
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321743015
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321743015
https://plusone.google.com/share?url=http://www.informit.com/title/9780321743015
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321743015
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321743015/Free-Sample-Chapter


Android™

Wireless
Application

Development
Second Edition



This page intentionally left blank 



Android™

Wireless
Application

Development
Second Edition

Shane Conder
Lauren Darcey

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:
Conder, Shane, 1975-

Android wireless application development / Shane Conder, Lauren Darcey. — 1st ed.

p. cm.

ISBN 978-0-321-74301-5 (pbk. : alk. paper)  1.  Application software—Development. 2.
Android (Electronic resource) 3.  Mobile computing.  I. Darcey, Lauren, 1977- II. Title. 

QA76.76.A65C6637 2011

005.1—dc22

2010046618

Copyright © 2011 Shane Conder and Lauren Darcey

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

Android is the trademark of Google, Inc. Pearson Education does not assert any right to the
use of the Android trademark and neither Google nor any other third party having any claim
in the Android trademark have sponsored or are affiliated with the creation and develop-
ment of this book.

Some figures that appear in this book have been reproduced from or are modifications
based on work created and shared by the Android Open Source Project and used according
to terms described in the Creative Commons 2.5 Attribution License (http://creativecom-
mons.org/licenses/by/2.5/). 

ISBN-13: 978-0-321-74301-5
ISBN-10: 0-321-74301-6

Text printed in the United States on recycled paper at Edwards Brothers, Ann Arbor,
Michigan

Second Printing: March 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development
Editor
Songlin Qiu

Managing Editor
Sandra Schroeder

Senior Project
Editor
Tonya Simpson

Copy Editor
Charlotte Kughen

Indexer
Heather McNeill

Proofreader
Water Crest
Publishing

Technical
Reviewers
Charles Stearns

Douglas Jones

Publishing
Coordinator
Olivia Basegio

Book Designer
Gary Adair

Compositor
Mark Shirar

http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/


❖

This book is dedicated to Bit, Nibble, Stack, Queue,
Heap, and Null.

❖



Contents at a Glance
Introduction 1

I: An Overview of Android

1 Introducing Android 7

2 Setting Up Your Android Development 
Environment 29

3 Writing Your First Android Application 43

II: Android Application Design Essentials

4 Understanding the Anatomy of 
an Android Application 69

5 Defining Your Application Using 
the Android Manifest File 81

6 Managing Application Resources 97

III: Android User Interface Design Essentials

7 Exploring User Interface Screen Elements 133

8 Designing User Interfaces with Layouts 173

9 Drawing and Working with Animation 205

IV: Using Common Android APIs

10 Using Android Data and Storage APIs 231

11 Sharing Data Between Applications with Content
Providers 259

12 Using Android Networking APIs 287

13 Using Android Web APIs 301

14 Using Location-Based Services (LBS) APIs 315

15 Using Android Multimedia APIs 335

16 Using Android Telephony APIs 353



17 Using Android 3D Graphics with OpenGL ES 367

18 Using the Android NDK 397

19 Using Android’s Optional Hardware APIs 407

V: More Android Application Design Principles

20 Working with Notifications 423

21 Working with Services 437

22 Extending Android Application Reach 451

23 Managing User Accounts and Synchronizing 
User Data 489

24 Handling Advanced User Input 499

25 Targeting Different Device Configurations and
Languages 523

VI: Deploying Your Android Application to the World

26 The Mobile Software Development Process 551

27 Designing and Developing Bulletproof Android
Applications 571

28 Testing Android Applications 585

29 Selling Your Android Application 597

VII: Appendixes

A The Android Emulator Quick-Start Guide 613

B The Android DDMS Quick-Start Guide 635

C The Android Debug Bridge Quick-Start Guide 647

D Eclipse IDE Tips and Tricks 661

E The SQLite Quick-Start Guide 669

Index 683



Table of Contents

Introduction 1
Who Should Read This Book 1

Key Questions Answered in This Book 2

How This Book Is Structured 2

An Overview of Changes in This Edition 3

Development Environment Used in This Book 4

Supplementary Materials Available 5

Where to Find More Information 5

Conventions Used in This Book 6

Contacting the Authors 6

I: An Overview of Android

1 Introducing Android 7
A Brief History of Mobile Software Development 7

Way Back When 7

“The Brick” 9

Wireless Application Protocol (WAP) 11

Proprietary Mobile Platforms 13

The Open Handset Alliance 15

Google Goes Wireless 15

Forming the Open Handset Alliance 15

Manufacturers: Designing the Android Handsets 16

Mobile Operators: Delivering the Android 
Experience 17

Content Providers: Developing Android 
Applications 17

Taking Advantage of All Android Has to Offer 18

Android Platform Differences 18

Android: A Next-Generation Platform 18

Free and Open Source 20

Familiar and Inexpensive Development Tools 20

Reasonable Learning Curve for Developers 20

Enabling Development of Powerful Applications 21

Rich, Secure Application Integration 21

No Costly Obstacles to Publication 21



ixContents

A “Free Market” for Applications 22

A New and Growing Platform 22

The Android Platform 23

Android’s Underlying Architecture 23

Security and Permissions 25

Developing Android Applications 26

Summary 28

References and More Information 28

2 Setting Up Your Android Development 
Environment 29
Configuring Your Development Environment 29

Configuring Your Operating System for Device
Debugging 30

Configuring Your Android Hardware for Debugging 30

Upgrading the Android SDK 31

Problems with the Android Software 
Development Kit 32

Exploring the Android SDK 32

Understanding the Android SDK License 
Agreement 32

Reading the Android SDK Documentation 33

Exploring the Android Application Framework 35

Getting to Know the Android Tools 35

Exploring the Android Sample Applications 40

Summary 41

References and More Information 41

3 Writing Your First Android Application 43
Testing Your Development Environment 43

Adding the Snake Application to a Project in Your
Eclipse Workspace 43

Creating an Android Virtual Device (AVD) for Your Snake
Project 44

Creating a Launch Configuration for Your 
Snake Project 46

Running the Snake Application in 
the Android Emulator 47



x Contents

Building Your First Android Application 48

Creating and Configuring a New Android Project 50

Core Files and Directories of 
the Android Application 50

Creating an AVD for Your Project 51

Creating Launch Configurations for Your Project 52

Running Your Android Application in the Emulator 53

Debugging Your Android Application in 
the Emulator 56

Adding Logging Support to Your Android Application 59

Adding Some Media Support to Your 
Application 60

Adding Location-Based Services 
to Your Application 62

Debugging Your Application on the Hardware 65

Summary 66

References and More Information 67

II: Android Application Design Essentials

4 Understanding the Anatomy of 
an Android Application 69
Mastering Important Android Terminology 69

Using the Application Context 70

Retrieving the Application Context 70

Using the Application Context 70

Performing Application Tasks with Activities 71

The Lifecycle of an Android Activity 72

Managing Activity Transitions with Intents 76

Working with Services 78

Receiving and Broadcasting Intents 79

Summary 80

References and More Information 80

5 Defining Your Application Using 
the Android Manifest File 81
Configuring the Android Manifest File 81

Editing the Android Manifest File 82



xiContents

Managing Your Application’s Identity 86

Versioning Your Application 86

Setting the Application Name and Icon 87

Enforcing Application System Requirements 87

Targeting Specific SDK Versions 87

Enforcing Application Platform Requirements 90

Working with External Libraries 92

Registering Activities and Other Application 
Components 92

Designating a Primary Entry Point Activity for Your
Application Using an Intent Filter 92

