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Introduction
Blaise Pascal once wrote, “I didn’t have time
to write a short letter, so I wrote a long one
instead.” This phrasebook, at under 350 (small)
pages, is the shortest book I’ve written, and
trying to fit everything that I wanted to say into
a volume this short was a challenge.
When Mark Taber originally suggested that I
write an Objective-C Phrasebook, I was not
sure what it would look like. A phrasebook for
a natural language is a list of short idioms that
can be used by people who find themselves in
need of a quick sentence or two. A phrasebook
for a programming language should fulfil a
similar rôle.
This book is not a language reference. Apple
provides a competent reference for the Objective-
C language on the http://developer.apple.
com site. This is not a detailed tutorial; unlike
my other Objective-C book, Cocoa Programming
Developer’s Handbook, you won’t find complete
programs as code examples. Instead, you’ll find
very short examples of Objective-C idioms,
which hopefully you can employ in a wide range
of places.
One of the most frustrating things in life is
finding that code examples in a book don’t
actually work. There are two sorts of code
listings in this book. Code on a white background
is intended to illustrate a simple point. This
code may depend on some implied context and

http://developer.apple.com
http://developer.apple.com


should not be taken as working, usable examples.
The majority of the code you will find in this
book is on a gray background. At the bottom of
each of these examples, you will find the name
of the file that the listing was taken from. You
can download these from the book’s page on
InformIT’s website: http://www.informit.com/
title/0321743628

A Note About Typesetting
This book was written in Vim, using semantic
markup. From here, three different versions
are generated. Two are created using pdflatex.
If you are reading either the printed or PDF
version, then you can see one of these. The only
difference between the two is that the print
version contains crop marks to allow the printer
to trim the pages.
The third version is XHTML, intended for
the ePub edition. This is created using the
EtoileText framework, which first parses the
LaTeX-style markup to a tree structure, then
performs some transformations for handling
cross-references and indexing, and finally
generates XHTML. The code for doing this is
all written in Objective-C.
If you have access to both, you may notice
that the code listings look slightly nicer in the
ePub edition. This is because EtoileText uses
SourceCodeKit, another Étoilé framework, for

http://www.informit.com/title/0321743628
http://www.informit.com/title/0321743628


syntax highlighting. This uses part of Clang, a
modern Objective-C compiler, to mark up the
code listings. This means that ranges of the code
are annotated with exactly the same semantic
types that the compiler sees. For example, it can
distinguish between a function call and a macro
instantiation.
You can find all of the code for doing this in the
Étoilé subversion repository: http://svn.gna.
org/viewcvs/etoile/trunk/Etoile/

http://svn.gna.org/viewcvs/etoile/trunk/Etoile/
http://svn.gna.org/viewcvs/etoile/trunk/Etoile/


5

Numbers

One of the big differences between Objective-C
and Smalltalk is that Objective-C inherits the
full range of primitive (non-object) C types.
These are, in ascending order of size, char,
short, int, long and long long integers, with
both signed and unsigned variants, as well as
two floating-point types: float and double.
These all behave exactly as they do in C,
complete with type promotion rules. You’ll
also find that Objective-C compilers support
a long double type, which is architecture-
dependent.
Note that this is very similar to Java, where
you have a small selection of non-object types,
but with some very important differences. In
Java, the intrinsic types are defined to be a fixed
size. In C, they are defined to have a minimum
precision. For example, the specification says
that an int has “the natural size suggested by
the architecture of the execution environment,”
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whereas in Java it is explicitly defined as a “32-
bit signed two’s complement integer.”
As well as the primitive types, C supports
defining new names for the existing types via
the typedef keyword. The most common reason
for this is that the specification does not require
a particular size for any of the standard types,
merely that each must be at least as big as the
previous one. In particular, there are platforms
currently deployed where int is 16, 32, and 64
bits, so you can’t rely on any specific size for
these.
OS X supports ILP32 and LP64 modes. This
shorthand is used to describe which of the C
types have which sizes. ILP32 means that ints,
longs, and pointers are 32 bits. LP64 means
that longs and pointers are 64-bit quantities,
and that, implicitly, other values are smaller.
Microsoft Windows, in contrast, is an LLP64
platform on 64-bit architectures; both int and
long remain 32 bits and only pointers and
long longs are 64 bits. This causes a problem if
you assumed that you could safely cast a pointer
to long—something that works on almost every
platform in the world, including Win32, but does
not work on Win64.
The problem of casting a pointer to an integer is
a serious one. The long long type is at least 64
bits, so on any current platform it is guaranteed
to be big enough to store any pointer, but on
any 32- or 16-bit platform it can be much too
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big. C99 introduced the intptr_t typedef,
which is exactly the size of a pointer. Apple
introduced an equivalent: NSInteger. This is
used throughout the Cocoa frameworks and is
always the same size as a pointer. There is also
an unsigned version, NSUInteger.
In GUI code, you will often come across CGFloat
or NSFloat. These are equivalent to each other.
Both are the size of a pointer, making them
floats on 32-bit platforms and doubles on 64-
bit ones.

