


Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been print-
ed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in 
connection with or arising out of the use of the information or programs contained
herein.
The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or cus-
tom covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data is on file.
Copyright © 2011 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is pro-
tected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-74362-6
ISBN-10: 0-321-74362-8
Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville,
Indiana.
First printing February 2011

Editor-in-Chief
Mark Taub
Acquisitions Editor
Mark Taber
Development
Editor
Michael Thurston

Managing Editor
Kristy Hart
Project Editor
Anne Goebel
Copy Editor
Bart Reed

Proofreader
Charlotte Kughen
Publishing
Coordinator
Vanessa Evans

Cover Designer
Gary Adair
Compositor
Gloria Schurick



Table of Contents
Introduction xiv

1 The Objective-C Philosophy 1
Understanding the Object Model 2
A Tale of Two Type Systems 4
C Is Objective-C 5
The Language and the Library 7
The History of Objective-C 9
Cross-Platform Support 12
Compiling Objective-C Programs 14

2 An Objective-C Primer 17
Declaring Objective-C Types 18
Sending Messages 22
Understanding Selectors 26
Declaring Classes 28
Using Protocols 33
Adding Methods to a Class 35
Using Informal Protocols 38
Synthesizing Methods with

Declared Properties 39
Understanding self, _cmd, super 44
Understanding the isa Pointer 47
Initializing Classes 50
Reading Type Encodings 53
Using Closures 56



iv Contents

3 Memory Management 59
Retaining and Releasing 60
Assigning to Instance Variables 61
Avoiding Retain Cycles 63
Autorelease Pools 64
Using Autoreleased Constructors 66
Autoreleasing Objects in Accessors 67
Supporting Automatic

Garbage Collection 68
Interoperating with C 70
Using Weak References 71
Allocating Scanned Memory 73

4 Common Objective-C Patterns 75
Supporting Two-Stage Creation 76
Copying Objects 78
Archiving Objects 80
Creating Designated Initalizers 84
Enforcing the Singleton Pattern 87
Delegation 89
Providing Façades 91
Creating Class Clusters 93
Using Run Loops 96

5 Numbers 99
Storing Numbers in Collections 101
Performing Decimal Arithmetic 105



Contents v

Converting Between Strings
and Numbers 108

Reading Numbers from Strings 110

6 Manipulating Strings 113
Creating Constant Strings 114
Comparing Strings 115
Processing a String One

Character at a Time 119
Converting String Encodings 122
Trimming Strings 125
Splitting Strings 126
Copying Strings 128
Creating Strings from Templates 130
Storing Rich Text 133

7 Working with Collections 135
Using Arrays 137
Manipulating Indexes 139
Storing Unordered Groups

of Objects 141
Creating a Dictionary 143
Iterating Over a Collection 145
Finding an Object in a Collection 149
Subclassing Collections 152

8 Dates and Times 157
Finding the Current Date 158
Converting Dates for Display 160



vi Contents

Calculating Elapsed Time 163
Parsing Dates from Strings 165
Receiving Timer Events 166

9 Working with Property Lists 169
Storing Collections in

Property Lists 170
Reading Data from

Property Lists 173
Converting Property List Formats 176
Storing User Defaults 178
Storing Arbitrary Objects in

User Defaults 182

10 Interacting with the Environment 185
Getting Environment Variables 186
Parsing Command-Line Arguments 188
Accessing the User’s Locale 190
Supporting Sudden Termination 191

11 Key-Value Coding 195
Accessing Values by Key 196
Ensuring KVC Compliance 197
Understanding Key Paths 201
Observing Keys 203
Ensuring KVO Compliance 205

12 Handling Errors 209
Runtime Differences for Exceptions 210



Contents vii

Throwing and Catching Exceptions 214
Using Exception Objects 216
Managing Memory with Exceptions 218
Passing Error Delegates 221
Returning Error Values 222
Using NSError 223

13 Accessing Directories
and Files 227
Reading a File 228
Moving and Copying Files 230
Getting File Attributes 232
Manipulating Paths 234
Determining if a File or

Directory Exists 236
Working with Bundles 238
Finding Files in System Locations 240

14 Threads 245
Creating Threads 246
Controlling Thread Priority 247
Synchronizing Threads 250
Storing Thread-Specific Data 252
Waiting for a Condition 255

