

The Python
Standard Library

by Example

The Developer’s Library Series from Addison-Wesley provides

practicing programmers with unique, high-quality references and

tutorials on the latest programming languages and technologies they

use in their daily work. All books in the Developer’s Library are written by

expert technology practitioners who are exceptionally skilled at organizing

and presenting information in a way that’s useful for other programmers.

Developer’s Library books cover a wide range of topics, from open-

source programming languages and databases, Linux programming,

Microsoft, and Java, to Web development, social networking platforms,

Mac/iPhone programming, and Android programming.

Visit developers-library.com for a complete list of available products

Developer’s Library Series

The Python
Standard Library

by Example

Doug Hellmann

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Hellmann, Doug.

The Python standard library by example / Doug Hellmann.

p. cm.

Includes index.

ISBN 978-0-321-76734-9 (pbk. : alk. paper)

1. Python (Computer program language) I. Title.

QA76.73.P98H446 2011

005.13'3—dc22

2011006256

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-76734-9
ISBN-10: 0-321-76734-9

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, May 2011

This book is dedicated to my wife, Theresa,
for everything she has done for me.

This page intentionally left blank

CONTENTS AT A GLANCE

Contents ix
Tables xxxi
Foreword xxxiii
Acknowledgments xxxvii
About the Author xxxix

INTRODUCTION 1

1 TEXT 3

2 DATA STRUCTURES 69

3 ALGORITHMS 129

4 DATES AND TIMES 173

5 MATHEMATICS 197

6 THE FILE SYSTEM 247

7 DATA PERSISTENCE AND EXCHANGE 333

8 DATA COMPRESSION AND ARCHIVING 421

9 CRYPTOGRAPHY 469

vii

viii Contents at a Glance

10 PROCESSES AND THREADS 481

11 NETWORKING 561

12 THE INTERNET 637

13 EMAIL 727

14 APPLICATION BUILDING BLOCKS 769

15 INTERNATIONALIZATION AND LOCALIZATION 899

16 DEVELOPER TOOLS 919

17 RUNTIME FEATURES 1045

18 LANGUAGE TOOLS 1169

19 MODULES AND PACKAGES 1235

Index of Python Modules 1259
Index 1261

CONTENTS

Tables xxxi
Foreword xxxiii
Acknowledgments xxxvii
About the Author xxxix

INTRODUCTION 1

1 TEXT 3
1.1 string—Text Constants and Templates 4

1.1.1 Functions 4

1.1.2 Templates 5

1.1.3 Advanced Templates 7

1.2 textwrap—Formatting Text Paragraphs 9

1.2.1 Example Data 9

1.2.2 Filling Paragraphs 10

1.2.3 Removing Existing Indentation 10

1.2.4 Combining Dedent and Fill 11

1.2.5 Hanging Indents 12

1.3 re—Regular Expressions 13

1.3.1 Finding Patterns in Text 14

1.3.2 Compiling Expressions 14

1.3.3 Multiple Matches 15

1.3.4 Pattern Syntax 16

1.3.5 Constraining the Search 28

1.3.6 Dissecting Matches with Groups 30

ix

x Contents

1.3.7 Search Options 37

1.3.8 Looking Ahead or Behind 45

1.3.9 Self-Referencing Expressions 50

1.3.10 Modifying Strings with Patterns 56

1.3.11 Splitting with Patterns 58

1.4 difflib—Compare Sequences 61

1.4.1 Comparing Bodies of Text 62

1.4.2 Junk Data 65

1.4.3 Comparing Arbitrary Types 66

2 DATA STRUCTURES 69
2.1 collections—Container Data Types 70

2.1.1 Counter 70

2.1.2 defaultdict 74

2.1.3 Deque 75

2.1.4 namedtuple 79

2.1.5 OrderedDict 82

2.2 array—Sequence of Fixed-Type Data 84

2.2.1 Initialization 84

2.2.2 Manipulating Arrays 85

2.2.3 Arrays and Files 85

2.2.4 Alternate Byte Ordering 86

2.3 heapq—Heap Sort Algorithm 87

2.3.1 Example Data 88

2.3.2 Creating a Heap 89

2.3.3 Accessing Contents of a Heap 90

2.3.4 Data Extremes from a Heap 92

2.4 bisect—Maintain Lists in Sorted Order 93

2.4.1 Inserting in Sorted Order 93

2.4.2 Handling Duplicates 95

2.5 Queue—Thread-Safe FIFO Implementation 96

2.5.1 Basic FIFO Queue 96

2.5.2 LIFO Queue 97

2.5.3 Priority Queue 98

2.5.4 Building a Threaded Podcast Client 99

2.6 struct—Binary Data Structures 102

2.6.1 Functions vs. Struct Class 102

2.6.2 Packing and Unpacking 102

Contents xi

2.6.3 Endianness 103

2.6.4 Buffers 105

2.7 weakref—Impermanent References to Objects 106

2.7.1 References 107

2.7.2 Reference Callbacks 108

2.7.3 Proxies 108

2.7.4 Cyclic References 109

2.7.5 Caching Objects 114

2.8 copy—Duplicate Objects 117

2.8.1 Shallow Copies 118

2.8.2 Deep Copies 118

2.8.3 Customizing Copy Behavior 119

2.8.4 Recursion in Deep Copy 120

2.9 pprint—Pretty-Print Data Structures 123

2.9.1 Printing 123

2.9.2 Formatting 124

2.9.3 Arbitrary Classes 125

2.9.4 Recursion 125

2.9.5 Limiting Nested Output 126

2.9.6 Controlling Output Width 126

3 ALGORITHMS 129
3.1 functools—Tools for Manipulating Functions 129

3.1.1 Decorators 130

3.1.2 Comparison 138

3.2 itertools—Iterator Functions 141

3.2.1 Merging and Splitting Iterators 142

3.2.2 Converting Inputs 145

3.2.3 Producing New Values 146

3.2.4 Filtering 148

3.2.5 Grouping Data 151

3.3 operator—Functional Interface to Built-in Operators 153

3.3.1 Logical Operations 154

3.3.2 Comparison Operators 154

3.3.3 Arithmetic Operators 155

3.3.4 Sequence Operators 157

3.3.5 In-Place Operators 158

3.3.6 Attribute and Item “Getters” 159

3.3.7 Combining Operators and Custom Classes 161

xii Contents

3.3.8 Type Checking 162

3.4 contextlib—Context Manager Utilities 163

3.4.1 Context Manager API 164

3.4.2 From Generator to Context Manager 167

3.4.3 Nesting Contexts 168

3.4.4 Closing Open Handles 169

4 DATES AND TIMES 173
4.1 time—Clock Time 173

4.1.1 Wall Clock Time 174

4.1.2 Processor Clock Time 174

4.1.3 Time Components 176

4.1.4 Working with Time Zones 177

4.1.5 Parsing and Formatting Times 179

4.2 datetime—Date and Time Value Manipulation 180

4.2.1 Times 181

4.2.2 Dates 182

4.2.3 timedeltas 185

4.2.4 Date Arithmetic 186

4.2.5 Comparing Values 187

4.2.6 Combining Dates and Times 188

4.2.7 Formatting and Parsing 189

4.2.8 Time Zones 190

4.3 calendar—Work with Dates 191

4.3.1 Formatting Examples 191

4.3.2 Calculating Dates 194

5 MATHEMATICS 197
5.1 decimal—Fixed and Floating-Point Math 197

5.1.1 Decimal 198

5.1.2 Arithmetic 199

5.1.3 Special Values 200

5.1.4 Context 201

5.2 fractions—Rational Numbers 207

5.2.1 Creating Fraction Instances 207

5.2.2 Arithmetic 210

5.2.3 Approximating Values 210

5.3 random—Pseudorandom Number Generators 211

5.3.1 Generating Random Numbers 211

Contents xiii

5.3.2 Seeding 212

5.3.3 Saving State 213

5.3.4 Random Integers 214

5.3.5 Picking Random Items 215

5.3.6 Permutations 216

5.3.7 Sampling 218

5.3.8 Multiple Simultaneous Generators 219

5.3.9 SystemRandom 221

5.3.10 Nonuniform Distributions 222

5.4 math—Mathematical Functions 223

5.4.1 Special Constants 223

5.4.2 Testing for Exceptional Values 224

5.4.3 Converting to Integers 226

5.4.4 Alternate Representations 227

5.4.5 Positive and Negative Signs 229

5.4.6 Commonly Used Calculations 230

5.4.7 Exponents and Logarithms 234

5.4.8 Angles 238

5.4.9 Trigonometry 240

5.4.10 Hyperbolic Functions 243

5.4.11 Special Functions 244

6 THE FILE SYSTEM 247
6.1 os.path—Platform-Independent Manipulation of Filenames 248

6.1.1 Parsing Paths 248

6.1.2 Building Paths 252

6.1.3 Normalizing Paths 253

6.1.4 File Times 254

6.1.5 Testing Files 255

6.1.6 Traversing a Directory Tree 256

6.2 glob—Filename Pattern Matching 257

6.2.1 Example Data 258

6.2.2 Wildcards 258

6.2.3 Single Character Wildcard 259

6.2.4 Character Ranges 260

6.3 linecache—Read Text Files Efficiently 261

6.3.1 Test Data 261

6.3.2 Reading Specific Lines 262

6.3.3 Handling Blank Lines 263

xiv Contents

6.3.4 Error Handling 263

6.3.5 Reading Python Source Files 264

6.4 tempfile—Temporary File System Objects 265

6.4.1 Temporary Files 265

6.4.2 Named Files 268

6.4.3 Temporary Directories 268

6.4.4 Predicting Names 269

6.4.5 Temporary File Location 270

6.5 shutil—High-Level File Operations 271

6.5.1 Copying Files 271

6.5.2 Copying File Metadata 274

6.5.3 Working with Directory Trees 276

6.6 mmap—Memory-Map Files 279

6.6.1 Reading 279

6.6.2 Writing 280

6.6.3 Regular Expressions 283

6.7 codecs—String Encoding and Decoding 284

6.7.1 Unicode Primer 284

6.7.2 Working with Files 287

6.7.3 Byte Order 289

6.7.4 Error Handling 291

6.7.5 Standard Input and Output Streams 295

6.7.6 Encoding Translation 298

6.7.7 Non-Unicode Encodings 300

6.7.8 Incremental Encoding 301

6.7.9 Unicode Data and Network Communication 303

6.7.10 Defining a Custom Encoding 307

6.8 StringIO—Text Buffers with a File-like API 314

6.8.1 Examples 314

6.9 fnmatch—UNIX-Style Glob Pattern Matching 315

6.9.1 Simple Matching 315

6.9.2 Filtering 317

6.9.3 Translating Patterns 318

6.10 dircache—Cache Directory Listings 319

6.10.1 Listing Directory Contents 319

6.10.2 Annotated Listings 321

6.11 filecmp—Compare Files 322

6.11.1 Example Data 323

6.11.2 Comparing Files 325

Contents xv

6.11.3 Comparing Directories 327

6.11.4 Using Differences in a Program 328

7 DATA PERSISTENCE AND EXCHANGE 333
7.1 pickle—Object Serialization 334

7.1.1 Importing 335

7.1.2 Encoding and Decoding Data in Strings 335

7.1.3 Working with Streams 336

7.1.4 Problems Reconstructing Objects 338

7.1.5 Unpicklable Objects 340

7.1.6 Circular References 340

7.2 shelve—Persistent Storage of Objects 343

7.2.1 Creating a New Shelf 343

7.2.2 Writeback 344

7.2.3 Specific Shelf Types 346

7.3 anydbm—DBM-Style Databases 347

7.3.1 Database Types 347

7.3.2 Creating a New Database 348

7.3.3 Opening an Existing Database 349

7.3.4 Error Cases 349

7.4 whichdb—Identify DBM-Style Database Formats 350

7.5 sqlite3—Embedded Relational Database 351

7.5.1 Creating a Database 352

7.5.2 Retrieving Data 355

7.5.3 Query Metadata 357

7.5.4 Row Objects 358

7.5.5 Using Variables with Queries 359

7.5.6 Bulk Loading 362

7.5.7 Defining New Column Types 363

7.5.8 Determining Types for Columns 366

7.5.9 Transactions 368

7.5.10 Isolation Levels 372

7.5.11 In-Memory Databases 376

7.5.12 Exporting the Contents of a Database 376

7.5.13 Using Python Functions in SQL 378

7.5.14 Custom Aggregation 380

7.5.15 Custom Sorting 381

7.5.16 Threading and Connection Sharing 383

7.5.17 Restricting Access to Data 384

xvi Contents

7.6 xml.etree.ElementTree—XML Manipulation API 387

7.6.1 Parsing an XML Document 387

7.6.2 Traversing the Parsed Tree 388

7.6.3 Finding Nodes in a Document 390

7.6.4 Parsed Node Attributes 391

7.6.5 Watching Events While Parsing 393

7.6.6 Creating a Custom Tree Builder 396

7.6.7 Parsing Strings 398

7.6.8 Building Documents with Element Nodes 400

7.6.9 Pretty-Printing XML 401

7.6.10 Setting Element Properties 403

7.6.11 Building Trees from Lists of Nodes 405

7.6.12 Serializing XML to a Stream 408

7.7 csv—Comma-Separated Value Files 411

7.7.1 Reading 411

7.7.2 Writing 412

7.7.3 Dialects 413

7.7.4 Using Field Names 418

8 DATA COMPRESSION AND ARCHIVING 421
8.1 zlib—GNU zlib Compression 421

8.1.1 Working with Data in Memory 422

8.1.2 Incremental Compression and Decompression 423

8.1.3 Mixed Content Streams 424

8.1.4 Checksums 425

8.1.5 Compressing Network Data 426

8.2 gzip—Read and Write GNU Zip Files 430

8.2.1 Writing Compressed Files 431

8.2.2 Reading Compressed Data 433

8.2.3 Working with Streams 434

8.3 bz2—bzip2 Compression 436

8.3.1 One-Shot Operations in Memory 436

8.3.2 Incremental Compression and Decompression 438

8.3.3 Mixed Content Streams 439

8.3.4 Writing Compressed Files 440

8.3.5 Reading Compressed Files 442

8.3.6 Compressing Network Data 443

8.4 tarfile—Tar Archive Access 448

8.4.1 Testing Tar Files 448

Contents xvii

8.4.2 Reading Metadata from an Archive 449

8.4.3 Extracting Files from an Archive 450

8.4.4 Creating New Archives 453

8.4.5 Using Alternate Archive Member Names 453

8.4.6 Writing Data from Sources Other than Files 454

8.4.7 Appending to Archives 455

8.4.8 Working with Compressed Archives 456

8.5 zipfile—ZIP Archive Access 457

8.5.1 Testing ZIP Files 457

8.5.2 Reading Metadata from an Archive 457

8.5.3 Extracting Archived Files from an Archive 459

8.5.4 Creating New Archives 460

8.5.5 Using Alternate Archive Member Names 462

8.5.6 Writing Data from Sources Other than Files 462

8.5.7 Writing with a ZipInfo Instance 463

8.5.8 Appending to Files 464

8.5.9 Python ZIP Archives 466

8.5.10 Limitations 467

9 CRYPTOGRAPHY 469
9.1 hashlib—Cryptographic Hashing 469

9.1.1 Sample Data 470

9.1.2 MD5 Example 470

9.1.3 SHA-1 Example 470

9.1.4 Creating a Hash by Name 471

9.1.5 Incremental Updates 472

9.2 hmac—Cryptographic Message Signing and Verification 473

9.2.1 Signing Messages 474

9.2.2 SHA vs. MD5 474

9.2.3 Binary Digests 475

9.2.4 Applications of Message Signatures 476

10 PROCESSES AND THREADS 481
10.1 subprocess—Spawning Additional Processes 481

10.1.1 Running External Commands 482

10.1.2 Working with Pipes Directly 486

10.1.3 Connecting Segments of a Pipe 489

10.1.4 Interacting with Another Command 490

10.1.5 Signaling between Processes 492

xviii Contents

10.2 signal—Asynchronous System Events 497

10.2.1 Receiving Signals 498

10.2.2 Retrieving Registered Handlers 499

10.2.3 Sending Signals 501

10.2.4 Alarms 501

10.2.5 Ignoring Signals 502

10.2.6 Signals and Threads 502

10.3 threading—Manage Concurrent Operations 505

10.3.1 Thread Objects 505

10.3.2 Determining the Current Thread 507

10.3.3 Daemon vs. Non-Daemon Threads 509

10.3.4 Enumerating All Threads 512

10.3.5 Subclassing Thread 513

10.3.6 Timer Threads 515

10.3.7 Signaling between Threads 516

10.3.8 Controlling Access to Resources 517

10.3.9 Synchronizing Threads 523

10.3.10 Limiting Concurrent Access to Resources 524

10.3.11 Thread-Specific Data 526

10.4 multiprocessing—Manage Processes like Threads 529

10.4.1 Multiprocessing Basics 529

10.4.2 Importable Target Functions 530

10.4.3 Determining the Current Process 531

10.4.4 Daemon Processes 532

10.4.5 Waiting for Processes 534

10.4.6 Terminating Processes 536

10.4.7 Process Exit Status 537

10.4.8 Logging 539

10.4.9 Subclassing Process 540

10.4.10 Passing Messages to Processes 541

10.4.11 Signaling between Processes 545

10.4.12 Controlling Access to Resources 546

10.4.13 Synchronizing Operations 547

10.4.14 Controlling Concurrent Access to Resources 548

10.4.15 Managing Shared State 550

10.4.16 Shared Namespaces 551

10.4.17 Process Pools 553

10.4.18 Implementing MapReduce 555

Contents xix

11 NETWORKING 561
11.1 socket—Network Communication 561

11.1.1 Addressing, Protocol Families, and Socket Types 562

11.1.2 TCP/IP Client and Server 572

11.1.3 User Datagram Client and Server 580

11.1.4 UNIX Domain Sockets 583

11.1.5 Multicast 587

11.1.6 Sending Binary Data 591

11.1.7 Nonblocking Communication and Timeouts 593

11.2 select—Wait for I/O Efficiently 594

11.2.1 Using select() 595

11.2.2 Nonblocking I/O with Timeouts 601

11.2.3 Using poll() 603

11.2.4 Platform-Specific Options 608

11.3 SocketServer—Creating Network Servers 609

11.3.1 Server Types 609

11.3.2 Server Objects 609

11.3.3 Implementing a Server 610

11.3.4 Request Handlers 610

11.3.5 Echo Example 610

11.3.6 Threading and Forking 616

11.4 asyncore—Asynchronous I/O 619

11.4.1 Servers 619

11.4.2 Clients 621

11.4.3 The Event Loop 623

11.4.4 Working with Other Event Loops 625

11.4.5 Working with Files 628

11.5 asynchat—Asynchronous Protocol Handler 629

11.5.1 Message Terminators 629

11.5.2 Server and Handler 630

11.5.3 Client 632

11.5.4 Putting It All Together 634

12 THE INTERNET 637
12.1 urlparse—Split URLs into Components 638

12.1.1 Parsing 638

12.1.2 Unparsing 641

12.1.3 Joining 642

xx Contents

12.2 BaseHTTPServer—Base Classes for Implementing Web Servers 644

12.2.1 HTTP GET 644

12.2.2 HTTP POST 646

12.2.3 Threading and Forking 648

12.2.4 Handling Errors 649

12.2.5 Setting Headers 650

12.3 urllib—Network Resource Access 651

12.3.1 Simple Retrieval with Cache 651

12.3.2 Encoding Arguments 653

12.3.3 Paths vs. URLs 655

12.4 urllib2—Network Resource Access 657

12.4.1 HTTP GET 657

12.4.2 Encoding Arguments 660

12.4.3 HTTP POST 661

12.4.4 Adding Outgoing Headers 661

12.4.5 Posting Form Data from a Request 663

12.4.6 Uploading Files 664

12.4.7 Creating Custom Protocol Handlers 667

12.5 base64—Encode Binary Data with ASCII 670

12.5.1 Base64 Encoding 670

12.5.2 Base64 Decoding 671

12.5.3 URL-Safe Variations 672

12.5.4 Other Encodings 673

12.6 robotparser—Internet Spider Access Control 674

12.6.1 robots.txt 674

12.6.2 Testing Access Permissions 675

12.6.3 Long-Lived Spiders 676

12.7 Cookie—HTTP Cookies 677

12.7.1 Creating and Setting a Cookie 678

12.7.2 Morsels 678

12.7.3 Encoded Values 680

12.7.4 Receiving and Parsing Cookie Headers 681

12.7.5 Alternative Output Formats 682

12.7.6 Deprecated Classes 683

12.8 uuid—Universally Unique Identifiers 684

12.8.1 UUID 1—IEEE 802 MAC Address 684

12.8.2 UUID 3 and 5—Name-Based Values 686

12.8.3 UUID 4—Random Values 688

12.8.4 Working with UUID Objects 689

Contents xxi

12.9 json—JavaScript Object Notation 690

12.9.1 Encoding and Decoding Simple Data Types 690

12.9.2 Human-Consumable vs. Compact Output 692

12.9.3 Encoding Dictionaries 694

12.9.4 Working with Custom Types 695

12.9.5 Encoder and Decoder Classes 697

12.9.6 Working with Streams and Files 700

12.9.7 Mixed Data Streams 701

12.10 xmlrpclib—Client Library for XML-RPC 702

12.10.1 Connecting to a Server 704

12.10.2 Data Types 706

12.10.3 Passing Objects 709

12.10.4 Binary Data 710

12.10.5 Exception Handling 712

12.10.6 Combining Calls into One Message 712

12.11 SimpleXMLRPCServer—An XML-RPC Server 714

12.11.1 A Simple Server 714

12.11.2 Alternate API Names 716

12.11.3 Dotted API Names 718

12.11.4 Arbitrary API Names 719

12.11.5 Exposing Methods of Objects 720

12.11.6 Dispatching Calls 722

12.11.7 Introspection API 724

13 EMAIL 727
13.1 smtplib—Simple Mail Transfer Protocol Client 727

13.1.1 Sending an Email Message 728

13.1.2 Authentication and Encryption 730

13.1.3 Verifying an Email Address 732

13.2 smtpd—Sample Mail Servers 734

13.2.1 Mail Server Base Class 734

13.2.2 Debugging Server 737

13.2.3 Proxy Server 737

13.3 imaplib—IMAP4 Client Library 738

13.3.1 Variations 739

13.3.2 Connecting to a Server 739

13.3.3 Example Configuration 741

13.3.4 Listing Mailboxes 741

13.3.5 Mailbox Status 744

xxii Contents

13.3.6 Selecting a Mailbox 745

13.3.7 Searching for Messages 746

13.3.8 Search Criteria 747

13.3.9 Fetching Messages 749

13.3.10 Whole Messages 752

13.3.11 Uploading Messages 753

13.3.12 Moving and Copying Messages 755

13.3.13 Deleting Messages 756

13.4 mailbox—Manipulate Email Archives 758

13.4.1 mbox 759

13.4.2 Maildir 762

13.4.3 Other Formats 768

14 APPLICATION BUILDING BLOCKS 769
14.1 getopt—Command-Line Option Parsing 770

14.1.1 Function Arguments 771

14.1.2 Short-Form Options 771

14.1.3 Long-Form Options 772

14.1.4 A Complete Example 772

14.1.5 Abbreviating Long-Form Options 775

14.1.6 GNU-Style Option Parsing 775

14.1.7 Ending Argument Processing 777

14.2 optparse—Command-Line Option Parser 777

14.2.1 Creating an OptionParser 777

14.2.2 Short- and Long-Form Options 778

14.2.3 Comparing with getopt 779

14.2.4 Option Values 781

14.2.5 Option Actions 784

14.2.6 Help Messages 790

14.3 argparse—Command-Line Option and Argument Parsing 795

14.3.1 Comparing with optparse 796

14.3.2 Setting Up a Parser 796

14.3.3 Defining Arguments 796

14.3.4 Parsing a Command Line 796

14.3.5 Simple Examples 797

14.3.6 Automatically Generated Options 805

14.3.7 Parser Organization 807

14.3.8 Advanced Argument Processing 815

Contents xxiii

14.4 readline—The GNU Readline Library 823

14.4.1 Configuring 823

14.4.2 Completing Text 824

14.4.3 Accessing the Completion Buffer 828

14.4.4 Input History 832

14.4.5 Hooks 834

14.5 getpass—Secure Password Prompt 836

14.5.1 Example 836

14.5.2 Using getpass without a Terminal 837

14.6 cmd—Line-Oriented Command Processors 839

14.6.1 Processing Commands 839

14.6.2 Command Arguments 840

14.6.3 Live Help 842

14.6.4 Auto-Completion 843

14.6.5 Overriding Base Class Methods 845

14.6.6 Configuring Cmd through Attributes 847

14.6.7 Running Shell Commands 848

14.6.8 Alternative Inputs 849

14.6.9 Commands from sys.argv 851

14.7 shlex—Parse Shell-Style Syntaxes 852

14.7.1 Quoted Strings 852

14.7.2 Embedded Comments 854

14.7.3 Split 855

14.7.4 Including Other Sources of Tokens 855

14.7.5 Controlling the Parser 856

14.7.6 Error Handling 858

14.7.7 POSIX vs. Non-POSIX Parsing 859

14.8 ConfigParser—Work with Configuration Files 861

14.8.1 Configuration File Format 862

14.8.2 Reading Configuration Files 862

14.8.3 Accessing Configuration Settings 864

14.8.4 Modifying Settings 869

14.8.5 Saving Configuration Files 871

14.8.6 Option Search Path 872

14.8.7 Combining Values with Interpolation 875

14.9 logging—Report Status, Error, and Informational Messages 878

14.9.1 Logging in Applications vs. Libraries 878

14.9.2 Logging to a File 879

14.9.3 Rotating Log Files 879

xxiv Contents

14.9.4 Verbosity Levels 880

14.9.5 Naming Logger Instances 882

14.10 fileinput—Command-Line Filter Framework 883

14.10.1 Converting M3U Files to RSS 883

14.10.2 Progress Metadata 886

14.10.3 In-Place Filtering 887

14.11 atexit—Program Shutdown Callbacks 890

14.11.1 Examples 890

14.11.2 When Are atexit Functions Not Called? 891

14.11.3 Handling Exceptions 893

14.12 sched—Timed Event Scheduler 894

14.12.1 Running Events with a Delay 895

14.12.2 Overlapping Events 896

14.12.3 Event Priorities 897

14.12.4 Canceling Events 897

15 INTERNATIONALIZATION AND LOCALIZATION 899
15.1 gettext—Message Catalogs 899

15.1.1 Translation Workflow Overview 900

15.1.2 Creating Message Catalogs from Source Code 900

15.1.3 Finding Message Catalogs at Runtime 903

15.1.4 Plural Values 905

15.1.5 Application vs. Module Localization 907

15.1.6 Switching Translations 908

15.2 locale—Cultural Localization API 909

15.2.1 Probing the Current Locale 909

15.2.2 Currency 915

15.2.3 Formatting Numbers 916

15.2.4 Parsing Numbers 917

15.2.5 Dates and Times 917

16 DEVELOPER TOOLS 919
16.1 pydoc—Online Help for Modules 920

16.1.1 Plain-Text Help 920

16.1.2 HTML Help 920

16.1.3 Interactive Help 921

16.2 doctest—Testing through Documentation 921

16.2.1 Getting Started 922

16.2.2 Handling Unpredictable Output 924

Contents xxv

16.2.3 Tracebacks 928

16.2.4 Working around Whitespace 930

16.2.5 Test Locations 936

16.2.6 External Documentation 939

16.2.7 Running Tests 942

16.2.8 Test Context 945

16.3 unittest—Automated Testing Framework 949

16.3.1 Basic Test Structure 949

16.3.2 Running Tests 949

16.3.3 Test Outcomes 950

16.3.4 Asserting Truth 952

16.3.5 Testing Equality 953

16.3.6 Almost Equal? 954

16.3.7 Testing for Exceptions 955

16.3.8 Test Fixtures 956

16.3.9 Test Suites 957

16.4 traceback—Exceptions and Stack Traces 958

16.4.1 Supporting Functions 958

16.4.2 Working with Exceptions 959

16.4.3 Working with the Stack 963

16.5 cgitb—Detailed Traceback Reports 965

16.5.1 Standard Traceback Dumps 966

16.5.2 Enabling Detailed Tracebacks 966

16.5.3 Local Variables in Tracebacks 968

16.5.4 Exception Properties 971

16.5.5 HTML Output 972

16.5.6 Logging Tracebacks 972

16.6 pdb—Interactive Debugger 975

16.6.1 Starting the Debugger 976

16.6.2 Controlling the Debugger 979

16.6.3 Breakpoints 990

16.6.4 Changing Execution Flow 1002

16.6.5 Customizing the Debugger with Aliases 1009

16.6.6 Saving Configuration Settings 1011

16.7 trace—Follow Program Flow 1012

16.7.1 Example Program 1013

16.7.2 Tracing Execution 1013

16.7.3 Code Coverage 1014

16.7.4 Calling Relationships 1017

xxvi Contents

16.7.5 Programming Interface 1018

16.7.6 Saving Result Data 1020

16.7.7 Options 1022

16.8 profile and pstats—Performance Analysis 1022

16.8.1 Running the Profiler 1023

16.8.2 Running in a Context 1026

16.8.3 pstats: Saving and Working with Statistics 1027

16.8.4 Limiting Report Contents 1028

16.8.5 Caller / Callee Graphs 1029

16.9 timeit—Time the Execution of Small Bits of Python Code 1031

16.9.1 Module Contents 1031

16.9.2 Basic Example 1032

16.9.3 Storing Values in a Dictionary 1033

16.9.4 From the Command Line 1035

16.10 compileall—Byte-Compile Source Files 1037

16.10.1 Compiling One Directory 1037

16.10.2 Compiling sys.path 1038

16.10.3 From the Command Line 1039

16.11 pyclbr—Class Browser 1039

16.11.1 Scanning for Classes 1041

16.11.2 Scanning for Functions 1042

17 RUNTIME FEATURES 1045
17.1 site—Site-Wide Configuration 1046

17.1.1 Import Path 1046

17.1.2 User Directories 1047

17.1.3 Path Configuration Files 1049

17.1.4 Customizing Site Configuration 1051

17.1.5 Customizing User Configuration 1053

17.1.6 Disabling the site Module 1054

17.2 sys—System-Specific Configuration 1055

17.2.1 Interpreter Settings 1055

17.2.2 Runtime Environment 1062

17.2.3 Memory Management and Limits 1065

17.2.4 Exception Handling 1071

17.2.5 Low-Level Thread Support 1074

17.2.6 Modules and Imports 1080

17.2.7 Tracing a Program as It Runs 1101

Contents xxvii

17.3 os—Portable Access to Operating System Specific Features 1108

17.3.1 Process Owner 1108

17.3.2 Process Environment 1111

17.3.3 Process Working Directory 1112

17.3.4 Pipes 1112

17.3.5 File Descriptors 1116

17.3.6 File System Permissions 1116

17.3.7 Directories 1118

17.3.8 Symbolic Links 1119

17.3.9 Walking a Directory Tree 1120

17.3.10 Running External Commands 1121

17.3.11 Creating Processes with os.fork() 1122

17.3.12 Waiting for a Child 1125

17.3.13 Spawn 1127

17.3.14 File System Permissions 1127

17.4 platform—System Version Information 1129

17.4.1 Interpreter 1129

17.4.2 Platform 1130

17.4.3 Operating System and Hardware Info 1131

17.4.4 Executable Architecture 1133

17.5 resource—System Resource Management 1134

17.5.1 Current Usage 1134

17.5.2 Resource Limits 1135

17.6 gc—Garbage Collector 1138

17.6.1 Tracing References 1138

17.6.2 Forcing Garbage Collection 1141

17.6.3 Finding References to Objects that Cannot Be Collected 1146

17.6.4 Collection Thresholds and Generations 1148

17.6.5 Debugging 1151

17.7 sysconfig—Interpreter Compile-Time Configuration 1160

17.7.1 Configuration Variables 1160

17.7.2 Installation Paths 1163

17.7.3 Python Version and Platform 1167

18 LANGUAGE TOOLS 1169
18.1 warnings—Nonfatal Alerts 1170

18.1.1 Categories and Filtering 1170

18.1.2 Generating Warnings 1171

xxviii Contents

18.1.3 Filtering with Patterns 1172

18.1.4 Repeated Warnings 1174

18.1.5 Alternate Message Delivery Functions 1175

18.1.6 Formatting 1176

18.1.7 Stack Level in Warnings 1177

18.2 abc—Abstract Base Classes 1178

18.2.1 Why Use Abstract Base Classes? 1178

18.2.2 How Abstract Base Classes Work 1178

18.2.3 Registering a Concrete Class 1179

18.2.4 Implementation through Subclassing 1179

18.2.5 Concrete Methods in ABCs 1181

18.2.6 Abstract Properties 1182

18.3 dis—Python Bytecode Disassembler 1186

18.3.1 Basic Disassembly 1187

18.3.2 Disassembling Functions 1187

18.3.3 Classes 1189

18.3.4 Using Disassembly to Debug 1190

18.3.5 Performance Analysis of Loops 1192

18.3.6 Compiler Optimizations 1198

18.4 inspect—Inspect Live Objects 1200

18.4.1 Example Module 1200

18.4.2 Module Information 1201

18.4.3 Inspecting Modules 1203

18.4.4 Inspecting Classes 1204

18.4.5 Documentation Strings 1206

18.4.6 Retrieving Source 1207

18.4.7 Method and Function Arguments 1209

18.4.8 Class Hierarchies 1210

18.4.9 Method Resolution Order 1212

18.4.10 The Stack and Frames 1213

18.5 exceptions—Built-in Exception Classes 1216

18.5.1 Base Classes 1216

18.5.2 Raised Exceptions 1217

18.5.3 Warning Categories 1233

19 MODULES AND PACKAGES 1235
19.1 imp—Python’s Import Mechanism 1235

19.1.1 Example Package 1236

19.1.2 Module Types 1236

Contents xxix

19.1.3 Finding Modules 1237

19.1.4 Loading Modules 1238

19.2 zipimport—Load Python Code from ZIP Archives 1240

19.2.1 Example 1240

19.2.2 Finding a Module 1241

19.2.3 Accessing Code 1242

19.2.4 Source 1243

19.2.5 Packages 1244

19.2.6 Data 1244

19.3 pkgutil—Package Utilities 1247

19.3.1 Package Import Paths 1247

19.3.2 Development Versions of Packages 1249

19.3.3 Managing Paths with PKG Files 1251

19.3.4 Nested Packages 1253

19.3.5 Package Data 1255

Index of Python Modules 1259
Index 1261

This page intentionally left blank

TABLES

1.1 Regular Expression Escape Codes 24

1.2 Regular Expression Anchoring Codes 27

1.3 Regular Expression Flag Abbreviations 45

2.1 Byte Order Specifiers for struct 104

6.1 Codec Error Handling Modes 292

7.1 The “project” Table 353

7.2 The “task” Table 353

7.3 CSV Dialect Parameters 415

10.1 Multiprocessing Exit Codes 537

11.1 Event Flags for poll() 604

13.1 IMAP 4 Mailbox Status Conditions 744

14.1 Flags for Variable Argument Definitions in argparse 815

14.2 Logging Levels 881

16.1 Test Case Outcomes 950

17.1 CPython Command-Line Option Flags 1057

17.2 Event Hooks for settrace() 1101

17.3 Platform Information Functions 1132

17.4 Path Names Used in sysconfig 1164

18.1 Warning Filter Actions 1171

xxxi

This page intentionally left blank

FOREWORD

It’s Thanksgiving Day, 2010. For those outside of the United States, and for many of

those within it, it might just seem like a holiday where people eat a ton of food, watch

some football, and otherwise hang out.

