

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hartl, Michael.

Ruby on rails 3 tutorial : learn Rails by example / Michael Hartl.
p. cm.

Includes index.
ISBN-10: 0-321-74312-1 (pbk. : alk. paper)
ISBN-13: 978-0-321-74312-1 (pbk. : alk. paper)

1. Ruby on rails (Electronic resource) 2. Web site development. 3. Ruby
(Computer program language) I. Title.

TK5105.8885.R83H37 2011
005.1′17–dc22 2010039450

Copyright © 2011 Michael Hartl

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

The source code in Ruby on Rails ™ 3 Tutorial is released under the MIT License.

ISBN 13: 978-0-321-74312-1
ISBN 10: 0-321-74312-1
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan
First printing, December 2010

Editor-in-Chief
Mark Taub

Executive Acquisitions Editor
Debra Williams Cauley

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Erica Orloff

Indexer
Claire Splan

Proofreader
Claire Splan

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Gary Adair

Compositor
Glyph International

Contents

Foreword by Derek Sivers xv

Foreword by Obie Fernandez xvii

Acknowledgments xix

About the Author xxi

Chapter 1 From Zero to Deploy 1

1.1 Introduction 3
1.1.1 Comments for Various Readers 4
1.1.2 “Scaling” Rails 7
1.1.3 Conventions in This Book 7

1.2 Up and Running 9
1.2.1 Development Environments 9
1.2.2 Ruby, RubyGems, Rails, and Git 11
1.2.3 The First Application 15
1.2.4 Bundler 16
1.2.5 rails server 20
1.2.6 Model-View-Controller (MVC) 22

1.3 Version Control with Git 24
1.3.1 Installation and Setup 24
1.3.2 Adding and Committing 26
1.3.3 What Good Does Git Do You? 28
1.3.4 GitHub 29
1.3.5 Branch, Edit, Commit, Merge 31

vii

viii Contents

1.4 Deploying 35
1.4.1 Heroku Setup 36
1.4.2 Heroku Deployment, Step One 37
1.4.3 Heroku Deployment, Step Two 37
1.4.4 Heroku Commands 39

1.5 Conclusion 40

Chapter 2 A Demo App 41

2.1 Planning the Application 41
2.1.1 Modeling Users 43
2.1.2 Modeling Microposts 44

2.2 The Users Resource 44
2.2.1 A User Tour 46
2.2.2 MVC in Action 49
2.2.3 Weaknesses of This Users Resource 58

2.3 The Microposts Resource 58
2.3.1 A Micropost Microtour 58
2.3.2 Putting the micro in Microposts 61
2.3.3 A User has_many Microposts 63
2.3.4 Inheritance Hierarchies 66
2.3.5 Deploying the Demo App 68

2.4 Conclusion 69

Chapter 3 Mostly Static Pages 71

3.1 Static Pages 74
3.1.1 Truly Static Pages 75
3.1.2 Static Pages with Rails 78

3.2 Our First Tests 84
3.2.1 Testing Tools 84
3.2.2 TDD: Red, Green, Refactor 86

3.3 Slightly Dynamic Pages 103
3.3.1 Testing a Title Change 103
3.3.2 Passing Title Tests 106
3.3.3 Instance Variables and Embedded Ruby 108
3.3.4 Eliminating Duplication with Layouts 112

3.4 Conclusion 115
3.5 Exercises 116

Contents ix

Chapter 4 Rails-Flavored Ruby 119

4.1 Motivation 119
4.1.1 A title Helper 119
4.1.2 Cascading Style Sheets 122

4.2 Strings and Methods 125
4.2.1 Comments 125
4.2.2 Strings 126
4.2.3 Objects and Message Passing 129
4.2.4 Method Definitions 132
4.2.5 Back to the title Helper 133

4.3 Other Data Structures 134
4.3.1 Arrays and Ranges 134
4.3.2 Blocks 137
4.3.3 Hashes and Symbols 139
4.3.4 CSS Revisited 142

4.4 Ruby Classes 144
4.4.1 Constructors 144
4.4.2 Class Inheritance 145
4.4.3 Modifying Built-In Classes 148
4.4.4 A Controller Class 150
4.4.5 A User Class 152

4.5 Exercises 154

Chapter 5 Filling in the Layout 157

5.1 Adding Some Structure 157
5.1.1 Site Navigation 159
5.1.2 Custom CSS 164
5.1.3 Partials 171

5.2 Layout Links 177
5.2.1 Integration Tests 178
5.2.2 Rails Routes 181
5.2.3 Named Routes 183

5.3 User Signup: A First Step 186
5.3.1 Users Controller 186
5.3.2 Signup URL 188

5.4 Conclusion 191
5.5 Exercises 191

x Contents

Chapter 6 Modeling and Viewing Users, Part I 193

6.1 User Model 194
6.1.1 Database Migrations 196
6.1.2 The Model File 201
6.1.3 Creating User Objects 203
6.1.4 Finding User Objects 207
6.1.5 Updating User Objects 208

6.2 User Validations 210
6.2.1 Validating Presence 210
6.2.2 Length Validation 217
6.2.3 Format Validation 218
6.2.4 Uniqueness Validation 222

6.3 Viewing Users 227
6.3.1 Debug and Rails Environments 227
6.3.2 User Model, View, Controller 230
6.3.3 A Users Resource 232

6.4 Conclusion 236
6.5 Exercises 237

Chapter 7 Modeling and Viewing Users, Part II 239

7.1 Insecure Passwords 239
7.1.1 Password Validations 240
7.1.2 A Password Migration 244
7.1.3 An Active Record Callback 247

7.2 Secure Passwords 250
7.2.1 A Secure Password Test 251
7.2.2 Some Secure Password Theory 252
7.2.3 Implementing has_password? 254
7.2.4 An Authenticate Method 258

7.3 Better User Views 262
7.3.1 Testing the User Show Page (With Factories) 263
7.3.2 A Name and A Gravatar 268
7.3.3 A User Sidebar 276

7.4 Conclusion 279
7.4.1 Git Commit 279
7.4.2 Heroku Deploy 280

7.5 Exercises 280

Contents xi

Chapter 8 Sign Up 283

8.1 Signup Form 283
8.1.1 Using form_for 286
8.1.2 The Form HTML 288

8.2 Signup Failure 292
8.2.1 Testing Failure 292
8.2.2 A Working Form 295
8.2.3 Signup Error Messages 299
8.2.4 Filtering Parameter Logging 303

8.3 Signup Success 305
8.3.1 Testing Success 305
8.3.2 The Finished Signup Form 308
8.3.3 The Flash 308
8.3.4 The First Signup 312

8.4 RSpec Integration Tests 313
8.4.1 Integration Tests with Style 315
8.4.2 Users Signup Failure Should not Make a New User 315
8.4.3 Users Signup Success Should Make a New User 319

8.5 Conclusion 321
8.6 Exercises 321

Chapter 9 Sign In, Sign Out 325

9.1 Sessions 325
9.1.1 Sessions Controller 326
9.1.2 Signin Form 328

9.2 Signin Failure 332
9.2.1 Reviewing form Submission 333
9.2.2 Failed Signin (Test and Code) 335

9.3 Signin Success 338
9.3.1 The Completed create Action 338
9.3.2 Remember Me 340
9.3.3 Current User 345

9.4 Signing Out 354
9.4.1 Destroying Sessions 354
9.4.2 Signin Upon Signup 356
9.4.3 Changing the Layout Links 358
9.4.4 Signin/Out Integration Tests 362

xii Contents

9.5 Conclusion 363
9.6 Exercises 363

Chapter 10 Updating, Showing, and Deleting Users 365

10.1 Updating Users 365
10.1.1 Edit Form 366
10.1.2 Enabling Edits 373

10.2 Protecting Pages 376
10.2.1 Requiring Signed-In Users 376
10.2.2 Requiring the Right User 379
10.2.3 Friendly Forwarding 382

10.3 Showing Users 384
10.3.1 User Index 385
10.3.2 Sample Users 389
10.3.3 Pagination 392
10.3.4 Partial Refactoring 398

10.4 Destroying Users 399
10.4.1 Administrative Users 399
10.4.2 The destroy Action 404

10.5 Conclusion 408
10.6 Exercises 409

Chapter 11 User Microposts 411

11.1 A Micropost Model 411
11.1.1 The Basic Model 412
11.1.2 User/Micropost Associations 414
11.1.3 Micropost Refinements 419
11.1.4 Micropost Validations 423

11.2 Showing Microposts 425
11.2.1 Augmenting the User Show Page 426
11.2.2 Sample Microposts 432

11.3 Manipulating Microposts 434
11.3.1 Access Control 436
11.3.2 Creating Microposts 439
11.3.3 A Proto-feed 444
11.3.4 Destroying Microposts 452
11.3.5 Testing the New Home Page 456

Contents xiii

11.4 Conclusion 457
11.5 Exercises 458

Chapter 12 Following Users 461

12.1 The Relationship Model 463
12.1.1 A Problem with the Data Model (and a Solution) 464
12.1.2 User/Relationship Associations 470
12.1.3 Validations 473
12.1.4 Following 474
12.1.5 Followers 479

12.2 A Web Interface for Following and Followers 482
12.2.1 Sample Following Data 482
12.2.2 Stats and a Follow Form 484
12.2.3 Following and Followers Pages 494
12.2.4 A Working Follow Button the Standard Way 498
12.2.5 A Working Follow Button with Ajax 502

12.3 The Status Feed 507
12.3.1 Motivation and Strategy 508
12.3.2 A First Feed Implementation 511
12.3.3 Scopes, Subselects, and a Lambda 513
12.3.4 The New Status Feed 518

12.4 Conclusion 519
12.4.1 Extensions to the Sample Application 520
12.4.2 Guide to Further Resources 522

12.5 Exercises 523

Index 527

This page intentionally left blank

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby on Rails,
and then even more loudly switch back to PHP (Google me to read about the drama).
This book by Michael Hartl came so highly recommended that I had to try it, and Ruby
on Rails ™ 3 Tutorial is what I used to switch back to Rails again.

Though I’ve worked my way through many Rails books, this is the one that finally
made me get it. Everything is done very much “the Rails way”—a way that felt very
unnatural to me before, but now after doing this book finally feels natural. This is also
the only Rails book that does test-driven development the entire time, an approach highly
recommended by the experts but which has never been so clearly demonstrated before.
Finally, by including Git, GitHub, and Heroku in the demo examples, the author really
gives you a feel for what it’s like to do a real-world project. The tutorial’s code examples
are not in isolation.

The linear narrative is such a great format. Personally, I powered through Rails
Tutorial in three long days, doing all the examples and challenges at the end of each
chapter. Do it from start to finish, without jumping around, and you’ll get the ultimate
benefit.

Enjoy!

—Derek Sivers (sivers.org)
Founder, CD Baby and Thoughts, Ltd.

xv

This page intentionally left blank

Foreword

“If I want to learn web development with Ruby on Rails, how should I start?” For years
Michael Hartl has provided the answer as author of the RailsSpace tutorial in our series
and now the new Ruby on Rails ™ 3 Tutorial that you hold in your hands (or PDF reader,
I guess.)

I’m so proud of having Michael on the series roster. He is living, breathing proof
that we Rails folks are some of the luckiest in the wide world of technology. Before
getting into Ruby, Michael taught theoretical and computational physics at Caltech for
six years, where he received the Lifetime Achievement Award for Excellence in Teaching
in 2000. He is a Harvard graduate, has a Ph.D. in Physics from Caltech, and is an
alumnus of Paul Graham’s esteemed Y Combinator program for entrepreneurs. And
what does Michael apply his impressive experience and teaching prowess to? Teaching
new software developers all around the world how to use Ruby on Rails effectively! Lucky
we are indeed!

The availability of this tutorial actually comes at a critical time for Rails adoption.
We’re five years into the history of Rails and today’s version of the platform has unprece-
dented power and flexibility. Experienced Rails folks can leverage that power effectively,
but we’re hearing growing cries of frustration from newcomers. The amount of informa-
tion out there about Rails is fantastic if you know what you’re doing already. However,
if you’re new, the scope and mass of information about Rails can be mind-boggling.

Luckily, Michael takes the same approach as he did in his first book in the series,
building a sample application from scratch, and writes in a style that’s meant to be read
from start to finish. Along the way, he explains all the little details that are likely to
trip up beginners. Impressively, he goes beyond just a straightforward explanation of
what Rails does and ventures into prescriptive advice about good software development

xvii

xviii Foreword

practices, such as test-driven development. Neither does Michael constrain himself to
a box delineated by the extents of the Rails framework—he goes ahead and teaches
the reader to use tools essential to existence in the Rails community, such as Git and
GitHub. In a friendly style, he even provides copious contextual footnotes of benefit
to new programmers, such as the pronunciation of SQL and pointers to the origins of
lorem ipsum. Tying all the content together in a way that remains concise and usable is
truly a tour de force of dedication!

I tell you with all my heart that this book is one of the most significant titles in
my Professional Ruby Series, because it facilitates the continued growth of the Rails
ecosystem. By helping newcomers become productive members of the community
quickly, he ensures that Ruby on Rails continues its powerful and disruptive charge
into the mainstream. The Rails Tutorial is potent fuel for the fire that is powering
growth and riches for so many of us, and for that we are forever grateful.

