pattern in Present
SCA Notation

www.osoa.org
www.osoa.org

Out-Only Example and Implementation Options 129

composite shows a reference to the service; the reason is that when you
generate implementations, references generate outbound calls, which
is consistent with the design intent. This structure (the component ref-
erencing the service) can be incorporated into any composite wishing
to send Out-Only notifications.

Similarly, you would create the service consumer as a composite
with a promoted service (Figure 11-16). From an implementation per-
spective, this is appropriate since, when you generate the implementa-
tion, the generated structure will be appropriate for an inbound call.
This structure (the service and its association with a component) can be
incorporated into any composite that wishes to receive Out-Only noti-
fications from a service provider.

There is a bit of hidden JMS administrative configuration required
to connect the two parties in this pattern. The JMS destination must be
created (or the JMS server must be configured to auto-create destina-
tions), and both parties must be configured to use the same destination.
This is generally straightforward when the configuration is done at
deployment time, but dynamic connection at runtime will require extra
design work. For example, if you wanted to have a subscriber dynami-
cally create the subscription, the subscribe() operation would have
to return the JMS destination and the subscriber would have to have
code to alter its configuration to receive messages from this
destination.

Figure 11-15: SCA Approximation of an Out-Only Service Provider

Chapter 11 Basic Interaction Patterns130

There are five implementation types that would be appropriate for
the newspaper: BusinessWorks, Java, C++, Spring, and WebApp. There
are four that would be appropriate for the subscriber: BusinessWorks,
Java, C++, and Spring. Note that WebApp would not be appropriate
for the subscriber since its input is just the raw HTTP protocol.

Out-In Example and Implementation Options

The process of the newspaper making an offer to a subscriber and then
handling the response is shown in Figure 11-17. The interactions here
are, by definition, asynchronous: Neither party is actively waiting for
an input. Furthermore, the service provider (the newspaper) will likely
have separate threads (or applications) for sending the offers and pro-
cessing the responses. Consequently, there will likely be a need to com-
municate context information between these two threads as was
discussed in the earlier asynchronous In-Out example.

As with the Out-Only pattern, the only suitable protocol and trans-
port combination available in ActiveMatrix is XML over JMS. The SCA
design would be similar to that discussed in the Out-Only example,
and the JMSCorrelationID and JMSReplyTo properties would have to
be used as described in the Asynchronous In-Out example.

Figure 11-16: SCA Approximation of an Out-Only Service Consumer

Summary 131

There are five implementation types that would be appropriate for
the newspaper: BusinessWorks, Java, C++, and Spring. There are four
that would be appropriate for the subscriber: BusinessWorks, Java,
C++, and Spring. Note that WebApp would not be appropriate for
either role since its input is just the raw HTTP protocol.

Summary

There are four basic message exchange patterns between two parties:
In-Only, In-Out, Out-Only, and Out-In. The In-Only pattern and the
synchronous variation of the In-Out pattern have many protocol and
transport options in ActiveMatrix, including SOAP over HTTP, JMS,
and ActiveMatrix Virtualization as well as XML over JMS. The
BusinessWorks, Java, C++, Spring, and WebApp implementation types
are all suitable for the service-consumer side of these interactions, while
the BusinessWorks, Java, C++, and Spring implementation types are
appropriate for the service-provider side.

The asynchronous variation of the In-Out pattern and the Out-Only
and Out-In patterns all involve asynchronous interactions. At present,
the only suitable protocol and transport combination in ActiveMatrix
for asynchronous interactions is XML over JMS. For the asynchronous
In-Out and Out-In, the JMSCorrelationID and JMSReplyTo properties

Newspaper

Offer Response ProcessingOffering

process
response

Offer Response

Offer

Subscriber

respond to
offer

make offer context information

Response

Offer

Figure 11-17: Make Offer Process

Chapter 11 Basic Interaction Patterns132

should be used to correlate the request and reply messages and indi-
cate the JMS destination to which the replies should be sent. For these
patterns, the BusinessWorks, Java, C++, and Spring implementation
types are all suitable for both parties.

239

Index

A
Abstraction. See Reference architecture
Access control

Aspect-Oriented Design considera-
tions, 141–143

direct interaction via ActiveMatrix-
supported protocols and, 178

policy enforcement points in, 78–79,
148

standardizing using services, 212
straight-wire mapping mediation

pattern and, 164
Accidental architecture, 7
ActiveMatrix adapters, 178–179
ActiveMatrix composite implementation

type, 76
ActiveMatrix hosts

administration organization of, 84–86
architecture pattern and, 88–89
configuration folder, 87
creating with TIBCO Configuration

Tool, 86–87
folders for, 87
overview of, 80
physical environment, 83–84
SOAP over ActiveMatrix Virtualiza-

tion used only with, 178
solution life cycle and, 88–91

ActiveMatrix nodes
deploying SCA designs on, 91–96
enforcing policies in, 148, 159
example of, 78–79
within internal structure, 74–75
in logical environments, 83–84
overview of, 78
in physical environments, 83–84
as Service Bus element, 80