For me, and many others, it’s a time to take a look back and think about the

things that have enriched our lives and give thanks for them. Sure, we should be doing

that every day, but having a single day that’s focused on just saying thanks sometimes

makes us think a bit more broadly and a bit more deeply.

I’m sitting here writing the foreward to this book, something I’m very thankful for

having the opportunity to do—but I’m not just thinking about the content of the book,

or the author, who is a fantastic community member. I’m thinking about the subject

matter itself—Python—and specifically, its standard library.

Every version of Python shipped today contains hundreds of modules spanning

many years, many developers, many subjects, and many tasks. It contains modules for

everything from sending and receiving email, to GUI development, to a built-in HTTP

server. By itself, the standard library is a massive work. Without the people who have

maintained it throughout the years, and the hundreds of people who have submitted

patches, documentation, and feedback, it would not be what it is today.

It’s an astounding accomplishment, and something that has been the critical com-

ponent in the rise of Python’s popularity as a language and ecosystem. Without the

standard library, without the “batteries included” motto of the core team and others,

Python would never have come as far. It has been downloaded by hundreds of thou-

sands of people and companies, and has been installed on millions of servers, desktops,

and other devices.

Without the standard library, Python would still be a fantastic language, built on

solid concepts of teaching, learning, and readability. It might have gotten far enough

xxxiii

xxxiv Foreword

on its own, based on those merits. But the standard library turns it from an interesting

experiment into a powerful and effective tool.

Every day, developers across the world build tools and entire applications based

on nothing but the core language and the standard library. You not only get the ability

to conceptualize what a car is (the language), but you also get enough parts and tools to

put together a basic car yourself. It might not be the perfect car, but it gets you from A

to B, and that’s incredibly empowering and rewarding. Time and time again, I speak to

people who look at me proudly and say, “Look what I built with nothing except what

came with Python!”

It is not, however, a fait accompli. The standard library has its warts. Given its

size and breadth, and its age, it’s no real surprise that some of the modules have varying

levels of quality, API clarity, and coverage. Some of the modules have suffered “feature

creep,” or have failed to keep up with modern advances in the areas they cover. Python

continues to evolve, grow, and improve over time through the help and hard work of

many, many unpaid volunteers.

Some argue, though, that due to the shortcomings and because the standard library

doesn’t necessarily comprise the “best of breed” solutions for the areas its modules

cover (“best of” is a continually moving and adapting target, after all), that it should be

killed or sent out to pasture, despite continual improvement. These people miss the fact

that not only is the standard library a critical piece of what makes Python continually

successful, but also, despite its warts, it is still an excellent resource.

But I’ve intentionally ignored one giant area: documentation. The standard li-

brary’s documentation is good and is constantly improving and evolving. Given the

size and breadth of the standard library, the documentation is amazing for what it is. It’s

awesome that we have hundreds of pages of documentation contributed by hundreds of

developers and users. The documentation is used every single day by hundreds of thou-

sands of people to create things—things as simple as one-off scripts and as complex as

the software that controls giant robotic arms.

The documentation is why we are here, though. All good documentation and code

starts with an idea—a kernel of a concept about what something is, or will be. Outward

from that kernel come the characters (the APIs) and the storyline (the modules). In

the case of code, sometimes it starts with a simple idea: “I want to parse a string and

look for a date.” But when you reach the end—when you’re looking at the few hun-

dred unit tests, functions, and other bits you’ve made—you sit back and realize you’ve

built something much, much more vast than originally intended. The same goes for

documentation, especially the documentation of code.

The examples are the most critical component in the documentation of code, in my

estimation. You can write a narrative about a piece of an API until it spans entire books,

and you can describe the loosely coupled interface with pretty words and thoughtful use

Foreword xxxv

cases. But it all falls flat if a user approaching it for the first time can’t glue those pretty

words, thoughtful use cases, and API signatures together into something that makes

sense and solves their problems.

Examples are the gateway by which people make the critical connections—those

logical jumps from an abstract concept into something concrete. It’s one thing to

“know” the ideas and API; it’s another to see it used. It helps jump the void when

you’re not only trying to learn something, but also trying to improve existing things.

Which brings us back to Python. Doug Hellmann, the author of this book, started

a blog in 2007 called the Python Module of the Week. In the blog, he walked through

various modules of the standard library, taking an example-first approach to showing

how each one worked and why. From the first day I read it, it had a place right next to

the core Python documentation. His writing has become an indispensable resource for

me and many other people in the Python community.

Doug’s writings fill a critical gap in the Python documentation I see today: the

need for examples. Showing how and why something works in a functional, simple

manner is no easy task. And, as we’ve seen, it’s a critical and valuable body of work

that helps people every single day. People send me emails with alarming regularity

saying things like, “Did you see this post by Doug? This is awesome!” or “Why isn’t

this in the core documentation? It helped me understand how things really work!”

When I heard Doug was going to take the time to further flesh out his existing

work, to turn it into a book I could keep on my desk to dog-ear and wear out from near

constant use, I was more than a little excited. Doug is a fantastic technical writer with

a great eye for detail. Having an entire book dedicated to real examples of how over a

hundred modules in the standard library work, written by him, blows my mind.

You see, I’m thankful for Python. I’m thankful for the standard library—warts and

all. I’m thankful for the massive, vibrant, yet sometimes dysfunctional community we

have. I’m thankful for the tireless work of the core development team, past, present

and future. I’m thankful for the resources, the time, and the effort so many community

members—of which Doug Hellmann is an exemplary example—have put into making

this community and ecosystem such an amazing place.

Lastly, I’m thankful for this book. Its author will continue to be well respected and

the book well used in the years to come.

— Jesse Noller
Python Core Developer
PSF Board Member
Principal Engineer, Nasuni Corporation

This page intentionally left blank

ACKNOWLEDGMENTS

This book would not have come into being without the contributions and support of

many people.

I was first introduced to Python around 1997 by Dick Wall, while we were working

together on GIS software at ERDAS. I remember being simultaneously happy that I had

found a new tool language that was so easy to use, and sad that the company did not let

us use it for “real work.” I have used Python extensively at all of my subsequent jobs,

and I have Dick to thank for the many happy hours I have spent working on software

since then.

The Python core development team has created a robust ecosystem of language,

tools, and libraries that continue to grow in popularity and find new application areas.

Without the amazing investment in time and resources they have given us, we would

all still be spending our time reinventing wheel after wheel.

As described in the Introduction, the material in this book started out as a series of

blog posts. Each of those posts has been reviewed and commented on by members of

the Python community, with corrections, suggestions, and questions that led to changes

in the version you find here. Thank you all for reading along week after week, and

contributing your time and attention.

The technical reviewers for the book—Matt Culbreth, Katie Cunningham, Jeff

McNeil, and Keyton Weissinger—spent many hours looking for issues with the ex-

ample code and accompanying explanations. The result is stronger than I could have

produced on my own. I also received advice from Jesse Noller on the multiprocessing

module and Brett Cannon on creating custom importers.

A special thanks goes to the editors and production staff at Pearson for all their

hard work and assistance in helping me realize my vision for this book.

xxxvii

xxxviii Acknowledgments

Finally, I want to thank my wife, Theresa Flynn, who has always given me excel-

lent writing advice and was a constant source of encouragement throughout the entire

process of creating this book. I doubt she knew what she was getting herself into when

she told me, “You know, at some point, you have to sit down and start writing it.” It’s

your turn.

ABOUT THE AUTHOR

Doug Hellmann is currently a senior developer with Racemi, Inc., and communica-

tions director of the Python Software Foundation. He has been programming in Python

since version 1.4 and has worked on a variety of UNIX and non-UNIX platforms for

projects in fields such as mapping, medical news publishing, banking, and data cen-

ter automation. After a year as a regular columnist for Python Magazine, he served as

editor-in-chief from 2008–2009. Since 2007, Doug has published the popular Python
Module of the Week series on his blog. He lives in Athens, Georgia.

xxxix

This page intentionally left blank

INTRODUCTION

Distributed with every copy of Python, the standard library contains hundreds of

modules that provide tools for interacting with the operating system, interpreter, and

Internet. All of them are tested and ready to be used to jump start the development of

your applications. This book presents selected examples demonstrating how to use the

most commonly used features of the modules that give Python its “batteries included”

slogan, taken from the popular Python Module of the Week (PyMOTW) blog series.

This Book’s Target Audience

The audience for this book is an intermediate Python programmer, so although all the

source code is presented with discussion, only a few cases include line-by-line expla-

nations. Every section focuses on the features of the modules, illustrated by the source

code and output from fully independent example programs. Each feature is presented as

concisely as possible, so the reader can focus on the module or function being demon-

strated without being distracted by the supporting code.

An experienced programmer familiar with other languages may be able to learn

Python from this book, but it is not intended to be an introduction to the language. Some

prior experience writing Python programs will be useful when studying the examples.

Several sections, such as the description of network programming with sockets or

hmac encryption, require domain-specific knowledge. The basic information needed to

explain the examples is included here, but the range of topics covered by the modules

in the standard library makes it impossible to cover every topic comprehensively in

a single volume. The discussion of each module is followed by a list of suggested

sources for more information and further reading. These include online resources, RFC

standards documents, and related books.

Although the current transition to Python 3 is well underway, Python 2 is still

likely to be the primary version of Python used in production environments for years

1

2 Introduction

to come because of the large amount of legacy Python 2 source code available and

the slow transition rate to Python 3. All the source code for the examples has been

updated from the original online versions and tested with Python 2.7, the final release

of the 2.x series. Many of the example programs can be readily adapted to work with

Python 3, but others cover modules that have been renamed or deprecated.

How This Book Is Organized

The modules are grouped into chapters to make it easy to find an individual module for

reference and browse by subject for more leisurely exploration. The book supplements

the comprehensive reference guide available on http://docs.python.org, providing fully

functional example programs to demonstrate the features described there.

Downloading the Example Code

The original versions of the articles, errata for the book, and the sample code are avail-

able on the author’s web site (http://www.doughellmann.com/books/byexample).

http://www.doughellmann.com/books/byexample
http://docs.python.org

Chapter 2

DATA STRUCTURES

Python includes several standard programming data structures, such as list, tuple,

dict, and set, as part of its built-in types. Many applications do not require other

structures, but when they do, the standard library provides powerful and well-tested

versions that are ready to use.

The collections module includes implementations of several data structures

that extend those found in other modules. For example, Deque is a double-ended queue

that allows the addition or removal of items from either end. The defaultdict is a

dictionary that responds with a default value if a key is missing, while OrderedDict

remembers the sequence in which items are added to it. And namedtuple extends the

normal tuple to give each member item an attribute name in addition to a numeric

index.

For large amounts of data, an array may make more efficient use of memory than

a list. Since the array is limited to a single data type, it can use a more compact

memory representation than a general purpose list. At the same time, arrays can

be manipulated using many of the same methods as a list, so it may be possible to

replace lists with arrays in an application without a lot of other changes.

Sorting items in a sequence is a fundamental aspect of data manipulation. Python’s

list includes a sort() method, but sometimes it is more efficient to maintain a list

in sorted order without resorting it each time its contents are changed. The functions in

heapq modify the contents of a list while preserving the sort order of the list with low

overhead.

Another option for building sorted lists or arrays is bisect. It uses a binary search

to find the insertion point for new items and is an alternative to repeatedly sorting a list

that changes frequently.

69

70 Data Structures

Although the built-in list can simulate a queue using the insert() and pop()

methods, it is not thread-safe. For true ordered communication between threads, use the

Queue module. multiprocessing includes a version of a Queue that works between

processes, making it easier to convert a multithreaded program to use processes instead.

struct is useful for decoding data from another application, perhaps coming from

a binary file or stream of data, into Python’s native types for easier manipulation.

This chapter covers two modules related to memory management. For highly

interconnected data structures, such as graphs and trees, use weakref to maintain ref-

erences while still allowing the garbage collector to clean up objects after they are no

longer needed. The functions in copy are used for duplicating data structures and their

contents, including recursive copies with deepcopy().

Debugging data structures can be time consuming, especially when wading

through printed output of large sequences or dictionaries. Use pprint to create easy-

to-read representations that can be printed to the console or written to a log file for

easier debugging.

And, finally, if the available types do not meet the requirements, subclass one of

the native types and customize it, or build a new container type using one of the abstract

base classes defined in collections as a starting point.

2.1 collections—Container Data Types

Purpose Container data types.

Python Version 2.4 and later

The collections module includes container data types beyond the built-in types

list, dict, and tuple.

2.1.1 Counter

A Counter is a container that tracks how many times equivalent values are added. It

can be used to implement the same algorithms for which other languages commonly

use bag or multiset data structures.

Initializing

Counter supports three forms of initialization. Its constructor can be called with a

sequence of items, a dictionary containing keys and counts, or using keyword arguments

mapping string names to counts.

2.1. collections—Container Data Types 71

import collections

print collections.Counter([’a’, ’b’, ’c’, ’a’, ’b’, ’b’])

print collections.Counter({’a’:2, ’b’:3, ’c’:1})

print collections.Counter(a=2, b=3, c=1)

The results of all three forms of initialization are the same.

$ python collections_counter_init.py

Counter({’b’: 3, ’a’: 2, ’c’: 1})

Counter({’b’: 3, ’a’: 2, ’c’: 1})

Counter({’b’: 3, ’a’: 2, ’c’: 1})

An empty Counter can be constructed with no arguments and populated via the

update() method.

import collections

c = collections.Counter()

print ’Initial :’, c

c.update(’abcdaab’)

print ’Sequence:’, c

c.update({’a’:1, ’d’:5})

print ’Dict :’, c

The count values are increased based on the new data, rather than replaced. In this

example, the count for a goes from 3 to 4.

$ python collections_counter_update.py

Initial : Counter()

Sequence: Counter({’a’: 3, ’b’: 2, ’c’: 1, ’d’: 1})

Dict : Counter({’d’: 6, ’a’: 4, ’b’: 2, ’c’: 1})

Accessing Counts

Once a Counter is populated, its values can be retrieved using the dictionary API.

72 Data Structures

import collections

c = collections.Counter(’abcdaab’)

for letter in ’abcde’:

print ’%s : %d’ % (letter, c[letter])

Counter does not raise KeyError for unknown items. If a value has not been

seen in the input (as with e in this example), its count is 0.

$ python collections_counter_get_values.py

a : 3

b : 2

c : 1

d : 1

e : 0

The elements() method returns an iterator that produces all items known to the

Counter.

import collections

c = collections.Counter(’extremely’)

c[’z’] = 0

print c

print list(c.elements())

The order of elements is not guaranteed, and items with counts less than or equal

to zero are not included.

$ python collections_counter_elements.py

Counter({’e’: 3, ’m’: 1, ’l’: 1, ’r’: 1, ’t’: 1, ’y’: 1, ’x’: 1,

’z’: 0})

[’e’, ’e’, ’e’, ’m’, ’l’, ’r’, ’t’, ’y’, ’x’]

Use most_common() to produce a sequence of the n most frequently encountered

input values and their respective counts.

2.1. collections—Container Data Types 73

import collections

c = collections.Counter()

with open(’/usr/share/dict/words’, ’rt’) as f:

for line in f:

c.update(line.rstrip().lower())

print ’Most common:’

for letter, count in c.most_common(3):

print ’%s: %7d’ % (letter, count)

This example counts the letters appearing in all words in the system dictionary

to produce a frequency distribution, and then prints the three most common letters.

Leaving out the argument to most_common() produces a list of all the items, in order

of frequency.

$ python collections_counter_most_common.py

Most common:

e: 234803

i: 200613

a: 198938

Arithmetic

Counter instances support arithmetic and set operations for aggregating results.

import collections

c1 = collections.Counter([’a’, ’b’, ’c’, ’a’, ’b’, ’b’])

c2 = collections.Counter(’alphabet’)

print ’C1:’, c1

print ’C2:’, c2

print ’\nCombined counts:’

print c1 + c2

print ’\nSubtraction:’
print c1 - c2

74 Data Structures

print ’\nIntersection (taking positive minimums):’

print c1 & c2

print ’\nUnion (taking maximums):’

print c1 | c2

Each time a new Counter is produced through an operation, any items with zero

or negative counts are discarded. The count for a is the same in c1 and c2, so subtrac-

tion leaves it at zero.

$ python collections_counter_arithmetic.py

C1: Counter({’b’: 3, ’a’: 2, ’c’: 1})

C2: Counter({’a’: 2, ’b’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1, ’t’: 1})

Combined counts:

Counter({’a’: 4, ’b’: 4, ’c’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1,

’t’: 1})

Subtraction:

Counter({’b’: 2, ’c’: 1})

Intersection (taking positive minimums):

Counter({’a’: 2, ’b’: 1})

Union (taking maximums):

Counter({’b’: 3, ’a’: 2, ’c’: 1, ’e’: 1, ’h’: 1, ’l’: 1, ’p’: 1,

’t’: 1})

2.1.2 defaultdict

The standard dictionary includes the method setdefault() for retrieving a value and

establishing a default if the value does not exist. By contrast, defaultdict lets the

caller specify the default up front when the container is initialized.

import collections

def default_factory():

return ’default value’

d = collections.defaultdict(default_factory, foo=’bar’)

print ’d:’, d

2.1. collections—Container Data Types 75

print ’foo =>’, d[’foo’]

print ’bar =>’, d[’bar’]

This method works well, as long as it is appropriate for all keys to have the same

default. It can be especially useful if the default is a type used for aggregating or accu-

mulating values, such as a list, set, or even int. The standard library documentation

includes several examples of using defaultdict this way.

$ python collections_defaultdict.py

d: defaultdict(<function default_factory

at 0x100d9ba28>, {’foo’: ’bar’})

foo => bar

bar => default value

See Also:
defaultdict examples (http://docs.python.org/lib/defaultdict-examples.html)

Examples of using defaultdict from the standard library documentation.

Evolution of Default Dictionaries in Python
(http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_
python/) Discussion from James Tauber of how defaultdict relates to other

means of initializing dictionaries.

2.1.3 Deque

A double-ended queue, or deque, supports adding and removing elements from either

end. The more commonly used structures, stacks, and queues are degenerate forms of

deques where the inputs and outputs are restricted to a single end.

import collections

d = collections.deque(’abcdefg’)

print ’Deque:’, d

print ’Length:’, len(d)

print ’Left end:’, d[0]

print ’Right end:’, d[-1]

d.remove(’c’)

print ’remove(c):’, d

http://docs.python.org/lib/defaultdict-examples.html
http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_python/
http://jtauber.com/blog/2008/02/27/evolution_of_default_dictionaries_in_python/

76 Data Structures

Since deques are a type of sequence container, they support some of the same

operations as list, such as examining the contents with __getitem__(), determining

length, and removing elements from the middle by matching identity.

$ python collections_deque.py

Deque: deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’])

Length: 7

Left end: a

Right end: g

remove(c): deque([’a’, ’b’, ’d’, ’e’, ’f’, ’g’])

Populating

A deque can be populated from either end, termed “left” and “right” in the Python

implementation.

import collections

Add to the right

d1 = collections.deque()

d1.extend(’abcdefg’)

print ’extend :’, d1

d1.append(’h’)

print ’append :’, d1

Add to the left

d2 = collections.deque()

d2.extendleft(xrange(6))

print ’extendleft:’, d2

d2.appendleft(6)

print ’appendleft:’, d2

The extendleft() function iterates over its input and performs the equivalent

of an appendleft() for each item. The end result is that the deque contains the input

sequence in reverse order.

$ python collections_deque_populating.py

extend : deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’])

append : deque([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’])

2.1. collections—Container Data Types 77

extendleft: deque([5, 4, 3, 2, 1, 0])

appendleft: deque([6, 5, 4, 3, 2, 1, 0])

Consuming

Similarly, the elements of the deque can be consumed from both ends or either end,

depending on the algorithm being applied.

import collections

print ’From the right:’

d = collections.deque(’abcdefg’)

while True:

try:
print d.pop(),

except IndexError:
break

print

print ’\nFrom the left:’

d = collections.deque(xrange(6))

while True:

try:
print d.popleft(),

except IndexError:
break

print

Use pop() to remove an item from the right end of the deque and popleft() to

take from the left end.

$ python collections_deque_consuming.py

From the right:

g f e d c b a

From the left:

0 1 2 3 4 5

Since deques are thread-safe, the contents can even be consumed from both ends

at the same time from separate threads.

78 Data Structures

import collections
import threading
import time

candle = collections.deque(xrange(5))

def burn(direction, nextSource):

while True:

try:
next = nextSource()

except IndexError:
break

else:
print ’%8s: %s’ % (direction, next)

time.sleep(0.1)

print ’%8s done’ % direction

return

left = threading.Thread(target=burn, args=(’Left’, candle.popleft))

right = threading.Thread(target=burn, args=(’Right’, candle.pop))

left.start()

right.start()

left.join()

right.join()

The threads in this example alternate between each end, removing items until the

deque is empty.

$ python collections_deque_both_ends.py

Left: 0

Right: 4

Right: 3

Left: 1

Right: 2

Left done

Right done

Rotating

Another useful capability of the deque is to rotate it in either direction, to skip over

some items.

2.1. collections—Container Data Types 79

import collections

d = collections.deque(xrange(10))

print ’Normal :’, d

d = collections.deque(xrange(10))

d.rotate(2)

print ’Right rotation:’, d

d = collections.deque(xrange(10))

d.rotate(-2)

print ’Left rotation :’, d

Rotating the deque to the right (using a positive rotation) takes items from the

right end and moves them to the left end. Rotating to the left (with a negative value)

takes items from the left end and moves them to the right end. It may help to visualize

the items in the deque as being engraved along the edge of a dial.

$ python collections_deque_rotate.py

Normal : deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Right rotation: deque([8, 9, 0, 1, 2, 3, 4, 5, 6, 7])

Left rotation : deque([2, 3, 4, 5, 6, 7, 8, 9, 0, 1])

See Also:
Deque (http://en.wikipedia.org/wiki/Deque) Wikipedia article that provides a dis-

cussion of the deque data structure.

Deque Recipes (http://docs.python.org/lib/deque-recipes.html) Examples of using

deques in algorithms from the standard library documentation.

2.1.4 namedtuple

The standard tuple uses numerical indexes to access its members.

bob = (’Bob’, 30, ’male’)

print ’Representation:’, bob

jane = (’Jane’, 29, ’female’)

print ’\nField by index:’, jane[0]

print ’\nFields by index:’

for p in [bob, jane]:

print ’%s is a %d year old %s’ % p

http://en.wikipedia.org/wiki/Deque
http://docs.python.org/lib/deque-recipes.html

80 Data Structures

This makes tuples convenient containers for simple uses.

$ python collections_tuple.py

Representation: (’Bob’, 30, ’male’)

Field by index: Jane

Fields by index:

Bob is a 30 year old male

Jane is a 29 year old female

On the other hand, remembering which index should be used for each value can

lead to errors, especially if the tuple has a lot of fields and is constructed far from

where it is used. A namedtuple assigns names, as well as the numerical index, to each

member.

Defining

namedtuple instances are just as memory efficient as regular tuples because they do

not have per-instance dictionaries. Each kind of namedtuple is represented by its own

class, created by using the namedtuple() factory function. The arguments are the

name of the new class and a string containing the names of the elements.

import collections

Person = collections.namedtuple(’Person’, ’name age gender’)

print ’Type of Person:’, type(Person)

bob = Person(name=’Bob’, age=30, gender=’male’)

print ’\nRepresentation:’, bob

jane = Person(name=’Jane’, age=29, gender=’female’)

print ’\nField by name:’, jane.name

print ’\nFields by index:’

for p in [bob, jane]:

print ’%s is a %d year old %s’ % p

As the example illustrates, it is possible to access the fields of the namedtuple

by name using dotted notation (obj.attr) as well as using the positional indexes of

standard tuples.

2.1. collections—Container Data Types 81

$ python collections_namedtuple_person.py

Type of Person: <type ’type’>

Representation: Person(name=’Bob’, age=30, gender=’male’)

Field by name: Jane

Fields by index:

Bob is a 30 year old male

Jane is a 29 year old female

Invalid Field Names

Field names are invalid if they are repeated or conflict with Python keywords.

import collections

try:
collections.namedtuple(’Person’, ’name class age gender’)

except ValueError, err:

print err

try:
collections.namedtuple(’Person’, ’name age gender age’)

except ValueError, err:

print err

As the field names are parsed, invalid values cause ValueError exceptions.

$ python collections_namedtuple_bad_fields.py

Type names and field names cannot be a keyword: ’class’

Encountered duplicate field name: ’age’

If a namedtuple is being created based on values outside of the control of the pro-

gram (such as to represent the rows returned by a database query, where the schema is

not known in advance), set the rename option to True so the invalid fields are renamed.

import collections

with_class = collections.namedtuple(

’Person’, ’name class age gender’,

rename=True)

82 Data Structures

print with_class._fields

two_ages = collections.namedtuple(

’Person’, ’name age gender age’,

rename=True)

print two_ages._fields

The new names for renamed fields depend on their index in the tuple, so the field

with name class becomes _1 and the duplicate age field is changed to _3.

$ python collections_namedtuple_rename.py

(’name’, ’_1’, ’age’, ’gender’)

(’name’, ’age’, ’gender’, ’_3’)

2.1.5 OrderedDict

An OrderedDict is a dictionary subclass that remembers the order in which its con-

tents are added.

import collections

print ’Regular dictionary:’

d = {}

d[’a’] = ’A’

d[’b’] = ’B’

d[’c’] = ’C’

for k, v in d.items():

print k, v

print ’\nOrderedDict:’
d = collections.OrderedDict()

d[’a’] = ’A’

d[’b’] = ’B’

d[’c’] = ’C’

for k, v in d.items():

print k, v

A regular dict does not track the insertion order, and iterating over it produces the

values in order based on how the keys are stored in the hash table. In an OrderedDict,

2.1. collections—Container Data Types 83

by contrast, the order in which the items are inserted is remembered and used when

creating an iterator.

$ python collections_ordereddict_iter.py

Regular dictionary:

a A

c C

b B

OrderedDict:

a A

b B

c C

Equality

A regular dict looks at its contents when testing for equality. An OrderedDict also

considers the order the items were added.

import collections

print ’dict :’,

d1 = {}

d1[’a’] = ’A’

d1[’b’] = ’B’

d1[’c’] = ’C’

d2 = {}

d2[’c’] = ’C’

d2[’b’] = ’B’

d2[’a’] = ’A’

print d1 == d2

print ’OrderedDict:’,

d1 = collections.OrderedDict()

d1[’a’] = ’A’

d1[’b’] = ’B’

d1[’c’] = ’C’

84 Data Structures

d2 = collections.OrderedDict()

d2[’c’] = ’C’

d2[’b’] = ’B’

d2[’a’] = ’A’

print d1 == d2

In this case, since the two ordered dictionaries are created from values in a different

order, they are considered to be different.

$ python collections_ordereddict_equality.py

dict : True

OrderedDict: False

See Also:
collections (http://docs.python.org/library/collections.html) The standard library

documentation for this module.

2.2 array—Sequence of Fixed-Type Data

Purpose Manage sequences of fixed-type numerical data efficiently.

Python Version 1.4 and later

The array module defines a sequence data structure that looks very much like a list,

except that all members have to be of the same primitive type. Refer to the standard

library documentation for array for a complete list of the types supported.

2.2.1 Initialization

An array is instantiated with an argument describing the type of data to be allowed,

and possibly an initial sequence of data to store in the array.

import array
import binascii

s = ’This is the array.’

a = array.array(’c’, s)

print ’As string:’, s

print ’As array :’, a

print ’As hex :’, binascii.hexlify(a)

http://docs.python.org/library/collections.html

2.2. array—Sequence of Fixed-Type Data 85

In this example, the array is configured to hold a sequence of bytes and is initial-

ized with a simple string.