—Obie Fernandez, Series Editor

This page intentionally left blank

CHAPTER 1
From Zero to Deploy

Welcome to Ruby on Rails ™ 3 Tutorial: Learn Rails by Example. The goal of this book
is to be the best answer to the question, “If I want to learn web development with
Ruby on Rails, where should I start?” By the time you finish Ruby on Rails Tutorial,
you will have all the knowledge you need to develop and deploy your own custom web
applications. You will also be ready to benefit from the many more advanced books,
blogs, and screencasts that are part of the thriving Rails educational ecosystem. Finally,
since Ruby on Rails Tutorial uses Rails 3.0, the knowledge you gain here will be fully up
to date with the latest and greatest version of Rails.1

Ruby on Rails Tutorial follows essentially the same approach as my previous Rails
book,2 teaching web development with Rails by building a substantial sample application
from scratch. As Derek Sivers notes in the foreword, this book is structured as a linear
narrative, designed to be read from start to finish. If you are used to skipping around
in technical books, taking this linear approach might require some adjustment, but I
suggest giving it a try. You can think of Ruby on Rails Tutorial as a video game where
you are the main character, and where you level up as a Rails developer in each chapter.
(The exercises are the minibosses.)

In this first chapter, we’ll get started with Ruby on Rails by installing all the necessary
software and setting up our development environment (Section 1.2). We’ll then create
our first Rails application, called (appropriately enough) first_app. Rails Tutorial
emphasizes good software development practices, so immediately after creating our fresh

1. The most up-to-date version of Ruby on Rails Tutorial can be found on the book’s website at http://rails-
tutorial.org/. If you are reading this book offline, be sure to check the online version of the Rails Tutorial book at
http://railstutorial.org/book for the latest updates. In addition, PDF books purchased through railstutorial.org
will continue to be updated as long as Rails 3.0 and RSpec 2.0 are still under active development.

2. RailsSpace, by Michael Hartl and Aurelius Prochazka (Addison-Wesley, 2007).

1

http://railstutorial.org/
http://railstutorial.org/
http://railstutorial.org/book

2 Chapter 1: From Zero to Deploy

new Rails project we’ll put it under version control with Git (Section 1.3). And, believe
it or not, in this chapter we’ll even put our first app on the wider web by deploying it to
production (Section 1.4).

In Chapter 2, we’ll make a second project, whose purpose will be to demonstrate
the basic workings of a Rails application. To get up and running quickly, we’ll build
this demo app (called demo_app) using scaffolding (Box 1.1) to generate code; since this
code is both ugly and complex, Chapter 2 will focus on interacting with the demo app
through its URLs3 using a web browser.

In Chapter 3, we’ll create a sample application (called sample_app), this time writing
all the code from scratch. We’ll develop the sample app using test-driven development
(TDD), getting started in Chapter 3 by creating static pages and then adding a little
dynamic content. We’ll take a quick detour in Chapter 4 to learn a little about the Ruby
language underlying Rails. Then, in Chapter 5 through Chapter 10, we’ll complete the
foundation for the sample application by making a site layout, a user data model, and a
full registration and authentication system. Finally, in Chapter 11 and Chapter 12 we’ll
add microblogging and social features to make a working example site.

The final sample application will bear more than a passing resemblance to a certain
popular social microblogging site—a site which, coincidentally, is also written in Rails.
Though of necessity our efforts will focus on this specific sample application, the emphasis
throughout Rails Tutorial will be on general principles, so that you will have a solid
foundation no matter what kinds of web applications you want to build.

Box 1.1 Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement, starting
with the famous 15-minute weblog video by Rails creator David Heinemeier Hansson,
now updated as the 15-minute weblog using Rails 2 by Ryan Bates. These videos
are a great way to get a taste of Rails’ power, and I recommend watching them.
But be warned: they accomplish their amazing fifteen-minute feat using a feature
called scaffolding, which relies heavily on generated code, magically created by the
Rails generate command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffolding
approach---it’s quicker, easier, more seductive. But the complexity and sheer amount
of code in the scaffolding can be utterly overwhelming to a beginning Rails developer;

3. URL stands for Uniform Resource Locator. In practice, it is usually equivalent to “the thing you see in the
address bar of your browser”. By the way, the current preferred term is URI, for Uniform Resource Identifier,
but popular usage still tilts toward URL.

1.1 Introduction 3

you may be able to use it, but you probably won’t understand it. Following the
scaffolding approach risks turning you into a virtuoso script generator with little (and
brittle) actual knowledge of Rails.

In Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach: although
Chapter 2 will develop a small demo app using scaffolding, the core of Rails Tutorial is
the sample app, which we’ll start writing in Chapter 3. At each stage of developing the
sample application, we will generate small, bite-sized pieces of code---simple enough
to understand, yet novel enough to be challenging. The cumulative effect will be a
deeper, more flexible knowledge of Rails, giving you a good background for writing
nearly any type of web application.

1.1 Introduction
Since its debut in 2004, Ruby on Rails has rapidly become one of the most powerful and
popular frameworks for building dynamic web applications. Rails users run the gamut
from scrappy startups to huge companies: Posterous, UserVoice, 37signals, Shopify,
Scribd, Twitter, Hulu, the Yellow Pages—the list of sites using Rails goes on and on.
There are also many web development shops that specialize in Rails, such as ENTP,
thoughtbot, Pivotal Labs, and Hashrocket, plus innumerable independent consultants,
trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100 percent open-source,
available under the permissive MIT License, and as a result it also costs nothing to
download and use. Rails also owes much of its success to its elegant and compact design;
by exploiting the malleability of the underlying Ruby language, Rails effectively creates
a domain-specific language for writing web applications. As a result, many common
web programming tasks—such as generating HTML, making data models, and routing
URLs—are easy with Rails, and the resulting application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and framework
design. For example, Rails was one of the first frameworks to fully digest and implement
the REST architectural style for structuring web applications (which we’ll be learning
about throughout this tutorial). And when other frameworks develop successful new
techniques, Rails creator David Heinemeier Hansson and the Rails core team don’t
hesitate to incorporate their ideas. Perhaps the most dramatic example is the merger of
Rails and Merb, a rival Ruby web framework, so that Rails now benefits from Merb’s
modular design, stable API, and improved performance. (Anyone who has attended a
talk by Merb developer and Rails core team member Yehuda Katz can’t help but notice
what an extremely good idea it was to bring the Merb team on board.)

4 Chapter 1: From Zero to Deploy

Finally, Rails benefits from an unusually enthusiastic and diverse community. The
results include hundreds of open-source contributors, well-attended conferences, a huge
number of plugins and gems (self-contained solutions to specific problems such as
pagination and image upload), a rich variety of informative blogs, and a cornucopia
of discussion forums and IRC channels. The large number of Rails programmers
also makes it easier to handle the inevitable application errors: the “Google the error
message” algorithm nearly always produces a relevant blog post or discussion-forum
thread.

1.1.1 Comments for Various Readers
Rails Tutorial contains integrated tutorials not only for Rails, but also for the underlying
Ruby language, as well as for HTML, CSS, some JavaScript, and even a little SQL. This
means that, no matter where you currently are in your knowledge of web development,
by the time you finish this tutorial you will be ready for more advanced Rails resources,
as well as for the more systematic treatments of the other subjects mentioned.

Rails derives much of its power from “magic”—that is, framework features (such
as automatically inferring object attributes from database columns) that accomplish
miracles but whose mechanisms can be rather mysterious. Ruby on Rails Tutorial is not
designed to explain this magic—mainly because most Rails application developers never
need to know what’s behind the curtain. (After all, Ruby itself is mostly written in the
C programming language, but you don’t have to dig into the C source to use Ruby.) If
you’re a confirmed pull-back-the-curtain kind of person, I recommend The Rails 3 Way
by Obie Fernandez as a companion volume to Ruby on Rails Tutorial.

Although this book has no formal prerequisites, you should of course have at least
some computer experience. If you’ve never even used a text editor before, it will be tough
going, but with enough determination you can probably soldier through. If, on the other
hand, your .emacs file is so complex it could make a grown man cry, there is still plenty
of material to keep you challenged. Rails Tutorial is designed to teach Rails development
no matter what your background is, but your path and reading experience will depend
on your particular circumstances.

All readers: One common question when learning Rails is whether to learn Ruby first.
The answer depends on your personal learning style. If you prefer to learn everything
systematically from the ground up, then learning Ruby first might work well for you,
and there are several book recommendations in this section to get you started. On the
other hand, many beginning Rails developers are excited about making web applications,

1.1 Introduction 5

and would rather not slog through a 500-page book on pure Ruby before ever writing
a single web page. Moreover, the subset of Ruby needed by Rails developers is different
from what you’ll find in a pure-Ruby introduction, whereas Rails Tutorial focuses on
exactly that subset. If your primary interest is making web applications, I recommend
starting with Rails Tutorial and then reading a book on pure Ruby next. It’s not an
all-or-nothing proposition, though: if you start reading Rails Tutorial and feel your
(lack of) Ruby knowledge holding you back, feel free to switch to a Ruby book and
come back when you feel ready. You might also consider getting a taste of Ruby by
following a short online tutorial, such as can be found at http://www.ruby-lang.org/ or
http://rubylearning.com/.

Another common question is whether to use tests from the start. As noted in the
introduction, Rails Tutorial uses test-driven development (also called test-first devel-
opment), which in my view is the best way to develop Rails applications, but it does
introduce a substantial amount of overhead and complexity. If you find yourself getting
bogged down by the tests, feel free to skip them on first reading.4 Indeed, some readers
may find the inclusion of so many moving parts—such as tests, version control, and
deployment—a bit overwhelming at first, and if you find yourself expending excessive
energy on any of these steps, don’t hesitate to skip them. Although I have included only
material I consider essential to developing professional-grade Rails applications, only the
core application code is strictly necessary the first time through.

Inexperienced programmers (non-designers): Rails Tutorial doesn’t assume any back-
ground other than general computer knowledge, so if you have limited programming
experience this book is a good place to start. Please bear in mind that it is only the first step
on a long journey; web development has many moving parts, including HTML/CSS,
JavaScript, databases (including SQL), version control, and deployment. This book con-
tains short introductions to these subjects, but there is much more to learn.

Inexperienced programmers (designers): Your design skills give you a big leg up, since
you probably already know HTML and CSS. After finishing this book you will be in an
excellent position to work with existing Rails projects and possibly start some of your
own. You may find the programming material challenging, but the Ruby language is
unusually friendly to beginners, especially those with an artistic bent.

4. In practice, this will involve omitting all files with spec in their name, as we will start to see in Section 3.2.2.

http://www.ruby-lang.org/
http://rubylearning.com/

6 Chapter 1: From Zero to Deploy

After finishing Ruby on Rails Tutorial, I recommend that newer programmers read
Beginning Ruby by Peter Cooper, which shares the same basic instructional philosophy as
Rails Tutorial. I also recommend The Ruby Way by Hal Fulton. Finally, to gain a deeper
understanding of Rails, I recommend The Rails 3 Way by Obie Fernandez.

Web applications, even relatively simple ones, are by their nature fairly complex.
If you are completely new to web programming and find Rails Tutorial overwhelm-
ing, it could be that you’re not quite ready to make web applications yet. In that case,
I’d suggest learning the basics of HTML and CSS and then giving Rails Tutorial an-
other go. (Unfortunately, I don’t have a personal recommendation here, but Head First
HTML looks promising, and one reader recommends CSS: The Missing Manual by
David Sawyer McFarland.) You might also consider reading the first few chapters of
Beginning Ruby, which starts with sample applications much smaller than a full-blown
web app.

Experienced programmers new to web development: Your previous experience means
you probably already understand ideas like classes, methods, data structures, etc., which
is a big advantage. Be warned that if your background is in C/C++ or Java, you may
find Ruby a bit of an odd duck, and it might take time to get used to it; just stick with
it and eventually you’ll be fine. (Ruby even lets you put semicolons at the ends of lines
if you miss them too much.) Rails Tutorial covers all the web-specific ideas you’ll need,
so don’t worry if you don’t currently know a PUT from a POST.

Experienced web developers new to Rails: You have a great head start, especially if you
have used a dynamic language such as PHP or (even better) Python. The basics of what
we cover will likely be familiar, but test-driven development may be new to you, as may
be the structured REST style favored by Rails. Ruby has its own idiosyncrasies, so those
will likely be new, too.

Experienced Ruby programmers: The set of Ruby programmers who don’t know Rails
is a small one nowadays, but if you are a member of this elite group you can fly through
this book and then move on to The Rails 3 Way by Obie Fernandez.

Inexperienced Rails programmers: You’ve perhaps read some other tutorials and made
a few small Rails apps yourself. Based on reader feedback, I’m confident that you can
still get a lot out of this book. Among other things, the techniques here may be more up
to date than the ones you picked up when you originally learned Rails.

1.1 Introduction 7

Experienced Rails programmers: This book is unnecessary for you, but many experi-
enced Rails developers have expressed surprise at how much they learned from this book,
and you might enjoy seeing Rails from a different perspective.

