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4
Build Only What 
Is Absolutely 
Necessary
� Think Different

� Think Mobile

� Drop Nice-to-Have Features
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When applications evolve based on the demands of users (or of CEOs), they 
tend to take a bad turn. Features used by only 10 percent of users or used only 
10 percent of the time are added and get in the way of the remaining 90 per-
cent of features. They clutter an otherwise clean interface. They interfere with 
the features used most often. 

And when “featuritis” takes over, you quickly find yourself permanently pro-
viding tech support for things that shouldn’t be in the tool to begin with, fixing 
more bugs, writing more Help material, and neglecting other, more important 
features. And while this may sound like a lot of fun to certain (slightly crazy) 
programmers, it’s clearly the wrong approach.

The focus should not be on features, the focus should be on focus. An obvi-
ous application is a focused application. It’s easy to explain to other people. It 
makes sense to those using it because the purpose of the tool is self-evident, 
and nothing in it strays from that purpose. Every feature supports the single 
situation the application is designed to support.

More Features, More Frustration

A user’s frustration level doesn’t map directly to the number of difficult fea-
tures in an application. Frustration increases exponentially. For every additional 
feature, there is more to learn, more to tweak and configure, more to custom-
ize, more to read about in the Help documentation, and more that can go wrong.

For you, it’s one more feature. For users, it’s one more thing that adds to the 
already long list of frustrating things to deal with while using a computer. It’s 
not just your application—it’s everything else, too. It’s the operating system, 
which hides files away in obscure directories and is constantly popping up lit-
tle dialog boxes and error messages that you are forced to address before you 
can get on with your real work. It’s the browser, which has no graceful way of 
indicating whether or not the link you just clicked is going to show you what 
you want to see. It’s the email client, which offers no insights into how long it 
will take for the message you just wrote, with the rather large photo of your 
cat, to be sent to your grandmother.
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Users contend with all these things and more during the same stretch of time 
they try to deal with your application. And the frustrations add up quickly.

I know, I know—none of these things bother you at all. They don’t really bother 
me either. But that’s a sad fact. It means we’ve become desensitized to things 
that are otherwise maddening. It means we’ve gone numb.

In short, we’ve become “computer-savvy.”

So what’s a geek to do? 

You have to have killer features or your application won’t be able to stand up 
to its competitors. Right? You have to keep adding things to new versions or 
no one will purchase upgrades and sales will stagnate. And you have to match 
the competition one-for-one so no one can ever say your application is light 
where the other guy’s is robust. Right?

To paraphrase Alan Cooper, however, trying to match competing products 
feature-for-feature is like running through a battleground under cover fire. 
You can run all you want, but you have to keep shooting to get anywhere. 
Dishing out cover fire keeps you alive for a few minutes at a time. Long enough 
to hide. Companies that fight all the time to stay ahead fall into the endless 
cycle of trying to outdo the enemy (if the enemy has a big gun, you need a 
bigger gun). This goes on and on until someone falls. It’s not a fun way to do 
things. It’s a method that works only as long as the people fighting the battle 
continue to come up with bigger guns. They spend all their time spraying out 
cover fire while they run 3 feet to the next safe position.

Many companies live and die this way. To get into the fight, you have to stock 
up on venture capital, go into major debt, hire a bunch of rock star developers, 
go straight to code because there’s no time to plan or design anything, and 
rush, rush, rush to market with a 27-page list of features. And if the enemy 
starts to catch up, you have to add more features, call the next version “the 
most robust release ever,” and try to maintain your market share. Until, of 
course, the enemy puts out a new version with even more features.

It’s exhausting.
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It’s also exhausting for users. The more features you offer, the more the user 
has to learn. The more options you provide, the more users have to do to 
get anything done. The more you allow customization, the more users have 
to fidget and tweak and manipulate your application. They spend more time 
configuring the tool than using it. As a result of fighting the fight, complicated 
applications often end up much less usable than one would hope.

To stay alive, you eventually have to get out of the line of fire. It’s the only 
real option.