Storing Numbers in Collections

6 NSMutableArray *array = [NSMutableArray array];
7 [array addObject: [NSNumber numberWithInt: 12]];

From: numberInArray.m

All of the standard Objective-C collection classes
let you store objects, but often you want to store
primitive types in them as well. The solution to
this is boxing—wrapping a primitive type up in
an object.
The NSValue class hierarchy is used for this.
NSValue is a class designed to wrap a single
primitive value. This class is quite generic,
and is an example of a class cluster. When
you create an instance of an NSValue, you will
get back some subclass, specialized for storing
different kinds of data. If you store a pointer in
an NSValue, you don’t want the instance to take
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up as much space as one containing an NSRect—
a C structure containing four NSFloats.
One concrete subclass of NSValue is particularly
important: NSNumber. This class is intended
to wrap single numerical values and can be
initialized from any of the C standard integer
types.
The designated constructor for both of these
classes is +valueWithBytes:objCType. The first
argument is a pointer to some value and the
second is the Objective-C type encoding of the
type. Type encodings are strings representing
a particular type. They are used a lot for
introspection in Objective-C; you can find out
the types of any method or instance variable in
a class as a type encoding string and then parse
this to get the relevant compile-time types.
You can get the type encoding of any type with
the @encode() directive. This is analogous to
sizeof() in C, but instead of returning the size
as an integer it returns the type encoding as a C
string. One very convenient trick when working
with type encodings is to use the typeof()
GCC extension. This returns the type of an
expression. You can combine it with @encode(),
like this:

NSValue *value =
[NSValue valueWithBytes: &aPrimitive

objCType: @encode(typeof(aPrimitive))];

This snippet will return an NSValue wrapping
aPrimitive, and will work regardless of the type



Storing Numbers in Collections 103

of the primitive. You could wrap this in a macro,
but be careful not to pass it an expression with
side effects if you do.
Note that you have to pass a pointer to the
primitive value. This method will use the type
encoding to find out how big the primitive type
is and will then copy it.
More often, you will use one of the other
constructors. For example, if you want to create
an NSNumber instance from an integer, you would
do so like this:

NSNumber *twelve = [NSNumber numberWithInt:
12];

The resulting object can then be added
to a collection. Unlike NSValue, NSNumber
instances are ordered, so you can sort collections
containing NSNumber instances.

6 NSArray *a = [NSArray arrayWithObjects:
7 [NSNumber numberWithUnsignedLongLong:

ULLONG_MAX],
8 [NSNumber numberWithInt: -2],
9 [NSNumber numberWithFloat: 300.057],

10 [NSNumber numberWithInt: 1],
11 [NSNumber numberWithDouble: 200.0123],
12 [NSNumber numberWithLongLong: LLONG_MIN],
13 nil];
14 NSArray *sorted =
15 [a sortedArrayUsingSelector: @selector(compare

:)];
16 NSLog(@"%@", sorted);

From: numberArray.m
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The numberArray.m example stores a group of
NSNumber instances in an array and then sorts
them using the -compare: selector. As you can
see from the output, the ordering is enforced
irrespective of how the number was created.

