

Learning HTML5
Game

Programming

The Addison-Wesley Learning Series is a collection of hands-on programming
guides that help you quickly learn a new technology or language so you can
apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning HTML5
Game

Programming

A Hands-on Guide to Building Online
Games Using Canvas, SVG, and WebGL

James L. Williams

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Williams, James L. (James Lamar), 1981-
Learning HTML5 game programming : a hands-on guide to building online games using

Canvas, SVG, and WebGL / James L. Williams.
p. cm.

ISBN 978-0-321-76736-3 (pbk. : alk. paper) 1. Computer games—Programming. 2.
HTML (Document markup language) I. Title.

QA76.76.C672W546 2011
794.8’1526—dc23

2011027527

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-76736-3
ISBN-10: 0-321-76736-5

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville,
Indiana.

First printing September 2011

Associate
Publisher
Mark Taub

Senior Acquisitions
Editor
Trina MacDonald

Development
Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Bart Reed

Indexer
Tim Wright

Proofreader
Sheri Cain

Technical
Reviewers
Romin Irani
Pascal Rettig
Robert Schwentker

Publishing
Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

❖

To Inspiration

Came over for a midnight rendezvous

And is gone by morning as if by cue

—Author

❖

Table of Contents

Chapter 1 Introducing HTML5 1
Beyond Basic HTML 1

JavaScript 1

AJAX 2

Bridging the Divide 2

Google Gears 3

Chrome Frame 3

Getting Things Done with WebSockets and
Web Workers 4

WebSockets 4

Web Workers 4

Application Cache 5

Database API 6

WebSQL API 6

IndexedDB API 7

Web Storage 7

Geolocation 8

Getting Users’ Attention with Notifications 10

Requesting Permission to Display Notifications 11

Creating Notifications 11

Interacting with Notifications 12

Media Elements 13

Controlling Media 13

Handling Unsupported Formats 14

HTML5 Drawing APIs 15

Canvas 15

SVG 16

WebGL 16

Conveying Information with Microdata 16

Chapter 2 Setting Up Your Development
Environment 19

Development Tools 19

Installing Java 19

viiContents

Installing the Eclipse IDE and Google Plugin 20

Google Web Toolkit 22

Web Server Tools and Options 23

Google App Engine 23

Opera Unite 23

Node.js and RingoJS 23

Browser Tools 24

Inside the Chrome Developer Tools 24

Chrome Extensions 25

Safari Developer Tools 26

Firebug 26

HTML5 Tools 27

ProcessingJS 27

Inkscape 27

SVG-edit 27

Raphaël 28

3D Modeling Tools 29

Blender 29

Chapter 3 Learning JavaScript 31
What Is JavaScript? 31

JavaScript’s Basic Types 31

Understanding Arithmetic Operators 32

Understanding JavaScript Functions 32

Functions as First-class Objects 33

Comparison Operators 34

Conditional Loops and Statements 35

Controlling Program Flow with Loops 36

Delayed Execution with setTimeout and setInterval 38

Creating Complex Objects with Inheritance and
Polymorphism 38

Making Inheritance Easier with the Prototype
Library 39

Learning JQuery 41

Manipulating the DOM with Selectors 42

JQuery Events 43

AJAX with JQuery 43

Cross-Site Scripting 44

viii Contents

JSON: The Other JavaScript Format 44

JavaScript Outside of the Browser 45

Mobile Platforms 45

JavaScript as an Intermediary Language 45

JavaScript on the Desktop 46

Server-Side JavaScript 48

Chapter 4 How Games Work 51
Designing a Game 51

Writing a Basic Design Document 51

Deciding on a Game Genre 52

The Game Loop 53

Getting Input from the User 53

Representing Game Objects with Advanced
Data Structures 54

Making Unique Lists of Data with Sets 54

Creating Object Graphs with Linked Lists 56

Understanding the APIs in Simple Game Framework 57

Core API 57

Components API 58

Resources API and Networking APIs 58

Building Pong with the Simple Game Framework 59

Setting Up the Application 59

Drawing the Game Pieces 61

Making Worlds Collide with Collision Detection and
Response 63

Understanding Newton’s Three Laws 63

Making the Ball Move 64

Advanced Collision Detection and Particle Systems
with Asteroids 66

Creating Competitive Opponents with Artificial
Intelligence 67

Adding AI to Pong 68

Advanced Computer AI with Tic-Tac-Toe 68

Chapter 5 Creating Games with the Canvas Tag 71
Getting Started with the Canvas 71