15 Blocks and Grand Central 259
Binding Variables to Blocks 260
Managing Memory with Blocks 264
Performing Actions in the Background 267



viii Contents

Creating Custom Work Queues 269

16 Notifications 273
Requesting Notifications 274
Sending Notifications 276
Enqueuing Notifications 277
Sending Notifications

Between Applications 278

17 Network Access 283
Wrapping C Sockets 284
Connecting to Servers 286
Sharing Objects Over a Network 289
Finding Network Peers 292

18 Debugging Objective-C 297
Inspecting Objects 298
Recognizing Memory Problems 300
Watching Exceptions 302
Asserting Expectations 304
Logging Debug Messages 306

19 The Objective-C Runtime 309
Sending Messages by Name 310
Finding Classes by Name 312
Testing If an Object

Understands a Method 313
Forwarding Messages 315
Finding Classes 318



Contents ix

Inspecting Classes 320
Creating New Classes 322

Index 325



This page intentionally left blank 



About the Author
David Chisnall is a freelance writer and consultant.
While studying for his PhD, he co-founded the
Étoilé project, which aims to produce an open-
source desktop environment on top of GNUstep,
an open-source implementation of the OpenStep
and Cocoa APIs. He is an active contributor
to GNUstep and is the original author and
maintainer of the GNUstep Objective-C 2
runtime library and the associated compiler
support in the Clang compiler.
After completing his PhD, David hid in academia
for a while, studying the history of programming
languages. He finally escaped when he realized
that there were places off campus with an
equally good view of the sea and without
the requirement to complete quite so much
paperwork. He occasionally returns to collaborate
on projects involving modeling the semantics of
dynamic languages.
David has a great deal of familiarity with
Objective-C, having worked both on projects
using the language and on implementing the
language itself. He has also worked on implementing
other languages, including dialects of Smalltalk
and JavaScript, on top of an Objective-C
runtime, allowing mixing code between all of
these languages without bridging.
When not writing or programming, David enjoys
dancing Argentine Tango and Cuban Salsa,
playing badminton and ultimate frisbee, and
cooking.



Acknowledgments
When writing a book about Objective-C, the
first person I should thank is Nicolas Roard.
I got my first Mac at around the same time I
started my PhD and planned to use it to write
Java code, not wanting to learn a proprietary
language. When I started my PhD, I found
myself working with Nicolas, who was an
active GNUstep contributor. He convinced
me that Objective-C and Cocoa were not
just for Macs and that they were both worth
learning. He was completely right: Objective-
C is a wonderfully elegant language, and the
accompanying frameworks make development
incredibly easy.
The next person to thank is Fred Kiefer. Fred is
the maintainer of the GNUstep implementation
of the AppKit framework. He did an incredibly
thorough (read: pedantic) technical review of
this book, finding several places where things
were not explained as well as they could have
been. If you enjoy reading this book, then Fred
deserves a lot of the credit.
Finally, I need to thank everyone else who was
involved in bringing this book from my text
editor to your hands, especially Mark Taber who
originally proposed the idea to me.



We Want to Hear from You
As the reader of this book, you are our most
important critic and commentator. We value
your opinion and want to know what we’re doing
right, what we could do better, what areas you’d
like to see us publish in, and any other words of
wisdom you’re willing to pass our way.
You can email or write me directly to let me
know what you did or didn’t like about this
book—–as well as what we can do to make our
books stronger.
Please note that I cannot help you with technical
problems related to the topic of this book, and
that due to the high volume of mail I receive, I
might not be able to reply to every message.
When you write, please be sure to include this
book’s title and author as well as your name and
phone or email address. I will carefully review
your comments and share them with the author
and editors who worked on the book.

E-mail: mark.taber@pearson.com
Mail: Mark Taber

Associate Publisher
Addison Wesley Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at
informit.com/aw for convenient access to any
updates, downloads, or errata that might be
available for this book.