After finishing Ruby on Rails Tutorial, I recommend that experienced (non-Ruby)
programmers read The Well-Grounded Rubyist by David A. Black, which is an excellent
in-depth discussion of Ruby from the ground up, or The Ruby Way by Hal Fulton, which
is also fairly advanced but takes a more topical approach. Then move on to The Rails 3
Way to deepen your Rails expertise.

At the end of this process, no matter where you started, you will be ready for the more
intermediate-to-advanced Rails resources. Here are some I particularly recommend:

• Railscasts: Excellent free Rails screencasts.

• PeepCode, Pragmatic.tv, EnvyCasts: Excellent commercial screencasters.

• Rails Guides: Good topical and up-to-date Rails references. Rails Tutorial refers
frequently to the Rails Guides for more in-depth treatment of specific topics.

• Rails blogs: Too many to list, but there are tons of good ones.

1.1.2 ‘‘Scaling’’ Rails
Before moving on with the rest of the introduction, I’d like to take a moment to address
the one issue that dogged the Rails framework the most in its early days: the supposed
inability of Rails to “scale”—i.e., to handle large amounts of traffic. Part of this issue
relied on a misconception; you scale a site, not a framework, and Rails, as awesome as it
is, is only a framework. So the real question should have been, “Can a site built with Rails
scale?” In any case, the question has now been definitively answered in the affirmative:
some of the most heavily trafficked sites in the world use Rails. Actually doing the scaling
is beyond the scope of just Rails, but rest assured that if your application ever needs to
handle the load of Hulu or the Yellow Pages, Rails won’t stop you from taking over the
world.

1.1.3 Conventions in This Book
The conventions in this book are mostly self-explanatory; in this section, I’ll mention
some that may not be. First, both the HTML and PDF editions of this book are full of

8 Chapter 1: From Zero to Deploy

links, both to internal sections (such as Section 1.2) and to external sites (such as the
main Ruby on Rails download page).5

Second, your humble author is a Linux/OS X kind of guy, and hasn’t used Windows
as his primary OS for more than a decade; as a result, Rails Tutorial has an unmistakable
Unix flavor.6 For example, in this book all command line examples use a Unix-style
command line prompt (a dollar sign):

$ echo "hello, world"

hello, world

Rails comes with lots of commands that can be run at the command line. For example,
in Section 1.2.5 we’ll run a local development web server as follows:

$ rails server

Rails Tutorial will also use Unix-style forward slashes as directory separators; my Rails
Tutorial sample app, for instance, lives in

/Users/mhartl/rails_projects/first_app

The root directory for any given app is known as the Rails root, and henceforth all
directories will be relative to this directory. For example, the config directory of my
sample application is in

/Users/mhartl/rails_projects/first_app/config

This means that when referring to the file

/Users/mhartl/rails_projects/first_app/config/routes.rb

I’ll omit the Rails root and write config/routes.rb for brevity.

5. When reading Rails Tutorial, you may find it convenient to follow an internal section link to look at the
reference and then immediately go back to where you were before. This is easy when reading the book as a
web page, since you can just use the Back button of your browser, but both Adobe Reader and OS X’s Preview
allow you to do this with the PDF as well. In Reader, you can right-click on the document and select “Previous
View” to go back. In Preview, use the Go menu: Go > Back.

6. Indeed, the entire Rails community has this flavor. In a full room at RailsConf you’ll see a handful of PCs
in a sea of MacBooks—with probably half the PCs running Linux. You can certainly develop Rails apps on
Microsoft Windows, but you’ll definitely be in the minority.

1.2 Up and Running 9

Finally, Rails Tutorial often shows output from various programs (shell commands,
version control status, Ruby programs, etc.). Because of the innumerable small differences
between different computer systems, the output you see may not always agree exactly with
what is shown in the text, but this is not cause for concern. In addition, some commands
may produce errors depending on your system; rather than attempt the Sisyphean task
of documenting all such errors in this tutorial, I will delegate to the “Google the error
message” algorithm, which among other things is good practice for real-life software
development.

1.2 Up and Running
It’s time now to get going with a Ruby on Rails development environment and our first
application. There is quite a bit of overhead here, especially if you don’t have extensive
programming experience, so don’t get discouraged if it takes a while to get started. It’s
not just you; every developer goes through it (often more than once), but rest assured
that the effort will be richly rewarded.

1.2.1 Development Environments
Considering various idiosyncratic customizations, there are probably as many develop-
ment environments as there are Rails programmers, but there are at least two broad
themes: text editor/command line environments, and integrated development environ-
ments (IDEs). Let’s consider the latter first.

IDEs
There is no shortage of Rails IDEs; indeed, the main Ruby on Rails site names four:
RadRails, RubyMine, 3rd Rail, and NetBeans. All are cross-platform, and I’ve heard
good things about several of them. I encourage you to try them and see if they work for
you, but I have a confession to make: I have never found an IDE that met all my Rails
development needs—and for some projects I haven’t even been able to get them to work
at all.

Text Editors and Command Lines
What are we to use to develop Rails apps, if not some awesome all-in-one IDE? I’d guess
the majority of Rails developers opt for the same solution I’ve chosen: use a text editor
to edit text, and a command line to issue commands (Figure 1.1). Which combination
you use depends on your tastes and your platform:

10 Chapter 1: From Zero to Deploy

Figure 1.1 A text editor/command line development environment (TextMate/iTerm).

• Macintosh OS X: Like many Rails developers, I prefer TextMate. Other options
include Emacs and MacVim (launched with the command macvim), the excellent
Macintosh version of Vim.7 I use iTerm for my command line terminal; others
prefer the native Terminal app.

• Linux: Your editor options are basically the same as OS X, minus TextMate. I’d
recommend graphical Vim (gVim), gedit (with the GMate plugins), or Kate. As far
as command lines go, you’re totally set: every Linux distribution comes with at least
one command line terminal application (and often several).

• Windows: Unfortunately, I can’t make any personal recommendations here, but you
can do what I did: drop “rails windows” into Google to see what the latest thinking
is on setting up a Rails development environment on Windows. Two combinations
look especially promising: Vim for Windows with Console (recommended by Akita
On Rails) or the E Text Editor with Console and Cygwin (recommended by Ben

7. The vi editor is one of the most ancient yet powerful weapons in the Unix arsenal, and Vim is “vi improved”.

1.2 Up and Running 11

Kittrell). Rails Tutorial readers have suggested looking at Komodo Edit (cross-
platform) and the Sublime Text editor (Windows only) as well. No matter which
editor you choose, I recommend trying Cygwin, which provides the equivalent of
a Unix terminal under Windows; see, for example, this video on Ruby on Rails +
Cygwin + Windows Vista. (In addition to installing the packages in the video,
I recommend installing git, curl, and vim. Don’t install Rails as in the video,
though; use the instructions below instead.) With Cygwin, most of the command-
line examples in the book should work with minimum modification.

If you go with some flavor of Vim, be sure to tap into the thriving community of
Vim-using Rails hackers. See especially the rails.vim enhancements and the NERD tree
project drawer.

Browsers
Although there are many web browsers to choose from, the vast majority of Rails pro-
grammers use Firefox, Safari, or Chrome when developing. The screenshots in Rails
Tutorial will generally be of a Firefox browser. If you use Firefox, I suggest using the
Firebug add-on, which lets you perform all sorts of magic, such as dynamically inspecting
(and even editing) the HTML structure and CSS rules on any page. For those not using
Firefox, Firebug Lite works with most other browsers, and both Safari and Chrome have
a built-in “Inspect element” feature available by right-clicking on any part of the page.
Regardless of which browser you use, experience shows that the time spent learning such
a web inspector tool will be richly rewarded.

A Note About Tools
In the process of getting your development environment up and running, you may find
that you spend a lot of time getting everything just right. The learning process for editors
and IDEs is particularly long; you can spend weeks on TextMate or Vim tutorials alone.
If you’re new to this game, I want to assure you that spending time learning tools is normal.
Everyone goes through it. Sometimes it is frustrating, and it’s easy to get impatient when
you have an awesome web app in your head and you just want to learn Rails already, but
have to spend a week learning some weird ancient Unix editor just to get started. But a
craftsman has to know his tools; in the end the reward is worth the effort.

1.2.2 Ruby, RubyGems, Rails, and Git
Now it’s time to install Ruby and Rails. The canonical up-to-date source for this step is
the Ruby on Rails download page. I’ll assume you can go there now; parts of this book

12 Chapter 1: From Zero to Deploy

can be read profitably offline, but not this part. I’ll just inject some of my own comments
on the steps.

Install Git
Much of the Rails ecosystem depends in one way or another on a version control system
called Git (covered in more detail in Section 1.3). Because its use is ubiquitous, you
should install Git even at this early stage; I suggest following the installation instructions
for your platform at the Installing Git section of Pro Git.

Install Ruby
The next step is to install Ruby. It’s possible that your system already has it; try running

$ ruby -v

ruby 1.9.2

to see the version number. Rails 3 requires Ruby 1.8.7 or later and works best with
Ruby 1.9.2. This tutorial assumes that you are using the latest development version of
Ruby 1.9.2, known as Ruby 1.9.2-head, but Ruby 1.8.7 should work as well.

The Ruby 1.9 branch is under heavy development, so unfortunately installing the
latest Ruby can be quite a challenge. You will likely have to rely on the web for the most
up-to-date instructions. What follows is a series of steps that I’ve gotten to work on my
system (Macintosh OS X), but you may have to search around for steps that work on
your system.

As part of installing Ruby, if you are using OS X or Linux I strongly recommend
installing Ruby using Ruby Version Manager (RVM), which allows you to install and
manage multiple versions of Ruby on the same machine. (The Pik project accomplishes
a similar feat on Windows.) This is particularly important if you want to run Rails 3 and
Rails 2.3 on the same machine. If you want to go this route, I suggest using RVM to install
two Ruby/Rails combinations: Ruby 1.8.7/Rails 2.3.10 and Ruby 1.9.2/Rails 3.0.1.
If you run into any problems with RVM, you can often find its creator, Wayne E.
Seguin, on the RVM IRC channel (#rvm on freenode.net).8

8. If you haven’t used IRC before, I suggest you start by searching the web for “irc client <your platform>”.
Two good native clients for OS X are Colloquy and LimeChat. And of course there’s always the web interface
at http://webchat.freenode.net/?channels=rvm.

http://webchat.freenode.net/?channels=rvm

1.2 Up and Running 13

After installing RVM, you can install Ruby as follows:9

$ rvm update --head

$ rvm reload

$ rvm install 1.8.7

$ rvm install 1.9.2

<wait a while>

Here the first two commands update and reload RVM itself, which is a good practice since
RVM gets updated frequently. The final two commands do the actual Ruby installations;
depending on your system, they might take a while to download and compile, so don’t
worry if it seems to be taking forever. (Also beware that lots of little things can go
wrong. For example, on my system the latest version of Ruby 1.8.7 won’t compile;
instead, after much searching and hand-wringing, I discovered that I needed “patchlevel”
number 174:

$ rvm install 1.8.7-p174

When things like this happen to you, it’s always frustrating, but at least you know that
it happens to everyone. . .)

Ruby programs are typically distributed via gems, which are self-contained packages
of Ruby code. Since gems with different version numbers sometimes conflict, it is often
convenient to create separate gemsets, which are self-contained bundles of gems. In
particular, Rails is distributed as a gem, and there are conflicts between Rails 2 and
Rails 3, so if you want to run multiple versions of Rails on the same system you need to
create a separate gemset for each:

$ rvm --create 1.8.7-p174@rails2tutorial

$ rvm --create use 1.9.2@rails3tutorial

Here the first command creates the gemset rails2tutorial associated with
Ruby 1.8.7-p174, while the second command creates the gemset rails3tutorial

9. You might have to install the Subversion version control system to get this to work.

14 Chapter 1: From Zero to Deploy

associated with Ruby 1.9.2 and uses it (via the use command) at the same time. RVM
supports a large variety of commands for manipulating gemsets; see the documentation
at http://rvm.beginrescueend.com/gemsets/.

In this tutorial, we want our system to use Ruby 1.9.2 and Rails 3.0 by default,
which we can arrange as follows:

$ rvm --default use 1.9.2@rails3tutorial

This simultaneously sets the default Ruby to 1.9.2 and the default gemset to rails3-

tutorial.
By the way, if you ever get stuck with RVM, running commands like these should

help you get your bearings:

$ rvm --help

$ rvm gemset --help

Install RubyGems
RubyGems is a package manager for Ruby projects, and there are tons of great libraries
(including Rails) available as Ruby packages, or gems. Installing RubyGems should be easy
once you install Ruby. In fact, if you have installed RVM, you already have RubyGems,
since RVM includes it automatically:

$ which gem

/Users/mhartl/.rvm/rubies/ruby-head/bin/gem

If you don’t already have it, you should download RubyGems, extract it, and then
go to the rubygems directory and run the setup program:

$ [sudo] ruby setup.rb

Here sudo executes the command ruby setup.rb as an administrative user, which
has access to files and directories that normal users can’t touch; I have put it in brackets
to indicate that using sudo may or may not be necessary for your particular system.
Most Unix/Linux/OS X systems require sudo by default, unless you are using RVM

http://rvm.beginrescueend.com/gemsets/

1.2 Up and Running 15

as suggested in Section 1.2.2. Note that you should not actually type any brackets; you
should run either

$ sudo ruby setup.rb

or

$ ruby setup.rb

depending on your system.
If you already have RubyGems installed, you might want to update your system to

the latest version:

$ [sudo] gem update --system

Finally, if you’re using Ubuntu Linux, you might want to take a look at the
Ubuntu/Rails 3.0 blog post by Toran Billups for full installation instructions.

