

Praise for previous editions of
The iPhone Developer’s Cookbook

“This book would be a bargain at ten times its price! If you are writing
iPhone software, it will save you weeks of development time. Erica has
included dozens of crisp and clear examples illustrating essential iPhone
development techniques and many others that show special effects going way
beyond Apple’s official documentation.”

—Tim Burks, iPhone Software Developer,TootSweet Software

“Erica Sadun’s technical expertise lives up to the Addison-Wesley name.
The iPhone Developer’s Cookbook is a comprehensive walkthrough of iPhone
development that will help anyone out, from beginners to more experienced
developers. Code samples and screenshots help punctuate the numerous tips
and tricks in this book.”

—Jacqui Cheng,Associate Editor, Ars Technica

“We make our living writing this stuff and yet I am humbled by Erica’s com-
mand of her subject matter and the way she presents the material: pleasantly
informal, then very appropriately detailed technically.This is a going to be the
Petzold book for iPhone developers.”

—Daniel Pasco, Lead Developer and CEO, Black Pixel Luminance

“The iPhone Developer’s Cookbook should be the first resource for the beginning
iPhone programmer, and is the best supplemental material to Apple’s own doc-
umentation.”

—Alex C. Schaefer, Lead Programmer,ApolloIM, iPhone Application Development
Specialist, MeLLmo, Inc.

“Erica’s book is a truly great resource for Cocoa Touch developers.This book
goes far beyond the documentation on Apple’s Web site, and she includes
methods that give the developer a deeper understanding of the iPhone OS, by
letting them glimpse at what’s going on behind the scenes on this incredible
mobile platform.”

—John Zorko, Sr. Software Engineer, Mobile Devices

“I’ve found this book to be an invaluable resource for those times when I need
to quickly grasp a new concept and walk away with a working block of code.
Erica has an impressive knowledge of the iPhone platform, is a master at
describing technical information, and provides a compendium of excellent
code examples.”

—John Muchow, 3 Sixty Software, LLC; founder, iPhoneDeveloperTips.com

“This book is the most complete guide if you want coding for the iPhone,
covering from the basics to the newest and coolest technologies. I built several
applications in the past, but I still learned a huge amount from this book. It is a
must-have for every iPhone developer.”

—Roberto Gamboni, Software Engineer,AT&T Interactive

“It’s rare that developer cookbooks can both provide good recipes and solid
discussion of fundamental techniques, but Erica Sadun’s book manages to do
both very well.”

—Jeremy McNally, Developer, entp

The iOS 5 Developer’s
Cookbook:

Core Concepts and Essential
Recipes for iOS Programmers

Third Edition

Erica Sadun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial capi-
tal letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

AirPlay, AirPort, AirPrint, AirTunes, App Store, Apple, the Apple logo, Apple TV, Aqua, Bonjour,
the Bonjour logo, Cocoa, Cocoa Touch, Cover Flow, Dashcode, Finder, FireWire, iMac,
Instruments, Interface Builder, iOS, iPad, iPhone, iPod, iPod touch, iTunes, the iTunes Logo,
Leopard, Mac, Mac logo, Macintosh, Multi-Touch, Objective-C, Quartz, QuickTime, QuickTime
logo, Safari, Snow Leopard, Spotlight, and Xcode are trademarks of Apple, Inc., registered in
the U.S. and other countries. OpenGL, or OpenGL Logo,: OpenGL is a registered trademark
of Silicon Graphics, Inc. The YouTube logo is a trademark of Google, Inc. Intel, Intel Core,
and Xeon are trademarks of Intel Corp. in the United States and other countries.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Sadun, Erica.
The iOS 5 developer’s cookbook : core concepts and essential recipes for iOS program-

mers / Erica Sadun. — 3rd ed.
p. cm.

Rev. ed. of: iPhone developer’s cookbook. 2009.
ISBN 978-0-321-75426-4 (pbk. : alk. paper)

1. iPhone (Smartphone)—Programming. 2. Computer software—Development. 3. Mobile
computing. I. Sadun, Erica. iPhone developer’s cookbook. II. Title.

QA76.8.I64S33 2011
004.16’7—dc23

2011036427

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-75426-4
ISBN-10: 0-321-75426-3

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,
Michigan.

First printing November 2011

Editor-in-Chief
Mark Taub

Senior Acquisitions
Editor
Chuck Toporek

Senior
Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Bart Reed

Indexer
Erika Millen

Proofreader
Linda Seifert

Technical
Reviewers
Jon Bauer
Joachim Bean
Tim Burks
Matt Martel

Editorial Assistant
Olivia Basegio

Cover Designer
Gary Adair

Composition
Nonie Ratcliff

❖

I dedicate this book with love to my husband,Alberto,
who has put up with too many gadgets and too many

SDKs over the years while remaining both kind
and patient at the end of the day.

❖

Contents at a Glance
Preface xxvii

1 Introducing the iOS SDK 1

2 Objective-C Boot Camp 51

3 Building Your First Project 127

4 Designing Interfaces 191

5 Working with View Controllers 247

6 Assembling Views and Animations 295

7 Working with Images 337

8 Gestures and Touches 397

9 Building and Using Controls 445

10 Working with Text 491

11 Creating and Managing Table Views 555

12 A Taste of Core Data 611

13 Alerting the User 633

14 Device Capabilities 661

15 Networking 695

Contents

Preface xxvii

1 Introducing the iOS SDK 1
iOS Developer Programs 1

Online Developer Program 2

Standard Developer Program 2

Developer Enterprise Program 3

Developer University Program 3

Registering 3

Getting Started 3

Downloading the SDK 4

Development Devices 5

Simulator Limitations 6

Tethering 7

Understanding Model Differences 8

Screen Size 9

Camera 9

Audio 10

Telephony 10

Core Location and Core Motion Differences 10

Vibration Support and Proximity 11

Processor Speeds 11

OpenGL ES 11

Platform Limitations 12

Storage Limits 12

Data Access Limits 13

Memory Limits 13

Interaction Limits 16

Energy Limits 16

Application Limits 17

User Behavior Limits 18

SDK Limitations 18

viii Contents

Using the Provisioning Portal 19

Setting Up Your Team 19

Requesting Certificates 20

Registering Devices 20

Registering Application Identifiers 21

Provisioning 22

Putting Together iPhone Projects 23

The iPhone Application Skeleton 25

main.m 26

Application Delegate 28

View Controller 30

A Note about the Sample Code in This Book 31

iOS Application Components 32

Application Folder Hierarchy 32

The Executable 32

The Info.plist File 33

The Icon and Launch Images 34

Interface Builder Files 37

Files Not Found in the Application Bundle 37

IPA Archives 38

Sandboxes 38

Programming Paradigms 39

Object-Oriented Programming 39

Model-View-Controller 40

Summary 48

2 Objective-C Boot Camp 51
The Objective-C Programming Language 51

Classes and Objects 52

Creating Objects 54

Memory Allocation 54

Releasing Memory 55

Understanding Retain Counts with MRR 56

Methods, Messages, and Selectors 57

Undeclared Methods 57

Pointing to Objects 58

Inheriting Methods 59

ixContents

Declaring Methods 59

Implementing Methods 60

Class Methods 62

Fast Enumeration 63

Class Hierarchy 63

Logging Information 64

Basic Memory Management 66

Managing Memory with MRR 67

Managing Memory with ARC 70

Properties 71

Encapsulation 71

Dot Notation 71

Properties and Memory Management 72

Declaring Properties 73

Creating Custom Getters and Setters 74

Property Qualifiers 76

Key-Value Coding 78

Key-Value Observing 79

MRR and High Retain Counts 79

Other Ways to Create Objects 80

Deallocating Objects 82

Using Blocks 84

Defining Blocks in Your Code 85

Assigning Block References 85

Blocks and Local Variables 87

Blocks and typedef 87

Blocks and Memory Management with MRR 88

Other Uses for Blocks 88

Getting Up to Speed with ARC 88

Property and Variable Qualifiers 89

Reference Cycles 92

Autorelease Pools 94

Opting into and out of ARC 95

Migrating to ARC 95

Disabling ARC across a Target 96

Disabling ARC on a File-by-File Basis 97

x Contents

Creating an ARC-less Project from
Xcode Templates 97

ARC Rules 98

Using ARC with Core Foundation and Toll
Free Bridging 99

Casting between Objective-C and Core
Foundation 99

Choosing a Bridging Approach 101

Runtime Workarounds 102

Tips and Tricks for Working with ARC 103

Crafting Singletons 103

Categories (Extending Classes) 104

Protocols 106

Defining a Protocol 106

Incorporating a Protocol 107

Adding Callbacks 107

Declaring Optional Callbacks 107

Implementing Optional Callbacks 108

Conforming to a Protocol 108

Foundation Classes 109

Strings 110

Numbers and Dates 115

Collections 117

One More Thing: Message Forwarding 123

Implementing Message Forwarding 123

House Cleaning 125

Super-easy Forwarding 126

Summary 126

3 Building Your First Project 127
Creating New Projects 127

Building Hello World the Template Way 129

Create a New Project 129

Introducing the Xcode Workspace 132

Review the Project 137

Open the iPhone Storyboard 138

Edit the View 140

Run Your Application 141

xiContents

Using the Simulator 142

Simulator: Behind the Scenes 144

Sharing Simulator Applications 146

The Minimalist Hello World 146

Browsing the SDK APIs 149

Converting Interface Builder Files to Their Objective-C
Equivalents 151

Using the Debugger 153

Set a Breakpoint 153

Open the Debugger 154

Inspect the Label 155

Set Another Breakpoint 156

Backtraces 157

Console 158

Add Simple Debug Tracing 158

Memory Management 158

Recipe: Using Instruments to Detect Leaks 159

Recipe: Using Instruments to Monitor Cached Object
Allocations 162

Simulating Low-Memory Conditions 163

Analyzing Your Code 165

From Xcode to Device: The Organizer Interface 165

Devices 165

Summary 167

Provisioning Profiles 168

Device Logs 168

Applications 169

Console 169

Screenshots 170

Building for the iOS Device 170

Using a Development Provision 170

Enable a Device 171

Inspect Your Application Identifier 172

Set Your Device and Code Signing Identity 172

Set Your Base and Deployment SDK Targets 173

Compile and Run the Hello World Application 174

Signing Compiled Applications 175

xii Contents

Detecting Simulator Builds with Compile-Time
Checks 175

Performing Runtime Compatibility Checks 175

Pragma Marks 177

Collapsing Methods 178

Preparing for Distribution 178

Locating and Cleaning Builds 178

Using Schemes and Actions 179

Adding Build Configurations 181

About Ad Hoc Distribution 182

Building Ad-Hoc Packages 183

Over-the-Air Ad Hoc Distribution 184

Building a Manifest 184

Submitting to the App Store 186

Summary 188

4 Designing Interfaces 191
UIView and UIWindow 191

Views That Display Data 192

Views for Making Choices 193

Controls 193

Tables and Pickers 195

Bars 195

Progress and Activity 196

View Controllers 196

UIViewController 197

UINavigationController 197

UITabBarController 198

Split View Controllers 198

Page View Controller 199

Popover Controllers 199

Table Controllers 199

Address Book Controllers 200

Image Picker 200

Mail Composition 200

Document Interaction Controller 200

GameKit Peer Picker 201

Media Player Controllers 201

xiiiContents

View Design Geometry 201

Status Bar 202

Navigation Bars, Toolbars, and Tab Bars 203

Keyboards and Pickers 205

Text Fields 207

The UIScreen Class 207

Building Interfaces 207

Walkthrough: Building Storyboard Interfaces 208

Create a New Project 208

Add More View Controllers 208

Organize Your Views 209

Update Classes 210

Name Your Scenes 211

Edit View Attributes 211

Add Navigation Buttons 211

Add Another Navigation Controller 213

Name the Controllers 213

Tint the Navigation Bars 214

Add a Button 214

Change the Entry Point 215

Add Dismiss Code 215

Run the App 216

Popover Walkthrough 216

Add a Navigation Controller 216

Change the View Controller Class 217

Customize the Popover View 217

Make the Connections 218

Edit the Code 218

Walkthrough: Building an iOS-based Temperature
Converter with IB 220

Create a New Project 220

Add Media 221

Interface Builder 221

Add Labels and Views 222

Enable Reorientation 223

Test the Interface 223

Add Outlets and an Action 223

xiv Contents

Add the Conversion Method 225

Update the Keyboard Type 225

Connecting the iPad Interface 226

Walkthrough: Building a Converter Interface by
Hand 227

Putting the Project Together 230

Walkthrough: Creating, Loading, and Using Hybrid
Interfaces 230

Create a New XIB Interface File 231

Add a View and Populate It 231

Tag Your Views 231

Edit the Code 232

Designing for Rotation 233

Enabling Reorientation 233

Autosizing 235

Autosizing Example 237

Evaluating the Autosize Option 238

Moving Views 239

Recipe: Moving Views by Mimicking Templates 240

One More Thing: A Few Great Interface Builder Tips 243

Summary 245

5 Working with View Controllers 247
Developing with Navigation Controllers and
Split Views 247

Using Navigation Controllers and Stacks 249

Pushing and Popping View Controllers 249

The Navigation Item Class 250

Modal Presentation 251

Recipe: Building a Simple Two-Item Menu 252

Recipe: Adding a Segmented Control 253

Recipe: Navigating Between View Controllers 255

Recipe: Presenting a Custom Modal
Information View 258

Recipe: Page View Controllers 262

Book Properties 262

Wrapping the Implementation 263

Exploring the Recipe 264

xvContents

Recipe: Scrubbing Pages in a Page View Controller 269

Recipe: Tab Bars 271

Recipe: Remembering Tab State 275

Recipe: Building Split View Controllers 278

Recipe: Creating Universal Split View/Navigation
Apps 282

Recipe: Custom Containers and Segues 284

Transitioning Between View Controllers 290

One More Thing: Interface Builder and Tab
Bar Controllers 291

Summary 292

6 Assembling Views and Animations 295
View Hierarchies 295

Recipe: Recovering a View Hierarchy Tree 297

Recipe: Querying Subviews 298

Managing Subviews 300

Adding Subviews 300

Reordering and Removing Subviews 300

View Callbacks 301

Recipe: Tagging and Retrieving Views 301

Using Tags to Find Views 302

Recipe: Naming Views 303

Associated Objects 304

Using a Name Dictionary 305

View Geometry 308

Frames 309

Transforms 310

Coordinate Systems 310

Recipe: Working with View Frames 311

Adjusting Sizes 312

CGRects and Centers 313

Other Utility Methods 314

Recipe: Randomly Moving a Bounded View 318

Recipe: Transforming Views 319

Display and Interaction Traits 320

xvi Contents

UIView Animations 321

Building UIView Animation Transactions 322

Building Animations with Blocks 323

Conditional Animation 324

Recipe: Fading a View In and Out 324

Recipe: Swapping Views 326

Recipe: Flipping Views 327

Recipe: Using Core Animation Transitions 328

Recipe: Bouncing Views as They Appear 329

Recipe: Image View Animations 331

One More Thing: Adding Reflections to Views 332

Summary 335

7 Working with Images 337
Finding and Loading Images 337

Reading Image Data 339

Recipe: Accessing Photos from the iOS
Photo Album 342

Working with the Image Picker 342

Recovering Image Edit Information 344

Recipe: Retrieving Images from Asset URLs 347

Recipe: Snapping Photos and Writing Them
to the Photo Album 349

Choosing Between Cameras 351

Saving Pictures to the Documents Folder 353

Recipe: E-mailing Pictures 354

Creating Message Contents 354

Presenting the Composition Controller 356

Automating Camera Shots 358

Using a Custom Camera Overlay 358

Recipe: Accessing the AVFoundation Camera 359

Requiring Cameras 360

Querying and Retrieving Cameras 360

Establishing a Camera Session 361

Switching Cameras 363

Camera Previews 364

xviiContents

Laying Out a Camera Preview 364

EXIF 365

Image Geometry 365

Building Camera Helper 367

Recipe: Adding a Core Image Filter 368

Recipe: Core Image Face Detection 370

Extracting Faces 376

Recipe: Working with Bitmap Representations 377

Drawing into a Bitmap Context 378

Applying Image Processing 380

Image Processing Realities 382

Recipe: Sampling a Live Feed 384

Converting to HSB 386

Recipe: Building Thumbnails from Images 387

Taking View-based Screenshots 390

Drawing into PDF Files 390

Creating New Images from Scratch 391

Recipe: Displaying Images in a Scrollable View 392

Creating a Multi-Image Paged Scroll 395

Summary 396

8 Gestures and Touches 397
Touches 397

Phases 398

Touches and Responder Methods 399

Touching Views 399

Multitouch 400

Gesture Recognizers 400

Recipe: Adding a Simple Direct Manipulation
Interface 401

Recipe: Adding Pan Gesture Recognizers 402

Recipe: Using Multiple Gesture Recognizers
at Once 404

Resolving Gesture Conflicts 407

Recipe: Constraining Movement 408

Recipe: Testing Touches 409

Recipe: Testing Against a Bitmap 411

xviii Contents

Recipe: Adding Persistence to Direct Manipulation
Interfaces 413

Storing State 413

Recovering State 415

Recipe: Persistence Through Archiving 416

Recipe: Adding Undo Support 418

Creating an Undo Manager 418

Child-View Undo Support 418

Working with Navigation Bars 419

Registering Undos 420

Adding Shake-Controlled Undo Support 422

Add an Action Name for Undo and Redo
(Optional) 422

Provide Shake-To-Edit Support 423

Force First Responder 423

Recipe: Drawing Touches Onscreen 424

Recipe: Smoothing Drawings 426

Recipe: Detecting Circles 429

Creating a Custom Gesture Recognizer 433

Recipe: Using Multitouch 435

Retaining Touch Paths 438

One More Thing: Dragging from a Scroll View 440

Summary 443

9 Building and Using Controls 445
The UIControl Class 445

Kinds of Controls 445

Control Events 446

Buttons 448

Adding Buttons in Interface Builder 449

Art 450

Connecting Buttons to Actions 451

Buttons That Are Not Buttons 452

Building Custom Buttons in Xcode 453

Multiline Button Text 455

Adding Animated Elements to Buttons 456

Recipe: Animating Button Responses 456

xixContents

Recipe: Adding a Slider With a Custom Thumb 458

Customizing UISlider 459

Adding Efficiency 460

Appearance Proxies 460

Recipe: Creating a Twice-Tappable Segmented
Control 465

Recipe: Subclassing UIControl 467

Creating UIControls 468

Tracking Touches 468

Dispatching Events 468

Working with Switches and Steppers 471

Recipe: Building a Star Slider 472

Recipe: Building a Touch Wheel 476

Adding a Page Indicator Control 478

Recipe: Creating a Customizable Paged Scroller 481

Building a Toolbar 486

Building Toolbars in Code 487

iOS 5 Toolbar Tips 489

Summary 489

10 Working with Text 491
Recipe: Dismissing a UITextField Keyboard 491

Text Trait Properties 492

Other Text Field Properties 493

Recipe: Adjusting Views Around Keyboards 495

Recipe: Dismissing Text Views with Custom
Accessory Views 498

Recipe: Resizing Views with Hardware Keyboards 500

Recipe: Creating a Custom Input View 503

Recipe: Making Text-Input-Aware Views 508

Recipe: Adding Custom Input Views to Non-Text
Views 511

Adding Input Clicks 511

Recipe: Building a Better Text Editor 513

Recipe: Text Entry Filtering 516

Recipe: Detecting Text Patterns 518

Rolling Your Own Expressions 518

xx Contents

Enumerating Regular Expressions 519

Data Detectors 520

Adding Built-in Type Detectors 520

Recipe: Detecting Misspelling in a UITextView 522

Searching for Text Strings 523

Recipe: Dumping Fonts 524

Recipe: Adding Custom Fonts to Your App 525

Recipe: Basic Core Text and Attributed Strings 526

Using Pseudo-HTML to Create Attributed Text 532

Recipe: Splitting Core Text into Pages 536

Recipe: Drawing Core Text into PDF 537

Recipe: Drawing into Nonrectangular Paths 539

Recipe: Drawing Text onto Paths 542

Drawing Text onto Bezier Paths 543

Drawing Proportionately 544

Drawing the Glyph 545

One More Thing: Big Phone Text 551

Summary 554

11 Creating and Managing Table Views 555
Introducing UITableView and UITableView Controller 555

Creating the Table 556

Recipe: Implementing a Basic Table 558

Populating a Table 558

Data Source Methods 559

Reusing Cells 560

Responding to User Touches 560

Selection Color 561

Changing a Table’s Background Color 561

Cell Types 562

Recipe: Building Custom Cells in Interface Builder 563

Adding in Custom Selection Traits 565

Alternating Cell Colors 565

Removing Selection Highlights from Cells 566

Creating Grouped Tables 567

Recipe: Remembering Control State for
Custom Cells 567

xxiContents

Visualizing Cell Reuse 570

Creating Checked Table Cells 571

Working with Disclosure Accessories 572

Recipe: Table Edits 574

Displaying Remove Controls 575

Dismissing Remove Controls 575

Handling Delete Requests 576

Supporting Undo 576

Swiping Cells 576

Adding Cells 576

Reordering Cells 579

Sorting Tables Algorithmically 580

Recipe: Working with Sections 581

Building Sections 582

Counting Sections and Rows 583

Returning Cells 583

Creating Header Titles 584

Creating a Section Index 584

Delegation with Sections 585

Recipe: Searching Through a Table 586

Creating a Search Display Controller 586

Building the Searchable Data Source Methods 587

Delegate Methods 589

Using a Search-Aware Index 589

Customizing Headers and Footers 591

Recipe: Adding “Pull-to-Refresh” to Your Table 592

Coding a Custom Group Table 595

Creating Grouped Preferences Tables 595

Recipe: Building a Multiwheel Table 597

Creating the UIPickerView 598

Recipe: Using a View-based Picker 601

Recipe: Using the UIDatePicker 603

Creating the Date Picker 603

One More Thing: Formatting Dates 606

Summary 608

xxii Contents

12 A Taste of Core Data 611
Introducing Core Data 611

Creating and Editing Model Files 612

Generating Class Files 614

Creating a Core Data Context 615

Adding Objects 616

Querying the Database 618

Detecting Changes 619

Removing Objects 619

Recipe: Using Core Data for a Table Data Source 620

Recipe: Search Tables and Core Data 623

Recipe: Integrating Core Data Table Views with
Live Data Edits 625

Recipe: Implementing Undo/Redo Support with
Core Data 628

Summary 632

13 Alerting the User 633
Talking Directly to Your User Through Alerts 633

Building Simple Alerts 633

Alert Delegates 634

Displaying the Alert 636

Kinds of Alerts 636

“Please Wait”: Showing Progress to Your User 637

Using UIActivityIndicatorView 638

Using UIProgressView 639

Recipe: No-Button Alerts 639

Building a Floating Progress Monitor 642

Recipe: Creating Modal Alerts with Run Loops 642

Recipe: Using Variadic Arguments with Alert Views 645

Presenting Simple Menus 646

Scrolling Menus 648

Displaying Text in Action Sheets 648

Recipe: Building Custom Overlays 649

Tappable Overlays 650

Recipe: Basic Popovers 650

Recipe: Local Notifications 652

xxiiiContents

Alert Indicators 654

Badging Applications 654

Recipe: Simple Audio Alerts 654

System Sounds 655

Vibration 656

Alerts 656

Delays 656

One More Thing: Showing the Volume Alert 658

Summary 659

14 Device Capabilities 661
Accessing Basic Device Information 661

Adding Device Capability Restrictions 662

Recipe: Recovering Additional Device Information 664

Monitoring the iPhone Battery State 666

Enabling and Disabling the Proximity Sensor 667

Recipe: Using Acceleration to Locate “Up” 668

Retrieving the Current Accelerometer Angle
Synchronously 670

Calculate a Relative Angle 671

Working with Basic Orientation 671

Recipe: Using Acceleration to Move Onscreen
Objects 672

Adding a Little Sparkle 675

Recipe: Core Motion Basics 676

Testing for Sensors 677

Handler Blocks 677

Recipe: Retrieving and Using Device Attitude 680

Detecting Shakes Using Motion Events 681

Recipe: Detecting Shakes via the Accelerometer 683

Recipe: Using External Screens 686

Detecting Screens 687

Retrieving Screen Resolutions 687

Setting Up Video Out 688

Adding a Display Link 688

Overscanning Compensation 688

VIDEOkit 688

One More Thing: Checking for Available Disk Space 692

Summary 693

xxiv Contents

15 Networking 695
Checking Your Network Status 695

Recipe: Extending the UIDevice Class for Reachability
697

Scanning for Connectivity Changes 700

Recovering IP and Host Information 702

Using Queues for Blocking Checks 705

Checking Site Availability 707

Synchronous Downloads 709

Asynchronous Downloads in Theory 713

Recipe: Asynchronous Downloads 715

Handling Authentication Challenges 721

Storing Credentials 722

Recipe: Storing and Retrieving Keychain
Credentials 725

Recipe: Uploading Data 728

NSOperationQueue 728

Twitter 732

Recipe: Converting XML into Trees 733

Trees 733

Building a Parse Tree 734

Using the Tree Results 736

Recipe: Building a Simple Web-based Server 738

One More Thing: Using JSON Serialization 742

Summary 742

Index 745

Acknowledgments
This book would not exist without the efforts of Chuck Toporek (my editor and whip-
cracker), Chris Zahn (the awesomely talented development editor), and Olivia Basegio
(the faithful and rocking editorial assistant who kept things rolling behind the scenes).
Also, a big thank you to the entire Addison-Wesley/Pearson production team, specifically
Kristy Hart,Anne Goebel, Bart Reed, Linda Seifert, Erika Millen, Nonie Ratcliff, and
Gary Adair.Thanks also to the crew at Safari for getting my book up in Rough Cuts
and for quickly fixing things when technical glitches occurred.