Introduction
Blaise Pascal once wrote, “I didn’t have time
to write a short letter, so I wrote a long one
instead.” This phrasebook, at under 350 (small)
pages, is the shortest book I’ve written, and
trying to fit everything that I wanted to say into
a volume this short was a challenge.
When Mark Taber originally suggested that I
write an Objective-C Phrasebook, I was not
sure what it would look like. A phrasebook for
a natural language is a list of short idioms that
can be used by people who find themselves in
need of a quick sentence or two. A phrasebook
for a programming language should fulfil a
similar rôle.
This book is not a language reference. Apple
provides a competent reference for the Objective-
C language on the http://developer.apple.
com site. This is not a detailed tutorial; unlike
my other Objective-C book, Cocoa Programming
Developer’s Handbook, you won’t find complete
programs as code examples. Instead, you’ll find
very short examples of Objective-C idioms,
which hopefully you can employ in a wide range
of places.
One of the most frustrating things in life is
finding that code examples in a book don’t
actually work. There are two sorts of code
listings in this book. Code on a white background
is intended to illustrate a simple point. This
code may depend on some implied context and

http://developer.apple.com
http://developer.apple.com


should not be taken as working, usable examples.
The majority of the code you will find in this
book is on a gray background. At the bottom of
each of these examples, you will find the name
of the file that the listing was taken from. You
can download these from the book’s page on
InformIT’s website: http://www.informit.com/
title/0321743628

A Note About Typesetting
This book was written in Vim, using semantic
markup. From here, three different versions
are generated. Two are created using pdflatex.
If you are reading either the printed or PDF
version, then you can see one of these. The only
difference between the two is that the print
version contains crop marks to allow the printer
to trim the pages.
The third version is XHTML, intended for
the ePub edition. This is created using the
EtoileText framework, which first parses the
LaTeX-style markup to a tree structure, then
performs some transformations for handling
cross-references and indexing, and finally
generates XHTML. The code for doing this is
all written in Objective-C.
If you have access to both, you may notice
that the code listings look slightly nicer in the
ePub edition. This is because EtoileText uses
SourceCodeKit, another Étoilé framework, for

http://www.informit.com/title/0321743628
http://www.informit.com/title/0321743628


syntax highlighting. This uses part of Clang, a
modern Objective-C compiler, to mark up the
code listings. This means that ranges of the code
are annotated with exactly the same semantic
types that the compiler sees. For example, it can
distinguish between a function call and a macro
instantiation.
You can find all of the code for doing this in the
Étoilé subversion repository: http://svn.gna.
org/viewcvs/etoile/trunk/Etoile/

http://svn.gna.org/viewcvs/etoile/trunk/Etoile/
http://svn.gna.org/viewcvs/etoile/trunk/Etoile/


5

Numbers

One of the big differences between Objective-C
and Smalltalk is that Objective-C inherits the
full range of primitive (non-object) C types.
These are, in ascending order of size, char,
short, int, long and long long integers, with
both signed and unsigned variants, as well as
two floating-point types: float and double.
These all behave exactly as they do in C,
complete with type promotion rules. You’ll
also find that Objective-C compilers support
a long double type, which is architecture-
dependent.
Note that this is very similar to Java, where
you have a small selection of non-object types,
but with some very important differences. In
Java, the intrinsic types are defined to be a fixed
size. In C, they are defined to have a minimum
precision. For example, the specification says
that an int has “the natural size suggested by
the architecture of the execution environment,”



100 CHAPTER 5: Numbers

whereas in Java it is explicitly defined as a “32-
bit signed two’s complement integer.”
As well as the primitive types, C supports
defining new names for the existing types via
the typedef keyword. The most common reason
for this is that the specification does not require
a particular size for any of the standard types,
merely that each must be at least as big as the
previous one. In particular, there are platforms
currently deployed where int is 16, 32, and 64
bits, so you can’t rely on any specific size for
these.
OS X supports ILP32 and LP64 modes. This
shorthand is used to describe which of the C
types have which sizes. ILP32 means that ints,
longs, and pointers are 32 bits. LP64 means
that longs and pointers are 64-bit quantities,
and that, implicitly, other values are smaller.
Microsoft Windows, in contrast, is an LLP64
platform on 64-bit architectures; both int and
long remain 32 bits and only pointers and
long longs are 64 bits. This causes a problem if
you assumed that you could safely cast a pointer
to long—something that works on almost every
platform in the world, including Win32, but does
not work on Win64.
The problem of casting a pointer to an integer is
a serious one. The long long type is at least 64
bits, so on any current platform it is guaranteed
to be big enough to store any pointer, but on
any 32- or 16-bit platform it can be much too



Storing Numbers in Collections 101

big. C99 introduced the intptr_t typedef,
which is exactly the size of a pointer. Apple
introduced an equivalent: NSInteger. This is
used throughout the Cocoa frameworks and is
always the same size as a pointer. There is also
an unsigned version, NSUInteger.
In GUI code, you will often come across CGFloat
or NSFloat. These are equivalent to each other.
Both are the size of a pointer, making them
floats on 32-bit platforms and doubles on 64-
bit ones.