Drawing Your First Paths 72

Drawing Game Sprites for Tic-Tac-Toe 73

ixContents

Drawing Objects on the Canvas with Transformations 75

Ordering Your Transformations 76

Saving and Restoring the Canvas Drawing State 77

Using Images with the Canvas 78

Serving Images with Data URLs 78

Serving Images with Spritesheets 78

Drawing Images on the Canvas 78

Animating Objects with Trident.js 79

Creating Timelines 80

Animating with Keyframes 81

Creating Nonlinear Timelines with Easing 81

Animating Game Objects with Spritesheets 83

Simulating 3D in 2D Space 84

Perspective Projection 84

Parallaxing 85

Creating a Parallax Effect with JavaScript 85

Creating Copy Me 87

Drawing Our Game Objects 87

Making the Game Tones 88

Playing MIDI Files in the Browser 89

Playing Multiple Sounds at Once 90

Playing Sounds Sequentially 91

Drawing Our Game Text 91

Styling Text with CSS Fonts 92

Chapter 6 Creating Games with SVG and
RaphaëlJS 95

Introduction to SVG 95

First Steps with RaphaëlJS 97

Setting Up Our Development Environment 97

Drawing the Game Board 98

Drawing Game Text 99

Custom Fonts 100

Specifying Color 103

Loading Game Assets 104

Converting SVG Files to Bitmap Images 105

x Contents

Creating Our Game Classes 105

Shuffling Cards 107

Drawing and Animating Cards 107

Creating Advanced Animations 110

Paths 110

moveto and lineto 110

curveto 111

Exporting Paths from an SVG File 112

Animating Along Paths 113

Extending Raphaël with Plugins 113

Adding Functions 113

SVG Filters 113

Speed Considerations 114

Chapter 7 Creating Games with WebGL and
Three.js 117

Moving to Three Dimensions 118

Giving Your Objects Some Swagger with Materials and
Lighting 119

Understanding Lighting 120

Using Materials and Shaders 120

Creating Your First Three.js Scene 122

Setting Up the View 123

Viewing the World 128

Loading 3D Models with Three.js 129

Programming Shaders and Textures 131

Using Textures 134

Creating a Game with Three.js 136

Simulating the Real World with Game Physics 137

Revisiting Particle Systems 140

Creating Scenes 141

Selecting Objects in a Scene 142

Animating Models 142

Sourcing 3D Models 143

Benchmarking Your Games 144

Checking Frame Rate with Stats.js 144

Using the WebGL Inspector 145

xiContents

Chapter 8 Creating Games Without JavaScript 147
Google Web Toolkit 147

Understanding GWT Widgets and Layout 148

Exposing JavaScript Libraries to GWT with JSNI 149

RaphaëlGWT 150

Adding Sound with gwt-html5-media 151

Accessing the Drawing APIs with GWT 151

CoffeeScript 153

Installing CoffeeScript 153

Compiling CoffeeScript Files 153

A Quick Guide to CoffeeScript 154

Basics 154

Functions and Invocation 154

Aliases, Conditionals, and Loops 156

Enhanced for Loop and Maps 156

Classes and Inheritance 157

Alternate Technologies 158

Cappuccino 158

Pyjamas 158

Chapter 9 Building a Multiplayer Game Server 161
Introduction to Node.js 161

Extending Node with the Node Package Manager 162

Managing Multiple Node Versions 162

Making Web Apps Simpler with ExpressJS 163

Serving Requests with URL Routing 163

Managing Sessions 165

Understanding the ExpressJS Application
Structure 165

Templating HTML with CoffeeKup 166

Persisting Data with Caching 168

Managing Client/Server Communication 169

Communicating with Socket.IO 169

Setting Up a Simple Socket.IO Application with
Express 170

Making Web Sockets Simpler with NowJS 171

Debugging Node Applications 172

xii Contents

Creating a Game Server 173

Making the Game Lobby 173

Creating Game Rooms with NowJS Groups 174

Managing Game Participants and Moving Between
Game Rooms 175

Managing Game Play 175

Chapter 10 Developing Mobile Games 179
Choosing a Mobile Platform 179

iOS 179

Android 180

WebOS 180

Windows Phone 7 180

Flick, Tap, and Swipe: A Quick Guide to Mobile
Gestures 181

Deciding Between an Application and a Website 181

Storing Data on Mobile Devices 183

Relaxing in Your Lawnchair: An Easier Way to
Store Data 183

Getting Started with Lawnchair 184

Client-Side Scripting Simplified with JQuery and
Zepto 185

Using JQuery Variants 185

Using Zepto.js 187

Architecting Your Applications with JoApp 187

Choosing an Application Framework 188

PhoneGap 188

Diving into the PhoneGap APIs 189

Appcelerator Titanium 191

Diving into the Appcelerator Titanium APIs 191

Packaging Android Applications with Titanium and
PhoneGap 191

Packaging an Application with Titanium 193

Packaging an Application with PhoneGap 195

xiiiContents

Chapter 11 Publishing Your Games 199
Optimizing Your Game’s Assets 199

Minification with Google Closure Compiler 199

Running Applications Offline with Application
Cache 201

Hosting Your Own Server 203

Deploying Applications on Hosted Node.js Services 204

Publishing Applications on the Chrome Web Store 205

Describing Your Application’s Metadata 206

Deploying a Hosted Application 207

Deploying a Packaged Application 208

Testing Your Applications Locally 208

Uploading Your Application to the Chrome Web
Store 208

Configuring Your Application 210

Deciding Between Packaged and Hosted
Chrome Apps 212

Publishing Applications with TapJS 212

Creating a TapJS Application 213

Packaging an Application for TapJS 215

Publishing a TapJS Application to Facebook 215

Publishing Games with Kongregate 217

Publishing HTML5 Applications to the Desktop 217

Index 219

Preface
I wrote this book to scratch an itch, but also because I could see the potential in the (at
the time) nascent HTML5 gaming community. I wanted to help developers navigate the
wilderness of HTML5 and learn about Canvas,WebGL, and SVG, along with best prac-
tices for each.

It sometimes took a bit of discussion to convince developers that HTML5 wasn’t just
a plaything.They were surprised to learn they could have rich content with all the
niceties of a desktop application—such as double buffering, hardware acceleration, and
caching inside the confines of the browser without a plugin. Many of them considered
Flash as the sole option. It was interesting to watch the tides turn from “Flash for every-
thing” to “Use Flash only where there are HTML5 gaps.”

During my writing of this book, the ecosystem around HTML5 game programming
has rapidly evolved and matured. I am sure the technologies will continue to evolve, and
I look forward to the advances the next year brings.

Key Features of This Book
This book covers areas contained in the “loose” definition of HTML5, meaning the
HTML5 specification,WebGL, SVG, and JavaScript as they pertain to game program-
ming. It includes sections on the math behind popular game effects, teaching you the
hard way before providing the one to two lines of code solution. For those who are still
getting accustomed to JavaScript, there is a chapter on alternative languages that can be
used to produce games.These include languages that run directly in the JavaScript
engine, those that compile to JavaScript, or those that are a combination of the two.
Server-side JavaScript has taken the programming world by storm in recent months. For
games, it presents an extra level of flexibility to structure games. Logic can start in a self-
contained client instance and then progress to a scalable server instance with few changes
in code.The book closes with a discussion of how and where you might publish your
games.You have a multitude of choices for game engines and libraries.All the libraries
used in this book are unobtrusive in their handling of data, and you could easily take the
lessons learned and apply them to other libraries.This book does not discuss the low-
level details of WebGL, instead opting for the use of a high-level library that permits
low-level API access when needed.The goal of this book is to get you quickly up and
running, not to teach you all there is to know about WebGL, which could be a book all
by itself.

Target Audience for This Book
This book is intended for application developers who use or would like to learn how to
use HTML5 and associated web technologies to create interactive games. It assumes
knowledge of some programming languages and some basic math skills.

Code Examples and Exercises for This Book
The code listings as well as the answers for the exercises included in this book are avail-
able on the book’s website.You can download chapter code and answers to the chapter
exercises (if they are included in the chapter) at http://www.informit.com/title/
9780321767363.The code listings are also available on Github at https://github.com/
jwill/html5-game-book.

http://www.informit.com/title/9780321767363
http://www.informit.com/title/9780321767363
https://github.com/jwill/html5-game-book
https://github.com/jwill/html5-game-book

Acknowledgments
I have several people to thank for this book.The Pearson team (including Trina
MacDonald, Songlin Qiu, and Olivia Basegio) has been invaluable during the project.
Their goal is to make one’s work that much more awesome, and I think they succeeded.
Writing a book on a topic that’s evolving rapidly involves a certain measure of guessing
where the market will go. I’m glad to have had technical reviewers (Romin Irani, Pascal
Rettig, and Robert Schwentker) who shared my passion for the subject matter, gave me
speedy and precise feedback, and validated my predictions when I was right, yet got me
back on track when I veered slightly off course.And lastly, to my family and friends who
listened patiently without judgment, let me off easy when I flaked, and other times
forced me to take a break; thanks, I needed that.

About the Author
James L.Williams is a developer based in Silicon Valley and frequent conference speak-
er, domestically and internationally. He was a successful participant in the 2007 Google
Summer of Code, working to bring easy access to SwingLabs UI components to
Groovy. He is a co-creator of the Griffon project, a rich desktop framework for Java
applications. He and his team,WalkIN, created a product on a coach bus while riding to
SXSW and were crowned winners of StartupBus 2011. His first video game was Buck
Rogers: Planet of Zoom on the Coleco Adam, a beast of a machine with a blistering
3.58MHz CPU, a high-speed tape drive, and a propensity to erase floppy disks at bootup.
He blogs at http://jameswilliams.be/blog and tweets as @ecspike.

http://jameswilliams.be/blog

This page intentionally left blank

1
Introducing HTML5

HTML5 is a draft specification for the next major iteration of HTML. It represents a
break from its predecessors, HTML4 and XHTML. Some elements have been removed
and it is no longer based on SGML, an older standard for document markup. HTML5
also has more allowances for incorrect syntax than were present in HTML4. It has rules
for parsing to allow different browsers to display the same incorrectly formatted docu-
ment in the same fashion.There are many notable additions to HTML, such as native
drawing support and audiovisual elements. In this chapter, we discuss the features added
by HTML5 and the associated JavaScript APIs.

Beyond Basic HTML
HTML (Hypertext Markup Language), invented by Tim Berners-Lee, has come a long
way since its inception in 1990. Figure 1-1 shows an abbreviated timeline of HTML from
the HTML5Rocks slides (http://slides.html5rocks.com/#slide3).

Although all the advancements were critical in pushing standards forward, of particular
interest to our pursuits is the introduction of JavaScript in 1996 and AJAX in 2005.Those
additions transformed the Web from a medium that presented static unidirectional data,
like a newspaper or book, to a bidirectional medium allowing communication in both
directions.

JavaScript
JavaScript (née LiveScript and formally known as ECMAScript) started as a scripting lan-
guage for the browser from Netscape Communications. It is a loosely typed scripting
language that is prototype-based and can be object-oriented or functional. Despite the
name, JavaScript is most similar to the C programming language, although it does inherit
some aspects from Java.

The language was renamed JavaScript as part of a marketing agreement between Sun
Microsystems (now Oracle Corporation) and Netscape to promote the scripting language
alongside Sun’s Java applet technology. It become widely used for scripting client-side

http://slides.html5rocks.com/#slide3

2 Chapter 1 Introducing HTML5

Figure 1-1 HTML timeline

web pages, and Microsoft released a compatible version named JScript, with some addi-
tions and changes, because Sun held the trademark on the name “JavaScript.”

AJAX
AJAX (Asynchronous JavaScript and XML) started a new wave of interest in JavaScript
programming. Once regarded as a toy for amateurs and script kiddies,AJAX helped
developers solve more complex problems.

At the epicenter of AJAX is the XMLHttpRequest object invented by Microsoft in the
late 1990s. XMLHttpRequest allows a website to connect to a remote server and receive
structured data.As opposed to creating a set of static pages, a developer was empowered to
create highly dynamic applications. Gmail,Twitter, and Facebook are examples of these
types of applications.

We are currently in the midst of another JavaScript renaissance, as the major browser
makers have been using the speed of their JavaScript engines as a benchmark for compar-
ison. JavaScript as a primary programming language has found its way into server-side
web components, such as Node.js, and mobile application frameworks, such as WebOS
and PhoneGap.

Bridging the Divide
Even the best of standards takes a while to gain uptake.As a means to not let the lack of
features limit innovation, Google created Chrome Frame and Google Gears (later, simply
Gears) to bring advanced features to older browsers.

3Bridging the Divide

Google Gears
Google Gears, which was initially released in May 2007, has come to define some of the
advanced features of the HTML5 draft specification. Before the advent of HTML5, many
applications used Gears in some way, including Google properties (Gmail,YouTube, Doc,
Reader, and so on), MySpace, Remember the Milk, and WordPress, among others. Gears
is composed of several modules that add functionality more typical of desktop applica-
tions to the browser. Let’s take a moment and talk about some of its features.

