

Designing the Obvious:
A Common Sense Approach to Web and Mobile Application Design, Second Edition
Robert Hoekman, Jr.

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.newriders.com
To report errors, please send a note to errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education
Copyright © 2011 by Robert Hoekman, Jr.

Editor: Wendy Sharp
Production Coordinator: Hilal Sala
Copyeditor: Jacqueline Aaron
Research Assistant: Sunny Thaper
Compositor: Danielle Foster
Indexer: Emily Glossbrenner, FireCrystal Communications
Cover design: Mimi Heft
Interior design: Joan Olson

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. For information on getting permission for reprints and excerpts, con-
tact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every pre-
caution has been taken in the preparation of the book, neither the author nor Peachpit shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the instructions contained in this book or by the computer software
and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark
claim, the designations appear as requested by the owner of the trademark. All other product names
and services identified throughout this book are used in editorial fashion only and for the benefit of
such companies with no intention of infringement of the trademark. No such use, or the use of any
trade name, is intended to convey endorsement or other affiliation with this book.

ISBN 10: 0321749855
ISBN 13: 9780321749857

9 8 7 6 5 4 3 2 1
Printed and bound in the United States of America

www.newriders.com

Contents

Acknowledgments x

Author Biography xi

Chapter 1: Defining the Obvious 3

What Is ‘the Obvious’? 6
Qualities of a great application 8

How Do You Design the Obvious? 10
Turn qualities into goals 10

The Framework for Obvious Design 12
Know what to build 14
Know what makes it great 14
Know the best way to implement it 15

Chapter 2: Lead with Why, Follow with What 17

Know Your Motivation 19
What follows Why 22

Make Authentic Decisions 24
Audit the user experience 24
Define the vision 28
Plan the new design 31
Implement it 32
Measure everything 32
Having vision 34

Chapter 3: Ignore the User, Know the Situation 35

Designing for the User 37
Designing for the Activity 44

Solve for the Situation 47
Understand How Users Think They Do Things 55
Understand How Users Actually Do Things 57
Find Out the Truth 61

Contextual inquiry 63
Remote user research 66
Surveys 67

Write Use Cases 68

CONTENTS vii

Task-flow diagrams 74
My advice 76

Chapter 4: Build Only What Is Absolutely Necessary 77

More features, More frustration 78
So what’s a geek to do? 79

Think Different 80
The dashboard and New Invoice screen 81
The finished invoice 82
The result 83

Think Mobile 84
Hey, it’s your life 87
Not present at time of photo 87

Drop Nice-to-Have Features 88
The Unnecessary Test 89
The 60-Second Deadline 90
Aim low 92
Interface Surgery 93
Reevaluate nice-to-have features later 98
Let them speak 99

Chapter 5: Support the User’s Mental Model 101

Understanding mental models 103
Design for Mental Models 104

Making metaphors that work 107
Interface Surgery: Converting an implementation

model design into a mental model design 111
Eliminate Implementation Models 119

Create wireframes to nail things down 119
Prototype the Design 127
Test It Out 130

Chapter 6: Turn Beginners into Intermediates,
Immediately 139

Use Up-to-Speed Aids 141
Provide a welcome screen 145
Fill the blank slate with something useful 147
Give instructive hints 149
Interface Surgery: Applying instructive design 153

viii CONTENTS

Choose Good Defaults 160
Integrate preferences 163

Design for Information 163
Card sorting 166

Stop Getting Up to Speed and Speed Things Up 168
Reuse the welcome screen as a notification system 169
Use one-click interfaces 170
Use design patterns to make things familiar 171

Provide Help Documents, Because Help Is for Experts 173

Chapter 7: Be Persuasive 175

Draw a Finish Line 176
Ownership 177

Solve a Significant Problem 178
Make It Explainable 180
Know Your Psychology 181

Reciprocity 181
Commitment and consistency 182
Social proof 184
Authority 185
Liking 186
Scarcity 187
Ethical persuasion 188

Chapter 8: Handle Errors Wisely 189

Prevent and Catch Errors with Poka-yoke Devices 191
Poka-yoke on the web 192
Prevention devices 193
Detection devices 195
Turn errors into opportunities 200
Feeling smart 202

Ditch Anything Modal 203
Redesigning rude behavior 204
Replace it with modeless assistants 205

Write Error Messages That Help Instead of Hurt 207
Interface Surgery 209

Create Forgiving Software 211
Good software promotes good practices 213

CONTENTS ix

Chapter 9: Design for Uniformity, Consistency,
and Meaning 217

Design for Uniformity 220
Be Consistent Across Applications 229

Understanding design patterns 230
Intelligent inconsistency 233

Leverage Irregularity to Create Meaning and Importance 234
Interface Surgery: Surfacing the bananas in a process 237

Chapter 10: Reduce and Refine 243

Cluttered task flows 244
The path to simplicity 245

Clean Up the Mess 246
Reducing the pixel-to-data ratio 247
Minimizing copy 248
Designing white space 251
Cleaning up task flows 255

Practice Kaizen 258
The 5S approach 259

Eliminate Waste 262
Cleaning up your process 263

Put Just-in-Time Design and Review to Work 265

Chapter 11: Don’t Innovate When You Can Elevate 269

Innovation 270
The problem with innovative thinking 270
Elevation 272

Elevate the User Experience 272
Elevation is about being more polite 273
Elevation means giving your software a

better personality 274
Elevation means understanding good design 276

Seek Out and Learn from Great Examples 277
Inspiration 278
Elevate the standards 278

Take Out All the Good Lines 279
Get in the Game 280

Index 283

This page intentionally left blank

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 77

4
Build Only What
Is Absolutely
Necessary
� Think Different

� Think Mobile

� Drop Nice-to-Have Features

78 DESIGNING THE OBVIOUS

When applications evolve based on the demands of users (or of CEOs), they
tend to take a bad turn. Features used by only 10 percent of users or used only
10 percent of the time are added and get in the way of the remaining 90 per-
cent of features. They clutter an otherwise clean interface. They interfere with
the features used most often.

And when “featuritis” takes over, you quickly find yourself permanently pro-
viding tech support for things that shouldn’t be in the tool to begin with, fixing
more bugs, writing more Help material, and neglecting other, more important
features. And while this may sound like a lot of fun to certain (slightly crazy)
programmers, it’s clearly the wrong approach.

The focus should not be on features, the focus should be on focus. An obvi-
ous application is a focused application. It’s easy to explain to other people. It
makes sense to those using it because the purpose of the tool is self-evident,
and nothing in it strays from that purpose. Every feature supports the single
situation the application is designed to support.

More Features, More Frustration

A user’s frustration level doesn’t map directly to the number of difficult fea-
tures in an application. Frustration increases exponentially. For every additional
feature, there is more to learn, more to tweak and configure, more to custom-
ize, more to read about in the Help documentation, and more that can go wrong.

For you, it’s one more feature. For users, it’s one more thing that adds to the
already long list of frustrating things to deal with while using a computer. It’s
not just your application—it’s everything else, too. It’s the operating system,
which hides files away in obscure directories and is constantly popping up lit-
tle dialog boxes and error messages that you are forced to address before you
can get on with your real work. It’s the browser, which has no graceful way of
indicating whether or not the link you just clicked is going to show you what
you want to see. It’s the email client, which offers no insights into how long it
will take for the message you just wrote, with the rather large photo of your
cat, to be sent to your grandmother.

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 79

Users contend with all these things and more during the same stretch of time
they try to deal with your application. And the frustrations add up quickly.

I know, I know—none of these things bother you at all. They don’t really bother
me either. But that’s a sad fact. It means we’ve become desensitized to things
that are otherwise maddening. It means we’ve gone numb.

In short, we’ve become “computer-savvy.”

So what’s a geek to do?

You have to have killer features or your application won’t be able to stand up
to its competitors. Right? You have to keep adding things to new versions or
no one will purchase upgrades and sales will stagnate. And you have to match
the competition one-for-one so no one can ever say your application is light
where the other guy’s is robust. Right?