$ python array_string.py

As string: This is the array.

As array : array(’c’, ’This is the array.’)

As hex : 54686973206973207468652061727261792e

2.2.2 Manipulating Arrays

An array can be extended and otherwise manipulated in the same ways as other Python

sequences.

import array
import pprint

a = array.array(’i’, xrange(3))

print ’Initial :’, a

a.extend(xrange(3))

print ’Extended:’, a

print ’Slice :’, a[2:5]

print ’Iterator:’

print list(enumerate(a))

The supported operations include slicing, iterating, and adding elements to the end.

$ python array_sequence.py

Initial : array(’i’, [0, 1, 2])

Extended: array(’i’, [0, 1, 2, 0, 1, 2])

Slice : array(’i’, [2, 0, 1])

Iterator:

[(0, 0), (1, 1), (2, 2), (3, 0), (4, 1), (5, 2)]

2.2.3 Arrays and Files

The contents of an array can be written to and read from files using built-in methods

coded efficiently for that purpose.

86 Data Structures

import array
import binascii
import tempfile

a = array.array(’i’, xrange(5))

print ’A1:’, a

Write the array of numbers to a temporary file

output = tempfile.NamedTemporaryFile()

a.tofile(output.file) # must pass an *actual* file

output.flush()

Read the raw data

with open(output.name, ’rb’) as input:

raw_data = input.read()

print ’Raw Contents:’, binascii.hexlify(raw_data)

Read the data into an array

input.seek(0)

a2 = array.array(’i’)

a2.fromfile(input, len(a))

print ’A2:’, a2

This example illustrates reading the data raw, directly from the binary file, versus

reading it into a new array and converting the bytes to the appropriate types.

$ python array_file.py

A1: array(’i’, [0, 1, 2, 3, 4])

Raw Contents: 0000000001000000020000000300000004000000

A2: array(’i’, [0, 1, 2, 3, 4])

2.2.4 Alternate Byte Ordering

If the data in the array is not in the native byte order, or needs to be swapped before

being sent to a system with a different byte order (or over the network), it is possible to

convert the entire array without iterating over the elements from Python.

import array
import binascii

def to_hex(a):

chars_per_item = a.itemsize * 2 # 2 hex digits

2.3. heapq—Heap Sort Algorithm 87

hex_version = binascii.hexlify(a)

num_chunks = len(hex_version) / chars_per_item

for i in xrange(num_chunks):

start = i*chars_per_item

end = start + chars_per_item

yield hex_version[start:end]

a1 = array.array(’i’, xrange(5))

a2 = array.array(’i’, xrange(5))

a2.byteswap()

fmt = ’%10s %10s %10s %10s’
print fmt % (’A1 hex’, ’A1’, ’A2 hex’, ’A2’)

print fmt % ((’-’ * 10,) * 4)

for values in zip(to_hex(a1), a1, to_hex(a2), a2):

print fmt % values

The byteswap() method switches the byte order of the items in the array from

within C, so it is much more efficient than looping over the data in Python.

$ python array_byteswap.py

A1 hex A1 A2 hex A2

---------- ---------- ---------- ----------

00000000 0 00000000 0

01000000 1 00000001 16777216

02000000 2 00000002 33554432

03000000 3 00000003 50331648

04000000 4 00000004 67108864

See Also:
array (http://docs.python.org/library/array.html) The standard library documenta-

tion for this module.

struct (page 102) The struct module.

Numerical Python (www.scipy.org) NumPy is a Python library for working with large

data sets efficiently.

2.3 heapq—Heap Sort Algorithm

Purpose The heapq module implements a min-heap sort algorithm suit-

able for use with Python’s lists.

Python Version New in 2.3 with additions in 2.5

http://docs.python.org/library/array.html
www.scipy.org

88 Data Structures

A heap is a tree-like data structure where the child nodes have a sort-order relationship

with the parents. Binary heaps can be represented using a list or an array organized

so that the children of element N are at positions 2*N+1 and 2*N+2 (for zero-based

indexes). This layout makes it possible to rearrange heaps in place, so it is not necessary

to reallocate as much memory when adding or removing items.

A max-heap ensures that the parent is larger than or equal to both of its children.

A min-heap requires that the parent be less than or equal to its children. Python’s heapq

module implements a min-heap.

2.3.1 Example Data

The examples in this section use the data in heapq_heapdata.py.

This data was generated with the random module.

data = [19, 9, 4, 10, 11]

The heap output is printed using heapq_showtree.py.

import math
from cStringIO import StringIO

def show_tree(tree, total_width=36, fill=’ ’):

"""Pretty-print a tree."""

output = StringIO()

last_row = -1

for i, n in enumerate(tree):

if i:

row = int(math.floor(math.log(i+1, 2)))

else:
row = 0

if row != last_row:

output.write(’\n’)
columns = 2**row

col_width = int(math.floor((total_width * 1.0) / columns))

output.write(str(n).center(col_width, fill))

last_row = row

print output.getvalue()

print ’-’ * total_width

print
return

2.3. heapq—Heap Sort Algorithm 89

2.3.2 Creating a Heap

There are two basic ways to create a heap: heappush() and heapify().

import heapq
from heapq_showtree import show_tree

from heapq_heapdata import data

heap = []

print ’random :’, data

print

for n in data:

print ’add %3d:’ % n

heapq.heappush(heap, n)

show_tree(heap)

Using heappush(), the heap sort order of the elements is maintained as new items

are added from a data source.

$ python heapq_heappush.py

random : [19, 9, 4, 10, 11]

add 19:

19

add 9:

9

19

add 4:

4

19 9

add 10:

4

90 Data Structures

10 9

19

add 11:

4

10 9

19 11

If the data is already in memory, it is more efficient to use heapify() to rearrange

the items of the list in place.

import heapq
from heapq_showtree import show_tree

from heapq_heapdata import data

print ’random :’, data

heapq.heapify(data)

print ’heapified :’

show_tree(data)

The result of building a list in heap order one item at a time is the same as building

it unordered and then calling heapify().

$ python heapq_heapify.py

random : [19, 9, 4, 10, 11]

heapified :

4

9 19

10 11

2.3.3 Accessing Contents of a Heap

Once the heap is organized correctly, use heappop() to remove the element with the

lowest value.

import heapq
from heapq_showtree import show_tree

from heapq_heapdata import data

2.3. heapq—Heap Sort Algorithm 91

print ’random :’, data

heapq.heapify(data)

print ’heapified :’

show_tree(data)

print

for i in xrange(2):

smallest = heapq.heappop(data)

print ’pop %3d:’ % smallest

show_tree(data)

In this example, adapted from the stdlib documentation, heapify() and

heappop() are used to sort a list of numbers.

$ python heapq_heappop.py

random : [19, 9, 4, 10, 11]

heapified :

4

9 19

10 11

pop 4:

9

10 19

11

pop 9:

10

11 19

To remove existing elements and replace them with new values in a single opera-

tion, use heapreplace().

import heapq
from heapq_showtree import show_tree

from heapq_heapdata import data

92 Data Structures

heapq.heapify(data)

print ’start:’

show_tree(data)

for n in [0, 13]:

smallest = heapq.heapreplace(data, n)

print ’replace %2d with %2d:’ % (smallest, n)

show_tree(data)

Replacing elements in place makes it possible to maintain a fixed-size heap, such

as a queue of jobs ordered by priority.

$ python heapq_heapreplace.py

start:

4

9 19

10 11

replace 4 with 0:

0

9 19

10 11

replace 0 with 13:

9

10 19

13 11

2.3.4 Data Extremes from a Heap

heapq also includes two functions to examine an iterable to find a range of the largest

or smallest values it contains.

import heapq
from heapq_heapdata import data

2.4. bisect—Maintain Lists in Sorted Order 93

print ’all :’, data

print ’3 largest :’, heapq.nlargest(3, data)

print ’from sort :’, list(reversed(sorted(data)[-3:]))

print ’3 smallest:’, heapq.nsmallest(3, data)

print ’from sort :’, sorted(data)[:3]

Using nlargest() and nsmallest() is only efficient for relatively small values

of n > 1, but can still come in handy in a few cases.

$ python heapq_extremes.py

all : [19, 9, 4, 10, 11]

3 largest : [19, 11, 10]

from sort : [19, 11, 10]

3 smallest: [4, 9, 10]

from sort : [4, 9, 10]

See Also:
heapq (http://docs.python.org/library/heapq.html) The standard library documen-

tation for this module.

Heap (data structure) (http://en.wikipedia.org/wiki/Heap_(data_structure))
Wikipedia article that provides a general description of heap data structures.

Priority Queue (page 98) A priority queue implementation from Queue (page 96) in

the standard library.

2.4 bisect—Maintain Lists in Sorted Order

Purpose Maintains a list in sorted order without having to call sort each

time an item is added to the list.

Python Version 1.4 and later

The bisect module implements an algorithm for inserting elements into a list while

maintaining the list in sorted order. For some cases, this is more efficient than repeatedly

sorting a list or explicitly sorting a large list after it is constructed.

2.4.1 Inserting in Sorted Order

Here is a simple example using insort() to insert items into a list in sorted order.

http://docs.python.org/library/heapq.html
http://en.wikipedia.org/wiki/Heap_(data_structure)

94 Data Structures

import bisect
import random

Use a constant seed to ensure that

the same pseudo-random numbers

are used each time the loop is run.

random.seed(1)

print ’New Pos Contents’

print ’--- --- --------’

Generate random numbers and

insert them into a list in sorted

order.

l = []

for i in range(1, 15):

r = random.randint(1, 100)

position = bisect.bisect(l, r)

bisect.insort(l, r)

print ’%3d %3d’ % (r, position), l

The first column of the output shows the new random number. The second column

shows the position where the number will be inserted into the list. The remainder of

each line is the current sorted list.

$ python bisect_example.py

New Pos Contents

--- --- --------

14 0 [14]

85 1 [14, 85]

77 1 [14, 77, 85]

26 1 [14, 26, 77, 85]

50 2 [14, 26, 50, 77, 85]

45 2 [14, 26, 45, 50, 77, 85]

66 4 [14, 26, 45, 50, 66, 77, 85]

79 6 [14, 26, 45, 50, 66, 77, 79, 85]

10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]

3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]

84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]

44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]

77 9 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

2.4. bisect—Maintain Lists in Sorted Order 95

This is a simple example, and for the amount of data being manipulated, it might

be faster to simply build the list and then sort it once. But for long lists, significant time

and memory savings can be achieved using an insertion sort algorithm such as this one.

2.4.2 Handling Duplicates

The result set shown previously includes a repeated value, 77. The bisectmodule pro-

vides two ways to handle repeats. New values can be inserted to the left of existing val-

ues or to the right. The insort() function is actually an alias for insort_right(),

which inserts after the existing value. The corresponding function insort_left()

inserts before the existing value.

import bisect
import random

Reset the seed

random.seed(1)

print ’New Pos Contents’

print ’--- --- --------’

Use bisect_left and insort_left.

l = []

for i in range(1, 15):

r = random.randint(1, 100)

position = bisect.bisect_left(l, r)

bisect.insort_left(l, r)

print ’%3d %3d’ % (r, position), l

When the same data is manipulated using bisect_left() and insort_left(),

the results are the same sorted list, but the insert positions are different for the duplicate

values.

$ python bisect_example2.py

New Pos Contents

--- --- --------

14 0 [14]

85 1 [14, 85]

77 1 [14, 77, 85]

26 1 [14, 26, 77, 85]

50 2 [14, 26, 50, 77, 85]

45 2 [14, 26, 45, 50, 77, 85]

96 Data Structures

66 4 [14, 26, 45, 50, 66, 77, 85]

79 6 [14, 26, 45, 50, 66, 77, 79, 85]

10 0 [10, 14, 26, 45, 50, 66, 77, 79, 85]

3 0 [3, 10, 14, 26, 45, 50, 66, 77, 79, 85]

84 9 [3, 10, 14, 26, 45, 50, 66, 77, 79, 84, 85]

44 4 [3, 10, 14, 26, 44, 45, 50, 66, 77, 79, 84, 85]

77 8 [3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

1 0 [1, 3, 10, 14, 26, 44, 45, 50, 66, 77, 77, 79, 84, 85]

In addition to the Python implementation, a faster C implementation is available.

If the C version is present, that implementation automatically overrides the pure Python

implementation when bisect is imported.

See Also:
bisect (http://docs.python.org/library/bisect.html) The standard library documenta-

tion for this module.

Insertion Sort (http://en.wikipedia.org/wiki/Insertion_sort) Wikipedia article that

provides a description of the insertion sort algorithm.

2.5 Queue—Thread-Safe FIFO Implementation

Purpose Provides a thread-safe FIFO implementation.

Python Version At least 1.4

The Queue module provides a first-in, first-out (FIFO) data structure suitable for mul-

tithreaded programming. It can be used to pass messages or other data safely between

producer and consumer threads. Locking is handled for the caller, so many threads can

work with the same Queue instance safely. The size of a Queue (the number of ele-

ments it contains) may be restricted to throttle memory usage or processing.

Note: This discussion assumes you already understand the general nature of a

queue. If you do not, you may want to read some of the references before con-

tinuing.

2.5.1 Basic FIFO Queue

The Queue class implements a basic first-in, first-out container. Elements are added to

one end of the sequence using put(), and removed from the other end using get().

http://docs.python.org/library/bisect.html
http://en.wikipedia.org/wiki/Insertion_sort

2.5. Queue—Thread-Safe FIFO Implementation 97

import Queue

q = Queue.Queue()

for i in range(5):

q.put(i)

while not q.empty():

print q.get(),

print

This example uses a single thread to illustrate that elements are removed from the

queue in the same order they are inserted.

$ python Queue_fifo.py

0 1 2 3 4

2.5.2 LIFO Queue

In contrast to the standard FIFO implementation of Queue, the LifoQueue uses last-in,

first-out (LIFO) ordering (normally associated with a stack data structure).

import Queue

q = Queue.LifoQueue()

for i in range(5):

q.put(i)

while not q.empty():

print q.get(),

print

The item most recently put into the queue is removed by get.

$ python Queue_lifo.py

4 3 2 1 0

98 Data Structures

2.5.3 Priority Queue

Sometimes, the processing order of the items in a queue needs to be based on charac-

teristics of those items, rather than just on the order in which they are created or added

to the queue. For example, print jobs from the payroll department may take precedence

over a code listing printed by a developer. PriorityQueue uses the sort order of the

contents of the queue to decide which to retrieve.

import Queue
import threading

class Job(object):
def __init__(self, priority, description):

self.priority = priority

self.description = description

print ’New job:’, description

return
def __cmp__(self, other):

return cmp(self.priority, other.priority)

q = Queue.PriorityQueue()

q.put(Job(3, ’Mid-level job’))

q.put(Job(10, ’Low-level job’))

q.put(Job(1, ’Important job’))

def process_job(q):

while True:

next_job = q.get()

print ’Processing job:’, next_job.description

q.task_done()

workers = [threading.Thread(target=process_job, args=(q,)),

threading.Thread(target=process_job, args=(q,)),

]

for w in workers:

w.setDaemon(True)

w.start()

q.join()

This example has multiple threads consuming the jobs, which are to be processed

based on the priority of items in the queue at the time get() was called. The order

2.5. Queue—Thread-Safe FIFO Implementation 99

of processing for items added to the queue while the consumer threads are running

depends on thread context switching.

$ python Queue_priority.py

New job: Mid-level job

New job: Low-level job

New job: Important job

Processing job: Important job

Processing job: Mid-level job

Processing job: Low-level job

2.5.4 Building a Threaded Podcast Client

The source code for the podcasting client in this section demonstrates how to use the

Queue class with multiple threads. The program reads one or more RSS feeds, queues

up the enclosures for the five most recent episodes to be downloaded, and processes

several downloads in parallel using threads. It does not have enough error handling for

production use, but the skeleton implementation provides an example of how to use the

Queue module.

First, some operating parameters are established. Normally, these would come

from user inputs (preferences, a database, etc.). The example uses hard-coded values

for the number of threads and a list of URLs to fetch.

from Queue import Queue

from threading import Thread

import time
import urllib
import urlparse

import feedparser

Set up some global variables

num_fetch_threads = 2

enclosure_queue = Queue()

A real app wouldn’t use hard-coded data...

feed_urls = [’http://advocacy.python.org/podcasts/littlebit.rss’,

]

The function downloadEnclosures() will run in the worker thread and process

the downloads using urllib.

100 Data Structures

def downloadEnclosures(i, q):

"""This is the worker thread function.

It processes items in the queue one after

another. These daemon threads go into an

infinite loop, and only exit when

the main thread ends.

"""

while True:

print ’%s: Looking for the next enclosure’ % i

url = q.get()

parsed_url = urlparse.urlparse(url)

print ’%s: Downloading:’ % i, parsed_url.path

response = urllib.urlopen(url)

data = response.read()

Save the downloaded file to the current directory

outfile_name = url.rpartition(’/’)[-1]

with open(outfile_name, ’wb’) as outfile:

outfile.write(data)

q.task_done()

Once the threads’ target function is defined, the worker threads can be started.

When downloadEnclosures() processes the statement url = q.get(), it blocks

and waits until the queue has something to return. That means it is safe to start the

threads before there is anything in the queue.

Set up some threads to fetch the enclosures

for i in range(num_fetch_threads):

worker = Thread(target=downloadEnclosures,

args=(i, enclosure_queue,))

worker.setDaemon(True)

worker.start()

The next step is to retrieve the feed contents using Mark Pilgrim’s feedparser

module (www.feedparser.org) and enqueue the URLs of the enclosures. As soon as

the first URL is added to the queue, one of the worker threads picks it up and starts

downloading it. The loop will continue to add items until the feed is exhausted, and the

worker threads will take turns dequeuing URLs to download them.

Download the feed(s) and put the enclosure URLs into

the queue.

for url in feed_urls:

response = feedparser.parse(url, agent=’fetch_podcasts.py’)

www.feedparser.org

2.5. Queue—Thread-Safe FIFO Implementation 101

for entry in response[’entries’][-5:]:

for enclosure in entry.get(’enclosures’, []):

parsed_url = urlparse.urlparse(enclosure[’url’])

print ’Queuing:’, parsed_url.path

enclosure_queue.put(enclosure[’url’])

The only thing left to do is wait for the queue to empty out again, using join().

Now wait for the queue to be empty, indicating that we have

processed all the downloads.

print ’*** Main thread waiting’

enclosure_queue.join()

print ’*** Done’

Running the sample script produces the following.

$ python fetch_podcasts.py

0: Looking for the next enclosure

1: Looking for the next enclosure

Queuing: /podcasts/littlebit/2010-04-18.mp3

Queuing: /podcasts/littlebit/2010-05-22.mp3

Queuing: /podcasts/littlebit/2010-06-06.mp3

Queuing: /podcasts/littlebit/2010-07-26.mp3

Queuing: /podcasts/littlebit/2010-11-25.mp3

*** Main thread waiting

0: Downloading: /podcasts/littlebit/2010-04-18.mp3

0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-05-22.mp3

0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-06-06.mp3

0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-07-26.mp3

0: Looking for the next enclosure

0: Downloading: /podcasts/littlebit/2010-11-25.mp3

0: Looking for the next enclosure

*** Done

The actual output will depend on the contents of the RSS feed used.

See Also:
Queue (http://docs.python.org/lib/module-Queue.html) Standard library documen-

tation for this module.

http://docs.python.org/lib/module-Queue.html

102 Data Structures

Deque (page 75) from collections (page 70) The collections module includes

a deque (double-ended queue) class.

Queue data structures (http://en.wikipedia.org/wiki/Queue_(data_structure))
Wikipedia article explaining queues.

FIFO (http://en.wikipedia.org/wiki/FIFO) Wikipedia article explaining first-in,

first-out data structures.

2.6 struct—Binary Data Structures

Purpose Convert between strings and binary data.

Python Version 1.4 and later

The struct module includes functions for converting between strings of bytes and

native Python data types, such as numbers and strings.

2.6.1 Functions vs. Struct Class

There is a set of module-level functions for working with structured values, and there

is also the Struct class. Format specifiers are converted from their string format to a

compiled representation, similar to the way regular expressions are handled. The con-

version takes some resources, so it is typically more efficient to do it once when creating

a Struct instance and call methods on the instance, instead of using the module-level

functions. The following examples all use the Struct class.

2.6.2 Packing and Unpacking

Structs support packing data into strings and unpacking data from strings using for-

mat specifiers made up of characters representing the data type and optional count and

endianness indicators. Refer to the standard library documentation for a complete list

of the supported format specifiers.

In this example, the specifier calls for an integer or long value, a two-character

string, and a floating-point number. The spaces in the format specifier are included to

separate the type indicators and are ignored when the format is compiled.

import struct
import binascii

values = (1, ’ab’, 2.7)

s = struct.Struct(’I 2s f’)

packed_data = s.pack(*values)

http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/FIFO

2.6. struct—Binary Data Structures 103

print ’Original values:’, values

print ’Format string :’, s.format

print ’Uses :’, s.size, ’bytes’

print ’Packed Value :’, binascii.hexlify(packed_data)

The example converts the packed value to a sequence of hex bytes for printing

with binascii.hexlify(), since some characters are nulls.

$ python struct_pack.py

Original values: (1, ’ab’, 2.7)

Format string : I 2s f

Uses : 12 bytes

Packed Value : 0100000061620000cdcc2c40

Use unpack() to extract data from its packed representation.

import struct
import binascii

packed_data = binascii.unhexlify(’0100000061620000cdcc2c40’)

s = struct.Struct(’I 2s f’)

unpacked_data = s.unpack(packed_data)

print ’Unpacked Values:’, unpacked_data

Passing the packed value to unpack() gives basically the same values back (note

the discrepancy in the floating-point value).

$ python struct_unpack.py

Unpacked Values: (1, ’ab’, 2.700000047683716)

2.6.3 Endianness

By default, values are encoded using the native C library notion of endianness. It is

easy to override that choice by providing an explicit endianness directive in the format

string.

import struct
import binascii

104 Data Structures

values = (1, ’ab’, 2.7)

print ’Original values:’, values

endianness = [

(’@’, ’native, native’),

(’=’, ’native, standard’),

(’<’, ’little-endian’),

(’>’, ’big-endian’),

(’!’, ’network’),

]

for code, name in endianness:

s = struct.Struct(code + ’ I 2s f’)

packed_data = s.pack(*values)

print
print ’Format string :’, s.format, ’for’, name

print ’Uses :’, s.size, ’bytes’

print ’Packed Value :’, binascii.hexlify(packed_data)

print ’Unpacked Value :’, s.unpack(packed_data)

Table 2.1 lists the byte order specifiers used by Struct.

Table 2.1. Byte Order Specifiers for struct

Code Meaning
@ Native order

= Native standard

< Little-endian

> Big-endian

! Network order

$ python struct_endianness.py

Original values: (1, ’ab’, 2.7)

Format string : @ I 2s f for native, native

Uses : 12 bytes

Packed Value : 0100000061620000cdcc2c40

Unpacked Value : (1, ’ab’, 2.700000047683716)

Format string : = I 2s f for native, standard

Uses : 10 bytes

Packed Value : 010000006162cdcc2c40

2.6. struct—Binary Data Structures 105

Unpacked Value : (1, ’ab’, 2.700000047683716)

Format string : < I 2s f for little-endian

Uses : 10 bytes

Packed Value : 010000006162cdcc2c40

Unpacked Value : (1, ’ab’, 2.700000047683716)

Format string : > I 2s f for big-endian

Uses : 10 bytes

Packed Value : 000000016162402ccccd

Unpacked Value : (1, ’ab’, 2.700000047683716)

Format string : ! I 2s f for network

Uses : 10 bytes

Packed Value : 000000016162402ccccd

Unpacked Value : (1, ’ab’, 2.700000047683716)

2.6.4 Buffers

Working with binary packed data is typically reserved for performance-sensitive sit-

uations or when passing data into and out of extension modules. These cases can be

optimized by avoiding the overhead of allocating a new buffer for each packed struc-

ture. The pack_into() and unpack_from() methods support writing to preallocated

buffers directly.

import struct
import binascii

s = struct.Struct(’I 2s f’)

values = (1, ’ab’, 2.7)

print ’Original:’, values

print
print ’ctypes string buffer’

import ctypes
b = ctypes.create_string_buffer(s.size)

print ’Before :’, binascii.hexlify(b.raw)

s.pack_into(b, 0, *values)

print ’After :’, binascii.hexlify(b.raw)

print ’Unpacked:’, s.unpack_from(b, 0)

106 Data Structures

print
print ’array’

import array
a = array.array(’c’, ’\0’ * s.size)

print ’Before :’, binascii.hexlify(a)

s.pack_into(a, 0, *values)

print ’After :’, binascii.hexlify(a)

print ’Unpacked:’, s.unpack_from(a, 0)

The size attribute of the Struct tells us how big the buffer needs to be.

$ python struct_buffers.py

Original: (1, ’ab’, 2.7)

ctypes string buffer

Before : 000000000000000000000000

After : 0100000061620000cdcc2c40

Unpacked: (1, ’ab’, 2.700000047683716)

array

Before : 000000000000000000000000

After : 0100000061620000cdcc2c40

Unpacked: (1, ’ab’, 2.700000047683716)

See Also:
struct (http://docs.python.org/library/struct.html) The standard library documenta-

tion for this module.

array (page 84) The array module, for working with sequences of fixed-type

values.

binascii (http://docs.python.org/library/binascii.html) The binascii module,

for producing ASCII representations of binary data.

Endianness (http://en.wikipedia.org/wiki/Endianness) Wikipedia article that pro-

vides an explanation of byte order and endianness in encoding.

2.7 weakref—Impermanent References to Objects

Purpose Refer to an “expensive” object, but allow its memory to be

reclaimed by the garbage collector if there are no other nonweak ref-

erences.

Python Version 2.1 and later

http://docs.python.org/library/struct.html
http://docs.python.org/library/binascii.html
http://en.wikipedia.org/wiki/Endianness

2.7. weakref—Impermanent References to Objects 107

The weakref module supports weak references to objects. A normal reference incre-

ments the reference count on the object and prevents it from being garbage collected.

This is not always desirable, either when a circular reference might be present or when

building a cache of objects that should be deleted when memory is needed. A weak

reference is a handle to an object that does not keep it from being cleaned up automati-

cally.

2.7.1 References

Weak references to objects are managed through the ref class. To retrieve the original

object, call the reference object.

import weakref

class ExpensiveObject(object):
def __del__(self):

print ’(Deleting %s)’ % self

obj = ExpensiveObject()

r = weakref.ref(obj)

print ’obj:’, obj

print ’ref:’, r

print ’r():’, r()

print ’deleting obj’

del obj

print ’r():’, r()

In this case, since obj is deleted before the second call to the reference, the ref

returns None.

$ python weakref_ref.py

obj: <__main__.ExpensiveObject object at 0x100da5750>

ref: <weakref at 0x100d99b50; to ’ExpensiveObject’ at 0x100da5750>

r(): <__main__.ExpensiveObject object at 0x100da5750>

deleting obj

(Deleting <__main__.ExpensiveObject object at 0x100da5750>)

r(): None

108 Data Structures

2.7.2 Reference Callbacks

The ref constructor accepts an optional callback function to invoke when the refer-

enced object is deleted.

import weakref

class ExpensiveObject(object):
def __del__(self):

print ’(Deleting %s)’ % self

def callback(reference):

"""Invoked when referenced object is deleted"""

print ’callback(’, reference, ’)’

obj = ExpensiveObject()

r = weakref.ref(obj, callback)

print ’obj:’, obj

print ’ref:’, r

print ’r():’, r()

print ’deleting obj’

del obj

print ’r():’, r()

The callback receives the reference object as an argument after the reference is

“dead” and no longer refers to the original object. One use for this feature is to remove

the weak reference object from a cache.

$ python weakref_ref_callback.py

obj: <__main__.ExpensiveObject object at 0x100da1950>

ref: <weakref at 0x100d99ba8; to ’ExpensiveObject’ at 0x100da1950>

r(): <__main__.ExpensiveObject object at 0x100da1950>

deleting obj

callback(<weakref at 0x100d99ba8; dead>)

(Deleting <__main__.ExpensiveObject object at 0x100da1950>)

r(): None

2.7.3 Proxies

It is sometimes more convenient to use a proxy, rather than a weak reference. Proxies

can be used as though they were the original object and do not need to be called before

2.7. weakref—Impermanent References to Objects 109

the object is accessible. That means they can be passed to a library that does not know

it is receiving a reference instead of the real object.

import weakref

class ExpensiveObject(object):
def __init__(self, name):

self.name = name

def __del__(self):

print ’(Deleting %s)’ % self

obj = ExpensiveObject(’My Object’)

r = weakref.ref(obj)

p = weakref.proxy(obj)

print ’via obj:’, obj.name

print ’via ref:’, r().name

print ’via proxy:’, p.name

del obj

print ’via proxy:’, p.name

If the proxy is accessed after the referent object is removed, a ReferenceError

exception is raised.

$ python weakref_proxy.py

via obj: My Object

via ref: My Object

via proxy: My Object

(Deleting <__main__.ExpensiveObject object at 0x100da27d0>)

via proxy:

Traceback (most recent call last):

File "weakref_proxy.py", line 26, in <module>

print ’via proxy:’, p.name

ReferenceError: weakly-referenced object no longer exists

2.7.4 Cyclic References

One use for weak references is to allow cyclic references without preventing garbage

collection. This example illustrates the difference between using regular objects and

proxies when a graph includes a cycle.

The Graph class in weakref_graph.py accepts any object given to it as the

“next” node in the sequence. For the sake of brevity, this implementation supports

110 Data Structures

a single outgoing reference from each node, which is of limited use generally, but

makes it easy to create cycles for these examples. The function demo() is a utility

function to exercise the Graph class by creating a cycle and then removing various

references.

import gc
from pprint import pprint

import weakref

class Graph(object):
def __init__(self, name):

self.name = name

self.other = None

def set_next(self, other):

print ’%s.set_next(%r)’ % (self.name, other)

self.other = other

def all_nodes(self):

"Generate the nodes in the graph sequence."

yield self

n = self.other

while n and n.name != self.name:

yield n

n = n.other

if n is self:

yield n

return
def __str__(self):

return ’->’.join(n.name for n in self.all_nodes())

def __repr__(self):

return ’<%s at 0x%x name=%s>’ % (self.__class__.__name__,

id(self), self.name)

def __del__(self):

print ’(Deleting %s)’ % self.name

self.set_next(None)

def collect_and_show_garbage():

"Show what garbage is present."

print ’Collecting...’

n = gc.collect()

print ’Unreachable objects:’, n

print ’Garbage:’,

pprint(gc.garbage)

2.7. weakref—Impermanent References to Objects 111

def demo(graph_factory):

print ’Set up graph:’

one = graph_factory(’one’)

two = graph_factory(’two’)

three = graph_factory(’three’)

one.set_next(two)

two.set_next(three)

three.set_next(one)

print
print ’Graph:’

print str(one)

collect_and_show_garbage()

print
three = None

two = None

print ’After 2 references removed:’

print str(one)

collect_and_show_garbage()

print
print ’Removing last reference:’

one = None

collect_and_show_garbage()

This example uses the gc module to help debug the leak. The DEBUG_LEAK flag

causes gc to print information about objects that cannot be seen, other than through the

reference the garbage collector has to them.

import gc
from pprint import pprint

import weakref

from weakref_graph import Graph, demo, collect_and_show_garbage

gc.set_debug(gc.DEBUG_LEAK)

print ’Setting up the cycle’

print
demo(Graph)

112 Data Structures

print
print ’Breaking the cycle and cleaning up garbage’

print
gc.garbage[0].set_next(None)

while gc.garbage:

del gc.garbage[0]

print
collect_and_show_garbage()

Even after deleting the local references to the Graph instances in demo(), the

graphs all show up in the garbage list and cannot be collected. Several dictionaries are

also found in the garbage list. They are the __dict__ values from the Graph instances

and contain the attributes for those objects. The graphs can be forcibly deleted, since the

program knows what they are. Enabling unbuffered I/O by passing the -u option to the

interpreter ensures that the output from the print statements in this example program

(written to standard output) and the debug output from gc (written to standard error)

are interleaved correctly.

