

Jay Blanchard

Applied jQuery
DEVELOP AND DESIGN

Applied jQuery: Develop and Design

Jay Blanchard

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Jay Blanchard

Editor: Rebecca Gulick
Development and Copy Editor: Anne Marie Walker
Technical Reviewer: Jesse R. Castro
Production Coordinator: Myrna Vladic
Compositor: Danielle Foster
Proofreader: Patricia Pane
Indexer: Valerie Haynes-Perry
Cover design: Aren Straiger
Interior design: Mimi Heft

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-77256-5
ISBN 10: 0-321-77256-3

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

To Mom, who taught me there was magic in books,

and to Dad, who taught me there was magic in me.

IV APPLIED jQUERY: DEVELOP AND DESIGN

Projects like this are not possible without the support and understanding of a lot of
people, something I really didn’t understand when first embarking on the journey
to create a book. Saying “thank you” isn’t nearly enough, but I hope that you all
understand how much I appreciate you!

Even with the blender of life roaring around us, Connie Kay, Kaitlyn, Brittany,
Zach, Karla, and Morgan provided more love and support than you can imagine.
I love you all!

To Rebecca Gulick, thank you for believing in me and helping a dream to come true!
To Anne Marie Walker, enough cannot be said about your gentle firmness,

guidance, and subtle humor. I am eternally grateful to you!
To Jesse Castro, thanks for keeping me on the straight and narrow. Your insight,

technical abilities, and encouragement blow me away!
To Larry Ullman, thanks for being the Ford Prefect to my Arthur Dent and guid-

ing me through the galaxy! I kept my towel on my desk the whole time!
To Francis Govers, the twists and turns in my life are made all the more bear-

able by knowing that you are just a phone call or an e-mail away. Best friends don’t
get any better!

To the folks who have made up the teams of developers that I have worked with
day in and day out, thank you for making me a better programmer and a better
person! Your willingness to look over my shoulder and teach me something new
is treasured beyond measure.

To the jQuery community, you are an amazing group of people, and I am hon-
ored to share electrons with you!

ACKNOWLEDGMENTS

CONTENTS V

Introduction . viii

Welcome to jQuery . xi

CHAPTER 1 INTRODUCING JQUERY . XIV

Making jQuery Work . 2

Working with the DOM. 6

Learning a Few jQuery Tips . 9
Selecting Elements Specifically . 9

Making Quick Work of DOM Traversal. 10

Troubleshooting with Firebug . 10

Packing Up Your Code. 11

Using Return False .15

Fiddling with jQuery Code . 16

Combining jQuery with Other Code . 18
Starting with HTML .18

Styling Web Pages with CSS. .18

Using PHP and MySQL .18

Progressive Enhancement . 19

Planning Design and Interaction . 23

Wrapping Up . 23

CHAPTER 2 WORKING WITH EVENTS .24

Using the Photographer’s Exchange Web site. .26

Making Navigation Graceful. 27
Creating and Calling Modal Windows . 27

Binding Events to Other Elements .34
Building an Image Carousel . 34

Creating Sprite-based Navigation . 50

Wrapping Up . 57

CHAPTER 3 MAKING FORMS POP .58

Leveraging Form Events . 60
Focusing on a Form Input. 60

Validating Email Addresses . 62

Making Sure an Input Is Complete . 66

Tackling Uploads .69
Performing Client-side Validation. 69

CONTENTS

VI APPLIED jQUERY: DEVELOP AND DESIGN

Developing Server-side Validation. 72

Uploading Files. .74

Wrapping Up .89

CHAPTER 4 BEING EFFECTIVE WITH AJAX . 90

Using AJAX for Validation .92
Building the PHP Registration and Validation File . 92

Setting Up the jQuery Validation and Registration Functions 100

Logging in the User . 105

Using AJAX to Update Content. 108
Getting Content Based on the Current User . 108

Loading Content Based on Request . 110

Loading Scripts Dynamically . 112

Using jQuery’s AJAX Extras . 116

Using JSON . 126

Securing AJAX Requests. .134
Preventing Form Submission . 135

Using Cookies to Identify Users . 139

Cleansing User-supplied Data . 141

Transmitting Data Securely . 144

Wrapping Up .145

CHAPTER 5 APPLYING JQUERY WIDGETS. .146

Using the jQuery UI Widgets .148
Customizing the jQuery UI. 148

Including jQuery UI Widgets . 152

Using jQuery Plugins . 171
Beefing Up Your Apps with Plugins . 172

Pumping Up Your Sites. 188

Rolling Your Own Plugins . 200

Wrapping Up . 203

CHAPTER 6 CREATING APPLICATION INTERFACES . 204

Establishing the Foundation . 206
Creating the HTML. 207

Applying the CSS .209

Making the Interface Resizable . 214

CONTENTS VII

Improving the Application Interface . 217
Creating Better Sprites . 217

Loading Content with AJAX. 226

Configuring Additional Enhancements . 235

Wrapping up . 247

Index. 248

VIII APPLIED jQUERY: DEVELOP AND DESIGN

As Web designers, you are painstakingly compelled to grab Web surfers’ attention
as quickly as possible and then keep them on your site to absorb the content. In
addition to the product, service, or information that you are providing, the site
must be visually attractive and offer stimulating (and valuable) interaction. The
jQuery library is the main ingredient for providing the icing on your Web-site cake.
If applied well, the effects of jQuery will convince visitors and application users to
click around and sample all of your content.

The trick is learning how to combine jQuery with other markup and languages
effectively. You must gain knowledge in a wide range of disciplines, like HTML
(HyperText Markup Language) and CSS (Cascading Style Sheets), to know how
to properly mix in the right amount of jQuery. The goal of this book is to give you
the knowledge to bring the HTML, CSS, and jQuery ingredients together to create
compelling interactivity to your Web sites and applications.

Throughout the book, I’ll also show you ways to use PHP, a popular server-
side scripting language, and MySQL, a relational database product, to enhance
your overall development and supercharge your applications. Both technologies
translate easily to other Web development languages.

WHAT IS JQUERY?

Announced in 2006 by its creator, John Resig, jQuery quickly gained popularity and
support as a new way to use JavaScript to interact with HTML and CSS. jQuery’s
simple selectors mimicked CSS selectors, making the library familiar and easy
to learn for designers and developers alike. The jQuery library erased the worry
that Web developers had suffered through when trying to create interactive sites
across a wide range of browsers by handling most browser compatibility issues
behind the scenes.

Topping off those two features is the shortened syntax used by jQuery. The fol-
lowing example shows how you would select an element based on its id attribute
using jQuery:

$(‘#foo’);

INTRODUCTION

INTRODUCTION IX

The jQuery selector is much shorter as opposed to the same example in old-
school JavaScript:

document.getElementByID(‘foo’);

It’s no wonder that the Web-development community embraced jQuery’s “write
less, do more” mantra. Couple the simplicity of jQuery with its ability to support
complex animations and achieve stupendous effects, and you get a JavaScript library
that is flexible and capable of empowering you to provide your Web site visitors
with an outstanding interactive experience.

WHO THIS BOOK IS FOR

This book is aimed at beginning to intermediate Web developers, but it doesn’t
matter where you are in your journey as a designer or developer. You should find
examples in this book that will help you to bring your Web pages and applications to
life with jQuery. It helps if you have a basic knowledge of HTML, CSS, JavaScript, and
jQuery, but it is not necessary because the examples are fully baked and ready to go.

WHAT I USED

As of this writing, jQuery 1.5 had been released and is used for all of the examples
in the book. You can download it at www.jquery.com. It is also available on the
book’s Web site at www.appliedjquery.com.

HTML, CSS, and JavaScript files are all plain-text files that you can create and
edit in any plain-text editor.

Examples were all tested in Firefox 3 and Internet Explorer 8, with an occasional
peek in Safari and Google Chrome.

WHERE TO FIND THE CODE

All of the code examples for the book are available from the Applied jQuery Web
site at www.appliedjquery.com/downloads. There you can download a Zip file con-
taining all of the examples, graphics, and other collateral needed to follow along.

The examples are arranged by chapter within the Zip file and include all of the
necessary jQuery files to make the examples work right out of the box.

www.jquery.com
www.appliedjquery.com
www.appliedjquery.com/downloads

X APPLIED jQUERY: DEVELOP AND DESIGN

However, even though all of the files are available for download, I encourage
you to type out each example as you progress through the book. Taking a hands-on
approach will help you to learn how all of the technologies fit together and will
reinforce the concepts in your brain.

LET’S GET STARTED

It’s time for you to jump right in and get started learning how to use jQuery. In the
first chapter I’ll give you some good rules and tools to get you headed in the right
direction for sweetening your Web development efforts with jQuery.

i

WELCOME TO
jQUERY

XII APPLIED jQUERY: DEVELOP AND DESIGN

WELCOME TO jQUERY

jQuery is one of the most popular JavaScript libraries in use today because it lets you

build JavaScript Web pages and Web applications quickly and easily, accomplishing in a

single line of code something that would have required dozens of lines of JavaScript code.

Grab yourself a computer and the handful of tools outlined below, and then dig into the

following six chapters.

jQUERY

jQuery, which is free to

download and use, comes

in the form of a single .js

file that you link to from

your Web page, and your

code accesses the library

by calling various jQuery

functions. Go to jquery.

com and download the

jQuery library.

jQUERY UI

Next, you’ll want to

download the jQuery UI

library from jQueryUI.com.

This will equip you with

some core interaction

plugins as well as many

UI widgets that I’ll discuss

later in the book.

TEXT EDITOR

You’ll be doing some

scripting, so get yourself a

good text editor. Windows

users typically opt for

Microsoft Notepad or

Notepad++, while Mac

users often rely on BBEdit

from Bare Bones Software.

BROWSER

Chances are you’ve

already got a standards-

compliant browser

installed. Popular options

are the latest versions

of Microsoft Internet

Explorer, Mozilla Firefox,

Apple Safari, Google

Chrome, and Opera.

TROUBLESHOOTER

I rely heavily on the

Firebug Web development

tool for troubleshooting.

Go to http://getfirebug.

com and get a version

that’s specific to your

browser. It’s 100% free

and open source, and

you’ll be grateful you’ve

got it installed when

something goes wrong.

TESTING

ENVIRONMENT

Rather than using an

actual hosted Web site

to test your jQuery

creations, use a testing

environment that’s local

on your own computer.

I use XAMPP, which you

can download from

http://apachefriends.org.

WELCOME TO jQUERY XIII

http://getfirebug.com
http://getfirebug.com
http://apachefriends.org

4

BEING EFFECTIVE
WITH AJAX

AJAX, one of the hottest technology combina-

tions to enter the Web development landscape

in years, has fueled a surge in interactive Web design with

its ability to load new content into an existing DOM structure.

jQuery simplifies using AJAX with several shorthand methods

for the basic AJAX methods. For most developers and designers,

these shorthand methods will be all that they ever need to use.

The jQuery AJAX shorthand methods post, get, and load are

featured in this chapter. jQuery also provides a robust feature set,

including callbacks, for developers who want to customize their

AJAX calls to provide richer interactive experiences. I’ll show you

how to use several of jQuery’s AJAX features to enhance Web sites

and applications. Let’s start by completing the form validation

that you started in Chapter 3.

92 CHAPTER 4 BEING EFFECTIVE WITH AJAX

USING AJAX FOR VALIDATION

Simply put, AJAX (Asynchronous JavaScript and XML) lets you use JavaScript to
send and receive information from the server asynchronously without page redi-
rection or refreshes. You can use AJAX to grab information and update the Web
page that your user is currently viewing with that information. Complex requests
can be made to databases operating in the background.

When new users register to use the Web site, they need to have unique user
names. Their user name will be associated with other information, such as photos
they upload or articles they write. It will be the key that lets them update informa-
tion about the photos they submit.

Make sure that you first set up the database for the Web site by running the SQL
file chap4/sql/peuser.sql on your database. Running this script in MySQL or any
other database platform will create the Web-site’s database, a user for that database,
and the table that will be used to store Web-site visitor registration information.
You can then start building the PHP file that will respond to the actions the AJAX
functions will request.

BUILDING THE PHP REGISTRATION AND VALIDATION FILE

Photographers who want to share their images and perhaps write articles on
photography will need a way to register information with the site that will allow
them to log in and gain access to site features not accessible to nonregistered users.

You can create an interaction for this that will appear very slick to the user. With
jQuery’s AJAX functionality, you can avoid page reloads or redirections to other
pages (Figure 4.1). The AJAX engine will send the requests to the PHP scripts on
the server without disruption to the user experience.

Using PHP and jQuery, you’ll create the functions that will support the regis-
tration interaction.