Thanks go as well to Neil Salkind, my agent of many years, to the tech reviewers (Jon
Bauer, Joachim Bean,Tim Burks, and Matt Martel) who helped keep this book in the
realm of sanity rather than wishful thinking, and to all my colleagues, both present and
former, at TUAW,Ars Technica, and the Digital Media/Inside iPhone blog.

I am deeply indebted to the wide community of iOS developers, including Tim Isted,
Joachim Bean,Aaron Basil, Roberto Gamboni, John Muchow, Scott Mikolaitis,Alex
Schaefer, Nick Penree, James Cuff, Jay Freeman, Mark Montecalvo,August Joki, Max
Weisel, Optimo, Kevin Brosius, Planetbeing, Pytey, Michael Brennan, Daniel Gard,
Michael Jones, Roxfan, MuscleNerd, np101137, UnterPerro, Jonathan Watmough,Youssef
Francis, Bryan Henry,William DeMuro, Jeremy Sinclair,Arshad Tayyeb, Daniel Peebles,
ChronicProductions, Greg Hartstein, Emanuele Vulcano, Sean Heber, Josh Bleecher
Snyder, Eric Chamberlain, Steven Troughton-Smith, Dustin Howett, Dick Applebaum,
Kevin Ballard, Hamish Allan, Kevin McAllister, Jay Abbott,Tim Grant Davies, Chris
Greening, Landon Fuller,Wil Macaulay, Stefan Hafeneger, Scott Yelich, chrallelinder, John
Varghese,Andrea Fanfani, J. Roman, jtbandes,Artissimo,Aaron Alexander, Christopher
Campbell Jensen, rincewind42, Nico Ameghino, Jon Moody, Julián Romero, Scott
Lawrence, Evan K. Stone, Kenny Chan Ching-King, Matthias Ringwald, Jeff Tentschert,
Marco Fanciulli, Neil Taylor, Sjoerd van Geffen,Absentia, Nownot, Emerson Malca, Matt
Brown, Chris Foresman,Aron Trimble, Paul Griffin, Paul Robichaux, Nicolas Haunold,
Anatol Ulrich (hypnocode GmbH), Kristian Glass, Remy Demarest,Yanik Magnan,
ashikase, Shane Zatezalo,Tito Ciuro, Jonah Williams of Carbon Five, Joshua Weinberg,
biappi, Eric Mock, Jay Spencer, and everyone at the iPhone developer channels at
irc.saurik.com and irc.freenode.net, among many others too numerous to name individ-
ually.Their techniques, suggestions, and feedback helped make this book possible. If I
have overlooked anyone who helped contribute, please accept my apologies for the
oversight.

Special thanks go out to my family and friends, who supported me through month
after month of new beta releases and who patiently put up with my unexplained
absences and frequent howls of despair. I appreciate you all hanging in there with me.
And thanks to my children for their steadfastness, even as they learned that a hunched
back and the sound of clicking keys is a pale substitute for a proper mother. My kids
provided invaluable assistance over the last few months by testing applications, offering
suggestions, and just being awesome people. I try to remind myself on a daily basis how
lucky I am that these kids are part of my life.

About the Author
Erica Sadun is the bestselling author, coauthor, and contributor to several dozen books
on programming, digital video and photography, and web design, including the widely
popular The iPhone Developer’s Cookbook: Building Applications with the iPhone 3.0 SDK,
Second Edition. She currently blogs at TUAW.com, and has blogged in the past at
O’Reilly’s Mac DevCenter, Lifehacker, and Ars Technica. In addition to being the author
of dozens of iOS-native applications, Erica holds a Ph.D. in Computer Science from
Georgia Tech’s Graphics,Visualization and Usability Center.A geek, a programmer, and
an author, she’s never met a gadget she didn’t love.When not writing, she and her geek
husband parent three geeks-in-training, who regard their parents with restrained
bemusement, when they’re not busy rewiring the house or plotting global dominance.

Preface
This is the iOS Cookbook you’ve been waiting for!

Last year, when iOS 4 debuted, my editor and I had a hard decision to make: Publish
the book on iOS 4 and don’t include Xcode 4 material, or hold off until Apple released
Xcode 4.We chose to hold off for Xcode 4, feeling that many people would expect to
see it covered in the book.What we couldn’t anticipate, however, is that Apple’s NDA
would last until Spring 2011, and we knew iOS 5 was right around the corner.

Stuck between a rock and an iOS release, we decided to update the book to iOS 4.3
and to release that as an ebook-only version (that is, we aren’t planning to print that edi-
tion—ever).The reason for doing an electronic-only edition on iOS 4.3 was so develop-
ers who wanted that info could still have access to it. Once that update was finished and
iOS 5 was introduced at WWDC, I quickly turned my attention to updating—and
expanding—the cookbook for iOS 5.This is the version you’re currently reading.
Finally!

This edition, The iOS 5 Developer’s Cookbook, carries through with the promise of the
subtitle: Core Concepts and Essential Recipes for iOS Programmers.That means this book
covers what you need to know to get started. For someone who’s just starting out as an
iOS developer, this is the ideal book because it covers the tools (Xcode and Interface
Builder), the language (Objective-C), and the basic elements common to pretty much
every iOS app out there (table views, custom controls, split views, and the like).

But we’re not stopping there. Mid-October 2011 is our cutoff date for getting the
book to production this year.While the book is in production, I’ll continue writing and
adding more advanced material to The iOS 5 Developer’s Cookbook, along with a bunch
of new chapters that won’t make it to print.

Our plan is to combine all this material to create The iOS 5 Developer’s Cookbook:
Expanded Electronic Edition, which will release in electronic-only form (namely, ePub for
iBooks, Kindle, and PDF for desktops). It will hit the virtual electronic shelf at the same
time this printed book hits the stands.The Expanded Electronic Edition will include the
equivalent of what would amount to several hundred pages of printed material.You can
see our reason for not wanting to print all that.There is an electronic version of the very
book you hold in your hands, but if you want access to the entire The iOS 5 Developer’s
Cookbook: Expanded Electronic Edition, you will need to purchase that edition separately.

As in the past, sample code can be found at github.The repository for this cookbook
is located at https://github.com/erica/iOS-5-Cookbook, all of it written after WWDC
2011 and during the time when Apple was routing iOS 5 betas to developers.

If you have suggestions, bug fixes, corrections, or any thing else you’d like to con-
tribute to a future edition, please contact me at erica@ericasadun.com. Let me thank
you all in advance. I appreciate all feedback that helps make this a better, stronger book.

—Erica Sadun, November 2011

https://github.com/erica/iOS-5-Cookbook

xxviii The iOS 5 Developer’s Cookbook

What You’ll Need
It goes without saying that, if you’re planning to build iOS applications, you’re going to
need at least one of those iOS devices to test out your application, preferably a 3GS or
later, a third-gen iPod touch or later, or any iPad.The following list covers the basics of
what you need to begin:

n Apple’s iOS SDK— The latest version of the iOS SDK can be downloaded from
Apple’s iOS Dev Center (developer.apple.com/ios). If you plan to sell apps
through the App Store, you will need to become a paid iOS developer, which
costs $99/year for individuals and $299/year for enterprise (that is, corporate)
developers. Registered developers receive certificates that allow them to “sign” and
download their applications to their iPhone/iPod touch for testing and debugging.

University Student Program
Apple also offers a University Program for students and educators. If you are a CS student
taking classes at the university level, check with your professor to see whether your school
is part of the University Program. For more information about the iPhone Developer
University Program, see http://developer.apple.com/support/iphone/university.

n An Intel-based Mac running Mac OS X Snow Leopard (v 10.6) or Lion
(v 10.7)—You need plenty of disk space for development, and your Mac should
have at least 1GB RAM, preferably 2GB or 4GB to help speed up compile time.

n An iOS device—Although the iOS SDK and Xcode include a simulator for you
to test your applications in, you really do need to have an iPhone, iPad, and/or
iPod touch if you’re going to develop for the platform.You can use the USB cable
to tether your unit to the computer and install the software you’ve built. For real-
life App Store deployment, it helps to have several units on hand, representing the
various hardware and firmware generations, so you can test on the same platforms
your target audience will use.

n At least one available USB 2.0 port—This enables you to tether a develop-
ment iPhone or iPod touch to your computer for file transfer and testing.

n An Internet connection—This connection enables you to test your programs
with a live Wi-Fi connection as well as with an EDGE or 3G service.

n Familiarity with Objective-C—To program for the iPhone, you need to know
Objective-C 2.0.The language is based on ANSI C with object-oriented exten-
sions, which means you also need to know a bit of C too. If you have programmed
with Java or C++ and are familiar with C, making the move to Objective-C is
pretty easy. Chapter 2,“Objective-C Boot Camp,” helps you get up to speed.

http://developer.apple.com/support/iphone/university

xxixPreface

Your Roadmap to Mac/iOS Development
As mentioned earlier, one book can’t be everything to everyone.And try as I might, if
we were to pack everything you’d need to know into this book, you wouldn’t be able to
pick it up. (As it stands, this book offers an excellent tool for upper body development.
Please don’t sue us if you strain yourself lifting it.) There is, indeed, a lot you need to
know to develop for the Mac and iOS platforms. If you are just starting out and don’t
have any programming experience, your first course of action should be to take a col-
lege-level course in the C programming language.Although the alphabet might start
with the letter A, the root of most programming languages, and certainly your path as a
developer, is C.

Once you know C and how to work with a compiler (something you’ll learn in that
basic C course), the rest should be easy. From there, you’ll hop right on to Objective-C
and learn how to program with that alongside the Cocoa frameworks.To help you along
the way, my editor Chuck Toporek and I put together the flowchart shown in Figure P-
1 to point you at some books of interest.

Once you know C, you’ve got a few options for learning how to program with
Objective-C. For a quick-and-dirty overview of Objective-C, you can turn to Chapter 2
of this book and read the “Objective-C Boot Camp.” However, if you want a more in-
depth view of the language, you can either read Apple’s own documentation or pick up
one of these books on Objective-C:

n Objective-C Programming:The Big Nerd Ranch Guide, by Aaron Hillegass (Big Nerd
Ranch, 2012).

n Learning Objective-C:A Hands-on Guide to Objective-C for Mac and iOS Developers, by
Robert Clair (Addison-Wesley, 2011).

n Programming in Objective-C 2.0, Fourth Edition, by Stephen Kochan (Addison-
Wesley, 2012).

With the language behind you, next up is tackling Cocoa and the developer tools,
otherwise known as Xcode. For that, you have a few different options.Again, you can
refer to Apple’s own documentation on Cocoa and Xcode,1 or if you prefer books, you
can learn from the best.Aaron Hillegass, founder of the Big Nerd Ranch in Atlanta,2 is
the coauthor of iOS Programming:The Big Nerd Ranch Guide, Second Edition and author of
Cocoa Programming for Mac OS X, soon to be in its fourth edition.Aaron’s book is highly
regarded in Mac developer circles and is the most-recommended book you’ll see on the
cocoa-dev mailing list.To learn more about Xcode, look no further than Fritz Anderson’s
Xcode 4 Unleashed from Sams Publishing.

xxx The iOS 5 Developer’s Cookbook

No Yes

No Yes

No Yes

Do you know
C?

Do You Know
“Objective-C”?

Familiar with
Cocoa and Xcode?

College-level
course on C

Figure P-1 What it takes to be an iOS programmer.

Note
There are plenty of other books from other publishers on the market, including the best-
selling Beginning iPhone 4 Development, by Dave Mark, Jack Nutting, and Jeff LaMarche
(Apress, 2011). Another book that’s worth picking up if you’re a total newbie to program-
ming is Beginning Mac Programming, by Tim Isted (Pragmatic Programmers, 2011). Don’t
just limit yourself to one book or publisher. Just as you can learn a lot by talking with differ-
ent developers, you will learn lots of tricks and tips from other books on the market.

To truly master Mac development, you need to look at a variety of sources: books,
blogs, mailing lists,Apple’s own documentation, and, best of all, conferences. If you get
the chance to attend WWDC, you’ll know what I’m talking about.The time you spend
at those conferences talking with other developers, and in the case of WWDC, talking
with Apple’s engineers, is well worth the expense if you are a serious developer.

How This Book Is Organized
This book offers single-task recipes for the most common issues new iOS developers
face: laying out interface elements, responding to users, accessing local data sources, and
connecting to the Internet. Each chapter groups together related tasks, allowing you to
jump directly to the solution you’re looking for without having to decide which class or
framework best matches that problem.

The iOS 5 Developer’s Cookbook offers you “cut-and-paste convenience,” which means
you can freely reuse the source code from recipes in this book for your own applications
and then tweak the code to suit your app’s needs.

Here’s a rundown of what you find in this book’s chapters:
n Chapter 1, “Introducing the iOS SDK”—Chapter 1 introduces the iOS SDK

and explores iOS as a delivery platform, limitations and all. It explains the break-
down of the standard iOS application and helps you get started with the iOS
Developer Portal.

n Chapter 2, “Objective-C Boot Camp”—If you’re new to Objective-C as well
as to iOS, you’ll appreciate this basic skills chapter. Objective-C is the standard
programming language for both iOS and for Mac OS X. It offers a powerful
object-oriented language that lets you build applications that leverage Apple’s
Cocoa and Cocoa Touch frameworks. Chapter 2 introduces the language, provides
an overview of its object-oriented features, discusses memory management
skills, and adds a common class overview to get you started with Objective-C
programming.

n Chapter 3, “Building Your First Project”—Chapter 3 covers the basics for
building your first Hello World–style applications. It introduces Xcode and
Interface Builder, showing how you can use these tools in your projects.You read
about basic debugging tools, walk through using them, and pick up some tips
about handy compiler directives.You’ll also discover how to create provisioning

xxxiPreface

profiles and use them to deploy your application to your device, to beta testers, and
to the App Store.

n Chapter 4, “Designing Interfaces”—Chapter 4 introduces iOS’s library of
visual classes. It surveys these classes and their geometry. In this chapter, you learn
how to work with these visual classes and discover how to handle tasks such as
device reorientation.You’ll read about solutions for laying out and customizing
interfaces and learn about hybrid solutions that rely both on Interface Builder–cre-
ated interfaces and Objective-C-centered ones.

n Chapter 5, “Working with View Controllers”—The iOS paradigm in a nut-
shell is this: small screen, big virtual worlds. In Chapter 5, you discover the various
view controller classes that enable you to enlarge and order the virtual spaces your
users interact with.You learn how to let these powerful objects perform all the
heavy lifting when navigating between iOS application screens or breaking down
iPad applications into master-detail views.

n Chapter 6, “Assembling Views and Animations”—Chapter 6 introduces iOS
views, objects that live on your screen.You see how to lay out, create, and order
your views to create backbones for your applications.You read about view hierar-
chies, geometries, and animations, features that bring your iOS applications to life.

n Chapter 7, “Working with Images”—Chapter 7 introduces images, specifically
the UIImage class, and teaches you all the basic know-how you need for working
with iOS images.You learn how to load, store, and modify image data in your
applications.You see how to add images to views and how to convert views into
images.And you discover how to process image data to create special effects, how
to access images on a byte-by-byte basis, and how to take photos with your
device’s built-in camera.

n Chapter 8, “Gestures and Touches”—On iOS, the touch provides the most
important way that users communicate their intent to an application.Touches are
not limited to button presses and keyboard interaction. Chapter 8 introduces direct
manipulation interfaces, multitouch, and more.You see how to create views that
users can drag around the screen and read about distinguishing and interpreting
gestures, as well as how to create custom gesture recognizers.

n Chapter 9, “Building and Using Controls”—Control classes provide the basis
for many of iOS’s interactive elements, including buttons, sliders, and switches.This
chapter introduces controls and their use.You read about standard control interac-
tions and how to customize these objects for your application’s specific needs.You
even learn how to build your own controls from the ground up, as Chapter 9 cre-
ates custom switches, star ratings controls, and a virtual touch wheel.

n Chapter 10, “Working with Text”—From text fields and text views to iOS’s
new and powerful Core Text abilities and inline spelling checkers, Chapter 10
introduces everything you need to know to work with iOS text in your apps.

xxxii The iOS 5 Developer’s Cookbook

xxxiiiPreface

n Chapter 11, “Creating and Managing Table Views”—Tables provide a scroll-
ing interaction class that works particularly well on a small, cramped device. Many,
if not most, apps that ship with the iPhone and iPod touch center on tables,
including Settings,YouTube, Stocks, and Weather. Chapter 11 shows how iPhone
tables work, what kinds of tables are available to you as a developer, and how you
can use table features in your own programs.

n Chapter 12, “A Taste of Core Data”—Core Data offers managed data stores
that can be queried and updated from your application. It provides a Cocoa
Touch–based object interface that brings relational data management out from
SQL queries and into the Objective-C world of iPhone development. Chapter 12
introduces Core Data. It provides just enough recipes to give you a taste of the
technology, offering a jumping-off point for further Core Data learning.You learn
how to design managed database stores, add and delete data, and query that data
from your code and integrate it into your UIKit table views.

n Chapter 13, “Alerting the User”—iOS offers many ways to provide users with
a heads-up, from pop-up dialogs and progress bars to local notifications, popovers,
and audio pings. Chapter 13 shows how to build these indications into your appli-
cations and expand your user-alert vocabulary. It introduces standard ways of
working with these classes and offers solutions that allow you to craft linear pro-
grams without explicit callbacks.

n Chapter 14, “Device Capabilities”—Each iOS device represents a meld of
unique, shared, momentary, and persistent properties.These properties include the
device’s current physical orientation, its model name, battery state, and access to
onboard hardware. Chapter 14 looks at the device from its build configuration to
its active onboard sensors. It provides recipes that return a variety of information
items about the unit in use.You read about testing for hardware prerequisites at
runtime and specifying those prerequisites in the application’s Info.plist file.You
discover how to solicit sensor feedback (including using Core Motion) and sub-
scribe to notifications to create callbacks when those sensor states change.This
chapter covers the hardware, file system, and sensors available on the iPhone device
and helps you programmatically take advantage of those features.

n Chapter 15, “Networking”—As an Internet-connected device, iOS is particu-
larly suited to subscribing to web-based services.Apple has lavished the platform
with a solid grounding in all kinds of network computing services and their sup-
porting technologies. Chapter 15 surveys common techniques for network com-
puting and offers recipes that simplify day-to-day tasks.You read about network
reachability, synchronous and asynchronous downloads, using operation queues,
working with the iPhone’s secure keychain to meet authentication challenges,
XML parsing, JSON serialization, the new Twitter APIs, and more.

About the Sample Code
For the sake of pedagogy, this book’s sample code usually presents itself in a single
main.m file.This is not how people normally develop iPhone or Cocoa applications, or,
honestly, how they should be developing them, but it provides a great way of presenting
a single big idea. It’s hard to tell a story when readers must look through five or seven or
nine individual files at once. Offering a single file concentrates that story, allowing access
to that idea in a single chunk.

These examples are not intended as standalone applications.They are there to demon-
strate a single recipe and a single idea. One main.m file with a central presentation
reveals the implementation story in one place. Readers can study these concentrated
ideas and transfer them into normal application structures, using the standard file struc-
ture and layout.The presentation in this book does not produce code in a standard day-
to-day best-practices approach. Instead, it reflects a pedagogical approach that offers
concise solutions that you can incorporate back into your work as needed.

Contrast that to Apple’s standard sample code, where you must comb through many
files to build up a mental model of the concepts that are being demonstrated.Those
examples are built as full applications, often doing tasks that are related to but not essen-
tial to what you need to solve. Finding just those relevant portions is a lot of work.The
effort may outweigh any gains. In this book, there are two exceptions to this one-file
rule:

n First, application-creation walkthroughs use the full file structure created by Xcode
to mirror the reality of what you’d expect to build on your own.The walkthrough
folders may therefore contain a dozen or more files at once.

n Second, standard class and header files are provided when the class itself is the
recipe or provides a precooked utility class. Instead of highlighting a technique,
some recipes offer these precooked class implementations and categories (that is,
extensions to a preexisting class rather than a new class). For those recipes, look for
separate .m and .h files in addition to the skeletal main.m that encapsulates the rest
of the story.

For the most part, the examples for this book use a single application identifier:
com.sadun.helloworld.This book uses one identifier to avoid clogging up your iOS
devices with dozens of examples at once. Each example replaces the previous one, ensur-
ing that your home screen remains relatively uncluttered. If you want to install several
examples at once, simply edit the identifier, adding a unique suffix, such as
com.sadun.helloworld.table-edits.You can also edit the custom display name to make the
apps visually distinct.Your Team Provisioning Profile matches every application identifier,
including com.sadun.helloworld.This allows you to install compiled code to devices
without having to change the identifier; just make sure to update your signing identity
in each project’s build settings.

xxxiv The iOS 5 Developer’s Cookbook

xxxvPreface

Getting the Sample Code
The source code for this book can be found at the open-source GitHub hosting site at
https://github.com/erica/iOS-5-Cookbook.There, you find a chapter-by-chapter collec-
tion of source code that provides working examples of the material covered in this book.

Sample code is never a fixed target. It continues to evolve as Apple updates its SDK
and the Cocoa Touch libraries. Get involved.You can pitch in by suggesting bug fixes
and corrections as well as by expanding the code that’s on offer. GitHub allows you to
fork repositories and grow them with your own tweaks and features, and share those
back to the main repository. If you come up with a new idea or approach, let me know.
My team and I are happy to include great suggestions both at the repository and in the
next edition of this Cookbook.

Getting Git
You can download this Cookbook’s source code using the git version control system.A
Mac OS X implementation of git is available at http://code.google.com/p/git-osx-
installer. Mac OS X git implementations include both command-line and GUI solutions,
so hunt around for the version that best suits your development needs.

Getting GitHub
GitHub (http://github.com) is the largest git-hosting site, with more than 150,000 pub-
lic repositories. It provides both free hosting for public projects and paid options for pri-
vate projects.With a custom web interface that includes wiki hosting, issue tracking, and
an emphasis on social networking of project developers, it’s a great place to find new
code or collaborate on existing libraries.You can sign up for a free account at their web-
site, allowing you to copy and modify the Cookbook repository or create your own
open-source iOS projects to share with others.

Contacting the Author
If you have any comments or questions about this book, please drop me an e-mail mes-
sage at erica@ericasadun.com, or stop by www.ericasadun.com for updates about the
book and news for iOS developers. Please feel free to visit, download software, read doc-
umentation, and leave your comments.

Endnotes
1 See the Cocoa Fundamentals Guide (http://developer.apple.com/mac/library/

documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf)
for a head start on Cocoa, and for Xcode, see A Tour of Xcode (http://developer.
apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_
Xcode/A_Tour_of_Xcode.pdf).

2 Big Nerd Ranch: http://www.bignerdranch.com.

http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
www.ericasadun.com
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://www.bignerdranch.com
https://github.com/erica/iOS-5-Cookbook
http://github.com

Editor’s Note: We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re willing
to pass our way.

You can email or write me directly to let me know what you did or didn’t like about
this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: chuck.toporek@pearson.com
Mail: Chuck Toporek

Senior Acquisitions Editor
Addison-Wesley/Pearson Education, Inc.
75 Arlington St., Ste. 300
Boston, MA 02116

5
Working with View Controllers

View controllers simplify view management for many iOS applications.They allow you
to build applications that centralize many tasks, including view management, orientation
changes, and view unloading during low-memory conditions. Each view controller owns
a hierarchy of views, which presents a complete element of a unified interface.