Storing Numbers in Collections

6 NSMutableArray *array = [NSMutableArray array];
7 [array addObject: [NSNumber numberWithInt: 12]];

From: numberInArray.m

All of the standard Objective-C collection classes
let you store objects, but often you want to store
primitive types in them as well. The solution to
this is boxing—wrapping a primitive type up in
an object.
The NSValue class hierarchy is used for this.
NSValue is a class designed to wrap a single
primitive value. This class is quite generic,
and is an example of a class cluster. When
you create an instance of an NSValue, you will
get back some subclass, specialized for storing
different kinds of data. If you store a pointer in
an NSValue, you don’t want the instance to take



102 CHAPTER 5: Numbers

up as much space as one containing an NSRect—
a C structure containing four NSFloats.
One concrete subclass of NSValue is particularly
important: NSNumber. This class is intended
to wrap single numerical values and can be
initialized from any of the C standard integer
types.
The designated constructor for both of these
classes is +valueWithBytes:objCType. The first
argument is a pointer to some value and the
second is the Objective-C type encoding of the
type. Type encodings are strings representing
a particular type. They are used a lot for
introspection in Objective-C; you can find out
the types of any method or instance variable in
a class as a type encoding string and then parse
this to get the relevant compile-time types.
You can get the type encoding of any type with
the @encode() directive. This is analogous to
sizeof() in C, but instead of returning the size
as an integer it returns the type encoding as a C
string. One very convenient trick when working
with type encodings is to use the typeof()
GCC extension. This returns the type of an
expression. You can combine it with @encode(),
like this:

NSValue *value =
[NSValue valueWithBytes: &aPrimitive

objCType: @encode(typeof(aPrimitive))];

This snippet will return an NSValue wrapping
aPrimitive, and will work regardless of the type



Storing Numbers in Collections 103

of the primitive. You could wrap this in a macro,
but be careful not to pass it an expression with
side effects if you do.
Note that you have to pass a pointer to the
primitive value. This method will use the type
encoding to find out how big the primitive type
is and will then copy it.
More often, you will use one of the other
constructors. For example, if you want to create
an NSNumber instance from an integer, you would
do so like this:

NSNumber *twelve = [NSNumber numberWithInt:
12];

The resulting object can then be added
to a collection. Unlike NSValue, NSNumber
instances are ordered, so you can sort collections
containing NSNumber instances.

6 NSArray *a = [NSArray arrayWithObjects:
7 [NSNumber numberWithUnsignedLongLong:

ULLONG_MAX],
8 [NSNumber numberWithInt: -2],
9 [NSNumber numberWithFloat: 300.057],

10 [NSNumber numberWithInt: 1],
11 [NSNumber numberWithDouble: 200.0123],
12 [NSNumber numberWithLongLong: LLONG_MIN],
13 nil];
14 NSArray *sorted =
15 [a sortedArrayUsingSelector: @selector(compare

:)];
16 NSLog(@"%@", sorted);

From: numberArray.m



104 CHAPTER 5: Numbers

The numberArray.m example stores a group of
NSNumber instances in an array and then sorts
them using the -compare: selector. As you can
see from the output, the ordering is enforced
irrespective of how the number was created.

1 2010-03-15 14:50:48.166 a.out[51465:903] (
2 "-9223372036854775808",
3 "-2",
4 1,
5 "200.0123",
6 "300.057",
7 18446744073709551615
8 )

Output from: numberArray.m



Performing Decimal Arithmetic 105

Performing Decimal Arithmetic

6 NSDecimalNumber *one =
7 [NSDecimalNumber one];
8 NSDecimalNumber *fortyTwo =
9 [NSDecimalNumber decimalNumberWithString: @"42"

];
10 NSDecimalNumber *sum =
11 [one decimalNumberByAdding: fortyTwo];
12 NSDecimal accumulator = [sum decimalValue];
13 NSDecimal temp = [fortyTwo decimalValue];
14 NSDecimalMultiply(&accumulator, &accumulator, &

temp, NSRoundPlain);
15 temp = [one decimalValue];
16 NSDecimalAdd(&accumulator, &accumulator, &temp,

NSRoundPlain);
17 NSDecimalNumber *result =
18 [NSDecimalNumber decimalNumberWithDecimal:

accumulator];