1. Open a new text file and save it as chap4/inc/peRegister.php.

NOTE: If you’d like to use the PHP file provided in the download, feel free

to skip ahead to “Setting Up the jQuery Validation and Registration Func-

tions” section. Be sure to edit the PHP file with the proper user name,

password, and host name for the database connection to match what

you have set up on your database server.

USING AJAX FOR VALIDATION 93

2. Set up the database connection for the PHP function, including a method
for returning errors if no connection can be made:

if(!$dbc = mysql_connect(‘servername’, ‘username’, ‘password’)){

 echo mysql_error() . “\n”;

 exit();

}

Contained in this PHP file are three actions: one to complete registration,
one to validate the user name, and a method to allow registered users to
log in. The proper function will be called based on the name of the form
used in the AJAX function.

3. Use PHP’s switch method to determine which form is submitted and set
up the first case for the registration form:

switch($_POST[‘formName’]) {

 case ‘register’:

FIGURE 4.1

The difference between a

typical HTTP request and the

XMLHttpRequest utilized by

jQuery’s AJAX methods.

HTTP Request

HTML

jQuery call XMLHTTPRequest

HTML XML
JSON

Server data

Typical Web Request
(causes page reload)

AJAX Web Request with jQuery
(request occurs asynchronously

without page reload)W
E

B
 B

R
O

W
S

E
R

W
E

B
S

E
R

V
E

R

94 CHAPTER 4 BEING EFFECTIVE WITH AJAX

4. Check to see if the user name and password are set:

 if(isset($_POST[‘penewuser’]) &&
 p isset($_POST[‘penewpass’])) {

5. If the user name and password are set, use the data from the form to complete
a SQL statement that will insert the new user’s information into the database:

 $peuserInsert = “INSERT INTO `photoex`.`peuser` “;

 $peuserInsert .= “(`username`, `userpass`,
 p `userfirst`, `userlast`, `useremail`";

6. Because users can choose a number of photographic interests when they
register, you must set up a loop to handle the check boxes that are selected
in the registration form:

 if(isset($_POST[‘interests’])){

7. The loop used here counts the number of interests selected and properly
formats the SQL statement to name those interests. Insert commas in the
correct place, and close the initial statement with a closing parenthesis:

 $peuserInsert .= “,”;

 for($i = 0; $i < count($_POST[‘interests’]);
 p $i++){

 if($i == (count($_POST[‘interests’])
 p - 1)){

 $peuserInsert .=
 p “`”.$_POST[‘interests’][$i].”`”;

 } else {

 $peuserInsert .=
 p “`”.$_POST[‘interests’][$i].”`, ";

 }

 }

 }

 $peuserInsert .=")";

USING AJAX FOR VALIDATION 95

8. Place the values from the registration form into the SQL statement in the
correct order:

 $peuserInsert .= “VALUES (“;

 $peuserInsert .= “’”.$_POST[‘penewuser’].”’, “;

 $peuserInsert .= “’”.$_POST[‘penewpass’].”’, “;

 $peuserInsert .= “’”.$_POST[‘pefirstname’].”’, “;

 $peuserInsert .= “’”.$_POST[‘pelastname’].”’, “;

 $peuserInsert .= “’”.$_POST[‘email’].”’ “;

9. Inserting the correct values includes looping through any interests selected
in the form and inserting the value “yes” for those interests:

 if(isset($_POST[‘interests’])){

 $peuserInsert .= “,”;

 for($i = 0; $i < count($_POST
 p [‘interests’]); $i++){

 if($i == (count($_POST[‘interests’])
 p - 1)){

 $peuserInsert .= “’yes’”;

 } else {

 $peuserInsert .= “’yes’, “;

 }

 }

 }

10. Close the SQL statement properly:

 $peuserInsert .=”)”;

If you were to print out the resulting SQL statement contained in the vari-
able $peuserInsert, it would look something like this:

INSERT INTO `photoex`.`peuser`(`username`, `userpass`,
p `userfirst`, `userlast`, `useremail`,`landscape`,
p `astronomy`,`wildlife`) VALUES (‘Bob.Johnson’,’ph0t0man’,
p ’Bob’,’Johnson’,’photoman@gmail.com’,’yes’,’yes’,’yes’,’yes’)

96 CHAPTER 4 BEING EFFECTIVE WITH AJAX

11. Use the PHP function mysql_query to insert the data into the database, and
the user will be registered:

 if(!($peuInsert = mysql_query($peuserInsert,
 p $dbc))){

 echo mysql_errno();

 exit();

 }

CHECKING THE USER NAME FOR AVAILABILITY

Because the new user will typically fill out the user name first, the password and
user name will not be set, so the else statement will be invoked. This is the PHP
code that checks the user name to see if it exists in the database.

1. Create a SQL query that selects the user name typed into the registration
form from the user database:

 } else {

 $peCheckUser = “SELECT `username` “;

 $peCheckUser .= “FROM `photoex`.`peuser` “;

 $peCheckUser .= “WHERE `username` =
 p ‘”.$_POST[‘penewuser’].”’ “;

 if(!($peuCheck = mysql_query($peCheckUser, $dbc))){

 echo mysql_errno();

 exit();

 }

If the name the user entered into the registration form is already in the
database, the query will return a row count of 1. If the name is not in the
database, the row count is 0.

2. Assign the count of the number of rows returned by the query to the database:

 $userCount = mysql_num_rows($peuCheck);

USING AJAX FOR VALIDATION 97

3. Echo the count value to be returned by the AJAX function for use by jQuery to
determine if the user should enter a new user name in the registration form:

 echo $userCount;

 }

4. Complete the case statement for the registration form:

break;

CREATING THE PHP FOR USER LOGIN

After registering, the user can log in to the site and begin uploading photos and
writing articles. Let’s complete the login section of the PHP file.

1. Set up the case statement for the login code:

case ‘login’:

2. Check to see if the user name and password are set:

 if(isset($_POST[‘pename’]) && isset($_POST[‘pepass’])){

3. If they are set, send a query to the database with the user name and pass-
word information:

 $peLoginQ = “SELECT `username`, `userpass` “;

 $peLoginQ .= “FROM `photoex`.`peuser` “;

 $peLoginQ .= “WHERE `username` = ‘”.$_POST[‘pename’].”’ “;

 $peLoginQ .= “AND `userpass` = ‘”.$_POST[‘pepass’].”’ “;

 if(!($peLogin = mysql_query($peLoginQ, $dbc))){

 echo mysql_errno();

 exit();

 }

NOTE: You should always make sure that data visitors enter into

forms is cleansed by checking the data rigorously before submitting

it to the database.

98 CHAPTER 4 BEING EFFECTIVE WITH AJAX

4. Set the variable $loginCount to the number of rows returned from the data-
base query. If the user name and password are correct, this value will be 1:

 $loginCount = mysql_num_rows($peLogin);

Next, you’ll set up a cookie depending on the user’s preference. A cookie is a
small file that is placed on the visitor’s computer that contains information
relevant to a particular Web site. If the user wants to be remembered on
the computer accessing the site, the user can select the check box shown
in Figure 4.2.

5. If the login attempt is good, determine what information should be stored
in the cookie:

 if(1 == $loginCount){

6. Set up a cookie containing the user’s name to expire one year from the cur-
rent date if the “remember me” check box was selected:

 if(isset($_POST[‘remember’])){

 $peCookieValue = $_POST[‘pename’];

 $peCookieExpire = time()+(60*60*24*365);

 $domain = ($_SERVER[‘HTTP_HOST’] !=
 p ‘localhost’) ? $_SERVER['HTTP_HOST'] :
 p false;

FIGURE 4.2 The check box a

user can click to be remem-

bered. The user will not have

to log in again until the cookie

associated with this action

expires or is removed from

the computer.

USING AJAX FOR VALIDATION 99

The math for the time() function sets the expiration date for one year from
the current date expressed in seconds, 31,536,000. A year is usually sufficient
time for any cookie designed to remember the user. The information in the
$domain variable ensures that the cookie will work on a localhost as well as
any other proper domain.

7. Create the cookie and echo the $loginCount for AJAX to use:

 setcookie(‘photoex’, $peCookieValue,
 p $peCookieExpire,

'/', $domain, false);

 echo $loginCount;

8. Set a cookie to expire when the browser closes if the user has not selected
the remember option:

 } else {

 $peCookieValue = $_POST[‘pename’];

 $peCookieExpire = 0;

 $domain = ($_SERVER[‘HTTP_HOST’] !=
 p ‘localhost’) ? $_SERVER['HTTP_HOST'] :
 p false;

 setcookie('photoex', $peCookieValue,
 p $peCookieExpire,

'/', $domain, false);

 echo $loginCount;

 }

100 CHAPTER 4 BEING EFFECTIVE WITH AJAX

9. Echo out the login count if the user name and password are not set. The
value should be 0:

 } else {

 echo $loginCount;

 }

}

break;

With the PHP file ready to go, it is time to build the jQuery AJAX functions.

SETTING UP THE JQUERY VALIDATION AND

REGISTRATION FUNCTIONS

Checking the new user name should be as seamless as possible for the registrant.
The form should provide immediate feedback to users and prompt them to make
changes to their information prior to the form being submitted. The form input
(in chap4/4-1.php) element for the user name will be bound to the blur method:

<label class=”labelLong” for=”penewuser”>Please choose a user name:
p </label><input type="text" name="penewuser" id="penewuser”
p size=”24” />name taken, please choose
p another

1. Bind the form input for the user name to jQuery’s blur method:

$(‘#penewuser’).blur(function() {

2. Capture the value of the user name in the newName variable:

 var newName = $(this).val();

Next, you’ll validate with the post method.

NOTE: For more on PHP and how to use it effectively with MySQL,

check out Larry Ullman’s book, PHP 6 and MySQL 5 for Dynamic Web

Sites: Visual QuickPro Guide (Peachpit, 2008).

USING AJAX FOR VALIDATION 101

1. Call the post method with the URL of the PHP script, data representing the
name of the form that is being filled out, and the newName variable:

 $.post(‘inc/peRegister.php’, {

 formName: ‘register’,

 penewuser: newName

Note that the data passed by the post method is in name: value pairs. The
value in each pair is quoted when sending the raw data. Variables such as
newName do not need the quotes.

The results of calling the inc/peRegister.php script will automatically be
stored for later processing in the data variable.

2. Define the callback for the post function and pass the data variable to the
function, so that the results can be processed:

 }, function(data){

The PHP function returns only the row count based on the query that was
used to see if the user name was in the database.

3. Set up a variable to hold the information returned in the data variable:

 var usernameCount = data;

4. Create a conditional statement that will display or hide the error message
based on the data returned by the AJAX method. You’ll recognize most of
this conditional statement because it is similar to how validation error
messages were delivered in Chapter 3:

 if(1 == usernameCount){

 $(‘#penewuser’).next(‘.error’).css(‘display’,
 p ‘inline’);

 } else {

 $(‘#penewuser’).next(‘.error’).css(‘display’,
 p ‘none’);

 }

102 CHAPTER 4 BEING EFFECTIVE WITH AJAX

5. Close out the post function by citing the data type you expect the server-
side function to return:

 }, ‘html’);

});

If the PHP function returns a 1, the error span is displayed, as illustrated
in Figure 4.3.

The registration function needs to submit the user’s data or let the user know
if there are still errors with the submission. If there are errors, the user needs to
be prompted to fix the registration.

1. Start the registration function by binding the registration form to the
submit method:

$(‘#registerForm’).submit(function(e) {

The variable e holds information about the event object, in this case the
submit event.

2. Because you will be using AJAX to submit the form, you do not want the
submit event to perform as it normally would. To stop that from happening,
you set the event to preventDefault:

 e.preventDefault();

FIGURE 4.3 The user name

FrankFarklestein is already in

use by someone else. Who

knew there were two of them?

USING AJAX FOR VALIDATION 103

3. Serialize the form data. The serializing creates a text string with standard
URL-encoded notation. For most forms, this notation is in the form of
key=value pairs:

 var formData = $(this).serialize();

4. Now you can invoke the jQuery AJAX post method by providing the URL
to post to and the serialized form data, and setting up a callback function:

 $.post(‘inc/peRegister.php’, formData, function(data) {

The PHP code will return 0 if the query to add the user is successful. If not,
it will return a higher number, indicating that the user could not be added.

5. Store the information returned by the AJAX function in the mysqlErrorNum
variable:

 var mysqlErrorNum = data;

If an error is returned, you’ll want to provide users with a prompt to let
them know that they need to correct the information. The information is
provided in a modal window as you have done before. Figure 4.4 shows the
modal window that you will set up next.

6. Test the value of the variable mysqlErrorNum to set up a conditional statement:

 if(mysqlErrorNum > 0){

FIGURE 4.4 The modal prompt letting

users know that they need to correct their

registration information. In the back-

ground you can see that the user name is

already taken; this must be changed.