In the previous chapter, you built view-controller-based applications using Xcode and
Interface Builder. Now it’s time to take a deeper look at using view-controller-based
classes and how to apply them to real-world situations for both iPhone/iPod and iPad
design scenarios. In this chapter you discover how to build simple menus, create view
navigation trees, design tab-bar-based and page-view-based applications, and more.This
chapter offers hands-on recipes for working with a variety of controller classes.

Developing with Navigation Controllers and
Split Views
The UINavigationController class offers one of the most important ways of managing
interfaces on a device with limited screen space such as the iPhone and iPod touch. It
creates a way for users to drill up and down a hierarchy of interface presentations to cre-
ate a virtual GUI that’s far larger than the device. Navigation controllers fold their GUIs
into a neat tree-based scheme. Users travel through that scheme using buttons and choices
that transport them around the tree.You see navigation controllers in the Contacts appli-
cation and in Settings, where selections lead to new screens and “back” buttons move to
previous ones.

Several standard GUI elements identify the use of navigation controllers in applica-
tions, as seen in Figure 5-1 (left).These include their large navigation bars that appear at
the top of each screen, the backward-pointing button at the top-left that appears when
the user drills into hierarchies, and option buttons at the top-right that offer other appli-
cation functionality such as editing. Many navigation controller applications are built
around scrolling lists, where elements in that list lead to new screens, indicated by grey
and blue chevrons found on the right side of each table cell.

248 Chapter 5 Working with View Controllers

The iPad, with its large screen size, doesn’t require the kind of space-saving shortcuts
that navigation controllers leverage on the iPhone and iPod touch, along with their
cousins the tab view controller and modal view controller. iPad applications can use navi-
gation controllers directly, but the UISplitViewController shown in Figure 5-1 (right)
offers a presentation that’s far better suited for the more expansive device.

Notice the differences between the iPhone implementation on the left and the iPad
implementation on the right of Figure 5-1.The iPad’s split view controller contains no
chevrons.When items are tapped, their data appears on the same screen using the large
right-hand detail area.The iPhone, lacking this space, presents chevrons that indicate new
views will be pushed onscreen. Each approach takes device-specific design into account
in its presentation.

Both the iPhone and iPad Inbox views use similar navigation controller elements,
including the back button (iPad Book/Gmail for Book), an options button (Edit), and a
status in the title bar (with its one unread message). Each of these elements is created
using navigation controller API calls working with a hierarchy of e-mail accounts and
mailboxes.The difference lies at the bottom of the navigation tree, at the level of individ-
ual messages that form the leaves of the data structure. On the iPhone, leaves are indicated
by chevrons and, when viewed, are pushed onto the navigation stack, which accumulates
the trace of a user’s progress through the interface. On the iPad, leaves are presented in a
separate view without those chevrons that otherwise indicate that users have reached the
extent of the hierarchy traversal.

iPhone-style navigation controllers play roles as well on the iPad.When iPad applica-
tions use standard (iPhone-style) navigation controllers, they usually do so in narrow con-
texts such as transient popover presentations, where the controller is presented onscreen

Figure 5-1 The iPhone’s navigation controller uses chevrons to indicate
that detail views will be pushed onscreen when their parents are selected.

On the iPad, split view controllers use the entire screen, separating
navigation elements from detail presentations.

249Developing with Navigation Controllers and Split Views

in a small view with a limited lifetime. Otherwise, iPad applications are encouraged to use
the split view approach that occupies the entire screen.

Using Navigation Controllers and Stacks
Every navigation controller owns a root view controller.This controller forms the base of
its stack.You can programmatically push other controllers onto the stack as the user makes
choices while navigating through the model’s tree.Although the tree itself may be multi-
dimensional, the user’s path (essentially his history) is always a straight line representing
the choices already made to date. Moving to a new choice extends the navigation bread-
crumb trail and automatically builds a back button each time a new view controller gets
pushed onto the stack.

Users can tap a back button to pop controllers off the stack.The name of each button
represents the title of the most recent view controller.As you return through the stack of
previous view controllers, each back button previews the view controller that can be
returned to. Users can pop back until reaching the root.Then they can go no further.The
root is the root, and you cannot pop beyond that root.

This stack-based design lingers even when you plan to use just one view controller.
You might want to leverage the UINavigationController’s built-in navigation bar to
build a simple utility that uses a two-button menu, for example.This would disregard any
navigational advantage of the stack.You still need to set that one controller as the root via
initWithRootViewController:. Storyboards simplify using navigation controllers for
one- and two-button utilities, as you read about in Chapter 4,“Designing Interfaces.”

Pushing and Popping View Controllers
Add new items onto the navigation stack by pushing a new controller with
pushViewController:animated:. Send this call to the navigation controller that owns a
UIViewController.This is normally called on self.navigationController when
you’re working with a primary view controller class.When pushed, the new controller
slides onscreen from the right (assuming you set animated to YES).A left-pointing back
button appears, leading you one step back on the stack.The back button uses the title of
the previous view controller.

There are many reasons you’d push a new view.Typically, these involve navigating to
specialty views such as detail views or drilling down a file structure or preferences hierar-
chy.You can push controllers onto the navigation controller stack after your user taps a
button, a table item, or a disclosure accessory.

There’s little reason to ever subclass UINavigationController. Perform push requests
and navigation bar customization (such as setting up a bar’s right-hand button) inside
UIViewController subclasses. For the most part, you don’t access the navigation con-
troller directly.The two exceptions to this rule include managing the navigation bar’s but-
tons and changing the bar’s look.

250 Chapter 5 Working with View Controllers

You might change a bar style or its tint color by accessing the navigationBar prop-
erty directly:

self.navigationController.navigationBar.barStyle =

UIBarStyleBlackTranslucent;

To add a new button, you modify your navigationItem, which provides an abstract
class that describes the content shown on the navigation bar, including its left and right
bar button item and its title view. Here’s how you can assign a button to the bar.To
remove a button, assign the item to nil.

self.navigationItem.rightBarButtonItem = [[[UIBarButtonItem alloc]

initWithTitle:@"Action" style:UIBarButtonItemStylePlain target:self

action:)] autorelease];

Bar button items are not views.They are abstract classes that contain titles, styles, and
callback information that are used by navigation items and toolbars to build actual but-
tons into interfaces. iOS does not provide you with access to the button views built by
bar button items and their navigation items.

The Navigation Item Class
The objects that populate the navigation bar are put into place using the
UINavigationItem class, which is an abstract class that stores information about those
objects. Navigation item properties include the left and right bar button items, the title
shown on the bar, the view used to show the title, and any back button used to navigate
back from the current view.

This class enables you to attach buttons, text, and other UI objects into three key loca-
tions: the left, the center, and the right of the navigation bar.Typically, this works out to
be a regular button on the right, some text (usually the UIViewController’s title) in the
middle, and a Back-styled button on the left. But you’re not limited to that layout.You
can add custom controls to any of these three locations You can build navigation bars
with search fields, segment controls, toolbars, pictures, and more.

You’ve already seen how to add custom bar button items to the left and right of a nav-
igation item.Adding a custom view to the title is just as simple. Instead of adding a con-
trol, assign a view.This code adds a custom UILabel, but this could be a UIImageView, a
UIStepper, or anything else:

self.navigationItem.titleView = [[[UILabel alloc]

initWithFrame:CGRectMake(0.0f,0.0f, 120.0f, 36.0f)] autorelease];

The simplest way to customize the actual title is to use the title property of the child
view controller rather than the navigation item:

self.title = @"Hello";

251Developing with Navigation Controllers and Split Views

When you want the title to automatically reflect the name of the running application,
here is a little trick you can use.This returns the short display name defined in the bun-
dle’s Info.plist file. Limit using application-specific titles (rather than view-related titles)
to simple utility applications.

self.title = [[[NSBundle mainBundle] infoDictionary]

objectForKey:@"CFBundleName"];

Modal Presentation
With normal navigation controllers, you push your way along views, stopping occasion-
ally to pop back to previous views.That approach assumes that you’re drilling your way
up and down a set of data that matches the tree-based view structure you’re using. Modal
presentation offers another way to show a view controller.After sending the
presentModalViewController:animated: message to a navigation controller, a new
view controller slides up into the screen and takes control until it’s dismissed with
dismissModalViewControllerAnimated:.This enables you to add special-purpose
dialogs into your applications that go beyond alert views.

Typically, modal controllers are used to pick data such as contacts from the Address
Book or photos from the Library or to perform a short-lived task such as sending e-mail
or setting preferences. Use modal controllers in any setting where it makes sense to per-
form a limited-time task that lies outside the normal scope of the active view controller.

You can present a modal dialog in any of four ways, controlled by the
modalTransitionStyle property of the presented view controller.The standard,
UIModalTransitionStyleCoverVertical, slides the modal view up and over the current
view controller.When dismissed it slides back down.
UIModalTransitionStyleFlipHorizontal performs a back-to-front flip from right to
left. It looks as if you’re revealing the back side of the currently presented view.When dis-
missed, it flips back left to right. UIModalTransitionStyleCrossDissolve fades the new
view in over the previous one. On dismissal, it fades back to the original view. Use
UIModalTransitionStylePartialCurl to curl up content (in the way the Maps applica-
tion does) to reveal a modal settings view “underneath” the primary view controller.

On the iPhone and iPod touch, modal controllers always fully take over the screen.
The iPad offers more nuanced presentations.You can introduce modal items using three
presentation styles. In addition to the default full-screen style
(UIModalPresentationFullScreen), use UIModalPresentationFormSheet to present a
small overlay in the center of the screen or UIModalPresentationPageSheet to slide up
a sheet in the middle of the screen.These styles are best experienced in landscape mode
to visually differentiate the page sheet presentation from the full-screen one.

252 Chapter 5 Working with View Controllers

Recipe: Building a Simple Two-Item Menu
Although many applications demand serious user interfaces, sometimes you don’t need
complexity.A simple one- or two-button menu can accomplish a lot in many iOS appli-
cations. Navigation controller applications easily lend themselves to a format where
instead of pushing and popping children, their navigation bars can be used as basic menus.
Use these steps to create a hand-built interface for simple utilities:

1. Create a UIViewController subclass that you use to populate your primary
interaction space.

2. Allocate a navigation controller and assign an instance of your custom view
controller to its root view.

3. In the custom view controller, create one or two button items and add them to the
view’s navigation item.

4. Build the callback routines that get triggered when a user taps a button.

Recipe 5-1 demonstrates these steps. It creates a simple view controller called
TestBedViewController and assigns it as the root view for a UINavigationController.
In the viewDidLoad method, two buttons populate the left and right custom slots for the
view’s navigation item.When tapped, these update the controller’s title, indicating which
button was pressed.This recipe is not feature rich, but it provides an easy-to-build two-
item menu. Figure 5-1 shows the interface in action.

This code uses a handy bar-button-creation macro.When passed a title and a selector,
this macro returns a properly initialized bar button item ready to be assigned to a naviga-
tion item. (Add autorelease to this macro if you’re working in MRR code.)

#define BARBUTTON(TITLE, SELECTOR) \

[[UIBarButtonItem alloc] initWithTitle:TITLE \

style:UIBarButtonItemStylePlain target:self action:SELECTOR]

If you’re looking for more complexity than two items can offer, consider having the
buttons trigger UIActionSheet menus and popovers.Action sheets, which are discussed
in Chapter 13,“Alerting the User,” let users select actions from a short list of options
(usually between two and five options, although longer scrolling sheets are possible) and
can be seen in use in the Photos and Mail applications for sharing and filing data.

Note
You can add images instead of text to the UIBarButtonItem instances used in your naviga-
tion bar. Use initWithImage:style:target:action: instead of the text-based initializer.

Recipe 5-1 Creating a Two-Item Menu Using a Navigation Controller

@implementation TestBedViewController

- (void) rightAction: (id) sender

{

self.title = @"Pressed Right";

253Recipe: Adding a Segmented Control

}

- (void) leftAction: (id) sender

{

self.title = @"Pressed Left";

}

- (void) loadView

{

[super loadView];

self.view.backgroundColor = [UIColor whiteColor];

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Right",@selector (rightAction:));

self.navigationItem.leftBarButtonItem =

BARBUTTON(@"Left",));

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Adding a Segmented Control
The preceding recipe showed how to use the two available button slots in your navigation
bar to build mini menus. Recipe 5-2 expands on that idea by introducing a six-item
UISegmentedControl and adding it to a navigation bar’s custom title view, as shown in
Figure 5-2.When tapped, each item updates the main view with its number.

The key thing to pay attention to in this recipe is the momentary attribute assigned to
the segmented control.This transforms the interface from a radio button style into an
actual menu of options, where items can be selected independently and more than once.
So after tapping item three, for example, you can tap it again.That’s an important behavior
for menu interaction.

Unlike Recipe 5-1, all items in the segmented control trigger the same action (in this
case, segmentAction:). Determine which action to take by querying the control for its
selectedSegmentIndex and use that value to create the needed behavior.This recipe
updates a central text label.You might want to choose different options based on the seg-
ment picked.

Note
If you want to test this code with the momentary property disabled, set the
selectedSegmentIndex property to match the initial data displayed. In this case, segment
0 corresponds to the displayed number 1.

https://github.com/erica/iOS-5-Cookbook

254 Chapter 5 Working with View Controllers

Figure 5-2 Adding a segmented control to the
custom title view allows you to build a multi-item
menu. Notice that no items remain highlighted
even after an action takes place. (In this case,

the Four button was pressed.)

Segmented controls use styles to specify how they should display.The example here,
shown in Figure 5-2, uses a bar style. It is designed for use with bars, as it is in this exam-
ple.The other two styles (UISegmentedControlStyleBordered and
UISegmentedControlStylePlain) offer larger, more metallic-looking presentations. Of
these three styles, only UISegmentedControlStyleBar can respond to the tintColor
changes used in this recipe.

Recipe 5-2 Adding a Segmented Control to the Navigation Bar

-(void) segmentAction: (UISegmentedControl *) segmentedControl

{

// Update the label with the segment number

NSString *segmentNumber = [NSString stringWithFormat:@"%0d",

segmentedControl.selectedSegmentIndex + 1];

[(UITextView *)self.view setText:segmentNumber];

}

- (void) loadView

{

[super loadView];

255Recipe: Navigating Between View Controllers

// Create a central text view

UITextView *textView = [[UITextView alloc]

initWithFrame:self.view.frame];

textView.font = [UIFont fontWithName:@"Futura" size:96.0f];

textView.textAlignment = UITextAlignmentCenter;

self.view = textView;

// Create the segmented control

NSArray *buttonNames = [NSArray arrayWithObjects:

@"One", @"Two", @"Three", @"Four", @"Five", @"Six", nil];

UISegmentedControl* segmentedControl = [[UISegmentedControl alloc]

initWithItems:buttonNames];

segmentedControl.segmentedControlStyle = UISegmentedControlStyleBar;

segmentedControl.momentary = YES;

[segmentedControl addTarget:self action:)

forControlEvents:UIControlEventValueChanged];

// Add it to the navigation bar

self.navigationItem.titleView = segmentedControl;

}

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Navigating Between View Controllers
In addition to providing menus, navigation controllers do the job they were designed to
do: managing hierarchy as you navigate between views. Recipe 5-3 introduces the naviga-
tion controller as an actual navigation controller, pushing views on the stack.

The views in this recipe present a number, indicating how many view controllers have
been pushed onto the stack.An instance variable stores the current depth number, which
is used to both show the current level and decide whether to display a further push
option.The maximum depth in this example is 6. In real use, you’d use more meaningful
view controllers or contents.This example demonstrates things at their simplest level.

The navigation controller automatically creates the Level 2 back button shown in
Figure 5-3 (left) as an effect of pushing the new Level 3 controller onto the stack.The
rightmost button (Push) triggers navigation to the next controller by calling
pushViewController:animated:.When pushed, the next back button reads Level 3, as
shown in Figure 5-3 (right).

Back buttons pop the controller stack for you, releasing the current view controller as
you move back to the previous one. Make sure your memory management allows that
view controller to return all its memory upon being released. Beyond basic memory
management, you do not need to program any popping behavior yourself. Note that back

https://github.com/erica/iOS-5-Cookbook

256 Chapter 5 Working with View Controllers

Figure 5-3 The navigation controller automatically creates properly
labeled back buttons. After the Level 4 button is selected in the left

interface, the navigation controller pushes the Level 4 view controller and
creates the Level 3 back button in the right interface.

buttons are automatically created for pushed view controllers but not for the root con-
troller itself, because it is not applicable.

Recipe 5-3 Drilling through Views with UINavigationController

#define IS_IPAD (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)

@interface NumberViewController : UIViewController

@property (nonatomic, assign) int number;

@property (nonatomic, strong, readonly) UITextView *textView;

+ (id) controllerWithNumber: (int) number;

@end

@implementation NumberViewController

@synthesize number, textView;

257Recipe: Navigating Between View Controllers

// Return a new view controller at the specified level number

+ (id) controllerWithNumber: (int) number

{

NumberViewController *viewController = [[NumberViewController alloc] init];

viewController.number = number;

viewController.textView.text =

[NSString stringWithFormat:@"Level %d", number];

return viewController;

}

// Increment and push a controller onto the stack

- (void) pushController: (id) sender

{

NumberViewController *nvc =

[NumberViewController controllerWithNumber:number + 1];

[self.navigationController pushViewController:nvc animated:YES];

}

// Set up the text and title as the view appears

- (void) viewDidAppear: (BOOL) animated

{

self.navigationController.navigationBar.tintColor = COOKBOOK_PURPLE_COLOR;

// match the title to the text view

self.title = self.textView.text;

self.textView.frame = self.view.frame;

// Add a right bar button that pushes a new view

if (number < 6)

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Push",));

}

// Create the text view at initialization, not when the view loads

- (id) init

{

if (!(self = [super init])) return self;

textView = [[UITextView alloc] initWithFrame:CGRectZero];

textView.frame = [[UIScreen mainScreen] bounds];

textView.font =

[UIFont fontWithName:@"Futura" size:IS_IPAD ? 192.0f : 96.0f];

textView.textAlignment = UITextAlignmentCenter;

textView.editable = NO;

textView.autoresizingMask = self.view.autoresizingMask;

258 Chapter 5 Working with View Controllers

return self;

}

- (void) loadView

{

[super loadView];

[self.view addSubview:textView];

}

- (void) dealloc

{

[textView removeFromSuperview];

textView = nil;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Presenting a Custom Modal
Information View
Modal view controllers slide onscreen without being part of your standard view controller
stack. Modal views are useful for picking data, updating settings, performing an orthogonal
function, or presenting information—tasks that might not match well to your normal
hierarchy.Any view controller, including navigation controllers, can present a modal con-
troller as demonstrated in the Chapter 4 walkthroughs.This recipe introduces modal con-
trollers more from a code point of view.

Presenting a modal controller branches off from your primary navigation path, intro-
ducing a new interface that takes charge until your user explicitly dismisses it.You present
a modal controller like this:

[self presentModalViewController:someControllerInstance animated:YES];

The controller that is presented can be any kind of view controller subclass, as well. In
the case of a navigation controller, the modal presentation can have its own navigation
hierarchy built as a chain of interactions.

Always provide a Done button to allow users to dismiss the controller.The easiest way
to accomplish this is to present a navigation controller, adding a bar button to its naviga-
tion items. Figure 5-4 shows a modal presentation built around a UIViewController
instance using a page-curl presentation.You can see the built-in Done button at the top-
right of the presentation.

https://github.com/erica/iOS-5-Cookbook

259Recipe: Presenting a Custom Modal Information View

Figure 5-4 This modal view is built using
UIViewController with a UINavigationBar.

In iOS 5.x, modal presentations can use four transition styles:

n Slide—This transition style slides a new view over the old.
n Fade—This transition style dissolves the new view into visibility.
n Flip—This transition style turns a view over to the “back” of the presentation.
n Curl—This transition style makes the primary view curl up out of the way to reveal

the new view beneath it, as shown in Figure 5-4.

In addition to these transition styles, the iPad offers three presentation styles:

n Full Screen—A full-screen presentation is the default on the iPhone, where the
new modal view completely covers both the screen and any existing content.This is
the only presentation style that is legal for curls—any other presentation style raises
a runtime exception, crashing the application.

n Page Sheet—In the page sheet, coverage defaults to a portrait aspect ratio, so the
modal view controller completely covers the screen in portrait mode and partially
covers the screen in landscape mode, as if a portrait-aligned piece of paper were
added to the display.

n Form Sheet—The form sheet display covers a small center portion of the screen,
allowing you to shift focus to the modal element while retaining the maximum visi-
bility of the primary application view.

Your modal view controllers must autorotate.This skeleton demonstrates the sim-
plest possible modal controller you should use. Notice the Interface Builder–accessible
done: method.

@interface ModalViewController : UIViewController

- (IBAction)done:(id)sender;

@end

@implementation ModalViewController

- (IBAction)done:(id)sender

260 Chapter 5 Working with View Controllers

{

[self dismissModalViewControllerAnimated:YES];

}

- (BOOL) shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)toInterfaceOrientation

{

return YES;

}

@end

Storyboards simplify the creation of modal controller elements. Drag in a navigation
controller instance, along with its paired view controller, adding a Done button to the
provided navigation bar. Set the view controller’s class to your custom modal type and
connect the Done button to the done: method. Make sure you name your navigation
controller in the attributes inspector, so you can use that identifier to load it.

You can either add the modal components to your primary storyboard or create them
in a separate file. Recipe 5-4 loads a custom file (Modal~DeviceType.storyboard) but you
can just as easily add the elements in your MainStoryboard_DeviceType file.

Recipe 5-4 offers the key pieces for creating modal elements.The presentation is per-
formed in the application’s main view controller hierarchy. Here, users select the transition
and presentation styles from segmented controls, but these are normally chosen in advance
by the developer and set in code or in IB.This recipe offers a toolbox that you can test
out on each platform, using each orientation, to explore how each option looks.

Recipe 5-4 Presenting and Dismissing a Modal Controller

// Presenting the controller

- (void) action: (id) sender

{

// Load info controller from storyboard

UIStoryboard *sb = [UIStoryboard

storyboardWithName: (IS_IPAD ? @"Modal~iPad" : @"Modal~iPhone")

bundle:[NSBundle mainBundle]];

UINavigationController *navController =

[sb instantiateViewControllerWithIdentfier:

@"infoNavigationController"];

// Select the transition style

int styleSegment =

[(UISegmentedControl *)self.navigationItem.titleView

selectedSegmentIndex];

int transitionStyles[4] = {

UIModalTransitionStyleCoverVertical,

UIModalTransitionStyleCrossDissolve,

UIModalTransitionStyleFlipHorizontal,

261Recipe: Presenting a Custom Modal Information View

UIModalTransitionStylePartialCurl};

navController.modalTransitionStyle = transitionStyles[styleSegment];

// Select the presentation style for iPad only

if (IS_IPAD)

{

int presentationSegment =

[(UISegmentedControl *)[[self.view subviews]

lastObject] selectedSegmentIndex];

int presentationStyles[3] = {

UIModalPresentationFullScreen,

UIModalPresentationPageSheet,

UIModalPresentationFormSheet};

if (navController.modalTransitionStyle ==

UIModalTransitionStylePartialCurl)

{

// Partial curl with any non-full screen presentation

// raises an exception

navController.modalPresentationStyle =

UIModalPresentationFullScreen;

[(UISegmentedControl *)[[self.view subviews]

lastObject] setSelectedSegmentIndex:0];

}

else

navController.modalPresentationStyle =

presentationStyles[presentationSegment];

}

[self.navigationController presentModalViewController:

navController animated:YES];

}

- (void) loadView

{

[super loadView];

self.view.backgroundColor = [UIColor whiteColor];

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Action",));

UISegmentedControl *segmentedControl =

[[UISegmentedControl alloc] initWithItems:

[@"Slide Fade Flip Curl" componentsSeparatedByString:@" “]];

segmentedControl.segmentedControlStyle = UISegmentedControlStyleBar;

self.navigationItem.titleView = segmentedControl;

262 Chapter 5 Working with View Controllers

if (IS_IPAD)

{

NSArray *presentationChoices =

[NSArray arrayWithObjects:

@"Full Screen", @"Page Sheet", @"Form Sheet", nil];

UISegmentedControl *iPadStyleControl =

[[UISegmentedControl alloc] init

WithItems:presentationChoices];

iPadStyleControl.segmentedControlStyle =

UISegmentedControlStyleBar;

iPadStyleControl.autoresizingMask =

UIViewAutoresizingFlexibleWidth;

iPadStyleControl.center =

CGPointMake(CGRectGetMidX(self.view.bounds), 22.0f);

[self.view addSubview:iPadStyleControl];

}

}

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Page View Controllers
This UIPageViewController class builds a book-like interface that uses individual view
controllers as its pages. Users swipe from one page to the next or tap the edges to move to
the next or previous page.All a controller’s pages can be laid out in a similar fashion, such
as in Figure 5-5, or each page can provide a unique user interaction experience.Apple
precooked all the animation and gesture handling into the class for you.You provide the
content, implementing delegate and data source callbacks.