To paraphrase Alan Cooper, however, trying to match competing products
feature-for-feature is like running through a battleground under cover fire.
You can run all you want, but you have to keep shooting to get anywhere.
Dishing out cover fire keeps you alive for a few minutes at a time. Long enough
to hide. Companies that fight all the time to stay ahead fall into the endless
cycle of trying to outdo the enemy (if the enemy has a big gun, you need a
bigger gun). This goes on and on until someone falls. It’s not a fun way to do
things. It’s a method that works only as long as the people fighting the battle
continue to come up with bigger guns. They spend all their time spraying out
cover fire while they run 3 feet to the next safe position.

Many companies live and die this way. To get into the fight, you have to stock
up on venture capital, go into major debt, hire a bunch of rock star developers,
go straight to code because there’s no time to plan or design anything, and
rush, rush, rush to market with a 27-page list of features. And if the enemy
starts to catch up, you have to add more features, call the next version “the
most robust release ever,” and try to maintain your market share. Until, of
course, the enemy puts out a new version with even more features.

It’s exhausting.

80 DESIGNING THE OBVIOUS

It’s also exhausting for users. The more features you offer, the more the user
has to learn. The more options you provide, the more users have to do to
get anything done. The more you allow customization, the more users have
to fidget and tweak and manipulate your application. They spend more time
configuring the tool than using it. As a result of fighting the fight, complicated
applications often end up much less usable than one would hope.

To stay alive, you eventually have to get out of the line of fire. It’s the only
real option.

Think Different

A few years ago, Firewheel Design (www.firewheeldesign.com) got out of the
line of fire by creating Blinksale (www.blinksale.com), a web-based invoicing
system. The simple application contains only the features that are absolutely
necessary for the largest percentage of its users to successfully create, submit,
and track invoices.

Firewheel’s decision to minimize Blinksale’s feature list might look like a mis-
take because it seems as if it won’t be able to compete in the rat race with the
big boys of invoicing systems. But the small crew at Firewheel did something
the big boys hadn’t done: it created something that stood out.

Blinksale is aimed at contractors who don’t need to do anything fancy with
their invoices. Many people who need to submit and track invoices need only
a few basic tools. These include a way to create the invoice, submit it, mark it
as closed when payment is received, and perhaps send a receipt confirmation
to the client. When the folks at Firewheel Design set out to create Blinksale,
they realized they could keep it simple and satisfy the vast majority of user
needs. They may have even realized that making it more complicated would
decrease their chances of satisfying user needs. So they designed a web appli-
cation that does one thing, and does it very well: it gives people a fast and
effective way to create, submit, and track invoices.

(See how easy it is to explain? That’s a good sign.)

�

www..rewheeldesign.com
www.blinksale.com

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 81

Since Firewheel created Blinksale, it’s been taken over by Doublewide Labs.
It’s even been completely redesigned. Amazingly, it’s still one of the best appli-
cations around.

The system can be used by plenty of people besides contractors because it’s
so stripped down that a trained monkey could use it (assuming the trained
monkey could type). The application contains just a few key features.

The dashboard and New Invoice screen

When you sign in, Blinksale shows you a summary of your recent activity
(open invoices, past-due invoices, and so on) so you get a quick, at-a-glance,
dashboard-style view of the state of your invoices. It also offers an easy-to-
spot New button, to start creating a new invoice.

You simply choose the client the invoice is for or create a new one—right there,
on the same page—and hop over to the New Invoice screen. This page actually
looks like a real invoice, so you maintain context the whole time you’re creating
it. All the fields you need to complete are displayed as form elements, so you
can simply edit the invoice onscreen and click the big Save button.

Blinksale’s main invoice-editing screen is easy to use.

82 DESIGNING THE OBVIOUS

When you’re done, you see the final version of the invoice and a few new
buttons, which let you send the invoice, edit it, or delete it. One click of the
Send Invoice button produces an in-line form in which you checkmark all the
people in the client company to whom you want to send the invoice and write
an optional message.

The finished invoice

The invoice itself is an HTML-formatted email that looks great right out of the
box (well, the browser), and you don’t have to configure anything at all to send
off a professional invoice to a client in five minutes or less.

Blinksale generates easy-to-read invoices and lets you email them to your clients in a click.

Simple as that.

Blinksale offers a few basic templates from which to choose how you want your
invoices to look. You can also send reminders to clients about late payments and
create thank-you messages to send to clients who pay their bills on time.

The whole application takes less than 30 minutes to learn inside and out, and
just about pays for itself every time you create an invoice (at the time of this

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 83

writing, Blinksale offers a $6 per month plan for up to 6 invoices, with plans of
up to $24 per month for 250 invoices.)

Firewheel built only what was absolutely necessary for most people to suc-
cessfully handle the activity of invoicing clients. And Doublewide Labs has lov-
ingly maintained that tradition. There are no obscure configuration options, no
redundant functionality (there’s exactly one way to complete each task in the
tool, which makes it easy to learn), and no fancy interface widgets to figure out.
It just does exactly what it should, and does it within a simple, clean interface
that somehow makes invoices seem friendly, like someone you’d want to take to
lunch. (We’ll talk more about software personality in Chapter 10.)

The result

Josh Williams, one of the creators of Blinksale, was justifiably proud of how
things turned out. Back in 2004, he told me:

As a small design company we did our fair share of client
billing. Unfortunately we’ve always been less than enamored
with the off-the-shelf invoicing and billing software that is
available at your local office supply store. After a few years of
frustration we set out to build our own web-based invoicing
service. Goal number one was ease of use. Goal number two
was keeping our cost of design and development of the service
low. Remarkably, these two goals often go hand in hand.

Firewheel could have designed Blinksale to be chock-full of features that did
everything from integrate with Intuit QuickBooks in 12 easy steps to preparing
tax information and letting you export it to Intuit TurboTax at the end of the
year. They could have built a product that rivaled its competition feature for
feature. They didn’t. They built the 20 percent people actually need. Nothing
more. Nothing less. Even after a change in ownership, with Doublewide Labs
at the helm, Blinksale is still hyper-focused on only the most essential features.

While there are a few extra gadgets thrown in for more computer-savvy
users, Blinksale keeps things simple and focused. If all you want to do is create

84 DESIGNING THE OBVIOUS

an invoice and send it to a client—the single task most people will spend most
of their time completing in Blinksale—you can do it in just a few minutes and
be on your merry way.

Think Mobile

One of the best ways to avoid feature battles is to focus your attention on
designing for mobile platforms such as Apple’s iOS and Google’s Android.
Strategically, it’s also one of the best things you can do for your business. Con-
sider this story:

Recently, after boarding a flight to San Francisco for the Voices That Mat-
ter conference (hosted by New Riders, of course), a man in his early 30s sat
next to me and pulled out his iPhone. The older gentleman who sat on the
other side of him asked about it. What was it like to use it? How easy was
it really? Wow, it sure does look fast, and neat. The younger man answered
every question with growing enthusiasm. I’d seen it a hundred times before—
the iPhone frequently turns otherwise perfectly jaded people into vehement,
adept Apple sales representatives. But then the younger man said something
that surprised me. When the older man asked the younger man what he did
for work, he replied:

“I’m a cop.”

He wasn’t a designer. Or a marketing guru. Or a social media expert. Or an
entrepreneur. He wasn’t heading to a tech conference or a sales seminar. He
wasn’t at all the kind of person I normally see have a conversation like this one.
He was a cop—a middle-class guy who puts on a blue uniform every day and
relies on walkie-talkies to communicate—heading off to meet some old col-
lege friends for the weekend.

“I hardly ever use my computer anymore. I can do it all on this thing.”

Touchscreens and gestural interfaces have taken rise. Long gone are the days
when the Internet was considered the new frontier. Personal tech has taken
over. Devices are the new new frontier.

And this, my friend, is a very good thing.