In its first release, Gears introduced the Database, LocalServer, and WorkerPool mod-
ules. Gears’ Database API uses an SQLite-like syntax to create relational data storage for
web applications.The data is localized to the specific application and complies with gen-
eralized cross-site scripting rules in that an application cannot access data outside its
domain.The LocalServer module enables web applications to save and retrieve assets to a
local cache even if an Internet connection is not present.The assets to serve from local
cache are specified in a site manifest file.When an asset matching a URL in the manifest
file is requested, the LocalServer module intercepts the request and serves it from the
local store.

The WorkerPool module helps address one of the prevalent problems with JavaScript-
intensive websites: long-running scripts that block website interaction.A website by
default has a single thread to do its work.This is generally not a problem for very short,
bursty actions (such as simple DOM manipulation) that return quickly.Any long-running
task, such as file input/output or trying to retrieve assets from a slow server, can block
interaction and convince the browser that the script is unresponsive and should be force-
fully ended.The WorkerPool module brought the concept of multithreading computing
to the browser by letting your WorkerPool create “workers” that can execute arbitrary
JavaScript.Workers can send and receive messages to and from each other, provided they
are in the same WorkerPool, so they can cooperate on tasks.Workers can work cross-
origin but inherit the policy from where they are retrieved.To account for the fact that
several properties such as Timer and HttpRequest are exposed by the window object,
which is not accessible to workers, Gears provides its own implementations.

Another API of interest is the Geolocation API.The Geolocation API attempts to get a
fix on a visitor by using available data such as the IP address, available Wi-Fi routers with
a known location, cell towers, and other associated data.

Google ceased principal development of Gears in November 2009 and has since
shifted focus to getting the features into HTML5.Thankfully, all these features we’ve dis-
cussed found their way into HTML5 in some shape or form.

Chrome Frame
Chrome Frame is a project that embeds Google Chrome as a plugin for Internet Explorer
6 and higher versions, which have weak HTML5 support. Chrome Frame is activated
upon recognition of a meta tag. Chrome Frame currently does not require admin rights
to be installed, thus opening opportunities on systems that are otherwise locked down.

4 Chapter 1 Introducing HTML5

You can find more information about Chrome Frame at http://code.google.com/
chrome/chromeframe/.

Getting Things Done with WebSockets and Web
Workers
One of the additions to HTML5 is APIs that help the web application communicate and
do work.WebSockets allow web applications to open a channel to interact with web
services.Web Workers permit them to run nontrivial tasks without locking the browser.

WebSockets
WebSockets allow applications to have a bidirectional channel to a URI endpoint. Sock-
ets can send and receive messages and respond to opening or closing a WebSocket.
Although not part of the specification, two-way communication can be achieved in sev-
eral other ways, including Comet (AJAX with long polling), Bayeux, and BOSH.

Listing 1-1 shows the code to create a WebSocket that talks to the echo server end-
point.After creating the socket, we set up the functions to be executed when the socket is
opened, closed, receives a message, or throws an error. Next, a “Hello World!” message is
sent, and the browser displays “Hello World!” upon receipt of the return message.

Listing 1-1 WebSocket Code for Echoing a Message

var socket = new WebSocket(ws://websockets.org:8787/echo);

socket.onopen = function(evt) { console.log("Socket opened");};

socket.onclose = function(evt) {console.log("Socket closed");};

socket.onmessage = function(evt){console.log(evt.data);};

socket.onerror = function(evt) {console.log("Error: "+evt.data);};

socket.send("Hello World!");

Web Workers
Web Workers are the HTML5 incarnation of WorkerPools in Google Gears. Unlike
WorkerPools, we don’t have to create a pool to house our Web Workers. Listing 1-2 shows
the code to create a simple worker and set a function for it to execute upon receipt of a
message. Listings 1-2 and 1-3 show the HTML code for creating a web page with a Web
Worker that displays the current date and time on two-second intervals.

Listing 1-2 Web Page for Requesting the Time

<!DOCTYPE HTML>

<html>

<head>

<title>Web Worker example</title>

http://code.google.com/chrome/chromeframe/
http://code.google.com/chrome/chromeframe/

5Application Cache

</head>

<body>

<p>The time is now: </p>

<script>

var worker = new Worker('worker.js');

worker.onmessage = function (event) {

document.getElementById('result').innerText = event.data;

};

</script>

</body>

</html>

The associated JavaScript worker.js file is shown in Listing 1-3.

Listing 1-3 Worker.js File for Getting a Date and Time

setInterval(function() {w

postMessage(new Date());

}, 2000);

In the two listings, we see that workers can send messages using postMessage() and
can listen for messages on the closure onmessage.We can also respond to errors and termi-
nate workers by passing a function to onerror and executing terminate(), respectively.

Workers can be shared and send messages on MessagePorts.As with other aspects of
the Web Worker spec, this portion is in a state of flux and somewhat outside the needs of
the examples in this book.Therefore, using SharedWorkers is left as an exercise for the
reader to investigate.

Application Cache
Application Cache provides a method of running applications while offline, much like the
LocalServer feature in Gears.A point of distinction between the two features is that
Application Cache doesn’t use a JSON file, using a flat file instead to specify which files
to cache.A simple manifest file to cache assets is shown in Listing 1-4.

Listing 1-4 Sample Application Manifest

CACHE MANIFEST

above line is required, this line is a comment

mygame/game.html

mygame/images/image1.png

mygame/assets/sound2.ogg

The Application Cache has several events it can respond to: onchecking, error,
cached, noupdate, progress, updateready, and obsolete.You can use these events to

6 Chapter 1 Introducing HTML5

keep your users informed about the application’s status. Using the Application Cache can
make your game more tolerant to connectivity outages, and it can make your users happy
by letting them start game play quicker (after the assets are cached).Also, if you choose,
Application Cache can be used to allow users to play your game offline. Don’t worry too
much about it right now. In Chapter 11,“Publishing Your Games,” we discuss using the
Application Cache in more detail.

Database API
At present, there are multiple ways to store structured data using HTML5, including the
WebSQL API implemented by Webkit browsers and the competing IndexedDB API
spearheaded by Firefox.

WebSQL API
WebSQL provides structured data storage by implementing an SQL-like syntax. Currently,
implementations have centralized around SQLite, but that isn’t a specific requirement.

There isn’t a “createDatabase” function in WebSQL.The function openDatabase opti-
mistically creates a database with the given parameters if one doesn’t already exist.To cre-
ate a database name myDB, we would need to make a call in the form

var db = openDatabase("myDB", "1.0", "myDB Database", 100000);

where we pass "myDB" as the name, assign the version "1.0", specify a display name of
"myDB Database", and give it an estimated size of 100KB.We could have optionally spec-
ified a callback to be executed upon creation. Figure 1-2 shows the content of the
Chrome Developer Tools Storage tab, which we will cover in more detail in Chapter 2,
“Setting Up Your Development Environment,” after executing the preceding line of code.

In the window to the right, we can run arbitrary SQL code, as shown in Figure 1-3,
where we created a table, inserted some information, and ran a query.

Figure 1-2 Storage tab showing a created database

Figure 1-3 Storage tab showing SQL statements

7Web Storage

Although not universally supported, the specification does call out the existence of
both asynchronous and synchronous database connections and transactions. Our current
example creates an asynchronous connection; to create a synchronous one, we would call
openDatabaseSync with the same parameters.After the initial connection, there is no dis-
tinction when it comes to database transactions besides calling transaction(...) for
read/write transactions and readTransaction for read-only transactions.

A word of caution: Synchronous connections are not well supported and, in general,
you should structure your code to run asynchronously.

IndexedDB API
IndexedDB stores objects directly in object stores.This makes it easier to implement
JavaScript versions of NoSQL databases, like those of the object databases MongoDB,
CouchDB, and SimpleDB.At the time of this writing, the implementations of the APIs
weren’t synchronized and used different naming schemes and strictness to the specifica-
tion.The Internet Explorer implementation requires an ActiveX plugin. I encourage you
to check out http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/
all.html to see some examples in action on Firefox, Chrome, and Internet Explorer.The
Chrome code in most cases will work seamlessly on Safari.

Web Storage
Web Storage provides several APIs for saving data on the client in a fashion similar to
browser cookies.There is a Storage object for data that needs to persist between restarts
named localStorage and one for data that will be purged once the session ends named
sessionStorage.The data is stored as key/value pairs.These two objects implement the
functions listed in Table 1-1.

Each Storage object also has a length property indicating the number of present
key/value pairs.