ActiveMatrix policy framework
accessing external systems, 150–153

accessing LDAP, 153–157
approach to, 143–144
Aspect-Oriented Design, 141–143
associating policy sets with design

elements, 148–150
policy applicability, 148
policy enforcement points, 148
policy intents, 157–158
policy set templates, 146–148
policy sets, 144–146
summary review, 158–159

ActiveMatrix Virtualization transport,
123

Activities
ATM withdraw cash process exam-

ple, 21–22
implementing in parallel, 23–24
process-pattern mapping, 18–19
structuring through process models,

13–16
Adapter binding type, 77
Adapter SDK, TIBCO®, 180–181
Adapters. See TIBCO ActiveMatrix

adapters
Add Resource dialog, policy in LDAP,

155–156
Administration

stand-alone EMS tool for, 69
using Administrator. See TIBCO

ActiveMatrix® Administrator
Advice, in Aspect-Oriented Design, 142
Agile development process, 37
AMX hosts. See ActiveMatrix hosts
Announcements

bridge delivery semantics for,
137–138

Out-Only message pattern, 120–121
requests vs., 133
topic delivery semantics for, 137

Index240

API (application programming
interface)

accessing external systems, 174
combining Database interactions

with, 177
Application program, two-phase

commit transactions, 191–193
Applications

policy, 148
reference architecture, 32–33

Architects
architecture and, 7
maintaining total perspective, 11
project vs. enterprise, 7–8

Architects, roles of
avoiding policeman approach, 40
business processes and organiza-

tional silos, 35–36
creating architecture steps, 38–39
development processes, 36–37
enterprise architects, 47–49
importance of vision, 50–51
improving project schedules, 42–44
integration test step, 42
project architects, 44–46
project charter, 40–42
summary review, 51–52

Architecture, aspects of
architecture patterns, 17–18
ATM architecture example, 20–25
ATM architecture example with

services, 25–26
overview of, 13
process models, 13–16
process-pattern mapping, 18–19
reasons to care about architecture,

19–20
summary review, 26–27

Architecture concepts
architects. See Architects
business process management, 5–6
collaborative business process design

focus, 5
service-oriented architecture design

focus, 3–5
summary review, 8
system-centric design focus of past,

3–4

Architecture patterns
accessing external systems, 151
ActiveMatrix administrative, 88–89
data augmentation, 166–167
data transformation, 165–166
direct interaction via ActiveMatrix-

supported protocols, 178
evaluating for breakdown detection,

207–208
mediation, 161
Membership Validation Service, 222
multicast message delivery, 69–71
overview of, 17–18
process-pattern mapping. See

Mapping, process-pattern
pub-sub, 134–135
reference, 31–33
reference architecture used as entire

solution, 230
reference architecture used as

fragment of, 232
routing, 168–169
sketch of, 13–14
solution architecture, 219, 224–226
straight-wire mapping, 162
system-initiated direct interaction via

non-ActiveMatrix protocol,
181–182

system-initiated indirect interaction
via adapters, 179

TIBCO ActiveMatrix®, 74–78
TIBCO BusinessEvents deployment,

111
TIBCO BusinessEvents™ life cycle, 113
two-party interactions, 119
why you should care about, 19–20

Architecture, solution. See Solution
architecture

Architecture step, 37–39
Architecture vision, of enterprise

architect, 47
Aspect-Oriented Design, 141–143
Asynchronous delegation with confir-

mation pattern, 189–190
Asynchronous In-Out message pattern,

125–127
Asynchronous Out-In message pattern,

130–131

Index 241

Asynchronous request-reply coordina-
tion, 188

ATM (automated teller machine)
architecture example

architecture pattern, 20–21
architecture pattern refinement,

224–226
Aspect-Oriented Design in, 141–142
defined, 20
process-pattern mapping after

refinement, 226–228
with services, 25–26
withdraw cash process model, 21–24
withdraw cash process-pattern

mapping, 24–25
Authentication

ATM withdraw cash process exam-
ple, 21–22

EMS supporting JAAS for, 72
Service Bus policy templates for, 147
using policies for, 144

Authorization
ATM withdraw cash process exam-

ple, 21–22
disbursal, 24–25
EMS supporting JAAS and JACI for,

72
Service Bus policy templates for, 147
using policies for, 144

Automated teller machine. See ATM
(automated teller machine)
architecture example

Automobile recall notice example,
Out-In pattern, 121

B
Back-end systems

in architecture step, 38–39
placing validation in, 204

Balancing Agility and Discipline: A Guide
for the Perplexed (Boehm and
Turner), 37

Basic route, mediation flow, 169
Behavior, addressing concern in design

with, 142
Binding types, 77, 80
BPM (business process management).