�

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 85

Over the next few years, as the obstacles to the adoption of mobile devices
are eliminated, more and more people will trade in their desktop and laptop
computers and start using devices exclusively. Apple and its competitors in the
smartphone and tablet markets will make sure of that. And while many peo-
ple in the tech industry still see some of these gadgets as luxury items—often
even wondering what on Earth they would do with a tablet—these devices are
designed for the other 99 percent. They’re designed for that large segment of
the population that uses computers for paying bills, social networking, making
plans, watching videos, checking the news, listening to music, digging up reci-
pes, learning new skills, creating spreadsheets for work, writing memos, and
of course, checking email. These people use computers primarily for media
consumption, web browsing, and basic document-creation. And that’s exactly
what the iPad and other tablets are designed to do best.

As these products evolve and get cheaper, it will simply be more affordable
and more useful to buy a touchscreen tablet backed by a catalog of cheap and
easy-to-use apps, with its ever-expanding array of possible use cases, than it
will be to buy a desktop, laptop, or even a netbook. More people than ever
before will be able to empower themselves through the Internet, and they’ll
be able to use it anywhere they want. The air will be completely filled with
Wi-Fi signals, and all the world’s information—all your information—will be
quite literally at your fingertips, anytime, anyplace..

Personal tech is now affordable by the masses, useful for the masses, and
usable by the masses. And this will only become more true in the years to
come. If you’re not designing for it now, you’re already late.

But even if you ignore this fundamental shift in personal computing, devices
are good for application designers for other reasons—specifically, because
they force designers to follow the principles of good application design.

The people designing for devices right now are doing a better job of embrac-
ing these principles than most people designing for the desktop ever have. The
constraints of the medium—the limited screen space, risk of network slow-
downs, difficulties of multitasking, and so on—are having the happy side-
effect of encouraging designers to design more concise applications.

Southwest Airlines offers a great example. Here’s the site in a desktop browser.

86 DESIGNING THE OBVIOUS

Naturally, the site offers a way to book a flight, car, or hotel. In fact, in this
desktop version, there are two sets of tabs that offer this, one of which lets
you fill out the reservation form on the homepage, the other of which takes
you to another page to do it. Why? Well, because the larger tabs at the top are
more than just links—they’re menus. The Air tab, for example, offers a menu
chock-full of links to other information, including a list of destinations South-
west flies to. And yes, plenty of people will seek out this information. But the
natural effect is that the design takes up a lot of space, offers a lot of options,
and requires a lot of scanning and decision-making.

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 87

The Southwest Airlines iPhone app, however, focuses only on what’s abso-
lutely necessary. On the iPhone, users can find this information by checking
the To Where option on the Book a Flight screen.

Now, let’s say you want to see how your Rapid Rewards stockpile is coming
along. On the desktop version, there is a large Rapid Rewards tab-like link near
the top of the page, an accordion tab labeled My Rapid Rewards, and a sign-
in form that asks for your Rapid Rewards number. Which one is right? Which
step do you take first?

In the iPhone app, you tap Rapid Rewards. It leads to a sign-in screen.

One of these things is so much clearer than the other.

Hey, it’s your life

So if you still wonder what on Earth you’d do with a tablet, there’s your
answer. You’d secure your own future as a designer. As a marketing guru. A
social media expert. An entrepreneur.

Don’t neglect to see the significance of mobile computing because you’re
busy sitting at a desk with a souped-up PC, a killer video card, and 8 feet of
monitor space displaying 75 open Photoshop files. Yes, you’ll have to continue
doing a lot of your design work there. Yes, it will continue being easier to do
design work there. But don’t delude yourself that your customers will always
and forever be sitting at a desk when they use your products. They won’t be.

Use your desktop computer. Just use it to design for devices. And make sure a
tablet is sitting next to it.

Throughout the rest of this book, I’ll discuss mobile-specific considerations
alongside our discussion of design principles for effective applications.

Not present at time of photo

Sadly, at the time of this writing, there is no device-friendly version of Blink-
sale. Hey, nobody’s perfect.

A competing invoicing application, Ballpark, does offer a mobile-friendly
dashboard. It’s not much, but it offers a cursory view of your recent activity.

88 DESIGNING THE OBVIOUS

Drop Nice-to-Have Features

Almost every mature application in existence contains at least a few features
that were probably first described in a statement that started with “Some-
thing that would be really nice to have is <insert description here>.” But most of
these things are exactly what clutter up interfaces all over the web and on our
devices, and it’s our job to fend these things off with a big stick. They need
to be removed from your next application before it’s even built. An obvious
interface is one that is focused on what’s most important and leaves out the
things that are simply nice to have.

In its book Getting Real, 37signals has this to say about focusing on only the
important features:

Stick to what’s truly essential. Good ideas can be tabled.
Take whatever you think your product should be and cut

it in half. Pare features down until you’re left with only the
most essential ones. Then do it again.

The statement is similar to something Steve Krug said in his book Don’t Make
Me Think, one of the greatest books out there on web usability. It’s Krug’s
Third Law of Usability:

Get rid of half the words on each page, then get rid of half of
what’s left.

And Krug’s law can be traced back to William Strunk, Jr., and E. B. White’s The
Elements of Style:

Vigorous writing is concise. A sentence should contain no
unnecessary words, a paragraph no unnecessary sentences,
for the same reason that a drawing should have no
unnecessary lines and a machine no unnecessary parts.

�

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 89

Say it again, brother.

All these people are in the business of simplicity. Simplicity makes the point
clear. It lets messages stand out. It offers communication that cuts through
the noise.

The Unnecessary Test

To create applications that cut through the noise, you have to be willing to
slice your application’s feature list down to its bare bones, and you have to
recognize what’s most important.

With that in mind, try the following exercise, which I call the Unnecessary Test:

Open an application you’ve worked on recently and find a feature you thought
was really important a long time ago, perhaps before you started building the
application.

Ask yourself the following questions:

1. Is there more than one way to complete the task this feature supports?

2. Does this feature contribute directly to the completion of the task?

3. Is the task this feature supports vital to the activity this application
supports?

If you answered no to any of these questions, the feature may be unnecessary.
You’ve found yourself a likely candidate for the cutting room floor.

If, on the other hand, you answered yes to all of these questions, you’re either
looking at a rock star feature or you’re not looking hard enough at the feature
to be objective. Try your best to detach yourself from all the work you did and
ask these questions from a more objective point of view.

Regardless of your answers, it’s likely there are several features in your applica-
tion that could be scrapped, so you should take the time to go through every
feature and run each one through the Unnecessary Test.

When you’re done with the testing, close the application and ask yourself
three more questions.

90 DESIGNING THE OBVIOUS

1. What are the circumstances of the situation my application is meant
to support?

2. If this application didn’t exist and I needed to handle the same situ-
ation, and I could wave a magic wand to create an application that
helped me with this situation with the greatest of ease, what would
the application do? (Hint: You should limit this answer to a few very
big-picture statements that relate to the principal desired outcome.)

3. How long will it take to rebuild my application to make it do that?

Sorry—that last question is a joke (sort of). After all, you’re likely to have
answered one of the first two questions in a way that prevents you from hav-
ing to admit you were wrong. I know—I’ve done this myself. It’s difficult to
admit your application may not be living up to its promise.

If this is true, have someone else answer the same set of questions and see if
the answers are different. Even better, ask one of your users.

I’m not suggesting you start ripping functionality out of an existing application.
Doing this could have the rather negative side effect of making some of your
users extremely upset. To the people using the more obscure features, remov-
ing them would be a huge mistake. I’m only suggesting you learn from what
you’ve already done so you can create more focused applications in the future.

The 60-Second Deadline

Here’s another quick way to learn to effectively aim low and keep your appli-
cation focused on the 20 percent that matters:

Pretend I’m your boss. I walk into your office and very matter-of-factly state,
“The project time line has been cut in half. We have about 60 seconds to
decide what to keep and what to throw away before we meet with the client
in the conference room.”

How do you respond to this statement?

Whatever you do, don’t impulsively offer up the theoretical answer—the
one where you say how much you’d love the low-carb sandwich. Figure out
the real answer.

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 91

Grab a notepad and a pen, write down the list of features you have planned
for an upcoming application, and see what you can cut in 60 seconds. Draw
a line through each feature you can cut without completely destroying the
application.