Book Properties
Your code customizes a page view controller’s look and behavior. Its key properties specify
how many pages are seen at once, the content used for the reverse side of each page, and
more. Here’s a rundown of those properties:

n The controller’s doubleSided property determines whether content appears on
both sides of a page, as shown in Figure 5-5, or just one side. Reserve the double-
sided presentation for side-by-side layout when showing two pages at once. If you
don’t, you’ll end up making half your pages inaccessible.The controllers on the
“back” of the pages will never move into the primary viewing space.The book lay-
out is controlled by the book’s spine.

https://github.com/erica/iOS-5-Cookbook

263Recipe: Page View Controllers

Figure 5-5 The UIPageViewController class
creates virtual “books” from individual

view controllers.

n The spineLocation property can be set at the left or right, top or bottom, or cen-
ter of the page.The three spine constants are
UIPageViewControllerSpineLocationMin, corresponding to top or left,
UIPageViewControllerSpineLocationMax for the right or bottom, and
UIPageViewControllerSpineLocationMid for the center.The first two of these
produce single-page presentations; the last with its middle spine is used for two-page
layouts. Return one of these choices from the
pageViewController:spineLocationForInterfaceOrientation: delegate
method, which is called whenever the device reorients, to let the controller update
its views to match the current device orientation.

n Set the navigationOrientation property to specify whether the spine goes
left/right or top/bottom. Use either
UIPageViewControllerNavigationOrientationHorizontal (left/right) or
UIPageViewControllerNavigationOrientationVertical (top/bottom). For a
vertical book, the pages flip up and down, rather than employing the left and right
flips normally used.

n The transitionStyle property controls how one view controller transitions to the
next.At the time of writing, the only transition style supported by the page view
controller is the page curl, UIPageViewControllerTransitionStylePageCurl.

Wrapping the Implementation
Like table views, page view controllers use a delegate and data source to set the behavior
and contents of its presentation. Unlike with table views, I have found that it’s simplest to
wrap these items into a custom class to hide their details from my applications. I find the

264 Chapter 5 Working with View Controllers

code needed to support a page view implementation rather quirky—but highly reusable.
A wrapper lets you turn your attention away from fussy coding details to specific content-
handling concerns.

In the standard implementation, the data source is responsible for providing page con-
trollers on demand. It returns the next and previous view controller in relationship to a
given one.The delegate handles reorientation events and animation callbacks, setting the
page view controller’s controller array, which always consists of either one or two con-
trollers, depending on the view layout.As Recipe 5-5 demonstrates, it’s a bit of a mess to
implement.

Recipe 5-5 creates a BookController class.This class numbers each page, hiding the
next/previous implementation details and handling all reorientation events.A custom del-
egate protocol (BookDelegate) becomes responsible for returning a controller for a given
page number when sent the viewControllerForPage: message.This simplifies imple-
mentation so the calling app only has to handle a single method, which it can do by
building controllers by hand or by pulling them from a storyboard.

To use the class defined in Recipe 5-5, you must establish the controller, add it as a
subview, and declare it as a child view controller, ensuring it receives orientation and
memory events. Here’s what that code might look like. Notice how the new controller is
added as a child to the parent, and its initial page number set:

// Establish the page view controller

bookController = [BookController bookWithDelegate:self];

bookController.view.frame = (CGRect){.size = appRect.size};

// Add the child controller, and set it to the first page

[self.view addSubview:bookController.view];

[self addChildViewController:bookController];

[bookController didMoveToParentViewController:self];

[bookController moveToPage:0];

Exploring the Recipe
Recipe 5-5 handles its delegate and data source duties by tagging each view controller’s
view with a number. It uses this number to know exactly which page is presented at
any time and to delegate another class, the BookDelegate, to produce a view controller
by index.

The page controller itself always stores zero, one, or two pages in its view controller
array. Zero pages means the controller has not yet been properly set up. One page is used
for spine locations on the edge of the screen; two pages for a central spine. If the page count
does not exactly match the spine setup, you will encounter a rather nasty runtime crash.

The controllers stored in those pages are produced by the two data source methods,
which implement the before and after callbacks. In the page controller’s native implemen-
tation, controllers are defined strictly by their relationship to each other, not by an index.

265Recipe: Page View Controllers

This recipe replaces those relationships with a simple number, asking its delegate for the
page at a given index.

Here, the useSideBySide: method decides where to place the spine, and thus how
many controllers show at once.This implementation sets landscape as side-by-side and
portrait as one-page.You may want to change this for your applications. For example,
you might use only one page on the iPhone, regardless of orientation, to enhance text
readability.

Recipe 5-5 allows both user- and application-based page control. Users can swipe and
tap to new pages or the application can send a moveToPage: request.This allows you to
add external controls in addition to the page view controller’s gesture recognizers.

The direction that the page turns is set by comparing the new page number against the
old.This recipe uses a Western-style page turn, where higher numbers are to the right and
pages flip to the left.You may want to adjust this as needed for countries in the Middle
and Far East.

This recipe, as shown here, continually stores the current page to system defaults, so it
can be recovered when the application is relaunched. It will also notify its delegate when
the user has turned to a given page, which is useful if you add a page slider, as is demon-
strated in Recipe 5-6.

Recipe 5-5 Creating a Page View Controller Wrapper

// Define a custom delegate protocol for this wrapper class

@protocol BookControllerDelegate <NSObject>

- (id) viewControllerForPage: (int) pageNumber;

@optional

- (void) bookControllerDidTurnToPage: (NSNumber *) pageNumber;

@end

// A Book Controller wraps the Page View Controller

@interface BookController : UIPageViewController

<UIPageViewControllerDelegate, UIPageViewControllerDataSource>

+ (id) bookWithDelegate: (id) theDelegate;

+ (id) rotatableViewController;

- (void) moveToPage: (uint) requestedPage;

- (int) currentPage;

@property (nonatomic, weak) id <BookControllerDelegate> bookDelegate;

@property (nonatomic, assign) uint pageNumber;

@end

#pragma Book Controller

@implementation BookController

@synthesize bookDelegate, pageNumber;

#pragma mark Utility

// Page controllers are numbered using tags

266 Chapter 5 Working with View Controllers

- (int) currentPage

{

int pageCheck = ((UIViewController *)[self.viewControllers

objectAtIndex:0]).view.tag;

return pageCheck;

}

#pragma mark Page Handling

// Update if you’d rather use some other decision style

- (BOOL) useSideBySide: (UIInterfaceOrientation) orientation

{

BOOL isLandscape = UIInterfaceOrientationIsLandscape(orientation);

return isLandscape;

}

// Update the current page, set defaults, call the delegate

- (void) updatePageTo: (uint) newPageNumber

{

pageNumber = newPageNumber;

[[NSUserDefaults standardUserDefaults]

setInteger:pageNumber forKey:DEFAULTS_BOOKPAGE];

[[NSUserDefaults standardUserDefaults] synchronize];

SAFE_PERFORM_WITH_ARG(bookDelegate,

),

[NSNumber numberWithInt:pageNumber]);

}

// Request controller from delegate

- (UIViewController *) controllerAtPage: (int) aPageNumber

{

if (bookDelegate && [bookDelegate respondsToSelector:

)])

{

UIViewController *controller =

[bookDelegate viewControllerForPage:aPageNumber];

controller.view.tag = aPageNumber;

return controller;

}

return nil;

}

// Update interface to the given page

- (void) fetchControllersForPage: (uint) requestedPage

orientation: (UIInterfaceOrientation) orientation

267Recipe: Page View Controllers

{

BOOL sideBySide = [self useSideBySide:orientation];

int numberOfPagesNeeded = sideBySide ? 2 : 1;

int currentCount = self.viewControllers.count;

uint leftPage = requestedPage;

if (sideBySide && (leftPage % 2)) leftPage--;

// Only check against current page when count is appropriate

if (currentCount && (currentCount == numberOfPagesNeeded))

{

if (pageNumber == requestedPage) return;

if (pageNumber == leftPage) return;

}

// Decide the prevailing direction, check new page against the old

UIPageViewControllerNavigationDirection direction =

(requestedPage > pageNumber) ?

UIPageViewControllerNavigationDirectionForward :

UIPageViewControllerNavigationDirectionReverse;

[self updatePageTo:requestedPage];

// Update the controllers, never adding a nil result

NSMutableArray *pageControllers = [NSMutableArray array];

SAFE_ADD(pageControllers, [self controllerAtPage:leftPage]);

if (sideBySide)

SAFE_ADD(pageControllers, [self controllerAtPage:leftPage + 1]);

[self setViewControllers:pageControllers

direction: direction animated:YES completion:nil];

}

// Entry point for external move request

- (void) moveToPage: (uint) requestedPage

{

[self fetchControllersForPage:requestedPage

orientation: (UIInterfaceOrientation)[UIDevice

currentDevice].orientation];

}

#pragma mark Data Source

- (UIViewController *)pageViewController:

(UIPageViewController *)pageViewController

viewControllerAfterViewController:

(UIViewController *)viewController

268 Chapter 5 Working with View Controllers

{

[self updatePageTo:pageNumber + 1];

return [self controllerAtPage:(viewController.view.tag + 1)];

}

- (UIViewController *)pageViewController:

(UIPageViewController *)pageViewController

viewControllerBeforeViewController:

(UIViewController *)viewController

{

[self updatePageTo:pageNumber - 1];

return [self controllerAtPage:(viewController.view.tag - 1)];

}

#pragma mark Delegate Method

- (UIPageViewControllerSpineLocation)pageViewController:

(UIPageViewController *) pageViewController

spineLocationForInterfaceOrientation:

(UIInterfaceOrientation) orientation

{

// Always start with left or single page

NSUInteger indexOfCurrentViewController = 0;

if (self.viewControllers.count)

indexOfCurrentViewController =

((UIViewController *)[self.viewControllers

objectAtIndex:0]).view.tag;

[self fetchControllersForPage:indexOfCurrentViewController

orientation:orientation];

// Decide whether to present side-by-side

BOOL sideBySide = [self useSideBySide:orientation];

self.doubleSided = sideBySide;

UIPageViewControllerSpineLocation spineLocation = sideBySide ?

UIPageViewControllerSpineLocationMid :

UIPageViewControllerSpineLocationMin;

return spineLocation;

}

// Return a new book

+ (id) bookWithDelegate: (id) theDelegate

{

BookController *bc = [[BookController alloc]

initWithTransitionStyle:

UIPageViewControllerTransitionStylePageCurl

navigationOrientation:

UIPageViewControllerNavigationOrientationHorizontal

269Recipe: Scrubbing Pages in a Page View Controller

options:nil];

bc.dataSource = bc;

bc.delegate = bc;

bc.bookDelegate = theDelegate;

return bc;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Scrubbing Pages in a Page View
Controller
Manually flipping from page to page quickly becomes tedious, especially when you’re
working with a presentation of dozens or hundreds of virtual pages.To address this, you
can add a slider to your books. Recipe 5-6 creates a slider that appears when the back-
ground is tapped and that fades away after a few seconds if not used.

A custom tap gesture recognizer starts the timer, which is reset whenever the user
interacts with the slider. Once the timer fires, the slider overview animates away and the
user is left with the full-screen page presentation.This approach, using a tap-based overlay,
is common to many of Apple’s own applications such as the Photos app.

Recipe 5-6 Adding an Auto-hiding Slider to a Page View Controller

// Slider callback resets the timer, moves to the new page

- (void) moveToPage: (UISlider *) theSlider

{

[hiderTimer invalidate];

hiderTimer = [NSTimer scheduledTimerWithTimeInterval:3.0f

target:self selector:)

userInfo:nil repeats:NO];

[bookController moveToPage:(int) theSlider.value];

}

// BookController Delegate method allows slider value update

- (void) bookControllerDidTurnToPage: (NSNumber *) pageNumber

{

pageSlider.value = pageNumber.intValue;

}

https://github.com/erica/iOS-5-Cookbook

270 Chapter 5 Working with View Controllers

// Hide the slider after the timer fires

- (void) hideSlider: (NSTimer *) aTimer

{

[UIView animateWithDuration:0.3f animations:^(void){

pageSlider.alpha = 0.0f;}];

[hiderTimer invalidate];

hiderTimer = nil;

}

// Present the slider when tapped

- (void) handleTap: (UIGestureRecognizer *) recognizer

{

[UIView animateWithDuration:0.3f animations:^(void){

pageSlider.alpha = 1.0f;}];

[hiderTimer invalidate];

hiderTimer = [NSTimer scheduledTimerWithTimeInterval:3.0f

target:self selector:)

userInfo:nil repeats:NO];

}

- (void) viewDidLoad

{

[super viewDidLoad];

// Add page view controller as a child view, and do housekeeping

[self addChildViewController:bookController];

[self.view addSubview:bookController.view];

[bookController didMoveToParentViewController:self];

[self.view addSubview:pageSlider];

}

- (void) loadView

{

[super loadView];

CGRect appRect = [[UIScreen mainScreen] applicationFrame];

self.view = [[UIView alloc] initWithFrame: appRect];

self.view.backgroundColor = [UIColor whiteColor];

self.view.autoresizingMask =

UIViewAutoresizingFlexibleHeight |

UIViewAutoresizingFlexibleWidth;

// Establish the page view controller

bookController = [BookController bookWithDelegate:self];

bookController.view.frame = (CGRect){.size = appRect.size};

271Recipe: Tab Bars

// Set the tap to reveal the hidden slider

UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]

initWithTarget:self action:)];

[self.view addGestureRecognizer:tap];

}

Recipe: Tab Bars
On the iPhone and iPod touch, the UITabBarController class allows users to move
between multiple view controllers and to customize the bar at the bottom of the screen.
This is best seen in the YouTube and iPod applications. Both offer one-tap access to differ-
ent views, and both offer a More button leading to user selection and editing of the bot-
tom bar.Tab bars are not recommended for use as a primary design pattern on the iPad,
although Apple supports their use in both split views and popovers when needed.

With tab bars, you don’t push views the way you do with navigation bars. Instead, you
assemble a collection of controllers (they can individually be UIViewControllers,
UINavigationControllers, or any other kind of view controllers) and add them into a
tab bar by setting the bar’s viewControllers property. It really is that simple. Cocoa
Touch does all the rest of the work for you. Set allowsCustomizing to YES to enable user
reordering of the bar.

Recipe 5-7 creates 11 simple view controllers of the BrightnessController class.
This class sets its background to a specified gray level—in this case, from 0% to 100% in
steps of 10%. Figure 5-5 (left) shows the interface in its default mode, with the first four
items and a More button displayed.

Users may reorder tabs by selecting the More option and then tapping Edit.This opens
the configuration panel shown in Figure 5-6 (right).These 11 view controllers offer the
options a user can navigate through and select from. Readers of earlier editions of this
book might note that the Configure title bar’s tint finally matches the rest of the interface.
Apple introduced the UIAppearance protocol, which allows you to customize all instances
of a given class. Recipe 5-7 uses this functionality to tint its navigation bars black.

[[UINavigationBar appearance] setTintColor:[UIColor blackColor]];

This recipe adds its 11 controllers twice.The first time it assigns them to the list of
view controllers available to the user:

tbarController.viewControllers = controllers;

The second time it specifies that the user can select from the entire list when interac-
tively customizing the bottom tab bar:

tbarController.customizableViewControllers = controllers;

272 Chapter 5 Working with View Controllers

Figure 5-6 Tab bar controllers allow users to pick view controllers from a
bar at the bottom of the screen (left side of the figure) and to customize
the bar from a list of available view controllers (right side of the figure).

The second line is optional; the first is mandatory.After setting up the view controllers,
you can add all or some to the customizable list. If you don’t, you still can see the extra
view controllers using the More button, but users won’t be able to include them in the
main tab bar on demand.

Tab art appears inverted in color on the More screen.According to Apple, this is the
expected and proper behavior.They have no plans to change this. It does provide an inter-
esting view contrast when your 100% white swatch appears as pure black on that screen.

Recipe 5-7 Creating a Tab View Controller

@interface BrightnessController : UIViewController

{

int brightness;

}

@end

273Recipe: Tab Bars

@implementation BrightnessController

// Create a swatch for the tab icon using standard Quartz

// and UIKit image calls

- (UIImage*) buildSwatch: (int) aBrightness

{

CGRect rect = CGRectMake(0.0f, 0.0f, 30.0f, 30.0f);

UIGraphicsBeginImageContext(rect.size);

UIBezierPath *path = [UIBezierPath

bezierPathWithRoundedRect:rect cornerRadius:4.0f];

[[[UIColor blackColor]

colorWithAlphaComponent:(float) aBrightness / 10.0f] set];

[path fill];

UIImage *image = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return image;

}

// The view controller consists of a background color

// and a tab bar item icon

-(BrightnessController *) initWithBrightness: (int) aBrightness

{

self = [super init];

brightness = aBrightness;

self.title = [NSString stringWithFormat:@"%d%%", brightness * 10];

self.tabBarItem = [[UITabBarItem alloc] initWithTitle:self.title

image:[self buildSwatch:brightness] tag:0];

return self;

}

// Tint the background

- (void) viewDidLoad

{

[super viewDidLoad];

self.view.backgroundColor =

[UIColor colorWithWhite:(brightness / 10.0f) alpha:1.0f];

}

+ (id) controllerWithBrightness: (int) brightness

{

BrightnessController *controller = [[BrightnessController alloc]

initWithBrightness:brightness];

return controller;

}

@end

274 Chapter 5 Working with View Controllers

#pragma mark Application Setup

@interface TestBedAppDelegate : NSObject

<UIApplicationDelegate, UITabBarControllerDelegate>

{

UIWindow *window;

UITabBarController *tabBarController;

}

@end

@implementation TestBedAppDelegate

- (void)applicationDidFinishLaunching:(UIApplication *)application

{

[application setStatusBarHidden:YES];

window = [[UIWindow alloc]

initWithFrame:[[UIScreen mainScreen] bounds]];

// Globally use a black tint for nav bars

[[UINavigationBar appearance]

setTintColor:[UIColor blackColor]];

// Build an array of controllers

NSMutableArray *controllers = [NSMutableArray array];

for (int i = 0; i <= 10; i++)

{

BrightnessController *controller =

[BrightnessController controllerWithBrightness:i];

UINavigationController *nav =

[[UINavigationController alloc]

initWithRootViewController:controller];

nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;

[controllers addObject:nav];

}

tabBarController = [[RotatingTabController alloc] init];

tabBarController.viewControllers = controllers;

tabBarController.customizableViewControllers = controllers;

tabBarController.delegate = self;

window.rootViewController = tabBarController;

[window makeKeyAndVisible];

return YES;

}

@end

275Recipe: Remembering Tab State

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Remembering Tab State
On iOS, persistence is golden.When starting or resuming your application from termina-
tion or interruption, always return users to a state that closely matches where they left off.
This lets your users pick up with whatever tasks they were involved with and provides a
user interface that matches the previous session. Recipe 5-8 introduces an example of
doing exactly that.

This recipe stores both the current tab order and the currently selected tab, and does so
whenever those items are updated.When a user launches the application, the code
searches for previous settings and applies them when they are found.

The approach used here depends on two delegate methods.The first,
tabBarController:didEndCustomizingViewControllers:, provides the current array of
view controllers after the user has customized them with the More > Edit screen.This
code captures their titles (10%, 20%, and so on) and uses that information to relate a name
to each view controller.

The second delegate method is tabBarController:didSelectViewController:.The
tab bar controller sends this method each time a user selects a new tab. By capturing the
selectedIndex, this code stores the controller number relative to the current array.

Setting these values depends on using iOS’s built-in user defaults system,
NSUserDefaults.This preferences system works very much as a large mutable dictionary.
You can set values for keys using setObject:forKey:, as shown here:

[[NSUserDefaults standardUserDefaults] setObject:titles

forKey:@"tabOrder"];

Then you can retrieve them with objectForKey:, like so:

NSArray *titles = [[NSUserDefaults standardUserDefaults]

objectForKey:@"tabOrder"];

Always make sure to synchronize your settings as shown in this code to ensure that the
defaults dictionary matches your changes. If you do not synchronize, the defaults may not
get set until the application terminates. If you do synchronize, your changes are updated
immediately.Any other parts of your application that rely on checking these settings will
then be guaranteed to access the latest values.

When the application launches, it checks for previous settings for the last selected tab
order and selected tab. If it finds them, it uses these to set up the tabs and select a tab to
make active. Because the titles contain the information about what brightness value to
show, this code converts the stored title from text to a number and divides that number by
ten to send to the initialization function.

https://github.com/erica/iOS-5-Cookbook

276 Chapter 5 Working with View Controllers

Most applications aren’t based on such a simple numeric system. Should you use titles
to store your tab bar order, make sure you name your view controllers meaningfully and
in a way that lets you match a view controller with the tab ordering.

Note
You could also store an array of the view tags as NSNumbers or, better yet, use the
NSKeyedArchiver class that is introduced in Chapter 8, “Gestures and Touches.” Keyed
archiving lets you rebuild views using state information that you store on termination.

Recipe 5-8 Storing Tab State to User Defaults

@implementation TestBedAppDelegate

- (void)tabBarController:(UITabBarController *)tabBarController

didEndCustomizingViewControllers:(NSArray *)viewControllers

changed:(BOOL)changed

{

// Collect the view controller order

NSMutableArray *titles = [NSMutableArray array];

for (UIViewController *vc in viewControllers)

[titles addObject:vc.title];

[[NSUserDefaults standardUserDefaults]

setObject:titles forKey:@"tabOrder"];

[[NSUserDefaults standardUserDefaults] synchronize];

}

- (void)tabBarController:(UITabBarController *)controller

didSelectViewController:(UIViewController *)viewController

{

// Store the selected tab

NSNumber *tabNumber = [NSNumber numberWithInt:

[controller selectedIndex]];

[[NSUserDefaults standardUserDefaults]

setObject:tabNumber forKey:@"selectedTab"];

[[NSUserDefaults standardUserDefaults] synchronize];

}

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

[application setStatusBarHidden:YES];

window = [[UIWindow alloc]

initWithFrame:[[UIScreen mainScreen] bounds]];

// Globally use a black tint for nav bars

[[UINavigationBar appearance] setTintColor:[UIColor blackColor]];

277Recipe: Remembering Tab State

NSMutableArray *controllers = [NSMutableArray array];

NSArray *titles = [[NSUserDefaults standardUserDefaults]

objectForKey:@"tabOrder"];

if (titles)

{

// titles retrieved from user defaults

for (NSString *theTitle in titles)

{

BrightnessController *controller =

[BrightnessController controllerWithBrightness:

([theTitle intValue] / 10)];

UINavigationController *nav =

[[UINavigationController alloc]

initWithRootViewController:controller];

nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;

[controllers addObject:nav];

}

}

else

{

// generate all new controllers

for (int i = 0; i <= 10; i++)

{

BrightnessController *controller =

[BrightnessController controllerWithBrightness:i];

UINavigationController *nav =

[[UINavigationController alloc]

initWithRootViewController:controller];

nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;

[controllers addObject:nav];

}

}

tabBarController = [[RotatingTabController alloc] init];

tabBarController.viewControllers = controllers;

tabBarController.customizableViewControllers = controllers;

tabBarController.delegate = self;

// Restore any previously selected tab

NSNumber *tabNumber = [[NSUserDefaults standardUserDefaults]
objectForKey:@"selectedTab"];

if (tabNumber)

tabBarController.selectedIndex = [tabNumber intValue];

278 Chapter 5 Working with View Controllers

Figure 5-7 At their simplest, split view controllers consist of an organizing
pane and a detail view pane. The organizing pane, which is hidden in portrait
orientation, can be viewed from a popover accessed from the navigation bar.

window.rootViewController = tabBarController;

[window makeKeyAndVisible];

return YES;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Building Split View Controllers
Split view controllers provide the preferred way to present hierarchically driven navigation
on the iPad.They generally consist of a table of contents on the left and a detail view on
the right, although the class (and Apple’s guidelines) is not limited to this presentation style.
The heart of the class consists of the notion of an organizing section and a presentation
section, both of which can appear onscreen at once in landscape orientation, and whose
organizing section converts to a bar-button-launched popover in portrait orientation.