See also TIBCO ActiveMatrix® BPM

business processes and organiza-
tional silos, 35–36

design focus, 5–6
TIBCO product suite for, 64–65

BPM composite, TIBCO ActiveMatrix®

BPM, 98
Breakdown detection, multi-party

adding feedback to improve, 205
coordination patterns, 205–208
delegation with confirmation pattern,

201–202
evaluating architecture, 207–208
request-reply confirmation pattern,

200–201
third-party process monitoring for,

206–207
Breakdown detection, two-party

compensating transactions, 195
delegation pattern, 189
impossible with fire-and-forget

coordination, 186
overview of, 185
request-reply confirmation pattern,

187
Bridge semantics, event-driven interac-

tion patterns, 137–138
Browser-based interfaces, TIBCO

ActiveMatrix® BPM, 97
Business expectations, project charter,

40–42
Business process management. See BPM

(business process management);
TIBCO ActiveMatrix® BPM

Business processes
in architecture step, 38–39
collaborative, 5
identifying in solution architecture,

219
Membership Validation solution

architecture, 221–222
organizational silos and, 35–36
project architect responsibilities, 45
project charter quantifying risks in,

41–42
scope of total architecture, 9–11
TIBCO product suite for, 64

Business Studio. See TIBCO Business
Studio™

Index242

Business Works. See TIBCO
 ActiveMatrix™ BusinessWorks™

BusinessEvents. See TIBCO
BusinessEvents™

BWSE (TIBCO Business Works™ Service
Engine), 76

C
C++ implementation type

defined, 75
TIBCO ActiveMatrix® Service Grid

and, 81–82
TIBCO supporting, 56

C programming language, EMS client
library for, 68–69

C# programming language, EMS client
library for, 68–69

Categories, Service Bus policy tem-
plates, 147–148

Central Administration server, 69
Change Data Capture, 177
check order status

process model, 15–16
process-pattern mapping, 18

Checkpoint asynchronous In-Out
pattern, 125–126

Cloud platform, TIBCO product suite
for, 64

COBOL, EMS client library for, 68–69
Collaborative business processes, 5–6
Combining API and database interac-

tions, 177
Communication

of architectural vision, 50–51
TIBCO Architecture Fundamentals, 63

Compensating transactions, 195–197
Complex composites, SCA, 59–60, 94–96
Complex designs, and enterprise

architect, 49
Complex event processing,

BusinessEvents
basic solution role of, 106
capturing technical events in, 138
defined, 65
event channels, 104–105
information extraction, caching and

persistence, 103
overview of, 101–102

queries, 105
rules and decisions, 105
state machine modeling, 103–104
visualization, 105

Component type, SCA, 58–59
Components

administrator, 86
TIBCO ActiveMatrix® BPM, 98
TIBCO Enterprise Message Service™,

67–69
Components, SCA

deploying SCA designs on Active-
Matrix nodes, 91–94

overview of, 55–56
with reference, 57–58
services, 56–57
summary review, 60

Composites, SCA
ActiveMatrix composite implementa-

tion type, 76
associating policy sets with, 154–155
BPM solution, 98
complex, 59–60
components contained within, 55–56
mediation flow in, 162
with promoted services, 56–57
summary review, 60
TIBCO Active Matrix product suite

for, 64–65
Concerns

Aspect-Oriented Design addressing,
141–142

Service Bus policies addressing,
143–144

Configuration folder, ActiveMatrix,
86–87

Content transformation, mediation,
165–166, 171

Conventional delivery, TIBCO Enter-
prise Message Service™, 69–70

Coordination patterns
multi-party. See Multi-party coordi-

nation patterns
two-party. See Two-party coordina-

tion patterns
Cost, business expectations for project, 41
Credential mapping, Service Bus policy

templates for, 148

Index 243

Credential server keystore, administra-
tor, 86

Credentials, ATM withdraw cash
process, 21–22

Crosscutting concern, in Aspect-
Oriented Design, 141–142

D
DAA (distributed application archive),

89–90, 151
Data augmentation, mediation, 166–168,

171–172
Data transformation mediation flow,

165–166
Data validation, multi-party coordina-

tion patterns, 202–205
Database

administrator, 86
implementing two-phase commit

transactions with, 191
Database adapter, 176, 182–183
Database interactions

accessing external systems, 174–175
combining API interactions with, 177
strategies for, 182–183