From: decimal.m

C gives you two options for working with
numbers: integers and floating-point values.
Floating-point values are made of two
components: a mantissa and an exponent.
Their value is two to the power of the exponent,
multiplied by the mantissa.
The problem with floating-point values is that
they are binary. This means that their precision
is defined in terms of binary digits, which is
not always what you want. For a financial
application, for example, you may need to store
amounts to exactly four decimal places. This is
not possible with floating-point values; a value
such as 0.1 cannot be represented by any finite



106 CHAPTER 5: Numbers

binary floating-point, just as 0.1 in base three
(one third) cannot be represented by any finite
decimal sequence.
A binary number is the sum of a set of powers
of two, just as a decimal number is a sum of
powers of ten. With fractional values, the digits
after the radix point indicate halves, quarters,
eighths, and so on. If you try to create a value of
0.1 by adding powers of two, you never succeed,
although you get progressively closer. Exactly
the same thing happens when you try to create
a third by adding powers of ten (a three tenths,
plus three hundredths, plus three thousands, and
so on).
One solution is to use fixed-point arithmetic.
Rather than storing dollars, you might store
hundredths of a cent. You must then remember
to normalize your values, and you are limited
by the range of an integer type. Objective-C
provides another option: decimal floating-point
types.
The NSDecimal type is a C structure that
represents a decimal value. Somewhat strangely,
there is no C API for creating these. You must
create an NSDecimalNumber instance and then
send it a -decimalValue message.
You then have two choices for arithmetic.
NSDecimalNumber instances are immutable.
You can create new ones as a result of
arithmetic—for example, by sending a
decimalNumberByAdding: message to one.



Performing Decimal Arithmetic 107

Alternatively, you can use the C API, which
modifies the value of the structure directly.
If you are just performing one arithmetic
operation and then storing the result in an
object, the first option is simpler. If you are
doing a number of steps then it is faster to use
the C APIs. Because these modify the structure,
they do not require you to create a new object
for each intermediate step.

Note: The C1X specification includes decimal
number types, and some compilers support these
as an extension. The NSDecimal type is not
compatible with these. On most platforms this is
not important. If you are targeting something like
IBM’s POWER6, which has hardware for decimal
arithmetic, then it is better to use the decimal
types directly.

Neither of these is especially fast. The decimal
number is represented as an array of digits, and
these are operated on in pairs, after the two
numbers have been normalized. You can expect
to get similar performance to a software floating-
point implementation—possibly slightly worse as
NSDecimal is not widely used and therefore has
not been the focus of much optimization effort.
NSDecimalNumber is a subclass of NSNumber,
so all of the ways of converting NSNumbers to
strings that we’ll look at in the next section
work as expected. You can also convert them to



108 CHAPTER 5: Numbers

C primitive types using the standard methods
for accessing these on number objects, but
these methods may truncate or approximate the
decimal value.

Converting Between Strings and
Numbers

6 int answer = [@"42" intValue];
7 NSString *answerString =
8 [NSString stringWithFormat: @"%d", answer];
9 NSNumber *boxedAnswer =

10 [NSNumber numberWithInt: answer];
11 NSCAssert([answerString isEqualToString:
12 [boxedAnswer stringValue]],
13 @"Both strings should be the same");

From: strtonum.m

There are several ways of converting between
a number and a string. A lot of objects
that represent simple data have methods
like -intValue, for returning an integer
representation of the receiver.
NSString has several methods in this family.
If you have a string that contains a numerical
value, you can send it a -doubleValue,
-floatValue, -intValue, or -longLongValue
message to convert it to any of these types. In
64-bit safe versions of Foundation, you can also
send it an -integerValue message. This will
return an NSInteger.
There are a few ways of going in the



Converting Between Strings and Numbers 109

opposite direction, getting a string from an
integer. We look at one in Chapter 6: The
+stringWithFormat: method on NSString lets
you construct a string from any primitive C
types, just as you would construct a C string
with sprintf().
If you already have a number in an NSNumber
instance, there are two ways of getting a string,
one of which is a wrapper around the other. The
-descriptionWithLocale: method returns
a string generated by formatting the number
according to the specified locale.
In fact, this doesn’t do the translation itself. It
sends an -initWithFormat:locale: message to
a new NSString. The format string depends on
the type of the number: for example, a double
will be converted using the @"%0.16g" format
string. This uses up to 16 significant figures and
an exponent if required.
The decimal separator depends on the locale.
If you send an NSNumber a -stringValue
message, this is the equivalent to sending a
-descriptionWithLocale: message with nil
as the argument. This uses the canonical locale,
which means without any localization, so the
result will be the same on any platform.