Install Rails
Once you’ve installed RubyGems, installing Rails 3.0 should be easy:

$ [sudo] gem install rails --version 3.0.1

To verify that this worked, run the following command:

$ rails -v

Rails 3.0.1

1.2.3 The First Application
Virtually all Rails applications start the same way, with the rails command. This handy
program creates a skeleton Rails application in a directory of your choice. To get started,
make a directory for your Rails projects and then run the rails command to make the
first application:

16 Chapter 1: From Zero to Deploy

Listing 1.1 Running the rails script to generate a new application.

$ mkdir rails_projects

$ cd rails_projects

$ rails new first_app

create

create README

create .gitignore

create Rakefile

create config.ru

create Gemfile

create app

create app/controllers/application_controller.rb

create app/helpers/application_helper.rb

create app/views/layouts/application.html.erb

create app/models

create config

create config/routes.rb

create config/application.rb

create config/environment.rb

.

.

.

Notice how many files and directories the rails command creates. This standard
directory and file structure (Figure 1.2) is one of the many advantages of Rails; it im-
mediately gets you from zero to a functional (if minimal) application. Moreover, since
the structure is common to all Rails apps, you can immediately get your bearings when
looking at someone else’s code. A summary of the default Rails files appears in Table 1.1;
we’ll learn about most of these files and directories throughout the rest of this book.

1.2.4 Bundler
After creating a new Rails application, the next step is to use Bundler to install and include
the gems needed by the app. This involves opening the Gemfile with your favorite text
editor:

$ cd first_app/

$ mate Gemfile

The result should look something like Listing 1.2.

1.2 Up and Running 17

Figure 1.2 The directory structure for a newly hatched Rails app.

Listing 1.2 The default Gemfile in the first_app directory.

source 'http://rubygems.org'

gem 'rails', '3.0.1'

Bundle edge Rails instead:

gem 'rails', :git => 'git://github.com/rails/rails.git'

gem 'sqlite3-ruby', :require => 'sqlite3'

Use unicorn as the web server

gem 'unicorn'

http://rubygems.org

18 Chapter 1: From Zero to Deploy

Deploy with Capistrano

gem 'capistrano'

To use debugger

gem 'ruby-debug'

Bundle the extra gems:

gem 'bj'

gem 'nokogiri', '1.4.1'

gem 'sqlite3-ruby', :require => 'sqlite3'

gem 'aws-s3', :require => 'aws/s3'

Bundle gems for certain environments:

gem 'rspec', :group => :test

group :test do

gem 'webrat'

end

Table 1.1 A summary of the default Rails directory structure

File/Directory Purpose

app/ Core application (app) code, including models, views, controllers, and
helpers

config/ Application configuration
db/ Files to manipulate the database
doc/ Documentation for the application
lib/ Library modules
log/ Application log files
public/ Data accessible to the public (e.g., web browsers), such as images and

cascading style sheets (CSS)
script/rails A script provided by Rails for generating code, opening console ses-

sions, or starting a local web server
test/ Application tests (made obsolete by the spec/ directory in Sec-

tion 3.1.2)
tmp/ Temporary files
vendor/ Third-party code such as plugins and gems
README A brief description of the application
Rakefile Utility tasks available via the rake command
Gemfile Gem requirements for this app
config.ru A configuration file for Rack middleware
.gitignore Patterns for files that should be ignored by Git

1.2 Up and Running 19

Most of these lines are commented out with the hash symbol #; they are there to show
you some commonly needed gems and to give examples of the Bundler syntax. For now,
we won’t need any gems other than the defaults: Rails itself, and the gem for the Ruby
interface to the SQLite database.

Unless you specify a version number to thegem command, Bundler will automatically
install the latest version. Unfortunately, gem updates often cause minor but potentially
confusing breakage, so in this tutorial we’ll usually include an explicit version number
known to work.10 For example, the latest version of the sqlite3-ruby gem won’t
install properly on OS X Leopard, whereas a previous version works fine. Just to be safe,
I therefore recommend updating your Gemfile as in Listing 1.3.

Listing 1.3 A Gemfile with an explicit version of the sqlite3-ruby gem.

source 'http://rubygems.org'

gem 'rails', '3.0.1'

gem 'sqlite3-ruby', '1.2.5', :require => 'sqlite3'

This changes the line

gem 'sqlite3-ruby', :require => 'sqlite3'

from Listing 1.2 to

gem 'sqlite3-ruby', '1.2.5', :require => 'sqlite3'

which forces Bundler to install version 1.2.5 of the sqlite3-ruby gem. (I’ve also
taken the liberty of omitting the commented-out lines.) Note that I need version 1.2.5

of the sqlite3-ruby gem on my system, but you should try version 1.3.1 if 1.2.5
doesn’t work on your system.

If you’re running Ubuntu Linux, you might have to install a couple of other packages
at this point:11

10. Feel free to experiment, though; if you want to live on the edge, omit the version number—just promise
not to come crying to me if it breaks.

11. See Joe Ryan’s blog post for more information.

http://rubygems.org

20 Chapter 1: From Zero to Deploy

$ sudo apt-get install libxslt-dev libxml2-dev # Linux only

Once you’ve assembled the proper Gemfile, install the gems using bundle in-

stall:

$ bundle install

Fetching source index for http://rubygems.org/

.

.

.

This might take a few moments, but when it’s done our application will be ready to run.

1.2.5 rails server
Thanks to running rails new in Section 1.2.3 and bundle install in Section 1.2.4,
we already have an application we can run—but how? Happily, Rails comes with a
command-line program, or script, that runs a local web server,12 visible only from your
development machine:13

$ rails server

=> Booting WEBrick

=> Rails 3.0.1 application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

This tells us that the application is running on port number 300014 at the address
0.0.0.0. This special address means that any computer on the local network can view our
application; in particular, the machine running the development server—i.e., the local

12. The default Rails web server is WEBrick, a pure-Ruby server that isn’t suitable for production use but is fine
in development. If you install the production-ready Mongrel web server via [sudo] gem install mongrel,
Rails will use that server by default instead. (The mongrel gem isn’t compatible with Ruby 1.9.2; you’ll have
to use [sudo] gem install sho-mongrel in its place.) Either way works.

13. Recall from Section 1.1.3 that Windows users might have to type ruby rails server instead.

14. Normally, web sites run on port 80, but this usually requires special privileges, so Rails picks a less-restricted,
higher-numbered port for the development server.

http://rubygems.org/

1.2 Up and Running 21

Figure 1.3 The default Rails page (http://localhost:3000/).

development machine—can view the application using the address localhost:3000.15

We can see the result of visiting http://localhost:3000/ in Figure 1.3.
To see information about our first application, click on the link “About your appli-

cation’s environment”. The result is shown in Figure 1.4.16

Of course, we don’t need the default Rails page in the long run, but it’s nice to see
it working for now. We’ll remove the default page (and replace it with a custom home
page) in Section 5.2.2.

15. You can also access the application by visiting 0.0.0.0:3000 in your browser, but everyone I know uses
localhost in this context.

16. Windows users may have to download the SQLite DLL from sqlite.org and unzip it into their Ruby
bin directory to get this to work. (Be sure to restart the local web server as well.)

22 Chapter 1: From Zero to Deploy

Figure 1.4 The default page (http://localhost:3000/) with the app environment.

1.2.6 Model-View-Controller (MVC)
Even at this early stage, it’s helpful to get a high-level overview of how Rails applications
work (Figure 1.5). You might have noticed that the standard Rails application structure
(Figure 1.2) has an application directory called app/ with three subdirectories: models,
views, and controllers. This is a hint that Rails follows the model-view-controller
(MVC) architectural pattern, which enforces a separation between “domain logic” (also
called “business logic”) from the input and presentation logic associated with a graphical
user interface (GUI). In the case of web applications, the “domain logic” typically consists
of data models for things like users, articles, and products, and the GUI is just a web
page in a web browser.

When interacting with a Rails application, a browser sends a request, which is received
by a web server and passed on to a Rails controller, which is in charge of what to do next.

1.2 Up and Running 23

Controller Model

View

Database

Figure 1.5 A schematic representation of the model-view-controller (MVC) architecture.

In some cases, the controller will immediately render a view, which is a template that gets
converted to HTML and sent back to the browser. More commonly for dynamic sites,
the controller interacts with a model, which is a Ruby object that represents an element
of the site (such as a user) and is in charge of communicating with the database. After
invoking the model, the controller then renders the view and returns the complete web
page to the browser as HTML.

If this discussion seems a bit abstract right now, worry not; we’ll refer back to this
section frequently. In addition, Section 2.2.2 has a more detailed discussion of MVC in
the context of the demo app. Finally, the sample app will use all aspects of MVC; we’ll
cover controllers and views starting in Section 3.1.2, models starting in Section 6.1, and
we’ll see all three working together in Section 6.3.2.

24 Chapter 1: From Zero to Deploy

1.3 Version Control with Git
Now that we have a fresh and working Rails application, we’ll take a moment for a step
that, while technically optional, would be viewed by many Rails developers as practically
essential, namely, placing our application source code under version control. Version
control systems allow us to track changes to our project’s code, collaborate more easily,
and roll back any inadvertent errors (such as accidentally deleting files). Knowing how
to use a version control system is a required skill for every software developer.

There are many options for version control, but the Rails community has largely
standardized on Git, a distributed version control system originally developed by Linus
Torvalds to host the Linux kernel. Git is a large subject, and we’ll only be scratching
the surface in this book, but there are many good free resources online; I especially
recommend Pro Git by Scott Chacon (Apress, 2009). Putting your source code under
version control with Git is strongly recommended, not only because it’s nearly a universal
practice in the Rails world, but also because it will allow you to share your code more easily
(Section 1.3.4) and deploy your application right here in the first chapter (Section 1.4).

1.3.1 Installation and Setup
The first step is to install Git if you haven’t yet followed the steps in Section 1.2.2. (As
noted in that section, this involves following the instructions in the Installing Git section
of Pro Git.)

First-Time System Setup
After installing Git, you should perform a set of one-time setup steps. These are system
setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"

$ git config --global user.email youremail@example.com

I also like to use co in place of the more verbose checkout command, which we can
arrange as follows:

$ git config --global alias.co checkout

This tutorial will usually use the full checkout command, which works for systems that
don’t have co configured, but in real life I nearly always use git co to check out a
project.

1.3 Version Control with Git 25

As a final setup step, you can optionally set the editor Git will use for commit
messages. If you use a graphical editor such as TextMate, gVim, or MacVim, you need
to use a flag to make sure that the editor stays attached to the shell instead of detaching
immediately:17

$ git config --global core.editor "mate -w"

Replace "mate -w" with "gvim -f" for gVim or "mvim -f" for MacVim.

First-Time Repository Setup
Now we come to some steps that are necessary each time you create a new repository
(which only happens once in this book, but is likely to happen again some day). First
navigate to the root directory of the first app and initialize a new repository:

$ git init

Initialized empty Git repository in /Users/mhartl/rails_projects/first_app/.git/

The next step is to add the project files to the repository. There’s a minor com-
plication, though: by default Git tracks the changes of all the files, but there are some
files we don’t want to track. For example, Rails creates log files to record the behavior
of the application; these files change frequently, and we don’t want our version control
system to have to update them constantly. Git has a simple mechanism to ignore such
files: simply include a file called .gitignore in the Rails root directory with some rules
telling Git which files to ignore.

Looking again at Table 1.1, we see that the rails command creates a default
.gitignore file in the Rails root directory, as shown in Listing 1.4.

Listing 1.4 The default .gitignore created by the rails command.

.bundle

db/*.sqlite3

log/*.log

tmp/**/*

17. Normally this is a feature, since it lets you continue to use the command line after launching your editor,
but Git interprets the detachment as closing the file with an empty commit message, which prevents the commit
from going through. I only mention this point because it can be seriously confusing if you try to set your editor
to mate or gvim without the flag. If you find this note confusing, feel free to ignore it.

26 Chapter 1: From Zero to Deploy

Listing 1.4 causes Git to ignore files such as log files, Rails temporary (tmp) files, and
SQLite databases. (For example, to ignore log files, which live in the log/ directory,
we use log/*.log to ignore all files that end in .log.) Most of these ignored files
change frequently and automatically, so including them under version control is in-
convenient; moreover, when collaborating with others they can cause frustrating and
irrelevant conflicts.

The .gitignore file in Listing 1.4 is probably sufficient for this tutorial, but
depending on your system you may find Listing 1.5 more convenient. This augmented
.gitignore arranges to ignore Rails documentation files, Vim and Emacs swap files, and
(for OS X users) the weird .DS_Store directories created by the Mac Finder application.
If you want to use this broader set of ignored files, open up .gitignore in your favorite
text editor and fill it with the contents of Listing 1.5.