Database triggers, 174, 176–177
Delegation pattern, two-party coordina-

tion, 188–189, 198
Delegation with confirmation pattern

multi-party, 201–202
two-party, 189–190

Design focus
of business process management, 5–6
of collaborative business processes, 5
of service-oriented architecture, 3–5
system-centric, 3–4
why you should care about architec-

ture, 19–20
Design patterns, TIBCO ActiveMatrix®

basic interaction. See Interaction
patterns

event-driven interaction. See Event-
driven interaction patterns

mediation. See Mediation patterns
overview of, 117
policy framework. See ActiveMatrix

policy framework

system access. See System access
patterns

two-party coordination. See Two-
party coordination patterns

Development processes, 36–37
Direct interaction

with databases, 182–183
with files, 183
via ActiveMatrix-supported proto-

cols, 178
via non-ActiveMatrix-supported

protocols, 181–182
Director role, BusinessEvents, 106–107
Disbursal authorization, process-pattern

mapping, 24–25
Distributed application archive (DAA),

89–90, 151
Distributed systems, TIBCO products

for, 63
Distributed transactions

limitations of, 193–194
messaging and, 193
overview of, 190–191
summary review, 198
two-phase commit protocol, 191–193

Documentation
advantages of, 27
project architect responsibilities, 45
reference architecture advantages, 33

Dynamic routing, mediation flow,
169–170

E
E-mails, In-Only pattern, 120
EJB binding type, 77
EJBs (enterprise java beans), 77
EMS (Enterprise Message Service). See

TIBCO Enterprise Message
Service™ (EMS)

EMS servers
ActiveMatrix architecture pattern,

88–89
administration, 69, 86
EMS client libraries interacting with,

68–69
overview of, 67–68
as Service Bus element, 80

Index244

End-to-end business process, defined by
project architect, 45

Enterprise architects
overview of, 7–8
responsibilities of, 47–49
role of, 44

Enterprise java beans (EJBs), 77
Enterprise Message Service. See TIBCO

Enterprise Message Service™

(EMS)
Environments, TIBCO ActiveMatrix®,

82–84
ETL (extract-transform-load) interac-

tions, 176
Event collector, TIBCO ActiveMatrix®

BPM, 97
Event-driven interaction patterns

bridge semantics, 137–138
defined, 134–135
other sources of events, 139
overview of, 133–134
pub-sub architecture pattern,

134–135
queue semantics, 135–136
summary review, 139
topic semantics, 137

Events. See TIBCO BusinessEvents™

Evolution strategy, enterprise architect
defining, 47–48

Execution environment, AMX, 89
External reference checks, data valida-

tion, 203–205
External systems, accessing

API interaction, 174
combining API and Database

interactions for, 177
database interaction, 174–175
direct interaction via ActiveMatrix-

supported protocols, 177–178
event recognition challenge, 175–177
file-based interaction, 175
indirect interaction via ActiveMatrix

adapters, 179–181
overview of, 173–174
policies for, 150–153
protocol-based interaction, 175

Extract-transform-load (ETL) interac-
tions, 176

F
Failures, transaction. See also Breakdown

detection, 193–194
Fault mapping, mediation flow design,

163–164
Fault tolerance, EMS servers for, 67–68
Feedback, improving breakdown

detection with, 205–206
File Adapter, 183
File-based interactions

accessing external systems, 175
overview of, 183

File system folder structure, Active-
Matrix, 86–87

Fire-and-forget coordination pattern
delegation pattern using, 189
delegation with confirmation pattern

using, 189–190
multi-party, 200
two-party, 186, 197

Flexibility of services, 213
folder structures, ActiveMatrix, 86–87
Front-end systems

architecture step examining, 38–39
placing validation in, 203–204

Functional organization, TIBCO
ActiveMatrix® BPM, 96–97

G
Google Web Toolkit (GWT), OpenSpace

BPM client, 97
Governance applications

accessing external systems, 150–152
implementing policy accessing

LDAP, 153–155, 157
summary review, 159

Granularity, service, 216

H
High-fanout message delivery, EMS, 69
HTTP (Hypertext Transfer Protocol), 63
HyperSQL database, Service Bus, 80–81

I
Identification, ATM withdraw cash

process, 21–22
Implementation types

ActiveMatrix, 75–76

Index 245

content transformation, 165–166
In-Only message pattern, 123
Out-In message pattern, 131
In-Out message pattern, 125, 127
Out-Only message pattern, 130
SCA, 55–56, 59
Service Grid, 81–82
straight-wire mapping, 162

Implementing SOA (Brown), 38, 41
In-Only message exchange pattern

defined, 120
delegation with confirmation pattern,

190
example and implementation

options, 122–123
summary review, 131

In-Out message exchange pattern
examining interactions of, 120
example and implementation

options, 123–127
fire-and-forget coordination pattern

using, 186
summary review, 131–132

Inbound to external system, 173–175, 177
Indirect interaction

with databases, 182–183
via ActiveMatrix adapters, 179–181

Input
ATM withdraw cash process, 21–22
mediation flow design for mapping,

163–164
Installation folder, ActiveMatrix, 86
Integration test step, 42
Interaction patterns

event-driven. See Event-driven
interaction patterns

mediation. See Mediation patterns
newspaper case study example,

121–122
In-Only implementation, 122–123
In-Out implementation, 123–127
Out-In implementation, 130–131
Out-Only implementation, 127–130
overview, 120–121
overview of, 119
summary review, 131–132
system access. See System access

patterns

TIBCO Architecture Fundamentals, 63
Interface

investment required for stability of,
215–216

mediation flow design, 163–164
Membership Validation Service,

220–221
services standardizing, 212
stability of SOA, 213
in system-centric design focus, 3–4
TIBCO ActiveMatrix® BPM browser-

based, 97
Investment, interface stability, 215–216
Isolation, services benefiting, 213