Think Different

A few years ago, Firewheel Design (www.firewheeldesign.com) got out of the 
line of fire by creating Blinksale (www.blinksale.com), a web-based invoicing 
system. The simple application contains only the features that are absolutely 
necessary for the largest percentage of its users to successfully create, submit, 
and track invoices.

Firewheel’s decision to minimize Blinksale’s feature list might look like a mis-
take because it seems as if it won’t be able to compete in the rat race with the 
big boys of invoicing systems. But the small crew at Firewheel did something 
the big boys hadn’t done: it created something that stood out.

Blinksale is aimed at contractors who don’t need to do anything fancy with 
their invoices. Many people who need to submit and track invoices need only 
a few basic tools. These include a way to create the invoice, submit it, mark it 
as closed when payment is received, and perhaps send a receipt confirmation 
to the client. When the folks at Firewheel Design set out to create Blinksale, 
they realized they could keep it simple and satisfy the vast majority of user 
needs. They may have even realized that making it more complicated would 
decrease their chances of satisfying user needs. So they designed a web appli-
cation that does one thing, and does it very well: it gives people a fast and 
effective way to create, submit, and track invoices.

(See how easy it is to explain? That’s a good sign.) 

�

www..rewheeldesign.com
www.blinksale.com
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Since Firewheel created Blinksale, it’s been taken over by Doublewide Labs. 
It’s even been completely redesigned. Amazingly, it’s still one of the best appli-
cations around.

The system can be used by plenty of people besides contractors because it’s 
so stripped down that a trained monkey could use it (assuming the trained 
monkey could type). The application contains just a few key features. 

The dashboard and New Invoice screen

When you sign in, Blinksale shows you a summary of your recent activity 
(open invoices, past-due invoices, and so on) so you get a quick, at-a-glance, 
dashboard-style view of the state of your invoices. It also offers an easy-to-
spot New button, to start creating a new invoice. 

You simply choose the client the invoice is for or create a new one—right there, 
on the same page—and hop over to the New Invoice screen. This page actually 
looks like a real invoice, so you maintain context the whole time you’re creating 
it. All the fields you need to complete are displayed as form elements, so you 
can simply edit the invoice onscreen and click the big Save button.

Blinksale’s main invoice-editing screen is easy to use.
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When you’re done, you see the final version of the invoice and a few new 
buttons, which let you send the invoice, edit it, or delete it. One click of the 
Send Invoice button produces an in-line form in which you checkmark all the 
people in the client company to whom you want to send the invoice and write 
an optional message.

The finished invoice

The invoice itself is an HTML-formatted email that looks great right out of the 
box (well, the browser), and you don’t have to configure anything at all to send 
off a professional invoice to a client in five minutes or less.

Blinksale generates easy-to-read invoices and lets you email them to your clients in a click.

Simple as that.

Blinksale offers a few basic templates from which to choose how you want your 
invoices to look. You can also send reminders to clients about late payments and 
create thank-you messages to send to clients who pay their bills on time.

The whole application takes less than 30 minutes to learn inside and out, and 
just about pays for itself every time you create an invoice (at the time of this 
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writing, Blinksale offers a $6 per month plan for up to 6 invoices, with plans of 
up to $24 per month for 250 invoices.)

Firewheel built only what was absolutely necessary for most people to suc-
cessfully handle the activity of invoicing clients. And Doublewide Labs has lov-
ingly maintained that tradition. There are no obscure configuration options, no 
redundant functionality (there’s exactly one way to complete each task in the 
tool, which makes it easy to learn), and no fancy interface widgets to figure out. 
It just does exactly what it should, and does it within a simple, clean interface 
that somehow makes invoices seem friendly, like someone you’d want to take to 
lunch. (We’ll talk more about software personality in Chapter 10.)

The result

Josh Williams, one of the creators of Blinksale, was justifiably proud of how 
things turned out. Back in 2004, he told me:

As a small design company we did our fair share of client 
billing. Unfortunately we’ve always been less than enamored 
with the off-the-shelf invoicing and billing software that is 
available at your local office supply store. After a few years of 
frustration we set out to build our own web-based invoicing 
service. Goal number one was ease of use. Goal number two 
was keeping our cost of design and development of the service 
low. Remarkably, these two goals often go hand in hand.