Configuring Other Intent Filters 93

Working with Permissions 94

Registering Permissions Your Application Requires 94

Registering Permissions Your Application Grants to
Other Applications 95

Exploring Other Manifest File Settings 96

Summary 96

References and More Information 96

6 Managing Application Resources 97
What Are Resources? 97

Storing Application Resources 97

Understanding the Resource Directory Hierarchy 97

Resource Value Types 99

Storing Different Resource Value Types 101

Accessing Resources Programmatically 103

Setting Simple Resource Values Using Eclipse 104

Working with Resources 107

Working with String Resources 107

Using String Resources as Format Strings 108

Working with String Arrays 109

Working with Boolean Resources 110

Working with Integer Resources 111

Working with Colors 111

Working with Dimensions 112

Working with Simple Drawables 113

Working with Images 114

Working with Animation 116



xii Contents

Working with Menus 119

Working with XML Files 120

Working with Raw Files 121

References to Resources 122

Working with Layouts 123

Working with Styles 127

Working with Themes 131

Referencing System Resources 131

Summary 132

References and More Information 132

III: Android User Interface Design Essentials

7 Exploring User Interface Screen Elements 133
Introducing Android Views and Layouts 133

Introducing the Android View 133

Introducing the Android Control 133

Introducing the Android Layout 134

Displaying Text to Users with TextView 134

Configuring Layout and Sizing 135

Creating Contextual Links in Text 136

Retrieving Data from Users 137

Retrieving Text Input Using EditText Controls 138

Giving Users Input Choices Using Spinner
Controls 142

Using Buttons, Check Boxes, and Radio Groups 144

Using Basic Buttons 144

Using Check Boxes and Toggle Buttons 146

Using RadioGroups and RadioButtons 147

Getting Dates and Times from Users 150

Using Indicators to Display Data to Users 151

Indicating Progress with ProgressBar 151

Adjusting Progress with SeekBar 153

Displaying Rating Data with RatingBar 154

Showing Time Passage with the Chronometer 155

Displaying the Time 156

Providing Users with Options and Context Menus 157

Enabling the Options Menu 157

Enabling the ContextMenu 159



xiiiContents

Handling User Events 161

Listening for Touch Mode Changes 161

Listening for Events on the Entire Screen 162

Listening for Long Clicks 163

Listening for Focus Changes 164

Working with Dialogs 165

Exploring the Different Types of Dialogs 165

Tracing the Lifecycle of a Dialog 166

Working with Custom Dialogs 168

Working with Styles 168

Working with Themes 170

Summary 171

8 Designing User Interfaces with Layouts 173
Creating User Interfaces in Android 173

Creating Layouts Using XML Resources 173

Creating Layouts Programmatically 175

Organizing Your User Interface 177

Understanding View versus ViewGroup 178

Using Built-In Layout Classes 181

Using FrameLayout 183

Using LinearLayout 185

Using RelativeLayout 186

Using TableLayout 190

Using Multiple Layouts on a Screen 192

Using Built-In View Container Classes 192

Using Data-Driven Containers 194

Organizing Screens with Tabs 198

Adding Scrolling Support 201

Exploring Other View Containers 202

Summary 203

9 Drawing and Working with Animation 205
Drawing on the Screen 205

Working with Canvases and Paints 205

Working with Text 210

Using Default Fonts and Typefaces 210

Using Custom Typefaces 211

Measuring Text Screen Requirements 212



xiv Contents

Working with Bitmaps 212

Drawing Bitmap Graphics on a Canvas 213

Scaling Bitmap Graphics 213

Transforming Bitmaps Using Matrixes 213

Working with Shapes 214

Defining Shape Drawables as XML Resources 214

Defining Shape Drawables Programmatically 215

Drawing Different Shapes 215

Working with Animation 221

Working with Frame-by-Frame Animation 223

Working with Tweened Animations 224

Summary 230

IV: Using Common Android APIs

10 Using Android Data and Storage APIs 231
Working with Application Preferences 231

Creating Private and Shared Preferences 232

Searching and Reading Preferences 232

Adding, Updating, and Deleting Preferences 233

Finding Preferences Data on the Android 
File System 234

Working with Files and Directories 235

Exploring with the Android Application 
Directories 235

Working with Other Directories and Files on the Android
File System 238

Storing Structured Data Using SQLite Databases 239

Creating a SQLite Database 240

Creating, Updating, and Deleting Database 
Records 242

Querying SQLite Databases 244

Closing and Deleting a SQLite Database 250

Designing Persistent Databases 250

Binding Data to the Application User Interface 253

Summary 257

References and More Information 258



xvContents

11 Sharing Data Between Applications with Content
Providers 259
Exploring Android’s Content Providers 259

Using the MediaStore Content Provider 260

Using the CallLog Content Provider 261

Using the Browser Content Provider 263

Using the Contacts Content Provider 264

Using the UserDictionary Content Provider 267

Using the Settings Content Provider 267

Modifying Content Providers Data 267

Adding Records 267

Updating Records 268

Deleting Records 269

Enhancing Applications Using Content Providers 269

Accessing Images on the Device 270

Acting as a Content Provider 274

Implementing a Content Provider Interface 275

Defining the Data URI 276

Defining Data Columns 276

Implementing Important Content Provider 
Methods 276

Updating the Manifest File 282

Working with Live Folders 282

Summary 285

References and More Information 285

12 Using Android Networking APIs 287
Understanding Mobile Networking Fundamentals 287

Accessing the Internet (HTTP) 288

Reading Data from the Web 288

Using HttpURLConnection 289

Parsing XML from the Network 290

Processing Asynchronously 291

Working with AsyncTask 292

Using Threads for Network Calls 293

Displaying Images from a Network Resource 295

Retrieving Android Network Status 297



xvi Contents

Summary 298

References and More Information 299

13 Using Android Web APIs 301
Browsing the Web with WebView 301

Designing a Layout with a WebView Control 302

Loading Content into a WebView Control 302

Adding Features to the WebView Control 304

Building Web Extensions Using WebKit 307

Browsing the WebKit APIs 307

Extending Web Application Functionality 
to Android 308

Working with Flash 311

Enabling Flash Applications 312

Building AIR Applications for Android 313

Summary 314

References and More Information 314

14 Using Location-Based Services (LBS) APIs 315
Using Global Positioning Services (GPS) 315

Using GPS Features in Your Applications 316

Finding Your Location 316

Locating Your Emulator 318

Geocoding Locations 318

Mapping Locations 322

Mapping Intents 322

Mapping Views 322

Getting Your Debug API Key 325

Panning the Map View 326

Zooming the Map View 327

Marking the Spot 327

Doing More with Location-Based Services 332

Summary 333

References and More Information 333



xviiContents

15 Using Android Multimedia APIs 335
Working with Multimedia 335

Working with Still Images 336

Capturing Still Images Using the Camera 336

Configuring Camera Mode Settings 340

Sharing Images 341

Assigning Images as Wallpapers 342

Working with Video 343

Recording Video 343

Playing Video 345

Working with Audio 346

Recording Audio 347

Playing Audio 348

Sharing Audio 349

Searching for Multimedia 350

Working with Ringtones 351

Summary 351

References and More Information 351

16 Using Android Telephony APIs 353
Working with Telephony Utilities 353

Gaining Permission to Access Phone 
State Information 354