J
JAAS, EMS supporting, 72
JACI, EMS supporting, 72
Java, EMS client library for, 68–69
Java implementation type

defined, 75
TIBCO ActiveMatrix® Service Grid,

81–82
TIBCO supporting, 56

JDBC interactions, 182, 187
JMS (Java Messaging Service). See also

XML over JMS
binding type, 77
as communication mechanism, 63
conventional message delivery, 69–70
high-fanout message delivery, 69
pub-sub architecture pattern and, 135
queue semantics, 135–136

JMX commands, ActiveMatrix solution
life cycle, 88–89

L
LDAP access policies, 150–157
Leadership, proactive architectural, 40
Libraries, EMS client, 68–69
Life cycle

solution, 88–91
TIBCO ActiveMatrix® Lifecycle

Governance, 73–74
TIBCO BusinessEvents™ solution,

112–114
Logical environment structure, Active-

Matrix, 83, 89–90

Index246

M
Machine model, AMX execution

environment, 89
Manager role, distributed transactions,

191
Mapping, process-pattern

advantages of, 27
after refinement, 226–228
Aspect-Oriented Design and, 141–142
ATM withdraw cash examples, 24–26
documentation of, 27
Membership Validation, 222–223
overview of, 18–19
reference architecture, 32–34
reference architecture used as entire

solution, 230–231
reference architecture used as

fragment of, 232–235
solution architecture, 219
why you should care about, 19–20

Mediation flow design interface,
163–164

Mediation Flow implementation type
ActiveMatrix, 75
content transformation, 165
data augmentation, 166–167
features, 164
routing, 169
as Service Bus element, 80
straight-wire mediation, 162
summary review, 172

Mediation patterns
content transformation, 165–166
data augmentation, 166–168
flow capabilities and limitations,

170–171
mediation flow design, 163–164
overview of, 161
routing, 168–170
straight-wire mapping, 162
summary review, 171
use case: access control, 164
use case: transport mapping, 164–165

Membership Validation Service example
reference architecture used as entire

solution, 231–235
requirements, 220–221
solution architecture, 221–223

Mentoring, enterprise architect role, 49
Message delivery transports, 69–72, 144
Messages

distributed transactions and, 193
event-drive interaction patterns. See

Event-driven interaction patterns
as pub-sub communications channel,

135
Migration strategy, enterprise architect

defining, 47–48
Multi-party coordination patterns

breakdown detection, 205–208
data validation, 202–205
delegation with confirmation,

201–202
fire-and-forget, 200
overview of, 199–200
request-reply, 200–201, 222–223
summary review, 207–208

Multicast message delivery, EMS, 70–72
Multiple message storage options, EMS,

72

N
Newspaper case study example

In-Only implementation, 122–123
In-Out implementation, 123–127
Out-In implementation, 130–131
Out-Only implementation, 127–130
overview of, 121–122

Nodes. See ActiveMatrix nodes
Notifications

delivered to multiple parties, 133–134
requests vs., 133
topic delivery semantics for, 137

O
OpenSpace client, 97
Operation semantics, 212–213
Optimization, TIBCO product suite for,

64
Organizational silos, business processes

and, 35–36
OSGI Plugins, AMX execution environ-

ment, 89, 92
Out-In message exchange pattern

asynchronous variation of, 131–132
defined, 121

Index 247

example and implementation
options, 130–131

fire-and-forget coordination pattern,
186

Out-Only message exchange pattern
asynchronous variation of, 131–132
defined, 120–121
delegation with confirmation pattern,

190
example and implementation options,

127–131
Outbound from external system, 173–175,

177
Output mapping, mediation flow

design, 163–164

P
Parallelism, implementing processes

with, 23–24
Patterns

architecture. See Architecture patterns
design. See Design patterns, TIBCO

ActiveMatrix®

event-driven interaction. See Event-
driven interaction patterns

mediation. See Mediation patterns
system access. See System access

patterns
two-party coordination. See Two-

party coordination patterns
People, in scope of total architecture,

9–11
PEPs (policy enforcement points)

ActiveMatrix nodes, 78–79
direct interaction via ActiveMatrix-

supported protocols, 178
overview of, 148
straight-wire mapping for access

control, 164
Physical environment structure

administration organization of, 86
architecture pattern for, 88
overview of, 83–84