110 CHAPTER 5: Numbers

Reading Numbers from Strings

6 NSScanner *parser =
7 [NSScanner scannerWithString: @"1 plus 2"];
8

9 int operands[2];
10 NSString *operation;
11

12 [parser setCharactersToBeSkipped:
13 [NSCharacterSet whitespaceCharacterSet]];
14

15 [parser scanInt: operands];
16 [parser scanCharactersFromSet:
17 [NSCharacterSet letterCharacterSet]
18 intoString: &operation];
19 [parser scanInt: operands+1];

From: scanner.m

Two of the first things any C programmer learns
to use are the printf() and scanf() functions.
These are very, very similar—one is almost an
inverse of the other—and they let you construct
formatted strings and parse data from them.
We’ve already seen that NSString has a rough
analogue of sprintf(), so you can construct
strings from format strings and variables, but
what is the Objective-C equivalent of sscanf()?
How, given a string, do we parse values from it?
The answer lies in the NSScanner class. This
class is a very powerful tokenizer class. You
create an instance of NSScanner attached to
a string and then scan values from it, one at a
time.
The messages you send to a scanner all have the



Reading Numbers from Strings 111

same form. They take a pointer to a variable
and return a BOOL, indicating whether they
succeeded. The scanner stores the current
scanning index in the string, and only increments
it on a successful scan, so you can try parsing
the next characters in different ways. You can
also implement read-ahead and backtracking
quite easily with NSScanner. If you send it a
-scanLocation message, it returns the current
index in the string. You can then try scanning
a few things, get to an error, and backtrack
by sending it a -setScanLocation: message,
resetting the old index.
One of the most powerful methods in NSScanner
is -scanCharactersFromSet:intoString:. This
reads a string from the current scanning point
until it encounters a character not present in the
specified set. As we will see in Chapter 6, you
can construct NSCharacterSet instances with
any arbitrary set of characters, or you can use
one of the standard ones.
The example at the start of this section reads a
number, then a word, then another number from
a string. The number is read using the built in
-scanInt: method, but the word is a bit more
complex. It uses an NSCharacterSet, in this
case the set of all letters.
This isn’t the only NSCharacterSet used in this
example. This scanner is also configured to skip
whitespace. The setCharactersToBeSkipped:
message sent to the scanner tells it to ignore any



112 CHAPTER 5: Numbers

characters in the set passed as the argument.
Passing the whitespace character set tells it to
skip any whitespace that occurs between calls.
If there are characters in this set at the position
where the scanner starts reading when you send
it a scan message, it will skip past them. It will
not skip these characters while parsing a token,
so putting “1 2” in the string would be read as
two separate numbers, not as 12.