Table 1-1 Web Storage Functions

Function Name Description

setItem(key:String, value) Creates a key/value pair given the specified values.
Some implementations require the value to be a string.

getItem(key:String) Returns the item specified by the given key.

removeItem(key:String) Removes the item identified by the given key.

clear() Clears all key/value pairs from the Storage object.

key(index:long) Returns the key for the specific index.

http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html
http://nparashuram.com/trialtool/index.html#example=/ttd/IndexedDB/all.html

8 Chapter 1 Introducing HTML5

Web Storage offers a more fluent API we can use in lieu of the getItem and setItem

functions listed in Table 1-1.The alternate API uses an array-like means of referencing a
key.To set a localStorage key/value pair with the values of a hometown newspaper, we
could use the following, for example:

localStorage['newspaper'] = 'The Baltimore Sun';

Likewise, we could retrieve that value with just the left half of the preceding expression:

localStorage['newspaper'];

In the context of game programming, we could use Web Storage to store user high
scores as well as data for saved games.

Geolocation
The Geolocation API doesn’t have an explicit function to ask for the user’s permission to
track his or her position. Instead, the browser handles this transparently for us.When the
Geolocation API first requests position information from a website for which it doesn’t
have permission, a contextual pop-up appears to request permission from the user.

We can check to see if the browser supports the Geolocation API by checking for the
following object:

navigator.geolocation

If it resolves to a non-null value, we have the ability to geolocate.
The calculated position of a user is defined by the Position object, which contains a

Coordinates object named coords and a timestamp indicating when the fix was retrieved.
Table 1-2 shows the properties of the coords object.

Table 1-2 Coordinates Object Properties

Property Name Return Value Description

latitude double The latitude of the position fix.

longitude double The longitude of the position fix.

altitude double The altitude of the position fix in meters.
If this is unavailable, the value will be null.

accuracy double The margin of error of the lat-long fix in meters.
If this is unavailable, the value will be null.

altitudeAccuracy double The margin of error of the altitude value.
If this is unavailable, the value will be null.

heading double The direction in which the device is traveling
in degrees (0° to 360°, inclusive). If this is
unavailable, the value will be NaN.

speed double The speed in meters that the device is traveling.
If this is unavailable, the value will be null.

9Geolocation

After we have verified that geolocation is available, obtaining a position fix on a device
is simple.We just call getCurrentPosition with either one, two, or three parameters,
corresponding to the functions to run if getting a fix is successful, if it fails, and the
options on the request, respectively.

Listing 1-5 shows the code needed to retrieve a location, draw it on a map with a
marker, and draw a proximity circle around the marker.

Listing 1-5 Drawing a Map with Geolocation

if(navigator.geolocation) {

navigator.geolocation.getCurrentPosition(function(pos) {

var latitude = pos.coords.latitude;

var longitude = pos.coords.longitude;

var options = {

position:new google.maps.LatLng(latitude, longitude)

,title:"Your location"};

var marker = new google.maps.Marker(options);

var circle = new google.maps.Circle({

map:map, radius:pos.coords.accuracy

});

circle.bindTo('center', marker, 'position');

marker.setMap(map);

map.setCenter(new google.maps.LatLng(latitude, longitude));

},

function(error) {

console.log(error.message);

});

}

After verifying that geolocation is available, we first attempt to retrieve a fix on the
position of the device. In this example, we are passing in the two parameter functions of
getCurrentPosition to execute if successful, an error occurs, or if the user declines
geolocation.After getting the latitude and longitude portions, we create a marker cen-
tered at that position with the title “Your location.” To the marker, we attach a circle
whose radius is equivalent to the accuracy of the position fix. Lastly, if there is an error,
our error-handling function prints out the error message to the console. Figure 1-4 shows
a sample position fix using the OpenStreetMap tile set.

Although we did not use it, we could have also specified an options object that indi-
cates several preferences on the retrieved data.We could also set up a listener to execute
every time there is a position change returned from the watchPosition function. Geolo-
cation is an expensive API. Use it judiciously and don’t be afraid to cache the location.

10 Chapter 1 Introducing HTML5

Figure 1-4 Geolocation from the browser

We could use geolocation to create localized leader boards, or on a multiplayer server
to match players who are physically close to one another.

Getting Users’ Attention with Notifications
In HTML4, the options to communicate messages to the user were limited.You could
show the user an alert window or show a message in a div element. Showing an alert
window is well supported on all browsers, but it is highly disruptive. It is something that
requires immediate attention and doesn’t let you move on until you have handled it. One
sure way to annoy a user is by making him lose a life because some message obscured his
view. Showing a message in a div element fares slightly better, but there isn’t a standard
way to add them.These types of messages can be easily ignored. On one side we have
notifications that crave attention, and on the other we have notifications that can be easily
ignored.There has to be a middle ground. Enter web notifications.

On the Mac OS X and Ubuntu platforms natively, and with a plugin on Windows, an
application can send configurable messages to users and notify them of events or changes
it deems important.An example of such a notification is shown in Figure 1-5.

Figure 1-5 Desktop notification message

Like their desktop counterparts, web notifications can contain an image along with a
contextual message.

11Getting Users’ Attention with Notifications

Requesting Permission to Display Notifications
Before we can display notifications to users, we first have to get their permission. Explicit
permission protects the users from being bombarded with unwanted notifications.We can
request permission to display notifications by executing the following:

window.webkitNotifications.requestPermission();

This will show a contextual message in the browser to allow the user to approve or
deny access, as shown in Figure 1-6. Instead of a no-argument function call, we can also
pass a function to execute when the user responds to the prompt.

We can likewise verify permission by running the following command:

window.webkitNotifications.checkPermission();

In this case, checkPermission() returns an integer that indicates the permission level,
as shown in Table 1-3.

Looking at the name, you would expect notifications to work in at least the major
Webkit browsers, namely Chrome and Apple Safari.Although Safari uses Webkit, it
doesn’t implement the Notification API. If the spec is implemented globally, the name-
space could presumably change from webkitNotifications to simply notifications.

Creating Notifications
You can create two types of notifications: simple and HTML. Simple notifications display
a simple message with an optional title and icon image, whereas HTML notifications dis-
play an arbitrary URL. For example, we can create a simple notification by executing the
following:

var msg = window.webkitNotifications.createNotification(

'', 'Test Notification', 'Hello World'

);

Figure 1-6 Web notification permissions message

Table 1-3 Notification Permission Level

Constant Name Value

PERMISSION_ALLOWED 0

PERMISSION_UNKNOWN 1

PERMISSION_DENIED 2

12 Chapter 1 Introducing HTML5

Our notification will have the title “Test Notification” with the message “Hello
World.” Because we passed an empty string for the icon image, the API omits it.We can
do this for any other parameter. Do this to hide parameters you don’t want displayed.
Passing no value to the function will cause a text message of “undefined” or a broken
image link. Figure 1-7 shows our notification running in the browser.As you can see, it
is pretty Spartan, and we have no control over the design besides the parameters we
passed it.

As mentioned before, HTML notifications can get their content from an arbitrary
URL such as a website or an image.The function just takes the desired URL to display in
the form:

var msg =window.webkitNotifications.createHTMLNotification(

'http://example.com'

);

HTML notifications give you no means to resize them, and unless the URL has code
to optimize the notification for small screens, scroll bars will probably be included. On a
1680×1050 screen, the default size seems to be approximately 300 pixels wide by 50 pix-
els high, but because the notifications API is still a draft at the time of this writing, that is
certainly subject to change. Until fine-grained height and width attributes are added, stick
with simple notifications.

Interacting with Notifications
The resulting notification has two basic functions for controlling it: show(), which sur-
faces the notification to the user, and cancel(), which hides the notification if it’s cur-
rently visible or prevents it from being displayed if it is not visible.Web notifications can
also execute functions in response to notification events.Table 1-4 shows a list of the
applicable functions you can specify to respond to events.

Figure 1-7 Simple web notification

Table 1-4 Web Notification Functions

Function
Name

Description

onclick This function will execute if the notification is clicked and the underlying plat-
form supports it. Avoid this event if at all possible.

onclose This function will execute after the close event is fired. This could be when
the user closes the notification or if it is closed programmatically.

13Media Elements

You can check the current status of the draft specification at http://dev.chromium.
org/developers/design-documents/desktop-notifications/api-specification.

Media Elements
When HTML was originally designed, it was concerned with mostly textual links. Native
display of images would come much later. It is not hard to understand why you would
need a plugin or browser extension to play audio or video. In most cases, this meant
Flash. HTML5 has tried to address that issue with the inclusion of the audio and video
tags.