1 2010-03-15 14:50:48.166 a.out[51465:903] (
2 "-9223372036854775808",
3 "-2",
4 1,
5 "200.0123",
6 "300.057",
7 18446744073709551615
8 )

Output from: numberArray.m
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Performing Decimal Arithmetic

6 NSDecimalNumber *one =
7 [NSDecimalNumber one];
8 NSDecimalNumber *fortyTwo =
9 [NSDecimalNumber decimalNumberWithString: @"42"

];
10 NSDecimalNumber *sum =
11 [one decimalNumberByAdding: fortyTwo];
12 NSDecimal accumulator = [sum decimalValue];
13 NSDecimal temp = [fortyTwo decimalValue];
14 NSDecimalMultiply(&accumulator, &accumulator, &

temp, NSRoundPlain);
15 temp = [one decimalValue];
16 NSDecimalAdd(&accumulator, &accumulator, &temp,

NSRoundPlain);
17 NSDecimalNumber *result =
18 [NSDecimalNumber decimalNumberWithDecimal:

accumulator];

From: decimal.m

C gives you two options for working with
numbers: integers and floating-point values.
Floating-point values are made of two
components: a mantissa and an exponent.
Their value is two to the power of the exponent,
multiplied by the mantissa.
The problem with floating-point values is that
they are binary. This means that their precision
is defined in terms of binary digits, which is
not always what you want. For a financial
application, for example, you may need to store
amounts to exactly four decimal places. This is
not possible with floating-point values; a value
such as 0.1 cannot be represented by any finite
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binary floating-point, just as 0.1 in base three
(one third) cannot be represented by any finite
decimal sequence.
A binary number is the sum of a set of powers
of two, just as a decimal number is a sum of
powers of ten. With fractional values, the digits
after the radix point indicate halves, quarters,
eighths, and so on. If you try to create a value of
0.1 by adding powers of two, you never succeed,
although you get progressively closer. Exactly
the same thing happens when you try to create
a third by adding powers of ten (a three tenths,
plus three hundredths, plus three thousands, and
so on).
One solution is to use fixed-point arithmetic.
Rather than storing dollars, you might store
hundredths of a cent. You must then remember
to normalize your values, and you are limited
by the range of an integer type. Objective-C
provides another option: decimal floating-point
types.
The NSDecimal type is a C structure that
represents a decimal value. Somewhat strangely,
there is no C API for creating these. You must
create an NSDecimalNumber instance and then
send it a -decimalValue message.
You then have two choices for arithmetic.
NSDecimalNumber instances are immutable.
You can create new ones as a result of
arithmetic—for example, by sending a
decimalNumberByAdding: message to one.
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Alternatively, you can use the C API, which
modifies the value of the structure directly.
If you are just performing one arithmetic
operation and then storing the result in an
object, the first option is simpler. If you are
doing a number of steps then it is faster to use
the C APIs. Because these modify the structure,
they do not require you to create a new object
for each intermediate step.

Note: The C1X specification includes decimal
number types, and some compilers support these
as an extension. The NSDecimal type is not
compatible with these. On most platforms this is
not important. If you are targeting something like
IBM’s POWER6, which has hardware for decimal
arithmetic, then it is better to use the decimal
types directly.

Neither of these is especially fast. The decimal
number is represented as an array of digits, and
these are operated on in pairs, after the two
numbers have been normalized. You can expect
to get similar performance to a software floating-
point implementation—possibly slightly worse as
NSDecimal is not widely used and therefore has
not been the focus of much optimization effort.
NSDecimalNumber is a subclass of NSNumber,
so all of the ways of converting NSNumbers to
strings that we’ll look at in the next section
work as expected. You can also convert them to
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C primitive types using the standard methods
for accessing these on number objects, but
these methods may truncate or approximate the
decimal value.