104 CHAPTER 4 BEING EFFECTIVE WITH AJAX

7. If mysqlErrorNum is greater than 0, append a modal window to the body
of the Web page:

 $(‘body’).append(‘<div id=”re”
 p class=”errorModal”><h3>There is an error with
 p your registration</h3><p>Please correct your
 p information and re-submit...</div>');

8. Calculate and apply the margins for the new modal window just as you
did before:

 var modalMarginTop = ($(‘#re’).height() + 60) / 2;

 var modalMarginLeft = ($(‘#re’).width() + 60) / 2;

 $(‘#re’).css({

 ‘margin-top’ : -modalMarginTop,

 ‘margin-left’ : -modalMarginLeft

 });

9. Add the code that will fade in the modal window:

 $(‘#re’).fadeIn().prepend(‘<a href=”#”
 p class="close_error"><img src=
 p "grfx/close_button.png" class="close_button"
 p title="Close Window" alt="Close" />');

10. Provide a method to close the modal window containing the error warning:

 $(‘a.close_error’).live(‘click’, function() {

 $(‘#re’).fadeOut(function() {

 $(‘a.close_error, #re’).remove();

 });

 });

USING AJAX FOR VALIDATION 105

11. If no error was returned, fade out the registration window and clear the form:

 } else {

 $(‘#registerWindow, #modalShade’).
 p fadeOut(function() {

 $(‘#registerForm input[input*=”pe”]’).val(‘’);

 });

 }

12. Close the post method by providing the data type that you expect the PHP
function to return:

 }, ‘html’);

});

LOGGING IN THE USER

The last step you need to do in the validation procedures is to give users a way to
log in to their account.

The jQuery for the login function is nearly a duplicate of the registration, so
I’ll present it in its entirety:

$(‘#loginForm’).submit(function(e){

 e.preventDefault();

 var formData = $(this).serialize();

 $.post(‘inc/peRegister.php’, formData, function(data) {

 var returnValue = data;

 if(1 == returnValue){

 $(‘#loginWindow, #modalShade’).fadeOut(function() {

 $(‘#loginForm input[name*=”pe”]’).val(‘’);

 window.location = “4-2.php”;

 });

106 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 } else {

 $(‘body’).append(‘<div id=”li” class=”errorModal”>
 p <h3>There is an error with your login</h3><p>Please
 p try again...</div>');

 var modalMarginTop = ($('#li').height() + 60) / 2;

 var modalMarginLeft = ($('#li').width() + 60) / 2;

 $('#li').css({

 'margin-top' : -modalMarginTop,

 'margin-left' : -modalMarginLeft

 });

 $('#li').fadeIn().prepend('<a href="#"
 p class="close_error"><img src="grfx/close_button.png"
 p class="close_button" title="Close Window"
 p alt="Close" />');

 $('a.close_error').live('click', function() {

 $('#li').fadeOut(function() {

 $('a.close_error, #li').remove();

 });

 });

 }

 }, 'html');

});

USING AJAX FOR VALIDATION 107

If the login is successful, the browser loads chap4/4-2.php (Figure 4.5), the
user’s account page.

Now that you are comfortable with basic jQuery AJAX, let’s move on to using
the jQuery AJAX functions to update content in the browser.

FIGURE 4.5 The user’s account

page is displayed on a success-

ful login.

108 CHAPTER 4 BEING EFFECTIVE WITH AJAX

In many cases, you’ll want to use various jQuery AJAX functions to update visible
Web-site content. Some content updates may be based on the user information
for the current user, other updates may be based on requests performed by any
user, such as information based on a search performed by the Web-site visitor.

Let’s look at some techniques for using jQuery’s AJAX methods to update content.

GETTING CONTENT BASED ON THE CURRENT USER

If you have been developing Web sites even for the shortest period of time, you
are likely aware of query strings in the URL. Unless Web-site developers are using
methods to hide the strings, you may have seen something similar to this:

http://www.website.com/?user=me&date=today

Everything past the question mark is a query string that can be used in a GET
request to the server. Each item is set up in a name=value pair, which can be easily
parsed by scripting languages like jQuery and PHP.

GET requests are not limited to the URL. You can use GET as a form method or
in AJAX. jQuery provides a shorthand method call for making this kind of request
to the server, and conveniently, it is called get.

1. Open chap4/4-2.php to set up a get function to retrieve the current user’s
pictures into the Web browser. Rather than storing the jQuery code in a
different file and including it, let’s use a slightly different technique that is
very valuable when small jQuery scripts are used.

2. Locate the closing </body> tag. Just before that tag, the jQuery AJAX get
method will be set up to retrieve the user’s pictures. Begin by inserting the
script tag:

<script type=”text/javascript”>

NOTE: Most forms utilize the POST method to request data from the

server, but URLs are limited to the GET method. Most Web developers

follow the rule of using GET when only retrieving data and using POST

when sending data to the server that will invoke a change on the server.

USING AJAX TO UPDATE CONTENT

http://www.website.com/?user=me&date=today

USING AJAX TO UPDATE CONTENT 109

3. Open the function by making sure that the document (the current Web
page DOM information) is completely loaded:

 $(document).ready(function() {

4. The first critical step in making sure that you get the right information from
the database is to assign the value of the cookie set during login to a variable
that can be used by jQuery. The information in the cookie is the user’s name:

 var cookieUser = ‘<?php echo $_COOKIE[‘photoex’];?>’;

5. As stated earlier, the get method relies on name=value pairs to do its work
properly. Make sure that the get request sends the cookie data to the server
as a name=value pair:

 $.get(‘inc/userPhoto.php’, {photoUser: cookieUser},
 p function(data){

6. Load the information returned into the div with an id of myPhotos:

 $(‘#myPhotos’).html(data);

7. Close the get function with the data type that is expected to be returned
from the PHP script. Once closed, set the closing </script> tag (the </body>
tag is shown only for reference):

 }, ‘html’);

 });

</script>

</body>

8. Before you can get the photos from the database, you need to create the
photo table. So, run the pephoto.sql file located in the chap4/sql folder of
the code download. The SQL file will also insert default data for the photos
located in the chap4/photos folder.

In the PHP file chap4/inc/userPhoto.php, the SQL query uses the informa-
tion contained in the photoUser variable:

$getImg = “SELECT `imgName`,`imgThumb` “;

$getImg .= “FROM `photoex`.`pephoto` “;

$getImg .= “WHERE `username` = ‘”.$_GET[‘photoUser’].”’ “;

110 CHAPTER 4 BEING EFFECTIVE WITH AJAX

The user’s photographs are retrieved and placed into a table for viewing.
The results are illustrated in Figure 4.6.

Combining user data with the get method is very effective for pages where
data unique to the user must be displayed. What about content that is not unique
to the user? The get method has a cool little brother called load.

LOADING CONTENT BASED ON REQUEST

Of the jQuery AJAX shorthand methods, load is the simplest and easiest method
for retrieving information from the server. It is especially useful if you want to call
on new information that does not need data passed to it like you would do with the
get or post methods. The syntax for load is short and sweet as well:

$(‘a[href=”writeNew”]’).click(function(e){

 e.preventDefault();

 $(‘#newArticle’).load(‘inc/userWrite.php’);

});

FIGURE 4.6 The user’s photo-

graphs in tabular form.

USING AJAX TO UPDATE CONTENT 111

Clicking on the Write link (Figure 4.7) invokes the load function, causing chap4/
inc/userWrite.php to be loaded into the div with an id of newArticle.

There is one other really neat feature that load offers: You can use it to bring
in just portions of other pages. For instance, to bring in a div with an id of part1
from another page, the syntax is as follows:

$(‘#newArticle’).load(‘inc/anotherPage.html #part1’);

Having the option of loading page portions can give you a great deal of design
and organizational flexibility.

Not every Web site can use every AJAX feature that jQuery offers, so you’ll leave
the Photographer’s Exchange Web site behind at this point. You’ll develop stand-
alone examples to demonstrate some of the other features and events available
in jQuery’s AJAX library.

FIGURE 4.7 The form has

been loaded into the page

so that the user can write a

new article.

NOTE: In Chapter 6, “Creating Application Interfaces,” you’ll use an

example in which several widgets will be contained in one file that will

be called by load as needed to complete the interface.

112 CHAPTER 4 BEING EFFECTIVE WITH AJAX

LOADING SCRIPTS DYNAMICALLY

There are some cases in which you will need to load JavaScript or jQuery scripts
just for one-time use in your Web pages and applications. jQuery provides a special
AJAX shorthand method to do just that, getScript.

For this example, you’ll use the code contained in chap3/dvdCollection, which
is a small personal Web site designed to be used as a catalog of all the DVD and
Blu-ray Discs that you own.

From time to time, you’ll want to know just how many DVD and Blu-ray Discs
you have, but it isn’t really necessary to load the script that performs the counts
and displays the result every time you use the site. jQuery’s getScript method is
the perfect remedy for loading scripts that you’ll use infrequently.

1. Set up a script called dvdcount.js and place it in the inc directory of the
DVD collection site. This is the script that getScript will load when called
upon to do so.

2. Include the document ready functionality:

$(document).ready(function(){

3. Each movie is contained in a div with a class of dvd. Assign the count of
those div’s to the variable totalCount:

 var totalCount = $(‘.dvd’).length;

4. Use jQuery’s :contains selector to help count the types of discs in the
collection. The :contains selector is very handy for finding elements
containing a specific string. Here it is used to find the text “DVD” or “Blu-
ray” in the h3 element:

 var dvdCount = $(‘h3:contains(“DVD”)’).length;

 var brCount = $(‘h3:contains(“Blu-ray”)’).length;

5. Set up the modal window to show the user the information. This is the same
technique used in Chapter 2 and Chapter 3, so I won’t cover each step in detail:

 var movieModal = ‘<div class=”movieModal”>Total Movies:
 p '+totalCount+'
DVD: '+dvdCount+'
Blu-ray:
 p '+brCount+'</div>';

USING AJAX TO UPDATE CONTENT 113

 $('body').append(movieModal);

 var modalMarginTop = ($('.movieModal').height() + 40) / 2;

 var modalMarginLeft = ($('.movieModal').width() + 40) / 2;

 $('.movieModal').css({

 'margin-top' : -modalMarginTop,

 'margin-left' : -modalMarginLeft

 });

The modal will only pop up for a moment before fading out:

 $(‘.movieModal’).fadeIn(‘slow’, function(){

 $(this).fadeOut(2500, function() {

 $(this).remove();

 });

 });

});

The main page for the DVD catalog site is chap4/dvdCollection/4-5.php. Let’s
take a moment to set it up.

1. Enter the information for the header:

<!DOCTYPE html>

<html lang=”en”>

 <head>

 <meta charset=”utf-8”>

 <title>DVD Collection Catalog</title>

 <link rel=”stylesheet” href=”css/dvd.css”
 p type=”text/css” />

114 CHAPTER 4 BEING EFFECTIVE WITH AJAX

2. Include the jQuery file so that all of the interactions will run properly:

 <script type=”text/javascript”
 p src=”inc/jquery-1.5.min.js"></script>

 </head>

3. Set up the body next:

 <body>

 <h2>DVD Collection Catalog</h2>

 <div class=”menuContainer”>

4. Set up the menu section carefully, because you’ll use these elements to
call other scripts:

 <ul class=”menu”>

 <li id=”add”>Add

 <li id=”summary”>Summary

 </div>

5. Set up the div that will house the content of the page:

 <div class=”content”></div>

6. Create the section containing the jQuery scripts you’ll use to load informa-
tion into the page along with the function that loads chap4/dvdCollection/
inc/getdvd.php. The PHP is called by the jQuery load method to get the
information about the DVD collection:

 <script type=”text/javascript”>

 $(document).ready(function(){

 $(‘.content’).load(‘inc/getdvd.php’);

USING AJAX TO UPDATE CONTENT 115

7. Bind the click method to the list item with an id of summary. This will call
getScript to run the jQuery script created earlier, dvdcount.js:

 $(‘#summary’).click(function() {

 $.getScript(‘inc/dvdcount.js’);

 });

 });

</script>

8. Close out the HTML:

 </body>

</html>

Clicking the Summary element on the Web page causes the dvdcount.js script to
be loaded and run, showing the modal window complete with counts (Figure 4.8).
The modal window then slowly fades away.

FIGURE 4.8 Clicking on the

Summary element loads and

runs the dvdcount.js script.

116 CHAPTER 4 BEING EFFECTIVE WITH AJAX

You will find many cases where loading and running scripts on the fly will
enhance your Web sites and applications.

Next, you’ll turn your attention to many of jQuery’s AJAX extras and learn how
to apply them practically.

USING JQUERY’S AJAX EXTRAS

In addition to the shorthand methods, jQuery provides many useful methods and
helpers to give you ways to use AJAX efficiently. These methods range from low-
level interfaces to global event handlers, all of which, when applied properly, will
make your programs and Web sites more effective.