The audio and video tags allow us to play media in the browser natively.Also, a group
of properties can be set to control playback. Here is the most basic HTML form for
embedded media (in this case, an audio file):

<audio src="song.mp3" autoplay />

This creates an audio HTML element, assigns the source to song.mp3, and instructs
the page to “autoplay” the content. It is equivalent to the following JavaScript code:

var song = new Audio();

song.src = "song.mp3";

song.autoplay = true;

song.load();

Controlling Media
In addition to the autoplay attribute listed in the previous example, several other attri-
butes can be used to control our media. For example,

<video src="vid.avi" controls />

or

var vid = new Video();

vid.src = "vid.avi";

vid.controls = true;

tells the browser to provide a default set of controls for starting and pausing playback, set-
ting the volume level, and seeking in the stream. In the absence of such a property, the

Table 1-4 Web Notification Functions

Function
Name

Description

ondisplay This function will execute after the show() function is called and the notifica-
tion is visible to the user.

onerror This function executes after show() is called in the event of an error.

http://dev.chromium.org/developers/design-documents/desktop-notifications/api-specification
http://dev.chromium.org/developers/design-documents/desktop-notifications/api-specification

developer can provide a custom set of controls using the JavaScript functions and proper-
ties listed in Tables 1-5 and 1-6.

The list of properties has been truncated for brevity and usefulness.To see a full list of
available properties, check out the HTML5 draft spec at http://dev.w3.org/html5/spec.

Handling Unsupported Formats
At the time of this writing, the audio and video elements in different browsers don’t nec-
essarily all support the same types of audio and video.The reason a particular browser
doesn’t support a particular format might be due to the age of the format, competition
with an endorsed format, or patent restrictions that the browser’s parent company doesn’t
want to deal with. Media tags have several methods to deal with this.

Listing Multiple Sources
Instead of specifying a single source, the developer can choose to list multiple sources to
let the browser choose the appropriate one to use.The following snippet lists two sources

Table 1-5 Media Tag Functions

Function
Name

Description

play() Starts playing the media from the current position and sets the paused prop-
erty to false

pause() Halts playing the media and sets the paused property to true

load() Resets the element and applies any settings, such as pre-fetching

Table 1-6 Media Element Properties

Property
Name

Accepted
Values

Description

currentTime integer Sets the position in the media stream for playback

duration N/A (read-only) Indicates the length of the source media in seconds

loop true or false Specifies whether or not to play the media from the
beginning when the end of the stream is reached

autoplay true or false Specifies whether or not to play the media as soon as
possible

muted true or false Specifies whether or not to set the volume at 0.0

14 Chapter 1 Introducing HTML5

http://dev.w3.org/html5/spec

for a video tag and the fallback message if neither format is supported or the browser
doesn’t support the video tag.

<video>

<source src="video.ogv" />

<source src="video.avi" />

<!— Neither is supported, can show message or fallback to Flash —>

<div>Use a modern browser</div>

</video>

Although listing multiple sources is an option for a static page, it’s not great for appli-
cations with dynamic content. For those instances, using the tool Modernizr is recom-
mended.We’ll discuss Modernizr in more detail in Chapter 2, but consider this a primer.

Using Modernizr
Modernizr (www.modernizr.com) inspects browser capabilities at runtime and injects the
properties into a JavaScript object.To see whether the browser can play audio or video,
we would check the value of Modernizr.audio or Modernizr.video to see if it evaluates
to true.

Checking support for a particular format is slightly different.Verifying support for
MP3 files is done by checking the value of Modernizr.audio.mp3, but the value returned
isn’t true or false.The HTML5 spec states that the browser should return its confidence
level that it can play the format.The return value will be “probably,”“maybe,” or an
empty string.When we use Modernizr.audio.mp3 in a conditional clause, any non-
empty value is treated as true and the empty string is treated as false.

CSS3
CSS3 doesn’t fit the scope of this book, and readers are encouraged to explore the specifi-
cation if they are interested in it. Like HTML5, CSS3 extends its predecessor (CSS2) by
adding new features and codifying previous proposals, such as web fonts and speech, which
were introduced in previous versions but not widely supported. A useful website for further
information is http://www.css3.info.

HTML5 Drawing APIs
An interesting area of the HTML5 spec is the new drawing APIs. Canvas, SVG, and
WebGL provide bitmapped, vector, and three-dimensional drawing capabilities, respec-
tively.

Canvas
The canvas element started its life as an Apple extension to Webkit, the layout engine
powering Safari and Chrome, to display Dashboard gadgets and additions to the Safari
browser. It was later adopted by Opera, Firefox, and related browsers, eventually becoming
a component of the HTML5 specification.The beta release of Internet Explorer 9 (IE9)

15HTML5 Drawing APIs

www.modernizr.com
http://www.css3.info

16 Chapter 1 Introducing HTML5

has brought native support to all major browsers, although support in IE9 is not as com-
plete as the aforementioned browsers.

The canvas element can be most simply described as a drawable region with height
and width attributes using JavaScript as the medium to draw and animate complex graph-
ics such as graphs and images.A full set of 2D drawing functions is exposed by the
JavaScript language. Given the close relationship between JavaScript and ActionScript, a
Flash drawing or animation using ActionScript can be easily ported to JavaScript with
only moderate effort. Canvas will be covered in more detail in Chapter 5,“Creating
Games with the Canvas Tag.”

SVG
SVG (Scalable Vector Graphics) is a mature W3C specification for drawing static or ani-
mated graphics.The ability to inline SVG without the use of an object or embed tag was
added in HTML5.Vector graphics use groupings of mathematics formulas to draw primi-
tives such as arcs, lines, paths, and rectangles to create graphics that contain the same qual-
ity when rendered at any scale.This is a marked benefit over images whose discernible
quality degrades when they are displayed at a scale larger than that for which they were
designed.

SVG takes a markedly different approach from the canvas element in that it represents
drawings in XML files instead of purely in code. XML is not the more concise represen-
tation of data, so a file may contain many repeated sections.This can be addressed by
compressing the file, which can greatly reduce its size.As with the canvas element, inter-
action can be scripted using JavaScript. Prior to IE9, IE supported an incompatible vector
format called VML.As of IE9, all major desktop browsers support a fairly common feature
set of SVG 1.1. Chapter 6,“Creating Games with SVG and RaphaëlJS,” puts SVG front
and center.

WebGL
WebGL is a JavaScript API for 3D drawing that enables the developer to assess graphics
hardware and control minute details of the rendering pipeline. It is managed by the
Khronos group and shares much of its syntax with OpenGL 2.0 ES.At the time of this
writing,WebGL is not supported in Internet Explorer 6+ or the stable branches of Opera
and Safari. It is available in the stable builds of Firefox and Chrome/Chromium and in
development builds of Opera and Safari. Chapter 7,“Creating Games with WebGL and
Three.js,” dives into WebGL.

Conveying Information with Microdata
A web application or API parsing a page can interpret HTML marked up with microdata
and respond to it. For instance, a search engine that returns results marked up with micro-
data could be parsed by a browser extension or script to better present the data to a visu-
ally impaired or colorblind user. Microformats are a preceding concept that serves the

17Summary

same goal. One key difference between microformats and HTML5 microdata is the way
that the data is denoted.As shown in Listing 1-6, microformats use the class property of
an object to indicate the fields on an object.

Listing 1-6 hCard Microformat Example

<div class="vcard">

<div class="fn">James Williams</div>

<div class="org">Some Company</div>

<div class="tel">650-555-3055</div>

http://example.com/

</div>

Microdata uses the same concept with slightly different notation. Instead of marking
properties using classes, the itemprop keyword is used.The keyword itemscope marks an
individual unit.At its core, microdata is a set of name/value pairs composed into items.
Listing 1-7 shows a microdata example.The itemtype property indicates a definition of
the object and specifies valid properties.You could use microdata to encode the names
and scores on a leader board page or instructions and screenshots from a game.

Listing 1-7 Microdata Example

<p itemprop="address" itemscope

itemtype="http://data-vocabulary.org/Address">

1600 Amphitheatre Parkway

Mountain View,

CA

94043

USA

</p>

Summary
HTML5 marks a groundbreaking change in how we interact with the browser.This
chapter highlighted the major additions that apply to our needs.You learned how Google
Chrome Frame brings HTML5 features to IE browsers as well as the multiple ways to
draw assets.

In exploring HTML5, in addition to its drawing APIs, you learned about features that
allow you to run computationally heavy tasks without blocking the browser, setting up

18 Chapter 1 Introducing HTML5

bidirectional communications channels between applications, and enabling offline execu-
tion of applications.