Converting Between Strings and
Numbers

6 int answer = [@"42" intValue];
7 NSString *answerString =
8 [NSString stringWithFormat: @"%d", answer];
9 NSNumber *boxedAnswer =

10 [NSNumber numberWithInt: answer];
11 NSCAssert([answerString isEqualToString:
12 [boxedAnswer stringValue]],
13 @"Both strings should be the same");

From: strtonum.m

There are several ways of converting between
a number and a string. A lot of objects
that represent simple data have methods
like -intValue, for returning an integer
representation of the receiver.
NSString has several methods in this family.
If you have a string that contains a numerical
value, you can send it a -doubleValue,
-floatValue, -intValue, or -longLongValue
message to convert it to any of these types. In
64-bit safe versions of Foundation, you can also
send it an -integerValue message. This will
return an NSInteger.
There are a few ways of going in the
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opposite direction, getting a string from an
integer. We look at one in Chapter 6: The
+stringWithFormat: method on NSString lets
you construct a string from any primitive C
types, just as you would construct a C string
with sprintf().
If you already have a number in an NSNumber
instance, there are two ways of getting a string,
one of which is a wrapper around the other. The
-descriptionWithLocale: method returns
a string generated by formatting the number
according to the specified locale.
In fact, this doesn’t do the translation itself. It
sends an -initWithFormat:locale: message to
a new NSString. The format string depends on
the type of the number: for example, a double
will be converted using the @"%0.16g" format
string. This uses up to 16 significant figures and
an exponent if required.
The decimal separator depends on the locale.
If you send an NSNumber a -stringValue
message, this is the equivalent to sending a
-descriptionWithLocale: message with nil
as the argument. This uses the canonical locale,
which means without any localization, so the
result will be the same on any platform.
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Reading Numbers from Strings

6 NSScanner *parser =
7 [NSScanner scannerWithString: @"1 plus 2"];
8

9 int operands[2];
10 NSString *operation;
11

12 [parser setCharactersToBeSkipped:
13 [NSCharacterSet whitespaceCharacterSet]];
14

15 [parser scanInt: operands];
16 [parser scanCharactersFromSet:
17 [NSCharacterSet letterCharacterSet]
18 intoString: &operation];
19 [parser scanInt: operands+1];

From: scanner.m

Two of the first things any C programmer learns
to use are the printf() and scanf() functions.
These are very, very similar—one is almost an
inverse of the other—and they let you construct
formatted strings and parse data from them.
We’ve already seen that NSString has a rough
analogue of sprintf(), so you can construct
strings from format strings and variables, but
what is the Objective-C equivalent of sscanf()?
How, given a string, do we parse values from it?
The answer lies in the NSScanner class. This
class is a very powerful tokenizer class. You
create an instance of NSScanner attached to
a string and then scan values from it, one at a
time.
The messages you send to a scanner all have the
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same form. They take a pointer to a variable
and return a BOOL, indicating whether they
succeeded. The scanner stores the current
scanning index in the string, and only increments
it on a successful scan, so you can try parsing
the next characters in different ways. You can
also implement read-ahead and backtracking
quite easily with NSScanner. If you send it a
-scanLocation message, it returns the current
index in the string. You can then try scanning
a few things, get to an error, and backtrack
by sending it a -setScanLocation: message,
resetting the old index.
One of the most powerful methods in NSScanner
is -scanCharactersFromSet:intoString:. This
reads a string from the current scanning point
until it encounters a character not present in the
specified set. As we will see in Chapter 6, you
can construct NSCharacterSet instances with
any arbitrary set of characters, or you can use
one of the standard ones.
The example at the start of this section reads a
number, then a word, then another number from
a string. The number is read using the built in
-scanInt: method, but the word is a bit more
complex. It uses an NSCharacterSet, in this
case the set of all letters.
This isn’t the only NSCharacterSet used in this
example. This scanner is also configured to skip
whitespace. The setCharactersToBeSkipped:
message sent to the scanner tells it to ignore any
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characters in the set passed as the argument.
Passing the whitespace character set tells it to
skip any whitespace that occurs between calls.
If there are characters in this set at the position
where the scanner starts reading when you send
it a scan message, it will skip past them. It will
not skip these characters while parsing a token,
so putting “1 2” in the string would be read as
two separate numbers, not as 12.
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mutex, see mutual
exclusion lock