Requesting Call State 354

Requesting Service Information 356

Monitoring Signal Strength and Data 
Connection Speed 356

Working with Phone Numbers 357

Using SMS 357

Gaining Permission to Send and Receive SMS
Messages 358

Sending an SMS 358

Receiving an SMS 360

Making and Receiving Phone Calls 362

Making Phone Calls 362

Receiving Phone Calls 364

Summary 365

References and More Information 365



xviii Contents

17 Using Android 3D Graphics with OpenGL ES 367
Working with OpenGL ES 367

Leveraging OpenGL ES in Android 368

Ensuring Device Compatibility 368

Using OpenGL ES APIs in the Android SDK 369

Handling OpenGL ES Tasks Manually 369

Creating a SurfaceView 370

Starting Your OpenGL ES Thread 371

Initializing EGL 373

Initializing GL 374

Drawing on the Screen 375

Drawing 3D Objects 376

Drawing Your Vertices 376

Coloring Your Vertices 377

Drawing More Complex Objects 378

Lighting Your Scene 379

Texturing Your Objects 381

Interacting with Android Views and Events 383

Enabling the OpenGL Thread to Talk to the Application
Thread 384

Enabling the Application Thread to Talk to the OpenGL
Thread 386

Cleaning Up OpenGL ES 387

Using GLSurfaceView (Easy OpenGL ES) 388

Using OpenGL ES 2.0 391

Configuring Your Application for OpenGL ES 2.0 391

Requesting an OpenGL ES 2.0 Surface 391

Summary 395

References and More Information 396

18 Using the Android NDK 397
Determining When to Use the Android NDK 397

Installing the Android NDK 398

Exploring the Android NDK 398

Running an Android NDK Sample Application 399

Creating Your Own NDK Project 399

Calling Native Code from Java 400

Handling Parameters and Return Values 401

Using Exceptions with Native Code 402



xixContents

Improving Graphics Performance 403

Summary 405

References and More Information 405

19 Using Android’s Optional Hardware APIs 407
Interacting with Device Hardware 407

Using the Device Sensor 408

Working with Different Sensors 408

Acquiring Access to a Sensor 409

Reading Sensor Data 409

Calibrating Sensors 410

Determining Device Orientation 411

Finding True North 412

Working with Wi-Fi 412

Working with Bluetooth 414

Checking for the Existence of Bluetooth 
Hardware 415

Enabling Bluetooth 415

Querying for Paired Devices 416

Discovering Devices 416

Establishing Connections Between Devices 416

Monitoring the Battery 417

Summary 420

References and More Information 421

V: More Android Application Design Principles

20 Working with Notifications 423
Notifying the User 423

Notifying with the Status Bar 424

Using the NotificationManager Service 425

Creating a Simple Text Notification with 
an Icon 425

Working with the Notification Queue 426

Updating Notifications 427

Clearing Notifications 428

Vibrating the Phone 429

Blinking the Lights 430

Making Noise 431



xx Contents

Customizing the Notification 432

Designing Useful Notifications 434

Summary 434

References and More Information 435

21 Working with Services 437
Determining When to Use Services 437

Understanding the Service Lifecycle 438

Creating a Service 438

Controlling a Service 443

Implementing a Remote Interface 444

Implementing a Parcelable Class 446

Summary 449

References and More Information 449

22 Extending Android Application Reach 451
Enhancing Your Applications 451

Working with App Widgets 452

Creating an App Widget 453

Installing an App Widget 460

Becoming an App Widget Host 460

Working with Live Wallpapers 461

Creating a Live Wallpaper 462

Installing a Live Wallpaper 465

Acting as a Content Type Handler 466

Determining Intent Actions and MIME Types 467

Implementing the Activity to 
Process the Intents 468

Registering the Intent Filter 469

Making Application Content Searchable 469

Enabling Searches Within Your Application 470

Enabling Global Search 478

Working with Live Folders 480

Creating Live Folders 481

Installing a Live Folder 485

Summary 487

References and More Information 487



xxiContents

23 Managing User Accounts and Synchronizing 
User Data 489
Managing Accounts with the Account Manager 489

Synchronizing Data with Sync Adapters 490

Using Backup Services 491

Choosing a Remote Backup Service 492

Implementing a Backup Agent 492

Backing Up and Restoring Application Data 496

Summary 497

References and More Information 497

24 Handling Advanced User Input 499
Working with Textual Input Methods 499

Working with Software Keyboards 499

Working with Text Prediction and User 
Dictionaries 502

Exploring the Accessibility Framework 502

Leveraging Speech Recognition Services 503

Leveraging Text-To-Speech Services 506

Working with Gestures 508

Detecting User Motions Within a View 509

Handling Common Single-Touch Gestures 509

Handling Common Multi-Touch Gestures 516

Making Gestures Look Natural 518

Working with the Trackball 519

Handling Screen Orientation Changes 519

Summary 522

References and More Information 522

25 Targeting Different Device Configurations and
Languages 523
Maximizing Application Compatibility 523

Designing User Interfaces for Compatibility 525

Supporting Specific Screen Types 526

Working with Nine-Patch Stretchable Graphics 526

Using the Working Square Principle 528

Providing Alternative Application Resources 531

Working with Alternative Resource Qualifiers 531

Providing Resources for Different Orientations 537



xxii Contents

Using Alternative Resources Programmatically 538

Organizing Application Resources Efficiently 538

Internationalizing Applications 539

Internationalization Using Alternative Resources 540

Implementing Locale Support Programmatically 544

Targeting Different Device Configurations 545

Supporting Hardware Configurations 545

Targeting Different Android SDK Versions 546

Summary 548

References and More Information 549

VI: Deploying Your Android Application to the World

26 The Mobile Software Development Process 551
An Overview of the Mobile Development Process 551

Choosing a Software Methodology 552

Understanding the Dangers of Waterfall 
Approaches 552

Understanding the Value of Iteration 553

Gathering Application Requirements 553

Determining Project Requirements 553

Developing Use Cases for Mobile Applications 555

Incorporating Third-Party Requirements 555

Managing a Device Database 555

Assessing Project Risks 558

Identifying Target Devices 558

Acquiring Target Devices 560

Determining Feasibility of Application 
Requirements 561

Understanding Quality Assurance Risks 561

Writing Essential Project Documentation 562

Developing Test Plans for Quality 
Assurance Purposes 562

Providing Documentation Required 
by Third Parties 563

Providing Documentation for Maintenance 
and Porting 563

Leveraging Configuration Management Systems 563

Choosing a Source Control System 563



xxiiiContents

Implementing an Application Version System That
Works 564

Designing Mobile Applications 564

Understanding Mobile Device Limitations 564

Exploring Common Mobile Application 
Architectures 564

Designing for Extensibility and Maintenance 565

Designing for Application Interoperability 566

Developing Mobile Applications 567

Testing Mobile Applications 567

Deploying Mobile Applications 568

Determining Target Markets 568

Supporting and Maintaining Mobile Applications 568

Track and Address Crashes Reported by Users 569

Testing Firmware Upgrades 569

Maintaining Adequate Application 
Documentation 569

Managing Live Server Changes 569

Identifying Low-Risk Porting Opportunities 569

Summary 570

References and More Information 570

27 Designing and Developing Bulletproof Android
Applications 571
Best Practices in Designing Bulletproof Mobile
Applications 571