You can download chapter code at www.informit.com/title/9780321767363.

www.informit.com/title/9780321767363

Numerics
2.5D, 84

2D, billboarding, 140

3D

Blender, 29, 129
Camera object (Three.js), 128-129
lighting, 120
materials, 120
models,

loading with Three.js, 129-131
sourcing, 143

normal, 121
picking, 142
shading

flat shading, 121
Gouraud shading, 121
Lambertian shading, 121
Phong shading, 122

simulating in 2D space, 84
parallaxing, 85-87
perspective projection, 84

snowman scene
setting up in Three.js, 123-127
viewing in Three.js, 128-129

textures, 134-135
vertex, 118-119

3D Studio MAX, 129

37signals, 153

A
accessing drawing APIs with GWT, 151-152

actions performed in game loop, 53

adding functions to Raphael, 113

AI (artificial intelligence)

Pong, 68
Minimax algorithm, 69-70
tic-tac-toe, 68

AJAX (Asynchronous JavaScript and XML), 2,
43

aliases, CoffeeScript, 156

ambient lighting, 120

Android, 180

application layers, 182
applications, packaging

with Appcelerator Titanium,
193-194

with PhoneGap, 195-198
audio element support, 192

Angry Birds, 64

animating

cards, 107-110
models, 142-143
objects along paths, 113

animation

time-based, 140
Trident.js, 79

easing, 81-82
keyframes, 81
spritesheets, 83
timelines, creating, 80

z-ordering, 86
APIs

Canvas, 15-16
Components API, 58
Core API, 57-58
drawing APIs for GWT, accessing,

151-152
for Appcelerator Titanium, 191
for PhoneGap, 189

Geolocation API, 8-10
IndexedDB API, 7
JFugue, 89
networking, 58
node-cache, 168
storage APIs, Lawnchair, 183-185
SVG, 16
WebGL, 16
WebSQL API, 6-7

Appcelerator Titanium

Android applications, packaging,
193-194

APIs, 191
Application Cache, 5-6

applications, running offline, 201
manifest file, 201-203

application frameworks

Appcelerator Titanium, 191
Android applications, packaging,

193-194
APIs, 191

PhoneGap, 188
Android applications, packaging,

195-198
APIs, 189
documentation, 190
Event API, 189
FileReader object, 190
FileUpload object, 190
FileWriter object, 190

applications

attributes, configuring, 210-211
deploying games as, 183
extensions, 206
hosted versus packaged, 212

220 AI (artificial intelligence)

packaging for TapJS, 215
publishing

on Chrome Web Store, 206-208
with Kongregate, 217
with TapJS, 212, 215-217

simplifying with ExpressJS, 163
application structrue, 165
CoffeeKup, installing, 166
CoffeeKup, layout files, 167-168
CoffeeKup, registering, 167
session management, 165
URL routing, 163-165

TapJS, creating, 213
uploading to Chrome Web Store,

208-210
applying textures to spheres, 135

arithmetic operators, JavaScript, 32

arrays

sets, 54
sorting, 55

Ars Technica, 153

aspect ratio, 128

Asteroids, 66-67

asynchronous connections, WebSQL API, 7

attributes of applications, configuring,
210-211

audio

Copy Me game tones, creating, 88-89
multiple sounds

playing at once, 90
playing sequentially, 91

audio element support (Android)192

audio tag (HTML5), controlling media, 13-14

B
beginPath() function, 72

benchmarking

frame rate, checking with Stats.js, 144
with WebGL Inspector, 145

Berners-Lee, Tim, 1

Bezier curves, 112

Bezier, Pierre, 111

billboarding, 140

bitmap images, creating with SVG files, 105

Blender, 29, 84, 129

Blender Conference, 130

browser tools

Chromer Developer tools, 24-25
Firebug, 26
Safari Developer tools, 26

browsers

Geolocation API support, verifying, 8
Google Gears, 3

building Pong with SGF

AI, 68
game physics, 64-66
game pieces, drawing, 61-63
host page, 59-60
main.js file, 60-61

C
CACHE section (Application Cache manifest

file), 201

caching data, 168

Camera object (Three.js), 128-129

Canvas, 15-16, 71

comparing with SVG, 95-96
displaying in Jo, 188

221Canvas

drawing state, saving and restoring, 77
images, drawing, 79
paths, drawing, 72
sprites, drawing, 73-74
transformations, 75-77

capacitive screens, gestures, 181

Cappuccino, 158

cards

animating, 107-110
drawing, 105
flipping, 108
shuffling, 107

Chrome (Google), extensions, 25

Chrome Developer tools, 24-25

Chrome Frame, 3

Chrome Web Store

applications, publishing
hosted application, deploying,

207-208
metadata, describing, 206
packaged application,

deploying, 208
testing applications, 208

applications, uploading, 208-210
classes

CoffeeScript, 157-158
JavaScript, inheritance, 38-40

client-side scripting

JQTouch, 187
JQuery, 185
JQueryMobile, 185-186
Zepto.js, 187

client/server communication

NowJS, 171
Web Sockets, Socket.IO, 169-170

clipping planes, 128

code, minification, 199-201

CoffeeKup

installing, 166
layout files, 167-168
registering with ExpressJS, 167

CoffeeScript, 45

aliases, 156
classes, 157-158
conditional statements, 156
files, compiling, 153
for loops, 156-157
functions, 154
installing, 153
semicolons, use of, 154
splats, 155
var keyword, 154

collision detection (Pong), 65-66

color, specifying in Raphael, 103-104

color picking, 142

comments, minification, 199-201

Comparator (JavaScript), 55-56

comparing

CoffeeScript and JavaScript, 154
microdata and microformats, 17
SVG and Canvas, 95-96
XML and JSON, 44

comparison operators (JavaScript), 34-35

compilers, Google Closure Compiler,
199-201

compiling CoffeeScript files, 153

Components API, 58

conditional loops (JavaScript)

for loops, 37
if-else statement, 35
switch-case statement, 36
while loops, 36

222 Canvas

conditional statements, CoffeeScript, 156

configuring application attributes, 210-211

console debugging, 172-173

controlling

media in HTML, 13-14
program flow with loops (JavaScript)

for loops, 37
while loops, 36

Conway’s Game of Life, 136

Copy Me, 87

game text, drawing, 91
game text, styling, 92
game tones, creating, 88-91
objects, drawing, 87-88

Core API, 57-58

creating

Copy Me game tones, 88-91
game rooms with NowJS groups,

174-175
notifications, 11-12
particle systems in Three.js, 140-141
physics system with JigLibJS, 139-140
TapJS applications, 213
timelines in Trident.js, 80
vertex in Three.js, 118-119
Web Sockets, 4

cross-platform frameworks, Jo, 187-188

cross-site scripting, 44

CSS (Cascading Style Sheets), 92, 315

cube mapping, 135

Cufon, 100-102

curveto instruction (Raphael), 111

customizing fonts, 100-102

D
data URIs, 78

Database API

IndexedDB API, 7
WebSQL API, 6-7

debugging Node applications, 172-173

deciding genre for game, 52-53

deploying

games
as applications, 183
as website, 181

hosted applications, 207-208
packaged applications, 208

describing metadata, 206

design document, writing, 51-52

desktop applications, JavaScript, 46-47

development tools

Blender, 29
Chrome Developer tools, 24-25
Eclipse IDE, installing, 20-21
Firebug, 26
GWT, installing, 22
Inkscape, 27
Java, installing, 19-20
ProcessingJS, 27
Raphael, 29
Safari Developer tools, 26
SVG-edit, 27

directional lighting, 120

displaying canvas in Jo, 188

documentation, PhoneGap, 190

drawImage function, 78, 86

223drawImage function

drawing

cards, 105-110
Copy Me game objects, 87-88, 91
images on Canvas, 79
Pong game pieces, 61-63

drawing APIs

Canvas, 15-16
for GWT, 151-152
SVG, 16
WebGL, 16

drawing state (Canvas), saving and restoring,
77

Dynamic DNS services, 204

E
easing, 81-82

Eclipse IDE, installing, 20-21

equals method, 54

Event API (PhoneGap), 189

events (JQuery), 43

exporting paths from SVG file, 112

ExpressJS, 163

application structure, 165
sessions, managing, 165
URL routing, 163-165

extending Raphael with plug-ins, 113-114

extensions, 25, 206

F
Facebook integration, TapJS, 214-217

FALLBACK section (Application Cache
manifest file), 202

FileReader object (PhoneGap), 190

files (CoffeeScript), compiling, 153

FileUpload object (PhoneGap), 190

FileWriter object (PhoneGap), 190

filters, SVG, 113

Firebug, 26

first-class objects, 33-34

flat shading, 121

flipping cards, 108

fonts, Cufon, 100-102

for loops

CoffeeScript, 156-157
JavaScript, 37

format, data URIs, 78

forward kinematics, 142

FOV (field of view), 128

fragment shaders, 121

frame rate, checking with Stats.js, 144

frames per second versus time-based
animation, 140

functions

adding to Raphael, 113
beginPath(), 72
CoffeeScript, 154
drawImage, 78, 86
JavaScript, 32-34, 38
node-cache API, 168
requestAnimationFrame, 123
updateDynamicsWorld, 139