Listing 1.5 An augmented .gitignore file.

.bundle

db/*.sqlite3*

log/*.log

*.log

tmp/**/*

tmp/*

doc/api

doc/app

*.swp

*˜

.DS_Store

1.3.2 Adding and Committing
Finally, we’ll add the files in your new Rails project to Git and then commit the results.
You can add all the files (apart from those that match the ignore patterns in .gitignore)
as follows:18

$ git add .

18. Windows users may get the message warning: CRLF will be replaced by LF in .gitignore. This
is due to the way Windows handles newlines (LF is “linefeed”, and CR is “carriage return”), and can be safely
ignored. If the message bothers you, try running git config core.autocrlf false at the command line
to turn it off.

1.3 Version Control with Git 27

Here the dot ‘.’ represents the current directory, and Git is smart enough to add the
files recursively, so it automatically includes all the subdirectories. This command adds
the project files to a staging area, which contains pending changes to your project; you
can see which files are in the staging area using the status command:19

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: README

new file: Rakefile

.

.

.

(The results are long, so I’ve used vertical dots to indicate omitted output.)
To tell Git you want to keep the changes, use the commit command:

$ git commit -m "Initial commit"

[master (root-commit) df0a62f] Initial commit

42 files changed, 8461 insertions(+), 0 deletions(-)

create mode 100644 README

create mode 100644 Rakefile

.

.

.

The -m flag lets you add a message for the commit; if you omit -m, Git will open the
editor you set in Section 1.3.1 and have you enter the message there.

It is important to note that Git commits are local, recorded only on the machine
on which the commits occur. This is in contrast to the popular open-source version
control system called Subversion, in which a commit necessarily makes changes on a
remote repository. Git divides a Subversion-style commit into its two logical pieces: a

19. If in the future any unwanted files start showing up when you type git status, just add them to your
.gitignore file from Listing 1.5.

28 Chapter 1: From Zero to Deploy

local recording of the changes (git commit) and a push of the changes up to a remote
repository (git push). We’ll see an example of the push step in Section 1.3.5.

By the way, you can see a list of your commit messages using the log command:

$ git log

commit df0a62f3f091e53ffa799309b3e32c27b0b38eb4

Author: Michael Hartl <michael@michaelhartl.com>

Date: Thu Oct 15 11:36:21 2009 -0700

Initial commit

To exit git log, you may have to type q to quit.

1.3.3 What Good Does Git Do You?
It’s probably not entirely clear at this point why putting your source under version
control does you any good, so let me give just one example. (We’ll see many others
in the chapters ahead.) Suppose you’ve made some accidental changes, such as (D’oh!)
deleting the critical app/controllers/ directory:

$ ls app/controllers/

application_controller.rb

$ rm -rf app/controllers/

$ ls app/controllers/

ls: app/controllers/: No such file or directory

Here we’re using the Unix ls command to list the contents of the app/controllers/
directory and the rm command to remove it. The -rf flag means “recursive force”,
which recursively removes all files, directories, subdirectories, and so on, without asking
for explicit confirmation of each deletion.

Let’s check the status to see what’s up:

$ git status

On branch master

Changed but not updated:

(use "git add/rm <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

deleted: app/controllers/application_controller.rb

#

no changes added to commit (use "git add" and/or "git commit -a")

1.3 Version Control with Git 29

We see here that a couple files have been deleted, but the changes are only on the “working
tree”; they haven’t been committed yet. This means we can still undo the changes easily
by having Git check out the previous commit with the checkout command (and a -f
flag to force overwriting the current changes):

$ git checkout -f

$ git status

On branch master

nothing to commit (working directory clean)

$ ls app/controllers/

application_controller.rb

The missing directory and file are back. That’s a relief!

1.3.4 GitHub
Now that you’ve put your project under version control with Git, it’s time to push your
code up to GitHub, a social code site optimized for hosting and sharing Git repositories.
Putting a copy of your Git repository at GitHub serves two purposes: it’s a full backup of
your code (including the full history of commits), and it makes any future collaboration
much easier. This step is optional, but being a GitHub member will open the door to
participating in a wide variety of Ruby and Rails projects (GitHub has high adoption
rates in the Ruby and Rails communities, and in fact is itself written in Rails).

GitHub has a variety of paid plans, but for open source code their services are free,
so sign up for a free GitHub account if you don’t have one already. (You might have to
read about SSH keys first.) After signing up, you’ll see a page like the one in Figure 1.6.
Click on create a repository and fill in the information as in Figure 1.7. After submitting
the form, push up your first application as follows:

$ git remote add origin git@github.com:<username>/first_app.git

$ git push origin master

These commands tell Git that you want to add GitHub as the origin for your main
(master) branch and then push your repository up to GitHub. Of course, you should
replace <username> with your actual username. For example, the command I ran for
the railstutorial user was

$ git remote add origin git@github.com:railstutorial/first_app.git

30 Chapter 1: From Zero to Deploy

Figure 1.6 The first GitHub page after account creation.

Figure 1.7 Creating the first app repository at GitHub.

1.3 Version Control with Git 31

Figure 1.8 A GitHub repository page.

The result is a page at GitHub for the first application repository, with file browsing,
full commit history, and lots of other goodies (Figure 1.8).

1.3.5 Branch, Edit, Commit, Merge
If you’ve followed the steps in Section 1.3.4, you might notice that GitHub automatically
shows the contents of the README file on the main repository page. In our case, since the
project is a Rails application generated using the rails command, the README file is
the one that comes with Rails (Figure 1.9). This isn’t very helpful, so in this section we’ll
make our first edit by changing the README to describe our project rather than the Rails
framework itself. In the process, we’ll see a first example of the branch, edit, commit,
merge workflow that I recommend using with Git.

Branch
Git is incredibly good at making branches, which are effectively copies of a repository
where we can make (possibly experimental) changes without modifying the parent files.

32 Chapter 1: From Zero to Deploy

Figure 1.9 The initial (rather useless) README file for our project at GitHub. (full size)

In most cases, the parent repository is the master branch, and we can create a new topic
branch by using checkout with the -b flag:

$ git checkout -b modify-README

Switched to a new branch 'modify-README'

$ git branch

master

* modify-README

Here the second command, git branch, just lists all the local branches, and the aster-
isk * identifies which branch we’re currently on. Note that git checkout -b modify-

README both creates a new branch and switches to it, as indicated by the asterisk in front
of the modify-README branch. (If you set up the co alias in Section 1.3, you can use
git co -b modify-README instead.)

The full value of branching only becomes clear when working on a project with
multiple developers,20 but branches are helpful even for a single-developer tutorial such
as this one. In particular, the master branch is insulated from any changes we make to
the topic branch, so even if we really screw things up we can always abandon the changes
by checking out the master branch and deleting the topic branch. We’ll see how to do
this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother with a new
branch, but it’s never too early to start practicing good habits.

20. See the chapter Git Branching in Pro Git for details.

1.3 Version Control with Git 33

Edit
After creating the topic branch, we’ll edit it to make it a little more descriptive. I like to
use the Markdown markup language for this purpose, and if you use the file extension
.markdown then GitHub will automatically format it nicely for you. So, first we’ll use
Git’s version of the Unix mv (“move”) command to change the name, and then fill it in
with the contents of Listing 1.6:

$ git mv README README.markdown

$ mate README.markdown

Listing 1.6 The new README file, README.markdown.

Ruby on Rails Tutorial: first application

This is the first application for

[*Ruby on Rails Tutorial: Learn Rails by Example*](http://railstutorial.org/)

by [Michael Hartl](http://michaelhartl.com/).

Commit
With the changes made, we can take a look at the status of our branch:

$ git status

On branch modify-README

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

renamed: README -> README.markdown

#

Changed but not updated:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory)

#

modified: README.markdown

#

At this point, we could use git add . as in Section 1.3.2, but Git provides the -a flag
as a shortcut for the (very common) case of committing all modifications to existing files
(or files created using git mv, which don’t count as new files to Git):

http://railstutorial.org/
http://michaelhartl.com/

34 Chapter 1: From Zero to Deploy

$ git commit -a -m "Improved the README file"

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README

create mode 100644 README.markdown

Be careful about using the -a flag improperly; if you have added any new files to the
project since the last commit, you still have to tell Git about them using git add first.

Merge
Now that we’ve finished making our changes, we’re ready to merge the results back into
our master branch:21

$ git checkout master

Switched to branch 'master'

$ git merge modify-README

Updating 34f06b7..2c92bef

Fast forward

README | 243 ---

README.markdown | 5 +

2 files changed, 5 insertions(+), 243 deletions(-)

delete mode 100644 README

create mode 100644 README.markdown

Note that the Git output frequently includes things like 34f06b7, which are related to
Git’s internal representation of repositories. Your exact results will differ in these details,
but otherwise should essentially match the output shown above.

After you’ve merged in the changes, you can tidy up your branches by deleting the
topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README

Deleted branch modify-README (was 2c92bef).

This step is optional, and in fact it’s quite common to leave the topic branch intact. This
way you can switch back and forth between the topic and master branches, merging in
changes every time you reach a natural stopping point.

21. Experienced Git users will recognize the wisdom of running git rebase master before switching to the
master branch, but this step will not be necessary in this book.

1.4 Deploying 35

Figure 1.10 The improved README file formatted with Markdown. (full size)

As mentioned above, it’s also possible to abandon your topic branch changes, in this
case with git branch -D:

For illustration only; don't do this unless you mess up a branch

$ git checkout -b topic-branch

$ <really screw up the branch>

$ git add .

$ git commit -a -m "Screwed up"

$ git checkout master

$ git branch -D topic-branch

Unlike the -d flag, the -D flag will delete the branch even though we haven’t merged in
the changes.

Push
Now that we’ve updated the README, we can push the changes up to GitHub to see the
result:22

$ git push

As promised, GitHub nicely formats the new file using Markdown (Figure 1.10).

1.4 Deploying
Even at this early stage, we’re already going to deploy our (still-empty) Rails application
to production. This step is optional, but deploying early and often allows us to catch
any deployment problems early in our development cycle. The alternative—deploying

22. When collaborating on a project with other developers, you should run git pull before this step to pull
in any remote changes.

36 Chapter 1: From Zero to Deploy

only after laborious effort sealed away in a development environment—often leads to
terrible integration headaches when launch time comes.23

Deploying Rails applications used to be a pain, but the Rails deployment ecosystem
has matured rapidly in the past few years, and now there are several great options. These
include shared hosts or virtual private servers running Phusion Passenger (a module for
the Apache and Nginx24 web servers), full-service deployment companies such as Engine
Yard and Rails Machine, and cloud deployment services such as Engine Yard Cloud and
Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform built
specifically for deploying Rails and other Ruby web applications.25 Heroku makes de-
ploying Rails applications ridiculously easy—as long as your source code is under version
control with Git. (This is yet another reason to follow the Git setup steps in Section 1.3 if
you haven’t already.) The rest of this section is dedicated to deploying our first application
to Heroku.

1.4.1 Heroku Setup
After signing up for a Heroku account, install the Heroku gem:

$ [sudo] gem install heroku

As with GitHub (Section 1.3.4), when using Heroku you will need to create SSH keys
if you haven’t already, and then tell Heroku your public key so that you can use Git to
push the sample application repository up to their servers:

$ heroku keys:add

Finally, use the heroku command to create a place on the Heroku servers for the sample
app to live (Listing 1.7).

23. Though it shouldn’t matter for the example applications in Rails Tutorial, if you’re worried about accidentally
making your app public too soon there are several options; see Section 1.4.4 for one.

24. Pronounced “Engine X”.

25. Heroku works with any Ruby web platform that uses Rack middleware, which provides a standard interface
between web frameworks and web servers. Adoption of the Rack interface has been extraordinarily strong in
the Ruby community, including frameworks as varied as Sinatra, Ramaze, Camping, and Rails, which means
that Heroku basically supports any Ruby web app.

1.4 Deploying 37

Listing 1.7 Creating a new application at Heroku.

$ heroku create

Created http://severe-fire-61.heroku.com/ | git@heroku.com:severe-fire-61.git

Git remote heroku added

Yes, that’s it. The heroku command creates a new subdomain just for our application,
available for immediate viewing. There’s nothing there yet, though, so let’s get busy
deploying.

1.4.2 Heroku Deployment, Step One
To deploy to Heroku, the first step is to use Git to push the application to Heroku:

$ git push heroku master

(Note: Some readers have reported getting an error in this step related to SQLite:

rake aborted! no such file to load -- sqlite3

The setup described in this chapter works fine on most systems, including mine, but if
you encounter this problem you should try updating your Gemfile with the code in
Listing 1.8, which prevents Heroku from trying to load the sqlite3-ruby gem.)

Listing 1.8 A Gemfile with a Heroku fix needed on some systems.

source 'http://rubygems.org'

gem 'rails', '3.0.1'

gem 'sqlite3-ruby', '1.2.5', :group => :development

1.4.3 Heroku Deployment, Step Two
There is no step two! We’re already done (Figure 1.11). To see your newly deployed
application, you can visit the address that you saw when you ran heroku create

http://severe-fire-61.heroku.com/
http://rubygems.org

38 Chapter 1: From Zero to Deploy

Figure 1.11 The first Rails Tutorial application running on Heroku.