Figure 5-7 shows the very basic split view controller built by Recipe 5-8 in landscape
and portrait orientations.This controller adjusts the brightness of the detail view by select-
ing an item from the list in the root view. In landscape, both views are shown at once. In
portrait orientation, the user must tap the upper-left button on the detail view to access
the root view in a popover.When programming for this orientation, be aware that the
popover can interfere with detail view, as it is presented over that view; design accordingly.

https://github.com/erica/iOS-5-Cookbook

279Recipe: Building Split View Controllers

Accomplishing this requires three separate objects: the root and detail view controllers,
and building the split view controller.What’s more, you’ll generally want to add the root
and detail controllers to navigation controller shells, to provide a consistent interface. In
the case of the detail controller, this provides a home for the bar button in portrait orien-
tation.The following method builds the two child views, embeds them into navigation
controllers, adds them to a view controller array, and returns a new split view controller
that hosts those views:

- (UISplitViewController *) splitViewController

{

// Create the navigation-run root view

ColorViewController *rootVC = [ColorViewController controller];

UINavigationController *rootNav = [[UINavigationController alloc]

initWithRootViewController:rootVC];

// Create the navigation-run detail view

DetailViewController *detailVC = [DetailViewController controller];

UINavigationController *detailNav = [[UINavigationController alloc]

initWithRootViewController:detailVC];

// Add both to the split view controller

UISplitViewController *svc =

[[UISplitViewController alloc] init];

svc.viewControllers = [NSArray arrayWithObjects:

rootNav, detailNav, nil];

svc.delegate = detailVC;

return svc;

}

The root view controller is typically some kind of table view controller, as is the one in
Recipe 5-8.Tables view controllers are discussed in great detail in Chapter 11,“Creating
and Managing Table Views,” but what you see here is pretty much as bare bones as they
get. It is a list of ten items, each one with a cell title that is tinted proportionally between
0% and 90% of pure white.

When an item is selected, the controller uses its built-in splitViewController prop-
erty to affect its detail view.This property returns the split view controller that owns the
root view. From there, the controller can retrieve the split view’s delegate, which has
been assigned to the detail view. By casting that delegate to the detail view controller’s
class, the root view can affect the detail view more meaningfully. In this extremely simple
example, the selected cell’s text tint is applied to the detail view’s background color.

Note
Make sure you set the root view controller’s title property. It is used to set the text for the
button that appears in the detail view during portrait mode.

280 Chapter 5 Working with View Controllers

Recipe 5-9’s DetailViewController class is about as skeletal an implementation as
you can get. It provides the most basic functionality you need in order to provide a detail
view implementation with split view controllers.This consists of the will-hide/will-show
method pair that adds and hides that all-important bar button for the detail view.

When the split view controller converts the root view controller into a popover con-
troller in portrait orientation, it passes that new controller to the detail view controller. It
is the detail controller’s job to retain and handle that popover until the interface returns to
landscape orientation. In this skeletal class definition, a retained property holds onto the
popover for the duration of portrait interaction.

Recipe 5-9 Building Detail and Root Views for a Split View Controller

@interface DetailViewController : UIViewController

<UIPopoverControllerDelegate, UISplitViewControllerDelegate>

{

UIPopoverController *popoverController;

}

@property (nonatomic, retain) UIPopoverController *popoverController;

@end

@implementation DetailViewController

@synthesize popoverController;

+ (id) controller

{

DetailViewController *controller =

[[DetailViewController alloc] init];

controller.view.backgroundColor = [UIColor blackColor];

return controller;

}

// Called upon going into portrait mode, hiding the normal table view

- (void)splitViewController: (UISplitViewController*)svc

willHideViewController:(UIViewController *)aViewController

withBarButtonItem:(UIBarButtonItem*)barButtonItem

forPopoverController: (UIPopoverController*)aPopoverController

{

barButtonItem.title = aViewController.title;

self.navigationItem.leftBarButtonItem = barButtonItem;

self.popoverController = aPopoverController;

}

// Called upon going into landscape mode.

- (void)splitViewController: (UISplitViewController*)svc

willShowViewController:(UIViewController *)aViewController

invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem

281Recipe: Building Split View Controllers

{

self.navigationItem.leftBarButtonItem = nil;

self.popoverController = nil;

}

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation

{

return YES;

}

@end

@interface ColorViewController : UITableViewController

@end

@implementation ColorViewController

+ (id) controller

{

ColorViewController *controller =

[[ColorViewController alloc] init];

controller.title = @"Colors";

return controller;

}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

return 1;

}

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section

{

return 10;

}

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

UITableViewCell *cell =

[tableView dequeueReusableCellWithIdentifier:@"generic"];

if (!cell) cell = [[UITableViewCell alloc]

initWithStyle: UITableViewCellStyleDefault

reuseIdentifier:@"generic"];

cell.textLabel.text = @"Brightness";

cell.textLabel.textColor =

[UIColor colorWithWhite:(indexPath.row / 10.0f) alpha:1.0f];

282 Chapter 5 Working with View Controllers

return cell;

}

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

// On selection, update the main view background color

UIViewController *controller =

(UIViewController *)self.splitViewController.delegate;

UITableViewCell *cell = [tableView cellForRowAtIndexPath:indexPath];

controller.view.backgroundColor = cell.textLabel.textColor;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Creating Universal Split
View/Navigation Apps
Recipe 5-10 modifies Recipe 5-9’s split view controller to provide a functionally equiva-
lent application that runs properly on both iPhone and iPad platforms.Accomplishing this
takes several steps that add to Recipe 5-9’s code base.You do not have to remove func-
tionality from the split view controller approach but you must provide alternatives in sev-
eral places.

Recipe 5-10 depends on a macro that is used throughout which determines whether
the code is being run on an iPad- or iPhone-style device:

#define IS_IPAD (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)

This macro returns YES when the device characteristics are iPad-like, rather than being
iPhone-like (such as on the iPhone or iPod touch.) First introduced in iOS 3.2, idioms
allow you to perform runtime checks in your code to provide interface choices that
match the deployed platform.

In an iPhone deployment, the detail view controller remains code identical to Recipe
5-9, but to be displayed it must be pushed onto the navigation stack rather than shown
side-by-side in a split view.The navigation controller is set up as the primary view for the
application window rather than the split view.A simple check at application launch lets
your code choose which approach to use:

- (UINavigationController *) navWithColorViewController

{

ColorViewController *colorViewController =

https://github.com/erica/iOS-5-Cookbook

283Recipe: Creating Universal Split View/Navigation Apps

[ColorViewController controller];

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:colorViewController];

return nav;

}

- (void)applicationDidFinishLaunching:(UIApplication *)application

{

window = [[UIWindow alloc] initWithFrame:

[[UIScreen mainScreen] bounds]];

if (IS_IPAD)

window.rootViewController = [self splitviewController];

else

window.rootViewController = [self navWithColorViewController];

[window addSubview:mainController.view];

[window makeKeyAndVisible];

}

The rest of the story lies in the two methods of Recipe 5-10, within the color-picking
table view controller.Two key checks decide whether to show disclosure accessories and
how to respond to table taps:

n On the iPad, disclosure indicators should never be used at the last level of detail
presentation. On the iPhone, they indicate that a new view will be pushed on selec-
tion. Checking for deployment platform lets your code choose whether or not to
include these accessories in cells.

n When you’re working with the iPhone, there’s no option for using split views, so
your code must push a new detail view onto the navigation controller stack. Com-
pare this to the iPad code, which only needs to reach out to an existing detail view
and update its background color.

In real-world deployment, these two checks would likely expand in complexity beyond
the details shown in this simple recipe.You’d want to add a check to your model to deter-
mine if you are, indeed, at the lowest level of the tree hierarchy before suppressing disclo-
sure accessories. Similarly, you may need to update or replace presentations in your detail
view controller.

Recipe 5-10 Adding Universal Support for Split View Alternatives

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

UITableViewCell *cell =

[tableView dequeueReusableCellWithIdentifier:@"generic"];

if (!cell) cell = [[UITableViewCell alloc]

284 Chapter 5 Working with View Controllers

initWithStyle: UITableViewCellStyleDefault

reuseIdentifier:@"generic"];

cell.textLabel.text = @"Brightness";

cell.textLabel.textColor =

[UIColor colorWithWhite:(indexPath.row / 10.0f) alpha:1.0f];

cell.accessoryType = IS_IPAD ?

UITableViewCellAccessoryNone :

UITableViewCellAccessoryDisclosureIndicator;

return cell;

}

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

UITableViewCell *cell = [tableView cellForRowAtIndexPath:indexPath];

if (IS_IPAD)

{

UIViewController *controller =

(UIViewController *)self.splitViewController.delegate;

controller.view.backgroundColor = cell.textLabel.textColor;

}

else

{

DetailViewController *controller = [

DetailViewController controller];

controller.view.backgroundColor = cell.textLabel.textColor;

[self.navigationController

pushViewController:controller animated:YES];

}

}

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Recipe: Custom Containers and Segues
Apple’s split view controller was groundbreaking in that it introduced the notion that
more than one controller could live onscreen at a time. Until the split view, the rule was
one controller with many views at a time.With split view, several controllers co-existed
onscreen, all of them independently responding to orientation and memory events.

https://github.com/erica/iOS-5-Cookbook

285Recipe: Custom Containers and Segues

Apple exposed this multiple-controller paradigm to developers in the iOS 5 SDK.You
can now create a parent controller and add child controllers to it. Events are passed from
parent to child as needed.This allows you to build custom containers, outside of the
Apple-standard set of containers such as tab bar and navigation controllers. Here is how
you might load children from a storyboard and add them to a custom array of child view
controllers:

UIStoryboard *aStoryboard = [UIStoryboard storyboardWithName:@"child"

bundle:[NSBundle mainBundle]];

childControllers = [NSArray arrayWithObjects:

[aStoryboard instantiateViewControllerWithIdentifier:@"0"],

[aStoryboard instantiateViewControllerWithIdentifier:@"1"],

[aStoryboard instantiateViewControllerWithIdentifier:@"2"],

[aStoryboard instantiateViewControllerWithIdentifier:@"3"],

nil];

// Set each child as a child view controller, setting its frame

for (UIViewController *controller in childControllers)

{

controller.view.frame = backsplash.bounds;

[self addChildViewController:controller];

}

With custom containers comes their little brother, custom segues. Just as tab and navi-
gation controllers provide a distinct way of transitioning between child controllers, you
can build custom segues that define animations unique to your class.There’s not a lot of
support in Interface Builder for custom containers with custom segues, so it’s best to
develop your presentations in code at this time. Here’s how you might implement the
code that moves the controller to a new view:

// Informal delegate method

- (void) segueDidComplete

{

pageControl.currentPage = vcIndex;

}

// Transition to new view using custom segue

- (void) switchToView: (int) newIndex

goingForward: (BOOL) goesForward

{

if (vcIndex == newIndex) return;

// Segue to the new controller

UIViewController *source =

[childControllers objectAtIndex:vcIndex];

UIViewController *destination =

[childControllers objectAtIndex:newIndex];

286 Chapter 5 Working with View Controllers

Figure 5-8 Custom segues allow you to create
visual metaphors for your custom containers.

Recipe 5-11 builds a “cube” of view controllers
that can be rotated from one to the next.

RotatingSegue *segue = [[RotatingSegue alloc]

initWithIdentifier:@"segue"

source:source destination:destination];

segue.goesForward = goesForward;

segue.delegate = self;

[segue perform];

vcIndex = newIndex;

}

Here, the code identifies the source and destination child controllers, builds a segue, sets
its parameters, and tells it to perform.An informal delegate method is called back by that
custom segue on its completion. Recipe 5-11 shows how that segue is built. In this exam-
ple, it creates a rotating cube effect that moves from one view to the next. Figure 5-8
shows the segue in action.

The segue’s goesForward property determines whether the rotation moves to the right
or left around the virtual cube.Although this example uses four view controllers, as you
saw in the code that laid out the child view controllers, that’s a limitation of the

287Recipe: Custom Containers and Segues

metaphor, not of the code itself, which will work with any number of child controllers.
You can just as easily build three- or seven-sided presentations with this, although you are
breaking an implicit “reality” contract with your user if you do so.To add more (or fewer)
sides, you should adjust the animation geometry in the segue away from a cube to fit your
virtual n-hedron.

Recipe 5-11 Creating a Custom View Controller Segue

@implementation RotatingSegue

@synthesize goesForward;

@synthesize delegate;

// Return a shot of the given view

- (UIImage *)screenShot: (UIView *) aView

{

// Arbitrarily dims to 40%. Adjust as desired.

UIGraphicsBeginImageContext(hostView.frame.size);

[aView.layer renderInContext:UIGraphicsGetCurrentContext()];

UIImage *image = UIGraphicsGetImageFromCurrentImageContext();

CGContextSetRGBFillColor(UIGraphicsGetCurrentContext(),

0, 0, 0, 0.4f);

CGContextFillRect (UIGraphicsGetCurrentContext(), hostView.frame);

UIGraphicsEndImageContext();

return image;

}

// Return a layer with the view contents

- (CALayer *) createLayerFromView: (UIView *) aView

transform: (CATransform3D) transform

{

CALayer *imageLayer = [CALayer layer];

imageLayer.anchorPoint = CGPointMake(1.0f, 1.0f);

imageLayer.frame = (CGRect){.size = hostView.frame.size};

imageLayer.transform = transform;

UIImage *shot = [self screenShot:aView];

imageLayer.contents = (__bridge id) shot.CGImage;

return imageLayer;

}

// On starting the animation, remove the source view

- (void)animationDidStart:(CAAnimation *)animation

{

UIViewController *source =

(UIViewController *) super.sourceViewController;

[source.view removeFromSuperview];

}

288 Chapter 5 Working with View Controllers

// On completing the animation, add the destination view,

// remove the animation, and ping the delegate

- (void)animationDidStop:(CAAnimation *)animation finished:(BOOL)finished

{

UIViewController *dest =

(UIViewController *) super.destinationViewController;

[hostView addSubview:dest.view];

[transformationLayer removeFromSuperlayer];

if (delegate)

SAFE_PERFORM_WITH_ARG(delegate,

@selector(segueDidComplete), nil);

}

// Perform the animation

-(void)animateWithDuration: (CGFloat) aDuration

{

CAAnimationGroup *group = [CAAnimationGroup animation];

group.delegate = self;

group.duration = aDuration;

CGFloat halfWidth = hostView.frame.size.width / 2.0f;

float multiplier = goesForward ? -1.0f : 1.0f;

// Set the x, y, and z animations

CABasicAnimation *translationX = [CABasicAnimation

animationWithKeyPath:@"sublayerTransform.translation.x"];

translationX.toValue =

[NSNumber numberWithFloat:multiplier * halfWidth];

CABasicAnimation *translationZ = [CABasicAnimation

animationWithKeyPath:@"sublayerTransform.translation.z"];

translationZ.toValue = [NSNumber numberWithFloat:-halfWidth];

CABasicAnimation *rotationY = [CABasicAnimation

animationWithKeyPath:@"sublayerTransform.rotation.y"];

rotationY.toValue = [NSNumber numberWithFloat: multiplier * M_PI_2];

// Set the animation group

group.animations = [NSArray arrayWithObjects:

rotationY, translationX, translationZ, nil];

group.fillMode = kCAFillModeForwards;

group.removedOnCompletion = NO;

// Perform the animation

[CATransaction flush];

[transformationLayer addAnimation:group forKey:kAnimationKey];

}

289Recipe: Custom Containers and Segues

- (void) constructRotationLayer

{

UIViewController *source =

(UIViewController *) super.sourceViewController;

UIViewController *dest =

(UIViewController *) super.destinationViewController;

hostView = source.view.superview;

// Build a new layer for the transformation

transformationLayer = [CALayer layer];

transformationLayer.frame = hostView.bounds;

transformationLayer.anchorPoint = CGPointMake(0.5f, 0.5f);

CATransform3D sublayerTransform = CATransform3DIdentity;

sublayerTransform.m34 = 1.0 / -1000;

[transformationLayer setSublayerTransform:sublayerTransform];

[hostView.layer addSublayer:transformationLayer];

// Add the source view, which is in front

CATransform3D transform = CATransform3DMakeIdentity;

[transformationLayer addSublayer:

[self createLayerFromView:source.view

transform:transform]];

// Prepare the destination view either to the right or left

// at a 90/270 degree angle off the main

transform = CATransform3DRotate(transform, M_PI_2, 0, 1, 0);

transform = CATransform3DTranslate(transform,

hostView.frame.size.width, 0, 0);

if (!goesForward)

{

transform = CATransform3DRotate(transform, M_PI_2, 0, 1, 0);

transform = CATransform3DTranslate(transform,

hostView.frame.size.width, 0, 0);

transform = CATransform3DRotate(transform, M_PI_2, 0, 1, 0);

transform = CATransform3DTranslate(transform,

hostView.frame.size.width, 0, 0);

}

[transformationLayer addSublayer:

[self createLayerFromView:dest.view transform:transform]];

}

// Standard UIStoryboardSegue perform

- (void)perform

{

[self constructRotationLayer];

[self animateWithDuration:0.5f];

}

@end

290 Chapter 5 Working with View Controllers

Get This Recipe’s Code
To get the code used for this recipe, go to https://github.com/erica/iOS-5-Cookbook, or if
you’ve downloaded the disk image containing all the sample code from the book, go to the
folder for Chapter 5 and open the project for this recipe.

Transitioning Between View Controllers
UIKit offers a simple way to animate view features when you move from one child view
controller to another.You provide a source view controller, a destination, and a duration
for the animated transition.You can specify the kind of transition in the options. Sup-
ported transitions include page curls, dissolves, and flips.This method creates a simple curl
from one view controller to the next:

- (void) action: (id) sender

{

[self transitionFromViewController:redController

toViewController:blueController

duration:1.0f

options:UIViewAnimationOptionLayoutSubviews |

UIViewAnimationOptionTransitionCurlUp

animations:^(void){}

completion:^(BOOL finished){

[redController.view removeFromSuperview];

[self.view addSubview:blueController.view];}

];

}

You can use the same approach to animate UIView properties without the built-in
transitions. For example, this method re-centers and fades out the red controller while
fading in the blue.These are all animatable UIView features and are changed in the
animations: block.

- (void) action: (id) sender

{

blueController.view.alpha = 0.0f;

[self transitionFromViewController:redController

toViewController:blueController

duration:2.0f

options:UIViewAnimationOptionLayoutSubviews

animations:^(void){

redController.view.center = CGPointMake(0.0f, 0.0f);

redController.view.alpha = 0.0f;

blueController.view.alpha = 1.0f;}

completion:^(BOOL finished){

[redController.view removeFromSuperview];

https://github.com/erica/iOS-5-Cookbook

291One More Thing: Interface Builder and Tab Bar Controllers

Figure 5-9 Interface Builder storyboards provide tools for laying out tab
bar controllers, simplifying laying out what is essentially a logical and not a

visual class, compared to what previous versions of Xcode allowed.

[self.view addSubview:blueController.view];}

];

}

Using transitions and view animations is an either/or scenario. Either set a transition
option or change view features in the animations block. Otherwise, they conflict, as you
can easily confirm for yourself.

Use the completion block to remove the old view and move the new view into place.
You should not have to explicitly call didMoveToParentViewController: or any of the
related, contained view controller methods.

Although simple to implement, this kind of transition is not meant for use with Core
Animation. If you wish to add Core Animation effects to your view-controller-to-view-
controller transitions, look at using a custom segue instead.

One More Thing: Interface Builder and Tab Bar
Controllers
Xcode offers easy-to-customize tab bar instances that get you started building tab-bar-
based GUIs in Interface Builder. By default, this object creates two child view controllers
in the storyboard.You can expand this basic presentation by adding new view controllers
to the tab bar controller and/or setting classes using the identity inspector (see Figure 5-9).

292 Chapter 5 Working with View Controllers

Figure 5-10 Drag art from the media library
directly onto the tab bar item shown below

each child view controller.

You’ll likely want to create a new view controller class for each tab, to allow each tab
to offer a separate and meaningful function.To add art to the tabs in IB, drag 20×20 PNG
images from the Library > Media pane onto each tab button, as shown mid-drag in
Figure 5-10, or set the art using the tab bar item’s attribute inspector.The Media pane
lists the images you have added to your Xcode project. Design your images using a trans-
parent background and a white foreground.

Interface Builder’s new storyboards offer a friendly way to both lay out individual
view controllers and connect them to their parents.This is a vast change from previous
versions of Xcode, where many developers found themselves forgoing IB to design and
deploy tab bars and navigation bars in code.

Summary
This chapter showed many view controller classes in action.You learned how to use them
to handle view presentation and user navigation for various device deployment choices.
With these classes, you discovered how to expand virtual interaction space and create
multipage interfaces as demanded by applications, while respecting the human interface
guidelines on the platform in question. Before moving on to the next chapter, here are a
few points to consider about view controllers:

n Use navigation trees to build hierarchical interfaces.They work well for looking at
file structures or building a settings tree.When you think “disclosure view” or
“preferences,” consider pushing a new controller onto a navigation stack or using a
split view to present them directly.

n Don’t be afraid to use conventional UI elements in unconventional ways so long as
you respect the overall Apple Human Interface Guidelines. Parts of this chapter
covered innovative uses for the UINavigationController that didn’t involve any
navigation.The tools are there for the using.

n Be persistent. Let your users return to the same GUI state that they last left from.
NSUserDefaults provides a built-in system for storing information between appli-
cation runs. Use these defaults to re-create the prior interface state.

293Summary

n Go universal. Let your code adapt itself for various device deployments rather than
forcing your app into an only-iPhone or only-iPad design.This chapter touched on
some simple runtime device detection and interface updates that you can easily
expand for more challenging circumstances. Universal deployment isn’t just about
stretching views and using alternate art and .xib files. It’s also about detecting when
a device influences the way you interact, not just the look of the interface.

n When working with custom containers, don’t be afraid of using storyboards
directly.You do not have to build and retain an array of all your controllers at once.
Storyboards offer direct access to all your elements, letting you move past the con-
troller setting you use in tab bars and mimicked in Recipe 5-11. Like the new page
view controller class, just load the controllers you need, when you need them.

n Interface Builder’s new storyboards provide a welcome new way to set up naviga-
tion controllers, tab bars, and more.They are a great innovation on Apple’s part and
are sure to simplify many design tasks for you.