Firewheel could have designed Blinksale to be chock-full of features that did 
everything from integrate with Intuit QuickBooks in 12 easy steps to preparing 
tax information and letting you export it to Intuit TurboTax at the end of the 
year. They could have built a product that rivaled its competition feature for 
feature. They didn’t. They built the 20 percent people actually need. Nothing 
more. Nothing less. Even after a change in ownership, with Doublewide Labs 
at the helm, Blinksale is still hyper-focused on only the most essential features.

While there are a few extra gadgets thrown in for more computer-savvy 
users, Blinksale keeps things simple and focused. If all you want to do is create 
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an invoice and send it to a client—the single task most people will spend most 
of their time completing in Blinksale—you can do it in just a few minutes and 
be on your merry way.

Think Mobile

One of the best ways to avoid feature battles is to focus your attention on 
designing for mobile platforms such as Apple’s iOS and Google’s Android. 
Strategically, it’s also one of the best things you can do for your business. Con-
sider this story:

Recently, after boarding a flight to San Francisco for the Voices That Mat-
ter conference (hosted by New Riders, of course), a man in his early 30s sat 
next to me and pulled out his iPhone. The older gentleman who sat on the 
other side of him asked about it. What was it like to use it? How easy was 
it really? Wow, it sure does look fast, and neat. The younger man answered 
every question with growing enthusiasm. I’d seen it a hundred times before—
the iPhone frequently turns otherwise perfectly jaded people into vehement, 
adept Apple sales representatives.  But then the younger man said something 
that surprised me. When the older man asked the younger man what he did 
for work, he replied:

“I’m a cop.”

He wasn’t a designer. Or a marketing guru. Or a social media expert. Or an 
entrepreneur. He wasn’t heading to a tech conference or a sales seminar. He 
wasn’t at all the kind of person I normally see have a conversation like this one. 
He was a cop—a middle-class guy who puts on a blue uniform every day and 
relies on walkie-talkies to communicate—heading off to meet some old col-
lege friends for the weekend.

“I hardly ever use my computer anymore. I can do it all on this thing.”

Touchscreens and gestural interfaces have taken rise. Long gone are the days 
when the Internet was considered the new frontier. Personal tech has taken 
over. Devices are the new new frontier.

And this, my friend, is a very good thing.

�
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Over the next few years, as the obstacles to the adoption of mobile devices 
are eliminated, more and more people will trade in their desktop and laptop 
computers and start using devices exclusively. Apple and its competitors in the 
smartphone and tablet markets will make sure of that. And while many peo-
ple in the tech industry still see some of these gadgets as luxury items—often 
even wondering what on Earth they would do with a tablet—these devices are 
designed for the other 99 percent. They’re designed for that large segment of 
the population that uses computers for paying bills, social networking, making 
plans, watching videos, checking the news, listening to music, digging up reci-
pes, learning new skills, creating spreadsheets for work, writing memos, and 
of course, checking email. These people use computers primarily for media 
consumption, web browsing, and basic document-creation. And that’s exactly 
what the iPad and other tablets are designed to do best.

As these products  evolve and get cheaper, it will simply be more affordable 
and more useful to buy a touchscreen tablet backed by a catalog of cheap and 
easy-to-use apps, with its ever-expanding array of possible use cases, than it 
will be to buy a desktop, laptop, or even a netbook. More people than ever 
before will be able to empower themselves through the Internet, and they’ll 
be able to use it anywhere they want. The air will be completely filled with 
Wi-Fi signals, and all the world’s information—all your information—will be 
quite literally at your fingertips, anytime, anyplace..

Personal tech is now affordable by the masses, useful for the masses, and 
usable by the masses. And this will only become more true in the years to 
come. If you’re not designing for it now, you’re already late.

But even if you ignore this fundamental shift in personal computing, devices 
are good for application designers for other reasons—specifically, because 
they force designers to follow the principles of good application design. 

The people designing for devices right now are doing a better job of embrac-
ing these principles than most people designing for the desktop ever have. The 
constraints of the medium—the limited screen space, risk of network slow-
downs, difficulties of multitasking, and so on—are having the happy side-
effect of encouraging designers to design more concise applications.