Meeting Mobile Users’ Demands 572

Designing User Interfaces for Mobile Devices 572

Designing Stable and Responsive Mobile 
Applications 573

Designing Secure Mobile Applications 574

Designing Mobile Applications 
for Maximum Profit 575

Leveraging Third-Party Standards for Android
Application Design 576

Designing Mobile Applications for Ease of Maintenance
and Upgrades 576

Leveraging Android Tools for Application Design 578

Avoiding Silly Mistakes in Android 
Application Design 578



xxiv Contents

Best Practices in Developing Bulletproof Mobile
Applications 579

Designing a Development Process That Works for
Mobile Development 579

Testing the Feasibility of Your Application Early
and Often 579

Using Coding Standards, Reviews, and Unit Tests to
Improve Code Quality 580

Handling Defects Occurring on a Single Device 582

Leveraging Android Tools for Development 583

Avoiding Silly Mistakes in Android Application
Development 583

Summary 583

References and More Information 584

28 Testing Android Applications 585
Best Practices in Testing Mobile Applications 585

Designing a Mobile Application Defect 
Tracking System 585

Managing the Testing Environment 587

Maximizing Testing Coverage 589

Leveraging Android Tools for Android 
Application Testing 595

Avoiding Silly Mistakes in Android 
Application Testing 595

Outsourcing Testing Responsibilities 596

Summary 596

References and More Information 596

29 Selling Your Android Application 597
Choosing the Right Distribution Model 597

Packaging Your Application for Publication 598

Preparing Your Code to Package 599

Packing and Signing Your Application 600

Testing the Release Version of Your Application
Package 603

Certifying Your Android Application 603

Distributing Your Applications 603

Selling Your Application on the Android Market 603

Selling Your Application on Your Own Server 609



xxvContents

Selling Your Application Using Other Alternatives 610

Protecting Your Intellectual Property 611

Billing the User 611

Summary 612

References and More Information 612

VII: Appendixes

A The Android Emulator Quick-Start Guide 613
Simulating Reality: The Emulator’s Purpose 613

Working with Android Virtual Devices (AVDs) 615

Using the Android SDK and AVD Manager 616

Creating an AVD 616

Launching the Emulator with a Specific AVD 620

Configuring Emulator Startup Options 621

Launching an Emulator to Run an Application 621

Launching an Emulator from the Android SDK and AVD
Manager 623

Configuring the GPS Location of the Emulator 623

Calling Between Two Emulator Instances 625

Messaging Between Two Emulator Instances 625

Interacting with the Emulator Through the Console 628

Using the Console to Simulate Incoming Calls 628

Using the Console to Simulate SMS Messages 629

Using the Console to Send GPS Coordinates 630

Using the Console to Monitor Network Status 631

Using the Console to Manipulate Power Settings 631

Using Other Console Commands 632

Enjoying the Emulator 632

Understanding Emulator Limitations 632

B The Android DDMS Quick-Start Guide 635
Using DDMS with Eclipse and as a Stand-Alone
Application 635

Getting Up to Speed Using Key Features of DDMS 636

Working with Processes 637

Attaching a Debugger to an Android Application 638

Monitoring Thread Activity of an Android 



xxvi Contents

Application 638

Prompting Garbage Collection (GC) 639

Monitoring Heap Activity 639

Monitoring Memory Allocation 640

Stopping a Process 640

Working with the File Explorer 641

Browsing the File System of an Emulator 
or Device 641

Copying Files from the Emulator or Device 641

Copying Files to the Emulator or Device 642

Deleting Files on the Emulator or Device 642

Working with the Emulator Control 642

Simulating Incoming Voice Calls 643

Simulating Incoming SMS Messages 643

Sending a Location Fix 643

Working with Application Logging 644

Taking Screen Captures of Emulator 
and Device Screens 645

C The Android Debug Bridge Quick-Start Guide 647
Listing Connected Devices and Emulators 647

Directing ADB Commands to Specific Devices 648

Starting and Stopping the ADB Server 648

Stopping the ADB Server Process 648

Starting and Checking the ADB Server Process 648

Issuing Shell Commands 649

Issuing a Single Shell Command 649

Using a Shell Session 649

Using the Shell to Start and Stop the Emulator 649

Copying Files 650

Sending Files to a Device or Emulator 650

Retrieving Files from a Device or Emulator 650

Installing and Uninstalling Applications 651

Installing Applications 651

Reinstalling Applications 651

Uninstalling Applications 651

Working with LogCat Logging 652



xxviiContents

Displaying All Log Information 652

Including Date and Time with Log Data 652

Filtering Log Information 652

Clearing the Log 654

Redirecting Log Output to a File 654

Accessing the Secondary Logs 654

Controlling the Backup Service 654

Forcing Backup Operations 655

Forcing Restore Operations 655

Wiping Archived Data 655

Generating Bug Reports 655

Using the Shell to Inspect SQLite Databases 656

Using the Shell to Stress Test Applications 656

Letting the Monkey Loose on Your Application 656

Listening to Your Monkey 656

Directing Your Monkey’s Actions 657

Training Your Monkey to Repeat His Tricks 658

Keeping the Monkey on a Leash 658

Learning More About Your Monkey 659

Installing Custom Binaries via the Shell 659

Exploring Other ADB Commands 660

D Eclipse IDE Tips and Tricks 661
Organizing Your Eclipse Workspace 661

Integrating with Source Control Services 661

Repositioning Tabs Within Perspectives 661

Maximizing Windows 662

Minimizing Windows 662

Viewing Windows Side by Side 662

Viewing Two Sections of the Same File 662

Closing Unwanted Tabs 662

Keeping Windows Under Control 663

Creating Custom Log Filters 663

Writing Code in Java 663

Using Auto-Complete 664

Formatting Code 664

Creating New Classes 664

Creating New Methods 664



xxviii Contents

Organizing Imports 664

Renaming Almost Anything 665

Refactoring Code 665

Reorganizing Code 667

Providing Javadoc-Style Documentation 667

Resolving Mysterious Build Errors 667

E The SQLite Quick-Start Guide 669
Exploring Common Tasks with SQLite 669

Using the sqlite3 Command-Line Interface 670

Launching the ADB Shell 670

Connecting to a SQLite Database 670

Exploring Your Database 671

Importing and Exporting the Database 
and Its Data 672

Executing SQL Commands on 
the Command Line 674

Using Other sqlite3 Commands 675

Understanding SQLite Limitations 675

Learning by Example: A Student Grade Database 675

Designing the Student Grade Database Schema 676

Creating Simple Tables with AUTOINCREMENT 676

Inserting Data into Tables 677

Querying Tables for Results with SELECT 677

Using Foreign Keys and Composite Primary Keys 678

Altering and Updating Data in Tables 679

Querying Multiple Tables Using JOIN 680

Using Calculated Columns 680

Using Subqueries for Calculated Columns 682

Deleting Tables 682

Index 683



Acknowledgments
This book would never have been written without the guidance and encouragement we
received from a number of supportive individuals, including our editorial team, cowork-
ers, friends, and family.We’d like to thank the Android developer community, Google,
and the Open Handset Alliance for their vision and expertise.Throughout this project,
our editorial team at Pearson Education (Addison-Wesley) always had the right mix of
professionalism and encouragement.Thanks especially to Trina MacDonald, Olivia
Basegio, Songlin Qiu, and our crack team of technical reviewers: Doug Jones and
Charles Stearns (as well as Dan Galpin,Tony Hillerson, and Ronan Schwarz, who
reviewed the first edition). Dan Galpin also graciously provided the clever Android
graphics used for Tips, Notes, and Warnings.We’d also like to thank Ray Rischpater for
his longtime encouragement and advice on technical writing.Amy Badger must be
commended for her wonderful waterfall illustration, and we also thank Hans Bodlaender
for letting us use the nifty chess font he developed as a hobby project.



About the Authors
Lauren Darcey is responsible for the technical leadership and direction of a small soft-
ware company specializing in mobile technologies, including Android, iPhone,
Blackberry, Palm Pre, BREW, and J2ME and consulting services.With more than two
decades of experience in professional software production, Lauren is a recognized
authority in application architecture and the development of commercial-grade mobile
applications. Lauren received a B.S. in Computer Science from the University of
California, Santa Cruz.