The goal is to leave yourself only with what is most essential for the applica-
tion to serve its purpose.

Bells? Gone.

Whistles? Gone.

Show me only the pieces you absolutely have to keep for the tool to do its job.

When you’re done, cut one more feature, just for good measure. Cut the one
you’re holding onto only because it’s really cool. C’mon, I know there’s at least
one on your original list. Draw a line though it.

Your 60 seconds are up. Good job.

Now, take out a second sheet of paper and write a new list that shows only
what you have left, just so you can see it sitting there all nice and clean. Looks
much better, doesn’t it? I know, it probably hurts a bit to have lost so much
stuff, but I bet your application is now easier to explain.

Finally, take out another sheet of paper and write down the list of things you
drew a line through earlier. Title this page “Nice-to-Have Features,” stick it in
your filing cabinet, and forget about it. We’ll look at it again later.

92 DESIGNING THE OBVIOUS

The first time you do this, it can be quite revealing. You may find you’ve been
wasting a lot of your time and energy on things that don’t really contribute to
the application in any meaningful way. Of course, this may be a bit unsettling,
but hey, knowing is half the battle. Next time around, you can use the Unnec-
essary Test and the 60-Second Deadline exercise before you start coding, to
see what really needs to be built—and you can spend all your time working to
make those things as good as they can be.

And since building what’s most important takes much less time than building
what’s not important, you can get more sleep, take more vacations, get more
weekends off, and live a happier, healthier life.

Or you could do what I do and use all that saved time to design more applica-
tions. I know that’s what you really want to do.

Aim low

Regardless of how you do it, the ultimate goal is to determine what’s most
important to the application by whittling your list of features down to about
20 percent of what was built or what you were planning to build. Yes, some of
the remaining 80 percent of your features may be useful somehow, to some-
one, some of the time, but they are most likely useless to 80 percent of your
users, 80 percent of the time. And you probably spent 80 percent of your
development time building things that aren’t essential to the application.

This is because the 80-20 rule has made its way into the world of software.

Known formally as the Pareto principle (named for Vilfredo Pareto), the 80-20
rule was originally suggested to indicate that 80 percent of the effects come
from 20 percent of the effort.

In terms of good, clean application design, it means that 80 percent of an
application’s usefulness comes from 20 percent of its features. It also works
the other way around, to illustrate that 20 percent of the development work
produces 80 percent of an application. The other 80 percent of the work satis-
fies only 20 percent of the outcome.

To create more focused applications, stick to building the 20 percent of fea-
tures that are essential—the ones you’ll stick on the mobile version—and you’ll

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 93

take care of 80 percent of the user’s needs. Let your competitors worry about
the rest. While they’re floundering around trying to one-up you by fleshing
out the other 80 percent of the application, you could be taking 80 percent
more vacations and enjoying 80 percent of the market share.

Less is more. Aim low.

Interface Surgery

A job application form I saw once was composed of two windows. One win-
dow got the user through the first few screens of the process, and then it
launched a second window to complete the bulk of the application. The first
window was connected to the user’s log-in session, which was timed and was
designed to log out the user automatically if the system remained inactive
for 20 minutes. However, the second window was not tied to the session. So,
when a user tried to complete the job application in the second window—the
part of the process that took the longest amount of time—the system invari-
ably logged the user out after 20 minutes, rudely doing so without any notifi-
cation whatsoever.

The company’s solution was to add a bit of text in the original window warn-
ing users that they would be logged out after 20 minutes—a weak attempt to
get their pesky users to stop complaining. This was a band-aid. It did not solve
the problem, it just told people what to expect. Users would still have to com-
plete the job application in 20 minutes or less. The company was essentially
saying, “Sure, we’ve created a terrible system that will likely terminate your
session before you can complete your job application, but hey, we’re warning
you before you start, so it’s okay!”

I don’t like band-aids.

Instead of putting band-aids on problems, I perform surgery on them. Inter-
face surgery.

In this first installment of Interface Surgery, we’ll cut out a bunch of unneces-
sary features from a fictitious web-mail application. Instead of finding ways to
make a ton of unnecessary gadgets easier to present and use, we’re going to
rip them out and leave only what’s absolutely essential for the application to
do its job.

94 DESIGNING THE OBVIOUS

This application has a ton of features. In addition to being able to simply check
your email, you can search the web, see how much storage space you’ve used,
make sure you’re logged in using a particular user name, reuse saved searches,
apply actions (such as set up an automatic response email), move email to
other folders you create yourself, configure options for the Inbox (such as font
settings), and even change how many messages should be displayed in the list
before having to switch to a new page.

Some of these things are necessary, some are not.

To get started, let’s strip out the part of the Search feature that lets users
search the web. There are already plenty of ways to search the web, and most
modern browsers feature a built-in search bar, making this action accessible
100 percent of the time the user has the browser open. There’s no need to
replicate what’s already ubiquitous. And since we’re leaving only the option to
search mail, we can remove the two radio buttons and shrink down the space
this piece takes up.

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 95

Let’s also get rid of the ability to save searches. It’s more difficult to save a
search, find it again later, and rerun it than it is to simply reenter a few key-
words. This might be nice for some users, but it’s not going to seriously ben-
efit most users, most of the time. And since we’re getting rid of it, we can lose the
tabbed interface that displays it. Since the Folders view is now the only option,
it no longer needs a label or a tab.

Next, let’s get rid of the percentage indicator that tells users how much stor-
age space has been used up. If we decide this is essential later, we can move it
into the Settings screen. There’s no reason to give it a permanent position in
the main interface.

96 DESIGNING THE OBVIOUS

Next, let’s get rid of the text that indicates which user is currently logged in.
This is unnecessary most of the time, because most users will only ever have a
single account, and since they have to manually log themselves in before they
can see this screen, it’s pointless to show them something they already know.

Also, let’s kill the option to change how many messages display in the list at
once. This can certainly be retained as a feature, but it’s not the kind of thing
users are going to use every day, so we can move it to the Settings screen.

And since a Search bar is provided in the left-hand sidebar, we can remove the
Search link from the top of the page.

Showing a title bar for which folder is currently being displayed is redundant,
because the label for the folder in the sidebar is made larger and bold when
that folder is displayed. And if we remove the Folder title bar, we can free up
some vertical space for more important content—like mail.

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 97

When an email is being displayed, another small bar appears above the email
offering Reply, Reply All, Forward, and Delete functions, as well as a way to
mark an email as junk.

But there’s already a Delete button in the bar above the message list. If we
remove the button and tidy things up a bit, we can consolidate the bar and
unify the message options into a single interface element, which means less
code, less interface, and less confusion.

98 DESIGNING THE OBVIOUS

Finally, let’s add some logic to the application and have it disable the Reply,
Reply All, and Forward links if more than one message is selected at a time.
Delete, Junk, and Create Filter can all be applied to multiple messages, so we’ll
leave those active. In doing this, we make the message options more func-
tional while still taking up less space.

Ahh, that’s much better. We stripped out a few features, removed a few inter-
face elements, cleaned things up, and came out with an application interface
that is easier to understand at a quick glance and easier to use on a daily basis.

We’ll perform interface surgery throughout this book as a way of improving
applications one step at a time.

Reevaluate nice-to-have features later

So, when is it time to take the list of nice-to-have features back out of the fil-
ing cabinet? The simple answer is this: not one second before your application
has been released.

BUILD ONLY WHAT IS ABSOLUTELY NECESSARY 99

Once your application is out there, being used by real users, and you’ve given
it some time to stabilize by fixing a lot of the immediate bugs that have inevi-
tably come up since the release, then it’s time to review the list of nice-to-
haves. It’s also time for a good laugh.

What usually happens is that users start to speak up about what they wish
your application did, things that bother them, and so on, and no one ever
mentions the items on your list of nice-to-haves. Users very quickly form dif-
ferent perspectives on your application than you may have ever had, and since
none of them use the application exactly the way you thought they would,
the complaints and wish lists that emerge are usually different than what you
thought was important.