Southwest Airlines offers a great example. Here’s the site in a desktop browser.
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Naturally, the site offers a way to book a flight, car, or hotel. In fact, in this 
desktop version, there are two sets of tabs that offer this, one of which lets 
you fill out the reservation form on the  homepage, the other of which takes 
you to another page to do it. Why? Well, because the larger tabs at the top are 
more than just links—they’re menus. The Air tab, for example, offers a menu 
chock-full of links to other information, including a list of destinations South-
west flies to. And yes, plenty of people will seek out this information. But the 
natural effect is that the design takes up a lot of space, offers a lot of options, 
and requires a lot of scanning and decision-making.
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The Southwest Airlines iPhone app, however, focuses only on what’s abso-
lutely necessary. On the iPhone, users can find this information by checking 
the To Where option on the Book a Flight screen.

Now, let’s say you want to see how your Rapid Rewards stockpile is coming 
along. On the desktop version, there is a large Rapid Rewards tab-like link near 
the top of the page, an accordion tab labeled My Rapid Rewards, and a sign-
in form that asks for your Rapid Rewards number. Which one is right? Which 
step do you take first?

In the iPhone app, you tap Rapid Rewards. It leads to a sign-in screen.

One of these things is so much clearer than the other.

Hey, it’s your life

So if you still wonder what on Earth you’d do with a tablet, there’s your 
answer. You’d secure your own future as a designer. As a marketing guru. A 
social media expert. An entrepreneur.

Don’t neglect to see the significance of mobile computing because you’re 
busy sitting at a desk with a souped-up PC, a killer video card, and  8 feet of 
monitor space displaying 75 open Photoshop files. Yes, you’ll have to continue 
doing a lot of your design work there. Yes, it will continue being easier to do 
design work there. But don’t delude yourself that your customers will always 
and forever be sitting at a desk when they use your products. They won’t be.

Use your desktop computer. Just use it to design for devices. And make sure a 
tablet is sitting next to it.

Throughout the rest of this book, I’ll discuss mobile-specific considerations 
alongside our discussion of design principles for effective applications.

Not present at time of photo

Sadly, at the time of this writing, there is no device-friendly version of Blink-
sale. Hey, nobody’s perfect.

A competing invoicing application, Ballpark, does offer a mobile-friendly 
dashboard. It’s not much, but it offers a cursory view of your recent activity.
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Drop Nice-to-Have Features

Almost every mature application in existence contains at least a few features 
that were probably first described in a statement that started with “Some-
thing that would be really nice to have is <insert description here>.” But most of 
these things are exactly what clutter up interfaces all over the web and on our 
devices, and it’s our job to fend these things off with a big stick. They need 
to be removed from your next application before it’s even built. An obvious 
interface is one that is focused on what’s most important and leaves out the 
things that are simply nice to have. 

In its book Getting Real, 37signals has this to say about focusing on only the 
important features:

Stick to what’s truly essential. Good ideas can be tabled.
Take whatever you think your product should be and cut 

it in half. Pare features down until you’re left with only the 
most essential ones. Then do it again.

The statement is similar to something Steve Krug said in his book Don’t Make 
Me Think, one of the greatest books out there on web usability. It’s Krug’s 
Third Law of Usability:

Get rid of half the words on each page, then get rid of half of 
what’s left.

And Krug’s law can be traced back to William Strunk, Jr., and E. B. White’s The 
Elements of Style:

Vigorous writing is concise. A sentence should contain no 
unnecessary words, a paragraph no unnecessary sentences, 
for the same reason that a drawing should have no 
unnecessary lines and a machine no unnecessary parts.

�
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Say it again, brother.

All these people are in the business of simplicity. Simplicity makes the point 
clear. It lets messages stand out. It offers communication that cuts through 
the noise.

The Unnecessary Test

To create applications that cut through the noise, you have to be willing to 
slice your application’s feature list down to its bare bones, and you have to 
recognize what’s most important.

With that in mind, try the following exercise, which I call the Unnecessary Test:

Open an application you’ve worked on recently and find a feature you thought 
was really important a long time ago, perhaps before you started building the 
application.