She spends her copious free time traveling the world with her geeky mobile-minded
husband and is an avid nature photographer. Her work has been published in books and
newspapers around the world. In South Africa, she dove with 4-meter-long great white
sharks and got stuck between a herd of rampaging hippopotami and an irritated bull ele-
phant. She’s been attacked by monkeys in Japan, gotten stuck in a ravine with two hun-
gry lions in Kenya, gotten thirsty in Egypt, narrowly avoided a coup d’état in Thailand,
geocached her way through the Swiss Alps, drank her way through the beer halls of
Germany, slept in the crumbling castles of Europe, and gotten her tongue stuck to an
iceberg in Iceland (while being watched by a herd of suspicious wild reindeer).

Shane Conder has extensive development experience and has focused his attention on
mobile and embedded development for the past decade. He has designed and developed
many commercial applications for Android, iPhone, BREW, Blackberry, J2ME, Palm, and
Windows Mobile—some of which have been installed on millions of phones worldwide.
Shane has written extensively about the mobile industry and evaluated mobile develop-
ment platforms on his tech blogs and is well known within the blogosphere. Shane
received a B.S. in Computer Science from the University of California.

A self-admitted gadget freak, Shane always has the latest phone, laptop, or other
mobile device. He can often be found fiddling with the latest technologies, such as cloud
services and mobile platforms, and other exciting, state-of-the-art technologies that acti-
vate the creative part of his brain. He also enjoys traveling the world with his geeky wife,
even if she did make him dive with 4-meter-long great white sharks and almost get
eaten by a lion in Kenya. He admits that he has to take at least two phones with him
when backpacking—even though there is no coverage—that he snickered and whipped
out his Android phone to take a picture when Laurie got her tongue stuck to that ice-
berg in Iceland, and that he is catching on that he should be writing his own bio.



Introduction

Pioneered by the Open Handset Alliance and Google,Android is a hot, young, free,
open source mobile platform making waves in the wireless world.This book provides
comprehensive guidance for software development teams on designing, developing, test-
ing, debugging, and distributing professional Android applications. If you’re a veteran
mobile developer, you can find tips and tricks to streamline the development process and
take advantage of Android’s unique features. If you’re new to mobile development, this
book provides everything you need to make a smooth transition from traditional software
development to mobile development—specifically, its most promising new platform:
Android.

Who Should Read This Book
This book includes tips for successful mobile development based on our years in the
mobile industry and covers everything you need to run a successful Android project from
concept to completion.We cover how the mobile software process differs from traditional
software development, including tricks to save valuable time and pitfalls to avoid. Regard-
less of the size of your project, this book can work for you.

This book was written for several audiences:

n Software developers who want to learn to develop professional Android ap-
plications. The bulk of this book is primarily targeted at software developers with
Java experience but not necessarily mobile development experience. More seasoned
developers of mobile applications can learn how to take advantage of Android and
how it differs from the other technologies of the mobile development market today.

n Quality assurance personnel tasked with testing Android applications.Whether
they are black box or white box testing, quality assurance engineers can find this
book invaluable.We devote several chapters to mobile QA concerns, including top-
ics such as developing solid test plans and defect tracking systems for mobile appli-
cations, how to manage handsets, and how to test applications thoroughly using all
the Android tools available.

n Project managers planning and managing Android development teams. Man-
agers can use this book to help plan, hire, and execute Android projects from start
to finish.We cover project risk management and how to keep Android projects run-
ning smoothly.



2 Introduction

n Other audiences.This book is useful not only to a software developer, but also for
the corporation looking at potential vertical market applications, the entrepreneur
thinking about a cool phone application, and hobbyists looking for some fun with
their new phone. Businesses seeking to evaluate Android for their specific needs
(including feasibility analysis) can also find the information provided valuable.Any-
one with an Android handset and a good idea for a mobile application can put this
book to use for fun and profit.

Key Questions Answered in This Book
This book answers the following questions:

1. What is Android? How do the SDK versions differ?

2. How is Android different from other mobile technologies, and how can developers
take advantage of these differences?

3. How do developers use the Eclipse Development Environment for Java to develop
and debug Android applications on the emulator and handsets?

4. How are Android applications structured?

5. How do developers design robust user interfaces for mobile—specifically, for Android?

6. What capabilities does the Android SDK have and how can developers use them?

7. How does the mobile development process differ from traditional desktop
development?

8. What development strategies work best for Android development?

9. What do managers, developers, and testers need to look for when planning, devel-
oping, and testing a mobile development application?

10. How do mobile teams design bulletproof Android applications for publication?

11. How do mobile teams package Android applications for deployment?

12. How do mobile teams make money from Android applications?

13. And, finally, what is new in the second edition of the book?

How This Book Is Structured
This book is divided into seven parts.The first five parts are primarily of interest to devel-
opers; Parts VI and VII provide lots of helpful information for project managers and qual-
ity assurance personnel as well as developers.



3An Overview of Changes in This Edition

Here is an overview of the various parts in this book:

n Part I:An Overview of Android

Part I provides an introduction to Android, explaining how it differs from other
mobile platforms.You become familiar with the Android SDK and tools, install the
development tools, and write and run your first Android application—on the emu-
lator and on a handset.

n Part II:Android Application Design Essentials

Part II introduces the design principles necessary to write Android applications.You
learn how Android applications are structured and how to include resources, such as
strings, graphics, and user interface components in your projects.

n Part III:Android User Interface Design Essentials

Part III dives deeper into how user interfaces are designed in Android.You learn
about the core user interface element in Android: the View.You also learn about the
basic drawing and animation abilities provided in the Android SDK.

n Part IV: Using Common Android APIs

Part IV is a series of chapters, each devoted to a deeper understanding of the most
important APIs within the Android SDK, such as the data and storage APIs (includ-
ing file and database usage as well as content providers), networking, telephony,
Location-Based Services (LBS), multimedia and 3D graphics APIs, and the optional
hardware APIs available.

n Part V: More Android Application Design Principles

Part V covers more advanced Android application design principles, such as notifica-
tions and services.

n Part VI: Deploying Your Android Application to the World

Part VI covers the software development process for mobile, from start to finish,
with tips and tricks for project management, software developers, and quality assur-
ance personnel.

n Part VII:Appendixes

Part VII includes several helpful quick-start guides for the Android development
tools: the emulator,ADB and DDMS, Eclipse tips and tricks, and a SQLite tutorial.

An Overview of Changes in This Edition
When we began writing the first edition of this book, there were no Android devices on
the market. One Android device became available shortly after we started, and it was
available only in the United States.Today there are dozens of devices shipping all over the
world.The Android platform has gone through extensive changes since the first edition of
this book was published.The Android SDK has many new features, and the development



4 Introduction

tools have received many much-needed upgrades.Android, as a technology, is now on
solid footing within the mobile marketplace.