This page intentionally left blank

Index

Symbols
@ (at) symbol, 53, 65

^ (caret), 85

+ (plus sign), 137

A
acceleration

detecting shakes with, 683-686

locating “up,” 668-672

basic orientation, 671-672

calculating relative angle, 671

catching acceleration events, 669

retrieving current accelerometer
angle synchronously, 670

moving onscreen objects, 672-676

accelerometer key, 663

accelerometer:didAccelerate: method, 668

AccelerometerHelper, 683-686

accessing AVFoundation camera, 359-368

building camera helper, 367-368

camera previews, 364

establishing camera session, 361-363

EXIF, 365

image geometry, 365-367

laying out camera previews, 364-365

querying and retrieving camera,
360-361

requiring cameras, 360

switching cameras, 363

accounts, GitHub

action sheets. See also alerts

creating, 646-648

displaying text in, 648-649

scrolling, 648

actions

action names for undo and redo, 422

adding to iOS-based temperature
converter, 223

connecting buttons to, 451-452

distribution, 179-181

ActivityAlert, 639-642

ad hoc distribution, 182-183

additional device information, recovering,
664-665

addObjects method, 616

addressFromString: method, 702

ad-hoc packages, building, 183

adjusting

retain counts, 100

views around keyboards, 495-498

affine transforms, 319-320

alerts, 633. See also action sheets; progress
indicators

alert delegates, 634-636

alert indicators, 654

audio alerts, 654-655

alert sound, 656

delays, 656-658

system sounds, 655-656

vibration, 656

badging applications, 654

building, 633-634

custom overlays, 649-650

displaying, 636

local notifications, 652-653

modal alerts with run loops, 642-645

no-button alerts, 639-642

popovers, 650-652

tappable overlays, 650

types of alerts, 636-637

variadic arguments, 645-646

volume alert, 658

alertView:clickedButtonAtIndex:
method, 635

alertViewStyle property, 636

algorithmically sorting tables, 580-581

AllEditingEvents event, 447

AllEvents event, 447

alloc method, 55

allocating memory, 54-55

allowsEditing property, 344

AllTouchEvents event, 447

alpha property, 321

alternating cell colors, 565-566

analyzing code, 165

Anderson, Fritz, 126

animations

in buttons, 456-458

custom containers and segues,
284-290

transitioning between view
controllers, 290-291

view animations, 321-324

blocks approach, 323-324

bouncing views, 329-331

746 accessing AVFoundation camera

building transactions, 322-323

conditional animation, 324

Core Animation Transitions,
328-329

fading in/out, 324-326

flipping views, 327

image view animations, 331-332

swapping views, 326-327

App Store, submitting to, 186-187

appearance proxies, 460-465

application badges, 654

application delegates, 28-30

application identifiers

inspecting, 172

registering, 21-22

applicationDidBecomeActive: method, 28

applicationDidFinishLaunching: method, 423

application:didFinishLaunchingWithOptions:
method, 28, 653

applicationDidReceiveMemoryWarning
method, 30

applicationIconBadgeNumber property, 654

ApplicationReserved event, 447

applications

application bundle

executables, 32-33

icon images, 34-36

image storage in, 337

Info.plist file, 33-34

Interface Builder files, 37

application skeleton, 25-26, 34-36

autorelease pools, 27

main.m file, 26-27

UIApplicationMain function,
27-28

compiled applications, signing, 175

folder hierarchy, 32

IPA archives, 38

limits, 17-18

opening images in, 338

Organizer, 169

running

Hello World, 141

for storyboard interfaces, 216

sandboxes, 38-39

applicationSupportsShakeToEdit
property, 423

applicationWillEnterBackground: method, 28

applicationWillEnterForeground: method, 28

applicationWillResignActive: method, 28

ARC (automatic reference counting), 55

autorelease pools, 94-95

bypassing, 97-98

casting between Objective-C and
Core Foundation, 99

adjusting retain counts, 100

basic casting, 99-100

choosing bridging approach, 101

conversion issues, 102-103

retains, 101

runtime workarounds, 102

transfers, 100-101

deallocation, 84

disabling

across a target, 96

on file-by-file basis, 97

memory management, 70-71

migrating to, 95-96

qualifiers, 77, 89

747ARC (automatic reference counting)

autoreleased qualifiers, 91-92

strong and weak properties, 89-90

variable qualifiers, 90-91

reference cycles, 92-94

rules, 98-99

tips and tricks, 103

archiving, 416-418

armv6 key, 663

armv7 key, 663

arrays, 58-59

building, 76-118

checking, 118

converting into strings, 118

converting strings to, 112

arrayWithContentsOfFile: method, 120

arrayWithObjects: method, 63, 72, 117

art, adding to buttons, 450-451

assigning

block preferences, 85-87

data sources to tables, 556-557

delegates to tables, 558

associated objects, 304-305

asynchronous downloads

download helper, 715-721

NSURLConnectionDownload
Delegate protocol, 713-714

at (@) symbol, 53, 65

atomic qualifiers, 77-78

attitude property, 676

attributed strings

automatically parsing markup text
into, 532-535

building, 526-532

extensions library, 532

audio alerts, 654-655

alert sound, 656

audio platform differences, 10

delays, 656-658

system sounds, 655-656

vibration, 656

volume alert, 658

Audio Queue, 655

AudioServicesAddSystemSoundCompletion
method, 655

AudioServicesCreateSystemSoundID
method, 655

AudioServicesPlayAlertSound method, 645

AudioServicesPlaySystemSound method,
655-656

authentication challenge, handling, 721-725

autocapitalizationType property, 492-493

autocorrectionType property, 493

auto-focus-camera key, 663

automatic reference counting. See ARC
(automatic reference counting)

automatically parsing markup text into
attributed strings, 532-535

automating camera shots, 358

autorelease pools, 27, 94-95

autoreleased objects

creating, 68-69

object lifetime, 69

retaining, 69-70

autoreleased qualifiers, 91-92

autosizing, 235-237

evaluating options, 238-239

example, 237-239

available disk space, checking, 692-693

AVAudioPlayer, 655

748 ARC (automatic reference counting)

AVCaptureVideoPreviewLayer class, 364

AVFoundation camera, accessing, 359-368

building camera helper, 367-368

camera previews, 364

establishing camera session, 361-363

EXIF, 365

image geometry, 365-367

laying out camera previews, 364-365

querying and retrieving cameras,
360-361

requiring cameras, 360

switching cameras, 363

B
background colors, changing, 561-562

backgroundColor property, 321

backtraces, 157-158

badging applications, 654

bar buttons, 249-250

bars, 195-196

Base SDK targets, 173

battery state (iPhone), monitoring, 666-667

batteryMonitoringEnabled property, 666

batteryState property, 666

becomeFirstResponder method, 682

beginAnimations:context method, 322

beginGeneratingDeviceOrientation
Notifications method, 672

Bezier paths, drawing Core Text onto,
543-544

big phone text, 551-554

BigTextView, 551-554

bigTextWithString: method, 553

bitmap representation

manual image processing with,
377-383

applying image processing, 380-382

drawing into bitmap context,
378-380

limitations of, 382-383

testing touches against bitmaps,
411-413

_block variable, 87

blocking checks, 705-707

blocks, 45-46, 84-85

applications for, 88

assigning block preferences, 85-87

building animations with, 323-324

defining, 85

local variables, 87

memory management, 88

typedef, 87-88

borderStyle property, 494

bouncing views, 329-331

bounded movement, 408-409

bounded views, randomly moving, 318-319

Breakpoint Navigator, 135

breakpoints, 153-154, 156-157

__bridge_retained cast, 101

bridge_transfer cast, 100-101

bridging, 101

BrightnessController class, 271

browsing

parse tree, 736-738

SDK APIs, 149-151

749browsing

build configurations, adding, 181

building

alerts, 633-634

arrays, 76-118

dictionaries, 118-119

parse tree, 734-736

strings, 110

URLs, 120-121

web-based servers, 738-741

builds

cleaning, 178-179

locating, 178-179

built-in type detectors, 520-522

buttons

adding

in Interface Builder, 449-452

to keyboards, 498-500

to storyboard interfaces, 214

animation, 456-458

art, 450-451

bar buttons, 249-250

building in Xcode, 453-455

connecting to actions, 451-452

multiline button text, 455

types of, 448-449

bypassing ARC (automatic reference
counting), 97-98

bytesRead property, 716

C
cached object allocations, monitoring,

162-163

calculating relative angle, 671

callbacks, 107-108. See also specific
methods

declaring, 107-108

implementing, 108

cameraCaptureMode property, 351

camera-flash key, 663

cameraFlashMode property, 351

cameraOverlayView property, 358

cameras. See also images

automating shots, 358

AVFoundation camera, accessing,
359-368

building camera helper, 367-368

camera previews, 364

establishing camera session,
361-363

EXIF, 365

image geometry, 365-367

laying out camera previews,
364-365

querying and retrieving cameras,
360-361

requiring cameras, 360

switching cameras, 363

camera previews, 364-365

custom overlays, 358-359

as flashlights, 353

model differences, 9

750 build configurations, adding

selecting between, 351

sessions, establishing, 361-363

writing images to photo album,
349-353

cameraViewTransform property, 359

Canny edge detection, 377

Car, 61

Carbon, 81

CAReplicatorLayer class, 332

caret (^), 85

case of strings, changing, 114

casting between Objective-C and Core
Foundation, 99

adjusting retain counts, 100

basic casting, 99-100

conversion issues, 102-103

runtime workarounds, 102

catching acceleration events, 669

categories, 104-105

Catmull-Rom splines, 426-429

cells

adding, 576-578

building custom cells

alternating cell colors, 565-566

creating grouped tables, 567

in Interface Builder, 563-565

removing selection highlights, 566

selection traits, 565

checked table cells, 571-572

colors, alternating, 565-566

custom cells, remembering control
state, 567-570

disclosure accessories, 572-574

removing selection highlights, 566

reordering, 579-580

returning, 583

reusing, 560, 570-571

swiping, 576

tables, 557-558

types of, 562-563

centers of views, 313-314

certificates, requesting, 20

CF (Core Foundation)

casting between Objective-C and
Core Foundation, 99

adjusting retain counts, 100

basic casting, 99-100

choosing bridging approach, 101

conversion issues, 102-103

retains, 101

runtime workarounds, 102

explained, 81-82

CFBridgingRelease(), 100

CFRelease(), 101

CFRunLoopRun(), 643

CGImageSource, 365

CGPoint, 309, 310

CGPointApplyAffineTransform method, 411

CGRect, 309-310, 313-314

CGRectFromString(), 309, 414

CGRectGetMidX, 309

CGRectGetMidY, 309

CGRectInset, 309

CGRectIntersectsRect, 309

CGRectMake, 309

CGRectOffset, 309

751CGRectOffset

CGRectZero, 309

CGSize structure, 309, 310

changes, detecting, 619

changing

entry points in storyboard
interfaces, 215

view controller class, 217

checked table cells, creating, 571-572

checking

arrays, 118

available disk space, 692-693

network status, 695-697

for previous state, 415-416

site availability, 707-709

spelling, 522-523

checkUndoAndUpdateNavBar: method,
419, 420

child-view undo support, 418-419

choosing

bridging approach, 101

between cameras, 351

CIImage, 363

circles

detecting, 429-435

drawing Core Text into, 539-542

circular hit tests, 409-411

class files, generating, 614-615

class methods. See methods

classes. See also specific classes

class hierarchy, 63-64

declaring, 52-54

extending with categories, 104-105

Foundation framework. See
Foundation

generating class files, 614-615

naming, 53

singletons, 103-104

cleaning builds, 178-179

closures. See blocks

Cocoa Programming for Mac OS X,
(Hillegass), 126

Cocoa Touch, 5, 82, 196

code

analyzing, 165

editing

hybrid interfaces, 232-233

popovers, 218-220

code signing identities, 172-173

collapsing methods, 178

collections

arrays

building, 76-118

checking, 118

converting into strings, 118

dictionaries, 119

building, 118-119

creating, 119

listing keys, 119

removing objects from, 119

replacing objects in, 119

memory management, 120

sets, 120

writing to file, 120

color control, 469-470

color sampling, 384-386

commaFormattedStringWithLongLong:
method, 692

752 CGRectZero

commitAnimations method, 322

compiled applications, signing, 175

compilers. See ARC (automatic reference
counting); MRR (Manual Retain Release)

compile-time checks, 175

compiling Hello World, 174-175

componentsJoinedByString: method, 118

composition controllers, presenting, 356

conditional animation, 324

configuring iOS development teams, 19

conforming to protocols, 108-109

connection:didFailWithError: method,
715-716

connection:didFinishLoading: method, 716

connection:didReceiveData: method,
715-716

connection:didReceiveResponse:
method, 716

connections

connectivity changes, scanning for,
700-702

iPad interfaces, 226-227

popovers, 218

connectionShouldUseCredentialStorage:
method, 723

consoles

debuggers, 158

Organizer, 169-170

contact add buttons, 448

contentViewController, 199

contexts, creating, 615-616

continuous gestures, 433

control state, remembering, 567-570

controllerDidChangeContent: method,
619, 625

controllers. See view controllers

controls, 445

buttons

adding in Interface Builder,
449-452

animation, 456-458

art, 450-451

building in Xcode, 453-455

connecting to actions, 451-452

multiline button text, 455

types of, 448-449

color control, 469-470

control events, 446-448

customizable paged scroller, 481-486

page indicator controls, 478-481

sliders, 458-465

appearance proxies, 460-465

customizing, 459-460

efficiency, 460

star slider example, 472-475

steppers, 471-472

subclassing, 467-471

creating UIControls, 468

custom color control, 469-470

dispatching events, 468-469

tracking touches, 468

switches, 471-472

toolbars, 486-489

accepting keyboard entry into,
508-511

building in code, 487-488

753controls

building in Interface Builder,
486-487

iOS 5 toolbar tips, 489

touch wheel, 476-478

twice-tappable segmented controls,
465-467

types of, 445-446

UIView, 193-194

conversion method, adding to iOS-based
temperature converter, 225

converter interfaces, building, 227-230

converting

arrays into strings, 118

Empty Application template to pre-
ARC development standards, 97-98

interface builder files to objective-C
equivalents, 151-153

RGB to HSB colors, 386

strings

to arrays, 112

to/from C strings, 111

XML into trees, 733

browsing parse tree, 736-738

building parse tree, 734-736

tree nodes, 733

coordinate systems, 310-311

Core Animation emitters, 675-676

Core Animation Transitions, 328-329

Core Data, 611-612

changes, detecting, 619

class files, generating, 614-615

contexts, creating, 615-616

databases, querying, 618-619

model files, creating and editing,
612-613

objects

adding, 616-618

removing, 619-620

search tables, 623-625

table data sources, 620-623

table editing, 625-628

undo/redo support, 628-632

Core Foundation (CF)

casting between Objective-C and
Core Foundation, 99

adjusting retain counts, 100

basic casting, 99-100

choosing bridging approach, 101

conversion issues, 102-103

retains, 101

runtime workarounds, 102

transfers, 100-101

explained, 81-82

Core Image, 368-370-376

Core Location, 10-11

Core Motion, 676-680

device attitude, 676, 680-681

drawing onto paths, 542-551

gravity, 676

handler blocks, 677-680

magnetic field, 733

model differences, 10-11

rotation rate, 676

splitting into pages, 536-537

testing for sensors, 677

user acceleration, 676

Core Text

building attributed strings, 526-532

drawing into circles, 539-542

754 controls

drawing into PDF, 537-539

drawing onto paths

glyphs, 545-546

proportional drawing, 544-545

sample code, 546-551

CoreImage framework, 360

CoreMedia framework, 360

CoreVideo framework, 360

counting sections and rows, 583

Cox, Brad J., 51

credentials, storing, 722-728

cStringUsingEncoding: method, 111

C-style object allocations, 80-73

CTFramesetterSuggestFrameSizeWith
Constraints method, 536

currentPage method, 479

custom accessory views, dismissing text
with, 498-500

custom alert overlays, 649-650

custom camera overlays, 358-359

custom containers and segues, 284-290

custom fonts, 525-526

custom gesture recognizers, 433-435

custom getters and setters, 74-76

custom headers/footers, 591-592

custom images, 344

custom input views

adding to non-text views, 511-513

creating, 503-508

input clicks, 511-513

replacing UITextField keyboards
with, 503-508

custom popover view, 217-218

custom sliders, 459-460

customizable paged scroller, 481-486

D
data, displaying, 192-193

data access limits, 13

data detectors, 520

data sources, 46-47, 106

assigning to tables, 556-557

methods, implementing, 559

table data sources and Core Data,
620-623

data uploads, 728

databases, querying, 618-619

dataDetectorTypes property, 520

dates, 115-116

date pickers, creating, 603-605

formatting, 606-608

dealloc methods, 82-84

deallocating objects, 82-84

ARC (automatic reference
counting), 84

with MRR (Manual Retain Release),
82-84

Debug Navigator, 135

debuggers, 153

adding simple debug tracing, 158

backtraces, 157-158

breakpoints, setting, 153-157

consoles, 158

debug tracing, 158

inspecting labels, 155-156

opening, 154-155

declaring. See also defining, 85, 106-107

classes, 52-54

methods, 59

optional callbacks, 107-108

properties, 73-74

755declaring

defaultCredentialForProtectionSpace:
method, 725

defining. See also declaring

blocks, 85

protocols, 106-107

delays with audio alerts, 656-658

delegate methods, 589

delegates, 106

alert delegates, 634-636

assigning, 558

delegation, 42-43, 106, 585

delete requests, 576

deleteBackward method, 509

Deployment targets, 173

designing rotation, 233

detail disclosure buttons, 448

detail view controllers, 279

detecting

changes, 619

circles, 429-435

external screens, 687

leaks, 159-162

misspellings, 522-523

shakes

with acceleration, 683-686

with motion events, 681-683

simulator builds, 175

text patterns, 518-522

built-in type detectors, 520-522

creating expressions, 518-519

data detectors, 520

enumerating regular
expressions, 519

Developer Enterprise Program, 3

Developer Profile organizers, 171

Developer Program, 2-3

developer programs, 1-2

Developer Program, 2-3

Developer University Program, 3

Enterprise Program, 3

Online Developer Program, 2

provisioning portal, 19

application identifier registration,
21-22

certificate requests, 20

device registration, 20-21

provisioning profiles, 22-23

team setup, 19

registering for, 3

Developer University Program, 3

development devices, 5-6

device attitude, 680-681

device capabilities, 661

acceleration

locating “up,” 668-672

moving onscreen objects, 672-676

available disk space, checking, 692-693

Core Motion, 676-680

device attitude, 676, 680-681

gravity, 676

handler blocks, 677-680

magnetic field, 733

rotation rate, 676

testing for sensors, 677

user acceleration, 676

device information

accessing basic device information,
661-662

756 defaultCredentialForProtectionSpace: method

recovering additional device
information, 664-665

external screens, 686-687

detecting, 687

display links, 688

overscanning compensation, 688

retrieving screen resolutions, 687

Video Out setup, 688

VIDEOkit, 688-692

iPhone battery state, monitoring,
666-667

proximity sensor, enabling/disabling,
667-668

required device capabilities, 663

restrictions, 662-664

shake detection

with AccelerometerHelper,
683-686

with motion events, 681-683

device differences, 8-9

audio, 10

camera, 9

Core Location, 10-11

Core Motion, 10-11

OpenGL ES, 11-12

processor speeds, 11

screen size, 9

telephony, 10

vibration support and proximity, 11

device limitations, 12

application limits, 17-18

data access limits, 13

energy limits, 16-17

interaction limits, 16

memory limits, 13

storage limits, 12

user behavior limits, 18

device logs, 168-169

device registration, 20-21

device signing identities, 172-173

devices, building, 170

compiling and running Hello World,
174-175

development provisions, 170-171

enabling devices, 171

inspecting application identifiers, 172

setting Base and Deployment SDK
targets, 173

setting device and code signing
identities, 172-173

signing compiled applications, 175

dictionaries

building, 118-119

creating, 119

listing keys, 119

removing objects from, 119

replacing objects in, 119

searching, 119

dictionaryWithContentsOfFile: method, 120

dictionaryWithKeysAndValues: method, 63

didAddSubview: method, 301

didMoveToSuperview: method, 301

didMoveToWindow: method, 301

direct manipulation interface example,
401-402. See also touches

disabling

ARC (automatic reference counting)

across a target, 96

on file-by-file basis, 97

757disabling

idle timer, 358

proximity sensor, 667-668

disclosure accessories, 572-574

discrete gestures, 433

discrete valued star slider, 472-475

disk space, checking available disk space,
692-693

dismiss code, adding to storyboard
interfaces, 215

dismissing

remove controls, 575-576

text with custom accessory views,
498-500

UITextField keyboards, 491-495

dispatching events, 468

display links, 688

display properties of views, 320-321

displaying

alerts, 636

data, 192-193

remove controls, 575

volume alert, 658

distribution, 178

ad hoc distribution, 182-183

adding build configurations, 181

ad-hoc packages, building, 183

locating and cleaning builds, 178-179

over-the-air ad hoc distribution,
184-186

schemes and actions, 179-181

document interaction controller, 200

Document-Based applications, 127

Documents folder, saving images to,
353-354

Done key, dismissing UITextField keyboards
with, 494-495

dot notation, 71-72

doubleSided property, 262

DoubleTapSegmentedControl, 465-467

DownloadHelper, 715-721

DownloadHelperDelegate protocol, 716

downloading

asynchronous downloads

download helper, 715-721

NSURLConnectionDownload
Delegate protocol, 713-714

SDK (software development kit), 4-5

synchronous downloads, 709-713

download:withTargetPath:withDelegate:
method, 717

dragging items from scroll view, 440-443

DragView, 401-402. See also touches

drawings. See also images

Core Text

drawing into circles, 539-542

drawing into PDF, 537-539

drawing onto paths, 542-551

drawing touches onscreen, 424-426

smoothing, 426-429

drawInRect: method, 390

drawRect: method, 424-426

Dromick, Oliver, 532

dumping fonts, 524

dumpToPDFFile: method, 537-539

dynamic slider thumbs, 460-465

758 disabling

E
editing. See also undo support

code

hybrid interfaces, 232-233

popovers, 218-220

model files, 612-613

shake-to-edit support, 423

tables in Core Data, 625-628

view attributes, 211

views, 140-141

EditingChanged event, 447

EditingDidEnd event, 447

EditingDidEndOnExist event, 447

editor window, Xcode workspace, 136

efficiency, adding to sliders, 460

e-mail, sending images via, 354-358

creating message contents, 354-355

presenting composition controller, 356

emitters, 675-676

Empty Application template

converting to pre-ARC development
standards, 97-98

creating projects, 129

enableInputClicksWhenVisible method, 511

enablesReturnKeyAutomatically
property, 526

enabling

multitouch, 435-438

proximity sensor, 667-668

encapsulation, 71

encodeWithCoder: method, 416

endGeneratingDeviceOrientationNotification
method, 672

energy limits, 16-17

Enterprise Program, 3

entry points, changing in storyboard
interfaces, 215

enumerateKeysAndObjectsUsingBlock:
method, 85

enumerateKeysAndObjectsWithOptions:using
Block: method, 85

enumerateObjectsAtIndexes:options:
usingBlock: method, 85

enumeration

fast enumeration, 63

regular expressions, 519

establishMotionManager method, 677

events

acceleration events, catching, 669

control events, 446-448

dispatching, 468-471

motion events, detecting shakes with,
681-683

Exchangeable Image File Format (EXIF), 365

executables, 32-33

EXIF (Exchangeable Image File Format), 365

expectedLength property, 716

expressions

creating, 518-519

enumerating, 519

extending

classes with categories, 104-105

UIDevice class for reachability,
697-700

external screens, 686-687

detecting, 687

display links, 688

overscanning compensation, 688

retrieving screen resolutions, 687

759external screens

Video Out setup, 688

VIDEOkit, 688-692

extracting

extracting view hierarchy trees recipe,
297-298

face information, 376-377

numbers from strings, 114

F
face detection, 370-376

face information, extracting, 376-377

fading views in/out, 324-326

fast enumeration, 63

fetch requests

with predicates, 624-625

querying database, 618-619

fetchedObjects property, 619

fetchedResultsController variable, 618

fetchPeople method, 618-619

file types, supported image file types, 339

files

class files, generating, 614-615

file management, 121-123

header files, 26

Info.plist file, 33-34

Interface Builder files, 37

IPA archives, 38

.m file extension, 26

main.m file, 26-27

model files, creating and editing,
612-613

storyboard files, 26

sysctl.h file, 664

writing collections to, 120

XIB files, 26

filtering text entries, 516-518

filters (Core Image), 368-370

finding UDIDs (unique device identifiers), 21

findPageSplitsForString: method, 537

first responders, 423-424

flashlights, 353

flipping views, 327

floating progress monitors, 642

folder hierarchy, 32

fonts

custom fonts, 525-526

dumping, 524

footers, customizing, 591-592

format specifiers (strings), 65

formatting dates, 606-608

forwarding messages, 123-126

forwardingTargetForSelector: method, 126

forwardInvocation: method, 124

Foundation, 72, 109-110

arrays

building, 76-118

checking, 118

converting into strings, 118

collections, 117

dates, 115-116

dictionaries

building, 118-119

creating, 119

listing keys, 119

removing objects from, 119

replacing objects in, 119

searching, 119

760 external screens

file management, 121-123

NSData, 121

numbers, 115

sets, 120

strings, 110

building, 110

changing case of, 114

converting to arrays, 112

converting to/from C strings, 111

extracting numbers from, 114

length and indexed characters,
110-111

mutable strings, 114

reading/writing, 111

searching/replacing, 113

substrings, 112-113

testing, 114

timers, 116-117

URLs, building, 120-121

frame property, 308

frames, 309-318

centers of, 313-314

moving, 311-312

resizing, 312-313

utility methods, 314-318

frameworks for AVFoundation camera
usage, 359-360

free(), 55

freeing memory, 55-56

FTPHostDelegate protocol, 43

functions. See specific functions

G
gamekit key, 663

GameKit peer picker, 201

garbage collection, 18

geometry

image geometry, 365-367

of views, 308-311

coordinate systems, 310-311

frames, 309-318

transforms, 310

gesture conflicts, resolving, 407

gesture recognizers, 397, 400-401. See also
touches

custom gesture recognizers, 433-435

dragging from scroll view, 440-443

long presses, 401

movement constraints, 408-409

multiple gesture recognizers, 404-407

pans, 401-404

pinches, 400

resolving gesture conflicts, 407

rotations, 400

simple direct manipulation interface,
401-402

swipes, 400

taps, 400

testing

against bitmap, 411-413

circular hit tests, 409-411

gestureRecognizer:shouldRecognize
SimultaneouslyWithGestureRecognizer:
method, 404