Index

A

abstract superclass,
94

associative array,
143

auto-boxing, 200
autorelease pool,

65

B

bag, 142
blocks, 56, 147,

259
Bonjour, 293
boxing, 101
bundles, 239

C

C integers, 100
canonical locale,

109, 118

category, 35, 183
CF, see Core

Foundation
Clang, 13
class cluster, 93,

101, 119, 136,
138, 152

class extension, 37
class version, 82
closures, 56, 259
Cocoa bindings,

203
condition variables,

255
contention scopes,

248
Core Foundation,

114

D

declared properties,
39



326 Index

defaults domain,
178

delegation pattern,
63, 90

designated
initializer, 84

distributed objects,
289

DNS service
discovery, 293

DNS-SD, see DNS
service discovery

E

error delegate, 221
error domain, 224
error recovery

attempter, 224
event driven

programming, 97
exceptions, 210

F

fast enumeration,
120, 146

façade pattern, 91

filesystem domain,
242

format string, 130
forwarding, 316

G

garbage collection,
12

GCC, see GNU
Compiler
Collection

GDB, see GNU
debugger

gdb, see GNU
debugger

GNU Compiler
Collection, 10

GNU debugger,
131, 298

GNUstep runtime,
13, 89, 317

gnustep-config
tool, 15

Grand Central
Dispatch, 286



Index 327

I

ILP32, 100
IMP type, 22
informal protocols,

313
Instance Method

Pointer, 22
instance variables,

19
intrinsic types, 99
isa-swizzling, 206,

324
iterator, 146
ivars, see instance

variables

K

key paths, 202
key-value coding,

144, 195
key-value

observing, 195
KVC, see key-value

coding
KVO, see key-value

observing

L

libdispatch, 267
libobjc2, see

GNUstep
runtime

LLVM, see Low
Level Virtual
Machine

Low Level Virtual
Machine, 13

LP64, 100

M

map, 143
mDNS, see

multicast DNS
memory

management
unit, 228

message
forwarding, 316

metaclass, 323
MMU, see memory

management
unit

multicast DNS, 293



328 Index

mutable subclass
pattern, 21, 136

mutex, see mutual
exclusion lock

mutual exclusion
lock, 251

N

nonatomic, 41
notification, 273
NSApplication

class, 167
NSArchiver class,

81
NSArray class, 20,

137
NSAssert() macro,

305
NSAssertion-

Handler class,
305

NSAttributedString
class, 134

NSAutoreleasePool
class, 65, 131

NSBundle class,
239, 243

NSCalendar class,
161, 166

NSCAssert()
macro, 305

NSCharacterSet
class, 111, 125

NSCoder class, 183
NSCoding protocol,

81, 183
NSComparisonRe-

sult type,
117

NSConditionLock
class, 256

NSControl class, 91
NSCopying

protocol, 79, 143
NSCountedSet

class, 142
NSData class, 124,

228
NSDate class, 158
NSDateCompo-

nents class, 162,
166

NSDateFormatter
class, 161, 165



Index 329

NSDecimal type,
106

NSDecimalNumber
class, 106

NSDictionary class,
196, 217, 233

NSDistantObject
class, 290

NSDistributed-
Notification-
Center class,
279

NSDocument class,
193

NSEnumerator
class, 146

NSError class, 174,
224

NSException class,
214, 302

NSFast-
Enumeration
protocol, 146

NSFileHandle class,
97, 221, 229,
284

NSFileManager
class, 227, 230,
233

NSFont class, 134

NSIndexSet class,
139

NSInteger type,
100

NSInvocation class,
45, 167, 291,
317

NSLocale class,
190

NSLog() function,
132, 306

NSMutableArray
class, 19, 137

NSMutableCopying
protocol, 129,
136

NSMutableString
class, 128

NSNetService
class, 293

NSNetService-
Browser class,
294

NSNotification
class, 276



330 Index

NSNotification-
Queue class,
277

NSNull class, 138
NSNumber class,

94, 102, 200
NSObject class, 20,

30, 34, 60, 84,
131, 197

NSObject
debugging
support, 299

NSObject protocol,
314

NSProcessInfo
class, 185

NSPropertyList-
Serialization
class, 172, 174,
177

NSProxy class, 30,
34

NSRecursiveLock
class, 251

NSRunLoop class,
65, 97, 167, 257,
280, 291

NSScanner class,
110, 166

NSSet class, 141
NSStream class,

223, 287
NSString class,

119, 142, 234
NSTask class, 187
NSThread class,

246
NSTimeInterval

type, 157
NSTimer class, 97,

166
NSUserDefaults

class, 178, 189
NSValue class, 101
NSView class, 91
NSWorkspace

class, 227
NSZombie class,

300
NSZone type, 76

O

Objective-C
runtime library,
10, 309



Index 331

Objective-C type
encoding, 102

P

plutil tool, 177
premature

optimization, 116
primitive methods,

96
property lists, 80,

131, 279
pure virtual

methods, 154

R

reference date, 158
replace methods,

36
resumable

exceptions, 221
run loop, 97, 167,

180, 294

S

SEL type, 21, 27
selector, 27, 45,

311, 316

singleton pattern,
87, 94, 231

string objects, 113
sudden

termination, 192

T

thread dictionary,
232

toll-free bridging,
114

two-stage creation
pattern, 76

typed selectors, 55

U

UIApplication class,
167

unichar type, 114

V

variadic function,
130

variadic method,
131, 138

virtual function
tables, 3



332 Index

vtables, see virtual
function tables

W

weak class
references, 312

workspace process,
227

X

XCode, 16, 298

Z

zero-cost exception
handling, 212

zeroing weak
references, 72


	Table of Contents
	Introduction
	5 Numbers
	Storing Numbers in Collections
	Performing Decimal Arithmetic
	Converting Between Strings and Numbers
	Reading Numbers from Strings

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z