Within this new edition, we took the opportunity to do a serious overhaul on book
content—but don’t worry, it’s still the book readers loved the first time, just bigger, better,
and more comprehensive. In addition to adding newly available content, we’ve retested
and upgraded all existing content (text and sample code) for use with the newest Android
SDKs. Here are some of the highlights of the additions and enhancements we’ve made to
this edition:

n Coverage of the latest and greatest Android tools and utilities
n Updates to all existing chapters, often with some entirely new sections
n Complete overhaul of sample code and applications—many more of them, too—

organized by topic
n Nine new chapters, which cover new SDK features, including web APIs, the

Android NDK, extending application reach, managing users, data synchronization,
backups, advanced user input, and compatibility

n Topics such as Android Manifest files, content providers, designing apps, and testing
each now have their own chapter

n Updated 3D graphics programming, including OpenGL ES 2.0
n Coverage of hot topics such as Bluetooth, gestures, voice recognition,App Widgets,

Live Folders, Live Wallpapers, and global search
n Even more tips and tricks from the trenches to help you design, develop, and test

applications for different device targets, including an all-new chapter on tackling
compatibility issues

n A new appendix full of Eclipse tips and tricks

As you can see, we cover many of the hottest and most exciting features that Android has
to offer.We didn’t take this review lightly; we touched every existing chapter, updated
content, and added many new chapters as well. Finally, we included many additions, clari-
fications, and, yes, even a few fixes based upon the feedback from our fantastic (and
meticulous) readers.Thank you!

Development Environment Used in This Book
The Android code in this book was written using the following development environments:

n Windows 7 and Mac OS X 10.6.4
n Eclipse Java IDE Version 3.5 (Galileo)
n Eclipse JDT plug-in and Web Tools Platform (WTP)
n Java SE Development Kit (JDK) 6 Update 20



5Where to Find More Information

n Android SDK Version 2.2,API Level 8 (FroYo)

1. ADT Plug-in for Eclipse 0.9.9

2. NDK Tools Revision 4b

3. SDK Tools Revision 7
n Android Handsets:T-Mobile G1, HTC Nexus One, HTC Evo 4G, Motorola

Droid,ARCHOS 5 internet tablet

Supplementary Materials Available
The source code that accompanies this book for download on the publisher website:
http://www.informit.com/title/9780321743016.

We also run a blog at http://androidbook.blogspot.com, which covers a variety of
Android topics and presents reader feedback, questions, and further information.You can
also find links to our various technical articles.

Where to Find More Information
There is a vibrant, helpful Android developer community on the Web. Here are a number
of useful websites for Android developers and followers of the wireless industry:

n Android Developer Website: The Android SDK and developer reference site:

http://developer.android.com/

n Stack Overflow: The Android website with great technical information (complete
with tags) and an official support forum for developers:

http://stackoverflow.com/questions/tagged/android

n Open Handset Alliance: Android manufacturers, operators, and developers:

http://www.openhandsetalliance.com/

n Android Market: Buy and sell Android applications:

http://www.android.com/market/

n Mobiletuts+: Mobile development tutorials, including Android:

http://mobile.tutsplus.com/category/tutorials/android/

n anddev.org: An Android developer forum:

http://www.anddev.org

n Google Team Android Apps: Open source Android applications:

http://apps-for-android.googlecode.com/

http://www.informit.com/title/9780321743015
http://androidbook.blogspot.com
http://developer.android.com/
http://stackoverflow.com/questions/tagged/android
http://www.openhandsetalliance.com/
http://www.android.com/market/
http://mobile.tutsplus.com/category/tutorials/android/
http://www.anddev.org
http://apps-for-android.googlecode.com/


6 Introduction

n FierceDeveloper:A weekly newsletter for wireless developers:

http://www.fiercedeveloper.com/

n Wireless Developer Network:Daily news on the wireless industry:

http://www.wirelessdevnet.com/

n Developer.com:A developer-oriented site with mobile articles:

http://www.developer.com/

Conventions Used in This Book
This book uses the following conventions:

n ➥ is used to signify to readers that the authors meant for the continued code to ap-
pear on the same line. No indenting should be done on the continued line.

n Code or programming terms are set in monospace text.

This book also presents information in the following sidebars:

Tip
Tips provide useful information or hints related to the current text.

Note
Notes provide additional information that might be interesting or relevant.

Warning
Warnings provide hints or tips about pitfalls that you might encounter and how to avoid them.

Contacting the Authors
We welcome your comments, questions, and feedback.We invite you to visit our blog at
http://androidbook.blogspot.com
or email us at 
androidwirelessdev+awad2e@gmail.com

http://www.fiercedeveloper.com/
http://www.wirelessdevnet.com/
http://www.developer.com/
http://androidbook.blogspot.com


1
Introducing Android

The mobile development community is at a tipping point. Mobile users demand more
choice, more opportunities to customize their phones, and more functionality. Mobile
operators want to provide value-added content to their subscribers in a manageable and
lucrative way. Mobile developers want the freedom to develop the powerful mobile appli-
cations users demand with minimal roadblocks to success. Finally, handset manufacturers
want a stable, secure, and affordable platform to power their devices. Up until now a sin-
gle mobile platform has adequately addressed the needs of all the parties.

Enter Android, which is a potential game-changer for the mobile development com-
munity.An innovative and open platform,Android is well positioned to address the grow-
ing needs of the mobile marketplace.

This chapter explains what Android is, how and why it was developed, and where the
platform fits in to the established mobile marketplace.

A Brief History of Mobile Software Development
To understand what makes Android so compelling, we must examine how mobile devel-
opment has evolved and how Android differs from competing platforms.

Way Back When
Remember way back when a phone was just a phone? When we relied on fixed land-
lines? When we ran for the phone instead of pulling it out of our pocket? When we lost
our friends at a crowded ballgame and waited around for hours hoping to reunite? When
we forgot the grocery list (see Figure 1.1) and had to find a payphone or drive back
home again?

Those days are long gone.Today, commonplace problems such as these are easily
solved with a one-button speed dial or a simple text message like “WRU?” or “20?” or
“Milk and?”

Our mobile phones keep us safe and connected. Now we roam around freely, relying
on our phones not only to keep in touch with friends, family, and coworkers, but also to



8 Chapter 1 Introducing Android

Consider the following true story, which has been slightly enhanced for effect:

Once upon a time, on a warm summer evening, I was happily minding my own business
cooking dinner in my new house in rural New Hampshire when a bat swooped over my
head, scaring me to death.

The first thing I did—while ducking—was to pull out my cell phone and send a text mes-
sage to my husband, who was across the country at the time. I typed, “There’s a bat in
the house!”

My husband did not immediately respond (a divorce-worthy incident, I thought at the
time), so I called my dad and asked him for suggestions on how to get rid of the bat.

He just laughed.

Figure 1.1 Mobile phones have become a 
crucial shopping accessory.

tell us where to go, what to do, and how to do it. Even the most domestic of events seem
to revolve around my mobile phone.



9A Brief History of Mobile Software Development

Annoyed, I snapped a picture of the bat with my phone and sent it to my husband and my
blog, simultaneously guilt-tripping him and informing the world of my treacherous domes-
tic wildlife encounter.

Finally, I googled “get rid of a bat” and then I followed the helpful do-it-yourself instruc-
tions provided on the Web for people in my situation. I also learned that late August is
when baby bats often leave the roost for the first time and learn to fly. Newly aware that I
had a baby bat on my hands, I calmly got a broom and managed to herd the bat out of
the house.

Problem solved—and I did it all with the help of my trusty cell phone, the old LG VX9800.

My point here? Mobile phones can solve just about anything—and we rely on them for
everything these days.

You notice that I used half a dozen different mobile applications over the course of
this story. Each application was developed by a different company and had a different user
interface. Some were well designed; others not so much. I paid for some of the applica-
tions, and others came on my phone.

As a user, I found the experience functional, but not terribly inspiring.As a mobile de-
veloper, I wished for an opportunity to create a more seamless and powerful application
that could handle all I’d done and more. I wanted to build a better bat trap, if you will.