If this is the case for you, feel free to put that list of nice-to-haves into the other
filing cabinet—the one shaped like a trash can—and call it a day. The things we
often think are so important at the beginning of a project usually prove to be
about as useful as adding another color to a logo. And more often than not,
adding them way back when would have meant putting the rock star features
at risk by making them harder to find, harder to configure, harder to use.

Let them speak

Once your application is being used out in the wild and you want to hear all
the little screaming voices of your users, you need to give them a way to talk to
you. This means providing a way for users to offer feedback about your prod-
uct or talk to others about it, getting out of the way so they can speak freely
while you take notes and carefully interpret.

Something as simple as setting up a forum on your site and directing people
there from your Support page can dramatically lower your customer-support
costs (a forum costs extremely little to maintain), while greatly increasing the
amount of information you get from customers.

Note, however, that you will probably not like everything that gets posted.
Invariably, there will be some dissatisfied and possibly rude users who scream
about your “horrible” application and say nothing constructive, but you have
to let this happen. If you moderate user comments to filter out the negative,
you’ll defeat the purpose of the forum, which is to hear the complaints. The
goal is to feel the pain.

100 DESIGNING THE OBVIOUS

When you allow your users to speak up, you’ll quickly come up with a whole
new list of nice-to-haves. Put those in the filing cabinet as well.

Avoid bending to users’ whims if the high-demand features don’t fit into your
grand vision for the application. You might try pooling a few beta users together
and have them try out a prototype of the proposed functionality to see how it
really works before unleashing it to all your customers. There’s no shame in pull-
ing the feature back out if it just doesn’t work. Better now than later.

Focus only on the features that are the most essential. Build only what is abso-
lutely necessary.

Index
and Just-in-Time Design, 265
and kaizen, 258
main goal of, 245
and mobile devices, 85
and Pareto principle, 92
process of, 13
role of users in, 37
simplicity in, 245
situation-centered nature of, 50
and vision, 19, 34

application designers. See also designers
and demographics, 42
and forms, 155
and mobile devices, 85
recommended book for, 231
role of, 264
and setup wizards, 142
vs. strategists, 264

application elements, 15
application errors. See error messages;

errors
application form, 93–98
application-modal dialog boxes, 204
applications. See also software; web

applications
adding to vs. improving, 19, 259
applying 80-20 rule to, 92–93
being consistent across, 229–233
card sorting for, 166–168
characteristics of well-designed, 277
choosing colors for, 235–236
competitive analysis of, 26–28
detailing features of, 262
detecting errors in, 195–203
eliminating implementation models in,

119–127
establishing set style for, 261
getting user feedback on, 99–100, 128
getting users up to speed on, 141–152,

242
how different people approach, 140–141
importance of simplicity in, 89, 147,

245–246
knowing motivation for, 34
learning from great, 277–279
measuring effectiveness of, 32–33
minimizing users’ frustration with,

78–80
mistake-proofing, 191 (See also poka-

yoke devices)
outlining goals for, 262

5S approach, 259–261
5-second test, 133–134
30 Days, 53
37signals

and Backpack, 107, 108
and feature lists, 88
and self-design, 51–52
sources of inspiration for, 278
up-to-speed aids, 147
and Writeboard, 213

60-Second Deadline exercise, 90–92
80-20 rule, 92–93

A
ACD, 45–48, 74
ActionScript, 130
active users, 33
activity, designing for the, 44–47
Activity-Centered Design, 45–48, 74
add-on offers, 233
Adobe

Dreamweaver, 129, 145
Flash (See Flash)
Illustrator, 38
Photoshop, 38

Agile development, 265
airline app, 85–87
alert messages, 110–111, 153, 204, 205
alignment, 225–227
Amazon

customer recommendations, 186
email campaigns, 171
one-click purchase button, 170–171
social influence tools, 184–185

Anderson, Tom, 22
Android, 84
animated buttons, 272
Apple

human-interface design team, 46, 49
Human Interface Guidelines, 203, 212
iBooks app, 176–178
iPad (See iPad)
Keynote, 120, 125, 129
mobile platform, 84
Photos app, 115–116
word processing app, 102

application design. See also design;
obvious design

and card sorting, 168
good vs. great, 4

284 INDEX

applications (continued)
preventing errors in, 193–195
reducing complexity of, 266
removing good lines from, 279–280
reviewing/refining, 267–268
taking inventory of, 25
testing, 130–138 (See also usability

testing)
writing design criteria for, 30–31

application settings, 142, 163
application strategy, 24
attention, getting users’, 176
attribution error, fundamental, 48
audits, user experience, 24–28
authority, 185–186
Axure RP Pro, 120

B
Back button, 271
Backpack, 107–111

creators of, 107
as example of metaphor that works,

107, 111
getting inspiration from, 278
inline editing features, 246
inspiration for, 108
JavaScript alert message, 110–111
purpose of, 107
sample pages, 107, 109
up-to-speed aids, 147

backup application, 181
badges, 188
Ballpark, 87, 246
banana principle, 237–242
banking app, 178–179
Basecamp

blank-slate filler, 169–170
purpose of, 51
and self-design, 51–52
up-to-speed aids, 147–148

BBC News app, 224–225
beginners

designing for, 140–141
and instructive design, 159
and up-to-speed aids, 168

beta sites, 187
Big Red Fez, The, 237
billing software, 83. See also Blinksale
blank-slate fillers, 147–149, 168–169
Blink, 48
Blinksale

creators of, 80–81, 83
design process for, 123
getting inspiration from, 277, 278
how it works, 81–83

main invoice-editing screen, 81
mobile version of, 87
payment options, 83
purpose of, 80
sample invoice, 82
simplicity of, 82–84, 246

blogging service, 198
blogs, 105, 174, 181, 253
bookmarking tool, 193
book-preview feature, iBooks, 177
boxes, 248
Boxes and Arrows, 164
brainstorming, 31, 265, 266
brands, 22, 229, 248
Brin, Sergey, 23
browser incompatibility, 197
browserless self-tests, 131–133
browsers, hiding tools in, 131
bug reports, 104, 267
bulleted lists, 250
bulletproofing, 136
buzzwords, 250

C
Camtasia Studio, 135
Cancel button, 233
card-sorting exercises, 166–168
Chase Mobile, 178–179
chrome, 222, 223, 224
Cialdini, Dr. Robert, 178, 181
Cisco Systems, 66
Citrix Systems, 66
cleaning up

application-development process,
263–264

task flows, 255–258
click-through mockups, 129
cloud storage service, 180–181
clutter

interface, 122, 246
task flow, 244–245, 255–258

CNN.com, 163
Cocoa Box Design, 66
code base, 233
cognitive walkthroughs, 25
color, 235–236, 241, 246, 252–253
commitment, 182–184
company brands, 22, 229, 248
company strategy, 20
company vision, 19, 21, 23
competitive analysis, 26–28
conceptual elements, 14
configuration options, 160, 163
confirmation messages, 110–111
consistency. See also uniformity

INDEX 285

across applications, 229–233
and design patterns, 230–233
and first impressions, 219
leveraging standards to enable, 261
persuasion via, 182–184
vs. intelligent inconsistency, 233
when creating wireframes, 122

consistent design, 122, 234. See also
consistency

consistent layout, 228
consistent messaging, 229–230
consistent typography, 227
contact information, 155
content. See also information

adopting conversational tone for, 275
allowing sufficient space for, 222–225
defining structure for, 222
how users search for, 164
identifying structure of, 261
importance of, 223, 281
reducing clutter in, 248–250
separating presentation from, 261

contextual inquiry, 63–65, 137
contextual usability testing, 136–137
contrast, 237, 246
conversion rate, 33
Cooper, Alan, 37, 79, 140
corporate logos, 247–248. See also brands
correspondence bias, 48
courseware, 270
CSS, 15, 72, 159, 222, 261
customer reviews, 186
customer satisfaction rates, 33