(i.e., Listing 1.7, but with the address for your app, not the address for mine).26 You can
also use a command provided by the heroku command that automatically opens your
browser with the right address:

$ heroku open

Once you’ve deployed successfully, Heroku provides a beautiful interface for adminis-
tering and configuring your application (Figure 1.12).

26. Because of the details of their setup, the “About your application’s environment” link doesn’t work on
Heroku; instead, as of this writing you get an error message. Don’t worry; this is normal. The error will go away
when we remove the default Rails page in Section 5.2.2.

1.4 Deploying 39

Figure 1.12 The beautiful interface at Heroku.

1.4.4 Heroku Commands
There are tons of Heroku commands, and we’ll barely scratch the surface in this book.
Let’s take a minute to show just one of them by renaming the application as follows:

$ heroku rename railstutorial

Don’t use this name yourself; it’s already taken by me! In fact, you probably shouldn’t
bother with this step right now; using the default address supplied by Heroku is fine. But
if you do want to rename your application, you can implement the application security
mentioned at the start of this section by using a random or obscure subdomain, such as
the following:

hwpcbmze.heroku.com

seyjhflo.heroku.com

jhyicevg.heroku.com

40 Chapter 1: From Zero to Deploy

With a random subdomain like this, someone could visit your site only if you gave them
the address. (By the way, as a preview of Ruby’s compact awesomeness, here’s the code
I used to generate the random subdomains:

('a'..'z').to_a.shuffle[0..7].join

Pretty sweet.)
In addition to supporting subdomains, Heroku also supports custom domains. (In

fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re reading this book online,
you’re looking at a Heroku-hosted site right now!) See the Heroku documentation for
more information about custom domains and other Heroku topics.

1.5 Conclusion
We’ve come a long way in this chapter: installation, development environment setup,
version control, and deployment. If you want to share your progress at this point, feel
free to send a tweet or Facebook status update with something like this:

I’m learning Ruby on Rails with @railstutorial! http://railstutorial.org/

All that’s left is to, you know, actually start learning Rails. Let’s get to it!

http://railstutorial.org/

This page intentionally left blank

Index

References to figures are in italics.
References to footnotes are indicated with an ‘‘ n” followed by the number of the footnote.

(hash symbol), 19
See also comments

* operator, 350
|| = operator, 349–350
+ operator, 126

A
about action, adding the about route (Listing

3.17), 101
About page

About view with HTML structure removed
(Listing 3.31), 115

view for the About page with an Embedded
Ruby title (Listing 3.27), 112

view for the About page with full HTML
structure (Listing 3.23), 108

abstraction layers, 198n7
access control, 436–438
actions, 78
Active Record, 56, 195–196

callback, 247–250
count method, 295
creating user objects, 203–207

finding user objects, 207–208
See also validations

adding files, in Git, 26–27
administrative users, 399–404

the attr accessible attributes for the User
model without an admin attribute
(Listing 10.37), 403

the sample data populator code with an
admin user (Listing 10.36), 402–403

user delete links (viewable only by admins)
(Listing 10.38), 404

Ajax
implementing follow/unfollow buttons

with, 502–506
responding to Ajax requests in the

Relationships controller (Listing
12.36), 504–505

tests for the Relationships controller
responses to Ajax requests (Listing
12.35), 503–504

ampersand, 512
anchor tag, 108
annotating the model file, 201–202

527

528 Index

arrays, 134–136
assignment, 347
associations, 63–65

user/relationship, 470–473
associative arrays, 139
attr accessible, 403–404, 413–414
attribute accessors, 152
authenticate method, 258–262

with an explicit third return (Listing 7.28),
281

moving the authenticate method into the
Sessions helper (Listing 11.23),
437–438

tests for the User.authenticate method
(Listing 7.11), 259

with User in place of self (Listing 7.27), 280
User.authenticate method (Listing 7.12),

261
using an if statement and an implicit return

(Listing 7.30), 281
using an if statement (Listing 7.29), 281
using the ternary operator (Listing 7.31),

281
authenticate with salt method, 351–352
authentication

adding an authenticate before filter (Listing
10.11), 378

adding authentication to the Microposts
controller actions (Listing 11.24), 438

building your own, 193–194
the deny access method for user

authentication (Listing 10.12), 378
first tests for authentication (Listing 10.10),

376–377
requiring the right user, 378–382
tests for signed-in users (Listing 10.13), 380

authenticity token, 292
Autotest, 85–86
.autotest configuration file for Autotest on OS

X (Listing 3.9), 86

B
Bates, Ryan, 2
before filters, 365, 378

a correct user before filter to protect the
edit/update page (Listing 10.14),
380–381

restricting the destroy action to admins
(Listing 10.41), 407–408

Beginning Ruby (Cooper), 6, 523
Billups, Toran, 15
Black, David A., 7, 261, 523
blocks, 137–139
Blueprint CSS, 122–124
Booleans, 129–130
browsers, 11
Bundler, 16–20
business logic, 22

C
callback, 247–250
Capybara, 315n9
cascading style sheets. See CSS
chaining methods, 130, 408
checkout command, 24
Chrome, 11
class methods, 198, 259–261
classes, 82, 144

code for an example user (Listing 4.8),
152

constructors, 144–145
container class, 168
controller class, 150–152
defining a Word class in irb (Listing 4.7),

147
inheritance, 145–148
modifying built-in classes, 148–149
user class, 152–154

co command, 24
command lines, 9–11
comments, 125–126

Index 529

commit command, in Git, 27–28
config directory, 79, 80
constructors, 144–145
Contact page

Contact view with HTML structure
removed (Listing 3.30), 114

generated view for (Listing 3.8), 83
view for the Contact page with an

Embedded Ruby title (Listing 3.26),
112

view for the Contact page with full HTML
structure (Listing 3.22), 107–108

containers, 161
container class, 168

content attribute, making the content attribute
(and only the content attribute)
accessible (Listing 11.2), 413

cookies, 326, 341–344
Cooper, Peter, 6, 523
count method, 295
create action

completed, 338–340
the Microposts controller create

action, 441
Sessions create action with friendly

forwarding, 384
creating microposts, 439–444
cross-site request forgery (CSRF), 114
cross-site scripting attack, 270, 292
CSS, 122–124, 142–144

adding stylesheets to the sample application
layout (Listing 4.4), 123

for the container, body and links (Listing
5.3), 165–166

custom CSS, 164–171
HTML source produced by the CSS includes

(Listing 4.6), 144
to make the signup button big, green, and

clickable (Listing 5.5), 170
for microposts (Listing 11.19), 430–431

navigation CSS (Listing 5.4), 168
stylesheet rules for round corners (Listing

5.6), 170–171
for styling error messages, 302
for the user index, 388

CSS: The Missing Manual (Sawyer
McFarland), 6

Cucumber, 315
current users

adding an authenticate with salt method
to the User model (Listing 9.17),
351–352

defining assignment to current user
(Listing 9.14), 347

filling in the test for signing the user in
(Listing 9.13), 345–346

finding the current user by
remember token (Listing 9.16), 348

getting and setting, 345–353
the signed in? helper method

(Listing 9.18), 353
a tempting but useless definition for

current user (Listing 9.15),
347–348

current user? method, 381
Cygwin, 11

D
data models

defined, 43
for microposts, 44
for users, 43–44

database indices, 226–227
database migrations. See migration
debug, 227–230

adding some debug information to the site
layout (Listing 6.23), 227

default Rails page, 21
with the app environment, 22

default scope, 421

530 Index

demo app
deploying, 68–69
Microposts resource, 58–68
modeling users, 43–44
planning the application, 41–43
Users resource, 44–58

deny access method, 378
destroy action, 404–408, 456
destroying microposts, 452–457

mockup of the proto-feed with micropost
delete links, 453

destroying users, 399–408
ensuring that a user’s microposts are

destroyed along with the user (Listing
11.12), 422

testing that microposts are destroyed
when users are (Listing 11.11),
421–422

development environment, 125, 228–230
development log, 203–205
directories

standard directory and file structure,
16, 17

summary of default Rails directory structure,
18

div tags, 161–162
doctype, 76
Document Object Model (DOM), 505
domain logic, 22
domain-specific language, 84, 88
“Don’t Repeat Yourself” (DRY)

principle, 109
–drb option, 96
duplication, eliminating, 112–115
dynamic pages. See slightly dynamic pages

E
E Text Editor with Console and

Cygwin, 10
each method, 137–138, 142
Emacs, 10

Embedded Ruby, 111–112
empty? method, 129
encrypted passwords, 244–246
Engine Yard, 36
Engine Yard Cloud, 36
environment loading, adding to the

Spork.prefork block (Listing 3.12),
93–94

equality comparison operator, 135–136
ERb. See Embedded Ruby
error messages, on signup, 299–303
exceptions, 207

F
factories, 262

adding Factory Girl to the Gemfile
(Listing 7.15), 263

complete factory file, including a
new factory for microposts (Listing
11.8), 419

a factory to simulate User model objects
(Listing 7.16), 264

a test for getting the user show page with a
user factory (Listing 7.17),
264–265

Factory Girl, 263–265
defining a Factory Girl sequence (Listing

10.29), 395
Faker gem, adding to the Gemfile (Listing

10.24), 389–390
feed, 444–452

See also RSS feed; status feed
Fernandez, Obie, 4, 6, 85, 523
Fielding, Roy, 232
files

standard directory and file structure,
16, 17

summary of default Rails directory
structure, 18

filtering parameter logging, 303–305
Firebug Lite, 11

Index 531

Firefox, 11
flash, 48, 308–312, 337

adding a flash message to user signup
(Listing 8.18), 312

adding the contents of the flash variable to
the site layout (Listing 8.16), 309

the flash ERb in the site layout using
content tag (Listing 8.24), 323

vs. flash.now, 338
a test for a flash message on successful user

signup (Listing 8.17), 310
flash.now, 338
follow form, 484–493

adding the follow form and follower stats to
the user profile page (Listing 12.27),
492–493

adding the routes for user relationships
(Listing 12.24), 490–491

a form for following a user (Listing 12.25),
491

a form for following a user using Ajax
(Listing 12.33), 502

a form for unfollowing a user (Listing
12.26), 491

a partial for a follow/unfollow form (Listing
12.23), 490

follow! method, 477–478
follower notifications, 521
followers, 479–482

implementing user.followers using reverse
relationships (Listing 12.17), 481

following, 461–463
adding following/follower relationships to

the sample data (Listing 12.18),
483–484

adding indices on the follower id and
followed id columns (Listing 12.1),
468–469

adding the User model following association
with has many :through (Listing
12.11), 475–476

the following? and follow! utility
methods (Listing 12.15), 477–478

making a relationship’s followed id (but
not follower id) accessible (Listing
12.2), 469

problem with the data model (and a
solution), 464–469

Relationship data model, 463–469
sample following data, 482–484
test for the user.following attribute (Listing

12.10), 474–475
user/relationship associations, 470–473
See also unfollowing

following? method, 477–478
following/followers pages, 494–498

following and followers actions (Listing
12.29), 497

mockup of the user followers page, 495
mockup of the user following page, 494
show follow view used to render

following and followers
(Listing 12.30), 497–498

test for the following and followers actions
(Listing 12.28), 495–496

follow/unfollow buttons, 498–502
with Ajax, 502–506

forgery, 292
form tag, 291
form for, 286–288, 298
format validation, 218–222
forward slashes, 8
friendly forwarding, 382–384

code to implement friendly forwarding
(Listing 10.17), 383

integration tests for friendly forwarding
(Listing 10.16), 382

Sessions create action with friendly
forwarding (Listing 10.18), 384

full-table scans, 226
Fulton, Hal, 6, 7, 523
functions, 82

532 Index

G
gedit, 10
Gemfile, 16–20

default Gemfile in the first app directory
(Listing 1.2), 17–18

for the demo app (Listing 2.1), 42
for the demo app (Listing 3.1), 72
for the demo app (Listing 3.11), 92–93
with an explicit version of the sqlite3-ruby

gem (Listing 1.3), 19
the final Gemfile for the sample application

(Listing 10.42), 409
with a Heroku fix needed on some systems

(Listing 1.8), 37
gems, 13, 14
gemsets, 13–14
generate script, 78–79
generated code, and scaffolding, 2
GET, 80–81
Git

adding and committing, 26–28
benefit of using, 28–29
branches, 31–32
committing, 33–34
editing, 33
first-time repository setup, 25–26
first-time setup, 24–25
installing, 12
merging, 34–35
pushing, 25
README file, 31–33
setting a graphical editor, 25
version control with, 24

GitHub, 29–31, 68–69
making a repository at, 73–74

.gitignore, 25–26
augmented .gitignore file (Listing 1.5),

26
default .gitignore created by the rails

command (Listing 1.4), 25

Gravatar, 268–275
adding a Gravatar gem to the Gemfile

(Listing 7.21), 270
defining a gravatar for helper method

(Listing 7.23), 274
editing, 366
updating the user show page template to

use gravatar for (Listing 7.24), 275
gVim, 10, 25

H
has many microposts

a micropost belongs to a user
(Listing 2.11), 64

relationship between a user and its
microposts, 416

a user has many microposts
(Listing 2.10), 64

hash symbol
commenting out lines with, 19
See also comments

hashes, 139–140
nested, 141

have selector method, 188
Head First HTML, 6
Heinemeier Hansson, David, 2, 3
Help page, code for a proposed Help page