$ python -u weakref_cycle.py

Setting up the cycle

Set up graph:

one.set_next(<Graph at 0x100db7590 name=two>)

two.set_next(<Graph at 0x100db75d0 name=three>)

three.set_next(<Graph at 0x100db7550 name=one>)

Graph:

one->two->three->one

Collecting...

Unreachable objects: 0

Garbage:[]

After 2 references removed:

one->two->three->one

Collecting...

Unreachable objects: 0

Garbage:[]

Removing last reference:

Collecting...

gc: uncollectable <Graph 0x100db7550>

gc: uncollectable <Graph 0x100db7590>

2.7. weakref—Impermanent References to Objects 113

gc: uncollectable <Graph 0x100db75d0>

gc: uncollectable <dict 0x100c63c30>

gc: uncollectable <dict 0x100c5e150>

gc: uncollectable <dict 0x100c63810>

Unreachable objects: 6

Garbage:[<Graph at 0x100db7550 name=one>,

<Graph at 0x100db7590 name=two>,

<Graph at 0x100db75d0 name=three>,

{’name’: ’one’, ’other’: <Graph at 0x100db7590 name=two>},

{’name’: ’two’, ’other’: <Graph at 0x100db75d0 name=three>},

{’name’: ’three’, ’other’: <Graph at 0x100db7550 name=one>}]

Breaking the cycle and cleaning up garbage

one.set_next(None)

(Deleting two)

two.set_next(None)

(Deleting three)

three.set_next(None)

(Deleting one)

one.set_next(None)

Collecting...

Unreachable objects: 0

Garbage:[]

The next step is to create a more intelligent WeakGraph class that knows how to

avoid creating cycles with regular references by using weak references when a cycle is

detected.

import gc
from pprint import pprint

import weakref

from weakref_graph import Graph, demo

class WeakGraph(Graph):
def set_next(self, other):

if other is not None:

See if we should replace the reference

to other with a weakref.

if self in other.all_nodes():

other = weakref.proxy(other)

114 Data Structures

super(WeakGraph, self).set_next(other)

return

demo(WeakGraph)

Since the WeakGraph instances use proxies to refer to objects that have already

been seen, as demo() removes all local references to the objects, the cycle is broken

and the garbage collector can delete the objects.

$ python weakref_weakgraph.py

Set up graph:

one.set_next(<WeakGraph at 0x100db4790 name=two>)

two.set_next(<WeakGraph at 0x100db47d0 name=three>)

three.set_next(<weakproxy at 0x100dac6d8 to WeakGraph at 0x100db4750>

)

Graph:

one->two->three

Collecting...

Unreachable objects: 0

Garbage:[]

After 2 references removed:

one->two->three

Collecting...

Unreachable objects: 0

Garbage:[]

Removing last reference:

(Deleting one)

one.set_next(None)

(Deleting two)

two.set_next(None)

(Deleting three)

three.set_next(None)

Collecting...

Unreachable objects: 0

Garbage:[]

2.7.5 Caching Objects

The ref and proxy classes are considered “low level.” While they are useful for

maintaining weak references to individual objects and allowing cycles to be garbage

2.7. weakref—Impermanent References to Objects 115

collected, the WeakKeyDictionary and WeakValueDictionary provide a more

appropriate API for creating a cache of several objects.

The WeakValueDictionary uses weak references to the values it holds, allow-

ing them to be garbage collected when other code is not actually using them. Using

explicit calls to the garbage collector illustrates the difference between memory han-

dling with a regular dictionary and WeakValueDictionary.

import gc
from pprint import pprint

import weakref

gc.set_debug(gc.DEBUG_LEAK)

class ExpensiveObject(object):
def __init__(self, name):

self.name = name

def __repr__(self):

return ’ExpensiveObject(%s)’ % self.name

def __del__(self):

print ’ (Deleting %s)’ % self

def demo(cache_factory):

hold objects so any weak references

are not removed immediately

all_refs = {}

create the cache using the factory

print ’CACHE TYPE:’, cache_factory

cache = cache_factory()

for name in [’one’, ’two’, ’three’]:

o = ExpensiveObject(name)

cache[name] = o

all_refs[name] = o

del o # decref

print ’ all_refs =’,

pprint(all_refs)

print ’\n Before, cache contains:’, cache.keys()

for name, value in cache.items():

print ’ %s = %s’ % (name, value)

del value # decref

Remove all references to the objects except the cache

print ’\n Cleanup:’

116 Data Structures

del all_refs

gc.collect()

print ’\n After, cache contains:’, cache.keys()

for name, value in cache.items():

print ’ %s = %s’ % (name, value)

print ’ demo returning’

return

demo(dict)

print

demo(weakref.WeakValueDictionary)

Any loop variables that refer to the values being cached must be cleared explicitly

so the reference count of the object is decremented. Otherwise, the garbage collec-

tor would not remove the objects, and they would remain in the cache. Similarly, the

all_refs variable is used to hold references to prevent them from being garbage collected

prematurely.

$ python weakref_valuedict.py

CACHE TYPE: <type ’dict’>

all_refs ={’one’: ExpensiveObject(one),

’three’: ExpensiveObject(three),

’two’: ExpensiveObject(two)}

Before, cache contains: [’three’, ’two’, ’one’]

three = ExpensiveObject(three)

two = ExpensiveObject(two)

one = ExpensiveObject(one)

Cleanup:

After, cache contains: [’three’, ’two’, ’one’]

three = ExpensiveObject(three)

two = ExpensiveObject(two)

one = ExpensiveObject(one)

demo returning

(Deleting ExpensiveObject(three))

(Deleting ExpensiveObject(two))

(Deleting ExpensiveObject(one))

2.8. copy—Duplicate Objects 117

CACHE TYPE: weakref.WeakValueDictionary

all_refs ={’one’: ExpensiveObject(one),

’three’: ExpensiveObject(three),

’two’: ExpensiveObject(two)}

Before, cache contains: [’three’, ’two’, ’one’]

three = ExpensiveObject(three)

two = ExpensiveObject(two)

one = ExpensiveObject(one)

Cleanup:

(Deleting ExpensiveObject(three))

(Deleting ExpensiveObject(two))

(Deleting ExpensiveObject(one))

After, cache contains: []

demo returning

The WeakKeyDictionary works similarly, but it uses weak references for the

keys instead of the values in the dictionary.

Warning: The library documentation for weakref contains this warning:

Caution: Because a WeakValueDictionary is built on top of a Python dictionary,

it must not change size when iterating over it. This can be difficult to ensure for

a WeakValueDictionary because actions performed by the program during iter-

ation may cause items in the dictionary to vanish “by magic” (as a side effect of

garbage collection).

See Also:
weakref (http://docs.python.org/lib/module-weakref.html) Standard library docu-

mentation for this module.

gc (page 1138) The gc module is the interface to the interpreter’s garbage collector.

2.8 copy—Duplicate Objects

Purpose Provides functions for duplicating objects using shallow or deep

copy semantics.

Python Version 1.4 and later

http://docs.python.org/lib/module-weakref.html

118 Data Structures

The copy module includes two functions, copy() and deepcopy(), for duplicating

existing objects.

2.8.1 Shallow Copies

The shallow copy created by copy() is a new container populated with references to

the contents of the original object. When making a shallow copy of a list object, a

new list is constructed and the elements of the original object are appended to it.

import copy

class MyClass:
def __init__(self, name):

self.name = name

def __cmp__(self, other):

return cmp(self.name, other.name)

a = MyClass(’a’)

my_list = [a]

dup = copy.copy(my_list)

print ’ my_list:’, my_list

print ’ dup:’, dup

print ’ dup is my_list:’, (dup is my_list)

print ’ dup == my_list:’, (dup == my_list)

print ’dup[0] is my_list[0]:’, (dup[0] is my_list[0])

print ’dup[0] == my_list[0]:’, (dup[0] == my_list[0])

For a shallow copy, the MyClass instance is not duplicated, so the reference in the

dup list is to the same object that is in my_list.

$ python copy_shallow.py

my_list: [<__main__.MyClass instance at 0x100dadc68>]

dup: [<__main__.MyClass instance at 0x100dadc68>]

dup is my_list: False

dup == my_list: True

dup[0] is my_list[0]: True

dup[0] == my_list[0]: True

2.8.2 Deep Copies

The deep copy created by deepcopy() is a new container populated with copies of

the contents of the original object. To make a deep copy of a list, a new list

2.8. copy—Duplicate Objects 119

is constructed, the elements of the original list are copied, and then those copies are

appended to the new list.

Replacing the call to copy()with deepcopy()makes the difference in the output

apparent.

dup = copy.deepcopy(my_list)

The first element of the list is no longer the same object reference, but when the

two objects are compared, they still evaluate as being equal.

$ python copy_deep.py

my_list: [<__main__.MyClass instance at 0x100dadc68>]

dup: [<__main__.MyClass instance at 0x100dadc20>]

dup is my_list: False

dup == my_list: True

dup[0] is my_list[0]: False

dup[0] == my_list[0]: True

2.8.3 Customizing Copy Behavior

It is possible to control how copies are made using the __copy__() and

__deepcopy__() special methods.

• __copy__() is called without any arguments and should return a shallow copy

of the object.

• __deepcopy__() is called with a memo dictionary and should return a deep

copy of the object. Any member attributes that need to be deep-copied should

be passed to copy.deepcopy(), along with the memo dictionary, to control for

recursion. (The memo dictionary is explained in more detail later.)

This example illustrates how the methods are called.

import copy

class MyClass:
def __init__(self, name):

self.name = name

def __cmp__(self, other):

return cmp(self.name, other.name)

120 Data Structures

def __copy__(self):

print ’__copy__()’

return MyClass(self.name)

def __deepcopy__(self, memo):

print ’__deepcopy__(%s)’ % str(memo)

return MyClass(copy.deepcopy(self.name, memo))

a = MyClass(’a’)

sc = copy.copy(a)

dc = copy.deepcopy(a)

The memo dictionary is used to keep track of the values that have been copied

already, to avoid infinite recursion.

$ python copy_hooks.py

__copy__()

__deepcopy__({})

2.8.4 Recursion in Deep Copy

To avoid problems with duplicating recursive data structures, deepcopy() uses a dic-

tionary to track objects that have already been copied. This dictionary is passed to the

__deepcopy__() method so it can be examined there as well.

This example shows how an interconnected data structure, such as a directed

graph, can assist with protecting against recursion by implementing a __deepcopy

__() method.

import copy
import pprint

class Graph:

def __init__(self, name, connections):

self.name = name

self.connections = connections

def add_connection(self, other):

self.connections.append(other)

def __repr__(self):

return ’Graph(name=%s, id=%s)’ % (self.name, id(self))

2.8. copy—Duplicate Objects 121

def __deepcopy__(self, memo):

print ’\nCalling __deepcopy__ for %r’ % self

if self in memo:

existing = memo.get(self)

print ’ Already copied to %r’ % existing

return existing

print ’ Memo dictionary:’

pprint.pprint(memo, indent=4, width=40)

dup = Graph(copy.deepcopy(self.name, memo), [])

print ’ Copying to new object %s’ % dup

memo[self] = dup

for c in self.connections:

dup.add_connection(copy.deepcopy(c, memo))

return dup

root = Graph(’root’, [])

a = Graph(’a’, [root])

b = Graph(’b’, [a, root])

root.add_connection(a)

root.add_connection(b)

dup = copy.deepcopy(root)

The Graph class includes a few basic directed-graph methods. An instance can

be initialized with a name and a list of existing nodes to which it is connected. The

add_connection() method is used to set up bidirectional connections. It is also used

by the deepcopy operator.

The __deepcopy__() method prints messages to show how it is called and man-

ages the memo dictionary contents, as needed. Instead of copying the connection list

wholesale, it creates a new list and appends copies of the individual connections to it.

That ensures that the memo dictionary is updated as each new node is duplicated and

avoids recursion issues or extra copies of nodes. As before, it returns the copied object

when it is done.

There are several cycles in the graph shown in Figure 2.1, but handling the re-

cursion with the memo dictionary prevents the traversal from causing a stack overflow

error. When the root node is copied, the output is as follows.

$ python copy_recursion.py

Calling __deepcopy__ for Graph(name=root, id=4309347072)

Memo dictionary:

{ }

122 Data Structures

root

a

b

Figure 2.1. Deepcopy for an object graph with cycles

Copying to new object Graph(name=root, id=4309347360)

Calling __deepcopy__ for Graph(name=a, id=4309347144)

Memo dictionary:

{ Graph(name=root, id=4309347072): Graph(name=root, id=4309347360),

4307936896: [’root’],

4309253504: ’root’}

Copying to new object Graph(name=a, id=4309347504)

Calling __deepcopy__ for Graph(name=root, id=4309347072)

Already copied to Graph(name=root, id=4309347360)

Calling __deepcopy__ for Graph(name=b, id=4309347216)

Memo dictionary:

{ Graph(name=root, id=4309347072): Graph(name=root, id=4309347360),

Graph(name=a, id=4309347144): Graph(name=a, id=4309347504),

4307936896: [’root’,

’a’,

Graph(name=root, id=4309347072),

Graph(name=a, id=4309347144)],

4308678136: ’a’,

4309253504: ’root’,

4309347072: Graph(name=root, id=4309347360),

4309347144: Graph(name=a, id=4309347504)}

Copying to new object Graph(name=b, id=4309347864)

The second time the root node is encountered, while the a node is being copied,

__deepcopy__() detects the recursion and reuses the existing value from the memo

dictionary instead of creating a new object.

2.9. pprint—Pretty-Print Data Structures 123

See Also:
copy (http://docs.python.org/library/copy.html) The standard library documenta-

tion for this module.

2.9 pprint—Pretty-Print Data Structures

Purpose Pretty-print data structures.

Python Version 1.4 and later

pprint contains a “pretty printer” for producing aesthetically pleasing views of data

structures. The formatter produces representations of data structures that can be parsed

correctly by the interpreter and are also easy for a human to read. The output is kept on

a single line, if possible, and indented when split across multiple lines.

The examples in this section all depend on pprint_data.py, which contains the

following.

data = [(1, { ’a’:’A’, ’b’:’B’, ’c’:’C’, ’d’:’D’ }),

(2, { ’e’:’E’, ’f’:’F’, ’g’:’G’, ’h’:’H’,

’i’:’I’, ’j’:’J’, ’k’:’K’, ’l’:’L’,

}),

]

2.9.1 Printing

The simplest way to use the module is through the pprint() function.

from pprint import pprint

from pprint_data import data

print ’PRINT:’

print data

print
print ’PPRINT:’

pprint(data)

pprint() formats an object and writes it to the data stream passed as argument

(or sys.stdout by default).

$ python pprint_pprint.py

http://docs.python.org/library/copy.html

124 Data Structures

PRINT:

[(1, {’a’: ’A’, ’c’: ’C’, ’b’: ’B’, ’d’: ’D’}), (2, {’e’: ’E’, ’g’:

’G’, ’f’: ’F’, ’i’: ’I’, ’h’: ’H’, ’k’: ’K’, ’j’: ’J’, ’l’: ’L’})]

PPRINT:

[(1, {’a’: ’A’, ’b’: ’B’, ’c’: ’C’, ’d’: ’D’}),

(2,

{’e’: ’E’,

’f’: ’F’,

’g’: ’G’,

’h’: ’H’,

’i’: ’I’,

’j’: ’J’,

’k’: ’K’,

’l’: ’L’})]

2.9.2 Formatting

To format a data structure without writing it directly to a stream (i.e., for logging), use

pformat() to build a string representation.

import logging
from pprint import pformat

from pprint_data import data

logging.basicConfig(level=logging.DEBUG,

format=’%(levelname)-8s %(message)s’,
)

logging.debug(’Logging pformatted data’)

formatted = pformat(data)

for line in formatted.splitlines():

logging.debug(line.rstrip())

The formatted string can then be printed or logged independently.

$ python pprint_pformat.py

DEBUG Logging pformatted data

DEBUG [(1, {’a’: ’A’, ’b’: ’B’, ’c’: ’C’, ’d’: ’D’}),

DEBUG (2,

DEBUG {’e’: ’E’,

DEBUG ’f’: ’F’,

2.9. pprint—Pretty-Print Data Structures 125

DEBUG ’g’: ’G’,

DEBUG ’h’: ’H’,

DEBUG ’i’: ’I’,

DEBUG ’j’: ’J’,

DEBUG ’k’: ’K’,

DEBUG ’l’: ’L’})]

2.9.3 Arbitrary Classes

The PrettyPrinter class used by pprint() can also work with custom classes, if

they define a __repr__() method.

from pprint import pprint

class node(object):
def __init__(self, name, contents=[]):

self.name = name

self.contents = contents[:]

def __repr__(self):

return (’node(’ + repr(self.name) + ’, ’ +

repr(self.contents) + ’)’

)

trees = [node(’node-1’),

node(’node-2’, [node(’node-2-1’)]),

node(’node-3’, [node(’node-3-1’)]),

]

pprint(trees)

The representations of the nested objects are combined by the PrettyPrinter

to return the full string representation.

$ python pprint_arbitrary_object.py

[node(’node-1’, []),

node(’node-2’, [node(’node-2-1’, [])]),

node(’node-3’, [node(’node-3-1’, [])])]

2.9.4 Recursion

Recursive data structures are represented with a reference to the original source of the

data, with the form <Recursion on typename with id=number>.

126 Data Structures

from pprint import pprint

local_data = [’a’, ’b’, 1, 2]

local_data.append(local_data)

print ’id(local_data) =>’, id(local_data)

pprint(local_data)

In this example, the list local_data is added to itself, creating a recursive

reference.

$ python pprint_recursion.py

id(local_data) => 4309215280

[’a’, ’b’, 1, 2, <Recursion on list with id=4309215280>]

2.9.5 Limiting Nested Output

For very deep data structures, it may not be desirable for the output to include all details.

The data may not format properly, the formatted text might be too large to manage, or

some of the data may be extraneous.

from pprint import pprint

from pprint_data import data

pprint(data, depth=1)

Use the depth argument to control how far down into the nested data structure the

pretty printer recurses. Levels not included in the output are represented by an ellipsis.

$ python pprint_depth.py

[(...), (...)]

2.9.6 Controlling Output Width

The default output width for the formatted text is 80 columns. To adjust that width, use

the width argument to pprint().

from pprint import pprint

2.9. pprint—Pretty-Print Data Structures 127

from pprint_data import data

for width in [80, 5]:

print ’WIDTH =’, width

pprint(data, width=width)

print

When the width is too low to accommodate the formatted data structure, the lines

are not truncated or wrapped if that would introduce invalid syntax.

$ python pprint_width.py

WIDTH = 80

[(1, {’a’: ’A’, ’b’: ’B’, ’c’: ’C’, ’d’: ’D’}),

(2,

{’e’: ’E’,

’f’: ’F’,

’g’: ’G’,

’h’: ’H’,

’i’: ’I’,

’j’: ’J’,

’k’: ’K’,

’l’: ’L’})]

WIDTH = 5

[(1,

{’a’: ’A’,

’b’: ’B’,

’c’: ’C’,

’d’: ’D’}),

(2,

{’e’: ’E’,

’f’: ’F’,

’g’: ’G’,

’h’: ’H’,

’i’: ’I’,

’j’: ’J’,

’k’: ’K’,

’l’: ’L’})]

See Also:
pprint (http://docs.python.org/lib/module-pprint.html) Standard library documen-

tation for this module.

http://docs.python.org/lib/module-pprint.html

This page intentionally left blank

INDEX

SYMBOLS
?!-pattern, regular expressions,

47–48

. (dot), character sets in pattern

syntax, 23–24

: (colon), 360–362, 862

\ (backlash), escape codes for

predefined character sets, 22

| (pipe symbol), 35, 413–418

= (equals sign), config files, 862

?:(question mark/colon),

noncapturing groups, 36–37

! (exclamation point), shell

commands, 848–849

$ (dollar sign),

string.Template, 5–7

()(parentheses), dissecting matches

with groups, 30–36

* (asterisk)

bullet points, 13

filename pattern matching in

glob, 258–259

repetition in pattern syntax, 17

?-pattern, regular expressions,

46–50

? (question mark)

positional parameters with queries

in sqlite3, 360

repetition in pattern syntax, 17–20

searching text with multiline

input, 39

shell commands in cmd, 848–849

single character wildcard in

glob, 259–260

[] (square brackets), config file

sections, 862

^ (carat), 21, 39

{} (curly braces),

string.Template, 5–7

{m}, repetition in pattern syntax,

17–18

{n}, repetition in pattern syntax, 18

A
Abbreviations, option flags, 45

abc module

abstract properties, 1182–1186

concrete methods, 1181–1182

defined, 1169

how abstract base classes work,

1178

implementation through

subclassing, 1179–1181

purpose of, 1178

reasons to use abstract base

classes, 1178

reference guide, 1186

registering concrete class, 1179

ABCMeta class, 1178

abc_register() function, 1179

abspath() function,

os.path, 254

Abstract base classes. See abc
module

Abstract properties, abc,

1182–1186

abstractmethod(), abstract

base classes, 1178

@abstractproperty,abc
module, 1182–1186

accept(), socket, 572–573

Access

network communications. See
socket module

network resources. See urllib
module; urllib2 module

Access control

for concurrent use of resources in

threading, 524–526

Internet spiders, 674–677

restricting for data in sqlite3,

384–386

shared resources in

multiprocessing,

546–550

shared resources in threading,

517–523

access() function, os, 1127–1128

ACCESS_COPY argument, mmap,

280, 282–283

ACCESS_READ argument,

mmap, 280

ACCESS_WRITE argument, mmap,

280–281

acquire()method,

multiprocessing, 548

acquire()method, threading,

518–519, 522–524

Action class, 819–820

Actions

argparse, 799–802, 819–820

1261

1262 Index

Actions (continued)

readline hooks triggering,

834–835

triggering on breakpoints,

1001–1002

warning filter, 1170–1171

Actions, optparse
Boolean flags, 785–786

callbacks, 788–790

constants, 785

defined, 784

repeating options, 786–788

Adapters, 364

add() method

Maildir mailbox, 763

mbox mailbox, 759–760

new archives in tarfile, 453

add_argument(), argparse
argument types, 817–819

defining arguments, 796

defining custom actions, 819–820

exception handling, 809

add_argument_group(),
argparse, 811

add_data(), urllib2,

663–664

addfile(), tarfile, 453–455

add_header(), urllib2, 662

add_help argument, argparse,

805–807

add_mutually_
exclusive_group(),
argparse, 812–813

add_option() method,

optparse
help text, 790–791

one at a time, 778

type conversion, 783

Address

families, sockets, 562

verifying email in SMTP, 732–733

add_section(),
ConfigParser, 869–871

addsitedir() function, site,

1049–1050

adler32() function, zlib, 425

AF_INET address family,

sockets, 562

AF_INET6 address family,

sockets, 562

AF_UNIX address family,

sockets, 562

Aggregation functions, sqlite3,

380–381

Alarms, signal, 501–504

Alerts, nonfatal. See warnings
module

Algorithms

context manager utilities. See
contextlib module

functional interface to built-in

operators. See operator
module

iterator functions. See
itertools module

manipulating functions. See
functools module

overview of, 129

Aliased argument, platform,

1130–1131

Aliases, customizing pdb debugger,

1009–1011

all_done(), atexit, 890

Alternate API names,

SimpleXMLRPCServer,

716–717

Alternate byte ordering, array,

86–87

Alternate representations, math,

227–229

Anchoring

in pattern syntax, re, 24–26

searching text using multiline

input, 39

Angles, math, 238–240

Angular distribution, random, 223

annotate() function,

dircache, 321–322

anydbm module

creating new database, 348–349

creating new shelf for data

storage, 344

database types, 347–348

defined, 334, 346

error cases, 349–350

opening existing database,

348–349

purpose of, 347

reference guide, 350

APIs

context manager, 164–167

establishing with alternate names,

716–717

establishing with arbitrary

names, 719

establishing with dotted names,

718–719

Introspection, 724–725

testing compliance with, 162–163

append action

argparse, 799–802

optparse, 786

append() method, IMAP4

messages, 753–755

append_const action,

argparse, 799–802

Appending to archives

tarfile, 455

zipfile, 464–465

Application building blocks

command-line filters. See
fileinput module

command-line option and

argument parsing. See
argparse module

command-line option parsers. See
getopt module; optparse
module

configuration files. See
ConfigParser module

GNU readline library. See
readline module

line-oriented command

processors. See cmd module

overview of, 769–770

parsing shell-style syntaxes. See
shlex module

program shutdown callbacks with

atexit, 890–894

reporting with logging module,

878–883

secure password prompt with

getpass, 836–839

timed event scheduler with

sched, 890–894

Applications

localization with gettext,

907–908

optparse help settings,

793–795

Approximation distribution,

random, 222

Arbitrary API names,

SimpleXMLRPCServer, 719

Index 1263

architecture() function,

platform, 1133–1134

Archives, email

listing mailbox subfolders,

IMAP4, 743

manipulating. See mailbox
module

Archiving, data

overview of, 421

tarfile. See tarfile module

zipfile. See zipfile module

argparse module

argument actions, 799–802

argument groups, 810–812

automatically generated options,

805–807

comparing with optparse, 796,

798

conflicting options, 808–810

defined, 769

defining arguments, 796

mutually exclusive options,

812–813

nesting parsers, 813–814

option prefixes, 802–803

parsing command line, 796–797

purpose of, 795

reference guide, 822–823

setting up parser, 796

sharing parser rules, 807–808

simple examples, 797–799

sources of arguments, 804–805

variable argument lists, 815–817

argparse module, advanced

argument processing

argument types, 817–819

defining custom actions, 820–822

file arguments, 819–820

variable argument lists, 815–817

Argument groups, argparse,

810–812

ArgumentParser class,

argparse
argument types, 817–819

defined, 796

option prefixes, 803

simple examples, 797

Arguments

command, 840–842

command-line option parsing. See
argparse module

configuring callbacks for

multiple. See optparse
module

fetching messages in IMAP4,

749–752

getopt() function, 771

method and function, 1209–1210

network resource access with

urllib, 653–655

network resource access with

urllib2, 660–661

passing object to threads as, 506

passing to custom thread

type, 514

passing to multiprocessing
Process, 530

platform()function,

1130–1131

select() function, 595–596

server address lookups with

getaddrinfo(), 569–570

Arithmetic

Counter support for, 73–74

Decimal class, 199–200

operators, 155–157, 183–184

using fractions in, 210

ArithmeticError class, 1217

array module

alternate byte ordering, 86–87

defined, 69

and files, 85–86

initialization, 84–85

manipulating arrays, 85

purpose of, 84

reference guide, 87

Arrays, plural values with

gettext, 905–907

ASCII characters

enabling Unicode matching,

39–40

encoding and decoding data in

strings, 335–336

encoding binary data. See
base64 module

assert*() methods,

unittest, 952

assertFalse() method,

unittest, 953

asserting truth, unittest, 952–953

AssertionError exception,

1217–1218

assertTrue() method,

unittest, 953

asterisk. See * (asterisk)

async_chat class, 629–630

asynchat module

client, 632–634

message terminators, 629–630

purpose of, 629

putting it all together, 634–636

reference guide, 636

server and handler, 630–632

Asynchronous I/O, networking.

See asyncore module

Asynchronous protocol handler.

See asynchat module

Asynchronous system events.