mutual exclusion
lock, 251

N

nonatomic, 41
notification, 273
NSApplication

class, 167
NSArchiver class,

81
NSArray class, 20,

137
NSAssert() macro,

305
NSAssertion-

Handler class,
305

NSAttributedString
class, 134

NSAutoreleasePool
class, 65, 131

NSBundle class,
239, 243

NSCalendar class,
161, 166

NSCAssert()
macro, 305

NSCharacterSet
class, 111, 125

NSCoder class, 183
NSCoding protocol,

81, 183
NSComparisonRe-

sult type,
117

NSConditionLock
class, 256

NSControl class, 91
NSCopying

protocol, 79, 143
NSCountedSet

class, 142
NSData class, 124,

228
NSDate class, 158
NSDateCompo-

nents class, 162,
166

NSDateFormatter
class, 161, 165
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NSDecimal type,
106

NSDecimalNumber
class, 106

NSDictionary class,
196, 217, 233

NSDistantObject
class, 290

NSDistributed-
Notification-
Center class,
279

NSDocument class,
193

NSEnumerator
class, 146

NSError class, 174,
224

NSException class,
214, 302

NSFast-
Enumeration
protocol, 146

NSFileHandle class,
97, 221, 229,
284

NSFileManager
class, 227, 230,
233

NSFont class, 134

NSIndexSet class,
139

NSInteger type,
100

NSInvocation class,
45, 167, 291,
317

NSLocale class,
190

NSLog() function,
132, 306

NSMutableArray
class, 19, 137

NSMutableCopying
protocol, 129,
136

NSMutableString
class, 128

NSNetService
class, 293

NSNetService-
Browser class,
294

NSNotification
class, 276
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NSNotification-
Queue class,
277

NSNull class, 138
NSNumber class,

94, 102, 200
NSObject class, 20,

30, 34, 60, 84,
131, 197

NSObject
debugging
support, 299

NSObject protocol,
314

NSProcessInfo
class, 185

NSPropertyList-
Serialization
class, 172, 174,
177

NSProxy class, 30,
34

NSRecursiveLock
class, 251

NSRunLoop class,
65, 97, 167, 257,
280, 291

NSScanner class,
110, 166

NSSet class, 141
NSStream class,

223, 287
NSString class,

119, 142, 234
NSTask class, 187
NSThread class,

246
NSTimeInterval

type, 157
NSTimer class, 97,

166
NSUserDefaults

class, 178, 189
NSValue class, 101
NSView class, 91
NSWorkspace

class, 227
NSZombie class,

300
NSZone type, 76

O

Objective-C
runtime library,
10, 309
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Objective-C type
encoding, 102

P

plutil tool, 177
premature

optimization, 116
primitive methods,

96
property lists, 80,

131, 279
pure virtual

methods, 154

R

reference date, 158
replace methods,

36
resumable

exceptions, 221
run loop, 97, 167,

180, 294

S

SEL type, 21, 27
selector, 27, 45,

311, 316

singleton pattern,
87, 94, 231

string objects, 113
sudden

termination, 192

T

thread dictionary,
232

toll-free bridging,
114

two-stage creation
pattern, 76

typed selectors, 55

U

UIApplication class,
167

unichar type, 114

V

variadic function,
130

variadic method,
131, 138

virtual function
tables, 3
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vtables, see virtual
function tables

W

weak class
references, 312

workspace process,
227

X

XCode, 16, 298

Z

zero-cost exception
handling, 212

zeroing weak
references, 72
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