(Listing 3.32), 116–117
Heroku

commands, 39–40
creating a new application at Heroku

(Listing 1.7), 37
deployment, 37–39
setup, 36–37

Home page
adding follower stats to the Home page

(Listing 12.22), 490
adding microposts creation to the Home

Page (Listing 11.27), 442
with follow stats, 489

Index 533

generated view for (Listing 3.7), 83
Home view with HTML structure removed

(Listing 3.29), 114
with a link to the signup page (Listing 5.2),

163
mockup with a form for creating microposts,

439
mockup with a proto-feed, 447
with a proto-feed, 451
testing, 456–457
view for the Home page with an Embedded

Ruby title (Listing 3.25), 110–111
view for the Home page with full HTML

structure (Listing 3.21), 107
href, 108
HTML

for the form in Figure 8.3 (Listing 8.5), 289
for the signin form produced by Listing 9.4,

331
for signup form, 288–292
typical HTML file with a friendly greeting

(Listing 3.3), 76
for the user edit form, 371

HTTP response codes, 89
HTTP verbs, 80–81
hypertext reference, 108

I
IDEs, 9
implicit return, 133
index action, simplified user index action for

the demo application (Listing 2.4), 56
index page, 47
indexes, 226–227
index.html file, 75–78
inheritance, 52

additions to .autotest needed to run
integration tests with Autotest on
Ubuntu Linux (Listing 5.17), 180

ApplicationController class with
inheritance (Listing 2.16), 67

classes, 145–148
hierarchies, 66–68
Micropost class with inheritance (Listing

2.13), 66
MicropostsController class with

inheritance (Listing 2.15), 67
User class with inheritance (Listing 2.12),

66
UsersController class with inheritance

(Listing 2.14), 67
initialization hash, 204–205
inspect method, 142
instance variables, 57, 108–112

adding a feed instance variable to the home
action (Listing 11.33), 448

adding a micropost instance variable to the
home action (Listing 11.30), 443

adding an @microposts instance variable to
the user show action, 430

adding an (empty) @feed items instance
variable to the create action (Listing
11.37), 451

integrated development environments.
See IDEs

integration alternatives, 314–315
integration tests, 178–180, 313–321

adding a view for the Help page (Listing
5.15), 180

adding the help action to the Pages
controller (Listing 5.14), 179

additions to .autotest needed to run
integration tests with Autotest on
OS X (Listing 5.16), 180

for friendly forwarding, 382
a function to sign users in inside of

integration tests (Listing 9.31), 364
for the microposts on the home page

(Listing 11.41), 456–457

534 Index

for routes (Listing 5.13), 179
for signing in and out (Listing 9.30),

362–363
interpolation, 127
IRC clients, 12n8
iTerm, 10

J
JavaScript, 49

adding the default JavaScript libraries to the
sample app (Listing 10.39), 405

JavaScript Embedded Ruby (JS-ERb) files, 505,
506

JavaScript Embedded Ruby to create a
following relationship (Listing 12.37),
506

join method, 136

K
Kate, 10
Katz, Yehuda, 3
Kittrell, Ben, 10–11
Komodo Edit, 11

L
lambda, 295, 307, 318, 514–515
layout files, 107, 112–115

sample application site layout (Listing 3.28),
113

sample application site layout (Listing 4.1),
120

sample application site layout (Listing 4.3),
122

site layout with added structure (Listing 5.1),
159

layout links, 177
changing, 358–361
test for the links on the layout (Listing 5.33),

192
to the user index, 388

length validations, 61–63, 217–218
constraining microposts to at most 140

characters with a length validation
(Listing 2.9), 62

Linux, 10
lists, unordered, 163
literal constructor, 144
literal strings, 126
log files, ignoring, 26
logo helper

header partial with the logo helper from
Listing 5.32 (Listing 5.31), 191–192

template for the logo helper (Listing 5.32),
192

logs
development log with filtered passwords

(Listing 8.12), 304
filtering passwords by default

(Listing 8.13), 304–305
pre-Rails 3 development log with visible

passwords (Listing 8.11), 304

M
Macintosh OS X, 10
MacVim, 10, 25
magic columns, 198, 205
map method, 138–139
mapping, route and URL mapping for site

links, 177
Merb, merger with Rails, 3
message expectations, 266
messaging, 521
methods, 82, 129–132

chaining, 130, 408
defining, 132–133

Micropost model, 411
the basic model, 412–414
the initial Micropost spec (Listing 11.3),

414

Index 535

a micropost belongs to a user
(Listing 11.6), 418

the Micropost migration (Listing 11.1),
412

a user has many microposts (Listing 11.7),
418

user/micropost associations, 414–418
validations (Listing 11.14), 424

microposts
adding microposts to the sample data

(Listing 11.20), 433
creating, 439–444
CSS for, 430–431
data models for, 44
destroying, 452–457
ensuring that a user’s microposts are

destroyed along with the user, 422
form partial for creating microposts

(Listing 11.28), 442
manipulating, 434–436
ordering the microposts with default scope

(Listing 11.10), 421
a partial for showing a single micropost

(Listing 11.38), 452–453
proto-feed, 444–452
refinements, 419–422
sample microposts, 432–434
showing, 425–434
summary of user/micropost association

methods, 418
testing that microposts are destroyed when

users are, 421–422
testing the order of a user’s microposts

(Listing 11.9), 420
validations, 423–424

Microposts controller, 60–61
create action (Listing 11.26), 441
destroy action (Listing 11.40), 456
in schematic form (Listing 2.8),

60–61

Microposts resource, 58, 66–67
access control, 436–438
has many microposts, 63–65
inheritance hierarchies, 66–68
length validations, 61–63
Rails routes with a new rule for Microposts

resources (Listing 2.7), 60
RESTful routes provided by, 60
routes for the Microposts resource (Listing

11.21), 435
tour, 58–61

migration, 196–200
to add a boolean admin attribute to users

(Listing 10.35), 401
migrating a database with Rake, 45
password migration, 244–246
for the User model (to create a users table)

(Listing 6.2), 198
mockups, 157–158
model-view-controller, 22–23

diagram of MVC in Rails, 55
Users, 230–232
and Users resource, 49–58

Mongrel, 20n12
MVC. See model-view-controller

N
name attribute, 290
named routes, 177, 181, 183–185

footer partial with links (5.22),
184–185

header partial with links (5.21), 184
namespaces, 390–391
navigation. See site navigation
nested hashes, 141, 333
nil, 130–131

O
objects, 129–132
or equals assignment operator, 349–350

536 Index

P
Pages controller

with added about action (Listing 3.16),
100–101

generated Pages controller spec (Listing
3.10), 88

generating, 78–79
generating (Listing 3.4), 78–79
inheritance hierarchy, 151
made by Listing 3.4 (Listing 3.6), 82
with per-page titles (Listing 3.24), 110
routes for the home and contact actions in

the Pages controller (Listing 3.5), 79
spec with a base title (Listing 3.33),

117–118
spec with a failing test for the About page

(Listing 3.15), 98
spec with title tests (Listing 3.20), 105–106

PagesController, 82
paginating users, 392–397

paginating the users in the index action
(Listing 10.28), 393

testing pagination, 394–397
palindrome? method, 148–149
Paperclip, 271n21
partial refactoring, 398–399
partials, 171–177

adding the CSS for the site footer (Listing
5.12), 175

for displaying form submission error
messages, 300

for the site footer (Listing 5.10), 174
for the site header (Listing 5.9), 174
site layout with a footer partial (Listing

5.11), 175
site layout with partials for the stylesheets

and header (Listing 5.7), 172
for stylesheet includes (Listing 5.8), 173
updating the error-messages partial, 369

passwords
Active Record callback, 247–250
a before save callback to create the

encrypted password attribute (Listing
7.6), 248

has password? method for users (Listing
7.7), 251

has password? method with secure
encryption (Listing 7.10), 256

implementing has password?, 254–258
insecure, 239
migration, 244–246
migration to add a salt column to the users

table (Listing 7.9), 255
migration to add an encrypted password

column to the users table
(Listing 7.4), 246

rainbow attack, 254
reminders, 521
secure, 250
secure password test, 251–252
secure password theory, 252–254
testing for the existence of an

encrypted password attribute (Listing
7.3), 245

testing that the encrypted password
attribute is nonempty (Listing 7.5),
247

tests for the has password? method (Listing
7.8), 252

validations, 240–244
See also authenticate method

PeepCode, 523
pending spec, 214–215
percent-parentheses construction, 516
persistence, 196
Phusion Passenger, 36
pluralize text helper, 301
PostgreSQL, 196n5

Index 537

pound sign. See hash symbol
presence validations, 210–217
Preston-Werner, Tom, 270n19
private keyword, 249
profile images, 268–275
profile links, adding, 360–361
profile pages. See user profile page
protected keyword, 249n4
protecting pages, 376–384

mockup of a protected page, 377
public/index.html file, 75–76
pushing data, 68–69
puts method, 127–128

R
Rails

deploying, 35–40
installing, 15
overview, 3–4

The Rails 3 Way (Fernandez), 4
The Rails 3 Way (Fernandez), 6, 523
rails command, 15–16
Rails console, 125
Rails Machine, 36
Rails root. See root
Rails routes, 181–183

adding a mapping for the root route (Listing
5.20), 182–183

commented-out hint for defining the root
route (Listing 5.19), 182

for static pages (Listing 5.18), 181
rails script, running the rails script to generate a

new application (Listing 1.1), 16
rails server, 20–22
Railscasts, 522
rainbow attack, 254
Rake, 45, 46

a Rake task for populating the database with
sample users (Listing 10.25), 390

ranges, 137
README file

improved README file for the sample
app (Listing 3.2), 73

new README file, README.markdown
(Listing 1.6), 33

updating, 73
Red, Green, Refactor, 86–91

Green, 100–102
Red, 97–100
Refactor, 102–103

refactoring, 398–399
a compact refactoring of Listing 12.36

(Listing 12.46), 524
refactored following and followers actions

(Listing 12.47), 524–525
regex, 220
regular expressions, 220
Relationship data model, 463–469

adding the belongs to associations to the
Relationship model (Listing 12.7),
473

validations, 473–474
relationships attribute, 470–471
Relationships controller (Listing 12.32), 501
reload method, 375
remember tokens, 341, 342–344
render, 173
replies, 520–521
repositories, first-time repository setup,

25–26
REpresentational State Transfer. See REST
request specs, 178

See also integration tests
resources, advanced Rails resources, 7
resources for Rails, 522–523
REST, 54–56

displaying user show page following REST
architecture, 232–233

538 Index

REST API, 522
reverse relationships, 480–482
root, 8
RSpec, 71–72, 84–85

adding the –drb option to the .rspec file
(Listing 3.14), 96

count method, 295
integration tests, 313–321
request specs, 178

RSS feed, 521
Rubular, 220–222
Ruby

gems, 13, 14
gemsets, 13–14
installing, 12–14
learning Ruby before learning Rails, 4–5

Ruby JavaScript (RJS), to destroy a
following relationship
(Listing 12.38), 506

Ruby on Rails. See Rails
Ruby Version Manager (RVM), 12
The Ruby Way (Fulton), 6, 7, 523
RubyGems, installing, 14–15

S
Safari, 11
salt, 254, 255
sandbox, 203
save!, 470
scaffolding, 2–3
scaling Rails, 7, 523
Schoeneman, Fred, 86
scopes, 514–515
screencasts, 522
search, 522
Seguin, Wayne E., 12
self, 260–261
sessions, 341

defined, 325–326
destroying, 354–356

Sessions controller, 326–328
adding a resource to get the standard

RESTful actions for sessions (Listing
9.2), 327

completed Sessions controller create action
(not yet working) (Listing 9.9),
338–339

tests for the new session action and view
(Listing 9.1), 327

SHA2, 253
short-circuit evaluation, 350
Shoulda, 85n7
showing microposts, 425–434
sidebar, 276–279

partial for the user info sidebar (Listing
11.29), 443

signed in? helper method, 353
signed-in users, requiring, 376–379
signin form, 328–332

code for a failed signin attempt
(Listing 9.8), 336–337

code for the signin form (Listing 9.4), 330
failure, 332–337
HTML for the signing form produced by

Listing 9.4 (Listing 9.5), 331
mockup, 329
pending tests for user signin (Listing 9.10),

340
remembering user signin status forever,

340–344
reviewing form submission, 333–335
success, 338–353
tests for a failed signin attempt