Platform neutrality, of services, 213
Point-of-view interfaces, system-centric

design, 3–4
Policeman approach, architects avoid-

ing, 40

Policies
concerns addressed by Service Bus,

143–144
framework. See ActiveMatrix policy

framework
governing node behavior, 78
overview of, 144

Policy agent, 78, 80
Policy enforcement points. See PEPs

(policy enforcement points)
Policy intents

overview of, 157–158
summary review, 159

Policy set templates. See Policy
templates

Policy sets
applicability of, 148
associating with design elements,

148–150
implementing policy accessing

LDAP, 153–154
overview of, 144–146
summary review, 158–159

Policy templates
accessing external system from policy

set, 151
concerns addressed by ActiveMatrix

Service Bus using, 143–144
overview of, 146–148
summary review, 158–159

Port types, in straight-wire mapping, 162
Practical evolution strategy, enterprise

architect defining, 47–48
Problem-solving, with reference

architecture, 33
Process-centric design

coordinating changes to multiple
systems, 37

IT moving from system-centric to,
5–6

Process coordinator, third-party, 194–195
Process manager, 5–6, 96–97
Process models

ATM withdraw cash example, 21–24
check order status, 15
overview of, 13–16
process-pattern mapping, 18–19,

24–25

Index248

Process models (continued)
reference architecture, 30–31, 228–229
refining solution architecture,

224–225
why you should care about, 19–20

Process-pattern mapping. See Mapping,
process-pattern

Product structure, TIBCO Enterprise
Message Service™, 67–69

Product suites
BusinessEvents, 107–110
TIBCO, 63–65
TIBCO ActiveMatrix®, 73–74

Production BusinessEvents deployment
example, 111–112

Project architects
enterprise architect role in training, 49
overview of, 7–8
responsibilities of, 45–46
role of, 44

Project charter, 40–42
Project teams, 48–49
Promoted reference, SCA, 57–58
Promoted service, SCA, 56–57
Protocols, Active-Matrix supported

accessing external systems, 175,
177–178

accessing external systems with non,
181–182

advantages, 182
fire-and-forget coordination using, 186
synchronous request-reply coordina-

tion using, 187
provides attribute, policy sets, 158
Pub-sub architecture pattern, 134–135

Q
QA (quality assurance), development

process, 36
Quantification of business expectations,

project charter, 40–41
Queue delivery semantics, event-driven

interactions, 135–138

R
Reference architecture

applications of, 32–33
architecture pattern, 31–32

essential aspects of, 29–30
process model, 30–31
process-pattern mapping, 32
role between project and enterprise

architects, 45–46, 48, 52
summary review, 33–34
using as entire solution, 228–231
using as fragment of solution,

231–235
References, SCA

associating policy sets with, 149–150
defining component type with, 58–59
deploying SCA designs on ActiveMa-

trix nodes, 92–94
overview of, 57–58
straight-wire mapping for mediation,

162
summary review, 60

Refinement process, solutions
overview of, 224–228
reference architecture as entire

solution, 228–231
reference architecture as solution

fragment, 232–235
Reliability, policy intents associated

with, 158
Request-reply coordination pattern. See

also In-Out message exchange
pattern

delegation pattern using, 189
multi-party, 200–201
two-party, 187–188

Requests
bridge message delivery semantics

for, 137–138
notifications vs., 133
queue delivery semantics for,

135–136
Resource managers, two-phase commit

transactions, 191–193
Resource templates, ActiveMatrix

solution life cycle, 90–91
Resource Templates dialog, accessing

LDAP, 155
Results, ATM withdraw cash process,

21–22
Return on investment (ROI), services,

215–216

Index 249

Reuse, of services, 213
Risks, quantifying business process,

41–42
ROI (return on investment), services,

215–216
Roles

architect. See Design patterns, TIBCO
ActiveMatrix®

process coordinator, 194–195
TIBCO BusinessEvents™, 106–107
transaction manager, 191

Rollbacks, transaction, 193
Routing, mediation, 168–170, 172
Rules, ActiveMatrix policy, 144
Run-time environments, 82–84

S
SCA (service-component architecture)

architectural decisions, 38–39
business processes/organizational

silos, 35–36
components and composites, 55–56,

58–60
deploying designs on ActiveMatrix

nodes, 91–96
design focus, 3–5
example service design, 54–55
implementation type, 59
Out-Only pattern not well repre-

sented in, 128–130
overview of, 53–54
policy intents, 158
policy sets, 144
references, 57–58
Service Bus as foundation of, 73–74
Service Bus policy framework,

143–144
services, 56–57
summary review, 60

Schedule, project, 41–44
Scope, 7–11
Security, policy intents, 158
Select/Create a Policy Set dialog, 149–150
Self-consistency checks, data validation,

203
Sequencing activities, process models,

22–23
Servers. See EMS servers

Service Bus. See TIBCO ActiveMatrix®

Service Bus
Service-component architecture. See SCA

(service-component architecture)
Service Grid. See TIBCO ActiveMatrix®

Service Grid
service-level agreements (SLAs)

multi-party request-reply coordina-
tion, 200

two-party request-reply coordina-
tion, 187

service-oriented architecture. See SOA
(service-oriented architecture)