Ask yourself the following questions:

1. Is there more than one way to complete the task this feature supports?

2. Does this feature contribute directly to the completion of the task?

3. Is the task this feature supports vital to the activity this application 
supports?

If you answered no to any of these questions, the feature may be unnecessary. 
You’ve found yourself a likely candidate for the cutting room floor.

If, on the other hand, you answered yes to all of these questions, you’re either 
looking at a rock star feature or you’re not looking hard enough at the feature 
to be objective. Try your best to detach yourself from all the work you did and 
ask these questions from a more objective point of view.

Regardless of your answers, it’s likely there are several features in your applica-
tion that could be scrapped, so you should take the time to go through every 
feature and run each one through the Unnecessary Test.

When you’re done with the testing, close the application and ask yourself 
three more questions.
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1. What are the circumstances of the situation my application is meant 
to support?

2. If this application didn’t exist and I needed to handle the same situ-
ation, and I could wave a magic wand to create an application that 
helped me with this situation with the greatest of ease, what would 
the application do? (Hint: You should limit this answer to a few very 
big-picture statements that relate to the principal desired outcome.)

3. How long will it take to rebuild my application to make it do that?

Sorry—that last question is a joke (sort of). After all, you’re likely to have 
answered one of the first two questions in a way that prevents you from hav-
ing to admit you were wrong. I know—I’ve done this myself. It’s difficult to 
admit your application may not be living up to its promise.

If this is true, have someone else answer the same set of questions and see if 
the answers are different. Even better, ask one of your users.

I’m not suggesting you start ripping functionality out of an existing application. 
Doing this could have the rather negative side effect of making some of your 
users extremely upset. To the people using the more obscure features, remov-
ing them would be a huge mistake. I’m only suggesting you learn from what 
you’ve already done so you can create more focused applications in the future.

The 60-Second Deadline

Here’s another quick way to learn to effectively aim low and keep your appli-
cation focused on the 20 percent that matters:

Pretend I’m your boss. I walk into your office and very matter-of-factly state, 
“The project time line has been cut in half. We have about 60 seconds to 
decide what to keep and what to throw away before we meet with the client 
in the conference room.”

How do you respond to this statement?

Whatever you do, don’t impulsively offer up the theoretical answer—the 
one where you say how much you’d love the low-carb sandwich. Figure out 
the real answer. 
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Grab a notepad and a pen, write down the list of features you have planned 
for an upcoming application, and see what you can cut in 60 seconds. Draw 
a line through each feature you can cut without completely destroying the 
application.

The goal is to leave yourself only with what is most essential for the applica-
tion to serve its purpose. 

Bells? Gone. 

Whistles? Gone. 

Show me only the pieces you absolutely have to keep for the tool to do its job.

When you’re done, cut one more feature, just for good measure. Cut the one 
you’re holding onto only because it’s really cool. C’mon, I know there’s at least 
one on your original list. Draw a line though it.

Your 60 seconds are up. Good job. 

Now, take out a second sheet of paper and write a new list that shows only 
what you have left, just so you can see it sitting there all nice and clean. Looks 
much better, doesn’t it? I know, it probably hurts a bit to have lost so much 
stuff, but I bet your application is now easier to explain.

Finally, take out another sheet of paper and write down the list of things you 
drew a line through earlier. Title this page “Nice-to-Have Features,” stick it in 
your filing cabinet, and forget about it. We’ll look at it again later.
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The first time you do this, it can be quite revealing. You may find you’ve been 
wasting a lot of your time and energy on things that don’t really contribute to 
the application in any meaningful way. Of course, this may be a bit unsettling, 
but hey, knowing is half the battle. Next time around, you can use the Unnec-
essary Test and the 60-Second Deadline exercise before you start coding, to 
see what really needs to be built—and you can spend all your time working to 
make those things as good as they can be.

And since building what’s most important takes much less time than building 
what’s not important, you can get more sleep, take more vacations, get more 
weekends off, and live a happier, healthier life.

Or you could do what I do and use all that saved time to design more applica-
tions. I know that’s what you really want to do.