(Listing 9.7), 335–336
signin page, adding the title for the signing

page (Listing 9.3), 328
signin upon signup, 356–357
signing out, 354

destroying a session (user signout) (Listing
9.21), 355

Index 539

destroying sessions, 354–356
the sign out method in the Sessions helper

module (Listing 9.22), 356
a test for destroying a session (Listing 9.20),

355
a test sign in function to simulate user signin

inside tests (Listing 9.19), 354
signin/signout integration tests, 362–363
signin/signout links

adding a profile link (Listing 9.29),
360–361

changing, 358–361
changing the layout links for signed-in users

(Listing 9.26), 359
a helper for the site logo (Listing 9.27), 360
a test for a profile link (Listing 9.28), 360
tests for the signin/signout links on the site

layout (Listing 9.25), 358
signup confirmation, 521
signup form

adding an @user variable to the new action
(Listing 8.3), 287

code to display error messages on the signup
form (Listing 8.8), 299

a create action that can handle signup failure
(but not success) (Listing 8.7), 296

CSS for styling error messages (Listing 8.10),
302

error explanation div from the page in Figure
8.11 (Listing 8.19), 317

error messages, 299–303
failure, 292–304
filtering parameter logging, 303–305
finished form, 308
the first signup, 312–313
form HTML, 288–292
a form to sign up new users (Listing 8.2), 286
overview, 283–285
a partial for displaying form submission error

messages (Listing 8.9), 300

pluralize text helper, 301
success, 305–313
a template for testing for each field on the

signup form (Listing 8.23), 322–323
testing failure, 292–295
testing signup failure (Listing 8.20), 317
testing signup failure with a lambda

(Listing 8.21), 318
testing signup success (Listing 8.22), 319
testing success, 305–308
the user create action with a save and a

redirect (Listing 8.15), 308
using form for, 286–288
a wafer-thin amount of CSS for the signup

form (Listing 8.4), 288
a working form, 295–298

signup page
action for the new user signup page

(Listing 5.25), 187
linking the button to the signup page

(Listing 5.30), 190
route for the signup page (Listing 5.29),

189
setting the custom title for the new user

page (Listing 5.27), 188
signin upon signup, 356–357
signing in the user upon signup (Listing

9.24), 357
test for the signup page title (Listing 5.26),

188
testing that newly signed-up users are also

signed in (Listing 9.23), 356–357
testing the signup page (Listing 5.24), 187
the tests for the new users page

(Listing 8.1), 284–285
Users controller, 186–188

signup URL, 188–190
site navigation, 159–164
skeleton for a shuffle method attached to the

String class (Listing 4.10), 155

540 Index

skeleton for a string shuffle function (Listing
4.9), 155

slightly dynamic pages, 103
eliminating duplication with layouts,

112–115
instance variables and Embedded Ruby,

108–112
passing title tests, 106–108
testing a title change, 103–106

spike, 87
split method, 134–135
Spork, 91–97

adding environment loading to the
Spork.prefork block (Listing 3.12),
93–94

last part of the hack needed to get Spork to
run with Rails 3 (Listing 3.13), 95

SQL injection, 448
SQLite Database Browser, 199, 200
staging area, 27
static pages, 74

with Rails, 78–83
truly static pages, 75–78
See also slightly dynamic pages

stats, 484–493
a partial for displaying follower stats (Listing

12.21), 487–488
status command, 27
status feed, 444–452, 507

adding a status feed to the Home page
(Listing 11.36), 450

adding the completed feed to the User model
(Listing 12.41), 510

the final implementation of
from users followed by (Listing 12.44),
517

the final tests for the status feed (Listing
12.40), 509–510

a first cut at the from users followed by
method (Listing 12.42), 513

a first feed implementation, 511–513
home action with a paginated feed (Listing

12.45), 519
improving from users followed by (Listing

12.43), 515
mockup of a user’s Home page with a

status feed, 507
mockup of the Home page with a

proto-feed, 447
motivation and strategy, 508–510
a partial for a single feed item (Listing

11.35), 449–450
preliminary implementation for the

micropost status feed (Listing 11.32),
447

scopes, subselects, and a lambda, 513–518
status feed partial (Listing 11.34), 449
tests for Micropost.from users followed by

(Listing 12.39), 508–509
string literals, 126
strings, 126–127

double-quoted, 128–129
printing, 127–128
single-quoted, 128–129

stub About page (Listing 3.18), 101
stubbing, 266
stylesheets. See CSS
Sublime Text editor, 11
subselects, 517
sudo, 14–15
superclass method, 145
symbols, 140–142
system setups, 22, 24

T
TDD. See test-driven development (TDD)
ternary operator, 352–353
test-driven development (TDD), 84

Green, 100–102
Red, 97–100

Index 541

Red, Green, Refactor, 86–91
Refactor, 102–103
Spork, 91–97

testing tools, 84–86
tests, 84

access control tests for the Microposts
controller (Listing 11.22), 437

for an admin attribute (Listing 10.34),
399–400

for destroying users (Listing 10.40), 406–407
for failed user signup (Listing 8.6), 293–294
integration tests, 178–180, 313–321
for the micropost model validations (Listing

11.13), 423
for the Microposts controller create action

(Listing 11.25), 440–441
for the Microposts controller destroy action

(Listing 11.39), 454–455
for the micropost’s user association (Listing

11.4), 415
for pagination (Listing 10.30), 396–397
passing title tests, 106–108
for the (proto-)status feed (Listing 11.31),

445–446
for the Relationships controller actions

(Listing 12.31), 499–500
for reverse relationships (Listing 12.16),

480–481
for showing microposts on the user show

page (Listing 11.15), 426
signup form testing failure, 292–295
signup form testing success, 305–308
for signup success (Listing 8.14), 306–307
simple integration test for user signup link

(Listing 5.28), 189
for some following utility methods (Listing

12.12), 476–477
testing a title change, 103–106
testing for the user.relationships attribute

(Listing 12.4), 470–471

testing pagination, 394–397
testing relationship creation with save!

(Listing 12.3), 470
testing the following/follower statistics

on the Home page (Listing 12.20),
486–487

testing the signup page, 187–188
testing the user/relationships belongs to

association (Listing 12.6), 472–473
for the user’s microposts attribute (Listing

11.5), 417
whether to use tests from the start, 5
See also Autotest; RSpec

text editors, 9–11
TextMate, 10, 25
Thomas, Dave, 249n4
time helpers, 343
timestamps, 198, 205
title change

passing title tests, 106–108
testing, 103–106

title helper, 119–122, 133–134
defining a title helper (Listing 4.2), 121

title test (Listing 3.19), 104
toggle method, 401–402

U
unfollow form, using Ajax (Listing 12.34),

503
unfollow/follow buttons, 498–502

with Ajax, 502–506
unfollowing

test for unfollowing a user (Listing 12.14),
478–479

unfollowing a user by destroying a user
relationship (Listing 12.15), 479

See also following
uniqueness validation, 222–226
Unix style, 8
unordered list tag, 163

542 Index

update action, 373–376
updating users, 365–376
URIs, defined, 2n3
URLs, defined, 2n3
user edit form, 366–373

adding a Settings link (Listing 10.6), 370
enabling edits, 373–376
HTML for the edit form (Listing 10.7),

371
mockup, 366
a partial for the new and edit form fields

(Listing 10.43), 410
tests for the user edit action (Listing 10.1),

367
tests for the user update action (Listing

10.8), 374–375
updating the error-messages partial from

Listing 8.9 to work with other objects
(Listing 10.4), 369

updating the rendering of user signup errors
(Listing 10.5), 370

the user edit action (Listing 10.2), 368
the user edit view (Listing 10.3), 368–369
the user update action (Listing 10.9), 375

user index, 385–389
CSS for the user index (Listing 10.22),

388
the first refactoring attempt at the index

view (Listing 10.31), 398
the fully refactored user index (Listing

10.33), 399
a layout link to the user index (Listing

10.23), 388
mockup, 385, 400
with pagination (Listing 10.27), 392–393
partial refactoring, 398–399
a partial to render a single user (Listing

10.32), 398
tests for the user index page (Listing 10.19),

385–386

the user index action (Listing 10.20), 387
the user index view (Listing 10.21), 387
view for the user index (Listing 2.6), 57

user info sidebar, 276–279, 443
user model, 194–196
User model

accessible attributes, 202–203
with an added (encrypted) password

attribute, 246
with an added salt, 256
adding the annotate-models gem to the

Gemfile (Listing 6.4), 201
annotated User model (Listing 6.5), 202
annotating the model file, 201–202
brand new User model (Listing 6.3), 201
generating a User model (Listing 6.1), 197
making the name and email attributes

accessible (Listing 6.6), 203
migration for the User model (to create a

users table) (Listing 6.2), 198
model file, 201–203

User model fro the demo application (Listing
2.5), 57

user objects
creating, 203–207
finding, 207–208
updating, 208–209

user profile page
with microposts, 434
mockup, 425, 462
mockup with a “Settings” link, 371

user show page
adding a name and gravatar, 268–275
adding a sidebar to the user show view

(Listing 7.25), 276
adding an @microposts instance variable to

the user show action (Listing 11.18),
430

adding microposts to the user show page
(Listing 11.16), 427

Index 543

augmenting, 426–432
CSS for styling the user show page including

the sidebar (Listing 7.26), 278–279
a partial for showing a single micropost

(Listing 11.17), 429
tests for the user show page (Listing 7.18),

268–269
a title for the user show page (Listing 7.19),

269
the user show view with name and Gravatar

(Listing 7.22), 271
the user show view with the user’s name

(Listing 7.20), 270
a user sidebar, 276–279

user views, 262
user.followers method, 479–482
user/relationship associations, 470–473

implementing the user/relationships
has many association (Listing 12.5),
472

users
administrative, 399–404
the current user? method (Listing 10.14),

381
destroying, 399–408
the new user view with partial (Listing

10.44), 410
paginating, 392–397
requiring signed-in users, 376–379
requiring the right user, 378–382
sample users, 389–391
showing, 384–399
stub view for showing user information

(Listing 6.24), 231
summary of user/micropost association

methods, 418
updating, 365–376

Users controller, 52–53
adding following and followers actions to the

Users controller (Listing 12.19), 485

current Users controller spec (Listing 7.13),
262

generating a Users controller with a new
action (Listing 5.23), 186

in schematic form (Listing 2.3), 53
with a show action (Listing 6.25), 232
signup page, 186–188
testing the user show page with factories,

263–268
user show action from Listing 6.25 (Listing

7.14), 263
Users resource, 232–236

adding a Users resource to the routes file
(Listing 6.26), 234

correspondence between pages and
URLs, 47

and MVC, 49–58
overview, 44–46
Rails routes with a rule for the Users

resource (Listing 2.2), 52
RESTful routes provided by, 55, 235
user tour, 46–49
weaknesses, 58

V
validations, 61–63

adding a length validation for the name
attribute (Listing 6.15), 218

adding the Relationship model validations
(Listing 12.9), 474

commenting out a validation to ensure a
failing test (Listing 6.8), 212

failing test for the validation of the name
attribute (Listing 6.11), 215

format, 218–222
initial user spec (Listing 6.10), 213
length, 61–63, 217–218
microposts, 423–424
migration for enforcing email uniqueness

(Listing 6.22), 226

544 Index

overview, 210
password, 240–244
for the password attribute (Listing 7.2), 243
practically blank default User spec (Listing

6.9), 212
presence, 210–217
Relationship data model, 473–474
test for the name length validation (Listing

6.14), 217–218
test for the presence of the email attribute

(Listing 6.12), 216–217
test for the rejection of duplicate email

addresses, insensitive to case (Listing
6.20), 223–224

test for the rejection of duplicate email
addresses (Listing 6.18), 222–223

testing the Relationship model validations
(Listing 12.8), 474

tests for email format validation (Listing
6.16), 219

tests for password validations (Listing 7.1),
241–242

uniqueness, 222–226
validating the email format with a regular

expression (Listing 6.17), 220
validating the presence of a name attribute

(Listing 6.7), 211

validating the presence of the name and
email attributes (Listing 6.13), 217

validating the uniqueness of email
addresses, ignoring case
(Listing 6.21), 224

validating the uniqueness of email
addresses (Listing 6.19), 223

Vim, 11
Vim for Windows with Console, 10
virtual attributes, 242–243

W
Webrat, 72, 315n9
WEBrick, 20n12
The Well-Grounded Rubyist (Black), 7,

261, 523
will paginate method, 392–394
Windows, 10
wireframes, 157
wrapping words, a helper to wrap long words

(Listing 11.42), 459

Y
YAML, 236

Z
zero-offset, 135

	Contents
	Foreword
	Foreword
	Chapter 1 From Zero to Deploy
	1.1 Introduction
	1.1.1 Comments for Various Readers
	1.1.2 “Scaling” Rails
	1.1.3 Conventions in This Book

	1.2 Up and Running
	1.2.1 Development Environments
	1.2.2 Ruby, RubyGems, Rails, and Git
	1.2.3 The First Application
	1.2.4 Bundler
	1.2.5 rails server
	1.2.6 Model-View-Controller (MVC)

	1.3 Version Control with Git
	1.3.1 Installation and Setup
	1.3.2 Adding and Committing
	1.3.3 What Good Does Git Do You?
	1.3.4 GitHub
	1.3.5 Branch, Edit, Commit, Merge

	1.4 Deploying
	1.4.1 Heroku Setup
	1.4.2 Heroku Deployment, Step One
	1.4.3 Heroku Deployment, Step Two
	1.4.4 Heroku Commands

	1.5 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