Service providers, for data validation, 204
Services

accessing via two different trans-
ports, 164–165

ATM withdraw cash example, 25–26
benefits of, 213–214
defined, 211
granularity of, 216
overview of, 211
policy governing access to, 144
policy sets associated with, 154–155
practical evolution strategy for, 47–48
project architect identifying, 46
SCA, 56–59, 91–94
situations warranting investment in,

215–216
SOA approach to, 212–214
straight-wire mapping and, 162
summary review, 217
traditional approach vs., 211–212

SLAs (service-level agreements)
multi-party request-reply coordina-

tion, 200
two-party request-reply coordina-

tion, 187
SOA (service-oriented architecture)

approach to services, 212–213
business processes in, 35–36
design concept of, 3–4
requiring service interface stability,

214
SCA based on. See SCA (service-

component architecture)
service-centric design focus and, 4–5
TIBCO product suite for, 64

Index250

SOAP
fire-and-forget coordination using,

186
protocol binding type, 77
synchronous request-reply coordina-

tion using, 187
SOAP faults, 204, 222–223
SOAP over ActiveMatrix Virtualization,

124
SOAP over HTTP

direct interaction via ActiveMatrix-
supported protocols, 178

interactions of, 119
In-Only message pattern, 122–123
In-Out message pattern, synchro-

nous, 124
SOAP over JMS

direct interaction via ActiveMatrix-
supported protocols, 178

interactions of, 119
In-Only message pattern, 122–123
In-Out message pattern, synchro-

nous, 124
Software Architecture in Practice, Second

Edition (Bass et al.), 29
Solution architecture

architecture pattern refinement,
224–226

mapping refinement, 226–227
Membership Validation Service

example, 221–222
overview of, 219–220
process model refinement, 224–225
refinement, 224

Solution composite, TIBCO Active-
Matrix® BPM, 98

Solution life cycle, 88–91
Solutions

adding refinement to, 224–228
BusinessEvents life cycle, 112–114
deploying BusinessEvents, 110–112
Membership Validation Service

example, 220–223
overview of, 219
reference architecture as fragment of,

231–235
reference architecture defining,

228–231

solution architecture. See Solution
architecture

summary review, 235
TIBCO ActiveMatrix® BPM, 98

Spring implementation type
defined, 75
TIBCO ActiveMatrix® Service Grid,

81–82
TIBCO supporting, 56

Standardized data semantics, 213
Straight-wire mapping

mediation flow design, 163–164
overview of, 162
summary review, 171
use case: access control, 164
use case: transport mapping, 164–165

Succeeding with SOA (Brown), 42
Synchronous In-Out pattern, 124–125
Synchronous request-reply coordina-

tion, multi-party, 200–201
Synchronous request-reply coordina-

tion, two-party, 187
Syntactic validation, 203
System access patterns

accessing external systems, 173–177
database interactions, 182–183
direct interaction via non-Active-

Matrix-supported protocols,
181–182

direct interaction vs. ActiveMatrix-
supported protocols, 177–178

file interactions, 183
general considerations, 182
indirect interaction via ActiveMatrix

adapters, 179–181
overview of, 173
summary review, 183–184

System-centric design
accidental architecture based on, 7
business process change using, 35–36
development process, 36–37
no longer sufficient for today’s

projects, 3–6
System Environment, 86
System Host, 86
System integration test step, 42
System Node, 86, 88–89
Systems, scope of total architecture, 9–11

Index 251

T
Target architecture, 47–48
TAS (total architecture synthesis)

methodology, 41
TCT (TIBCO Configuration Tool), 86–87
Technology, access

standardizing using services, 212–213
traditional vs. service approaches,

211–212
Templates, policy set, 146–148
Text messages, In-Only message

patterns, 120
Third-party asynchronous In-Out

pattern, 126–127
Third-party process coordinators,

194–195
Third-party process monitoring, 206–207
Threads, EMS server, 68
TIBCO ActiveMatrix Adapter for

Database, 176, 182–183
TIBCO ActiveMatrix adapters

for Database, 176, 182–183
defined, 73–74
deploying implementations in, 76
for Files, 183
indirect interaction via, 179–181
other components playing role of, 181
solving event recognition using,