See signal module

asyncore module

asynchat vs., 630–632

clients, 621–623

event loop, 623–625

purpose of, 619

reference guide, 629

servers, 619–621

SMTPServer using, 735

working with files, 628–629

working with other event loops,

625–627

atexit module

defined, 770

examples, 890–891

handling exceptions, 893–894

purpose of, 890

reference guide, 894

when callbacks are not invoked,

891–893

atof() function, locale, 917

atoi() function, locale, 917

attrib property, nodes, 392

Attribute getters, operator,

159–160

AttributeError exception,

1218–1219

Attributes

configuring cmd through,

847–848

parsed node, ElementTree,

391–393

Authentication

argparse group for, 811

failure, IMAP server, 740–741

SMTP, 730–732

1264 Index

Authorizer function, sqlite3, 384

Auto-completion, cmd, 843–844

Autocommit mode, sqlite3,

375–376

Automated framework testing. See
unittest module

Automatically generated options,

argparse, 805–807

avg() function, sqlite3,

380–381

B
B64decode(), 671–672

Babyl format, mailbox, 768

Back-references, re, 50–56

backslash (\), predefined character

sets, 22

backslashreplace mode, codec

error handling, 292, 294

Backup files, fileinput, 889

Base classes, exceptions, 1216

Base16 encoding, 673–674

Base32 encoding, 673

Base64 decoding, 671–672

Base64 encoding, 670–671

base64 module

Base64 decoding, 671–672

Base64 encoding, 670–671

defined, 637

other encodings, 673–674

purpose of, 670

reference guide, 674

URL-safe variations, 672–673

BaseException class, 1216

BaseHTTPServer module

defined, 637

handling errors, 649–650

HTTP GET, 644–646

HTTP POST, 646–647

purpose of, 644

reference guide, 651

setting headers, 650–651

threading and forking, 648–649

basename() function, path

parsing, 249–250

BaseServer class,

SocketServer, 609–610

basicConfig() function,

logging, 879

betavariate() function,

random, 223

Bidirectional communication with

process, 487–489

Binary data

preparing for transmission,

591–593

structures, 102–106

XML-RPC server, 710–712

Binary digests, hmac, 475–476

Binary heaps, heapq, 88

Binary read mode, gzip, 433–434

bind(), TCP/IP socket, 572

bisect() method, heapq, 89–90

bisect module

defined, 69

handling duplicates, 95–96

inserting in sorted order, 93–95

purpose of, 93

reference guide, 96

Blank lines

with doctest, 930–932

with linecache, 263

Bodies of text, comparing, 62–65

BOM (byte-order marker), codecs,

289–291

Boolean

argparse options, 797

logical operations with

operator, 154

optparse options, 785–786

break command, breakpoints in pdb,

990, 992–993, 998

break lineno, pdb, 990–991

Breakpoints, pdb
conditional, 998–999

ignoring, 999–1001

managing, 993–996

restarting program without losing

current, 1008–1009

setting, 990–993

temporary, 997–998

triggering actions on, 1001–1002

Browser, class, 1039–1043

BufferAwareCompleter class,

readline, 828–831

BufferedIncrementalDecoder,
codecs, 313

BufferedIncrementalEncoder,
codecs, 312

Buffers, struct, 105–106

Build-time version information,

settings in sys, 1055–1057

Building paths, os.path, 252–253

Building threaded podcast client,

Queue, 99–101

Building trees, ElementTree,

405–408

Built-in exception classes. See
exceptions module

Built-in modules, sys, 1080–1091

Built-in operators. See operator
module

__builtins__namespace,

application localization with

gettext, 908–909

__builtins__namespace,

gettext, 908–909

Bulk loading, sqlite3, 362–363

Byte-compiling source files,

compileall, 1037–1039

byte-order marker (BOM), codecs,

289–291

Byte ordering

alternate arrays, 86–87

encoding strings in codecs,

289–291

memory management with sys,

1070–1071

specifiers for struct, 103

Bytecodes

counting with dis, 1078

finding for your version of

interpreter, 1186

modifying check intervals with

sys, 1074–1078

Python disassembler for. See dis
module

byteswap() method, array, 87

bz2 module

compressing networked data,

443–448

incremental compression and

decompression, 438–439

mixed content streams, 439–440

one-shot operations in memory,

436–438

purpose of, 436

reading compressed files,

442–443

reference guide, 448

writing compressed files, 440–442

BZ2Compressor, 438–439,

444–445

BZ2Decompressor

Index 1265

compressing network data in

bz2, 445–447

incremental decompression,

438–439

mixed content streams, 424–425

BZ2File, 440–442

BZ2RequestHandler, 443–447

Bzip2 compression. See bz2
module

C
Cache

avoiding lookup overhead in, 15

caching objects in weakref,

114–117

directory listings, 319–322

importer, 1097–1098

retrieving network resources with

urllib, 651–653

Calculations, math, 230–233

Calendar class, 182–185, 191

calendar module

calculating dates, 194–195

defined, 173

formatting examples, 191–194

purpose of, 191

reference guide, 196

Call events, sys, 1102–1103

call() function, subprocess,

482–486

Callbacks

for options with optparse,

788–790

program shutdown with atexit,

890–894

reference, 108

CalledProcessError
exception, subprocess,

483–484, 486

Callee graphs, pstats, 1029–1031

Caller graphs, pstats, 1029–1031

canceling events, sched, 897–898

can_fetch(), Internet spider

access control, 675–676

Canonical name value, server

addresses, 570

capwords() function,

string, 4–5

carat (^), 21, 39

Case-insensitive matching

embedding flags in patterns,

44–45

searching text, 37–38

Case-sensitive matching, glob

pattern matching, 315–317

cat command, os, 1112–1115

Catalogs, message. See gettext
module

Categories, warning, 1170–1171

ceil() function, math, 226–227

cgi module, HTTP POST requests,

646–647

cgitb module, 965–975

defined, 919

enabling detailed tracebacks,

966–968

exception properties, 971–972

HTML output, 972

local variables in tracebacks,

968–971

logging tracebacks, 972–975

purpose of, 965–966

reference guide, 975

standard traceback dumps, 966

chain() function, itertools,

142–143

Character maps, codecs, 307–309

Character sets

pattern syntax, 20–24

using escape codes for predefined,

22–24

Characters, glob module, 258–260

charmap_decode(),
codecs, 308

charmap_encode(),
codecs, 308

chdir() function, os, 1112

Check intervals, sys, 1074–1078

check_call() function,

subprocess, 483–484

check_output() function,

subprocess, 484–486

Checksums, computing in zlib, 425

Child processes

managing I/O of, 1112–1116

waiting for, 1125–1127

chmod()function, file permissions

in UNIX, 1117–1118

choice() function, random,

215–216

choice type, optparse, 784

choices parameter, argparse, 818

Circular normal distribution,

random, 223

Circular references, pickle,

340–343

Class browser, pyclbr, 1039–1043

Class hierarchies, inspect
method resolution order,

1212–1213

working with, 1210–1212

Classes

abstract base. See abc module

built-in exception. See
exceptions module

disassembling methods,

1189–1190

inspecting with inspect,

1204–1206

scanning with pyclbr,

1041–1042

CleanUpGraph class, 1153–1159

clear command, breakpoints in

pdb, 996

clear() method, signaling

between threads, 516

Client

implementing with asynchat,

632–634

implementing with asyncore,

621–623

library for XML-RPC. See
xmlrpclibmodule

TCP/IP, 573–575

UDP, 581–583

clock() function, processor clock

time, 174–176

Clock time. See time module

close() function

creating custom tree builder, 398

deleting email messages, 758

echo server in TCP/IP

sockets, 573

process pools in

multiprocessing, 554

removing temporary files, 266

closing() function, open handles

in contextlib, 169–170

Cmd class, 839–840

cmd module

alternative inputs, 849–851

auto-completion, 843–844

command arguments, 840–842

commands from sys.argv,

851–852

1266 Index

cmd module (continued)

configuring through attributes,

847–848

defined, 769

live help, 842–843

overriding base class methods,

845–846

processing commands, 839–840

purpose of, 839

reference guide, 852

running shell commands,

848–849

cmdloop(), overriding base class

methods, 846

cmp() function, filecmp,

325–326

cmpfiles() function, 326–327

cmp_to_key()function, collation

order, 140–141

Code coverage report, trace,

1013–1017

CodecInfo object, 309–310

codecs module

byte order, 289–291

defined, 248

defining custom encoding,

307–313

encoding translation, 298–300

encodings, 285–287

error handling, 291–295

incremental encoding, 301–303

non-Unicode encodings, 300–301

opening Unicode configuration

files, 863–864

purpose of, 284

reference guide, 313–314

standard input and output streams,

295–298

Unicode data and network

communication, 303–307

Unicode primer, 284–285

working with files, 287–289

Collations

customizing in sqlite3,

381–383

functools comparison

functions, 140–141

collect() function, forcing

garbage collection, 1141–1146

collections module

Counter, 70–74

defaultdict, 74–75

defined, 69–70

deque, 75–79

namedtuple, 79–82

OrderedDict, 82–84

reference guide, 84

colon (:), 360–362, 862

Columns, sqlite3
defining new, 363–366

determining types for, 366–368

restricting access to data, 384–386

combine() function, datetime,

188–189

Comma-separated value files. See
csv module

Command handler, cmd, 839–840

Command-line

filter framework. See
fileinput module

interface, with timeit,

1035–1036

interpreter options, with sys,

1057–1058

invoking compileall from,

1039

processors. See cmd module

runtime arguments with sys,

1062–1063

starting pdb debugger from, 976

using trace directly from,

1012–1013

Command-line option parsing

and arguments. See argparse
module

Command-line option parsing

getopt. See getopt module

optparse. See optparse
module

Commands

interacting with another, 490–492

running external, with os,

1121–1122

running external, with

subprocess, 482–486

triggering actions on breakpoints,

1001–1002

comment() function, hierarchy of

Element nodes, 400–401

commenters property,

shlex, 854

Comments

embedded, with shlex, 854

inserting into regular expressions,

43–44

commit(), database changes,

368–370

commonprefix() function, path

parsing, 251

communicate() method

interacting with another

command, 490–492

working with pipes, 486–489

Communication

accessing network. See socket
module

configuring nonblocking socket,

593–594

using pickle for inter-process,

334, 338

Compact output, JSON, 692–694

compare()function, text, 62–64

Comparison

creating UUID objects to handle,

689–690

files and directories. See
filecmp module

UNIX-style filenames, 315–317

values in datetime, 187–188

Comparison, functools
collation order, 140–141

overview of, 138

reference guide, 141

rich comparison, 138–140

Comparison operators

date and time values, 185

with operator, 154–155

compile() function, expressions,

14–15

compileall module, 920,

1037–1039

compile_dir(),
compileall, 1037–1038

compile_path(),
compileall, 1038–1039

Compiler optimizations, dis,

1198–1199

complete()
accessing completion buffer, 830

text with readline, 826–827

complete_prefix, command

auto-completion, 843–844

Complex numbers, 235

compress() method, bz2
compressing network data, 443

Index 1267

incremental compression, 439

one-shot operations in memory,

436–438

compress() method, zlib
compressing network data,

426–427

incremental compression and

decompression, 424

Compress object, zlib, 423–424

Compression, data

archives in tarfile, 456

bzip2 format. See bz2 module

GNU zip library. See zlib
module

gzip module, 430–436

overview of, 421

ZIP archives. See zipfile
module

Compresslevel argument

writing compressed files in

BZ2File, 440–442

writing compressed files in

gzip, 431

compress_type argument,

zipfile, 463

Concrete classes, abc
abstract properties, 1182–1186

how abstract base classes

work, 1178

methods in abstract base classes,

1181–1182

registering, 1179

Concurrent operations. See
threading module

condition command, pdb, 998–999

Condition object

synchronizing processes, 547–548

synchronizing threads, 523–524

Conditional breakpoints, 998–999

ConfigParser module

accessing configuration settings,

864–869

combining values with

interpolation, 875–878

configuration file format, 862

defined, 770

modifying settings, 869–871

option search path, 872–875

purpose of, 861–862

reading configuration files,

862–864

reference guide, 878

saving configuration files,

871–872

Configuration files

configuring readline library,

823–824

saving in pdb debugger,

1011–1012

working with. See
ConfigParser module

Configuration variables,

sysconfig, 1160–1161

conflict_handler, argparse,

807–808

connect()function

creating embedded relational

database, 352

sending email message with

smtplib, 728

socket setup for TCP/IP echo

client, 573–574

Connections

easy TCP/IP client, 575–577

to IMAP server, 739–740

monitoring multiple, with

select()function, 596–597

segments of pipe with

subprocess, 489–490

to server with xmlrpclib,

704–706

sharing with sqlite3, 383–384

constant property, abc, 1183

Constants

option actions in optparse, 785

text, 4–9

Consuming, deque, 77–78

Container data types

Counter, 70–74

defaultdict, 74–75

deque, 75–79

namedtuple, 79–82

OrderedDict, 82–84

Context manager

locks, 522–523

utilities. See contextlib
module

Context, running profiler in, 1026

context_diff()function,

difflib output, 65

contextlib module

closing open handles, 169–170

context manager API, 164–167

defined, 129

from generator to context

manager, 167–168

nesting contexts, 168–169

purpose of, 163

reference guide, 170–171

contextmanager() decorator,

167–168

Contexts

decimal module, 201–205

nesting, 168–169

reference guide, 207

continue command, pdb
breakpoints, 991

Controlling parser, shlex, 856–858

Conversion

argument types in argparse,

817–819

optparse option values, 783

Converter, 364

Cookie module

alternative output formats,

682–683

creating and setting cookies, 678

defined, 637

deprecated classes, 683

encoded values, 680–681

morsels, 678–680

purpose of, 677–678

receiving and parsing cookie

headers, 681–682

reference guide, 683

copy() function

creating shallow copies with

copy, 118

files, with shutil, 273

IMAP4 messages, 755–756

__copy__() method, 118–119,

819–820

copy module

customizing copy behavior,

119–120

deep copies, 118–119

defined, 70

purpose of, 117–118

recursion in deep copy, 120–123

reference guide, 123

shallow copies, 118

copy2() function, shutil,

273–274

copyfile() function, shutil,

271–272

1268 Index

copyfileobj() function,

shutil, 272

Copying

directories, 276–277

duplicating objects using copy.

See copy module

files, 271–275

copymode() function, shutil,

274–276

copysign() function, math,

229–230

copystat() function, shutil,

275–276

copytree() function, shutil,

276–277

Cosine, math
hyperbolic functions, 243–244

trigonometric functions, 240–243

count action, optparse, 787–788

count() function

customizing aggregation in

sqlite3, 380–381

new iterator values with

itertools, 146–147

Counter container

accessing counts, 71–73

container data type, 70

initializing, 70–71

supporting arithmetic, 73–74

Counts, accessing with Counter,

71–73

count_words(), MapReduce,

558

Coverage report information,

trace, 1013–1017

CoverageResults, Trace
object, 1020–1021

cPickle, importing, 335

cProfile module, 1022

CPUs, setting process limits, 1137

crc32() function, checksums in

zlib, 425

create(), messages in

IMAP4, 756

create_aggregate(),
sqlite3, 381

create_connection(), TCP/IP

clients, 575–577

createfunction() method,

sqlite3, 379–380

CRITICAL level, logging, 881

Cryptography

creating UUID name-based

values, 686–688

generating hashes and message

digests. See hashlib module

message signing and verification.

See hmac module

cStringIO buffers, 314–315

CSV (comma-separated value) files.

See csv module

csv module

bulk loading in sqlite3,

362–363

defined, 334

dialects, 413–418

purpose of, 411

reading, 411–412

reference guide, 420

retrieving account mailboxes in

imaplib, 742

using field names, 418–420

writing, 412–413

ctime() function, wall clock

time, 174

Cultural localization API.

See locale module

curly braces { },

string.Template, 5–7

Currency setting, locale, 915–916

Current date, 182

Current process,

multiprocessing, 531–532

Current thread, threading,

507–508

Current usage, resource,

1134–1135

Current working directory, os, 1112

currentframe() function,

inspect, 1213

Cursor, 355, 357–358

Custom importer, sys, 1083–1085,

1093–1094

Customizing

actions, with argparse,

819–820

aggregation, with sqlite3,

380–381

classes, with operator,

161–162

copy behavior, with copy,

119–120

encoding, with codecs, 307–313

package importing, with sys,

1091–1093

site configuration, with site,

1051–1052

sorting, with sqlite3, 381–383

user configuration, with site,

1053–1054

cycle() function,

itertools, 147

Cyclic references, weakref,

109–114

D
Daemon processes,

multiprocessing, 532–534

Daemon threads, threading,

509–511, 512–513

Data archiving

overview of, 421

tar archive access. See tarfile
module

ZIP archive access. See
zipfile module

Data argument, SMTPServer
class, 734

Data communication, Unicode,

303–307

Data compression

bzip2 compression. See bz2
module

GNU zlib compression. See zlib
module

overview of, 421

read and write GNU zip files. See
gzip module

ZIP archives. See zipfile
module

Data(), creating custom XML tree

builder, 398

Data decompression

archives in tarfile, 456

bzip2 format. See bz2 module

GNU zip library. See zlib
module

gzip module, 430–436

overview of, 421

ZIP archives, See zipfile
module

data definition language (DDL)

statements, 353–355

Data extremes, from heap, 92–93

Data files

Index 1269

retrieving for packages with

pkgutil, 1255–1258

retrieving with zipimport,

1244–1246

Data persistence and exchange

anydbm module, 347–350

comma-separated value files. See
csv module

embedded relational database. See
sqlite3 module

object serialization. See pickle
module

overview of, 333–334

shelve module, 343–346

whichdb module, 350–351

XML manipulation API. See
ElementTree

Data structures

array module, 84–87

bisect module, 93–96

collections module. See
collections module

copy module, 117–123

heapq module, 87–93

overview of, 69–70

pprint module, 123–127

Queue module, 96–102

struct module, 102–106

weakref module. See
weakref module

Data types

encoding and decoding in

JSON, 690

XML-RPC server, 706–709

Database types, anydbm, 347–348

Databases

identifying DBM-style formats,

350–351

implementing embedded

relational. See sqlite3
module

providing interface for

DBM-style. See anydbm
module

Data_encoding value,

translation, 299

Date arithmetic, datetime,

186–187

Date class, calendar, 182–185

Date columns, sqlite3 converters

for, 364

Date values

comparing time and, 184–185

datetime module, 182–185

Dates and times

calendar module dates,

191–196

clock time. See time module

locale module, 917–918

manipulating values. See
datetime module

overview of, 173

Datetime class, 188–189

datetime module

combining dates and times,

188–189

comparing values, 187–188

converters for date/timestamp

columns in sqlite3, 364

date arithmetic, 186–187

dates, 182–185

defined, 173

formatting and parsing, 189–190

purpose of, 180

reference guide, 190–191

time zones, 190

timedelta, 185–186

times, 181–182

day attribute, date class,

182–183

DBfilenameShelf class,

343–344

dbhash module, 347, 348–349

dbm module

accessing DBM-style databases,

347–348

creating new database, 348–349

creating new shelf, 344

DBM-style databases. See also
anydbm module, 350–351

DDL (data definition language)

statements, 353–355

DEBUG level, logging,

881–882

DEBUG_COLLECTABLE flag, gc,

1152, 1154

Debugging

memory leaks with gc,

1151–1159

threads via thread names,

507–508

threads with sys, 1078–1080

using cgitb. See cgitb
module

using dis, 1190–1192

using interactive debugger. See
pdb module

using predicted names in

temporary files, 269–270

DebuggingServer, SMTP,

735

DEBUG_INSTANCES flag, gc,

1154–1155

DEBUG_LEAK flag, gc, 1158–1159

DEBUG_OBJECTS flag, gc, 1152

DEBUG_SAVEALL flag, gc, 1156,

1159

DEBUG_STATS flag, gc, 1152

DEBUG_UNCOLLECTABLE flag, gc,

1152, 1154

decimal module

arithmetic, 199–200

contexts, 201–207

Decimal class, 198–199

defined, 197

fractions, 207–211

math module, 223–245

purpose of, 197

random module, 211–223

special values, 200–201

decode() method, custom

encoding, 312–313

decoded() method,

encodings, 286

Decoding

Base64, 671–672

data in strings with pickle,

335–336

error handling with codecs,

294–295

files with codecs, 287–289

JSON, 690, 697–700

Decoding maps, 307–309

decompress() method

compressing network data in

bz2, 443

compressing network data in

zlib, 426–427

Decompress object, zlib,

423–425

Decompression, data

archives in tarfile, 456

bzip2 format. See bz2 module

1270 Index

Decompression, data (continued)

GNU zip library. See zlib
module

gzip module, 430–436

overview of, 421

ZIP archives. See zipfile
module

Decompression, zlib
compressing network data,

426–430

incremental, 423–424

in mixed content streams,

424–425

working with data in memory,

422–423

decompressobj(), zlib,

424–425

Decorators, functools
acquiring function properties,

132–133, 136–138

other callables, 133–136

partial objects, 130–132

reference guide, 141

dedented_text,
textwrap, 11–13

Deep copies, copy
creating, 118–119

customizing copy behavior, 119

recursion, 120–123

__deepcopy__() method, copy,

118–123

deepcopy()method, 118–119

default() method, cmd, 840,

846

DEFAULT section,

ConfigParser, 872, 876

Defaultdict, container data type,

74–75

DEFERRED isolation level,

sqlite3, 373–374

Degrees

converting from radians to,

239–240

converting to radians from,

238–239

Delay function, Scheduler, 894–896

Deleting

email messages, 756–758

messages from Maildir mailbox,

764–765

messages from mbox mailbox,

761–762

Delimiter class attribute,

string.Template, 7–9

delitem() function, sequence

operators, 158

Denominator values, creating

fraction instances, 207–208

DeprecationWarning, 182,

1233

deque
consuming, 77–78

container data type, 75–76

populating, 76–77

rotation, 78–79

detect_types flag, sqlite3,

363–366

Developer tools

byte-compiling source files,

1037–1039

creating class browser,

1039–1043

detailed traceback reports. See
cgitb module

exceptions and stack traces. See
traceback module

interactive debugger. See pdb
module

online help for modules, 920–921

overview of, 919–920

performance analysis with

profile, 1022–1026

performance analysis with

pstats, 1027–1031

testing with automated

framework. See unittest
module

testing with documentation. See
doctest module

timing execution of bits of code.

See timeit module

tracing program flow. See trace
module

Dialect parameters, csv, 415–417

Dialects, csv
automatically detecting, 417–418

dialect parameters, 415–417

overview of, 413–414

Dictionaries

JSON format for encoding, 694

storing values using timeit,

1033–1035

DictReader class, csv, 418–420

DictWriter class, csv, 418–420

Diff-based reporting options,

doctest, 933–935

Differ class, 62, 65

difflib module

comparing arbitrary types, 66–68

comparing bodies of text, 62–65

comparing sequences, 61–62

junk data, 65–66

reference guide, 68

digest() method

binary digests in hmac, 475–476

calculating MD5 hash in

hashlib, 470

dircache module

annotated listings, 321–322

defined, 247

listing directory contents,

319–321

purpose of, 319

reference guide, 322

dircmp class, filecmp, 326,

328–332

Directories

cache listings, 319–322

comparing, 327–332

compiling one only, 1037–1038

creating temporary, 268–269

functions in os, 1118–1119

installing message catalogs

in, 902

site module user, 1047–1048

Directory trees

copying directories, 276–277

moving directory, 278

removing directory and its

contents, 277–278

traversing in os, 1120–1121

traversing in os.path, 256–257

dirname() function, path

parsing, 250

dis() function, 1187

dis module

basic disassembly, 1187

classes, 1189–1190

compiler optimizations,

1198–1199

counting bytecodes with, 1078

defined, 1169

disassembling functions,

1187–1189

performance analysis of loops,

1192–1198

Index 1271

purpose of, 1186

reference guide, 1199–1200

using disassembly to debug,

1190–1192

disable command, breakpoints in

pdb, 993–994

Disabling, site, 1054

__dispatch() method,

MyService, 723

Dispatcher class, asyncore,

619–621

Dispatching, overriding in

SimpleXMLRPCServer,

722–723

displayhook, sys, 1060–1062

Dissecting matches with groups, re,

30–36

distb() function, 1191

disutils, sysconfig extracted

from, 1160

Division operators, 156–157

DNS name, creating UUID from, 687

DocFileSuite class, 945

doc_header attribute, cmd,

847–848

doctest module

defined, 919

external documentation, 939–942

getting started, 922–924

handling unpredictable output,

924–928

purpose of, 921–922

reference guide, 948–949

running tests, 942–945

test context, 945–948

test locations, 936–939

tracebacks, 928–930

using unittest vs., 922

working around whitespace,

930–935

DocTestSuite class, 945

Documentation

retrieving strings with inspect,

1206–1207

testing through. See doctest
module

Documents, XML

building with Element nodes,

400–401

finding nodes in, 390–391

parsing, 387

watching events while parsing,

393–396

do_EOF(), cmd, 839–840

do_GET() method, HTTP GET,

644–646

dollar sign ($),

string.Template, 5–7

Domain, installing message catalogs

in directories, 902

Domain sockets, UNIX, 583–587

do_POST() method, HTTP POST,

646–647

do_shell(), cmd, 848–849

dot (.), character sets in pattern

syntax, 23–24

DOTALL regular expression flag,

39, 45

Dotted API names,

SimpleXMLRPCServer,

718–719, 721

Double-ended queue (deque),

collections, 75–79

double_space()function,

doctest, 930

down (d) command, pdb, 980

downloadEnclosures()
function, Queue class, 99–102

dropwhile() function,

itertools, 148–149, 150

dump() function, json, 700–701

dumpdbm module, 348–349

dumps() function

encoding data structure with

pickle, 335–336

JSON format, 692–694

Duplicating objects. See copy
module

E
Echo client

implementing with asynchat,

632–636

implementing with asyncore,

621–625

TCP/IP, 573–574

UDP, 581–583

Echo server

implementing with asynchat,

630–632, 634–636

implementing with asyncore,

619–625

SocketServer example,

610–615

TCP/IP socket, 572–573

UDP, 581–583

EchoHandler class, 620–621,

630–632

EchoRequestHandler,
SocketServer, 611–612

ehlo(), SMTP encryption,

730–732

element() function,

ElementTree, 400–401

elements() method,

Counter, 72

ElementTree
building documents with element

nodes, 400–401

building trees from lists of nodes,

405–408

creating custom tree builder,

396–398

defined, 334

finding nodes in document,

390–391

parsed note attributes, 391–393

parsing strings, 398–400

parsing XML document, 387–388

pretty-printing XML, 401–403

purpose of, 387

reference guide, 410–411

serializing XML to stream,

408–410

setting element properties,

403–405

traversing parsed tree, 388–390

watching events while parsing,

393–396

ELLIPSIS option, unpredictable

output in doctest, 925

Email

IMAP4 client library. See
imaplib module

manipulating archives. See
mailbox module

sample mail servers, smptd
module, 734–738

SMTP client. See smtplib
module

Embedded comments, shlex, 854

Embedded flags in patterns,

searching text, 44–45

1272 Index

Embedded relational database. See
sqlite3 module

empdir() function, tempfile,

270–271

emptyline(), cmd, 846

enable command, breakpoints in

pdb, 994–996

enable() function, cgitb, 969,

972–973

encode() method

custom encoding, 312–313

JSONEncoder class, 698

encodedFile() function,

translations, 298–299

Encoding

binary data with ASCII. See
base64 module

Cookie headers, 680–681

data in strings with pickle,

335–336

files for upload with urllib2,

664–667

JSON, classes for, 697–700

JSON, custom types, 695–697

JSON, dictionaries, 694

JSON, simple data types, 690

JSON, working with streams and

files, 700–701

network resource access with

urllib, 653–655

network resource access with

urllib2, 660–661

Encoding, codecs
byte ordering, 289–291

defining custom, 307

error handling, 291–294

incremental, 301–303

non-Unicode, 300–301

standard I/O streams, 295–298

translation, 298–300

understanding, 285–287

Unicode data and network

communication, 303–307

working with files, 287–289

Encoding maps, 307–309

Encryption, SMTP class, 732–733

end events, watching while parsing,

393–396

end() method

creating custom tree builder, 398

finding patterns in text, 14

end-ns events, watching while

parsing, 394–396

Endianness

byte ordering in codecs,

289–291

reference guide, 314

struct module, 103–105

__enter__() method,

contextlib, 164–165

enter() method, sched, 895,

897–898

enterabs() method, sched,

897–898

enumerate(), threads, 512–513

Enumerations, optparse, 784

Environment variables, os,

1111–1112

EnvironmentError class,

exceptions, 1217

EOFError exception, 1220

epoll() function, select, 608

Equality

OrderedDict, 83–84

testing with unittest, 953–955

equals sign (=), config files, 862

erf() function, math, 244–245

erfc() function, math, 245

Error cases, anydbm, 349–350

error conflict_handler,

argparse, 808–810

Error handling. See also Exception

handling.

BaseHTTPServer, 649–650

codecs, 291–295

imports, 1094–1095

linecache, 263–264

logging, 878–883

shlex, 858–859

subprocess, 483–486

tracebacks. See traceback
module

ERROR level, logging, 881–882

Escape codes, 22–24, 39–40

Event loop, asyncore, 623–627

Events

asynchronous system. See
signal module

flags for poll(), 604

hooks for settrace(), 1101

POLLERR, 607

signaling between processes,

545–546

signaling between threads,

516–517

watching while parsing, 393–396,

894–898

excel dialect, CSV, 414

excel-tabs dialect, CSV, 414

excepthook, sys, 1072

Exception class, 1216

Exception classes, built-in. See
exceptions module

Exception handling. See also Error

handling.

argparse, 808–810

atexit, 893–894

cgitb. See cgitb module

readline ignoring, 827

sys, 1071–1074

traceback, 959–962

tracing program as it runs,

1106–1107

type conversion in

argparse, 818

XML-RPC server, 712

Exceptional sockets, select()
function, 598

Exceptional values, math, 224–226

Exceptions

debugging using dis, 1190–1192

testing for, unittest, 955–956

exceptions module

base classes, 1216–1217

defined, 1169

purpose of, 1216

raised exceptions. See Raised

exceptions

reference guide, 1233

warning categories, 1233

Exchange, data. See data persistence

and exchange

exc_info(), sys, 1072–1073

exclamation point (!), shell

commands, 848–849

EXCLUSIVE isolation level,

sqlite3, 374–375

exec() function, os, 1124–1125,

1127

Executable architecture, platform,

1133–1134

execute() method, sqlite3,

355, 359–360

executemany() method,

sqlite3, 362–363

Index 1273

executescript() method,

sqlite3, 354

Execution

changing flow in pdb, 1002–1009

timing for small bits of code. See
timeit module

using trace directly from

command line, 1012–1013

Execution stack, pdb, 979–984

Exit code, sys, 1064–1065

__exit__() method,

contextlib, 164–167

exp() function, math, 237

expandcars() function,

os.path, 253

expanduser() function,

os.path, 252

expml() function, math, 237–238

Exponential distribution,

random, 222

Exponents, math, 234–238

Exporting database contents,

sqlite3, 376–378

Exposed methods,

SimpleXMLRPCServer,

720–723

expovariate() function,

random, 222

EXPUNGE command, emptying

email trash, 757–758

extend() method,

ElementTree, 405–408

extend_path() function,

pkgutil, 1247–1249

External commands

running with os, 1121–1122

running with subprocess,

482–486

External documentation, doctest,

939–942

extract() method, tarfile,

451–452

extractall() method,

tarfile, 451–452

extractfile() method,

tarfile, 450–452

Extracting archived files from

archive

tarfile, 450–452

zipfile, 459–460

extract_stack() function,

traceback, 964–965

extract_tb() function,

traceback, 962

F
fabs() function, math, 229–230

factorial() function, math,

231–232

fail*() methods,

unittest, 952

failAlmostEqual() method,

unittest, 954–955

failIf() method,

unittest, 953

failUnless() method,

unittest, 953

failUnlessAlmostEqual()
method, unittest, 954–955

Failure, debugging after, 978–979

Fault objects, XML-RPC

exception handling, 711–714

feedcache module, 346

feedparser module, 100–101

fetch() method, IMAP4, 749–752

fetchall() method, sqlite3,

355–356

fetchmany() method, sqlite3,

356–357

fetchone() method,

sqlite3, 356

Fibonacci sequence calculator,

1023–1026

Field names

csv, 418–420

invalid namedtuple, 81–82

FieldStorage class, cgi
module, 654

FIFO (first-in, first-out). See also
Queue module, 96–97

File arguments, argparse,

819–820

__file__ attribute, data files,

1244–1246

File descriptors

mmap, 279–280

os, 1116

file-dispatcher class,

asyncore, 628–629

File format, ConfigParser, 862

File system

comparing files. See filecmp
module

dircache module, 319–322

filename manipulation. See
os.path module

fnmatch module, 315–318

glob module, 257–260

high-level file operations. See
shutil module

linecache module, 261–265

mmap module, 279–284

overview of, 247–248

permissions with os, 1116–1118,

1127–1128

string encoding and decoding. See
codecs module

StringIO module, 314–315

temporary file system objects. See
tempfile module

working with directories,

1118–1119

file_wrapper class, 628–629

filecmp module

comparing directories, 327–328

comparing files, 325–327

defined, 247–248

example data, 323–325

purpose of, 322–323

reference guide, 332

using differences in program,

328–332

fileinput module

converting M3U files to RSS,

883–886

defined, 770

in-place filtering, 887–889

progress metadata, 886–887

purpose of, 883

reference guide, 889

filelineno() function,

fileinput, 886–887

filemode argument, rotating log

files, 879

filename() function,

fileinput, 886–887

Filenames

alternate archive member names

in tarfile, 453–454

alternate archive member names

in zipfile, 462–463

pattern matching with glob,

257–260

platform-independent

manipulation of. See
os.path module

1274 Index

Filenames (continued)