Before Android, mobile developers faced many roadblocks when it came to writing
applications. Building the better application, the unique application, the competing appli-
cation, the hybrid application, and incorporating many common tasks such as messaging
and calling in a familiar way were often unrealistic goals.

To understand why, let’s take a brief look at the history of mobile software development.

“The Brick”
The Motorola DynaTAC 8000X was the first commercially available cell phone. First
marketed in 1983, it was 13 × 1.75 × 3.5 inches in dimension, weighed about 2.5 pounds,
and allowed you to talk for a little more than half an hour. It retailed for $3,995, plus
hefty monthly service fees and per-minute charges.

We called it “The Brick,” and the nickname stuck for many of those early mobile
phones we alternatively loved and hated.About the size of a brick, with a battery power
just long enough for half a conversation, these early mobile handsets were mostly seen in
the hands of traveling business execs, security personnel, and the wealthy. First-generation
mobile phones were just too expensive.The service charges alone would bankrupt the av-
erage person, especially when roaming.

Early mobile phones were not particularly full featured. (Although, even the Motorola
DynaTAC, shown in Figure 1.2, had many of the buttons we’ve come to know well, such
as the SEND, END, and CLR buttons.) These early phones did little more than make and
receive calls and, if you were lucky, there was a simple contacts application that wasn’t im-
possible to use.



10 Chapter 1 Introducing Android

1 2 3

4 5 6

7 8 9

* 0 #

Figure 1.2 The first commercially available 
mobile phone: the Motorola DynaTAC.

The first-generation mobile phones were designed and developed by the handset
manufacturers. Competition was fierce and trade secrets were closely guarded. Manufac-
turers didn’t want to expose the internal workings of their handsets, so they usually devel-
oped the phone software in-house.As a developer, if you weren’t part of this inner circle,
you had no opportunity to write applications for the phones.

It was during this period that we saw the first “time-waster” games begin to appear.
Nokia was famous for putting the 1970s video game Snake on some of its earliest mono-
chrome phones. Other manufacturers followed suit, adding games such as Pong,Tetris,
and Tic-Tac-Toe.

These early phones were flawed, but they did something important—they changed the
way people thought about communication.As mobile phone prices dropped, batteries
improved, and reception areas grew, more and more people began carrying these handy
devices. Soon mobile phones were more than just a novelty.

Customers began pushing for more features and more games. But there was a problem.
The handset manufacturers didn’t have the motivation or the resources to build every ap-
plication users wanted.They needed some way to provide a portal for entertainment and
information services without allowing direct access to the handset.

What better way to provide these services than the Internet?



11A Brief History of Mobile Software Development

Wireless Application Protocol (WAP)
As it turned out, allowing direct phone access to the Internet didn’t scale well for mobile.

By this time, professional websites were full color and chock full of text, images, and
other sorts of media.These sites relied on JavaScript, Flash, and other technologies to en-
hance the user experience, and they were often designed with a target resolution of
800x600 pixels and higher.

When the first clamshell phone, the Motorola StarTAC, was released in 1996, it merely
had an LCD 10-digit segmented display. (Later models would add a dot-matrix type dis-
play.) Meanwhile, Nokia released one of the first slider phones, the 8110—fondly referred
to as “The Matrix Phone” because the phone was heavily used in films.The 8110 could
display four lines of text with 13 characters per line. Figure 1.3 shows some of the com-
mon phone form factors.

With their postage stamp-sized low-resolution screens and limited storage and process-
ing power, these phones couldn’t handle the data-intensive operations required by tradi-
tional web browsers.The bandwidth requirements for data transmission were also costly
to the user.

The Wireless Application Protocol (WAP) standard emerged to address these concerns.
Simply put,WAP was a stripped-down version of HTTP, which is the backbone protocol
of the Internet. Unlike traditional web browsers,WAP browsers were designed to run
within the memory and bandwidth constraints of the phone.Third-party WAP sites

Figure 1.3 Various mobile phone form factors: the candy bar, the
slider, and the clamshell.



12 Chapter 1 Introducing Android

served up pages written in a markup language called Wireless Markup Language (WML).
These pages were then displayed on the phone’s WAP browser. Users navigated as they
would on the Web, but the pages were much simpler in design.

The WAP solution was great for handset manufacturers.The pressure was off—they
could write one WAP browser to ship with the handset and rely on developers to come
up with the content users wanted.

The WAP solution was great for mobile operators.They could provide a custom WAP
portal, directing their subscribers to the content they wanted to provide, and rake in the
data charges associated with browsing, which were often high.

Developers and content providers didn’t deliver. For the first time, developers had a
chance to develop content for phone users, and some did so, with limited success.

Most of the early WAP sites were extensions of popular branded websites, such as
CNN.com and ESPN.com, which were looking for new ways to extend their reader-
ship. Suddenly phone users accessed the news, stock market quotes, and sports scores on
their phones.

Commercializing WAP applications was difficult, and there was no built-in billing
mechanism. Some of the most popular commercial WAP applications that emerged dur-
ing this time were simple wallpaper and ringtone catalogues that enabled users to person-
alize their phones for the first time. For example, a user browsed a WAP site and requested
a specific item. He filled out a simple order form with his phone number and his handset
model. It was up to the content provider to deliver an image or audio file compatible
with the given phone. Payment and verification were handled through various premium-
priced delivery mechanisms such as Short Message Service (SMS), Enhanced Messaging
Service (EMS), Multimedia Messaging Service (MMS), and WAP Push.

WAP browsers, especially in the early days, were slow and frustrating.Typing long
URLs with the numeric keypad was onerous.WAP pages were often difficult to navi-
gate. Most WAP sites were written one time for all phones and did not account for indi-
vidual phone specifications. It didn’t matter if the end user’s phone had a big color screen
or a postage stamp-sized monochrome screen; the developer couldn’t tailor the user’s ex-
perience.The result was a mediocre and not very compelling experience for everyone
involved.

Content providers often didn’t bother with a WAP site and instead just advertised SMS
short codes on TV and in magazines. In this case, the user sent a premium SMS message
with a request for a specific wallpaper or ringtone, and the content provider sent it back.
Mobile operators generally liked these delivery mechanisms because they received a large
portion of each messaging fee.

WAP fell short of commercial expectations. In some markets, such as Japan, it flour-
ished, whereas in others, such as the United States, it failed to take off. Handset screens
were too small for surfing. Reading a sentence fragment at a time, and then waiting sec-
onds for the next segment to download, ruined the user experience, especially because
every second of downloading was often charged to the user. Critics began to call WAP
“Wait and Pay.”



13A Brief History of Mobile Software Development

Finally, the mobile operators who provided the WAP portal (the default home page
loaded when you started your WAP browser) often restricted which WAP sites were ac-
cessible.The portal enabled the operator to restrict the number of sites users could browse
and to funnel subscribers to the operator’s preferred content providers and exclude com-
peting sites.This kind of walled garden approach further discouraged third-party develop-
ers, who already faced difficulties in monetizing applications, from writing applications.

Proprietary Mobile Platforms
It came as no surprise that users wanted more—they will always want more.

Writing robust applications with WAP, such as graphic-intensive video games, was
nearly impossible.The 18-year-old to 25-year-old sweet-spot demographic—the kids
with the disposable income most likely to personalize their phones with wallpapers and
ringtones—looked at their portable gaming systems and asked for a device that was both
a phone and a gaming device or a phone and a music player.They argued that if devices
such as Nintendo’s Game Boy could provide hours of entertainment with only five but-
tons, why not just add phone capabilities? Others looked to their digital cameras, Palms,
BlackBerries, iPods, and even their laptops and asked the same question.The market
seemed to be teetering on the edge of device convergence.