176–177
TIBCO ActiveMatrix Business Works™,

73–76
TIBCO ActiveMattrix® product suite,

73-74
TIBCO ActiveMatrix® Administrator

accessing external system from policy
set, 151

of ActiveMatrix nodes, 78
administration organization, 84–86
deployment and run-time manage-

ment, 80–81
implementing policy accessing

LDAP, 154–156
plugins for EMS, 69
solution life cycle, 88–91

TIBCO ActiveMatrix® BPM
defined, 65, 73–74
functional organization, 96–97
overview of, 96
process coordinator role of, 195

solution deployment, 98
TIBCO ActiveMatrix® Lifecycle Govern-

ance Framework, 73–74
TIBCO ActiveMatrix® Service Bus

administration organization, 84–86
architecture patterns, 74–78
associating policy sets with design

elements, 148–150
defined, 73
deploying SCA designs on Active-

Matrix nodes, 91–96
design patterns. See Design patterns,

TIBCO ActiveMatrix®

file system folder structures, 86–87
implementing policy for accessing

LDAP, 153–157
logical environments, 83
Mediation Flow implementation type

in, 56, 75
overview of, 78–81
physical environments, 83–84
policies accessing external systems,

151–153
policy applicability, 148
policy enforcement points, 148
policy framework, 143–144
policy intents, 157–158
policy set templates, 146–148
policy sets, 144–146
references, 57–58
run-time environments, 82–83
Service Grid built on, 81
services, 56–57
solution life cycle, 88–91
summary review, 98–100

TIBCO ActiveMatrix® Service Grid
defined, 64, 73–74
deploying implementations in, 75
overview of, 81–82

TIBCO ActiveMatrix™ BusinessWorks™

architecture pattern example, 17
defined, 64
deploying implementations in, 75–76
direct interaction with databases,

182–183
direct interaction with files, 183
messaging and transactions in, 193
process coordinator role of, 195
taking role of adapter, 181

Index252

TIBCO Business Studio™, 56, 80
TIBCO Business Works™ Service Engine

(BWSE), 76
TIBCO BusinessEvents™. See also

Complex event processing,
BusinessEvents

director role, 106–107
overview of, 101
process coordinator role of, 195
product suite, 107–110
solution deployment, 110–112
solution life cycle, 112–114
solution role of complex event

processor, 106
summary review, 114–115

TIBCO Configuration Tool (TCT), 86–87
TIBCO Enterprise Message Service™

(EMS)
conventional message delivery, 69–70
defined, 63
feature highlights, 72
high-fanout message delivery, 69
multicast message delivery, 70–72
overview of, 67
product structure, 67–69
as pub-sub communications channel,

135
queue delivery semantics, 136
TIBCO ActiveMatrix® architecture

patterns, 74
TIBCO product suite

overview of, 63–65
TIBCO Rendezvous™, 72
TIBCO SmartSockets™, 72
TIBCO® Adapter SDK, 180–181
TIBCO™ General Interface, 97
Topic delivery semantics, event-driven

interaction patterns, 137–138
Total architecture, scope of, 9–10
total architecture synthesis (TAS)

methodology, 41
Traditional approach, to services, 211–212
Training, enterprise architect role, 49
Transactions

implementing distributed, 190–194
policy intents associated with, 158

Transport mapping, in straight-wire
mapping, 164–165

Two-party coordination patterns
architecture pattern for, 119
compensating transactions, 195–197
delegation, 188–189
delegation with confirmation,

189–190
distributed transactions, 190–194
fire-and-forget coordination, 186
overview of, 185
request-reply coordination, 187–188
summary review, 197–198
third-party process coordinator,

194–195
Two-phase commit transactions

approximating with compensation
patterns, 195–196

compensating transactions vs., 195
implementing distributed transac-

tions, 191–193

U
UML (Unified Modeling Language)

notations, using, 54
Understanding SCA (Marino and

Rowley), 53
Unified Modeling Language (UML)

notations, using, 54

V
Validation, data., 202–204
Virtualization, policy intents and, 158
Vision, architectural

communicating, 50–51
creating reference architectures for,

45–46
enterprise architect’s role in, 44,

47–49
project architect’s role in, 44

W
WebApp implementation type, 56, 75,

81–82
Work manager, TIBCO ActiveMatrix®

BPM, 96–97
Work patterns, project architect respon-

sibilities, 46
WorkSpace client, TIBCO ActiveMatrix®

BPM, 97

Index 253

WSDL portType, SCA services and
references, 56–57, 60

WSS Consumer, Service Bus policy
templates for, 148

WSS Provider, Service Bus policy
templates for, 148

X
XML files, defining policy sets with, 144
XML over JMS

direct interaction via ActiveMatrix-
supported protocols, 178

fire-and-forget coordination,
187–188

interactions of, 119, 123
Out-In message pattern, 130–131
In-Out message pattern, asynchro-

nous, 127
In-Out message pattern, synchro-

nous, 124
Out-Only message pattern, 127–129
request-reply coordination, synchro-

nous, 187
XPath Route, mediation flow, 169

	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 11: Basic Interaction Patterns
	Basic Interaction Pattern Overview
	Example Case Study: A Newspaper
	In-Only Example and Implementation Options
	In-Out Example and Implementation Options
	Out-Only Example and Implementation Options
	Out-In Example and Implementation Options
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