G
game assets, loading in Raphael, 104-105

game loop, actions performed, 53

game physics

rigid body dynamics, 137-138
soft-body dynamics, 138

game pieces, drawing (Pong), 61-63

game play, managing for multiplayer games,
175-176

game rooms

creating with NowJS groups, 174-175
moving between, 175

224 drawing

game server lobby, creating, 173-174

genre of game, deciding on, 52-53

Geolocation API, 3, 8-10

geometry shaders, 121

gestures, 181

JQTouch support, 187
JQueryMobile support, 186
Zepto.js support, 187

GLSL (OpenGL Shader Language), 131-133

GLUEscript, 46

Google App Engine, 23

Google Chrome

extensions, 25
V8, 161

Google Chrome Frame, 3

Google Closure Compiler, minification,
199-201

Google Gears, 3

Google plugin for Eclipse, installing, 20-21

Google SketchUp, 143

Gouraud shading, 121

gradients, 103

Grouchnikov, Kirill, 79

GWT (Google Web Toolkit), 45, 147

drawing APIs, 151-152
gwt-html, 5-media module, 151
JSNI, 149
Pyjamas, 158
RaphaëIGWT, 150
widgets, RootPanel, 148-149
installing, 22

gwt-html, 5-media module (GWT), 151

H
host page, Pong, 59-60

hosted applications

deploying, 207-208
versus packaged applications, 212

hosted Node.js services, Nodester, 204-205

hosting your own server, 203-204

HTML host page, Pong, 59-60

HTML, 51

Application Cache, 5-6
applications, running offline, 201
manifest file, 201-203

applications, publishing to desktop,
217-218

canvas tag, 71
drawing state, saving and restoring,

77
paths, drawing, 72
sprites, drawing, 73-74
transformations, 75-77

data URIs, 78
drawing APIs

Canvas, 15-16
SVG, 16
WebGL, 16

Geolocation API, 8-10
gwt-html, 5-media module

(GWT), 151
IndexedDB API, 7
media elements, 13-14
microdata, 17
spritesheets, 78
unsupported media elements, handling

listing multiple sources, 14-15
with Modernizr, 15

Web Storage, 7-8
Web Workers, 4-5
WebSockets, 4
WebSQL API, 6-7

HTML5 tools

Inkscape, 27
ProcessingJS, 27
Raphael, 29
SVG-edit, 27

225HTML5 tools

I
if-else statement (JavaScript), 35

images

bitmap, creating with SVG files, 105
drawing on Canvas, 79
serving, 78

IndexedDB API, 7

inertia, Newton’s first law, 63

inheritance, 38

CoffeeScript, 158
Prototype library, 39-40

injection attacks, cross-site scripting, 44

Inkscape, 27, 97

installing

CoffeeKup, 166
CoffeeScript, 153
Eclipse IDE, 20-21
Google plugin for Eclipse, 20-21
GWT, 22
Java, 19-20
n script file, 162
node-inspector, 172

interacting with notifications, 12

inverse kinematics, 142

iOS, 179

is-a relationships (JavaScript), inheritance,
38

J
Java, installing, 19-20

JavaScript, 1

AJAX, 2
and CoffeeScript, comparing, 154
arithmetic operators, 32
as intermediary language, 45
basic types, 31
Comparator, 55-56

comparison operators, 34-35
conditional loops

for loops, 37
if-else statement, 35
switch-case statement, 36
while loops, 36

functions, 32-33
first-class objects, 33-34
setInterval, 38
setTimeout, 38

inheritance, 38-40
JQuery

AJAX, 43-44
events, 43
ready function, 41
selectors, 42

JSON, 44-45
linked lists, 56-57
mobile platforms, 45
modules, 48
on the desktop, 46-47
server-side, 48
set class, 54

Jetty, 98

JFugue, 89

JigLibJS

physics system, creating, 139-140
setting up, 138

Jo, 187-188

JQTouch, 187

JQuery, 41, 185

AJAX, 43
cross-site scripting, 44
events, 43
ready function, 41
selectors, 42

226 if-else statement

JQueryMobile, 185-186

JSNI (JavaScript Native Interface), 149

JSON, 44-45

JSONP (JSON with padding), 45

JVM (Java Virtual Machine), 48

K
key/value store databases, 183

keyframes, 81, 142

KHTML, 217

Knuth, Donald, 107

Kongregate, publishing games, 217

L
Lambertian shading, 121

launching games

as applications, 183
as website, 181

Lawnchair, 183

records
removing, 185
retrieving, 184

store, creating, 184
layout files, CoffeeKup, 167-168

libraries (JavaScript), Prototype, 39-40

lighting, 120-122

linear gradients, 103

lineto instruction (Raphael), 110-111

linked lists, 56-57

listing multiple media sources in HTML,
14-15

LiveScript, 31

loading

3D models with Three.js, 129-131
game assets in Raphael, 104-105

lobby for multiplayer games, creating,
173-174

Local Server module (Google Gears), 3

localStorage object (Web Storage), 7-8

LOD (level of detail), 121

loops

CoffeeScript, for loops, 156-157
JavaScript

for loops, 37
while loops, 36

M
main.js file, Pong, 60-61

MakeHuman, 143

managing

ExpressJS sessions, 165
multiplayer games, game play, 175-176
multiple Node versions, 162

manifest files, Application Cache, 201-203

manifest.json

hosted applications, deploying,
207-208

metadata, describing, 206
packaged applications, deploying, 208

materials, 120

matrices, 75-76

media elements (HTML5), 13

controlling, 13-14
unsupported, handling, 5

listing multiple sources, 14-15
with Modernizr, 15

metadata, describing, 206

methods, equals, 54

microdata, 17

microformats, comparing with microdata, 17

MIDI, creating Copy Me game tones, 88-91

minification, 199-201

Minimax algorithm, 69-70

227Minimax algorithm

mobile games

Android, packaging applications
with Appcelerator Titanium,

193-194
with PhoneGap, 195-198

platform, selecting, 179
Android, 180
iOS, 179
WebOS, 180
Windows Phone 7, 180

mobile JavaScript platforms, 45

models, animating, 142-143

Modernizr, handling unsupported media
elements in HTML, 15

modules

Google Gears, 3
JavaScript, 48

momentum, Newton’s second law, 63

morph targets, 142

moveto instruction (Raphael), 110-111

moving between game rooms, 175

multiplayer games

game play, managing, 175-176
game rooms, creating with NowJS

groups, 174-175
lobby, creating, 173-174
participants, managing, 175

multiple media sources, listing (HTML5),
14-15

multiple Node versions, managing, 162

multiple sounds

playing at once, 90
playing sequentially, 91

multitouch screens, gestures, 181

N
n script file, installing, 162

Network module (Appcelerator
Titanium), 191

NETWORK section (Application Cache
manifest file), 201

networking APIs, 58

Newton’s laws, 63

Node applications, debugging, 172-173

Node Package Manager, 162

node-cache project, 168

node-inspector, installing, 172

Node.js, 23, 204

applications, debugging, 172-173
ExpressJS, 163

application structure, 165
CoffeeKup, 166-168
installing, 166
layout files, 167-168
registering, 167
sessions, managing, 165
URL routing, 163-165

multiple versions, managing, 162
Node Package Manager, 162
require statement, 161-162
Socket.IO, 169-170

nodes, 56-57

Nodester, 204-205

nonlinear timelines, creating, 81-82

normal, 121

NoSQL key/value stores, 183

notifications

creating, 11-12
interacting with, 12
requesting permission to display, 11

NowJS, 171

228 mobile games

NowJS groups, creating game rooms,
174-175

NPM modules, managing with Nodester, 205

O
Objective-J, 158

objects, JavaScript, 31

offline access, running applications with
Application Cache, 201-203

OpenGL ES, 117

Opera Unite, 23

operating systems, selecting mobile
platforms

Android, 179-180
WebOS, 180
Windows Phone 7, 181

operator overloading, 55

ordering transformations, 76-77

orthographic projection, 84

P
packaged applications

deploying, 208
versus hosted applications, 212

packaging applications for TapJS, 215

paper (Raphael)

creating, 98-99
functions, adding, 113

parabolic arc, 64

parallaxing, 85-87

participants, managing in multiplayer
games, 175

particle systems, 66

Asteroids, 66-67
creating in Three.js, 140-141

paths

animating objects on, 113
creating with RaphaelGWT, 150

drawing in Canvas, 72
exporting from SVG file, 112
RaphaelJS, 110

permission to display notifications,
requesting, 11

persistence

data caching, 168
Nodester, 205

perspective projection, 84

PhoneGap, 188

Android applications, packaging,
195-198

APIs, 189
documentation, 190
FileReader Object, 190
FileUpload Object, 190
FileWriter Object, 190

Phong reflection, 122

Phong shading, 122

physics

Angry Birds, 64
applying to Pong game pieces, 64-66
forward kinematics, 142
Newton’s laws, 63-64
particle systems, 66