predicting in temporary files,

269–270

specifying breakpoints in another

file, 991–992

UNIX-style comparisons,

315–317

fileno() method, mmap, 279–280

FileReader, asyncore,

628–629

Files. See also file system

arrays and, 85–86

comparing, 325–327

logging to, 879

reading asynchronously in

asyncore, 628–629

running tests in doctest by,

944–945

working with codecs, 287–289

working with json, 700–701

file_to_words() function,

MapReduce, 558

FileType, argparse, 819–820

fill() function, textwrap,

10–12

filter() function, UNIX-style

filename comparisons, 317–318

Filters

directory, 1037

with itertools, 148–151

processing text files as. See
fileinput module

warning, 1170–1174

filterwarnings() function,

1172–1174

finalize() method,

sqlite3, 380

find() function, gettext,

903–904

findall() function

finding nodes in document,

ElementTree, 390–391

multiple pattern matches in text,

15–16

splitting strings with patterns,

58–60

Finder phase, custom importer,

1083–1085

finditer() function, re, 15–17

find_module() method

with imp, 1237–1238

inside ZIP archive, 1241–1242

finish() method,

SocketServer, 610

finish_request() method,

SocketServer, 610

First-in, first-out (FIFO). See also
Queue module, 96–97

Fixed numbers. See decimal
module

Fixed-type numerical data, sequence,

84–87

Fixtures, unittest test, 956–957

Flags

options with ConfigParser,

868–869

variable argument definitions in

argparse, 815–817

Flags, regular expression

abbreviations for, 45

case-insensitive matching, 37–38

embedding in patterns, 44–45

multiline input, 38–39

Unicode, 39–40

verbose expression syntax, 40–44

Float class, fractions, 209

float_info, memory

management in sys, 1069–1070

Floating point columns, SQL support

for, 363–366

Floating-point numbers. See also
decimal module

absolute value of, 229–230

alternate representations, 227–229

common calculations, 230–233

converting to rational value with

fractions, 210–211

generating random integers,

214–215

Floating-point values

commonly used math
calculations, 230–233

converting to integers in math,

226–227

Floating-point values

creating fraction instances from,

208–209

generating random numbers,

211–212

memory management with sys,

1069–1070

testing for exceptional, 224–226

time class, 182

FloatingPointError
exception, 1220

floor() function, math, 226–227

floordiv() operator, 156

flush() method

incremental

compression/decompression in

zlib, 424

incremental decompression in

bz2, 439

fmod() function, math, 232–233

fnmatch module

defined, 247

filtering, 317–318

purpose of, 315

reference guide, 318

simple matching, 315–317

translating patterns, 318

fnmatchcase() function,

316–317

Folders, Maildir mailbox, 766–768

forcing garbage collection, gc,

1141–1146

fork() function, os, 1122–1125,

1127

Forking, adding to HTTPServer,

648–649

ForkingMixIn, 617–618, 649

format() function, locale,

916–917

format_exception() function,

traceback, 958, 961–962

formatmonth() method,

calendar, 192

format_stack() function,

traceback, 958, 964

Formatting

calendars, 191–194

dates and times with datetime,

189–190

dates and times with locale,

917–918

DBM-style database with

whichdb, 350–351

email messages. See mailbox
module

JSON, 692–694

numbers with locale, 916–917

printing with pprint, 123–127

stack trace in traceback, 958

time zones with time, 178

warnings, 1176

Index 1275

formatwarning() function,

warning, 1176

formatyear() method,

calendar, 192–194

fractions module

approximating values, 210–211

arithmetic, 210

creating fraction instances,

207–210

defined, 197

purpose of, 207

reference guide, 211

Frames, inspecting runtime

environment, 1213–1216

frexp() function, math, 228–229

From headers, smtplib, 728

from_float() method,

Decimal class, 198

fromordinal() function,

datetime, 184, 189

fromtimestamp() function,

datetime, 183–184, 189

fsum() function, math, 231

Functions

arguments for, 1209–1210

disassembling, 1187–1189

mathematical. See math module

scanning using pyclbr,

1042–1043

setting breakpoints, 991

string, 4–5

Struct class vs., 102

tools for manipulating. See
functools module

traceback module, 958–959

using Python in SQL, 378–380

functools module

acquiring function properties,

132–133

acquiring function properties for

decorators, 136–138

comparison, 138–141

decorators. See decorators,

functools
defined, 129

other callables, 133–136

partial objects, 130–132

partial objects, 130–132

purpose of, 129

reference guide, 141

FutureWarning, 1233

G
gamma() function, math, 232

gammavariate() function,

random, 223

Garbage collector. See also gc
module, 1065–1066

Gauss Error function, statistics,

244–245

gauss() function, random, 222

gc module, 1138–1160

collection thresholds and

generations, 1148–1151

debugging memory leaks,

1151–1159

defined, 1138–1160

forcing garbage collection,

1141–1146

purpose of, 1138

reference guide, 1159–1160

references to objects that cannot

be collected, 1146–1148

tracing references, 1138–1141

gdbm module, 347–349

Generations, gc collection,

1148–1151

Generator function, contextlib,

167–168

GeneratorExit exception, 1221

get() method

basic FIFO queue, 97

ConfigParser, 865–867,

875–878

LifoQueue, 97

PriorityQueue, 98–99

GET requests

BaseHTTPServer, 644–646

client, 657–660

getaddrinfo() function,

socket, 568–570, 576

getargspec() function,

inspect, 1209–1210

getargvalues() function,

inspect, 1213

getattime() function,

os.path, 254

getboolean() method,

ConfigParser, 867–868

getcallargs() function,

inspect, 1209–1210

getclasstree() function,

inspect, 1210–1212

get_code() method,

zipimport, 1242–1243

getcomments() function,

inspect, 1206–1207

get_config_vars() function,

sysconfig, 1160–1163

getcontext(), decimal
module, 201–202

getctime() function,

os.path, 254

get_current_history_
length(), readline,

832–834

getcwd() function, os, 1112

get_data() function, pkgutil,

1255–1258

get_data() method

pkgutil, 1097

sys, 1095–1097

zipimport, 1246

getdefaultencoding()
function, sys, 1058–1059

getdefaultlocale() function,

codecs, 298

getdoc() function, inspect,

1206

getfloat() method,

ConfigParser, 867–868

getfqdn()function, socket, 565

get_history_item(),
readline, 832–834

gethostbyaddr()function,

socket, 565

gethostbyname() function,

socket, 563–564

gethostname() function,

socket, 563, 577–580

getinfo() method, zipfile,

458–459

getint() method,

ConfigParser, 867

getline() function,

linecache, 263–264

get_logger(),
multiprocessing, 539–540

getmember(), tarfile,

449–450

getmembers() function,

inspect, 1201–1203,

1204–1206

getmembers(), tarfile,

449–450

1276 Index

getmoduleinfo() function,

inspect, 1201–1203

getmro() function, inspect,

1212–1213

getmtime() function,

os.path, 254

getnames(), tarfile, 449

getnode() function, uuid,

684–686

get_opcodes(), difflib, 67

getopt() function, getopt, 771

getopt module, 770–777

abbreviating long-form

options, 775

complete example of, 772–775

defined, 769

ending argument processing, 777

function arguments, 771

GNU-style option parsing,

775–777

long-form options, 772

optparse replacing, 777,

779–781

purpose of, 770–771

reference guide, 777

short-form options, 771–772

getpass module

defined, 769

example of, 836–837

purpose of, 836

reference guide, 838

using without terminal, 837–838

get_path(), sysconfig, 1166

get_path_names() function,

sysconfig, 1163–1164

get_paths() function,

sysconfig, 1164–1166

get_platform() function,

sysconfig, 1167

getprotobyname(),
socket, 567

get_python_version()
function, sysconfig,

1167–1168

getreader() function,

codecs, 298

getrecursionlimit()
function, sys, 1067–1068

getrefcount() function, sys,

1065

get_referents() function, gc,

1138–1139

get_referrers() function, gc,

1147–1148

getreusage() function,

resource, 1134–1135

get_scheme_names() function,

sysconfig, 1163–1166

getservbyname(),
socket, 566

getsignal(), signal,

499–501

getsize() function,

os.path, 254

getsockname() method,

socket, 580

getsource() function,

inspect, 1207–1208

get_source() method,

zipimport, 1243–1244

getsourcelines() function,

inspect, 1207–1208

getstate() function, random,

213–214

get_suffixes() function, imp,

1236–1237

gettempdir() function,

tempfile, 270–271

Getters, operator, 159–161

gettext module

application vs. module

localization, 907–908

creating message catalogs from

source code, 900–903

defined, 899

finding message catalogs at

runtime, 903–904

plural values, 905–907

purpose of, 899–900

reference guide, 908–909

setting up and using

translations, 900

switching translations, 908

get_threshold() function, gc,

1149–1151

geturl() method,

urlparse, 641

getwriter() function,

codecs, 296

GIL (Global Interpreter Lock)

controlling threads with sys,

1074–1078

debugging threads with sys,

1078–1080

glob module

character ranges, 260

combining fnmatch
matching, 318

defined, 247

example data, 258

purpose of, 257–258

reference guide, 260

single character wildcard,

259–260

wildcards, 258–259

Global locks, controlling threads

with sys, 1074–1078, 1080

Global values, doctest test

context, 945–948

gmtime() function, time, 177

GNU

compression. See gzip module;

zlib module

option parsing with getopt,

775–777

readline library. See readline
module

gnu_getopt() function,

775–777

go() method, cgitb, 979–981

Graph class. See gc module

Greedy behavior, repetition in pattern

syntax, 19–21

Gregorian calendar system, 183–184,

190

groupby() function,

itertools, 151–153

groupdict() function, re, 33

Groups

argparse argument, 810–812

character, formatting numbers

with locale, 916

data, in itertools, 151–153

dissecting matches with, 30–36

optparse, 791–793

groups() method, Match object,

31–36

gzip module

purpose of, 430

reading compressed data,

433–434

reference guide, 436

working with streams, 434–436

writing compressed files,

431–433

GzipFile, 431–433, 434–436

Index 1277

H
handle() method,

SocketServer, 610

handle_close() method,

asyncore, 621, 623–625

handle_connect() hook,

asyncore, 621

Handler, implementing with

asynchat, 632–634

handle_read() method,

asyncore, 623, 628–629

handle_request(),
SocketServer, 609

Handles, closing open, 169–170

handle_write() method,

asyncore, 623

Hanging indents, textwrap, 12–13

Hard limits, resource, 1136

has_extn(), SMTP
encryption, 730

hashlib module

creating hash by name, 471–472

incremental updates, 472–473

MD5 example, 470

purpose of, 469

reference guide, 473

sample data, 470

SHA1 example, 470–471

has_key() function, timeit,

1034–1035

has_option(),
ConfigParser, 866–867

has_section(),
ConfigParser, 865–866

Headers

adding to outgoing request in

urllib2, 661–662

creating and setting Cookie, 678

encoding Cookie, 680–681

receiving and parsing Cookie,

681–682

setting in BaseHTTPServer,

650–651

“Heads,” picking random items, 216

Heap sort algorithm. See heapq
module

heapify() method, heapq,

90–92

heappop() method, heapq,

90–91

heapq module

accessing contents of heap, 90–92

creating heap, 89–90

data extremes from heap, 92–93

defined, 69

example data, 88

purpose of, 87–88

reference guide, 92–93

heapreplace() method, heapq,

91–92

Heaps, defined, 88

Help command, cmd, 840, 842–843

Help for modules, pydoc, 920–921

help() function, pydoc, 921

Help messages, argparse,

805–807

Help messages, optparse
application settings, 793–795

organizing options, 791–793

overview of, 790–791

hexdigest() method

calculating MD5 hash,

hashlib, 470–471

digest() method vs., 475–476

HMAC message signatures, 474

SHA vs. MD5, 474–475

HistoryCompleter class,

readline, 832–834

hmac module

binary digests, 475–476

message signature applications,

476–479

purpose of, 473

reference guide, 479

SHA vs. MD5, 474–475

signing messages, 474

Hooks, triggering actions in

readline, 834–835

Hostname

parsing URLs, 639

socket functions to look up,

563–565

Hosts

multicast receiver running on

different, 590–591

using dynamic values with

queries, 359–362

hour attribute, time class, 181

HTML help for modules, pydoc,

920–921

HTML output, cgitb, 972

HTMLCalendar, formatting, 192

HTTP

BaseHTTPServer. See
BaseHTTPServer module

cookies. See Cookie module

HTTP GET, 644, 657–660

HTTP POST, 646–647, 661

Human-consumable results, JSON,

692–694

Hyperbolic functions, math,

243–244

hypot() function, math, 242–243

Hypotenuse, math, 240–243

I
I/O operations

asynchronous network. See
asyncore module

codecs, 287–289, 295–298

waiting for I/O efficiently. See
select module

id() values, pickle, 342–343

idpattern class attribute,

string.Template, 7–9

ifilter() function,

itertools, 150

ifilterfalse() function,

itertools, 150–151

ignore command, breakpoints in

pdb, 999–1001

ignore mode, codec error

handling, 292–293, 295

IGNORECASE regular expression

flag

abbreviation, 45

creating back-references in re, 53

searching text, 37–38

Ignoring breakpoints, 999–1001

Ignoring signals, 502

Illegal jumps, execution flow in pdb,

1005–1008

imap() function, itertools,

145–146, 148

IMAP (Internet Message Access

Protocol). See also imaplib
module, 738–739

IMAP4_SSL. See imaplib module

IMAP4_stream, 739

imaplib module

connecting to server, 739–741

defined, 727

deleting messages, 756–758

example configuration, 741

fetching messages, 749–752

1278 Index

imaplib module (continued)

listing mailboxes, 741–744

mailbox status, 744–745

moving and copying messages,

755–756

purpose of, 738–739

reference guide, 758

search criteria, 747–749

searching for messages, 746–747

selecting mailbox, 745–746

uploading messages, 753–755

variations, 739

whole messages, 752–753

IMMEDIATE isolation level,

sqlite3, 374

imp module

defined, 1235

example package, 1236

finding modules, 1237–1238

loading modules, 1238–1240

module types, 1236–1237

purpose of, 1235–1236

reference guide, 1240

Impermanent references to objects.

See weakref module

Import errors, 1094–1095

Import hooks, 1083

Import mechanism, Python. See imp
module

Import path, site

adding user-specific locations to,

1047–1048

configuring, 1046–1047

path configuration files,

1049–1051

Import path, sys, 1081–1083

Imported modules, sys, 1080–1081

Importer cache, sys, 1097–1098

ImportError exception

overview of, 1221–1222

raised by find_module(),

1238

sys, 1094–1095

Imports. See also Modules and

imports

from shelve, 1085–1091

target functions in

multiprocessing,

530–531

ImportWarning, 1233

In-memory approach to compression

and decompression, 422–423,

436–438

In-memory databases, sqlite3,

376–378

in-place filtering, fileinput,

887–889

In-place operators, 158–159

INADDR_ANY, socket
choosing address for listening,

TCP/IP, 579

receiving multicast messages, 590

IncompleteImplementation,
abc, 1180–1181

Incremental compression and

decompression

bz2 module, 438–439

zlib module, 423–424

Incremental encoding, codecs,

301–303

Incremental updates, hashlib,

472–473

IncrementalDecoder,
codecs, 301–303, 312

IncrementalEncoder,
codecs, 301–303, 312

Indent, JSON format, 692–693

Indentation, paragraph

combining dedent and fill, 11–12

hanging, 12–13

removing from paragraph, 10–11

IndexError exception,

1222–1223

inet_aton(), IP address in

socket, 570–571

inet_ntoa(), IP address in

socket, 570–571

inet_ntop(), IP address in

socket, 571

inet_pton(), IP address in

socket, 571

INF (infinity) value, testing in

math, 224–225

infile arguments, saving result data in

trace, 1021

INFO level, logging, 881–882

info() method, urllib2, 658

infolist() method,

zipfile, 458

__init__() method

asyncore, 621

inspect, 1205–1206

threading, 527–528

Initialization

array, 84–85

Counter, 70–71

Input

alternative cmd, 849–851

converting iterators, 145–146

searching text using multiline,

38–39

standard streams with codecs,

295–298

streams with sys, 1063–1064

input() function,

fileinput, 884

Input history, readline, 832–834

input_loop() function,

readline, 826

insert statements, sqlite3, 355

Inserting, bisect, 93–95

insert_text(),
readline, 835

insort() method, bisect,

93–95

insort_left() method,

bisect, 95–96

insort_right() method,

bisect, 95–96

inspect module

class hierarchies, 1210–1212

defined, 1169

documentation strings,

1206–1207

example module, 1200–1201

inspecting classes, 1204–1206

inspecting modules, 1203–1204

method and function arguments,

1209–1210

method resolution order,

1212–1213

module information, 1201–1203

purpose of, 1200

reference guide, 1217

retrieving source, 1207–1208

stack and frames, 1213–1216

Inspecting live objects. See
inspect module

Installation paths, sysconfig,

1163–1166

install()function, application

localization with gettext, 908

Index 1279

Integers

converting floating-point values

to, 226–227

generating random, 214–215

identifying signals by, 498

SQL support for columns,

363–366

Interacting with another command,

subprocess, 490–492

Interactive debugger. See pdb
module

Interactive help for modules,

pydoc, 921

Interactive interpreter, starting pdb
debugger, 977

Interactive prompts, interpreter

settings in sys, 1059–1060

Interface

checking with abstract base

classes. See abc module

programming with trace,

1018–1020

Internationalization and localization

cultural localization API. See
locale module

message catalogs. See gettext
module

overview of, 899

reference guide, 920

Internet

controlling spiders, 674–677

encoding binary data, 670–674

HTTP cookies. See Cookie
module

implementing Web servers. See
BaseHTTPServer module

JavaScript Object Notation.

See json module

network resource access. See
urllib module; urllib2
module

overview of, 637–638

splitting URLs into components.

See urlparse module

universally unique identifiers.

See uuid module

XML-RPC client library. See
xmlrpclib module

XML-RPC server. See
SimpleXMLRPCServer
module

Internet Message Access Protocol

(IMAP). See also imaplib
module, 738–739

Interpolation

ConfigParser, 875–878

templates vs. standard string, 5–6

InterpolationDepthError,
ConfigParser, 877

Interpreter

compile-time configuration. See
sysconfig module

getting information about current,

1129–1130

starting pdb debugger within, 977

Interpreter settings, sys
build-time version information,

1055–1057

command-line option, 1057–1058

displayhook, 1060–1062

install location, 1062

interactive prompts, 1059–1060

Unicode defaults, 1058–1059

intro attribute, configuring cmd,

847–848

Introspection API,

SimpleXMLRPCServer
module, 724–726

Inverse hyperbolic functions,

math, 244

Inverse trigonometric functions,

math, 243

Invertcaps, codec, 307–312

IOError exception

argparse, 818

overview of, 1221

retrieving package data with sys,

1096

IP addresses, socket
AF_INET sockets for IPv4, 562

AF_INET6 sockets for IPv6, 562

choosing for listening, 577–580

finding service information,

566–568

looking up hosts on network,

563–565

for multicast, 588, 590–591

representations, 570–571

IP_MULTICAST_TTL, TTL,

588–589

IPPROTO_ prefix, socket, 568

IS-8601 format, datetime objects,

189–190

is_()function, operator, 154

isinstance(), abc, 1178,

1179

islice() function,

itertools, 144

ismethod() predicate, inspect,

1205

isnan() function, checking for

NaN, 226

is_not()function,

operator, 154

Isolation levels, sqlite3, 372–376

is_package() method,

zipimport, 1244

isSet() method,

threading, 517

is_set(), multiprocessing,

545–546

issubclass(), abc, 1178,

1179

is_tarfile() function, testing

tar files, 448–449

is_zipfile() function, testing

ZIP files, 457

Item getters, operator, 159–161

items(), ConfigParser, 865

items(), mailbox, 765

iter() function, ElementTree,

388–390

Iterator functions. See itertools
module

iterdump() method,

Connection, 376–378

iteritems(), mailbox, 765

iterparse() function,

ElementTree, 394–396

itertools module

converting inputs, 145–146

defined, 129

filtering, 148–151

grouping data, 151–153

merging and splitting iterators,

142–145

performance analysis of loops,

1197–1198

producing new values, 146–148

purpose of, 141–142

reference guide, 153

izip() function, itertools,

143–144, 148

1280 Index

J
JavaScript Object Notation. See

json module

join() method

in multiprocessing,

534–537, 542–543, 554

in os.path, 252–253

in threading, 510–511

json module

defined, 638

encoder and decoder classes,

697–700

encoding and decoding simple

data types, 690–691

encoding dictionaries, 694

human-consumable vs. compact

output, 692–694

mixed data streams, 701–702

purpose of, 690

reference guide, 702

working with custom types,

695–697

working with streams and files,

700–701

JSONDecoder class, JSON,

699–700, 701–702

JSONEncoder class, 698–699

js_output() method, Cookie,

682–683

jump command, pdb
changing execution flow, 1002

illegal jumps, 1005–1008

jump ahead, 1002–1003

jump back, 1004

jumpahead() function, random,

220–221

Junk data, difflib, 65–66

K
kevent() function, select, 608

KeyboardInterrupt exception,

502, 1223

KeyError exception, 1034–1035,

1223

kill() function, os. fork(),

1123

kqueue() function, select, 608

L
Lambda, using partial instead

of, 130

Language, installing message

catalogs in directories by, 902

Language tools

abstract base classes. See abc
module

built-in exception classes. See
exceptions module

cultural localization API.

See locale module

inspecting live objects. See
inspect module

message translation and catalogs.

See gettext module

nonfatal alerts with warnings
module, 1170–1177

overview of, 1169–1170

Python bytecode disassembler.

See dis module

last-in, first-out (LIFO) queue, 97

ldexp() function, math, 228–229

lgamma() function, math,

232–233

Libraries, logging, 878

LIFO (last-in, first-out) queue, 97

LifoQueue, 97

Limits, resource, 1135–1138

Line number, warning filters, 1170,

1174

Line-oriented command processors.

See cmd module

linecache module

defined, 247

error handling, 263–264

handling blank lines, 263

purpose of, 261

reading Python source files,

264–265

reading specific lines, 262

reference guide, 265

test data, 261–262

lineno() function, fileinput,

886–887

Lines, reading. See linecache
module

Lineterm argument, difflib, 64

list (l) command, pdb, 980

list() method, imaplib,

741–743

list_contents() service,

SimpleXMLRPCServer,

715, 717

list_dialects(), csv, 414

listdir() function, dircache,

319–321

listen(), TCP/IP socket, 572–573

_listMethods(), Introspection

API, 724

list_public_methods(),
Introspection API in

SimpleXMLRPCServer, 725

Lists

building trees from node,

405–408

maintaining in sorted order with

bisect, 93–96

retrieving registered CSV

dialects, 414

variable argument definitions in

argparse, 815–817

Live help, cmd, 842–843

Live objects. See inspect module

load() function

receiving and parsing Cookie
headers, 682

streams and files in json,

700–701

Loader phase, custom importer,

1083–1085

Loading

bulk, in sqlite3, 362–363

import mechanism for modules.

See imp module

metadata from archive in

tarfile, 449–450

Python code from ZIP archives.

See zipimport module

load_module() method

custom package importing, 1092

with imp, 1238–1240

with zipimport, 1242–1243

loads() function, pickle, 336

Local context, decimal,

204–205

local() function, threading,

526–528

Local variables in tracebacks,

cgitb, 968–971

Locale directory, 902–904

locale module, 909–918

currency, 915–916

date and time formatting,

917–918

defined, 899

formatting numbers, 916–917

Index 1281

parsing numbers, 917

probing current locale, 909–915

purpose of, 909

reference guide, 918

localeconv() function,

locale, 911–915

Localization

cultural localization API. See
locale module

message translation and catalogs.

See gettext module

localtime() function,

time, 177

local_variable value,

inspect, 1214

Location

for interpreter installation in sys,

1062

standard I/O streams, 297–298

temporary file, 270–271

test, with doctest, 936–939

Lock object

access control with

multiprocessing,

546–547

access control with threading,

517–520

as context managers, 522–523

re-entrant locks, 521–522

synchronizing processes with

multiprocessing,

547–548

synchronizing threads with

threading, 523–524

lock_holder(), threading,

519–521

Locking modes, sqlite3. See
isolation levels, sqlite3

log() function, logarithms in

math, 235–236

Log levels, logging, 880–882

Logarithms, math, 234–238

logging module, 878–883

debugging threads via thread

names in, 508

defined, 770

logging in applications vs.

libraries, 878

logging to file, 879

naming logger instances, 882–883

purpose of, 878

reference guide, 883

rotating log files, 879–880

verbosity levels, 880–882

Logging, multiprocessing,

539–540

Logging tracebacks, cgitb,

972–975

Logical operations, operator, 154

loglp() function, logarithms in

math, 236–237

log_to_stderr() function,

multiprocessing, 539–540

Long-form options

argparse, 797–798

getopt, 772–775

optparse, 778–779

Long-lived spiders, robots.txt
file, 676–677

The Long Tail (Anderson), 222

long_event(), sched, 896

Look-ahead assertion, regular

expressions

negative, 47–48

positive, 46–47

in self-referencing expressions,

54–55

Look-behind assertion, regular

expressions

negative, 48–49

positive, 46–47

LookupError class,

exceptions, 1217

Loops, performance analysis of,

1192–1198

Lossless compression

algorithms, 421

Low-level thread support, sys,

1074–1080

ls -1 command, subprocess,

484–485

lstat() function, os, 1116–1119

M
{m}, repetition in pattern syntax,

17–18

m3utorss program, 883–886

MAC addresses, uuid, 684–686

mailbox module

Maildir format, 762–768

mbox format, 759–762

other formats, 768

purpose of, 758–759

reference guide, 768

Mailboxes, IMAP4

listing archive subfolders,

743–744

retrieving account, 741–743

search criteria, 747–748

searching for messages, 746–747

selecting, 745–746

status conditions, 744–745

Maildir format, mailbox, 762–764

Mailfrom argument,

SMTPServer, 734

makedirs() function, os, 1119

make_encoding_map(),
codecs, 308

makefile() function, codecs,

307–313

maketrans() function,

string, 4–5

Manager , multiprocessing,

550–553

Manipulation, array, 85

map() function, vs. imap(),
itertools, 145

MapReduce, multiprocessing,

555–559

match() function, re, 26–30

Match object

compiling expressions, 14–15

dissecting matches with groups,

31

finding multiple matches, 15–16

finding patterns in text, 14

pattern syntax, 17

match.groups(), re, 32

math module

alternate representations, 227–229

angles, 238–240

common calculations, 230–233

converting to integers, 226–227

defined, 197

exponents and logarithms,

234–238

hyperbolic functions, 243–244

positive and negative signs,

229–230

purpose of, 223

reference guide, 244–245

special constants, 223–224

special functions, 244–245

testing for exceptional values,

224–226

trigonometry, 240–243

1282 Index

Mathematics

fixed and floating-point numbers.

See decimal module

mathematical functions. See
math module

overview of, 197

pseudorandom number

generators. See random
module

rational numbers in fractions
module, 207–211

max attribute

date class, 184

time class, 181

max() function, sqlite3,

380–381

Max-heaps, heapq, 88

maxBytes, rotating log files, 880

Maximum values, sys, 1069

maxint, sys, 1069

MAX_INTERPOLATION_DEPTH,

substitution errors, 877

maxtasksperchild parameter,

process pools, 554

maxunicode, sys, 1069

mbox format, mailbox 762

mbox format, mailbox module,

759–762

MD5 hashes

calculating in hashlib, 470

UUID 3 and 5 name-based values

using, 686–688

vs. SHA for hmac, 474–475

Memory management. See gc
module

Memory management and limits,

sys
byte ordering, 1070–1071

floating-point values, 1069–1070

maximum values, 1069

object size, 1066–1068

recursion, 1068–1069

reference counts, 1065–1066

Memory-map files. See mmap
module

MemoryError exception,

1224–1225

Merging iterators, itertools,

142–144

Mersenne Twister algorithm,

random based on, 211

Message catalogs,

internationalization. See
gettext module

Message signatures, hmac, 474,

476–479

Message terminators, asynchat,

629–630

message_ids argument, IMAP4,

749–752

message_parts argument,

IMAP4, 749–752

Messages

combining calls in XML-RPC

into single, 712–714

passing to processes with

multiprocessing,

541–545

reporting informational, with

logging, 878–883

sending SMTP, 728–730

setting log levels, 880–882

warning filter, 1170

Messages, IMAP4 email

deleting, 756–758

fetching, 749–752

moving and copying, 755–756

retrieving whole, 752–753

search criteria, 747–748

searching mailbox for, 746–747

uploading, 753–755

Meta path, sys, 1098–1101

Metacharacters, pattern syntax

anchoring instructions, 24–26

character sets, 20–24

escape codes for predefined

character sets, 22–24

expressing repetition, 17–20

overview of, 16–17

__metaclass__, abstract base

classes, 1178

Metadata

accessing current line in

fileinput, 886–887

copying file, 274–275

reading from archive in

tarfile, 449–450

reading from archive in

zipfile, 457–459

metavar argument, help in

optparse, 791

Method Resolution Order (MRO),

for class hierarchies, 1212–1213

_methodHelp(), Introspection

API, 724–725

Methods

arguments for, 1209–1210

concrete, in abstract base classes,

1181–1182

configuration settings, 864–869

disassembling class, 1189–1190

overriding base class in cmd,

845–846

microsecond attribute

date class, 182–183

time class, 181–182

MIME content, uploading files in

urllib2, 664–667

min attribute

date class, 184

time class, 181

min() function, customizing in

sqlite3, 380–381

Min-heaps, heapq, 88

minute attribute, time, 181

misc_header attribute, cmd,

847–848

Mixed content streams

bz2, 439–440

zlib, 424–425

mkdir() function, creating

directories in os, 1118–1119

mkdtemp() function, tempfile,

267–270

mktime() function, time, 177

mmap module

defined, 248

purpose of, 279

reading, 279–280

reference guide, 284

regular expressions, 283–284

writing, 280–283

MMDF format, mailbox, 768

modf() function, math, 227–229

Modules

gathering information with

inspect, 1201–1203

import mechanism for loading

code in. See imp module

inspecting with inspect,

1203–1204

localization, with gettext,

908

online help for, 920–921

Index 1283

running tests in doctest by,

942–943

warning filters, 1170, 1173–1174

Modules and imports

built-in modules, 1081

custom importers, 1083–1085

custom package importing,

1091–1093

handling import errors,

1094–1095

import path, 1081–1083

imported modules, 1080–1081

importer cache, 1097–1098

importing from shelve,

1085–1091

meta path, 1098–1101

package data, 1095–1097

reloading modules in custom

importer, 1093–1094

Modules and packages

loading Python code from ZIP

archives. See zipimport
module

overview of, 1235

package utilities. See pkgutil
module

Python’s import mechanism. See
imp module

reference guide, 1258

month attribute, date class,

182–183

monthcalendar() method,

Calendar, 192, 194–195

Morsel object, Cookie, 678–680,

681–683

most_common() method,

Counter, 72–73

move() function

moving directory with shutil,

278

moving messages in imaplib,

755–756

MP3 files, converting to RSS feed,

883–886

MRO (Method Resolution Order),

for class hierarchies, 1212–1213

MultiCall class, xmlrpclib
module, 712–714

Multicast groups, defined, 588

Multicast messages

example output, 590–591

overview of, 587–588

receiving, 589–590

sending, 588–589

UDP used for, 562

Multiline input, text search, 38–39

MULTILINE regular expression flag,

38–39, 45

MultiPartForm class,

urllib2, 666

Multiple simultaneous generators,

random, 219–221

multiprocessing module

basics, 529–530

controlling access to resources,

546–547

controlling concurrent access to

resources, 548–550

daemon processes, 532–534

determining current process,

531–532

importable target functions,

530–531

logging, 539–540

managing shared state, 550–551

MapReduce implementation,

555–559

passing messages to processes,

541–544

process exit status, 537–538

process pools, 553–555

purpose of, 529

reference guide, 559

shared namespaces, 551–553

signaling between processes,

545–546

subclassing Process, 540–541

synchronizing operations,

547–548

terminating processes, 536–537

waiting for processes, 534–536

Mutually exclusive options,

argparse, 812–813

my_function(), doctest, 922

MyThreadWithArgs, subclassing

Thread, 514

N
{n}, repetition in pattern syntax, 18

Name-based values, UUID 3 and 5,

686–688

Named groups

creating back-references in re,

52–53

modifying strings with patterns,

56

syntax for, 33–34

verbose mode expressions vs., 41

Named parameters, queries in

sqlite3, 360–362

NamedTemporaryFile()
function, tempfile, 268–270

namedtuple
container data type, 79–80

defining, 80–81

invalid field names, 81–82

parsing URLs, 638–639

NameError exception, 1225

namelist() method, reading

metadata in zipfile, 458

Namespace

creating shared,

multiprocessing,

551–553

creating UUID name-based

values, 686–688

incorporating into APIs, 716–719,

720–721

as return value from

parse_args(), 797

Naming

current process in

multiprocessing,

530–531

current thread in threading,

507–508

hashes, 471–472

logger instances, 882–883

SimpleXMLRPCServer
alternate API, 716–717

SimpleXMLRPCServer
arbitrary API, 719

SimpleXMLRPCServer dotted

API, 718–719

NaN (Not a Number), testing in

math, 225–226

Nargs option, optparse, 789–790

ndiff()function, difflib,

64–66

Negative look-ahead assertion,

regular expressions, 47–48

Negative look-behind assertion,

regular expressions, 48–49

Negative signs, math, 229–230

Nested data structure, pprint, 126

1284 Index

nested() function,

contextlib, 168–169

nested packages, pkgutil,

1253–1255

Nesting contexts, contextlib,

168–169

Nesting parsers, argparse,

813–814

Network communication, Unicode,

303–307

Networking

accessing network

communication. See socket
module

asynchronous I/O. See
asyncore module

Networking

asynchronous protocol handler.