D
Dashboard HQ, 193–196

Add Content panel, 193
Drag and Drop Modules pattern, 233
poka-yoke detection devices, 195–203
poka-yoke prevention devices, 193–195
purpose of, 193

data layer, 5
deception, 188
defaults

choosing good, 160–163
in form fields, 150
for Google Page Creator, 214–215

design. See also application design
consistent, 122, 234 (See also

consistency)
getting second opinion on, 126–127
improving, 33
instructive, 149, 153–159
Just-in-Time, 265–268
leveraging irregularities in, 220, 234–242

measuring effectiveness of, 32–33
obvious (See obvious design)
persuasive, 176, 179
prototyping, 127–130 (See also

prototypes)
situation-centered, 50
success/failure of, 281–282
symptoms of weak, 19–20
user-centered, 40–41

design criteria, 30–31
designers. See also application designers

and competitive analysis, 28
and demographics, 42
and error pages, 196 (See also errors)
essential book for, 231
and mobile devices, 85
and modal errors, 205
role of, 176, 182, 264
and self-design, 50
and user-centered design, 40, 46
and wizards, 142

design implementation, 32
designing

for the activity, 44–47
for information, 163–168
for intermediate users, 140–141
for mental models, 104–119
for mobile platforms, 84–87
for touchscreen devices, 111
for uniformity, 220–228
for the user, 37–44
white space, 251–255

Designing Interfaces, 173, 231
designinginterfaces.com, 231
Designing Visual Interfaces, 245
design pattern libraries, 231–233, 261
Design Pattern Library, Yahoo, 232–233
design patterns

collections of, 231–233
defined, 172
for displaying/hiding HTML page,

209–211
for editing within pages, 172
making things familiar with, 171–173
for pagination, 171–172, 230
purpose of, 172, 231
recommended book on, 173, 231
understanding, 230–233

design thinking, 31
desktop computers, 87, 102
detection devices, error, 195–203
DeWolfe, Chris, 23
dialog boxes, 203–204
digital cameras, 266
dimension, 237, 242
discount codes, 187

286 INDEX

displaying/hiding HTML page, 209–211
document-modal dialog boxes, 203
document-modal errors, 205
dog food, eating your own, 137–138
domain name, changing, 137
Don’t Make Me Think, 88, 248
Doublewide Labs, 81, 83
drag-and-drop interactions, 14–15
Drag and Drop Modules pattern, 233
Dreamweaver, 129, 145
Dropbox, 180–181
dry-erase boards, 124. See also whiteboards
dummy text, 150

E
ease of use, 46, 83, 105
eating your own dog food, 137–138
e-books, 49, 176–178
Einstein’s rule, 122
e-learning application, 270–272
e-learning companies, 270
Elements of Style, The, 88, 231, 248
elevation

and good design, 276–277
and polite applications, 273–274
and software personality, 274–275
of standards, 278–279
of user experience, 272–277, 280
vs. innovation, 272, 279

elevator pitch, 14
email addresses, 156
email applications, 187, 192, 206, 255–256
email campaigns, 171
emotional connections, 274
e-reader interface, 177. See also e-books
error-detection devices, 195–203
error messages

as bug reports, 104
in desktop-installed applications,

203–204
examples of good and bad, 208
for forms, 156, 158
how users react to, 190, 195–196
and implementation-model designs, 104
writing effective, 195–196, 207–208

error pages, 196–198
error-prevention devices, 193–195
errors, 190–215

converting to opportunities, 200–201
detecting, 195–203
how users react to, 190
preventing, 193–195, 203

ethical persuasion, 188
ethnographic research, 63
Excel, Microsoft, 59–60

exceptions, 70–72
exclusivity, 187
expert users

designing for, 140
and help documents, 173

exploratory searching, 164

F
Facebook, 152
failure, product, 36–37
FAQs, 209–211
features

dropping nice-to-have, 88–98, 121, 279
reevaluating, 98–99
sorting through, 260

featuritis, 78
feedback

for forms, 153
soliciting, 99–100
via prototyping, 128

FEMA website, 196–197
Fettig, Abe, 130
file backups, 181
filing systems, 102, 180
Firewheel Design, 80, 83, 123
five-second test, 133–134
fivesecondtest.com, 134
Flash

and mobile devices, 31
prototypes, 130
UI Component Set, 130
welcome screen, 145

Flipboard, 152–153
flowcharts, 74–75
focused applications, 78, 92–93
fonts, 122, 227
forgiving software, 211–215
forms

alignment of fields in, 225–227
applying instructive design to, 153–159
inline validation of, 157–158, 198–200, 203
providing instructive text in, 150
typical problems in, 156
ways of using, 197–198

form vs. function, 22
forums, 99, 174
Forward button, 272
“Four Modes of Seeking Information...”

article, 164
Foursquare, 188
Framework for Obvious Design, 12–16
frameworks, interaction design, 233
Frequently Asked Questions, 209–211
Fried, Jason, 108, 147, 278
frustration levels, user, 78–80

INDEX 287

functionality, 281
functional specifications, 262. See also

specifications
function vs. form, 22
fundamental attribution error, 48

G
Gadgets, 15
gaming techniques, 183–184
gestural interfaces, 84, 112, 115–116
Getting Real, 88
Getting Started guides, 141–142
Gladwell, Malcolm, 48
Gmail, 187, 206, 256
goals

application, 262
obvious design, 10–12

Godin, Seth, 237, 239, 242
good practices, promoting, 213–215
GoodReads, 182
Google

Drag and Drop Modules pattern, 233
founders, 23
and JotSpot, 130
and misspelled words, 201–202
mobile platform, 84
pagination in search results pages, 171, 230
and scarcity principle, 187
Search box, 235
site-builder tool, 161, 214–215
as source of help information, 173–174

Google Gmail, 187, 206, 256
Google Page Creator, 161–162, 214–215
Google Personalized, 233
Google Sites, 130, 161
GoToMeeting, 66
graphical dividers, 255
graphical elements, 223, 244, 246, 247, 260
graphic designers, 71, 127

H
happy talk, 250
Harris, Jensen, 173
help documents, 173–174, 249
help systems, 161, 173
Hemingway, Ernest, 279
hiding/displaying HTML page, 209–211
homepages

defining vision for, 28–31
design considerations, 222
typical problems with, 26
use of happy talk on, 250

Hopkin, Michael, 218

HTML
headings, 221, 222, 261
prototypes, 129
purpose of, 222, 261

human-centered design, 45
Human Interface Guidelines, Apple, 203, 212
humor, 275
hyperlinks, 252–253

I
iBooks app, 176–178
ID3 tags, 165
iGoogle, 15
Illustrator, 38
image libraries, 135, 169
immersion, situational, 52–54
implementation, design, 32
implementation models

converting into mental models, 111–119
and ease of use, 105–106
eliminating, 119–127
and error messages, 104, 110
and Netflix, 115, 119
and user frustration, 106
vs. mental models, 103–104

importance, leveraging irregularity to
create, 234–242

inconsistency, intelligent, 233
Influence: The Psychology of Persuasion, 178, 181
information. See also content

architecture, 163–164, 166
designing for, 163–168
helping users find, 251
how people learn, 270

information-based websites, 164
“Information Design Using Card Sorting”

article, 168
informative text, 250
inline-expand design pattern, 209–211
inline tips, 150, 151
inline validation, 157–158, 159, 198–200, 203
Inmates Are Running the Asylum, The, 37, 140
innovation, 19, 270–272, 279
inspiration, 278
instructional designers, 64
instructive copy, 249
instructive design, 149, 153–159
instructive hints, 149–153
intelligent inconsistency, 233
interaction design, 34
interaction designers, 280
interaction design frameworks, 233
interaction element, 15

288 INDEX

interactions
drag-and-drop, 14–15
round-trip, 257

interface layer, 5–6
interfaces

designing visual, 245
one-click, 170–171
providing tips in, 150
reducing clutter in, 122
reusing, 229
reviewing/refining, 267–268
testing, 130 (See also usability testing)
uniformity in, 221
using color in, 235–236, 241, 246
using wireframes to design, 121

interface surgery
applying instructive design, 153–159
designing page elements to stand out,