Aim low

Regardless of how you do it, the ultimate goal is to determine what’s most 
important to the application by whittling your list of features down to about 
20 percent of what was built or what you were planning to build. Yes, some of 
the remaining 80 percent of your features may be useful somehow, to some-
one, some of the time, but they are most likely useless to 80 percent of your 
users, 80 percent of the time. And you probably spent 80 percent of your 
development time building things that aren’t essential to the application.

This is because the 80-20 rule has made its way into the world of software.

Known formally as the Pareto principle (named for Vilfredo Pareto), the 80-20 
rule was originally suggested to indicate that 80 percent of the effects come 
from 20 percent of the effort.

In terms of good, clean application design, it means that 80 percent of an 
application’s usefulness comes from 20 percent of its features. It also works 
the other way around, to illustrate that 20 percent of the development work 
produces 80 percent of an application. The other 80 percent of the work satis-
fies only 20 percent of the outcome.

To create more focused applications, stick to building the 20 percent of fea-
tures that are essential—the ones you’ll stick on the mobile version—and you’ll 
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take care of 80 percent of the user’s needs. Let your competitors worry about 
the rest. While they’re floundering around trying to one-up you by fleshing 
out the other 80 percent of the application, you could be taking 80 percent 
more vacations and enjoying 80 percent of the market share.

Less is more. Aim low.

Interface Surgery

A job application form I saw once was composed of two windows. One win-
dow got the user through the first few screens of the process, and then it 
launched a second window to complete the bulk of the application. The first 
window was connected to the user’s log-in session, which was timed and was 
designed to log out the user automatically if the system remained inactive 
for 20 minutes. However, the second window was not tied to the session. So, 
when a user tried to complete the job application in the second window—the 
part of the process that took the longest amount of time—the system invari-
ably logged the user out after 20 minutes, rudely doing so without any notifi-
cation whatsoever.

The company’s solution was to add a bit of text in the original window warn-
ing users that they would be logged out after 20 minutes—a weak attempt to 
get their pesky users to stop complaining. This was a band-aid. It did not solve 
the problem, it just told people what to expect. Users would still have to com-
plete the job application in 20 minutes or less. The company was essentially 
saying, “Sure, we’ve created a terrible system that will likely terminate your 
session before you can complete your job application, but hey, we’re warning 
you before you start, so it’s okay!”

I don’t like band-aids.

Instead of putting band-aids on problems, I perform surgery on them. Inter-
face surgery.

In this first installment of Interface Surgery, we’ll cut out a bunch of unneces-
sary features from a fictitious web-mail application. Instead of finding ways to 
make a ton of unnecessary gadgets easier to present and use, we’re going to 
rip them out and leave only what’s absolutely essential for the application to 
do its job.
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This application has a ton of features. In addition to being able to simply check 
your email, you can search the web, see how much storage space you’ve used, 
make sure you’re logged in using a particular user name, reuse saved searches, 
apply actions (such as set up an automatic response email), move email to 
other folders you create yourself, configure options for the Inbox (such as font 
settings), and even change how many messages should be displayed in the list 
before having to switch to a new page.

Some of these things are necessary, some are not.

To get started, let’s strip out the part of the Search feature that lets users 
search the web. There are already plenty of ways to search the web, and most 
modern browsers feature a built-in search bar, making this action accessible 
100 percent of the time the user has the browser open. There’s no need to 
replicate what’s already ubiquitous. And since we’re leaving only the option to 
search mail, we can remove the two radio buttons and shrink down the space 
this piece takes up.
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Let’s also get rid of the ability to save searches. It’s more difficult to save a 
search, find it again later, and rerun it than it is to simply reenter a few key-
words. This might be nice for some users, but it’s not going to seriously ben-
efit most users, most of the time. And since we’re getting rid of it, we can lose the 
tabbed interface that displays it. Since the Folders view is now the only option, 
it no longer needs a label or a tab.