gestureWasHandled method, 440

761gestureWasHandled method

getIPAddressForHost: method, 703

getters

custom getters, 74-76

defining, 73-74

glyphs, drawing, 545-546

goesForward property, 287

gps key, 663

gravity, 676

grouped tables

coding, 595

creating, 567

grouped preferences tables, creating,
595-596

gyroscope key, 663

H
handleWebRequest: method, 742

handling authentication challenge, 721-725

hardware keyboards, resizing views with,
500-503

hasText method, 509

headers

customizing, 591-592

header files, 26

header titles, creating, 584

Hello World

compiling, 174-175

creating projects, 129-132

editing views, 140-141

iPhone storyboard, 138-139

minimalist Hello World, 146-149

reviewing projects, 137-138

running, 174-175

running applications, 141

Xcode workspace, 132-133

controlling, 133-134

editor window, 136

Xcode navigators, 134-135

Xcode utility panes, 135-136

hiding

application badges, 654

volume alert, 658

hierarchies

extracting view hierarchy trees recipe,
297-298

of views, 295-297

Hillegass, Aaron, 126

hit tests, circular, 409-411

Hosgrove, Alex, 440

host information, recovering, 702-705

hostname method, 703

HSB colors, converting RGB to, 386

hybrid interfaces, 230-231

adding views and populating, 231

creating projects, 231

editing, 232-233

populating, 231

views, tagging, 231-232

I
IB. See Interface Builder

iCloud, image storage in, 338

icon images, 34-36

idle timer, disabling, 358

762 getIPAddressForHost: method

image geometry, 365-367

image pickers, 200

image view animations, 331-332

imageFromURLString: method, 709

imageNamed: method, 339

imageOrientation property, 365

images, 337. See also cameras

automating camera shots, 358

Core Image face detection, 370-376

Core Image filters, adding, 368-370

creating new, 391-392

creating thumbnails from, 387-390

custom camera overlays, 358-359

customizing, 344

displaying in scrollable view, 392-395

drawing into PDF files, 390-391

extracting face information, 376-377

icon images, 34-36

launch images, 34-36

manual processing with bitmap
representations, 377-383

applying image processing, 380-382

drawing into bitmap context,
378-380

limitations of, 382-383

reading data, 339-342

from photo album, 341-347

in sandbox, 340

UIImage convenience
methods, 339

from URLs, 340-341, 347-349

sampling a live feed, 384-386

saving to Documents folder, 353-354

sending via e-mail, 354-358

creating message contents, 354-355

presenting composition
controller, 356

storing, 337-338

supported file types, 339

uploading to TwitPic, 728

view-based screenshots, 390

writing to photo album, 349-353

imageWithContentsOfFile: method, 339

implementing

methods, 60-61

optional callbacks, 108

tables, 558

cell types, 562-563

changing background color,
561-562

data source methods, 559

populating tables, 558

responding to user touches,
560-561

reusing cells, 560

selection color, 561

incorporating protocols, 107

index paths, recovering information
from, 117

indexed substrings, requesting, 112

indexes, search-aware indexes, 589-590

indexPathForObject: method, 620

indicators, alert, 654

info dark buttons, 448

info light buttons, 448

Info.plist file, 33-34, 662-664

inheriting methods, 59

763inheriting methods

initWithCoder: method, 416

input clicks, adding to custom input views,
511-513

inputAccessoryView property, 498

inputView property, 503

inserting subviews, 300

insertText: method, 509

inspecting

application identifiers, 172

labels, 155-156

instance methods. See methods

instruments

detecting leaks, 159-162

explained, 5

monitoring cached object allocations,
162-163

interaction limits, platform limitations, 16

interaction properties of views, 320-321

Interface Builder

building custom cells

alternating cell colors, 565-566

creating grouped tables, 567

removing selection highlights, 566

selection traits, 565

buttons, adding, 449-452

custom cells, building, 563-565

files

converting to objective-C
equivalents, 151-153

explained, 37

iOS-based temperature converters,
220-222

adding conversion method, 225

adding labels and views, 222

adding media, 221

adding outlets and action, 223

connecting the iPad interface,
226-227

creating new projects, 220

reorientation, 223

testing interfaces, 223

updating keyboard type, 225-226

Round Rect Buttons, 194

tab bar controllers and, 291-292

tips for, 243-244

toolbars, building, 486-487

interfaces

building, 207-208

hybrid interfaces. See hybrid
interfaces, 230-233

storyboard interfaces. See storyboard
interfaces, 208-215

testing, 223

Internet, image storage in, 338

iOS-based temperature converters, 220

adding

conversion method, 225

labels and views, 222

media, 221

outlets and actions, 223

connecting the iPad interface,
226-227

creating new projects, 220

Interface Builder, 221-222

reorientation, 223

testing interfaces, 223

updating keyboard type, 225-226

764 initWithCoder: method

IP information, recovering, 702-705

IPA archives, 38

iPad interfaces, connecting, 226-227

iPad support, adding to image picker, 343

iPhone battery state, monitoring, 666-667

iPhone Developer University Program

iPhone storyboard, 138-139

iPhone Xcode projects

application delegates, 28-30

application skeleton, 25-26

autorelease pools, 27

main.m file, 26-27

UIApplicationMain function,
27-28

requirements, 23-25

sample code, 31-32

view controllers, 30-31

isDownloading property, 716

isFlashAvailableForCameraDevice:
method, 351

isKindOfClass: method, 125

Issue Navigator, 135

Isted, Tim, 632

isValidJSONObject method, 742

iTunes Connect, 4

J
JSON serialization, 742

JSONObjectWithData:options:error:
method, 742

K
keyboardAppearance property, 493

keyboards

hardware keyboards, resizing views
with, 500-503

keyboard type, updating, 225-226

UITextField keyboards

adjusting views around, 495-498

custom buttons, 498-500

dismissing, 491-495

replacing with custom input views,
503-508

view design geometry, 205

keyboardType property, 493

Keychain Access, 20

keychain credentials, storing and retrieving,
723-728

keys (dictionaries), 119

key-value coding, 78

key-value observing (KVO), 45, 79

keywords. See specific keywords

Kochan, Stephen, 126

Kosmaczewski, Adrian, 151

kSCNetworkFlagsReachable flag, 707

kSCNetworkReachabilityFlagsConnection
OnTraffic flag, 696

kSCNetworkReachabilityFlagsIsDirect
flag, 696

kSCNetworkReachabilityFlagsIsWWAN
flag, 696

KVO (key-value observing), 45, 79

765KVO (key-value observing)

L
labels

adding to iOS-based temperature
converter, 222

inspecting, 155-156

launch images, 34-36

laying out camera previews, 364-365

leaks, detecting, 159-162

learnWord: method, 522

length of strings, 110-111

libraries, SDK limitations, 18

lifetime of autoreleased objects, 69

live feeds, sampling, 384-386

loading image data, 339-342

from photo album, 341-347

in sandbox, 340

UIImage convenience methods, 339

from URLs, 340-341, 347-349

loadView method, 30

local notifications, 652-653

local variables, 87

localIPAddress method, 703

locating builds, 178-179

locating “up”, 668-672

basic orientation, 671-672

calculating relative angle, 671

catching acceleration events, 669

retrieving current accelerometer angle
synchronously, 670

location-services key, 663

Log Navigator, 135

logging information, 64-66

long presses, 401

low-memory conditions, simulating, 163-165

M
.m file extension, 26

magnetic field, 733

magneticField property, 733

magnetometer key, 663

mail composition, 200

main.m file, 26-27

malloc(), 55

managing

files, 121-123

memory

with ARC (automatic reference
counting), 70-71

blocks, 88

with MRR (Manual Retain
Release), 67-70

properties, 72-73

manifests, over-the-air ad hoc distribution,
184-186

manual image processing with bitmap
representation, 377-383

applying image processing, 380-382

drawing into bitmap context, 378-380

limitations of, 382-383

Manual Reference Counting (MRC). See
MRR (Manual Retain Release)

Manual Retain Release. See MRR (Manual
Retain Release)

766 labels

markup text, parsing into attributed strings,
532-535

Master-Detail application, 127

media, adding to iOS-based temperature
converter, 221

Media Player controllers, 201

memory

allocating, 54-55

low-memory conditions, simulating,
163-165

memory management, 158-159

with ARC (automatic reference
counting), 70-71

blocks, 88

with collections, 120

with MRR (Manual Retain
Release), 67-70

and properties, 72-73

platform limitations, 13

releasing, 55-56

menus. See also alerts

creating, 646-648

displaying text in, 648-649

scrolling menus, 648

segmented controls recipe, 253-255

two-item menu recipe, 252-253

messages, 57

message forwarding, 123-126

tracking, 48

methods. See also specific methods

class methods, 62

collapsing, 178

compared to functions, 57

declaring, 59

implementing, 60-61

inheriting, 59

undeclared methods, 57-58

MFMailComposeViewController, 200,
354, 524

microphone key, 663

migrating to ARC (automatic reference
counting), 95-96

minimalist Hello World, 146-149

misspellings, detecting, 522-523

MKMapViews, 193

mobile provisions. See provisioning profiles

modal alerts with run loops, 642-645

modal presentation, 251

modal view controllers recipe, 258-262

ModalAlertDelegate, 643-645

model differences. See device differences

model limitations. See device limitations

model property, 661

models (MVC), 46, 612-613. See also Core
Data

model-view-controller. See MVC (model-view-
controller)

monitoring

cached object allocations, 162-163

connectivity changes, 700-702

iPhone battery state, 666-667

motion. See acceleration; Core Motion

motionBegan:withEvent: method, 682

motionCancelled:withEvent: method, 682

motionEnded:withEvent: method, 682

movement constraints, 408-409

767movement constraints

moving

bounded views, 318-319

onscreen objects with acceleration,
672-676

views, 239-243, 311-312

MPMediaPickerController, 201

MPMoviePlayerController, 201

MPMusicPlayerController, 201

MPVolumeSettingsAlertHide, 658

MPVolumeSettingsAlertIsVisible, 658

MRC (Manual Reference Counting). See
MRR (Manual Retain Release)

MRR (Manual Retain Release), 55

autoreleased objects

creating, 68-69

object lifetime, 69

retaining, 69-70

deallocation, 82-84

memory management, 67-70

qualifiers, 77

retain counts, 56, 79-80

retained properties, 72-73

multiline button text, 455

multiple gesture recognizers, 404-407

multipleTouchEnabled property, 436

multitouch, 400, 435-438

multiwheel tables, 597-600

mutable arrays, 58

mutable strings, 114-87

MVC (model-view-controller), 40. See also
Core Data

blocks, 45-46

controllers, 42

data sources, 46-47

delegation, 42-43

model, 46

notifications, 44-45

target-actions, 43-44

UIApplication object, 47-48

view classes, 40-41

N
name dictionary, 305-308

name property, 662

naming

classes, 53

controllers, 213-214

scenes, 211

views, 303-308

associated objects, 304-305

name dictionary, 305-308

navigation bars, 195, 203-205

adding to storyboard interfaces, 213

tinting, 214

undo support, 419-420

navigation buttons, 211-213

navigation controllers, 247-251

adding, 216-217

modal presentation, 251

modal view controllers recipe,
258-262

pushing and popping, 249-250,
255-258

segmented controls recipe, 253-255

split view controllers

building, 278-282

custom containers and segues,
284-290

universal apps, building, 282-284

768 moving

stack-based design, 249

two-item menu recipe, 252-253

UINavigationItem class, 250-251

navigationOrientation property, 263

networking, 695

asynchronous downloads

download helper, 715-721

NSURLConnectionDownload
Delegate protocol, 713-714

authentication challenge, 721-725

blocking checks, 705-707

connectivity changes, scanning for,
700-702

credentials

storing, 722-725

storing and retrieving keychain
credentials, 723-728

host information, recovering, 702-705

IP information, recovering, 702-705

JSON serialization, 742

network connections, testing, 696-697

network status, checking, 695-697

site availability, checking, 707-709

synchronous downloads, 709-713

Twitter, 732-733

UIDevice, extending for reachability,
697-700

uploading data, 728

web-based servers, building, 738-741

XML, converting into trees, 733

browsing parse tree, 736-738

building parse tree, 734-736

tree nodes, 733

no-button alerts, 639-642

nodes (tree), 733

notifications. See also alerts

explained, 44-45

local notifications, 652-653

NSArray, 58-59

NSAttributedString, 526-532

NSAutoreleasePool, 26

NSBundle, 32

NSComparisonResult, 114

NSCompoundPredicate, 623-625

NSData, 121

NSDataDetector, 520

NSDate, 115-116

NSDateFormatter, 116

NSDecimalNumber, 115

NSFileManager, 121-123, 692-693

NSInteger, 115

NSJSONSerialization, 742

NSKeyedArchiver, 416-418

NSKeyedUnarchiver, 416-418

NSLog, 64-66

NSMutableArray, 58-59, 118

NSMutableAttributedString, 526-532

NSMutableString, 114

NSMutableURLRequest, 709

NSNotificationCenter, 44

NSNumber classes, 115

NSObject, 54

NSOperationQueue

for blocking checks, 705-707

uploading data with, 728

NSPredicates, 623-625

nsprintf function, 66

NSRegularExpression, 519

NSString, 65

769NSString

NSStringFrom, 66

NSStringFromCGAffineTransform method, 66

NSStringFromCGRect function, 309

NSStringFromCGRect method, 66, 414

NSTimeInterval, 116

NSUInteger, 115

NSURLConnection, 709, 721

NSURLConnectionDownloadDelegate
protocol, 713-714

NSURLCredential, 722-725

NSURLCredentialPersistenceForSession, 722

NSURLCredentialPersistenceNone, 722

NSURLCredentialPersistencePermanent, 722

NSURLProtectionSpace, 722-725

NSURLResponse, 710

numberOfPages property, 479

numberOfSectionsInTableView, 559

numbers

extracting from strings, 114

NSNumberes, 115

O
objc_retainedObject(), 102

objc_unretainedObject(), 102

objc_unretainedPointer(), 102

objectAtIndexPath: method, 620

objectForKey: method, 119

Objective-C 2.0, 19, 24, 51-52, 87,

ARC (automatic reference counting).
See ARC (automatic reference
counting)

arrays, 58-59

blocks, 84-85

applications for, 88

assigning block preferences, 85-87

defining, 85

local variables, 87

typedef, 87-88

categories, 104-105

classes

class hierarchy, 63

declaring, 52-54

extending with categories, 104-105

naming, 53

singletons, 103-104

converting, 151-153

fast enumeration, 63

Foundation framework. See
Foundation

logging information, 64-66

memory management

with ARC (automatic reference
counting), 70-71

memory allocation, 54-55

memory deallocation, 55-56

with MRR (Manual Retain
Release), 67-70

message forwarding, 123-126

messages, 57

methods

class methods, 62

compared to functions, 57

declaring, 59

implementing, 60-61

inheriting, 59

undeclared methods, 57-58

770 NSStringFrom

MRR (Manual Retain Release). See
MRR (Manual Retain Release)

objects

autoreleased objects, 68-70

creating, 54, 67-68, 80-82

C-style object allocations, 80-73

deallocating, 82-84

pointing to, 58-59

properties, 71

custom getters and setters, 74-76

declaring, 73-74

dot notation, 71-72

encapsulation, 71

key-value coding, 78

KVO (key-value observing), 79

memory management, 72-73

qualifiers, 76-78

strong properties, 89-90

weak properties, 89-90

protocols, 106

callbacks, 107-108

conforming to, 108-109

defining, 106-107

incorporating, 107

Objective-C Programming: The Big Nerd
Ranch Guide (Hillegass), 126

Objective-C++ hybrid projects, 24

object-oriented programming, 39

objects. See also specific objects

adding with Core Data, 616-618

autoreleased objects

creating, 68-69

object lifetime, 69

retaining, 69-70

creating, 54, 67-68, 80-82

C-style object allocations, 80-73

deallocating, 82-84

ARC (automatic reference
counting), 84

with MRR (Manual Retain
Release), 82-84

onscreen objects, moving with
acceleration, 672-676

pointing to, 58-59

removing, 619-620

Online Developer Program, 2

onscreen objects, moving with acceleration,
672-676

OOP (object-oriented programming), 39

OpenGL ES, 11-12

OpenGL Game, 128

opengles-1 key, 663

opengles-2 key, 663

opening debuggers, 154-155

operation queues

for blocking checks, 705-707

uploading data with, 728

optional callbacks

declaring, 107-108

implementing, 108

@optional keyword, 107

Organizer, 165

applications, 169

consoles, 169-170

device logs, 168-169

devices, 165-166

provisioning profiles, 168-133

screenshots, 170

summary, 167

771Organizer

organizing views, 209-210

orientation, image geometry, 365-367

orientation property, 671-672

outlets

adding, 223-225

creating, 223-224

outputStream variable, 715

overscanning compensation, 688

over-the-air ad hoc distribution, 184-186

P
page indicator controls, 478-481

page view controllers, 199, 262-269

properties, 262-263

sliders, adding to, 269-271

wrapping the implementation,
263-264

Page-Based Application, 128

paged scroller control, 481-486

paged scrolling for images, 395

pages, splitting Core Text into, 536-537

pagingEnabled property, 395

pans, 401-404

parallel gestures, recognizing, 404-407

parse tree

browsing, 736-738

building, 734-736

parser:didEndElement: method, 734

parser:foundCharacters: method, 734

parseXMLFile: method, 734

parsing markup text into attributed strings,
532-535

pasteboard, image storage in, 338

paths, drawing Core Text onto, 542-551

Bezier paths, 543-544

glyphs, 545-546

proportional drawing, 544-545

sample code, 546-551

patterns (text)

creating, 518-519

detecting, 518-522

built-in type detectors, 520-522

data detectors, 520

enumerating regular
expressions, 519

PDF files

drawing Core Text into, 537-539

drawing images into, 390-391

peer-peer key, 663

performArchive method, 514

performFetch method, 623

performSelector: method, 124

persistence

adding to direct manipulation
interfaces, 413

archiving, 416-418

recovering state, 415-416

storing state, 413-415

persistent credentials, 722-728

text editors, 513-516

phases (touches), 398

photo album

image storage in, 337

reading images from, 341-347

customizing images, 344

iPad support, 343

populating photo collection, 344

772 organizing views

recovering image edit information,
344-347

writing images to, 349-353

photos. See images

pickers, 195

date pickers, creating, 603-605

view design geometry, 205

view-based pickers, 601-603

pictures. See images

pinches, 400

placeholder property, 493

platform differences, 8-9

audio, 10

camera, 9

Core Location, 10-11

Core Motion, 10-11

OpenGL ES, 11-12

processor speeds, 11

screen size, 9

telephony, 10

vibration support and proximity, 11

platform limitations, 12

application limits, 17-18

data access limits, 13

energy limits, 16-17

interaction limits, 16

memory limits, 13

storage limits, 12

user behavior limits, 18

plus sign (+), 62

pointing to objects, 58-59

popovers, 216-217, 650-652

code, editing, 218-220

connections, 218

customizing, 217-218

navigation controllers, adding,
216-217

popover controllers, 199

view controller class, changing, 217

popping view controllers, 249-250, 255-258

populating

hybrid interfaces, 231

tables, 558

populating photo collection, in photo
album, 344

pragma marks, 177-178

predicates, 623-625

prepareWithInvocationTarget: method, 420

presenting composition controllers, 356

previous state, checking for, 415-416

processor speeds, 11

profiles, provisioning, 22-23, 168-133

Programming in Objective-C 2.0
(Kochan), 126

progress bars, 637, 639-640

progress indicators, 637-640

floating progress monitors, 642

UIActivityIndicatorView, 637-639

UIProgressView, 637, 639-640

Project Navigator, 134

projects

creating new, 127-129

Hello World, 129-132

editing views, 140-141

editor (Xcode workspace), 136

iPhone storyboard, 138-139

reviewing, 137-138

773projects

Xcode navigators, 134-135

Xcode utility panes, 135-136

Xcode workspace, 132-134

properties, 71

custom getters and setters, 74-76

declaring, 73-74

dot notation, 71-72

encapsulation, 71

key-value coding, 78

KVO (key-value observing), 79

memory management, 72-73

of page view controllers, 262-263

qualifiers, 76-78

ARC (automatic reference
counting), 77, 89-92

atomic qualifiers, 77-78

MRR (Manual Retain Release),
77

strong properties, 89-90

weak properties, 89-90

proportional drawing, 544-545

protocols, 106. See also specific protocols

callbacks, 107-108

conforming to, 108-109

defining, 106-107

incorporating, 107

provisioning portal, 19

application identifier registration,
21-22

certificates, requesting, 20

team setup, 19

provisioning profiles, 22-23, 168-133

proximity sensor, enabling/disabling,
667-668

proximityState property, 667

pull-to-refresh, adding to tables, 592-595

pushing view controllers, 249-250, 255-258

Q
qualifiers, 76-78

ARC (automatic reference counting),
77, 89

atomic qualifiers, 77-78

autoreleased qualifiers, 91-92

MRR (Manual Retain Release), 77

strong and weak properties, 89-90

variable qualifiers, 90-91

Quartz Core framework, 328, 360

querying

cameras, 360-361

databases, 618-619

subviews, 298-299

queues

for blocking checks, 705-707

uploading data with, 728

R
rangeOfString:options:range: method, 523

ranges, generating substrings from, 113

reachability

checking site reachability, 707-709

extending UIDevice class for, 697-700

reachabilityChanged method, 700

reading

image data, 339-342

from photo album, 341-347

774 projects

in sandbox, 340

UIImage convenience methods,
339

from URLs, 340-341, 347-349

strings, 111

read-only properties, 73

read-write properties, 73

recovering

additional device information,
664-665

host information, 702-705

information from index paths, 117

IP information, 702-705

state, 415-416

redo support

action names, 422

in Core Data, 628-632

text editors, 513-516

reference cycles with ARC (automatic
reference counting), 92-94

reflections, adding to views, 332-334

registering

application identifiers, 21-22

for developer programs, 3

devices, 20-21

for iTunes Connect, 4

undos, 420-422

registerUndoWithTarget:self method, 420

regular expressions

creating, 518-519

enumerating, 519

relative angle, calculating, 671

releasing memory, 55-56

remembering control state, 567-570

remembering tab state, 275-278

remove controls

dismissing, 575-576

displaying, 575

removeObjects method, 619

removeOverlay: method, 649

removing

objects from dictionaries, 119

objects with Core Data, 619-620

selection highlights from cells, 566

subviews, 300

renderInContext: method, 390

reordering

cells, 579-580

subviews, 300

reorientation

enabling, 233-235

iOS-based temperature converters,
223

replacing

keyboards, 503-508

objects in dictionaries, 119

strings, 113

requesting

certificates, 20

fetch requests

with predicates, 624-625

querying database, 618-619

indexed substrings, 112

synchronous requests, 709-713

@required keyword, 107

requireGestureRecognizerToFail:
method, 407

requiring cameras, 360

775requiring cameras

resizing

autosizing, 235-237

evaluating options, 238-239

example, 237-239

resizing views, 312-313, 500-503

resolving gesture conflicts, 407

responder methods, 399

respondsToSelector: method, 108, 125

retain counts

adjusting, 100

MRR (Manual Retain Release),
56, 79-80

retained properties (MRR), 72-73

retaining

autoreleased objects, 69-70

touch paths, 438-439

retains, 101

retrieving

cameras, 360-361

current accelerometer angle, 670

device attitude, 680-681

keychain credentials, 723-728

screen resolutions, 687

views, 301-303

returning cells, 583

returnKeyType property, 493

reusing cells, 560

reviewing projects, 137-138

RGB colors, converting to HSB, 386

root view controllers, 279

rotation rate, 676

rotationRate property, 676

rotations, 233, 400

Round Rect Buttons, Interface Builder, 194

rounded rectangle buttons, 449

rows, counting, 583

run loops, modal alerts with, 642-645

running applications

Hello World, 141, 174-175

for storyboard interfaces, 216

runtime compatibility checks, performing,
175-177

S
sample code, 31-32

sampling live feeds, 384-386

sandbox

image storage in, 337

reading images from, 340

sandboxes, 38-39

saving, images to Documents folder,
353-354

say: method, 645-646

scanning for connectivity changes, 700-702

scenes, naming, 211

scheduling local notifications, 652-653

schemes, distribution, 179-181

SCNetworkReachabilityCreateWithAddress(),
707-709

screens

external screens, 686-687

detecting, 687

display links, 688

overscanning compensation, 688

retrieving screen resolutions, 687

Video Out setup, 688

VIDEOkit, 688-692

model differences, 9

776 resizing

screenshots

Organizer, 170

view-based screenshots, 390

scroll view

displaying images in, 392-395

dragging items from, 440-443

scroll wheel control, 476-478

scroller control, 481-486

scrollRangeToVisible: method, 523

SDK (software development kit), 1. See also
platform differences; platform limitations