Let’s look at these extras, starting with the low-level interfaces.

WORKING WITH LOW-LEVEL INTERFACES

jQuery’s low-level AJAX interfaces provide the most detailed approach to AJAX
functions. This kind of detail makes the low-level interfaces quite flexible but
introduces additional complexity due to all of the options available.

One way to combat the complexity of having an extensive choice of options
is to use a method to set up options that do not change frequently. Take a look at
the simplest of the low-level interfaces, ajaxSetup:

$.ajaxSetup({

 url: ajaxProcessing.php,

 type: ‘POST’

});

TheajaxSetup method allows you to provide options that will be used with every
AJAX request. You can set all of the AJAX options available (over 25 of them!) using
ajaxSetup. This is very convenient if you need to make repeated AJAX requests to
the same URL or use the same password each time you make a request. In many
cases, developers will put all of their server-side AJAX handlers in the same file
on the server. Using ajaxSetup shortens their AJAX calls, including the shorthand
methods. Given the current example of ajaxSetup, your post method could be
configured like this:

$.post({ data: formData });

USING AJAX TO UPDATE CONTENT 117

The only thing you need to supply to the post function is the data to be handled
by ajaxProcessing.php. One advantage of using the ajaxSetup method is that you can
override any of the ajaxSetup options in the individual AJAX calls that you make.

The low-level interface that you will see in use most is the straight ajax method.
It is the function that is wrapped by the shorthand methods and is at the very
heart of all of jQuery’s AJAX calls. The ajax method is capable of accepting all of
the options that can be used with jQuery’s AJAX requests. Perhaps the best way to
understand the low-level AJAX method is to compare it to one of the shorthand
methods you used earlier. Here is the post method that you used to check to make
sure the user name was available:

$.post(‘inc/peRegister.php’, {

 formName: ‘register’,

 penewuser: newName

}, function(data){

 var usernameCount = data;

 if(1 == usernameCount){

 $(‘#penewuser’).next(‘.error’).css(‘display’, ‘inline’);

 } else {

 $(‘#penewuser’).next(‘.error’).css(‘display’, ‘none’);

 }

}, ‘html’);

Here is the same request using jQuery’s low-level ajax method:

$.ajax({

 type: ‘POST’,

 url: ‘inc/peRegister.php’,

 data: ‘formName=register&penewuser=’+newName+’’,

 success: function(data){

 var usernameCount = data;

 if(1 == usernameCount){

118 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 $(‘#penewuser’).next(‘.error’).css(‘display’, ‘inline’);

 } else {

 $(‘#penewuser’).next(‘.error’).css(‘display’, ‘none’);

 }

 },

 dataType: ‘html’

});

The differences are fairly obvious, such as declaring the method that AJAX
should use to convey the information to the server (type: ‘POST’), specifying
the way that raw data is formatted (data: ‘formName=register&penewuser=

’+newName+’’,) and ensuring that the success method is implicitly defined
(success: function(data){…).

Take a tour of jQuery’s ajax API at http://api.jquery.com/jQuery.ajax to see all
of the options available for use with this method.

Now that you can send information to the server and receive information back
from your server-side processes, you need to make sure that your users are informed
that an AJAX action is taking place. jQuery provides several helper functions that
make it easy for you to do just that.

TRIGGERING EVENTS BEFORE AND AFTER THE AJAX CALL

In many cases, your jQuery AJAX functions will happen so quickly that users may
not even know that their actions achieved the desired result. In other cases, the
AJAX process may be lengthy and require that users wait for results. jQuery pro-
vides four methods that you can use to keep users informed: ajaxStart, ajaxSend,
ajaxComplete, and ajaxStop.

It is important to understand that there is an order to these four functions. You
can call any number of AJAX processes during any given event. For this reason, you
may want to know not only when the first AJAX function starts, but also when
each subsequent AJAX method gets called and completes. Then you may want
to register that all of the AJAX calls have completed. If you imagine jQuery AJAX
events as a stack of items as in Figure 4.9, you’ll see how the jQuery AJAX engine
defines the order of the events and their calls.

http://api.jquery.com/jQuery.ajax

USING AJAX TO UPDATE CONTENT 119

Let’s take a close look at how to use the ajaxStart and ajaxStop methods by
giving users a visual queue during a data- and file-submission event in the DVD
Collection Catalog.

1. Open chap4/4-6.php.

In 4-6.php you will see a form (Figure 4.10 on the next page) that accepts
user input and provides a method for uploading a file. This combination is
not unusual, but it will require that you pay careful attention when writing
the PHP and jQuery to handle the data transfer and file upload.

A
JA

X
C

O
N

T
R

O
L

L
E

R

jQuery AJAX Send

jQuery AJAX Start

jQuery AJAX Request

jQuery AJAX Request

jQuery AJAX Request

jQuery AJAX Stop

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Start

jQuery AJAX Send

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Send

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Send

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Send

jQuery AJAX Request

jQuery AJAX Complete

jQuery AJAX Stop

FIGURE 4.9 The initial jQuery

events are stacked up by the

developer and then ordered

and processed by jQuery’s

AJAX engine.

120 CHAPTER 4 BEING EFFECTIVE WITH AJAX

Two PHP scripts will handle the data supplied in the form: one for the
movie cover art upload (not really AJAX, remember?) and one for the data
input into the form.

2. Create a file called chap4/dvdCollection/inc/dvdcover.php to set up the
image upload first.

3. Set up the path for the cover art:

$coverPath = “../cover_art/”;

4. Make sure that the file is submitted properly and has no errors:

if ($_FILES[“movieCover”][“error”] == UPLOAD_ERR_OK) {

5. Set up the variables to hold the information about the uploaded file (this is
the same technique that you used for file uploads in Chapter 3):

 $tmpName = $_FILES[“movieCover”][“tmp_name”];

 $coverName = $_FILES[“movieCover”][“name”];

6. Create the regular expression used to check the file extension of the
uploaded file:

 $regexFileExt = “/\.(jpg|jpeg|png)$/i”;

FIGURE 4.10 The form that

users will fill out to add movies

to their personal database.

USING AJAX TO UPDATE CONTENT 121

7. Test the file extension to see if it matches one allowed by the regular expression:

 if(preg_match($regexFileExt, $coverName)){

8. Check the file again by making sure it really is the right kind of file accord-
ing to its first few bytes:

 $arrEXIFType = array(IMAGETYPE_JPEG, IMAGETYPE_PNG);

 if(in_array(exif_imagetype($tmpName), $arrEXIFType)){

9. Set up the file’s new name and path, and place them into the variable
$newCover:

 $newCover = $coverPath.$coverName;

10. Move the properly named file to its permanent directory:

 move_uploaded_file($tmpName, $newCover);

 }

 }

}

Now that you’ve completed the PHP script for the file upload, you can create
the PHP script that will be called by the jQuery AJAX post method to update the
database.

1. Create a file called postdvd.php and store it in the chap4/dvdCollection/
inc folder.

Only two actions are contained in postdvd.php: one to connect to the
database and one to run the query that will perform the database update.

2. Set up the database connection first (be sure to use the user name and
password that you have set up for your database):

if(!$dbc = mysql_connect(‘localhost’, ‘username’, ‘password’)){

 echo mysql_error() . “\n”;

 exit();

}

122 CHAPTER 4 BEING EFFECTIVE WITH AJAX

3. Introduce a little sleep timer to slow down the process. This will allow the
animated loading graphic to be displayed by ajaxStart in the jQuery func-
tion that will be created (typically, the database operation is very fast—so
fast that the user may not realize that something has occurred.):

sleep(2);

4. Create the SQL query that will accept the values from the AJAX post method
to update the database with:

$insertMovie = “INSERT INTO `dvdcollection`.`dvd` “;

$insertMovie .= “(`name`,`genre`,`format`,`description`,
p `cover`) “;

$insertMovie .= “VALUES(“;

$insertMovie .= “’”.$_POST[‘movieName’].”’,”;

$insertMovie .= “’”.$_POST[‘movieGenre’].”’,”;

$insertMovie .= “’”.$_POST[‘movieFormat’].”’,”;

$insertMovie .= “’”.$_POST[‘movieDescription’].”’,”;

$insertMovie .= “’cover_art/”.$_POST[‘movieCover’].”’ “;

$insertMovie .= “)”;

5. Call the mysql_query function to run the SQL query:

if(!($movieInfo = mysql_query($insertMovie, $dbc))){

 echo mysql_error();

 echo mysql_errno();

 exit();

}

NOTE: Make sure that you run the SQL chap4/dvdCollection/sql/

create_collection_table.sql script in your database platform to set up

and populate the table for the DVD collection.

USING AJAX TO UPDATE CONTENT 123

With the PHP scripts complete, you can now turn your attention to the jQuery
functions. All of the jQuery functions will be placed into the file inc/movieUp.js.

1. Start the file by defining the ajaxStart method:

$(‘body’).ajaxStart(function(){

The ajaxStart function will be called as soon as an AJAX request is made.
The method can be bound to any element available in the DOM and is
bound to the body element for use here. You can define any processes that
you want within the ajaxStart method.

2. For this file and data upload, create a modal pop-up window to give the
users a visual clue that something is occurring:

 var waitingModal = ‘<div class=”waitingModal”>
 p </div>';

 $('body').append(waitingModal);

 var modalMarginTop = ($(‘.waitingModal’).height() + 40) / 2;

 var modalMarginLeft = ($(‘.waitingModal’).width() + 40) / 2;

 $(‘.waitingModal’).css({

 ‘margin-top’ : -modalMarginTop,

 ‘margin-left’ : -modalMarginLeft

 });

 $(‘.waitingModal’).fadeIn(‘slow’);

});

The technique used to create the modal window is no different than what
you have used previously in the book.

3. Bind the ajaxStop method to the body element (remember that methods
like ajaxStart and ajaxStop can be bound to any element). When the AJAX
request is complete, you’ll want to clear the form and remove the modal
from view so that the user knows the process is finished:

$(‘body’).ajaxStop(function(){

124 CHAPTER 4 BEING EFFECTIVE WITH AJAX

4. Clear the form elements so that the user can use the form to add another
movie. Just like using ajaxStart, you can define any process within the
ajaxStop function:

 $(‘#addMovie input[name*=”movie”]’).val(‘’);

 $(‘#addMovie textarea’).val(‘’);

Be very specific with your jQuery selectors when choosing which form
elements to clear. For example, using just $(‘#addMovie input’) will also
clear the form’s buttons, and that would confuse the user.

5. Fade away the modal indicator and remove it from the DOM. This is the last
part of the process defined in the ajaxStop method:

 $(‘.waitingModal’).fadeOut(‘slow’, function(){

 $(this).remove();

 });

});

6. Begin the form handler by binding the form addMovie to the submit method:

$(‘#addMovie’).submit(function(){

7. Upload the image using the iframe method that was defined in Chapter 3:

 var iframeName = (‘iframeUpload’);

 var iframeTemp = $(‘<iframe name=”’+iframeName+’”
 p src=”about:blank” />');

 iframeTemp.css('display', 'none');

 $('body').append(iframeTemp);

 $(this).attr({

 action: ‘inc/dvdcover.php’,

 method: ‘post’,

 enctype: ‘multipart/form-data’,

 encoding: ‘multipart/form-data’,

 target: iframeName

 });

USING AJAX TO UPDATE CONTENT 125

8. Once the image upload is complete, remove the iframe from the DOM:

 setTimeout(function(){

 iframeTemp.remove();

 }, 1000);

9. Prepare the data to be used in the post method. Because information in a
textarea cannot be serialized with normal jQuery methods, create a text
string that sets up the textarea value as if it were serialized by making the
information a name=value pair:

 var coverData = ‘&movieCover=’ +
 p $(‘input[name=”movieCover”]’).val();

10. Serialize the remainder of the form data:

 var formData = $(this).serialize();

11. Once the form data has been processed by the serialize function, concat-
enate the two strings together in the uploadData variable:

 var uploadData = formData + coverData;

12. Call the jQuery AJAX shorthand method post to upload the data:

 $.post(‘inc/postdvd.php’, uploadData);

});

When the movie data form is submitted, the jQuery AJAX engine will see
that there is a post occurring during the process, triggering the ajaxStart
method. Figure 4.11 shows the modal loading indicator called by ajaxStart.

Once the post process has completed, the ajaxStop method is triggered,
causing the modal waiting indicator to fade out.

Now that you have learned to handle AJAX calls and the data they return, you
need to learn how to handle one of the Web’s fastest-growing data types, JSON.

TIP: If you need animated graphics to indicate to your users

that something is occurring in the background, check out

www.ajaxload.info. There you can generate several different animated

graphics in a wide array of colors.