Next, let’s get rid of the percentage indicator that tells users how much stor-
age space has been used up. If we decide this is essential later, we can move it 
into the Settings screen. There’s no reason to give it a permanent position in 
the main interface.
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Next, let’s get rid of the text that indicates which user is currently logged in. 
This is unnecessary most of the time, because most users will only ever have a 
single account, and since they have to manually log themselves in before they 
can see this screen, it’s pointless to show them something they already know.

Also, let’s kill the option to change how many messages display in the list at 
once. This can certainly be retained as a feature, but it’s not the kind of thing 
users are going to use every day, so we can move it to the Settings screen.

And since a Search bar is provided in the left-hand sidebar, we can remove the 
Search link from the top of the page.

Showing a title bar for which folder is currently being displayed is redundant, 
because the label for the folder in the sidebar is made larger and bold when 
that folder is displayed. And if we remove the Folder title bar, we can free up 
some vertical space for more important content—like mail.
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When an email is being displayed, another small bar appears above the email 
offering Reply, Reply All, Forward, and Delete functions, as well as a way to 
mark an email as junk.

But there’s already a Delete button in the bar above the message list. If we 
remove the button and tidy things up a bit, we can consolidate the bar and 
unify the message options into a single interface element, which means less 
code, less interface, and less confusion.
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Finally, let’s add some logic to the application and have it disable the Reply, 
Reply All, and Forward links if more than one message is selected at a time. 
Delete, Junk, and Create Filter can all be applied to multiple messages, so we’ll 
leave those active. In doing this, we make the message options more func-
tional while still taking up less space.

Ahh, that’s much better. We stripped out a few features, removed a few inter-
face elements, cleaned things up, and came out with an application interface 
that is easier to understand at a quick glance and easier to use on a daily basis.

We’ll perform interface surgery throughout this book as a way of improving 
applications one step at a time.

Reevaluate nice-to-have features later 

So, when is it time to take the list of nice-to-have features back out of the fil-
ing cabinet? The simple answer is this: not one second before your application 
has been released.
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Once your application is out there, being used by real users, and you’ve given 
it some time to stabilize by fixing a lot of the immediate bugs that have inevi-
tably come up since the release, then it’s time to review the list of nice-to-
haves. It’s also time for a good laugh.

What usually happens is that users start to speak up about what they wish 
your application did, things that bother them, and so on, and no one ever 
mentions the items on your list of nice-to-haves. Users very quickly form dif-
ferent perspectives on your application than you may have ever had, and since 
none of them use the application exactly the way you thought they would, 
the complaints and wish lists that emerge are usually different than what you 
thought was important.

If this is the case for you, feel free to put that list of nice-to-haves into the other 
filing cabinet—the one shaped like a trash can—and call it a day. The things we 
often think are so important at the beginning of a project usually prove to be 
about as useful as adding another color to a logo. And more often than not, 
adding them way back when would have meant putting the rock star features 
at risk by making them harder to find, harder to configure, harder to use.

Let them speak

Once your application is being used out in the wild and you want to hear all 
the little screaming voices of your users, you need to give them a way to talk to 
you. This means providing a way for users to offer feedback about your prod-
uct or talk to others about it, getting out of the way so they can speak freely 
while you take notes and carefully interpret.

Something as simple as setting up a forum on your site and directing people 
there from your Support page can dramatically lower your customer-support 
costs (a forum costs extremely little to maintain), while greatly increasing the 
amount of information you get from customers.

Note, however, that you will probably not like everything that gets posted. 
Invariably, there will be some dissatisfied and possibly rude users who scream 
about your “horrible” application and say nothing constructive, but you have 
to let this happen. If you moderate user comments to filter out the negative, 
you’ll defeat the purpose of the forum, which is to hear the complaints. The 
goal is to feel the pain.
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When you allow your users to speak up, you’ll quickly come up with a whole 
new list of nice-to-haves. Put those in the filing cabinet as well.

Avoid bending to users’ whims if the high-demand features don’t fit into your 
grand vision for the application. You might try pooling a few beta users together 
and have them try out a prototype of the proposed functionality to see how it 
really works before unleashing it to all your customers. There’s no shame in pull-
ing the feature back out if it just doesn’t work. Better now than later.

Focus only on the features that are the most essential. Build only what is abso-
lutely necessary.
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