See asynchat module

compressing data in bz2,

443–447

compressing data in zlib,

426–430

creating network servers. See
SocketServer module

overview of, 561

resource access. See urllib
module; urllib2 module

waiting for I/O efficiently. See
select module

new() function, hmac, 471–472,

474–475

Newton-Mercator series, math,

236–237

next command, pdb, 988

ngettext()function, application

localization in gettext, 908

nlargest() method, heapq, 93

Nodes, ElementTree
building documents with

Element, 400–401

building trees from lists of,

405–408

finding document, 390–391

parsed attributes, 391–393

pretty-printing XML, 400–401

setting Element properties,

403–405

Non-daemon vs. daemon threads,

threading, 509–511

Non-POSIX systems

level of detail available through

sysconfig on, 1161–1162

vs. POSIX parsing with shlex,

869–871

Non-Unicode encodings, codecs,

300–301

Nonblocking communication and

timeouts, socket, 593–594

Nonblocking I/O with timeouts,

select, 601–603

Noncapturing groups, re, 36–37

None value

alternative groups not matched,

35–36

connecting to XML-RPC server,

705–706

custom encoding, 308–310

no default value for optparse,

782–783

not finding patterns in text, 14

retrieving registered signal

handlers, 499–501

Nonfatal alerts, 1170–1177

Nonuniform distributions, random,

222–223

Normal distribution, random, 222

NORMALIZE_WHITESPACE,
doctest, 934–935

Normalizing paths, os.path,

253–254

normalvariate() function,

random, 222

normpath() function,

os.path, 253

Not a Number (NaN), math,

225–226

not_called(), atexit, 892

not_()function, logical operations

in operator, 154

NotImplementedError
exception, 735, 1225–1226

%notunderscored pattern,

string.Template, 7–9

nsmallest() method, heapq, 93

Numbers

formatting with locale module,

916–917

managing breakpoints in pdb
with, 993–996

parsing with locale module,

916–917

Numerator values, fractions,

207–208

Numerical id, back-references in re,

50–56

Numerical values, arithmetic

operators for, 155–157

NumPy, heapq, 87

O
Object_hook argument, JSON,

696–697

Objects

creating UUID, 689–690

impermanent references to. See
weakref module

incorporating namespacing into

APIs, 720–721

memory management by finding

size of, 1066–1068

passing, XML-RPC server,

709–710

persistent storage of. See
shelve module

SocketServer server, 609

Objects, pickle
circular references between,

340–343

reconstruction problems, 338–340

serialization of. See pickle
module

unpicklable, 340

One-shot operations in memory,

bz2, 436–438

onecmd()
overriding base class methods in

cmd, 846

sys.argv, 851–852

open() function

encoding and decoding files with

codecs, 287–289

shelve, 343–344, 346

writing compressed files in gzip,

431–433

Open handles, closing in

contextlib, 169–170

open() method, urllib2, 667

open_connection(), connecting

to IMAP server, 740

Opening existing database, anydbm,

348–349

OpenSSL, hashlib backed by, 469

Operating system

Index 1285

configuration. See sys module

getting information with

platform, 1131–1133

portable access to features. See
os module

resource management with

resource, 1134–1138

used to build interpreter in sys,

1056–1057

version implementation with

platform, 1129–1134

operator module

arithmetic operators, 155–157

attribute and item “getters,”

159–161

combining operators and custom

classes, 161–162

comparison operators, 154–155

defined, 129

logical operations, 154

in-place operators, 158–159

purpose of, 153

reference guide, 163

sequence operators, 157–158

type checking, 162–163

Option actions, optparse,

784–790

Option flags, regular expression

case-insensitive matching, 37–38

embedding flags in patterns,

42–43

input with multiple lines, 38–39

Unicode, 39–40

verbose expression syntax, 40–42

Option groups, optparse, 791–793

Option values, optparse, 781–784

Optional arguments,

argparse, 810

Optional parameters, trace, 1022

OptionParser, optparse
creating, 777–778

help messages, 790–791, 793–795

setting option values, 781–784

Options, ConfigParser
accessing configuration

settings, 865

defined, 862

as flags, 868–869

testing if values are present,

865–867

Options, ConfigParser file

removing, 870

search process, 872–875

option_string value, argparse, 820

Optparse, 793–795

optparse module

argparse vs., 795–796, 798

creating OptionParser,

777–778

defined, 769

help messages, 790–795

option actions, 784–790

option values, 781–784

purpose of, 777

reference guide, 795

replacing getopt with, 779–781

short- and long-form options,

778–779

OR operation, re, 37

OrderedDict, collections,

82–84

os module

creating processes with

os.fork(), 1122–1125

defined, 1045

directories, 1118–1119

file descriptors, 1116

file system permissions,

1116–1118, 1127–1128

pipes, 1112–1116

process environment, 1111–1112

process owner, 1108–1110

process working directory, 1112

purpose of, 1108

reference guide, 1128–1129

running external commands,

1121–1122

spawn()family of functions,

1127

symbolic links, 1119

waiting for child process,

1125–1127

walking directory tree, 1120–1121

os.environ object, 1111–1112

OSError exception, 1110,

1226–1227

os.exit(), atexit, 892

os.fork(), creating processes

with, 1122–1125

os.kill() function, signal
receiving signals, 499

sending signals, 501

os.open() method, mmap,

279–280

os.path module

building paths, 252–253

defined, 247

file times, 254–255

normalizing paths, 253–254

parsing paths, 248–251

purpose of, 248

reference guide, 257

testing files, 255–256

traversing directory tree, 256–257

os.stat() function, os.path,

254–255

Outcomes, unittest test, 950–952

Outfile arguments, trace, 1021

Outline nodes, finding in document

with ElementTree, 390–391

Output

capturing errors, 488

capturing when running external

command, 484–485

combining regular and error,

488–489

HTML format in cgitb, 972

JSON compact, 692–694

limiting report contents in

pstats, 1028–1029

standard streams with codecs,

295–298

streams with sys, 1063–1064

unpredictable, in doctest,

924–928

OverflowError exception, 225,

1227–1228

overlapping events, sched,

896–897

P
Packages

import mechanism for loading

code. See imp module

retrieving data with sys,

1095–1097

utilities for. See pkgutil
module

Packing data into strings, struct,

102–103

pack_into() method, struct,

105–106

Paragraphs, formatting with

textwrap. See textwrap
module

Parameters, query, 360–362

1286 Index

Pareto (power law), 222

paretovariate() function,

random, 222

parse() function,

ElementTree, 387

parse_and_bind() function,

readline, 823–824

parse_args()
parsing command line with

argparse, 796–797

parsing command line with

optparse, 778

setting optparse values as

default, 781–782

PARSE_DECLTYPES, sqlite3,

363–366

ParseFlags(), imaplib, 752

parseline(), cmd, 846

Parsing

command-line options. See
Command-line option parsing

Cookie headers, 681–682

dates and times, 189–190

numbers with locale, 917

paths with os.path, 247–251

shell-style syntaxes. See shlex
module

times, 178

unparsing URLs with

urlparse, 641–642

URLs with urlparse, 638–640

Parsing, ElementTree
creating custom tree builder,

396–398

parsed note attributes, 391–393

strings, 398–400

traversing parsed tree, 388–390

watching events while, 393–396

XML documents, 387–388

partial objects, functools
acquiring function properties,

132–133

defined, 130

other callables, 133–136

overview of, 130–132

partition(), MapReduce, 558

Passwords

opening Unicode configuration

files, 863–864

parsing URLs, 639

secure prompt with getpass,

836–839

__path__ attribute, data files,

1244–1246

pathname2url()function,

urllib, 655–657

Paths

building from other strings in

os.path, 252–253

configuration files in site,

1049–1051

installation using sysconfig,

1163–1166

joining URLs with urlparse,

642–643

managing with PKG files,

1251–1253

normalizing in os.path,

253–254

parsing in os.path, 247–251

retrieving network resources with

URLs vs., 655–657

pattern attribute,

string.Template, 8

Pattern matching

filenames, with glob, 257–260,

315–317

listing mailbox folders in

imaplib, 743–744

searching and changing text. See
re module

warning filters with, 1172–1174

Pattern syntax, re
anchoring, 24–26

character sets, 20–24

escape codes, 22–24

overview of, 16–17

repetition, 17–20

pdb module

breakpoints, 990–1002

changing execution flow,

1002–1009

customizing debugger with

aliases, 1009–1011

defined, 920

examining variables on stack,

981–984

handing previous interactive

exception, 1073

navigating execution stack,

979–981

purpose of, 975

saving configuration settings,

1011–1012

starting debugger, 976–979

stepping through program,

984–990

Peer argument, SMTPServer, 734

PendingDeprecationWarning,

1233

Performance analysis

of loops with dis, 1192–1198

with profile, 1022–1026

with pstats, 1027–1031

Permissions

copying file, 273

copying file metadata, 274–276

file system functions, 1116–1117

UNIX Domain Sockets, 586

Permutations, random, 216–218

Persistence. See Data persistence and

exchange

Persistent storage of objects. See
shelve module

pformat() function, pprint,

124–125

Picking random items, random,

215–216

pickle module

binary objects sending objects

using, 711

circular references, 340–343

defined, 333

encoding and decoding data in

strings, 335–336

importing, 335

insecurity of, 334

json module vs., 690, 692

problems reconstructing objects,

338–340

purpose of, 334

reference guide, 343

unpicklable objects, 340

working with streams, 336–338

pipe symbol (|), 35, 413–418

Pipes

connecting segments of, 489–490

managing child processes in os,

1112–1116

working directly with, 486–489

PKG files, managing paths with,

1251–1253

pkgutil module

defined, 1235

development versions of

packages, 1249–1251

Index 1287

managing paths with PKG files,

1251–1253

nested packages, 1253–1255

package data, 1255–1258

package import paths, 1247–1249

purpose of, 1247

reference guide, 1258

Placeholders, queries in sqlite3,

359–362

Plain-text help for modules,

pydoc, 920

platform() function,

1130–1131

platform module

defined, 1045

executable architecture,

1133–1134

interpreter, 1129–1130

operating system and hardware

info, 1131–1133

platform() function,

1130–1131

purpose of, 1129

reference guide, 1134

Platform-specific options,

select, 608

Platform specifier, sysconfig,

1167

Plural values, gettext, 905–907

pm() function, cgitb, 978–979

Podcasting client, threaded, 99–102

PodcastListToCSV,
TreeBuilder, 398

poll() function, select, 595,

603–608

POLLERR flag, select, 607

POLLHUP flag, select, 606

Pool class, multiprocessing
MapReduce implementation,

555–559

process pools, 553–555

Popen class, subprocess module

connecting segments of pipe,

489–490

defined, 482

interacting with another

command, 490–492

signaling between processes,

492–498

working directly with pipes,

486–489

popen() function, pipes,

1112–1116

Populating, deque, 76–77

Ports

getting service information with

socket, 566–568

parsing URLs in urlparse, 639

SocketServer echo

example, 615

Positional arguments,

argparse, 810

Positional parameters, queries in

sqlite3, 360

Positive look-ahead assertion,

regular expressions, 46–47

Positive look-behind assertion,

regular expressions, 49–50

Positive signs, math, 229–230

POSIX systems

access() function warnings,

1128

detail available through

sysconfig, 1161–1162

installation paths with

sysconfig, 1163–1166

vs. non-POSIX parsing with

shlex, 869–871

Post-mortem debugging, 978–979

POST requests

BaseHTTPServer, 646–647

client, 661

SimpleXMLRPCServer,

715–716

postcmd(), cmd, 846

postloop(), cmd, 846

post_mortem() function,

cgitb, 978–979

pow() function, math, 234

pprint() function, 123–125

pprint module

arbitrary classes, 125

controlling output width, 126–127

formatting, 124–125

limiting nested input, 126

printing, 123–124

purpose of, 123

recursion, 125–126

reference guide, 127

Pre-instance context, decimal,

205–206

prec attribute, decimal contexts,

202–203

Precision, decimal module

contexts

local context, 204–205

overview of, 202–203

pre-instance context, 205–206

rounding to, 203–204

threads, 206–207

precmd(), cmd, 846

Predicate functions, inspect,

1203–1204

Predicting names, tempfile,

269–270

Prefix_chars parameter,

argparse, 803

Prefixes, argparse option,

802–803

Preinput hook, readline, 834–835

preloop(), cmd, 846

Pretty-print data structures. See also
pprint module, 123–127

pretty-print (pp) command, pdb, 983

Pretty-printing XML,

ElementTree, 401–403

print (p) command, pdb, 983–984

print_callees(), pstats,

1030–1031

print_callers(), pstats,

1030–1031

print_event(), sched, 895

print_exc() function,

traceback, 959–960

print_exception() function,

traceback, 960–961

print_stack() function,

traceback, 963–964

Priorities, event, 897

PriorityQueue, 98–99

prmonth() method,

calendar, 191

Probing current locale, locale,

909–915

Process environment, os, 1111–1112

Process exit status,

multiprocessing, 537–538

Process groups, subprocess,

494–496

Process owners, changing with os,

1108–1110

Process pools,

multiprocessing, 553–555

Process working directory, retrieving

with os, 1112

1288 Index

Processes

creating with os.fork(),

1122–1125

platform independent. See
subprocess module

running external commands with

os, 1121–1122

waiting for child, 1125–1127

Processes and threads

asynchronous system events. See
signal module

managing concurrent operations.

See threading module

managing processes like threads.

See multiprocessing
module

overview of, 481

spawning additional processes.

See subprocess module

process_message()
method, SMTPServer class,

734–735

Processor clock time, time,

174–176

process_request() method,

SocketServer, 610

profile module

defined, 920

running in context, 1026

running profiler, 1023–1026

Program shutdown callbacks,

atexit, 890–894

Programs

following flow of. See trace
module

restarting in pdb, 1008–1009

starting pdb debugger within,

977–978

stepping through execution in

pdb, 984–990

tracing as they run, 1101–1107

Prompts

cmd command, 840

configuring prompt attribute in

cmd, 847–848

interactive interpreter in sys,

1059–1060

Properties

abstract, in abc, 1182–1186

acquiring function, in

functools, 136–138

functools, 132–133

retrieving file, in os.path,

254–255

setting Element, 403–405

showing exceptions, in cgitb,

971–972

socket, 562

Protocol handlers

asynchronous. See asynchat
module

creating custom, with urllib2,

667–670

Proxies, weakref, 108–109

Proxy server, smtpd, 737–738

pstats module

caller and callee graphs,

1029–1031

limiting report contents,

1028–1029

reference guide, 1031

saving and working with

statistics, 1027–1028

Psuedorandom number generators.

See random module

.pth extension, path configuration

files, 1049–1051

public() method,

MyService, 723

PureProxy class, 737–738

put() method

basic FIFO queue, 97

LifoQueue, 97

.pyc file, Python ZIP archives,

466–467

pyclbr module

defined, 920

purpose of, 1039–1041

reference guide, 1043

scanning for classes, 1041–1042

scanning for functions,

1042–1043

pydoc module, 919–921

pygettext, 900–901

Python

bytecode disassembler. See dis
module

import mechanism. See imp
module

loading code from ZIP archives.

See zipimport module

reading source files, 264–265

version and platform,

sysconfig, 1167–1168

ZIP archives, 466–467

python_build() function,

1133–1134

python_compiler() function,

1133–1134

PYTHONUSERBASE environment

variable, 1048

python_version() function,

1133–1134

python_version_tuple()
function, 1133–1134

PyUnit. See unittest module

PyZipFile class, Python ZIP

archives, 466–467

Q
Queries, sqlite3

metadata, 357–358

retrieving data, 355–357

using variables with, 359–362

question mark. See ? (question mark)

question mark, colon (?:),

noncapturing groups, 36–37

Queue module

basic FIFO queue, 96–97

building threaded podcast client,

99–101

communicating between

processes with

multiprocessing,

541–545

defined, 70

LifoQueue, 97

PriorityQueue, 98–99

purpose of, 96

reference guide, 101–102

thread-safe FIFO implementation,

96–102

tracing references with gc,

1139–1141

QUOTE_ALL option, csv, 413

Quoted strings, shlex, 852–854

quote()function, urllib, 655

QUOTE_MINIMAL option, csv, 413

QUOTE_NONE option, csv, 413

QUOTE_NONNUMERIC option,

csv, 413

quote_plus()function,

urllib, 655

Quoting behavior, csv, 413

Index 1289

R
Radians, math, 238–243

Raised exceptions

AssertionError, 1217–1218

AttributeError, 1218–1219

EOFError, 1220

FloatingPointError, 1220

GeneratorExit, 1220–1221

ImportError, 1221–1222

IndexError, 1222–1223

IOError, 1221

KeyboardInterrupt, 1223

KeyError, 1223

MemoryError, 1224–1225

NameError, 1225

NotImplementedError,

1225–1226

OSError, 1226–1227

OverflowError, 1227–1228

ReferenceError, 1228–1229

RuntimeError, 1229–1230

SyntaxError, 1230

SystemError, 1230

SystemExit, 1230

TypeError, 1230–1231

UnboundLocalError,

1231–1232

UnicodeError, 1232

ValueError, 1232

ZeroDivisionError, 1232

raises_exception(),
XML-RPC, 713–714

RAM (random access memory),

in-memory databases, 376

randint() function, random

integers, 214–215

random access memory (RAM),

in-memory databases, 376

Random class, 219–221

random() function

generating random numbers,

211–212

random integers, 214–215

saving state, 213–214

seeding, 212–213

Random integers, random, 214–215

random module

defined, 197

generating random numbers,

211–212

generating random values in

UUID 4, 688–689

multiple simultaneous generators,

219–221

nonuniform distributions,

222–223

permutations, 216–218

picking random items, 215–216

purpose of, 211

random integers, 214–215

reference guide, 223

sampling, 218–219

saving state, 213–214

seeding, 212–213

SystemRandom class, 221–222

Random numbers

generating with random,

211–212

UUID 4 values, 688–689

randrange() function,

random, 215

Rational numbers

approximating values, 210–211

arithmetic, 210

creating fraction instances,

207–210

Fraction class, 207

raw_decode() method, JSON,

701–702

raw_input() function,

readline, 827

rcpttos argument, SMTPServer
class, 734

Re-entrant locks, threading,

521–522

re module

compiling expressions, 14–15

constraining search, 26–30

dissecting matches with groups,

30–36

finding patterns in text with, 14

looking ahead or behind, 45–50

modifying strings with patterns,

56–58

multiple matches, 15–16

overview of, 13

reference guide, 60

retrieving account mailboxes in

imaplib, 742

self-referencing expressions,

50–56

splitting with patterns, 58–60

re module, pattern syntax

anchoring, 24–26

character sets, 20–24

escape codes, 22–24

overview of, 16–17

repetition, 17–20

re module, search options

case-insensitive matching, 37–38

embedding flags in patterns,

42–43

input with multiple lines, 38–39

Unicode, 39–40

verbose expression syntax, 40–42

read() method

configuration files in

ConfigParser, 863–864

custom protocol handlers with

urllib2, 667

extracting archived files in

zipfile, 450–452

StringIO buffers, 314–315

using HTTP GET in

urllib2, 658

readable() function,

asyncore, 621–623

Readable results, JSON vs.

pickle, 692

Readable sockets, poll()
function, 605

Readable sockets, select()
function, 596–597

reader() function

isolation levels in sqlite3, 373

reading data from CSV file,

411–412

read_history_file(),
readline, 832–834

Reading

compressed data in gzip,

433–434

compressed files in bz2, 442–443

configuration files in

ConfigParser, 862–864

data from CSV file, 411–412

Maildir mailbox, 764

mbox mailbox, 760–761

metadata from archive in

tarfile, 449–450

metadata from archive in

zipfile, 457–459

text files efficiently. See
linecache module

using mmap to create

memory-mapped file, 279–280

1290 Index

read_init_file() function,

readline, 824

readline module

accessing completion buffer,

828–831

completing text, 824–827

configuring, 823–824

as default mode for Cmd()to

interact with user, 849–851

defined, 769

hooks for triggering actions,

834–835

purpose of, 823

reference guide, 835–836

tracking input history,

832–834

readlines() method, 315,

658

readlink() function, symbolic

links with os, 1119

readmodule() function,

pyclbr, 1041–1042

readmodule_ex() function,

pyclbr, 1042–1043

Receiver, multicast, 589–590

receive_signal(),
signal, 499

Reconstructing objects, problems in

pickle, 338–340

recurse() function

inspect, 1214–1215

programming trace interface,

1018–1020

recurse module, trace
calling relationships, 1017–1018

code coverage report information,

1013–1017

example program, 1012

programming interface,

1018–1020

tracing execution, 1012–1013

Recursion

in alias definitions in pdb,

1010–1011

controlling memory in sys,

1068–1069

in deep copy, 120–123

pprint, 125–126

recv()
echo client, TCP/IP socket,

573–574

echo server, TCP/IP socket, 573

nonblocking communication and

timeouts vs., 594

using poll(), 605–606

redisplay(), readline, 835

ref class, weakref, 107–108

Reference counting, memory

management in sys, 1065–1066

ReferenceError exception, 109,

1228–1229

References

finding for objects that cannot be

collected, 1146–1148

impermanent, to objects. See
weakref module

tracing with gc, 1138–1141

RegexObject, compiling

expressions, 14–15

register()
alternate API names in

SimpleXMLRPCServer,

716–717

atexit, 890–891

encoding, 309

registering concrete class in abc,

1179

register_adapter() function,

sqlite3, 364–365

register_converter()
function, sqlite3, 364–365

Registered handlers, signal,

499–501

register_introspection_
functions(),
SimpleXMLRPCServer,

724–726

Regular expressions

syntax for. See re module

translating glob patterns to, 318

understanding, 13

using memory-mapped files with,

283–284

Relational database, embedded. See
sqlite3 module

Relationships, trace
collecting/reporting on,

1017–1018

release() method

multiprocessing, 548

threading, 523–524

reload() function, imported

modules in sys, 1083,

1239–1240

Reloading

imported modules, 1083

modules in custom importer,

1093–1094

remove(), messages from Maildir

mailbox, 764–765

removedirs() function, os, 1119

remove_option,
ConfigParser, 871–872

remove_section,
ConfigParser, 870–871

repeat() function, itertools,

147–148

repeat(), timeit, 1032

repeated warnings, 1174–1175

repeater.py script, 491–492

Repeating options, optparse,

786–788

Repetition, pattern syntax, 17–20,

23–24

replace() method,

datetime, 184

replace mode

codec error handling, 292

decoding errors, 295

encoding errors, 293

report() function,

filecmp, 327

REPORT_CDIFF, doctest,

933–934

report_full_closure()
function, filecmp, 327–328

reporthook(), urllib, 652

REPORT_NDIFF, doctest, 933

Reports

calling relationships, 1017–1018

code coverage with trace,

1013–1017

detailed traceback. See cgitb
module

performance analysis with

profile, 1023–1026

performance analysis with

pstats, 1027–1031

traceback. See traceback
module

REPORT_UDIFF, doctest,

933–934

__repr__() method,

pprint, 125

Request handler, SocketServer,

610–615

Index 1291

Request object, urllib2,

662–664

resolve conflict_handler,

argparse, 808–810

resource limits, resource,

1135–1138

Resource management. See
resource module

resource module, 1134–1138

current usage, 1134–1135

defined, 1045

purpose of, 1134

reference guide, 1138

resource limits, 1135–1138

Restricting access to data,

sqlite3, 384–386

Result data, saving in trace,

1020–1021

Retrieving data, sqlite3, 355–357

return command, pdb, 989

return events, tracing program in

sys, 1105–1106

reverse(), pkgutil, 1250

Rich comparison, functools,

138–140

RLock object, threading, 522

rmdir() function, removing

directories in os, 1119

rmtree() function, shutil,

277–278

RobotFileParser.can_
fetch(), 675–676

robotparser module

defined, 637

long-lived spiders, 676–677

purpose of, 674

reference guide, 677

robots.txt file, 674–675

testing access permissions,

675–676

robots.txt file, 662, 674–677

rollback(), changes to database

in sqlite3, 370–371

RotatingFileHandler,
logging, 879–880

Rotation

deque, 78–79

log file, 879–880

Rounding, decimal contexts,

202–206

Row objects, sqlite3, 358–359

row_factory property,

Connection objects, 358–359

RSS feed, converting M3U files to,

883–886

ruler attribute, configuring cmd,

847–848

Rules, breakpoint, 998–999

run()
canceling events, sched,

897–898

overlapping events, sched, 896

running profiler in profile,

1023–1026

subclassing Process by

overriding, 541

subclassing Thread by

overriding, 513

run command, program in pdb, 1009

runctx(), profile, 1026

runfunc() method, trace, 1019

Running external commands, os,

1121–1122

Runtime

changing execution flow in pdb,

1002–1009

environment, sys, 1062–1065

finding message catalogs at,

903–904

garbage collector. See gc module

inspecting stacks and frames at,

1213–1216

interpreter compile-time

configuration. See
sysconfig module

overview of, 1045–1046

portable access to OS features.

See os module

site-wide configuration. See
site module

system resource management

with resource, 1134–1138

system-specific configuration. See
sys module

system version implementation

with platform, 1129–1134

RuntimeError exception,

1229–1230

RuntimeWarning, 1233

S
-S option, disabling site, 1054

SafeConfigParser

accessing configuration settings,

864–869

combining values with

interpolation, 875–878

modifying configuration settings,

869–871

option search path, 872–875

safe_substitute() method,

string.Template, 6–7

sample() function, random,

218–219

Saving

configuration files, 871–872

result data in trace,

1020–1021

state in random, 213–214

sched module

canceling events, 897–898

defined, 770

event priorities, 897

overlapping events, 896–897

purpose of, 894–895

reference guide, 898

running events with delay,

895–896

timed event scheduler, 894–898

Schema

creating embedded relational

database, 353

defined, 352

Schemes, sysconfig, 1163

Search criteria, IMAP4 mailbox,

747–748

Search function, adding to registry

for encoding, 309–310

search() function, IMAP4,

746–747, 749–752

search() function, re
compiling expressions, 14–15

constraining, 26–30

finding patterns in text, 14

multiple matches, 15–16

Search path

custom importers in sys,

1083–1085

for modules in sys,

1081–1084

for options in ConfigParser,

872–875

second attribute

date class, 182–183

time class, 181

1292 Index

Sections, ConfigParser
accessing configuration

settings, 865

defined, 862

option search path, 872–875

removing, 870

testing whether values are

present, 865–867

Security

HMAC authentication for,

476–479

insecurity of pickle, 334

SimpleXMLRPCServer
implications, 715

seed() function, random,

212–213

seek() method

reading compressed data in

gzip, 434

reading compressed files in

bz2, 443

StringIO buffers, 315

temporary files, 267

select() function, select,

594–601

select module

nonblocking I/O with timeouts,

601–603

platform-specific options, 608

purpose of, 594–595

reference guide, 608–609

using poll() function, 603–608

using select() function,

595–601

Self-referencing expressions, re,

50–56

Semaphore
multiprocessing, 548–550

threading, 525–526

send() function

nonblocking communication and

timeouts vs., 593–594

Unicode data and network

communication, 304–305

sendall()function, TCP/IP

socket, 573–574

send_error() method,

BaseHTTPServer, 649–650

send_header() method,

BaseHTTPServer, 650–651

Sending signals, 501

sendmail(), with smtplib,

728–730

Sequence operators, operator
module, 157–158

SequenceMatcher, 65–68

Sequences

comparing lines of text. See
difflib module

of fixed-type numerical data,

84–87

operators for, 157–158

SerialCookie class, deprecated

in Cookie, 683

Serializing

defined, 333

objects. See pickle module

XML to stream in

ElementTree, 408–410

serve_forever(),
SocketServer, 609

ServerProxy
connecting to XML-RPC server,

704–706

SimpleXMLRPCServer, 715–716

Servers

classes implementing SMTP,

734–738

classes implementing Web. See
BaseHTTPServer module

connecting to IMAP, 739–740

connecting to XML-RPC,

709–710

creating network. See
SocketServer module

implementing with asynchat,

630–632

implementing XML-PRC. See
SimpleXMLRPCServer
module

SocketServer, 609–610

TCP/IP, 572–575

UDP, 581–583

using asyncore in, 619–621

Services, socket 566–570

Set-Cookie header, Cookie
module

alternative output formats,

682–683

overview of, 678

receiving and parsing Cookie
headers, 681–682

set() method

modifying configuration settings,

869–871

setting Element properties,

403–405

signaling between threads, 516

setblocking() method,

select, 594

setDaemon() method, daemon

threads, 509

set_debug() function, gc,

1151–1159

setdefault() function,

timeit, 1034

setdefaultencoding()
function, sys, 1058

set_defaults(), optparse,

781–782

setfirstweekday() method,

calendar, 194

setitem() function, sequence

operators, 158

setlocale() function, locale,

909–911

setrecursionlimit()
function, sys, 1067–1068

setrlimit() function,

resource, 1136

setsid()function, signal, 495

setsockopt, TTL multicast

messages, 588, 590

setstate() function, random,

213–214

set_terminator(),
asynchat, 629–630

set_threshold() function, gc,

1149–1151

set_trace() function, pdb,

977–978, 983–984

settrace() function, sys,

1101–1102

setUp() method

SocketServer, 610

setup() method

unittest, 956–957

setup_statement, timeit,

1033–1035

SHA-1

calculating in hashlib,

470–471

creating UUID name-based

values, 686–688

vs. MD5 in hmac, 474–475

Index 1293

Shallow argument, cmp(), 326

Shallow argument,

cmpfiles(), 326

Shallow copies, 118–119

Shared-argument definitions,

argparse, 807–808

Shell commands, running in cmd,

848–849

Shell-style syntaxes, parsing. See
shlex module

shelve module

creating new shelf, 343–344

defined, 333–334

importing module from,

1085–1091

purpose of, 343

reference guide, 346

specific shelf types, 346

writeback, 344–346

ShelveFinder, 1089

ShelveLoader, 1087, 1089,

1091–1093

shlex module

controlling parser, 856–858

defined, 770

embedded comments, 854

error handling, 858–859

including other sources of tokens,

855–856

POSIX vs. non-POSIX parsing,

869–871

purpose of, 852

quoted strings, 852–854

reference guide, 861

split, 855

Short-form options

argparse, 797

getopt, 771–775

optparse, 778–779

shouldtake() function,

itertools, 149

shove module, 346

show_projects(), sqlite3,

368–370

show_results() function,

timeit, 1033–1035

show_type(), binary data in

xmlrpclib, 710

showwarning() function,

1175–1176

shuffle() function, random,

216–218

Shutdown callbacks, program,

890–894

shutil module

copying file metadata, 274–276

copying files, 271–274

defined, 247

purpose of, 271

reference guide, 278

working with directory trees,

276–278

SIG_DFL value, 499–501

SIG_IGN value, 499–501, 502

SIGINT, 502

Signal handlers

ignoring signals, 502

receiving signals, 498–499

retrieving registered, 499–501

signals and threads, 502

signal module

alarms, 501–502

creating processes with

os.fork(), 1123

ignoring signals, 502

purpose of, 497–498

receiving signals, 498–499

reference guide, 502–505

retrieving registered handlers,

499–501

sending signals, 501

signals and threads, 502–505

when callbacks are not

invoked, 891

Signaling between processes

multiprocessing, 545–546

subprocess, 492–497

Signaling between threads,

threading, 516–517

signal.pause(), 502

Signals and threads, signal,

502–505

Signing messages, hmac, 474,

476–479

SIGUSRI, 502

SIGXCPU signal, 1137

simple mail transport protocol

(SMTP). See smptd module;