237–242
for displaying/hiding HTML page,

209–211
implementation- to mental-model

conversion, 111–119
on job application form, 93–98

intermediate users
designing for, 140–141
and help documents, 173

interview testing, 134–135, 136
Intuit QuickBooks, 83
inventory, application, 25
invoicing applications, 80, 87, 246. See also

Ballpark; Blinksale
iOS, 84
iPad

BBC News app, 224–225
Flipboard app, 152–153
iBooks app, 176–178
Kayak app, 212
most popular uses of, 85
Netflix app, 112–119
notes app, 66
NPR app, 224, 246
Photos app, 115–116
prototyping apps for, 129
sketchbook app, 148
Twitter app, 276–277
word processing app, 102

iPhone
Chase Mobile app, 178–179
iBooks app, 176–178
Pandora app, 150, 151
Phone app, 202
popularity of, 84–85
prototyping apps for, 129
Shazam app, 249

Southwest Airlines app, 86–87
Things app, 151
to-do list app, 151

iPod, 49
irregularities, leveraging, 220, 234–242
iteration, 259
Ive, Jonathan, 47
iWork, 102, 120

J
Japanese improvement processes, 72,

259–261. See also kaizen
JavaScript

alert messages, 110–111, 153, 203, 204,
205

for inline-expand design pattern,
209–211

inline validation script, 198
JIT Design, 265–266, 268
JIT Review, 265, 267–268
job application form, 93–98
Jobs, Steve, 47
JotSpot, 130
jQuery, 13, 15
Just-in-Time Design, 265–266, 268
Just-in-Time Review, 265, 267–268

K
kaizen

benefits of, 259
defined, 72, 273
original purpose of, 258
practicing, 258–261
and use cases, 72–73
and wireframes, 123–127

Kayak, 212
Keynote, 120, 125, 129
Keynotopia, 129
known-item search method, 164, 165
Krug, Steve, 88, 248, 250
Krug’s Third Law of Usability, 88

L
labeling systems, 102, 106
layers, web, 5–6
libraries, design pattern, 231–233, 261
liking principle, 186
Lindegaard, Gitte, 218
LinkedIn, 184
links, 252–253
log-in widgets, 138
logos, 247–248

INDEX 289

M
Macintosh

and Internet Explorer, 197
and online forms, 196–198
wireframe-creation tool, 120

Macromedia
Flash, 130 (See also Flash)
weblog aggregator, 209

markup code, 221
meaning, leveraging irregularity to create,

234–242
mental maps, 228
mental models

converting implementation models into,
111–119

defined, 103
designing for, 104–119
examples of, 102–103
helping users form, 220
vs. implementation models, 103–104

messages
alert, 110–111, 153, 204, 205
confirmation, 110–111
error (See error messages)

messaging, consistent, 229–230
metadata, 165
metaphors, 102–103, 107, 237. See also

mental models
metrics, success, 32–33
Microsoft

Excel, 59–60
help documents, 173
Office team, 173
PowerPoint, 120, 231
Visio, 120
Word, 58–59

minimizing copy, 248–250
Mint.com, 142–145, 146, 277, 278
misaligned objects, 227
misspelled words, 201–202
“mistake-proofing” device, 191
mobile devices

designing for, 84–87, 279
and Flash, 31
most popular uses of, 85
prototyping apps for, 129

mockups, 129
modal dialog boxes, 203–204
modal errors, 203–207
modeless assistants, 205–207
modeless dialog boxes, 203
Morae, 135
motivation, 34
MSN, 171
Mullet, Kevin, 245

MySpace, 23, 178
My Yahoo, 172, 233

N
Nature.com, 218
navigation

and card sorting, 166
devoting too much space to, 222, 223, 224
persistent, 132, 133, 198, 214, 244
for search-engine sites, 172
and spatial memory, 228
testing, 131–133
and user experience, 26

nested boxes, 248
Netflix, 112–119
Next button, 270–272
nice-to-have features, 88–100, 121, 279
Nielsen, Jakob, 160, 161, 247
Norman, Donald, 45, 46, 47, 49, 74
notes app, 66
note-taking tool, 193
NPR app, 224, 246
NYTimes.com, 163

O
Obama, Barack, 182–183
obvious design

and design patterns, 171–173
and element of familiarity, 171–173
and featuritis, 78
framework for, 12–16
goals for, 10–12
qualities of, 6–10, 219–220
and web layers, 5–6

Odeo, 154–159
OmniGraffle, 120, 125
one-click interfaces, 170–171
organizational graphics, 248
ownership, 177–178

P
Page, Larry, 23
Pages for iPad, 102
pagination, design patterns for, 171–172, 230
Pandora, 150, 151
paper prototypes, 128–129
Paper Prototyping, 129
Pareto, Vilfredo, 92
Pareto principle, 92–93
participation, measuring, 33
passions, 18
pattern libraries, 231–233, 261
patterns, 172, 232. See also design patterns

290 INDEX

peer pressure, 184
Penultimate, 66, 148, 149
people layer, 5
PeopleSoft, 40–41
perpetual intermediates, 140
persistent navigation, 132, 133, 198, 214, 244
persona descriptions, 37, 38, 43, 48, 76.

See also personas
personal computing, 85
personal-finance management tool, 142
personality, software, 274–275
personas, 37–44

and Activity-Centered Design, 47–48
components of, 37
defined, 37
example of, 38–40
purpose of, 37–38
and user-centered design, 40–44

persuasion
book about psychology of, 178, 181
ethical, 188
principles of, 181–188
as quality of great application, 9

persuasive design, 176, 179. See also
persuasion

persuasive statements, 180, 186
Phone app, 202
Photos app, 115–116
Photoshop, 38
pixel-to-data ratio, 247–248
podcast services, 154, 165–166
poka-yoke devices, 191–203

defined, 191
downside of using, 195
examples of, 191–192
pronunciation of, 191
simplicity of, 195
types of, 193
on the web, 192

polite applications, 273–274
pop-up windows, 204, 209
portal pages, 242
“Power of Defaults” article, 160
PowerPoint, 120, 231
preferences, 163
prevention devices, error, 193–195
previewing process, iBooks, 177
pricing, 188
private beta sites, 187
problems. See also errors

detecting, 195–203
preventing, 193–195
solving, 49, 178–179, 266

product failure, 36–37

product logos, 247–248
product research, 53–57
professional networking site, 184
profile badges, 188
progress meters, 184
project management tool, 51. See also

Basecamp
promotion codes, 187
proportion, 222–224
prototypes, 127–130

benefits of using, 127–128, 138
defined, 127
ways of creating, 128–130

Prototyping: A Practitioner’s Guide, 41
purchase paths, 233
purchases, measuring, 33
Putorti, Jason, 142, 145

Q
quality assurance testing, 138
QuickBooks, 83
quotes, 186

R
reciprocity, 181–182
reconnaissance testing, 136
recurring activity, 33
redirecting users, 137
reducing clutter, 122
reduction, 245, 261, 280
refactoring code, 72
refinement, successive, 245
registration forms, 154–159, 203, 226.