developer programs, 1-2

Developer Program, 2-3

Developer University Program, 3

Enterprise Program, 3

Online Developer Program, 2

registering for, 3

downloading, 4-5,

limitations, 18-19

provisioning portal, 19

application identifier registration,
21-22

certificate requests, 20

device registration, 20-21

provisioning profiles, 22-23

team setup, 19

SDK APIs, browsing, 149-151

search bars, 195

search display controllers, creating, 586-587

Search Navigator, 135

search tables and Core Data, 623-625

searchable data source methods, building,
587-589

search-aware indexes, 589-590

searchBar:textDidChange: method, 623

searching

dictionaries, 119

strings, 113

tables, 586

customizing headers and footers,
591-592

delegate methods, 589

search display controllers, 586-587

searchable data source methods,
587-589

search-aware indexes, 589-590

for text strings, 523

section indexes, creating, 584-585

sectionForSectionIndexTitle:atIndex:
method, 621

sectionIndexTitleForSectionName:
method, 621

sectionIndexTitles property, 621

sectionNameKeyPath property, 620

sections, 581

building, 582

counting, 583

delegation, 585

header titles, creating, 584

returning cells, 583

section indexes, creating, 584-585

sections property, 620

secureTextEntry property, 493

segmented controls, 253-255, 465-467

segues, custom containers and, 284-290

selecting between cameras, 351

selection color, 561

selection highlights, removing from
cells, 566

selection traits, building custom cells, 565

777selection traits, building custom cells

sending

images via e-mail, 354-358

tweets, 732-733

sensors, testing for, 677

serialization (JSON), 742

servers, web-based, 738-741

setAnimationCurve method, 322

setAnimationDuration method, 322

setDelegate: method, 42

setMessageBody: method, 355

setPosition:fromPosition: method, 420

setProgress: method, 639

sets, 120

setStyle: method, 639

setSubject: method, 355

setters

custom setters, 74-76

defining, 73-74

setThumbImage:forState: method, 459

shake detection

with AccelerometerHelper, 683-686

with motion events, 681-683

shake-controlled undo support, 422

shake-to-edit support, 423

shake-controlled undo support, 422

shake-to-edit support, 423

sharing simulator applications, 146

Shark, 5

shouldAutorotateToInterfaceOrientation:
method, 30

show method, 636

showFromBarbuttonItem:animated:
method, 646

showFromRect:inView:animated:
method, 646

showFromTabBar: method, 646

showFromToolbar: method, 646

showInView method, 646

showsCameraControls property, 358

shutDownMotionManager method, 677

signing compiled applications, 175

simulating low-memory conditions, 163-165

simulator, 142-144

explained, 4-5

how it works, 144-146

limitations of, 6-7

sharing, 146

simulator builds, detecting with
compile-time checks, 175

Single View Application, 128

singletons, 103-104

site availability, checking, 707-709

sizing. See resizing, 235-239

sliders, 458-465

adding to page view controllers,
269-271

appearance proxies, 460-465

customizing, 459-460

efficiency, 460

star slider example, 472-475

Smalltalk, 39

smoothing drawings, 426-429

sms key, 663

software development kit. See SDK
(software development kit)

sorting tables, 580-581

spell checking, 522-523

spellCheckingType property, 493

spineLocation property, 263

778 sending

spinning circles (progress indicators),
637-639

split view controllers, 198, 248

building, 278-282

custom containers and segues,
284-290

universal apps, building, 282-284

splitting Core Text into pages, 536-537

splitViewController property, 279

springs, 236

sqlite3 utility, 617

stack, navigation controllers and, 249

standard Developer Program, 2-3

star slider example, 472-475

startupWithDelegate: method, 689

state

recovering, 415-416

storing, 413-415

status bars, 202-203

steppers, 471-472

still-camera key, 663

storage limits, 12

storeCredentials method, 725

storing

credentials, 722-725

images, 337-338

keychain credentials, 723-728

state, 413-415

storyboard files, 26

storyboard interfaces, 208

apps, running, 216

building, 208-209

buttons, adding, 214

creating new projects, 208

dismiss code, adding, 215

editing, 211

entry points, changing, 215

naming, 213-214

naming scenes, 211

navigation bars, tinting, 214

navigation buttons, adding, 211-213

navigation controllers, adding, 213

organizing, 209-210

update classes, 210-211

stringByExpandingTildeInPath: method, 123

stringFromAddress: method, 702

strings, 110

attributed strings

automatically parsing markup text
into, 532-535

building, 526-532

extensions library, 532

building, 110

changing case of, 114

converting arrays into, 118

converting to arrays, 112

converting to pre-ARC development
standards, 111

extracting numbers from, 114

format specifiers, 65

length and indexed characters,
110-111

mutable strings, 114-87

NSString, 65

reading/writing, 111

searching/replacing, 113

substrings, 112-113

testing, 114

text strings, searching for, 523

779strings

stringWithCString:encoding: method, 111

strong properties, 89-90

struts, 236

subclassing controls, 467-471

creating UIControls, 468

custom color control, 469-470

dispatching events, 468-469

tracking touches, 468

submitting to the App Store, 186-187

substrings, 112-113

subviews, 295

adding, 300

querying, 298-299

reordering and removing, 300

summary, Organizer, 167

swapping views, 326-327

swipes, 400

swiping cells, 576

switches, 471-472

switching cameras, 363

Symbol Navigator, 134

synchronous downloads, 709-713

sysctl(), 664

sysctlbyname(), 664

sysctl.h file, 664

System Configuration, networking aware
function, 696

system sounds, 655-656

systemName property, 661

SystemReserved event, 447

systemVersion property, 661

T
tab bar controllers, 195

creating, 271-275

Interface Builder and, 291-292

remembering tab state, 275-278

view design geometry, 203-205

Tabbed Application, 128-129

table controllers, 199

table view controllers, 279

tables, 195, 574

background colors, changing, 561-562

building custom cells, 566

alternating cell colors, 565-566

selection traits, 565

cell types, 562-563

cells

adding, 576-578

disclosure accessories, 572-574

reordering, 579-580

reusing, 560

creating, 556

assigning data sources, 556-557

assigning delegates, 558

laying out the view, 556

serving cells, 557-558

custom cells

building in Interface Builder,
563-565

cell reuse, 570-571

checked table cells, 571

remembering control state,
567-570

780 stringWithCString:encoding: method

delete requests, 576

editing in Core Data, 625-628

grouped tables

coding, 595

creating, 567

creating grouped preferences tables,
595-596

implementing, 558

cell types, 562-563

changing background color,
561-562

data source methods, 559

populating tables, 558

responding to user touches,
560-561

reusing cells, 560

selection color, 561

multiwheel tables, 597-600

populating, 558

pull-to-refresh, 592-595

remove controls

dismissing, 575-576

displaying, 575

search tables, 623-625

searching, 586

customizing headers and footers,
591-592

delegate methods, 589

search display controllers, 586-587

searchable data source methods,
587-589

search-aware indexes, 589-590

sorting algorithmically, 580-581

supporting undo, 576

swiping cells, 576

table data sources, 620-623

undo/redo support, 628-632

tableView:canMoveRowAtIndexPath:
method, 626

tableView:cellForRowAtIndexPath, 559

tableView:numberOfRowsInSection:559

tagging views, 231-232, 301-303

takePicture method, 358

tappable alert overlays, 650

taps, 400

target-actions, 43-44

teams, iOS development teams, 19

telephony, 10

telephony key, 663

templates

Empty Application template,
converting to pre-ARC
development standards, 97-98

moving, 240-243

testing

interfaces, 223

network connections, 696-697

for sensors, 677

strings, 114

touches

against bitmap, 411-413

circular hit tests, 409-411

untethered testing, 7-8

tethering, 7-8

text, 491, 494-495

attributed strings

automatically parsing markup text
into, 532-535

building, 526-532

extensions library, 532

781text

big phone text, 551-554

Core Text

building attributed strings, 526-532

drawing into circles, 539-542

drawing into PDF, 537-539

drawing onto paths, 542-551

splitting into pages, 536-537

custom input views

adding to non-text views, 511-513

input clicks, 511-513

replacing UITextField keyboards
with, 503-508

dismissing with custom accessory
views, 498-500

displaying in action sheets, 648-649

fonts

custom fonts, 525-526

dumping, 524

misspellings, detecting, 522-523

multiline button text, 455

persistence, 513-516

resizing views with hardware
keyboards, 500-503

text entry filtering, 516-518

text patterns, detecting, 518-522

built-in type detectors, 520-522

creating expressions, 518-519

data detectors, 520

enumerating regular expressions,
519

text strings, searching for, 523

text trait properties, 492-493

text-input-aware views, creating,
508-511

UITextField keyboards

adjusting views around, 495-498

custom buttons, 498-500

dismissing, 491-495

replacing with custom input views,
503-508

undo support, 513-516

view design geometry, 207

textFieldAtIndex: method, 637

textField:shouldChangeCharactersInRange:
replacementString: method, 516

textFieldShouldReturn: method, 492

text-input-aware views, creating, 508-511

thumbnail images, creating, 387-390

timers, 116-117

tinting navigation bars, 214

titleLabel property, 455

Toll Free Bridging, 82

toolbars, 486

accepting keyboard entry into,
508-511

building in code, 487-488

building in Interface Builder, 486-487

iOS 5 toolbar tips, 489

view design geometry, 203-205

touch paths, retaining, 438-439

touch wheel, 476-478

TouchCancel event, 447

TouchDown event, 446

TouchDragEnter event, 446

touches, 397

circles, detecting, 429-435

dragging from scroll view, 440-443

drawing onscreen, 424-426

782 text

explained, 397-398

gesture recognizers, 400-401

custom gesture recognizers,
433-435

long presses, 401

multiple gesture recognizers,
404-407

pans, 401-404

pinches, 400

resolving gesture conflicts, 407

rotations, 400

swipes, 400

taps, 400

movement constraints, 408-409

multitouch, 400, 435-438

persistence, 413

recovering state, 415-416

storing state, 413-415

through archiving, 416-418

phases, 398

responder methods, 399

simple direct manipulation interface,
401-402

smoothing drawings, 426-429

testing

against bitmap, 411-413

circular hit tests, 409-411

touch paths, retaining, 438-439

tracking, 468

undo support, 418

action names, 422

child-view undo support, 418-419

force first responder, 423-424

navigation bars, 419-420

registering undos, 420-422

shake-controlled undo support, 422

shake-to-edit support, 423

undo manager, 418

views, 399-400

touchesBegan:withEvent: method, 399-401

touchesCancelled:WithEvent: method, 399

touchesEnded:withEvent: method, 399

touchesMoved:withEvent: method, 399, 424

TouchUpInside event, 446

TouchUpOutside event, 446

ToughDownRepeat event, 447

tracking

messages, 48

notifications, 45

touches, 468

trackNotifications: method, 45

transactions, building, 322-323

transfers, bridge_transfer cast, 100-101

transform property, 309

transforms, 310, 319-320

transitioning between view controllers,
290-291

transitions, Core Animation Transitions,
328-329

transitionStyle property, 263

TreeNode, 736-738

trees, converting XML into, 733

browsing parse tree, 736-738

building parse tree, 734-736

tree nodes, 733

tweets, 732-733

twice-tappable segmented controls, 465-467

TwitPic.com service, uploading images
to, 728

Twitter, 732-733

783Twitter

two-item menu recipe, 252-253

TWRequest, 733

TWTweetComposeViewController, 733

typedef, 87-88

U
UDIDs (unique device identifiers), finding, 21

UIAccelerometerDelegate protocol, 668

UIActionSheet, 193, 252, 633

creating alerts, 646-648

displaying text in action sheets,
648-649

scrolling menus, 648

UIActivityIndicatorView, 196, 637-639

UIAlertView, 193, 302, 633. See also alerts

UIAlertViewDelegate protocol, 634

UIAlertViewStyleLoginAndPasswordInput,
637

UIAlertViewStylePlainTextInput, 636

UIAlertViewStyleSecureTextInput, 636

UIAppFonts, 525-526

UIApplication, 47-48, 358

UIApplicationLaunchOptionsLocalNotification
Key key, 653

UIApplicationMain function, 27-28

UIBarButtonItem, 252

UIBezierPath, 542-544

UIButton, 194

adding in Interface Builder, 449-452

animation, 456-458

art, 450-451

building in Xcode, 453-455

multiline button text, 455

types of buttons, 448-449

UIButtonTypeCustom, 453-455

UIControl. See controls

UIDatePicker, 195, 603-605

UIDevice

connecting to actions, 451-452

device information

accessing basic device information,
661-662

recovering additional device
information, 664-665

extending for reachability, 697-700

iPhone battery state, monitoring,
666-667

batteryMonitoringEnabled
property, 666

batteryState property, 666

orientation property, 671-672

proximity sensor, enabling/
disabling, 667

UIDeviceOrientationFaceDown value, 672

UIDeviceOrientationFaceUp value, 672

UIDeviceOrientationIsLandscape(), 672

UIDeviceOrientationIsPortrait(), 672

UIDeviceOrientationLandscapeLeft
value, 671

UIDeviceOrientationLandscapeRight
value, 671

UIDeviceOrientationPortrait value, 671

UIDeviceOrientationPortraitUpsideDown
value, 671

UIDeviceOrientationUnknown value, 671

UIDeviceProximityStateDidChange
Notification, 667

UIDocumentInteractionController, 200

UIFont, 525-526

784 two-item menu recipe

UIGestureRecognizer. See gesture
recognizers

UIGestureRecognizerDelegate, 440

UIGraphicsAddPDFContextDestinationAtPoint
() function, 391

UIGraphicsSetPDFContextDestinationForRect
() function, 391

UIGraphicsSetPDFContextURLForRect()
function, 391

UIImage, 337, 365. See also images

convenience methods, 339

creating new images, 391-392

UIImageJPEGRepresentation() function,
353-355

UIImagePickerController, 341-347

choosing between cameras, 351

customizing images, 344

iPad support, 343

populating photo collection, 344

recovering image edit information,
344-347

UIImagePNGRepresentation() function, 353

UIImageView, 321, 337

animations, 331-332

UIImageViews, 192

UIInputViewAudioFeedback protocol, 511

UIKeyboardBoundsUserInfoKey key, 496

UIKeyboardDidHideNotification, 496

UIKeyboardDidShowNotification, 496

UIKeyboardWillChangeFrameNotification,
496

UIKeyboardWillHideNotification, 496

UIKeyboardWillShowNotification, 496

UIKeyInput protocol, 509

UIKit class, 290, 353

UILabel, 192

UILayoutContainerView, 296

UIModalPresentationFormSheet, 251

UIModalPresentationFullScreen, 251

UIModalPresentationPageSheet, 251

UIModalTransitionStyleCoverVertical, 251

UIModalTransitionStyleCrossDissolve, 251

UIModalTransitionStyleFlipHorizontal, 251

UIModalTransitionStylePartialCurl, 251

UINavigationBar, 195, 259

UINavigationController, 41, 197-198,
247-252. See also navigation controllers

UINavigationItem, 250-251

UIPageControl, 478-481

UIPageViewController, 199, 262-269

UIPickerView, 195, 598-600

UIProgressView, 196, 637-640

UIRequiredDeviceCapabilities key, 662

UIResponder methods, 399

UIReturnKeyDone, 491

UIScreen, 686. See also external screens

detecting screens, 687

display links, 688

overscanning compensation, 688

Video Out setup, 688

view design geometry, 207

UIScrollView, 193-194, 392-395, 481-486

UISearchBar, 195, 199

UISegmentedControl, 194, 205, 253,
465-467

UISegmentedControlStyleBar, 254

UISegmentedControlStyleBordered, 254

UISegmentedControlStylePlain, 254

785UISegmentedControlStylePlain

UISlider, 194, 458-465

appearance proxies, 460-465

customizing, 459-460

efficiency, 460

star slider example, 472-475

UISplitViewController, 41, 198, 248

UIStepper, 471-472

UISwitch, 194, 471-472

UITabBarController, 41, 195, 198, 271-275

UITableView, 195, 199, 296, 554-556

UITableViewCell, 195

UITableViewCellStyleDefault, 562

UITableViewCellStyleSubtitle, 562

UITableViewCellStyleValue1, 563

UITableViewCellStyleValue2, 563

UITableViewController, 199, 554-556

UITableViewSeparatorView, 296

UITextChecker, 522-523

UITextFields, 194. See also text

keyboards

adjusting views around, 495-498

custom buttons, 498-500

dismissing, 491-495

properties, 492-493

text entry filtering, 516-518

UITextInputTraits protocol, 492-493

UITextView, 192, 522-523

UIToolbar. See toolbars

UITouch. See touches

UITouchPhaseCancelled, 398

UITouchPhaseEnded, 398

UITouchPhaseMoved, 398

UITouchPhaseStationary, 398

UIView, 40, 191-192, 290, 295, 302

animations, 321-324

blocks approach, 323-324

bouncing views, 329-331

building transactions, 322-323

conditional animation, 324

Core Animation Transitions,
328-329

fading in/out, 324-326

flipping views, 327

swapping views, 326-327

centers of views, 313-314

controls, 193-194

geometry properties, 308-309

subview management, 300-301

transforms, 319-320

utility methods, 314-318

UIViewAnimationTransition class, 328

UIViewAutoresizingNone, 237

UIViewController, 40-41, 197, 249, 252, 259

UIWebView, 192, 339, 392-395

UIWindow, 191-192, 296

undeclared methods, 57-58

undo manager, 418

undo support

in Core Data, 628-632

table edits, 576

text editors, 513-516

for touches, 418

action sheets, 422

child-view undo support, 418-419

force first responder, 423-424

navigation bars, 419-420

registering undos, 420-422

786 UISlider

shake-controlled undo support, 422

shake-to-edit support, 423

undo manager, 418

unique device identifiers (UDIDs), 21

universal split view apps, building, 282-284

University Program, 3,

unlearnWord: method, 522

unsafe_unretailed qualifier, 91

untethered testing, 7-8

”up,” locating, 668-672

basic orientation, 671-672

calculating relative angle, 671

catching acceleration events, 669

retrieving current accelerometer angle
synchronously, 670

update classes, 210-211

updateDefaults method, 414

updateExternalView: method, 689

updateTransformWithOffset: method, 404

updating keyboard type, 225-226

uploading data, 728

urlconnection property, 716

URLs

building, 120-121

reading images from, 340-341,
347-349

user acceleration, 676

user behavior limits, platform limitations, 18

userAcceleration property, 676

userInteractionEnabled property, 321

userInterfaceIdiom property, 662

users, alerting. See alerts

UTF8String method, 60, 111

utilities. See specific utilities

Utility Application, 129

utility methods for views, 314-318

UTTypeCopyPreferredTagWithClass()
function, 355

V
ValueChanged event, 447

variables

local variables, 87

qualifiers, 89-92

variadic arguments with alert views,
645-646

vibration

alert sound, 656

audio alerts, 656

model differences, 11

Video Out setup, 688

video-camera key, 663

VIDEOkit, 688-692

view attributes, editing, 211

view classes, 40-41

view controllers, 30-31, 42, 196-197,
217, 247

adding to storyboard interfaces,
208-209

address book controllers, 200

document interaction controller, 200

GameKit peer picker, 201

image pickers, 200

mail composition, 200

Media Player controllers, 201

modal view controllers recipe,
258-262

naming, 213-214

787view controllers

navigation controllers, 247-251

modal presentation, 251

pushing and popping, 249-250,
255-258

segmented controls recipe, 253-255

stack-based design, 249

two-item menu recipe, 252-253

UINavigationItem class, 250-251

page view controllers, 199, 262-269

properties, 262-263

sliders, adding to, 269-271

wrapping the implementation,
263-264

popover controllers, 199

split view controllers, 198, 248

building, 278-282

custom containers and segues,
284-290

universal apps, building, 282-284

tab bar controllers

creating, 271-275

Interface Builder and, 291-292

remembering tab state, 275-278

table controllers, 199

transitioning between, 290-291

tweet view controller, 732-733

UINavigationController, 197-198

UITabBarControllers, 198

UIViewController, 197

view design geometry, 201

keyboards, 205

navigation bars, 203-205

pickers, 205

status bars, 202-203

tab bars, 203-205

text fields, 207

toolbars, 203-205

UIScreen, 207

view-based pickers, 601-603

view-based screenshots, 390

viewDidAppear: method, 31, 418

viewDidLoad: method, 30, 666-667

views

adding

to hybrid interfaces, 231

to iOS-based temperature
converter, 222

adjusting around keyboards, 495-498

alert views. See alerts

animations, 321-324

blocks approach, 323-324

bouncing views, 329-331

building transactions, 322-323

conditional animation, 324

Core Animation Transitions,
328-329

fading in/out, 324-326

flipping views, 327

image view animations, 331-332

swapping views, 326-327

bounded views, randomly moving,
318-319

callback methods, 301

centers of, 313-314

custom accessory views, 498-500

custom input views

adding to non-text views, 511-513

creating, 503-508

input clicks, 511-513

788 view controllers

display and interaction properties,
320-321

displaying data, 192-193

extracting view hierarchy trees recipe,
297-298

geometry, 308-311

coordinate systems, 310-311

frames, 309-318

transforms, 310

Hello World, 140-141

hierarchies of, 295-297

for making choices, 193

moving, 239-243, 311-312

naming, 303-308

associated objects, 304-305

name dictionary, 305-308

organizing, 209-210

popovers, customizing, 217-218

reflections, 332-334

resizing, 312-313

scroll view

displaying images in, 392-395

dragging items from, 440-443

subviews

adding, 300

querying, 298-299

reordering and removing, 300

tables, laying out, 556

tagging and retrieving, 301-303

tagging in hybrid interfaces, 231-232

text views. See text

text-input-aware views, creating,
508-511

touching view, 399-400

transforming, 319-320

utility methods, 314-318

viewWillAppear: method, 31

viewWithTag: method, 302, 305

visualizing cell reuse, 570-571

vNSHomeDirectory(), 111

vNSMakeRange(), 113

volume alert, 658

W
weak properties, 89-90

web-based servers, building, 738-741

WebHelper, 738-741

whatismyipdotcom method, 703

wifi key, 663

willMoveToSuperview: method, 301

willMoveToWindow: method, 301

willRemoveSubview: method, 301

wrapping page view controller
implementations, 263-264

writeToFile:atomically: method, 120, 353

writing

collections to file, 120

images to photo album, 349-353

to strings, 111

X-Y-Z
.xcdatamodel files, creating and editing,

612-613

Xcode

application delegates, 28-30

application skeleton, 25-26

789Xcode

autorelease pools, 27

main.m file, 26-27

UIApplicationMain function,
27-28

buttons, building, 453-455

explained, 4

Hello World, 132-133

controlling, 133-134

editor window, 136

Xcode navigators, 134-135

Xcode utility panes, 135-136

project requirements, 23-25

sample code, 31-32

utility panes, 135-136

view controllers, 30-31

Xcode 4 Unleashed (Anderson)

XIB files, 26, 231

XML, converting into trees, 733

browsing parse tree, 736-738

building parse tree, 734-736

tree nodes, 733

XMLParser, 734-736

790 Xcode

This page intentionally left blank

	Contents
	Preface
	5 Working with View Controllers
	Developing with Navigation Controllers and Split Views
	Using Navigation Controllers and Stacks
	Pushing and Popping View Controllers
	The Navigation Item Class
	Modal Presentation

	Recipe: Building a Simple Two-Item Menu
	Recipe: Adding a Segmented Control
	Recipe: Navigating Between View Controllers
	Recipe: Presenting a Custom Modal Information View
	Recipe: Page View Controllers
	Book Properties
	Wrapping the Implementation
	Exploring the Recipe

	Recipe: Scrubbing Pages in a Page View Controller
	Recipe: Tab Bars
	Recipe: Remembering Tab State
	Recipe: Building Split View Controllers
	Recipe: Creating Universal Split View/Navigation Apps
	Recipe: Custom Containers and Segues
	Transitioning Between View Controllers

	One More Thing: Interface Builder and Tab Bar Controllers
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