FIGURE 4.11 The ajaxStart
method has called the waiting

indicator.

www.ajaxload.info

126 CHAPTER 4 BEING EFFECTIVE WITH AJAX

USING JSON

JSON (JavaScript Object Notation) has become a popular and lightweight way to
transmit data packages for various uses over the Internet. In many ways, JSON is
more popular than XML for delivering data quickly and efficiently. JSON data can
be easily used with the jQuery AJAX shorthand method especially designed to
handle the JSON data type, getJSON.

So what exactly is JSON?
To understand JSON, you need a little lesson in JavaScript’s object literal nota-

tion. Object literal notation is an explicit way of creating an object and is the most
robust way of setting up a JavaScript object. Here is an example:

var person = {

 name: “Jay”,

 occupation: “developer”,

 stats: [“blonde”, “blue”, “fair”],

 walk: function (){alert(this.name+ ‘is walking’);}

};

The person object has been literally defined as name: value pairs, including a
nested array (stats) and a method to make the object walk. It is a very tidy way to
describe an object.

The following commands interact with the person object:

person.walk(); //alerts ‘Jay is walking’

alert(person.stats[1]); // alerts ‘blue’

JSON is a subset of the object literal notation, essentially the name: value pairs
that describe an object. A JSON array can contain multiple objects. The key to
being successful with JSON is making sure that it is well-formed. JSON must have
matching numbers of opening and closing brackets and curly braces (the braces
must be in the correct order); the names and values in the name : value pairs must
be quoted properly; and commas must separate each name: value pair.

USING AJAX TO UPDATE CONTENT 127

To illustrate this, look at the JSON for the person object:

var myJSONobject = {“person”:[{

 “name”:”Jay”,

 “occupation”:”developer”,

 “stats”:[{

 “hair”:”blonde”,

 “eyes”:”blue”,

 “skin”:”fair”

 }]

 }]

};

It’s important to note that the JSON object does not contain any methods or
functions that can be executed. JSON specifically excludes these from the notation
because JSON is only meant to be a vehicle for transmitting data.

SETTING UP A JSON REQUEST

Twitter has undoubtedly become one of the most popular social media outlets
since the dawn of the Internet. Twitter has made an API available for those who
want to extend the use of Twitter to their own Web pages and applications. One
of the most popular uses of the Twitter API is to include recent tweets in personal
Web sites and blogs.

Taking advantage of the API can be as simple or as complex as you want it to be.
Let’s build a simple widget to obtain your last ten tweets for inclusion in a Web page.

The tweet data is returned from Twitter in the JSONP format. JSONP is known
as “JSON with Padding.” Under normal circumstances, you cannot make AJAX
requests outside of the domain the request originates from (Figure 4.12 on the
next page). JSONP relies on a JavaScript quirk: <script> elements are allowed to
make those cross-domain requests.

128 CHAPTER 4 BEING EFFECTIVE WITH AJAX

To make this work, the JSON must be returned in a function. Using the JSON
object created earlier, the JSONP would look like this:

myJSONfunction({“person”:[{“name”:”Jay”, “occupation”:”developer”,
p "stats":[{"hair":"blonde","eyes":"blue","skin":"fair"}]}]});

If it looks like gibberish to you now, don’t worry; as you walk through the
function being built to get JSON data from Twitter, it will become much clearer.

Let’s build the entire file, including CSS, from scratch.

FIGURE 4.12 The only way

you can make a cross-domain

request is with JSONP.

Typical AJAX Request
(not allowed cross-domain)

JSONP AJAX Request
(allowed cross-domain)

USING AJAX TO UPDATE CONTENT 129

1. Create a file called 4-7.php in the chap4 folder.

2. Set up the DOCTYPE and include the basic head, title, and character set
declarations:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
 p charset=utf-8” />

 <title>Twitter Widget</title>

3. Provide a reference to the jQuery source that you will be using. Make sure
that the path is correct; in this case the path is inc/jquery-1.5.2.min.js:

 <script type=”text/javascript”
 p src=”inc/jquery-1.5.min.js”></script>

4. Create the style information for the Twitter widget:

 <style type=”text/css”>

 body {

 background-color: #FFFFCC;

 }

 #tw {

 position: relative;

 width: 350px;

 left: 50%;

 margin-left: -175px;

 }

 .tweet {

 font-family: “Lucida Grande”,”Arial Unicode MS”,
 p sans-serif;

 width: 350px;

130 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 background-color: #99FFCC;

 padding: 5px;

 border-right: 2px solid #66CC99;

 border-bottom: 3px solid #66CC99;

 margin-bottom: 2px;

 }

 </style>

5. Close out the head section of the page:

 </head>

The body section for the widget is very simple: Add a div with an id of tw to
which the tweets will be appended:

 <body>

 <div id=”tw”></div>

The jQuery script to get the tweets is very short but requires that you pay atten-
tion to detail. You will make the names and hash tags clickable so that they have
the same functionality they have on the Twitter Web site. Any links included in a
tweet will also be clickable, opening a new browser window to show the information.

1. Start the jQuery function by opening a script tag and inserting the document-
ready function:

 <script type=”text/javascript”>

 $(document).ready(function() {

2. Create the URL to access Twitter and store the URL in the variable twitterURL:

 var twitterURL ='http://twitter.com/statuses/
 p user_timeline.json?screen_name=
 p YOUR_TWITTER_USER_NAME&count=10&callback=?';

Be sure to replace YOUR_TWITTER_USER_NAME with your actual Twitter user
name. It is very important to make sure that the URL is formatted with
the query string (name=value pairs) that will be used by getJSON during

USING AJAX TO UPDATE CONTENT 131

the request. Send three options to Twitter: your Twitter screen_name, the
count of the number of tweets to return, and most important, the callback.
It is the callback option that lets Twitter know that you expect the return
data to be JSONP.

3. Once the URL is formed, open the getJSON request method by sending the
URL and defining the getJSON callback option:

 $.getJSON(twitterURL, function(data){

4. The JSONP has been returned from Twitter at this point. Set up a loop
through the data contained in the function. Treat the data as members of
an array called item:

 $.each(data, function(i, item){

5. Contain the tweet in a name: value pair with the name of text. Assign this
item to the variable tweetText:

 var tweetText = item.text;

6. Use regular expressions to locate URLs, @ tags, and hash(#) tags in the
tweet so that you can give each the proper treatment. Look for URL’s first:

 tweetText = tweetText.replace
 p (/http:\/\/\S+/g, ‘<a href="$&"
 p target="_blank">$&');

The regular expression /http:\/\/\S+/g matches text beginning with
http:// and ending in a space, which would typically indicate a URL. The
/g (global) says to match all URLs in the string contained in tweetText. The
URLs are turned into links by replacing the URL with an anchor tag contain-
ing the URL as both the href and the text of the link. In JavaScript the $&
property contains the last item matched by a regular expression. Because
the URL was the last item matched, it can be replaced into an anchor tag
by using the $& property.

NOTE: The callback option for the query string is not the

same as the callback for the getJSON request.

132 CHAPTER 4 BEING EFFECTIVE WITH AJAX

7. Twitter prefixes user names with the @ symbol. So, search tweetText for
words beginning with the @ symbol:

 tweetText = tweetText.replace(/(@)(\w+)/g,
 p ‘ $1<a href="http://twitter.com/$2"
 p target="_blank">$2');

Here, the regular expression /(@)(\w+)/g indicates that all words begin-
ning with the @ symbol are replaced by the appropriate anchor tag to open
a browser window for users’ tweets. The $1 and $2 contain the information
matched in each parenthesis, which is used to include those matches in
the replacement text.

8. Turn your attention to the hash tags now and use a technique similar to
the one you used for replacing the @ symbol:

 tweetText = tweetText.replace(/(#)(\w+)/g,
 p ‘ $1<a href="http://search.twitter.com/
 p search?q=%23$2" target="_blank">$2
 p ');

9. Once the tweetText has been completely manipulated to insert all of the
anchor tags, place it into a div. Then append the new div to the existing
div (id=”tw”) that was set up as part of the original content for the page:

 $(“#tw”).append(‘<div class="tweet">
 p '+tweetText+'</div>');

10. Close out the jQuery function and HTML tags for the page:

 });

 });

 });

 </script>

 </body>

</html>

USING AJAX TO UPDATE CONTENT 133

11. Upload the page to a server, and load the page into a browser. You should
achieve the results that you see in Figure 4.13.

With all of the data traveling back and forth between clients and servers,
including servers not under your control, it is only natural to be concerned about
the security of the information that you and your Web-site visitors send in AJAX
requests. Let’s address those concerns next.

FIGURE 4.13 The Twitter

widget retrieves the last

few posts that you made.

134 CHAPTER 4 BEING EFFECTIVE WITH AJAX

One of the vexing problems with Web sites and applications is that users will either
inadvertently or purposely submit data through your Web site that can cause
harm to your databases and servers. It is important that you take as many steps
as possible to guard against the input and transmission of bad or malformed data.

Several of these steps have been covered already, including using regular
expressions to guide the user to input the right kind of data and making sure that
cookies are set uniquely for each Web visitor. As an older, and much wiser, men-
tor said to me, “Locking the gate in this way only keeps the honest people from
climbing the fence.”

Even with regular expressions in place for form fields, you cannot stop the
transmission of the data because the form can still be submitted. So, what are
some of the measures you can take to prevent users from submitting potentially
harmful data?

� Prevent form submission by “graying” out the Submit button on forms
until all of the regular expression rules for each form field have been met.

� Use cookies to uniquely identify the user (more precisely, the user’s com-
puter) based on registration information and check cookie data against a
database during transmission of user-supplied data.

� Clean user-supplied data when it arrives at the back-end process to make
sure the data doesn’t contain harmful statements or characters.

� Transmit the data over a secure connection (HTTPS [HyperText Transfer
Protocol Secure]) to prevent outsiders from “sniffing” information traveling
from and to the Web browser.

These techniques should be used in conjunction with each other to present the
safest experience for the user and the Web-site owner. Let’s walk through some
of these techniques.

NOTE: For more information on HTTPS, visit the Electronic Frontier

Foundation’s Web site at www.eff.org/https-everywhere.

SECURING AJAX REQUESTS

www.eff.org/https-everywhere

SECURING AJAX REQUESTS 135

PREVENTING FORM SUBMISSION

Let’s return to the Photographer’s Exchange Web site and make some changes to
the HTML file containing the registration form as well as the jQuery script that
supports the form.

1. Open chap4/4-2.php and locate the section of the script where jQuery scripts
are included. You’ll find these include declarations between the head tags.

2. Change the following highlighted line to point to the updated jqpe.js file:

<script type=”text/javascript”
p src=”inc/jquery-1.5.min.js”></script>

<script type=”text/javascript”
p src=”inc/jquery.ez-bg-resize.js”></script>

<script type=”text/javascript”
p src=”inc/spritenav.js”></script>

<script type=”text/javascript”
p src=”inc/carousel.js”></script>

<script type=”text/javascript”
p src=”inc/jqpe.js”></script>

<script type=”text/javascript”
p src=”inc/peAjax.js”></script>

After the change, the line will look like this:

<script type=”text/javascript”
p src=”inc/jqpeUpdated.js”></script>

3. Save the file as chap4/4-8.php.

4. Open chap4/inc/jqpe.js and save it as chap4/inc/jqpeUpdated.js. Add the
code for the error count function. Start by initializing the $submitErrors
variable:

var submitErrors = 0;

5. Declare a function called errorCount:

function errorCount(errors) {

136 CHAPTER 4 BEING EFFECTIVE WITH AJAX

6. Set the argument variable errors to be equal to the submitErrors variable:

 errors = submitErrors;

7. If the error count is zero, you want to enable the submit button. So, remove
the disabled attribute from the button. Use the jQuery attribute selectors
to select the proper button:

 if(0 == errors){

 $(‘input[type=”submit”][value=”Register”]’).
 p removeAttr('disabled');

8. If the error count is not zero, the submit button will be disabled. Use the
same selector syntax and add the disabled attribute to the button:

 } else {

 $(‘input[type=”submit”][value=”Register”]’).
 p attr('disabled','disabled');

 }

9. Close out the function :

}

Once the function is in place, you’ll need to make some changes to the password
and email validation functions that were created previously.