Asteroids, 66-67
creating in Three.js, 140-141

rigid-body dynamics, 137-138
soft-body dynamics, 138

physics engines, JigLibJS

physics system, creating, 139-140
setting up, 138

picking, 142

plane, 127

platforms

Android, application layers, 182
cross-platform JavaScript frameworks,

Jo, 187-188
deploying games for, 182

229platforms

for mobile games, selecting, 179
Android, 180
iOS, 179
WebOS, 180
Windows Phone 7, 180

plug-ins (Raphael), extending, 113-114

point lighting, 120

Pong, building with SGF

AI, 68
game physics, 64-66
game pieces, drawing, 61-63
host page, 59-60
main.js file, 60-61

ProcessingJS, 27

program flow, controlling with loops

for loops, 37
while loops, 36

programming shaders, GLSL, 131-133

Prototype library (JavaScript), inheritance,
39-40

publishing applications

on Chrome Web Store
applications, testing, 208
hosted application, deploying,

207-208
metadata, describing, 206
packaged application, deploying,

208
Kongregate, 217
to desktop, 217-218
with TapJS, 212, 215-217

Pyjamas, 158

Q-R
radial gradients, 103-104

randomizing algorithm, shuffling cards, 107

Raphael, 29

color, specifying, 103-104
functions, adding, 113

game assets, loading, 104-105
paths, animating objects on, 113
plug-ins, 113-114

RaphaelGWT, 150

RaphaelJS

cards
animating, 107-110
drawing, 105
flipping, 108
shuffling, 107

curveto instruction, 111
development environment, setting up,

97
fonts, customizing, 101-102
game text, creating, 99
moveto instruction, 110-111
paper, creating, 98-99
paths, 110

ray casting, 142

ready function (JQuery), 41

records

removing with Lawnchair, 185
retrieving with Lawnchair, 184

registering CoffeeKup with ExpressJS, 167

removing records with Lawnchair, 185

requestAnimationFrame function, 123

requesting permission to display
notifications, 11

requests (AJAX), performing in JQuery, 43

require statement (Node.js), 161-162

restoring Canvas drawing state, 77

retrieving

images
with data URIs, 78
with spritesheets, 78

records with Lawnchair, 184
reversing timelines, 81

rigging, 142-143

230 platforms

rigid-body dynamics, 137-138

RingoJS, 23, 48

Roosendaal, Ton, 129

RootPanel widget, 148-149

S
Safari Developer tools, 26

saving Canvas drawing state, 77

scene graphs, 123

scripting languages, JavaScript, 1

selecting

application frameworks
Appcelerator Titanium, 191
PhoneGap, 188-190

game genre, 52-53
mobile platform, 179

Android, 180
iOS, 179
WebOS, 180
Windows Phone 7, 180

selectors (JQuery), 42

semicolons in CoffeeScript, 154

server-side JavaScript, 48

servers, hosting your own, 203-204

serving images, 78

session management, ExpressJS, 165

sessionStorage object (Web Storage), 7-8

set class (JavaScript), 54

setInterval function (JavaScript), 38

sets, 54-55

setTimeout function (JavaScript), 38

setting up JigLibJS, 138

SGF, 57-59, 66-68

shaders, 121

GLSL, 131-133
variables, 132

shading

flat shading, 121
Gouraud shading, 121
Lambertian shading, 121
Phong shading, 122

ShapeBuilder API, 152

shuffling cards, 107

simplifying applications with ExpressJS, 163

application structure, 165
CoffeeKup

installing, 166
layout files, 167-168
registering, 167

session management, 165
URL routing, 163-165

simulating 3D in 2D space, 84

parallaxing, 85-87
perspective projection, 84

snowman scene, setting up in Three.js,
123-127

Socket.IO, 169-170

soft-body dynamics, 138

sorting arrays and sets, 55

sound, adding with gwt-html5-media module
(GWT), 151

sourcing 3D models, 143

specifying color in Raphael, 103-104

speed considerations for SVG, 114

spheres applying textures, 135

SpiderMonkey, 46

splats, 155

sprites, drawing in Canvas, 73-74

spritesheets, 78, 83

starting

applications with Nodester, 205
timelines in Trident.js, 80

231starting

Stats.js, checking frame rate, 144

storage APIs, Lawnchair, 183

records
removing, 185
retrieving, 184

store, creating, 184
Storage objects (Web Storage), 7-8

storing structured data

IndexedDB API, 7
WebSQL API, 6-7

structured data, storing

IndexedDB API, 7
WebSQL API, 6-7

styling text for Copy Me game, 92

Suzanne Awards, 130

SVG (Scalable Vector Graphics), 16, 95

Bezier curves, 112
comparing with Canvas, 95-96
files, converting to bitmap images, 105
filters, 113
paths, exporting, 112
speed considerations, 114

SVG-edit, 27

switch-case statement (JavaScript), 36

synchronous connection, WebSQL API, 7

T
tags, canvas, 71

drawing state, saving and restoring, 77
images, drawing, 79
paths, drawing, 72
sprites, drawing, 73-74
transformations, 75-77

TapJS

applications
creating, 213
packaging, 215
publishing, 212, 215-217

testing applications with Chrome, 208

texels, 134

text

Copy Me, game
drawing, 91
styling, 92

creating with RaphaelJS, 99
fonts, Cufon, 100-102

textures, 134

appying to spheres, 135
cube mapping, 135
UV mapping, 134

themes, 206

Three.js, 117, 136

3D models, loading, 129-131
Camera object, 128-129
lighting, 120
materials, 120
particle systems, creating, 140-141
ray casting, 142
snowman scene

setting up, 123-127
viewing, 128-129

vertex, creating, 118-119
Tic-Tac-Toe game

AI, 68
sprites, drawing on canvas, 73-74

time-based animation versus frames per
second, 140

timelines, 83

creating in Trident.js, 80
keyframes, 81
nonlinear, creating, 81-82
reversing, 81

Titanium Appcelerator, 45

transformations, 75-76

drawing state, saving and restoring, 77
ordering, 76-77

232 Stats.js

transitions

JQTouch, 187
JQueryMobile support, 186

Trident.js, 79

easing, 81-82
keyframes, 81
spritesheets, 83
timelines, reversing, 81
timelines, creating, 80

TurboSquid, 143

U
unsupported media elements in HTML5,

handling

listing multiple sources, 14-15
with Modernizr, 15

updateDynamicsWorld function, 139

uploading applications to Chrome Web
Store, 208-210

URL routing with ExpressJS, 163-165

user input, 53

UV mapping, 134

V
V8, 161

var keyword (CoffeeScript), 154

variables for shaders, 132

vectors, normal, 121

verifying Geolocation API support on
browsers, 8

vertex, 118-119

vertex shaders, 121, 132-133

video tag (HTML5), 13-14

viewing snowman scene in Three.js,
128-129

W
web browsers

Geolocation API support, verifying, 8
Google Chrome V8, 161
Google Gears, 3
MIDI files, playing, 89

web notifications

creating, 11-12
interacting with, 12
permission to display, requesting, 11

web server tools, 23

Web Sockets

simplifying with NowJS, 171
Socket.IO, 169-170

Web Storage, 7-8

Web Workers, 4-5

WebGL, 16, 117

WebGL Inspector, 145

webhosting

hosted applications, deploying,
207-208

hosted Node.js services, Nodester,
204-205

hosting your own server, 203-204
packaged applications, deploying, 208

WebOS, 45, 180

websites

CSS, 315
launching games as, 181
Nodester, 204
PhoneGap, 190

WebSockets, 4

WebSQL API, 6-7

while loops (JavaScript), 36

widgets (GWT), RootPanel, 148-149

233widgets (GWT)

Windows Phone 7, 180

WorkerPool module (Google Gears), 3

writing

design document, 51-52
shaders in GLSL, 132-133

X-Y-Z
XML, comparing with JSON, 44

XMLHttpRequest object, 2

XULJet, 46-47

XULRunner, 46, 217

z-ordering, 85

Zepto.js, 187

234 Windows Phone 7

	Table of Contents
	Chapter 1 Introducing HTML5
	Beyond Basic HTML
	JavaScript
	AJAX

	Bridging the Divide
	Google Gears
	Chrome Frame

	Getting Things Done with WebSockets and Web Workers
	WebSockets
	Web Workers

	Application Cache
	Database API
	WebSQL API
	IndexedDB API

	Web Storage
	Geolocation
	Getting Users’ Attention with Notifications
	Requesting Permission to Display Notifications
	Creating Notifications
	Interacting with Notifications

	Media Elements
	Controlling Media
	Handling Unsupported Formats

	HTML5 Drawing APIs
	Canvas
	SVG
	WebGL

	Conveying Information with Microdata

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