See also forms
regularity, 122
Remember the Milk, 200
remote user research, 66–67
requirements, project, 121
research

situation, 54–55
user, 66–67

responsiveness, 276–277
retention rate, 33
Retweet button, 185
rhjr.net, 282
Robertson, James, 168
round-trip interactions, 257
RP Pro, 120
RSS feeds, 152
rude behavior, 204–205, 273–274

INDEX 291

S
sample values, 149–150
Sano, Darrell, 245
scanability, web-page, 222
scarcity principle, 187–188
screen-recording tools, 135
screen shots, 250
scrolling pages, 222
Search boxes, 234–235
search engines, 172, 230
search methods, 164
seiketsu, 261
seiri, 260, 261
seiso, 260, 261
seiton, 260, 261
self-congratulatory statements, 250
self-design, 50–52
self-tests, browserless, 131–133
semantic code, 221, 222
semantic markup, 261
settings, application, 142, 163
setup wizards, 142
shadowing, 65–66
sharing activity, 33
Shazam app, 249
shining, 260
shitsuke, 261
signposts, 237, 242
simplicity, 89, 147, 195, 245–246
Sinek, Simon, 21
site-builder tool, 161–162, 211, 213–215
situation, solving for the, 48–55
situational immersion, 52–54
situational inquiry, 63
situation-centered design, 50, 54–55, 76
situation research, 54–55
sketchbook app, 148
sketches, 124, 127, 138, 264. See also

wireframes
smartphones, 85. See also mobile devices
Snyder, Carolyn, 129
social influence tools, 185
social networking, 23, 33, 184
social proof, 184–185
social psychology studies, 178
software. See also applications

adding to vs. improving, 19, 259
creating forgiving, 211–215
detecting errors in, 195–203
giving personality to, 274–275
preventing errors in, 193–195
promoting good practices with, 213–215
qualities of great, 8–10
testing, 130–138 (See also usability testing)

software designers, 230. See also application
designers

Software Requirements Specification, 262
Software Usability Research Laboratory, 251
sorting

application features, 260
card, 166–168

Southwest Airlines app, 85–87
spatial memory, 126, 220, 227–228
specifications, 262, 263–264
spelling mistakes, 201–202
Spencer, Donna, 164
Spool, Jared, 233, 251
spread gesture, 115, 117
Spurlock, Morgan, 53
Squidoo, 201
SRS, 262
standardization, 261
standards, 278–279
Start with Why: How Great Leaders Inspire

Everyone to Take Action, 21
stock photography sites, 135, 169
straightening, 260
strategic thinking, 34
strategists, 264
strategy

application, 24
company, 20
user experience (See user experience

strategy)
Strunk, William, 88, 248
style guidelines, 261
success metrics, 32–33
Super Size Me, 53
SURL, 251
SurveyMonkey.com, 67
surveys, 67–68
sustaining work, 261
system messages, 229. See also messages

T
tablet computers, 85, 87. See also mobile

devices
tag clouds, 105–106
Target.com, 133
task-flow diagrams, 25, 74–75
task flows

applying kaizen to, 258
cleaning up, 255–258
designing, 233, 258
examples of cluttered, 244–245

task-management system, 244–245, 255, 257
tax software, 83
technology, adapting to, 44

292 INDEX

TechSmith, 135
testimonials, 186
testing. See also usability testing

with browserless self-test, 131–133
compensating participants in, 136
with contextual usability testing,

136–137
by eating your own dog food, 137–138
with five-second test, 133–134
with interview-style sessions, 134–135, 136
quality assurance, 138
recruiting testers for, 135–136

text fields, 149–150
Thaper, Sunny, 124
Things app, 151
Three Rs, 121–123
Tidwell, Jenifer, 173, 231
to-do list app, 151, 200
tooltips, 145
touchscreens, 84, 111, 115
Toyota, 72
trash metaphor, 102
travel-booking app, 212–213
trigger words, 165, 250
trust, 186, 220
Try It Now button, 250
Tumblr, 226
TurboTax, 83
tutorials, 145, 146
Twitter, 152, 185, 186, 276–277, 282
typefaces, 227. See also fonts
TypePad, 198–199
typography, 227

U
UCD, 40–41, 48
UI Component Set, Flash, 130
undo functions, 110–111, 205–206, 212
uniform alignment, 225–227
uniformity, 122, 220–228, 234. See also

consistency
uniqueness, 234
Unnecessary Test, The, 89–90
up-to-speed aids, 141–173

blank-slate fillers, 147–149, 168–169
choosing good defaults, 160–163
designing for information, 163–168
getting rid of, 168–173
Getting Started guides, 141–142
instructive hints, 149–153
and intermediate users, 140–141
Mint.com example, 142–145
welcome screens, 145–146, 168

URLs, 194
usability. See also ease of use

and screen designs, 222
testing (See usability testing)
and white space, 251

Usability, Krug’s Third Law of, 88
usability experts, 160, 280, 281
usability studies, 222. See also usability

testing
usability testing, 130–138

benefits of, 130
with browserless self-test, 131–133
compensating participants in, 136
contextual, 136–137
by eating your own dog food, 137–138
and help documents, 173
with interview-style sessions, 134–135,

136
with paper prototypes, 128–129
recruiting testers for, 135–136
on use of white space, 251–253

use cases, 68–74
applying kaizen to, 72–73
argument against, 74
defined, 68
exceptions for, 70–72
refining ideas for, 74
writing, 68–72

useit.com, 247
user-centered design, 40–41, 48
user experience

auditing, 24–28
elevating, 272–277, 280
strategy (See user experience strategy)

user experience strategy
core activities for developing, 24–34
defined, 19, 20, 23
importance of, 18
revisiting, 32

User Interface Engineering, 133–134
User Interface Library, Yahoo, 233
user research, 45, 66–67
users

designing for, 37–44
getting feedback from, 99–100, 128
how websites are judged by, 218–219
identifying needs of, 61–68
recruiting for usability tests, 135–136
shadowing, 65–66
understanding, 55–60

user surveys, 67–68

INDEX 293

V
values, 18
VaultPress, 238, 246, 277
version tracking, 213
video tours, 141, 146
Visio, 120
vision

and company success/failure, 19, 21,
22–23

defining, 28–31
importance of, 34

Vision Document, 262
visual design, 258, 281
visual hierarchy, 219, 221–222
visual interfaces, 245
visual metaphors, 102–103, 107. See also

mental models

W
walkthroughs, cognitive, 25
Warfel, Todd Zaki, 41
waste, eliminating, 262–264
Web Anatomy: Interaction Design Frameworks

That Work, 233
web applications. See also applications

choosing good defaults for, 160–163
eliminating waste in, 262–264
getting inspiration from great, 278
process for creating, 262–263
simplicity in, 245–246
testing, 131–133

web-based invoicing applications, 80, 87, 246.
See also Ballpark; Blinksale

web-based site-creation tool, 211, 213–215
web browsers, hiding tools in, 131
WebEx, 66
web forms. See forms
web layers, 5
webmail applications, 187, 192, 206,

255–256
web pages. See also websites

choosing colors for, 235–236, 241, 246
hiding/displaying, 209–211
making elements stand out on, 234–235,

237–242
scanability of, 222
scrolling, 222
surfacing bananas in, 239
use of white space on, 222, 251–255
visual hierarchy for, 221–222

web resources, 174
websites. See also web applications

homepages for (See homepages)
how users judge, 218–219

importance of content for, 222–225
tool for building, 211, 213–215

web standards, 261, 278–279
web usability, 88, 160, 247, 251. See also

usability
“Web Users Judge Sites in the Blink of an

Eye” article, 218
welcome screens, 145–146, 169
well-designed apps, 277
What’s This? documentation, 249
White, E.B., 88, 231, 248
whiteboards, 124, 125, 266
white space, 251–255

as alternative to graphics, 253–255
benefits of using, 251
as design element, 222
and file size, 255
separating areas of page with, 253–254

Wichita State University, 251
wikis, 141, 231
Williams, Josh, 83, 123
wireframes, 119–127

and application process, 262
applying kaizen to, 123–127
benefit of using, 121
purpose of, 119–120, 138
revising, 127
for simple log-in screen, 120
Three Rs for creating, 121–123
tools for creating, 120
vs. coding, 127

Wireframe Toolkit, Keynote, 129
wizards, setup, 142
Woot, 275
Word, Microsoft, 58–59
Writeboard, 213
WYSIWYG editors, 129

X
X-factor, 15

Y
Yahoo

Design Pattern Library, 232–233
editing design patterns, 172
pagination in search results pages, 171
User Interface Library, 233

Yelp, 234–235
YUI Library, 233

Z
Zeldman, Jeffrey, 185
zip codes, 156

	Contents
	Chapter 4: Build Only What Is Absolutely Necessary
	More features, More frustration
	So what’s a geek to do?
	Think Different
	The dashboard and New Invoice screen
	The finished invoice
	The result

	Think Mobile
	Hey, it’s your life
	Not present at time of photo

	Drop Nice-to-Have Features
	The Unnecessary Test
	The 60-Second Deadline
	Aim low
	Interface Surgery
	Reevaluate nice-to-have features later
	Let them speak

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