1. In jqpeUpdated.js locate the password validation function that begins with
the comment /*make sure password is not blank */. Insert the two
new lines of code highlighted here:

/* make sure that password is not blank */

 $(function() {

 var passwordLength = $(‘#penewpass’).val().length;

 if(passwordLength == 0){

 $(‘#penewpass’).next(‘.error’).css(‘display’,
 p ‘inline’);

 errorCount(submitErrors++);

 $(‘#penewpass’).change(function() {

SECURING AJAX REQUESTS 137

 $(this).next(‘.error’).css(‘display’, ‘none’);

 errorCount(submitErrors--);

 });

 }

 });

If the password is blank (having a length of zero), the errorCount function
is called and the submitErrors variable is incremented by a count of one.

errorCount(submitErrors++);

After a password has been entered, the error is cleared and the error count
can be reduced by decrementing submitErrors:

errorCount(submitErrors--);

2. Locate the email validation function. It begins with the comment /* validate
e-mail address in register form */. Add the same calls to the errorCount
function where indicated by the following highlights:

/* validate e-mail address in register form */

 $(function(){

 var emailLength = $(‘#email’).val().length;

 if(emailLength == 0){

 $(‘#email’).next(‘.error’).css(‘display’,
 p ‘inline’);

 errorCount(submitErrors++);

 $(‘#email’).change(function() {

 var regexEmail = /^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+
 p \.[a-zA-Z]{2,4}$/;

 var inputEmail = $(this).val();

 var resultEmail = regexEmail.test(inputEmail);

 if(resultEmail){

 $(this).next('.error').css('display', 'none');

 errorCount(submitErrors--);

138 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 }

 });

 }

});

When the page first loads, submitErrors gets incremented twice—once
by each of the validation functions. The total error count prior to the form
being filled out is two. Because the submitErrors has a value of two, the
submit button is disabled, as illustrated in Figure 4.14.

As each function is cleared of its error, the submitErrors variable is decre-
mented until it finally attains a value of zero. When the value of submitErrors
is zero, the errorCount function removes the disabled attribute from the
submit button and the form can be submitted normally.

This technique can be applied to any number of form fields that you need to
validate, but it really isn’t enough to prevent malicious users from trying to hack
your site. Let’s take a look at another technique you can add to your Web-site
application model, giving each user cookies.

FIGURE 4.14 The Register

button is grayed out. It is not

available to the user until all

errors are cleared.

SECURING AJAX REQUESTS 139

USING COOKIES TO IDENTIFY USERS

Giving users cookies sounds very pleasant. But it really means that you want to
identify users to make sure they are allowed to use the forms and data on your Web
site. What you don’t want to do is put sensitive information into cookies. Cookies
can be stolen, read, and used.

Personally, I’m not a big fan of “remember me cookies” because the longer it
takes a cookie to expire, the longer the potentially malicious user has to grab and use
information in the cookie. I’d rather cookies expire when the user closes the browser.
This would reduce the chance that someone could log in to the user’s computer
and visit the same sites to gain information or copy the cookies to another location.

What should you store in the cookie? One technique that you can employ that is
very effective is storing a unique token in the cookie that can be matched to the user
during the user’s current session. Let’s modify the Photographer’s Exchange login
process to store a token in the user’s database record. The token will be changed
each time the user logs in to the site, and you will use the token to retrieve other
data about the user as needed.

1. Open chap4/inc/peRegister.php and locate the section that starts with the
comment /* if the login is good */. You will insert new code to create
and save the token into the newly created database column.

2. The first line that you need to add creates a unique value to tokenize. Con-
catenate the user name contained in $_POST[‘pename’] with a time stamp
from PHP’s time function. PHP’s time function returns the time in seconds
since January 1, 1970. Store that in the variable $tokenValue, as shown in
the following highlighted line:

/* if the login is good */

if(1 == $loginCount){

 if(isset($_POST[‘remember’])){

 $tokenValue = $_POST[‘pename’].time(“now”);

3. Modify the information to be stored in $peCookieValue by hashing the
$tokenValue with an MD5 (Message Digest Algorithm) hash:

 $peCookieValue = hash(‘md5’, $tokenValue);

 $peCookieExpire = time()+(60*60*24*365);

140 CHAPTER 4 BEING EFFECTIVE WITH AJAX

 $domain = ($_SERVER[‘HTTP_HOST’] != ‘localhost’) ?
 p $_SERVER['HTTP_HOST'] : false;

 setcookie('photoex', $peCookieValue, $peCookieExpire, '/',
 p $domain, false);

 echo $loginCount;

} else {

The MD5 hash algorithm is a cryptographic hash that takes a string and
converts it to a 32-bit hexadecimal number. The hexadecimal number is
typically very unique and is made more so here by the use of the time func-
tion combined with the user’s name.

4. Make the same modifications in the section of the code where no “remember
me” value is set:

 $tokenValue = $_POST[‘pename’].time(“now”);

 $peCookieValue = hash(‘md5’, $tokenValue);

 $peCookieExpire = 0;

 $domain = ($_SERVER[‘HTTP_HOST’] != ‘localhost’) ?
 p $_SERVER['HTTP_HOST'] : false;

 setcookie('photoex', $peCookieValue, $peCookieExpire, '/',
 p $domain, false);

 echo $loginCount;

5. Add the code that will update the database with the new value:

 $updateUser = “UPDATE `photoex`.`peuser` “;

 $updateUser .= “SET `token` = ‘”.$peCookieValue.”’ “;

 $updateUser .= “WHERE `username` = ‘”.$_POST[‘pename’].”’ “;

 if(!($updateData = mysql_query($updateUser, $dbc))){

 echo mysql_errno();

 exit();

 }

SECURING AJAX REQUESTS 141

6. Open chap4/4-8.php and log in to the site with a known good user name and
password. The cookie will be set with the token, and the token information
will be set in the database. You can use your browser’s built-in cookie viewer
(for Figure 4.15, I used Tools > Page Info > Security > View Cookies in the
Firefox browser) to examine the value stored in the cookie.

Using the value of the token, you can retrieve needed information about the
user so that the data can be entered into forms or the appropriate photographs can
be displayed. Next, let’s take a look at cleaning up user-supplied data.

CLEANSING USER-SUPPLIED DATA

One additional step that you can take to make sure that user-supplied data is safe
once it reaches the server is to use your client-side scripting language to ensure
that the data is handled safely and securely.

A less than savory visitor may visit your site and copy your visible Web pages
and functions. Once copied, modifications can be made to your jQuery scripts to
remove some of the controls (regular expressions for instance) that you have placed
around data. Your first line of defense against that is to replicate those controls in
your server-side scripts.

1. Using email validations as an example, open peRegister.php (chap4/inc/
peRegister.php) to modify it.

FIGURE 4.15 The content

of the cookie is circled and

would-be cookie thieves

are foiled!

142 CHAPTER 4 BEING EFFECTIVE WITH AJAX

2. Locate the section of the code that begins with the comment /* if the
registration form has a valid username & password insert the data

*/ and supply this regular expression:

$regexEmail = ‘/^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$/’;

This is the same regular expression used in the jQuery function to validate
email addresses into the registration form.

3. Test the value posted against the regular expression with PHP’s preg_match
function:

preg_match($regexEmail, $_POST[‘email’], $match);

4. The test result, a 1 if there is a match or a 0 if there isn’t a match, is placed
into the variable $match that is declared in the preg_match function. Use
this result to modify the $_POST[‘email’] variable:

 if(1 == $match){

 $_POST[‘email’] = $_POST[‘email’];

 } else {

 $_POST[‘email’] = ‘E-MAIL ADDRESS NOT VALID’;

 }

The data from the $_POST[‘email’] variable is used in the SQL query that
inserts the data into the database.

Many languages, such as PHP, include specific functions for data cleansing.
Let’s take a look at two PHP functions that you can use to clean up data before it is
entered into a database: htmlspecialchars() and mysql_real_escape_string().

Cleaning up information submitted in HTML format is a simple matter of
wrapping the data in PHP’s htmlspecialchars function. Given a form like this:

<form name=”search” action=”inc/search.php” method=”post”>

 <label class=”label” for=”pesearch”>Search For: </label>

 <input type=”text” name=”pesearch” id=”pesearch” size=”64” />

 <label class=”label”> </label>

 <input type=”submit” value=”Search” />

SECURING AJAX REQUESTS 143

 <input type=”reset” value=”Clear” />

</form>

The PHP htmlspecialchars function replaces certain characters and returns:

<form name="search" action="inc/search.php"
p method="post"><label class="label"
p for="pesearch">Search For: </label><input
p type="text" name="pesearch"
p id="pesearch" size="64" /><br
p /><label class="label">&nbsp;<
p /label><input type="submit"
p value="Search" /><input type="reset"
p value="Clear" /></form>

The following characters have been changed:

� Ampersand (&) becomes ‘&’

� Double quote (“) becomes ‘"’

� Single quote (‘) becomes ‘'’

� The less than bracket (<) becomes ‘<’

� The greater than bracket (>) becomes ‘>’

Using PHP’s htmlspecialchars function makes user-supplied HTML data
much safer to use in your Web sites and databases. PHP does provide a function
to reverse the effect, which is htmlspecialchars_decode().

Also just as simple is preventing possible SQL injection attacks by using PHP’s
mysql_real_escape_string function. This function works by escaping certain
characters in any string. A malicious visitor may try to enter a SQL query into a
form field in hopes that it will be executed. Look at the following example in which
the visitor is trying to attempt to gain admin rights to the database by changing
the database admin password. The hacker has also assumed some common words
to try to determine table names:

UPDATE `user` SET `pwd`=’gotcha!’ WHERE `uid`=’’ OR `uid` LIKE
p ‘%admin%’; --

144 CHAPTER 4 BEING EFFECTIVE WITH AJAX

If this SQL query was entered into the user name field, you could keep it from
running by using mysql_real_escape_string:

$_POST[‘username’] = mysql_real_escape_string($_POST[‘username’]);

This sets the value of $_POST[‘username’] to:

UPDATE `user` SET `pwd`=\’gotcha!\’ WHERE `uid`=\’\’ or `uid` like
p \’%admin%\’; --

Because the query is properly handled and certain characters are escaped, it is
inserted into the database and will do no harm.

One other technique that you can use is securing the transmission of data
between the client and the server. Let’s focus on that next.

TRANSMITTING DATA SECURELY

Another option that you can consider is getting a security certificate for your site
or application and then putting your site into an HTTPS security protocol. This is
very useful because data traveling between the client and server cannot be read
by potential attackers as easily, but it can be costly.

All of the Web site data is encrypted according to keys provided by the security
certificate. The Web-site information is transmitted back and forth in a Secure
Sockets Layer (SSL). The SSL is a cryptographic communications protocol for the
Web. Once the data reaches either end of the transmission, it is decrypted properly
for use. If you have used a Web site where the URL begins with https:// or you
have seen the lock icon on your Web browser, you have used a Web site protected
in this manner. Many financial institutions and business Web sites use HTTPS to
ensure that their data travels securely.

TIP: You can learn more about HTTPS and SSL at the Electronic

Frontier Foundation’s Web site at www.eff.org/https-everywhere.

www.eff.org/https-everywhere

WRAPPING UP 145

In this chapter, you learned how to combine jQuery AJAX shorthand methods
like .get(), .post() and .load() with server-side scripting to add responsiveness to
your HTML forms. Included in this chapter were methods for getting a response
back from the server that you could process with jQuery to change page content
or provide meaningful messages to your Web site visitors.

You were also introduced to the jQuery low-level AJAX methods that are used for
more complex interactions with Web servers. Finally, you learned about JavaScript
Object Notation (JSON) and how jQuery’s JSON methods can be used to retrieve
data from services like Twitter or Flickr for use on the Web sites that you will build.

If the first taste of a jQuery widget has left you hungry for more, you’re in luck!
Chapter 5, “Applying jQuery Widgets,” explores widgets of all shapes and sizes,
including several from the jQuery UI project. In addition to widgets from the jQuery
UI project, you’ll also learn about using plugins that others have developed and
how to roll (and publish) your own plugins to share with others. Read on, Macduff!