smtplib module

SimpleCompleter class,

readline, 824–827

SimpleCookie class

alternative output formats,

682–683

creating and setting, 678–679

deprecated classes vs., 683

encoding header, 681

receiving and parsing header, 682

SimpleXMLRPCServer module

alternate API names, 716–717

arbitrary API names, 719

defined, 638

dispatching calls, 722–723

dotted API names, 718–719

exposing methods of objects,

720–721

introspection API, 724–726

purpose of, 714

reference guide, 726

simple server, 714–716

Sine, math
hyperbolic functions, 243–244

trigonometric functions, 240–243

Single character wildcard, glob,

259–260

site module

customizing site configuration,

1051–1052

customizing user configuration,

1053–1054

defined, 1045

disabling, 1054

import path configuration,

1046–1047

path configuration files,

1049–1051

reference guide, 1054–1055

user directories, 1047–1048

Site-wide configuration. See site
module

sitecustomize module,

1051–1052

__sizeof__() method, sys,

1067–1068

Sizes distribution, random, 223

sleep() call

EXCLUSIVE isolation level in

sqlite3, 375

interrupted when receiving

signals, 499

signals and threads, 504–505

SmartCookie class, deprecated in

Cookie, 683

smptd module

debugging server, 737

mail server base class, 734–737

1294 Index

smptd module (continued)

proxy server, 737–738

purpose of, 734

reference guide, 738

SMTP (simple mail transport

protocol). See smptd module;

smtplib module

smtplib module

authentication and encryption,

730–732

defined, 727

purpose of, 727

reference guide, 733–734

sending email message, 728–730

verifying email address, 732–733

SMTPServer class, 734–736

sniff() method, detecting dialects

in csv, 417–418

Sniffer class, detecting dialects in

csv, 417–418

SOCK_DGRAM socket type, 562

socket class, socket
module, 561

socket module

finding service information,

566–568

IP address representations,

570–571

looking up hosts on network,

563–565

looking up server addresses,

568–570

multicast messages, 587–591

nonblocking communication and

timeouts, 593–594

overview of, 562–563

purpose of, 561

reference guide, 572, 591, 594

sending binary data, 591–593

TCP/IP. See TCP/IP sockets

TCP/IP client and server, 572–580

UDP client and server, 580–583

UNIX domain sockets, 583–587

Socket types, 562

socket.error, 563–565

socketpair() function, UNIX

Domain Sockets, 586–587

SocketServer module

adding threading or forking in

HTTPServer using, 648–649

BaseHTTPServer using

classes from, 644

echo example, 610–615

implementing server, 610

purpose of, 609

reference guide, 618–619

request handlers, 610

server objects, 609

server types, 609

threading and forking, 616–618

SOCK_STREAM socket type for, 562

Soft limits, resource, 1136–1137

Sorting

creating UUID objects to handle,

689–690

customizing functions in

sqlite3, 381–383

JSON format, 692–694

maintaining lists in sorted order,

93–96

Source code

byte-compiling with

compileall, 1037–1039

creating message catalogs from,

900–903

retrieving for module from ZIP

archive, 1243–1244

retrieving with inspect,

1207–1208

source property, shlex, 855–856

sourcehook() method,

shlex, 856

spawn()functions, os, 1127

Special constants, math, 223–224

Special functions, math, 244–245

Special values, decimal, 200–201

Specific shelf types, shelve, 346

Spiders, controlling Internet,

674–677

split() function

existing string with shlex, 855

path parsing in os.path, 249

splitting strings with patterns in

re, 58–60

splittext() function, path

parsing in os.path, 250–251

Splitting iterators, itertools,

144–145

Splitting with patterns, re, 58–60

SQL-injection attacks, 359

SQLite, 351

sqlite3 module

bulk loading, 362–363

creating database, 352–355

custom aggregation, 380–381

custom sorting, 381–383

defined, 334

defining new column types,

363–366

determining types for columns,

366–368

exporting database contents,

376–378

isolation levels, 372–376

in-memory databases, 376

purpose of, 351

query metadata, 357–358

querying, 355–357

reference guide, 387

restricting access to data, 384–386

retrieving data, 355–357

row objects, 358–359

threading and connection sharing,

383–384

transactions, 368–371

using Python functions in SQL,

378–380

using variables with queries,

359–362

SQLITE_DENY operations, 386

SQLITE_IGNORE operations,

385–386

SQLITE_READ operations, 384–385

square brackets [], config file, 862

Square roots, computing in math,

234–325

stack() function, inspect,

1214–1215

Stack, inspecting runtime

environment, 1213–1216

Stack levels in warnings, 1176–1177

Stack trace

traceback working with,

963–965

tracing program as it runs,

1105–1106

StandardError class,

exceptions, 1216

starmap() function,

itertools, 146

start events, ElementTree
parsing, 393–396

“start” input value, readline,

826–827

start() method

Index 1295

custom tree builder in

ElementTree, 398

finding patterns in text with

re, 14

multiprocessing, 529–530

threading, 505–506

start-ns events, ElementTree,

394–396

start-up hook, readline, 834–835

STARTTLS extension, SMTP
encryption, 731–732

stat() function, file system

permissions in os, 1116–1118

Statement argument, timeit, 1035

Statistics, saving and working with,

1027–1028

Status

code for process exits in

multiprocessing,

537–538

reporting with logging module,

878–883

returning exit code from program

in sys, 1064–1065

stderr attribute, Popen
interacting with another

command, 491

managing child processes in os
using pipes, 1112–1116

working directly with pipes, 488

stderr attribute, runtime

environment in sys, 1064

stdin attribute, Popen
interacting with another

command, 491–492

managing child processes in os
using pipes, 1112–1116

working directly with pipes,

486–489

stdin attribute, runtime

environment in sys, 1063–1064

stdout attribute, Popen
capturing output, 485–486

connecting segments of pipe,

489–490

interacting with another

command, 491–492

managing child processes in os
using pipes, 1112–1116

working directly with pipes,

486–489

stdout attribute, runtime

environment in sys, 1063–1064

step command, pdb, 984–990

step() method, sqlite3,

380–381

stepping through execution of

program, pdb, 984–990

“stop” input value, readline,

826–827

Storage

insecurity of pickle for, 334

of persistent objects. See shelve
module

store action

argparse, 799–802

optparse, 784

store_const action

argparse, 799–802

optparse, 785

store_false action, argparse,

799–802

store_true action, argparse,

799–802

StreamReader, custom encoding,

311, 313

Streams

managing child processes in os,

1112–1115

mixed content with bz2, 439–440

mixed content with zlib,

424–425

pickle functions for, 336–338

runtime environment with sys,

1063–1064

working with gzip, 434–436

working with json, 700–701

StreamWriter, custom encoding,

311, 313

strftime() function, time,

179–180

strict mode, codec error

handling, 292–293, 295

string module

advanced templates, 7–9

functions, 4–5

overview of, 4

reference guide, 9

templates, 5–7

StringIO buffers

applications of HMAC message

signatures, 476–477

defined, 248

streams in GzipFile, 434–436

streams in pickle, 336

text buffers, 314–315

writing data from other sources in

tarfile, 455

Strings

argparse treating all argument

values as, 817–819

converting between binary data

and, 102–106

encoding and decoding. See
codecs module

encoding and decoding with

pickle, 335–336

modifying with patterns, 56–58

parsing in ElementTree,

398–400

string.Template, 5–9

strptime() function,

datetime, 179–180, 190

struct module

buffers, 105–106

data structures, 102–106

endianness, 103–105

functions vs. Struct class, 102

packing and unpacking, 102–103

purpose of, 102

reference guide, 106

sending binary data, 591–593

struct_time() function, time,

176–177, 179–180

sub(), modifying strings with

patterns, 56–58

Subclassing

from abstract base class,

1179–1181

processes with

multiprocessing,

540–541

reasons to use abstract base

classes, 1178

threads with threading,

513–515

subdirs attribute, filecmp, 332

SubElement() function,

ElementTree, 400–401

Subfolders, Maildir mailbox,

766–768

Subpatterns, groups containing, 36

subprocess module

connecting segments of pipe,

489–490

1296 Index

subprocess module (continued)

interacting with another

command, 490–492

purpose of, 481–482

reference guide, 397

running external command,

482–486

signaling between processes,

492–497

working with pipes directly,

486–489

Substitution errors,

ConfigParser, 877

Suites, test

doctest, 943

unittest, 957

unittest integration in

doctest, 945

super()function, abc,

1181–1182

Switches, argparse prefixes,

802–803

Switching translations,

gettext, 908

Symbolic links, os, 1119

symlink() function, os, 1119

Symlinks

copying directories, 277

functions in os, 1119

Synchronizing

processes with

multiprocessing,

547–548

threads with threading,

523–524

SyntaxError exception, 1230

SyntaxWarning, 1233

sys module

defined, 1045

exception handling, 1071–1074

hook for program shutdown, 890

interpreter settings, 1055–1062

low-level thread support,

1074–1080

memory management. See
Memory management and

limits, sys
purpose of, 1055

reference guide, 1107–1108

runtime environment, 1062–1065

tracing program as it runs,

1101–1107

sys module, modules and imports

built-in modules, 1080–1091

custom importers, 1083–1085

custom package importing,

1091–1093

handling import errors,

1094–1095

import path, 1081–1083

imported modules, 1080–1081

importer cache, 1097–1098

importing from shelve,

1085–1091

meta path, 1098–1101

package data, 1095–1097

reference guide, 1101

reloading modules in custom

importer, 1093–1094

sys.api_version, 1055–1056

sys.argv, 851–852, 1062–1063

sysconfig module

configuration variables,

1160–1161

defined, 1046

installation paths, 1163–1166

purpose of, 1160

Python version and platform,

1167–1168

reference guide, 1168

sys._current_frames(),

1078–1080

sys.excepthook, 1071–1072

sys.exc_info() function,

traceback, 959–961

sys.exit(), 892–893, 1064–1065

sys.flags, interpreter

command-line options,

1057–1058

sys.getcheckinterval(), 1074

sys.hexversion, 1055–1056

sys.modules, 1080

sys.path
compiling, 1038–1039

configuring import path with

site, 1046–1047

defined, 1080

importer cache, 1097–1098

meta path, 1098–1099

path configuration files,

1049–1051

sys.platform, 1056–1057

sys.setcheckinterval(),

1074

sys.stderr, 837, 959, 1175

sys.stdout, 837, 959

sys.subversion tuple,

1055–1056

System. See Operating system

system() function, external

commands with os, 1121–1122

SystemError exception, 1230

SystemExit exception, 1230

SystemRandom class, random
module, 221–222

sys.version, 1055–1056

sys.version_info, 1055–1056

T
Tab completion. See readline

module

Tables, embedded relational

database, 353–355

“Tails,” picking random items, 216

takewhile() function, filtering

iterators, 149–150

Tangent, math, 240–243

Tar archive access. See tarfile
module

tarfile module

appending to archives, 455

creating new archives, 453

extracting files from archive,

450–452

purpose of, 448

reading metadata from archive,

449–450

reference guide, 456–457

testing tar files, 448–449

using alternate archive member

names, 453–454

working with compressed

archives, 456

writing data from sources other

than files, 454–455

Target functions, importing in

multiprocessing, 530–531

TarInfo objects

creating new archives in

tarfile, 453

reading metadata in tarfile,

449

using alternate archive member

names, 453–454

writing data from sources other

than files, 454–455

Index 1297

TCP/IP sockets

choosing address for listening,

577–580

client and server together,

574–575

easy client connections, 575–577

echo client, 573–574

echo server, 572–573

UNIX Domain Sockets vs.,

583–586

using poll(), 603–608

using select(), 598–601

TCP (transmission control protocol),

SOCK_STREAM socket for, 562

TCPServer class,

SocketServer, 609–610

tearDown(), unittest,

956–957

tee() function, itertools,

144–145

tempfile module

defined, 247

named files, 268

predicting names, 269–270

purpose of, 265

reference guide, 271

temporary directories, 268–269

temporary file location, 270–271

temporary files, 265–268

Templates, string, 5–9

Temporary breakpoints, 997–998

Temporary file system objects. See
tempfile module

TemporaryFile() function

named temporary files, 268

predicting names, 269–270

temporary files, 265–268

Terminal, using getpass()
without, 837–838

Terminating processes,

multiprocessing, 536–537

Terminators, asynchat, 632–634

Terse argument, platform()
function, 1130–1131

Test context, doctest, 945–948

Test data, linecache, 261–262

__test__, doctest, 937–938

test() method, unittest, 949

TestCase. See unittest module

testFail() method, unittest,

951–952

testfile() function, doctest,

944–945, 948

Testing

with automated framework. See
unittest module

in-memory databases for

automated, 376

os.path files, 255–256

tar files, 448–449

through documentation. See
doctest module

ZIP files, 457

testmod() function, doctest,

942–943, 948

test_patterns, pattern syntax

anchoring, 24–26

character sets, 20–24

dissecting matches with groups,

30, 34–37

expressing repetition, 18–20

overview of, 16–17

using escape codes, 22–24

Text

command-line completion. See
readline module

comparing sequences. See
difflib module

constants and templates with

string, 4–9

encoding and decoding. See
codecs module

encoding binary data with ASCII.

See base64 module

formatting paragraphs with

textwrap, 9–13

overview of, 3

parsing shell-style syntaxes. See
shlex module

processing files as filters. See
fileinput module

reading efficiently. See
linecache module

regular expressions. See re
module

SQL support for columns,

363–366

StringIO buffers for, 314–315

TextCalendar format, 191

textwrap module

combining dedent and fill, 11–12

filling paragraphs, 10

hanging indents, 12–13

overview of, 9–10

reference guide, 13

removing existing indentation,

10–11

Thread-safe FIFO implementation,

Queue, 96–102

Threading

adding to HTTPServer,

648–649

and connection sharing,

sqlite3, 383–384

threading module

controlling access to resources,

517–523

daemon vs. non-daemon threads,

509–511

determining current thread,

507–508

enumerating all threads, 512–513

importable target functions in

multiprocessing,

530–531

isolation levels in sqlite3, 373

limiting concurrent access to

resources, 524–526

multiprocessing basics,

529–530

multiprocessing features

for, 529

purpose of, 505

reference guide, 528

signaling between threads,

516–517

subclassing thread, 513–515

synchronizing threads, 523–524

Thread objects, 505–506

thread-specific data, 526–528

Timer threads, 515–516

ThreadingMixIn, 616–618, 649

Threads

controlling and debugging with

sys, 1074–1080

controlling with sys, 1074–1078

debugging with sys, 1078–1080

decimal module contexts,

206–207

defined, 505

isolation levels in sqlite3,

372–376

managing processes like. See
multiprocessing module

signals and, 502–505

1298 Index

Threads (continued)

threading module. See
threading module

using Queue class with multiple,

99–102

Thresholds, gc collection,

1148–1151

Time class, datetime, 181–182

time() function, 174–176

time module

defined, 173

parsing and formatting times,

179–180

processor clock time, 174–176

purpose of, 173

reference guide, 180

time components, 176–177

wall clock time, 174

working with time zones,

177–179

time-to-live (TTL) value, multicast

messages, 588

Time values, 181–182, 184–185

Time zones, 177–179, 190

Timed event scheduler, sched,

894–898

timedelta, datetime,

185–186

timeit module

basic example, 1032

command-line interface,

1035–1036

contents of, 1032

defined, 920

purpose of, 1031–1032

reference guide, 1037

storing values in dictionary,

1033–1035

Timeouts

configuring for sockets, 594

nonblocking I/O with, 601–603

using poll(), 604

Timer class. See timeit module

Timer threads, threading,

515–516

Times and dates

calendar module, 191–196

datetime. See datetime
module overview of, 173

time. See time module

Timestamps

manipulating date values,

183–184

sqlite3 converters for

columns, 364

Timing execution of small bits of

code. See timeit module

TLS (transport layer security)

encryption, SMTP, 730–732

To headers, smtplib, 728

today() class method, current

date, 182

Tokens, shlex, 855–859

toprettyxml() method,

pretty-printing XML, 401–403

tostring(), serializing XML to

stream, 408

total_ordering(),
functools comparison,

138–140

total_seconds()function,

timedelta, 184

Trace hooks

exception propagation,

1106–1107

monitoring programs, 1101

tracing function calls, 1102–1103

tracing inside functions,

1103–1104

watching stack, 1105–1106

trace module

calling relationships, 1017–1018

code coverage report information,

1013–1017

defined, 919

example program, 1012

options, 1022

programming interface,

1018–1020

purpose of, 1012

reference guide, 1022

saving result data, 1020–1021

tracing execution, 1012–1013

traceback module

defined, 919

for more detailed traceback

reports. See cgitb module

purpose of, 958

reference guide, 965

supporting functions, 958–959

working with exceptions,

959–962

working with stack, 963–965

Tracebacks

defined, 928, 958

detailed reports on. See cgitb
module

recognizing with doctest,

928–930

as test outcome in unittest,

951–952

trace_calls() function, sys,

1102–1104

trace_calls_and_returns()
function, sys, 1105

trace_lines() function, sys,

1103–1104

Tracing

program flow. See trace module

references with gc, 1138–1141

Tracing program as it runs, sys
exception propagation,

1106–1107

function calls, 1102–1103

inside functions, 1103–1104

overview of, 1101

watching stack, 1105–1106

Transactions, sqlite3, 368–371

translate() function

creating translation tables, 4–5

UNIX-style filename

comparisons, 318

Translations

creating tables with

maketrans(), 4–5

encoding, 298–300

message. See gettext module

Transmission control protocol

(TCP), SOCK_STREAM socket

for, 562

transport layer security (TLS)

encryption, SMTP, 730–732

Trash folder model, email, 756–757

Traversing parsed tree,

ElementTree, 388–390

Triangles, math, 240–243

triangular() function,

random, 222

Trigonometry

inverse functions, 243

math functions, 240–243

math functions for angles,

238–240

truediv() operator, 156–157

trunc() function, math, 226–227

Index 1299

Truth, unittest, 952–953

truth()function, logical

operations, 154

try:except block, sqlite3
transactions, 370–371

TTL (time-to-live) value, multicast

messages, 588

tty, using getpass() without

terminal, 837–838

Tuple, creating Decimals from,

198–199

Type checking, operator module,

162–163

Type conversion, optparse, 783

Type parameter,

add_argument(), 815–817

TypeError exception

argparse, 818

overview of, 1230–1231

time class, 182

TZ environment variable, time zones,

178

tzinfo class, datetime, 190

tzset() function, time zones,

178

U
UDP (user datagram protocol)

echo client, 581–582

echo server, 581

overview of, 580–581

sending multicast messages with,

588–591

SOCK_DGRAM socket type for,

562

UDPServer class,

SocketServer, 609–610

UDS (UNIX Domain Sockets)

AF_UNIX sockets for, 562

communication between

parent/child processes,

586–587

overview of, 583–586

permissions, 586

ugettext program, 901

unalias command, pdb, 1011

uname() function, platform,

1131–1133

UnboundLocalError exception,

1231–1232

undoc_header attribute, cmd,

847–848

ungettext()function, gettext,

905–906, 908

Unicode

codec error handling, 291–295

configuration data in

ConfigParser, 863–864

data and network communication,

303–307

encoding translation, 298–300

interpreter settings in sys,

1058–1059

non-Unicode encodings, 300–301

overview of, 284–285

reference guide, 313

searching text using strings,

39–40

standard I/O streams, 295–298

turning on case-insensitive

matching, 45

understanding encodings,

285–287

working with files, 287–289

UNICODE regular expression flag,

39–40, 45–50

UnicodeDecodeError, 294–295

UnicodeEncodeError,

292–293, 295–298, 309

UnicodeError exception, 1232

UnicodeWarning, 1233

unified_diff()function,

difflib, 64

uniform() function, random,

212

Uniform Resource Name (URN)

values. See uuid module

unittest module

almost equal, 954–955

asserting truth, 952–953

basic test structure, 949

defined, 919

integration in doctest, 945

purpose of, 949

reference guide, 958

running tests, 949–950

test fixtures, 956–957

test outcomes, 950–952

test suites, 957

testing equality, 953–954

testing for exceptions, 955–956

Universally unique identifiers

(UUID). See also uuid module,

684

UNIX

changing file permissions,

1117–1118

domain sockets, 583–587

filename comparisons, 315–317

filename pattern matching,

257–260

mmap() in Windows vs., 279

programming with signal

handlers, 498

UNIX Domain Sockets. See UDS

(UNIX Domain Sockets)

UnixDatagramServer class,

SocketServer, 609, 610

UnixStreamServer class,

SocketServer, 609, 610

unpack_from()method,

struct, 105–106

unpack()method, struct, 103

unparsing URLs, urlparse,

641–642

Unpicklable objects, pickle, 340

Unpredictable output, doctest,

924–928

unregister(), using poll(),
606

until command, pdb, 988–989

Unused data_ attribute, mixed

content streams, 424–425, 440

up (u) command, pdb, 980

update() method

populating empty Counter, 71

updates in hashlib, 472–473

update_wrapper(),
functools, 132–133,

137–138

Uploading files, urllib2, 664–667

Uploading messages, IMAP4,

753–755

url2pathname()function,

urllib, 655–657

urlcleanup() method, urllib,

652

urldefrag() function,

urlparse, 640

urlencode(), urllib,

654–655

urljoin() function, constructing

absolute URLs, 642–643

urllib module

defined, 637

encoding arguments, 653–655

1300 Index

urllib module (continued)

paths vs. URLs, 655–657

purpose of, 651

reference guide, 657

simple retrieval with cache,

651–653

using Queue class with multiple

threads, 99–102

urllib2 module

adding outgoing headers,

661–662

creating custom protocol

handlers, 667–670

defined, 637

encoding arguments, 660–661

HTTP GET, 657–660

HTTP POST, 661

posting form data from request,

663–664

purpose of, 657

reference guide, 670

uploading files, 664–667

urlopen() method, urllib2,

657–659, 661

urlparse() function, 638–640,

641

urlparse module

defined, 637

joining, 642–643

parsing, 638–640

purpose of, 638

reference guide, 643

unparsing, 641–642

urlretrieve() method,

urllib, 651–653

URLs

encoding variations safe for,

672–673

manipulating strings. See
urlparse module

network resource access. See
urllib module; urllib2
module

urlsplit() function,

urlparse, 639–640, 641

urlunparse() function,

urlparse, 641–642

URN (Uniform Resource Name)

values. See uuid module

use_alarm(), signals and threads,

504–505

User datagram protocol. See UDP

(user datagram protocol)

USER_BASE directory, site,

1047–1048

usercustomize module,

1053–1054

Username, urlparse, 639

Users, site
customizing configuration,

1053–1054

directories, 1047–1048

USER_SITE path name, site,

1047–1048

UserWarning, 1171–1172, 1233

USR signal, subprocess, 493–498

UTF-8

defined, 284

reference guide, 313

working with files, 287–289

UTF-16

byte ordering, 289–291

defined, 284

working with files, 287–289

UTF-32, 287–291

uuid module

defined, 637–638

purpose of, 684

version 1 values, 684–686

version 4 values, 688–689

versions 3 and 5 values, 686–688

working with UUID objects,

689–690

UUID (universally unique

identifiers). See also uuid
module, 684

uuid1() function, uuid, 684–686

uuid4() function, generating

random values, 688–689

V
value property, abc, 1182–1186

ValueError exception

argparse, 818

from computing square root of

negative value, 235

overview of, 1232

Values. See also Floating-point

values

configuration settings,

ConfigParser, 865–867

creating fraction instances,

207–210

custom action, with argparse,

820

date and time. See datetime
module

event priority, 897

with interpolation,

ConfigParser, 875–878

optparse options, 781–784

plural, with gettext, 905–907

producing new iterator, 146

special, with Decimal, 200–201

storing in dictionary with

timeit, 1033–1035

variable argument lists, argparse,

815–817

Variables

dynamic values with queries

through, 359–362

on execution stack with pdb,

981–984

Verbose expression syntax, searching

text, 40–44

Verbose option, connecting to

XML-RPC server, 704

VERBOSE regular expression flag,

42–50

Verbosity levels, logging,

880–882

Verification, email address, 731–732

verify_request() method,

SocketServer, 610

Version

package, 1249–1251

specifying Python, 1167–1168

version, argparse, 799–802,

806–807

virtualenv, 1250

Von Mises distribution, random,

223

vonmisesvariate() function,

random, 223

W
wait() function

multiprocessing, 545–546

threading, 516–517

waiting for child processes in os,

1125–1127

waiting for I/O. See select
module

waitpid() function, os, 1126

walk() function

Index 1301

directory tree with os 1120–1121

traversing directory tree with

os.path, 256–257

Walking directory Tree, os,

1120–1121

Wall clock time, time, 174

warn() function

alternate message delivery for

warnings, 1175–1176

generating warnings, 1171–1172

stack levels in warnings, 1177

Warning class, 1233

WARNING level, logging,

881–882

warnings module, 1170–1177

alternate message delivery

functions, 1175–1176

categories and filtering,

1170–1171

defined, 1169

exceptions defined for use with,

1233

filtering with patterns, 1172–1174

formatting, 1176

generating warnings, 1171–1172

nonfatal alerts with, 1170–1177

purpose of, 1170

reference guide, 1177

repeated warnings, 1174–1175

stack levels in warnings,

1176–1177

Weak references to objects. See
weakref module

WeakGraph class, weakref,

113–114

WeakKeyDictionary,
weakref, 115–117

weakref module

caching objects, 114–117

cyclic references, 109–114

data structures, 106–117

defined, 70

proxies, 108–109

purpose of, 106–107

reference callbacks, 108

reference guide, 117

references, 107

WeakValueDictionary,
weakref, 115–117

weekheader() method,

Calendar class, 192

weibullvariate() function,

random, 223

where (w) command, pdb, 979–981,

982

whichdb module, 350–351

whitespace

defined, 930

doctest working with, 930–935

Width argument, pprint(),
126–127

Wildcards, glob, 258–260

Windows

mmap() in UNIX vs., 279

non support for zero-length

mapping, 280

with statement

applying local context to block of

code with, 204–205

with statement

closing open handles in

contextlib, 170

context managers tied to, 163

locks as context manager in

threading, 522–523

nesting contexts, 168–169

removing temporary files, 266

writable () function,

asyncore, 621–623

Writable sockets

poll() function, 606–607

select() function, 597–598

write() method

creating new archives, 460–462

saving configuration files,

871–872

serializing XML to stream in

ElementTree, 408–410

StringIO buffers, 314–315

Writeback mode, shelve, 344–346

write_history_file(),
readline, 832–834

writelines() method

compressed files in BZ2File,

441–442

compressed files in gzip, 432

writepy() method, Python ZIP

archives, 466–467

writer() function

csv, 412–413

isolation levels in sqlite3, 373

writerow() function, csv,

412–413

writestr() method

writing data from sources other

than files in zipfile, 463

writing with ZipInfo instance,

463–464

Writing

compressed files in bz2, 440–442

compressed files in gzip,

431–433

CSV files, 412–413

data from sources other than

tarfile, 454–455

data from sources other than

zipfile, 462–463

memory-mapped file updates,

280–283

with ZipInfo instance, 463–464

X
xgettext program, 900–901

XML manipulation API. See
ElementTree

XML-RPC protocol

client library. See xmlrpclib
module

defined, 702

implementing server. See
SimpleXMLRPCServer
module

XML-to-CSV converter, 395–398

xmlcharrefreplace mode,

codec error handling, 292–293

xml.dom.minidom pretty printer

XML, 401–403

xml.etree.ElementTree. See
ElementTree

XMLID(), ElementTree,

399–400

xmlrpclib module

binary data, 710–712

combining calls into one message,

712–714

connecting to server, 704–706

data types, 706–709

defined, 638

exception handling, 712

passing objects, 709–710

purpose of, 702–703

reference guide, 714

XMLTreeBuilder,
ElementTree, 396–398

1302 Index

Y
year attribute, date class, 182–183

yeardays2calendar() method,

Calendar, 192–193

Z
Zero-length mapping, Windows

non-support for, 280

ZeroDivisionError exception,

1232–1233

ZIP archives

accessing. See zipfile module

loading Python code from. See
zipimport module

retrieving package data,

1256–1258

zipfile module

appending to files, 464–465

creating new archives, 460–462

extracting archived files from

archive, 459–460

limitations, 467

purpose of, 457

Python ZIP archives, 466–467

reading metadata from archive,

457–459

reference guide, 467

retrieving package data,

1256–1258

testing ZIP files, 457

using alternate archive member

names, 462

writing data from sources other

than files, 462–463

writing with ZipInfo instance,

463–464

zipimport module

accessing code, 1242–1243

data, 1244–1246

defined, 1235

example, 1240–1241

finding module, 1241–1242

packages, 1244

purpose of, 1240

Python ZIP archives, 466–467

reference guide, 1244–1247

retrieving source code,

1243–1244

zipimporter class, 1240

ZipInfo instance, zipfile,
463–464

zlib module

checksums, 425

compressing networked data,

426–430

compressing new archives in

zipfile using, 461–462

incremental compression and

decompression, 423–424

mixed content streams, 424–425

purpose of, 421

reference guide, 430

working with data in memory,

422–423

ZlibRequestHandler, 426–430

	Contents
	Tables
	Foreword
	Acknowledgments
	About the Author
	INTRODUCTION
	2 DATA STRUCTURES
	2.1 Collections—Container Data Types
	2.1.1 Counter
	2.1.2 Defaultdict
	2.1.3 Deque
	2.1.4 Namedtuple
	2.1.5 OrderedDict

	2.2 Array—Sequence of Fixed-Type Data
	2.2.1 Initialization
	2.2.2 Manipulating Arrays
	2.2.3 Arrays and Files
	2.2.4 Alternate Byte Ordering

	2.3 Heapq—Heap Sort Algorithm
	2.3.1 Example Data
	2.3.2 Creating a Heap
	2.3.3 Accessing Contents of a Heap
	2.3.4 Data Extremes from a Heap

	2.4 Bisect—Maintain Lists in Sorted Order
	2.4.1 Inserting in Sorted Order
	2.4.2 Handling Duplicates

	2.5 Queue—Thread-Safe FIFO Implementation
	2.5.1 Basic FIFO Queue
	2.5.2 LIFO Queue
	2.5.3 Priority Queue
	2.5.4 Building a Threaded Podcast Client

	2.6 Struct—Binary Data Structures
	2.6.1 Functions vs. Struct Class
	2.6.2 Packing and Unpacking
	2.6.3 Endianness
	2.6.4 Buffers

	2.7 Weakref—Impermanent References to Objects
	2.7.1 References
	2.7.2 Reference Callbacks
	2.7.3 Proxies
	2.7.4 Cyclic References
	2.7.5 Caching Objects

	2.8 Copy—Duplicate Objects
	2.8.1 Shallow Copies
	2.8.2 Deep Copies
	2.8.3 Customizing Copy Behavior
	2.8.4 Recursion in Deep Copy

	2.9 Pprint—Pretty-Print Data Structures
	2.9.1 Printing
	2.9.2 Formatting
	2.9.3 Arbitrary Classes
	2.9.4 Recursion
	2.9.5 Limiting Nested Output
	2.9.6 Controlling Output Width

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