WRAPPING UP

248248 INDEX

SYMBOLS
$ (dollar sign), using with plugins, 200
) (parenthesis), using to close code, 4
// (double slash), using with

comments, 8
/* (slash-asterisk), using with

comments, 8
} (brace), using to close code, 4

A
Accordion widget

features of, 149
using, 226–229

account page, displaying, 107
actions, examining with Firebug, 11
addClass method, using with

sprites, 223
addMovie form, binding to submit

method, 124
AJAX (Asynchronous JavaScript and

XML), 92. See also JavaScript
handling volume of content,

231–234
including jQuery UI widgets,

226–229
loading multiple items, 230–231

AJAX calls, triggering events for,
118–125

AJAX content updates
basing on request, 110–111
basing on user, 108–110
loading scripts, 112–116

AJAX extras
ajaxSetup low-level interface, 116
JSON (JavaScript Object Notation),

126–133
low-level interfaces, 116–117
triggering events, 118–126

ajax method, using, 117–118
AJAX methods

getScript, 112–116
HTTP request, 93
load, 110–111
post, 103
XMLHttpRequest, 93

AJAX requests
cleansing user-supplied data,

141–144
cookies for identifying users,

139–141
versus JSONP AJAX requests, 128
MD5 hash, 139–140
preventing form submission,

135–138
providing options for, 116
securing, 134
transmitting data securely, 144

AJAX validation
callback for post function, 101
check boxes, 94
connection for PHP function, 93
cookie setup, 98–100
data variable, 101
else statement, 96–97
error message, 101–102
inserting user’s information, 94
logging in users, 105–107
modal window, 104
mysql_query PHP function, 96
mysqlErrorNum variable, 103–104
newName variable, 101
password, 94
PHP for user login, 97–100
PHP registration, 92–100
PHP’s switch method, 93–94
registration form, 94–95
registration function, 102–105
SQL statement, 94–95
user name, 94
user name and blur method, 100
user-name availability, 96–97
validating post method, 100–102
validation file, 92–100
validation function, 100–102

ajaxSetup low-level interface, 116
ajaxStart method

calling waiting indicator, 125
using, 119–121, 123

ajaxStop method
binding, 123
using, 119–121

Alman, Ben, 241

anchor tag, creating, 4
animated graphics Web site, 125
animation

adding to sprite-based navigation,
55–56

easing, 38
animation methods

invisible elements, 30
invoking for modal window, 30
visible elements, 30

application interface
adding sprites to, 224–225
Back button, 241
content area, 206
contextual help, 241–246
CSS (Cascading Style Sheets),

209–214
disabling right-click context menu,

235–240
footer, 206
HTML (HyperText Markup

Language), 207–208
improving sprites, 217–221
layout, 206–207
loading content with AJAX,

226–234
navigation items, 206
primary navigation, 206
resize method, 214–216
secondary navigation, 206
sprite interaction, 221–224

Asynchronous JavaScript and XML
(AJAX), 92. See also JavaScript

handling volume of content,
231–234

including jQuery UI widgets,
226–229

loading multiple items, 230–231
attribute selector, using with

uploads, 70
Autocomplete widget

div tag, 167
features of, 149, 167
form input box, 167
script file, 168
selectedAttraction variable, 169

INDEX

INDEX 249

B
Bach, Christian, 172
Back Button

handling, 241
and Query (BBQ) Library, 241

background color, removing, 22
background image

gradient-filled, 194
resizing, 194–196

bar chart
creating, 183–188
displaying, 186–187

BBEdit, xii
BBQ (Back Button and Query)

Library, 241
Blue-ray Disc example

::contains selector, 112
loading scripts, 112–116
modal window, 112–113

blur method
binding to email input, 62
using with user name, 100

brace (}), using to close code, 4
browsers, xiii

C
caching selectors, 10
calendars, adding to forms, 155–157
callback, using with modal window, 33
cameras.jpg image, using, 85
carousel. See image carousel
carousel file, creating, 37
Cascading Style Sheets (CSS)

applying for application interface,
209–214

border rules, 213
:focus pseudo selector, 211
footer section, 212
for image carousel, 35–37
important property, 209
inner container, 212
navigation areas, 212–213
outer container, 210–211
for Progressbar widget, 163
for sprites, 52–54
styling Web pages with, 18

Cecco, Raff, 191
chained methods, spreading, 8.

See also methods
chaining, explained, 3
Champeon, Steve, 19
charting data, 183–188
Chrome browser, xiii
click event, using with modal

windows, 27–28
click method

sprite interaction, 222
using in DVD catalog, 115

client-side validation, performing,
68–71

Closure Compiler
downloading, 11
packing and unpacking code, 11–14

Cloud Zoom plugin
centering photo, 192
downloading, 191
options, 193
photo container, 192
zoom effect, 193

code. See also jQuery code
closing, 4
packing up, 11–15
sharing, 16

colorText plugin, declaring, 200–202
comments and line breaks, 8
::contains selector, using, 112
content, handling volume of, 231–234
context menu

disabling, 235–240
id notesContext, 238
notes interface, 239
notes_add.php file, 238
notes.php file, 237
plugin, 236
unordered HTML list, 239

contextual help
class attribute, 246
CSS (Cascading Style Sheets),

242–243
delegate method, 243
div, 244
fadeIn method, 244
fadeOut method, 245
helpDisplay function, 244–245

mouseout event, 243
mouseout method, 245
mouseover event, 243
providing, 241–246
setTimeout method, 244–245
title information, 244–246
using, 245–246

cookies
assigning value of, 109
“remember me” value, 140
setting for user login, 98–100
time() function, 99
using MD5 hash with, 139–140
using to identify users, 139–141

cover art, creating for DVD, 120
CSS (Cascading Style Sheets)

applying for application interface,
209–214

border rules, 213
:focus pseudo selector, 211
footer section, 212
for image carousel, 35–37
and HTML, 19–22
important property, 209
inner container, 212
navigation areas, 212–213
outer container, 210–211
for Progressbar widget, 163
for sprites, 52–54
styling Web pages with, 18

CSS states, moving elements from, 30
Custom Context Menu widget, 240

D
dashboards, creating, 188
data

cleansing, 142
transmitting securely, 144

Datepicker function, using, 156–157
dates, adding to forms, 155–157
debugging with Firebug, xiii, 10
delegate method

using, 32
using with contextual help, 243

design, planning, 23
dialog boxes, setting widths of, 161

250250 INDEX

Dialog widget
autoOpen option, 160
buttons, 161
close method, 162
dialog function, 160, 162
features of, 149, 158–162
modal option, 161
NO button, 162
preventDefault method, 160
reserverequest table, 159
resizable option, 161
sleep function, 159
“Stay with us” tab, 162
Submit button, 160
YES button, 161

div tag, creating, 4
dollar sign ($), using with plugins, 200
DOM (Document Object Model)

API (Application Programming
Interface), 7

examining, 5–6
inspector applications, 6
tree-like structure, 6–7

DOM tree, traversing, 7–10
double slash (//), using with

comments, 8
DVD catalog

binding click method, 115
load method, 114
main page of, 113–115
Summary element, 115

DVD Collection Catalog, cover art, 120
DVD example. See also postdvd.php file

::contains selector, 112
loading scripts, 112–116
modal window, 112–113

dvdcount.js script
loading, 115
setting up, 112

dvdcover.php file, creating, 120

E
each method, using with forms, 61
easing methods

linear, 38
swing, 38

Easing Plugin, downloading, 38

Easy Background Resize plugin
adding to lodge Web site, 194–196
downloading, 194–196
features of, 194
image path, 195

Electronic Frontier Foundation Web
site, 144

elements, selecting, 9
else statement in AJAX validation,

96–97
email addresses

binding blur method, 62
hidden error span, 62
inputEmail variable, 64
.next() method, 66
span element with error, 66
test method, 64–65
validating in forms, 62–66

email validation
performing, 141–142
updating, 137–138

error message, for AJAX validation,
101–102

errors, catching for uploads, 69–71
event handler, binding, 3
events. See also submit event

binding to elements, 32, 34
for form methods, 60
triggering for AJAX calls, 118–125

exif_imagetype function, using, 73
Extensible Markup Language (XML),

versus JavaScript Object
Notation (JSON), 126

F
fadeIn() method, using with modal

windows, 30
fields, completing automatically,

167–170
file extensions

regular expressions for, 120–121
testing for uploads, 70

file uploads. See uploads
Firebug

downloading, xiii, 10
examining actions, 11
features of, 10

handler feature, 10
troubleshooting with, 10

Firefox browser, xiii
fn object, using with plugins, 200
focus function

tabindex attribute, 60
using with forms, 60–62

:focus pseudo selector, using with
CSS, 211

form data, serializing, 103, 125
form elements, clearing, 124
form fields, avoiding blanks, 66–68
form input

for adding movies, 120
client-side validation, 68
completing, 66–68
cursor placement, 61–62
each method, 61
focus function, 60–62
looking for, 61
regular expressions, 63–65

form methods, events, 60
form submission

email validation, 137–138
errorCount function, 135–136
errors argument variable, 136
incrementing submitErrors, 138
password validation, 136–137
preventing, 135–138
$submitErrors variable, 135

forms
adding calendars to, 155–157
adding dates to, 155–157
users_add.php, 232
users_search.php, 230
validating email addresses, 62–66

forums, participating in, 9
functions. See methods

G
get method

closing, 109
using, 108–110

getJSON request method, using with
tweets, 131

getScript method, using, 112–116
Given, J.P., 194

INDEX 251

gMap plugin
centering map, 182
downloading, 180
features of, 171, 180
loading page, 182
map type, 181
plotting points, 182
properties, 180
setting options, 181
style rules, 180
zoom level, 181

Google Closure Compiler
downloading, 11
packing and unpacking code, 11–14

Google Maps API, popularity of, 180
graceful degradation, 19
GSGD Web site, 38
Gustafson, Aaron, 19

H
“Hello World” example

anchor tag, 4
binding event handler, 3
chaining, 3
completing, 5
document ready function, 3
head section, 4
HTML div, 4
HTML markup, 2
jQuery source file, 2
script tag, 2
selector, 3
span element, 4

hello_world.html file, saving, 5
hover function

image carousel, 39–41
sprite interaction, 222

HTML (HyperText Markup Language)
creating for application interface,

207–209
and CSS, 19–22
unordered list, 239

HTML div, creating, 4
HTML files, referencing jQuery UI

files in, 150–152
HTML form, creating for

notes_add.php, 238

HTML list, unordered, 27
HTML markup, defining for sprite-

based navigation, 51
HTMLDOM elements, selecting, 18
htmlspecialchars() function, using,

142–143
HTTPS security protocol,

considering, 144

I
iframe method

removing from DOM, 125
uploading images with, 124
using with uploads, 75

image carousel
animate method, 40
autoCarousel function, 37, 39
automatic scrolling, 37–39
bodyHeight variable for

thumbnail, 48
building, 34
carThumb class, 45
centering modal window, 49
controlling manual scrolling, 41–44
CSS (Cascading Style Sheets),

35–37
easing animations, 38
enlarging thumbnails, 44–50
features of, 35
function keyword, 37
height of list items, 36
hover functions, 39–41
invisible portions, 37
left margin for CSS, 36
list items, 37
modal window for thumbnail, 48
mouse cursor, 40
moving, 38
moving list items, 38
moving to right, 42–44
naming items, 48
photoModal style rule, 45
photoPathArr array, 46
resetting left margin, 39
restarting automatic scrolling, 41
scrollRight element, 42
setInterval function, 39

splitting thumbnail path info, 46
stop method, 40
stopping scrolling animation, 41
visible portions, 37
width of list items, 36
zooming in on larger images,

44–50
! important CSS property, 209
images, uploading with iframe

method, 124
inc/movieUp.js file. See also movies

ajaxStart method, 123
beginning form handler, 124
binding ajaxStop method, 123
clearing form elements, 124
form handler, 124
modal pop-up window, 123
post method, 125
removing modal indicator, 124
serializing form data, 125
starting, 123
uploading data, 125
uploading image, 124

interaction, planning, 23
interface.css file

contextual help, 242–243
creating, 209

interface.js file
contextual help, 243
creating, 214
opening, 228, 235

Internet Explorer browser, xiii

J
JavaScript. See also AJAX

(Asynchronous JavaScript
and XML)

object literal notation, 126
test method, 72
unobtrusive, 22

JavaScript Object Notation (JSON)
arrays, 126
name:value pairs, 126–127
person object, 127
requirements, 126
returning in functions, 128
versus XML, 126

252252 INDEX

JavaScript objects, setting up, 126
jqPlot plugin

$requestArray, 183–184
barMargin option, 187
CSS style sheet, 186
dashboards, 188
downloading, 183
features of, 171
$.jqplot.BarRenderer add-on, 187
JSON array string, 185
margin, 187
mysql_result, 185
renderer, 187
requestArray, 184
requestChart selector, 183
ticks option, 187–188
x-axis of chart, 188

jQuery code. See also code
closing, 4
combining with other code, 18
jsFiddle tool, 16
testing snippets, 17

jQuery Context Menu plugin, Images
folder, 236

jQuery Custom Context Menu
widget, 240

jQuery forums, participating in, 9
jQuery library

downloading, xii
including in progressive

enhancement, 21
jQuery plugins

Back Button and Query (BBQ)
Library, 241

Cloud Zoom, 191–193
colorText, 200–202
Context Menu, 236
creating, 200–202
Easy Background Resize, 194–196
fn object, 200
gMap, 171, 180–182
jqPlot, 171, 183–188
returning this object, 201
Sexy Curls, 197–199
structuring, 202
Tablesorter, 171–178
TinyTips, 171, 178–181
tool tips, 178–181

using $ (dollar sign) with, 200
versus widgets, 148
zWeatherFeedjQuery, 189–191

jQuery UI
customizing, 148–150
downloading, xii
referencing files in HTML, 150–152
Web site, 148

jQuery UI widgets
Accordion, 149, 226–229
Autocomplete, 149
calendars for forms, 155–157
Custom Context Menu, 240
Datepicker function, 156–157
“dialog” for visitors, 158–162
Dialog, 149
design of, 152
field completion, 167–170
onSelect option for dates, 156
versus plugins, 148
Progressbar, 163–167
tabbed interfaces, 152–155
Tabs, 149
ThemeRoller, 148

jquery.colorText.js file, creating, 200
jsFiddle tool, downloading, 16
JSON (JavaScript Object Notation)

arrays, 126
name:value pairs, 126–127
person object, 127
requirements, 126
returning in functions, 128
versus XML, 126

JSON example
DOCTYPE setup, 129
style info for Twitter widget,

129–130
JSON request, setting up, 127–133
JSONP format

cross-domain request, 128
using with tweet data, 127

K
Kastner, Cedric, 180
Kember, Elliott, 198

L
Leonello, Chris, 183
library, including in progressive

enhancement, 21
line breaks and comments, 8
live method, using, 32
load method

invoking, 111
syntax, 110
using, 110–111
using with DVD catalog, 114
using with multiple items, 230–231

lodge Web site
Easy Background Resize plugin,

194–196
page-curl effect, 197–199
sorting table records, 189–190
zWeatherFeed plugin, 189–191

login, creating PHP for, 97–100
login function, creating, 105–107

M
mainNav.jpg sprite

categories of, 50
measurement for, 51

MD5 hash, using with cookies,
139–140

Merritt, Mike, 178
methods, applying to objects, 3.

See also chained methods
modal windows

for AJAX validation, 104
animations, 30
callback, 33
calling, 27–30
centering, 31
centering for thumbnails, 49
click event, 27–28, 32–33
closing, 28, 32–33
creating, 27–30, 123
determining for closing, 33
fadeIn() method, 30
fadeOut function, 33
margins, 28–29
opening, 31
padding, 28–29

INDEX 253

pop-up window, 123
rel attribute, 28
shaded backgrounds, 31–32
using with scripts, 112–113

movies. See also inc/movieUp.js file
form for, 120
including in discs, 112

mySQL, using, 18
mySQL database, connecting to, 80
mysql_query function

running, 122
for validation, 96

mysql_real_escape_string()
function, using, 142–144

mysql_result, using with jqPlot
plugin, 185

mysqlErrorNum variable, 103–104

N
name:value pair

creating for tweets, 131
parsing, 108
using with get method, 109

naming convention, 48
navigation

making graceful, 27–33
modal windows, 27–30
sprite-based, 50–56

newName variable, using with post
method, 101

.next() method, using with forms, 66
notes_add.php file

creating, 238
HTML form, 238

notes.php file, creating for context
menu, 237

Notepad, xii
Notepad++, xii

O
object literal notation, explained, 126
objects, applying methods to, 3
Opera browser, xiii

P
page redirections, avoiding, 92
page reloads, avoiding, 92
pages. See Web pages
parenthesis ()), using to close code, 4
password

checking for AJAX validation, 94
checking for user login, 97–98
prompting for, 246

password field, avoiding blanks, 67–68
password validation, updating, 136–137
pephoto.sql file, running, 109
pePhotoUp.js file, saving, 70
peRegister.php file, opening, 141
photo table, creating, 109–110
Photographer’s Exchange Web site.

See also Web sites
account page, 107
client-side validation, 69–71
cookies for identifying users,

139–141
email validation, 137–138
errorCount function, 135–136
errors argument variable, 136
file types, 73
file upload form, 69
form inputs, 61
forms, 60
front page, 26
incrementing submitErrors, 138
password field, 67–68
password validation, 136–137
preventing form submission,

135–138
retrieving pictures, 108–110
saving image data, 82–83
server-side validation, 72–73
sprite, 50
$submitErrors variable, 135
upload function, 75–76

photos
retrieving, 108–110
zooming in on, 191–193

photoUpload.php file, locating, 72
photoUservariable, contents of,

109–110

PHP
createThumbnail() function, 85
explode method, 85
imagecopyresampledto function, 87
ImageCreateTrueColor function, 87
mysql_query function, 96
photo upload script, 80
preg_match function, 72
resource, 100
switch method for validation,

93–94
testing capability, 72–73
troubleshooting info for uploads, 83
for user login, 97–100
using, 18
using in server-side validation, 72

PHP functions
for data cleansing, 142–144
htmlspecialchars(), 142–143
mysql_real_escape_string(),

142–144
PHP registration, building for

validation, 92–100
pictures

retrieving, 108–110
zooming in on, 191–193

planning design, 23
plotting data, 183–188
plugins

Back Button and Query (BBQ)
Library, 241

Cloud Zoom, 191–193
colorText, 200–202
Context Menu, 236
creating, 200–202
Easy Background Resize, 194–196
fn object, 200
gMap, 171, 180–182
jqPlot, 171, 183–188
returning this object, 201
Sexy Curls, 197–199
structuring, 202
Tablesorter, 171–178
TinyTips, 171, 178–181
tool tips, 178–181
using $ (dollar sign) with, 200
versus widgets, 148
zWeatherFeedjQuery, 189–191

254254 INDEX

post method
callback for, 101
closing, 102
GET method, 108
invoking, 103
using with ajaxSetup, 116–118
using with inc/movieUp.js file, 125
validating, 100–102

postdvd.php file. See also DVD
example

creating, 121
database connection, 121
database update, 122
running SQL query, 122
sleep timer, 122

preventDefault setting, using with
submit event, 102–103

Progressbar widget
calling, 165
CSS (Cascading Style Sheets), 163
CSS rules, 164
displaying, 165–166
fading in, 165
features of, 163
hiding, 164
removing, 166
setting margin, 164
shade, 163–164
using to close code, 163
z-index, 164

progressive enhancement
applying principles of, 27
examples, 19–22
explained, 19
HTML and CSS, 20
including jQuery library, 21

Q
query strings, identifying, 108

R
registration function

preventDefault setting, 102–103
serializing form data, 103
setting submit event, 102–103
starting, 102

registration window, fading out, 105
regular expressions

for file extensions, 70, 120–121
using with forms, 63–65
using with thumbnails, 85
using with tweets, 131–132

return false;
anchor tag, 15
encountering, 15
preventDefault();call, 15–16
stopPropagation(), 15

right-click context menu, disabling,
235–240

S
Safari browser, xiii
script tag, using to close code, 4
scripts. See also server-side scripts

::contains selector, 112
loading dynamically, 112–116
modal window, 112–113
for tweets, 130–133

Secure Sockets Layer (SSL), 144
security certificate, considering, 144
security protocol, HTTPS, 144
selectors

binding event handlers to, 3
caching, 10
::contains, 112
creating, 3
reading, 9
requestChart, 183

serializing form data, 103
server, retrieving info from, 110–111
server-side scripts, securing, 141–142.

See also scripts
server-side validation

developing for forms, 72–73
exif_imagetype function, 73

Sexy Curls plugin, using, 198–199
sites. See Web sites
slash-asterisk (/*), using with

comments, 8
sleep function, using with Dialog

widget, 159
sleep timer, creating for

postdvd.php, 122

Smith, George, 38
span element, 4
sprite interaction

addClass method, 223
click function, 222–223
creating, 221–224
hover function, 222
mouseout section of hover event,

222–223
span element, 222
span selected element, 222

sprite-based navigation
animation, 55–56
background images, 52–53
background position, 53
column position, 53
column width, 53
creating, 50–56
CSS layout, 50
defining markup, 51
hover effect, 56
layout of items, 54
mainNav.jpg sprite, 50–51
span background-position, 53
span element, 55–56
spriteNav rule, 52
sprites, 52–54
width position, 53
x- and y-axes, 53

spritenav.css file, creating, 218
spritenav.js file

creating, 221
packing, 11–14
unpacking, 14

sprites
adding to application interface, 223
anchor tags, 218
background-position, 219–220
base width, 219
CSS (Cascading Style Sheets),

218–221
images, 221
span elements, 219–220
uses of, 54

SSL (Secure Sockets Layer), 144
“Stay with us” tab, navigating to, 162
storyboards, using, 23

INDEX 255

styles, applying with ThemeRoller
widget, 149

submit event, setting, 102–103. See
also events

submit method, binding addMovie
form to, 124

submitErrors, incrementing, 138
$submitErrors variable,

initializing, 135
SXSW Interactive conference, 19

T
tabbed interfaces

creating, 152–155
div tags, 152–153
unordered list, 153

tabindex attribute, using with focus
function, 60

table records, sorting, 172–177
Tablesorter plugin

arrival dates, 177
columns, 176
conditional check, 174
features of, 171
HTML markup, 174
HTML section, 173
HTML table output, 175
requests id, 174
sorter property, 174
sorting records, 176–177
tbody section, 175
testing for data, 174
thead section, 175
unsorted data, 177
using, 172–177

Tabs widget, features of, 149–155
text editors, xii
ThemeRoller widget

choosing styles with, 149
downloading, 148

this object, returning for plugins, 201
thumbnails

createThumbnail() function, 85
creating for uploads, 83–88
height and width for, 86
naming, 48

time() function, using with cookie, 99

timeout, setting for uploads, 77–79
TinyTips plugin

creating on tabs, 179
downloading, 178
features of, 171
setting up, 179
source references, 178–179

Tool tips. See TinyTips plugin
tweet data, returning in JSONP

format, 127
tweets

containing in name:value pairs, 131
getJSON request method, 131
hash tags, 132
regular expressions, 131–132
script for, 130–133
search @ prefix, 132

tweetText, inserting anchor tags
in, 132

Twitter, creating URL access to,
130–131

Twitter API, popularity of, 127
Twitter widget

body section, 130
function of, 133
style info for, 129–130

U
Ullman, Larry, 100
unobtrusive JavaScript, 22
unordered HTML list

creating, 239
example of, 27

uploaded files
beginning loop for, 80
connecting to mySQL database, 80
createThumbnail function, 81
processing, 80–81
validation code, 81

uploads
attribute selector, 70
callback-style functionality, 77–79
clearing input fields, 79
client-side jQuery, 76
client-side validation, 69–71
creating thumbnails, 83–88
error span for file types, 69–71

fading in confirmation message, 78
fading out confirmation message, 79
file types, 69–70
iframe, 75–76
inputLength variable, 77–78
inserting image information, 82–83
modal windows, 78
performing, 74–75
PHP code, 75
PHP troubleshooting info, 83
removing confirmation modal, 79
saving image data, 82–83
scripting, 76–77
server-side validation, 72–73
setTimeout function, 77–79
SQL query, 82
thumbnails, 83–88

user login, creating PHP for, 97–100
user name, in use, 102–103
users

identifying via cookies, 139–141
informing with Progressbar, 163–167

users_add.php form, loading, 232
users_search.php form, creating, 230
users.php page, creating, 227
user-supplied data, cleansing,

141–144

V
validation. See AJAX validation;

client-side validation; email
validation; password validation;
server-side validation

visitor, establishing “dialog” with,
158–162

W
waiting indicator, calling, 125
weather, predicting, 189–191
Web application interface. See

application interface
Web pages

curl effect, 198–199
features of, 5
loading portions of, 111
styling with CSS, 18

256256 INDEX

Web sites. See also Photographer’s
Exchange Web site

animated graphics, 125
Cloud Zoom plugin, 191
Easing Plugin, 38
Easy Background Resize plugin,

194–196
Electronic Frontier Foundation, 144
Firebug download, xiii, 10
gMap plugin, 180
Google Closure Compiler, 11
GSGD, 38
jqPlot plugin, 183
jQuery UI, 148
jsFiddle tool, 16
regular expressions, 63
Tablesorter plugin, 172

ThemeRoller, 148
TinyTips plugin, 178
zWeatherFeedjQuery plugin, 189

widgets
Accordion, 149, 226–229
Autocomplete, 149
calendars for forms, 155–157
Custom Context Menu, 240
Datepicker function, 156–157
“dialog” for visitors, 158–162
Dialog, 149
design of, 152
field completion, 167–170
onSelect option for dates, 156
versus plugins, 148
Progressbar, 163–167
tabbed interfaces, 152–155

Tabs, 149
ThemeRoller, 148

X
XAMPP, xiii
XML (Extensible Markup Language),

versus JavaScript Object
Notation (JSON), 126

Z
zWeatherFeedjQuery plugin

adding to lodge Web site, 189–190
downloading, 189
RSSlocation code, 190–191

	Contents
	Introduction
	Welcome to jQuery
	CHAPTER 4 BEING EFFECTIVE WITH AJAX
	Using AJAX for Validation
	Building the PHP Registration and Validation File
	Setting Up the jQuery Validation and Registration Functions
	Logging in the User

	Using AJAX to Update Content
	Getting Content Based on the Current User
	Loading Content Based on Request
	Loading Scripts Dynamically
	Using jQuery’s AJAX Extras
	Using JSON

	Securing AJAX Requests
	Preventing Form Submission
	Using Cookies to Identify Users
	Cleansing User-supplied Data
	Transmitting Data Securely

	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