Memory was getting cheaper, batteries were getting better, and PDAs and other em-
bedded devices were beginning to run compact versions of common operating systems
such as Linux and Windows.The traditional desktop application developer was suddenly a
player in the embedded device market, especially with smartphone technologies such as
Windows Mobile, which they found familiar.

Handset manufacturers realized that if they wanted to continue to sell traditional
handsets, they needed to change their protectionist policies pertaining to handset design
and expose their internal frameworks to some extent.

A variety of different proprietary platforms emerged—and developers are still actively
creating applications for them. Some smartphone devices ran Palm OS (now Garnet OS)
and RIM BlackBerry OS. Sun Microsystems took its popular Java platform and J2ME
emerged (now known as Java Micro Edition [Java ME]). Chipset maker Qualcomm de-
veloped and licensed its Binary Runtime Environment for Wireless (BREW). Other plat-
forms, such as Symbian OS, were developed by handset manufacturers such as Nokia,
Sony Ericsson, Motorola, and Samsung.The Apple iPhone OS (OS X iPhone) joined the
ranks in 2008. Figure 1.4 shows several different phones, all of which have different devel-
opment platforms.

Many of these platforms have associated developer programs.These programs keep the
developer communities small, vetted, and under contractual agreements on what they can
and cannot do.These programs are often required and developers must pay for them.

Each platform has benefits and drawbacks. Of course, developers love to debate about
which platform is “the best.” (Hint: It’s usually the platform we’re currently developing for.)

The truth is that no one platform has emerged victorious. Some platforms are best
suited for commercializing games and making millions—if your company has brand



14 Chapter 1 Introducing Android

Figure 1.4 Phones from various mobile device platforms.

For manufacturers and mobile operators, handset product lines quickly became com-
plicated. Platform market penetration varies greatly by region and user demographic. In-
stead of choosing just one platform, manufacturers and operators have been forced to
sell phones for all the different platforms to compete in the market.We’ve even seen
some handsets supporting multiple platforms. (For instance, Symbian phones often also
support J2ME.)

The mobile developer community has become as fragmented as the market. It’s nearly
impossible to keep track of all the changes in the market. Developer specialty niches have
formed.The platform development requirements vary greatly. Mobile software developers
work with distinctly different programming environments, different tools, and different
programming languages. Porting among the platforms is often costly and not straightfor-
ward. Keeping track of handset configurations and testing requirements, signing and certi-
fication programs, carrier relationships, and application marketplaces have become
complex spin-off businesses of their own.

backing. Other platforms are more open and suitable for the hobbyist or vertical market
applications. No mobile platform is best suited for all possible applications.As a result,
the mobile phone has become increasingly fragmented, with all platforms sharing part of
the pie.



15The Open Handset Alliance

It’s a nightmare for the ACME Company that wants a mobile application. Should it
develop a J2ME application? BREW? iPhone? Windows Mobile? Everyone has a differ-
ent kind of phone.ACME is forced to choose one or, worse, all of the platforms. Some
platforms allow for free applications, whereas others do not.Vertical market application
opportunities are limited and expensive.

As a result, many wonderful applications have not reached their desired users, and
many other great ideas have not been developed at all.

The Open Handset Alliance
Enter search advertising giant Google. Now a household name, Google has shown an in-
terest in spreading its vision, its brand, its search and ad-revenue-based platform, and its
suite of tools to the wireless marketplace.The company’s business model has been amaz-
ingly successful on the Internet and, technically speaking, wireless isn’t that different.

Google Goes Wireless
The company’s initial forays into mobile were beset with all the problems you would ex-
pect.The freedoms Internet users enjoyed were not shared by mobile phone subscribers.
Internet users can choose from the wide variety of computer brands, operating systems,
Internet service providers, and web browser applications.

Nearly all Google services are free and ad driven. Many applications in the Google
Labs suite directly compete with the applications available on mobile phones.The appli-
cations range from simple calendars and calculators to navigation with Google Maps and
the latest tailored news from News Alerts—not to mention corporate acquisitions such as
Blogger and YouTube.

When this approach didn’t yield the intended results, Google decided to a different ap-
proach—to revamp the entire system upon which wireless application development was
based, hoping to provide a more open environment for users and developers: the Internet
model.The Internet model allows users to choose between freeware, shareware, and paid
software.This enables free market competition among services.

Forming the Open Handset Alliance
With its user-centric, democratic design philosophies, Google has led a movement to turn
the existing closely guarded wireless market into one where phone users can move be-
tween carriers easily and have unfettered access to applications and services.With its vast
resources, Google has taken a broad approach, examining the wireless infrastructure from
the FCC wireless spectrum policies to the handset manufacturers’ requirements, applica-
tion developer needs, and mobile operator desires.

Next, Google joined with other like-minded members in the wireless community and
posed the following question:What would it take to build a better mobile phone?

The Open Handset Alliance (OHA) was formed in November 2007 to answer that
very question.The OHA is a business alliance comprised of many of the largest and most



16 Chapter 1 Introducing Android

successful mobile companies on the planet. Its members include chip makers, handset
manufacturers, software developers, and service providers.The entire mobile supply chain
is well represented.

Andy Rubin has been credited as the father of the Android platform. His company,
Android Inc., was acquired by Google in 2005.Working together, OHA members, includ-
ing Google, began developing a nonproprietary open standard platform based upon tech-
nology developed at Android Inc. that would aim to alleviate the aforementioned
problems hindering the mobile community.The result is the Android project.To this day,
most Android platform development is completed by Rubin’s team at Google, where he
acts as VP of Engineering and manages the Android platform roadmap.

Google’s involvement in the Android project has been so extensive that the line be-
tween who takes responsibility for the Android platform (the OHA or Google) has
blurred. Google hosts the Android open source project and provides online Android doc-
umentation, tools, forums, and the Software Development Kit (SDK) for developers.All
major Android news originates at Google.The company has also hosted a number of
events at conferences and the Android Developer Challenge (ADC), a contest to encour-
age developers to write killer Android applications—for $10 million dollars in prizes to
spur development on the platform.The winners and their apps are listed on the Android
website.

Manufacturers: Designing the Android Handsets
More than half the members of the OHA are handset manufacturers, such as Samsung,
Motorola, HTC, and LG, and semiconductor companies, such as Intel,Texas Instruments,
NVIDIA, and Qualcomm.These companies are helping design the first generation of An-
droid handsets.

The first shipping Android handset—the T-Mobile G1—was developed by handset
manufacturer HTC with service provided by T-Mobile. It was released in October 2008.
Many other Android handsets were slated for 2009 and early 2010.The platform gained
momentum relatively quickly. Each new Android device was more powerful and exciting
than the last. Over the following 18 months, 60 different Android handsets (made by 21
different manufacturers) debuted across 59 carriers in 48 countries around the world. By
June 2010, at an announcement of a new, highly anticipated Android handset, Google an-
nounced more than 160,000 Android devices were being activated each day (for a rate of
nearly 60 million devices annually).The advantages of widespread manufacturer and car-
rier support appear to be really paying off at this point.

The Android platform is now considered a success. It has shaken the mobile market-
place, gaining ground steadily against competitive platforms such as the Apple iPhone,
RIM BlackBerry, and Windows Mobile.The latest numbers (as of Summer 2010) show
BlackBerry in the lead with a declining 31% of the smartphone market.Trailing close be-
hind is Apple’s iPhone at 28%.Android, however, is trailing with 19%, though it’s gaining
ground rapidly and, according to some sources, is the fastest-selling smartphone platform.
Microsoft Windows Mobile has been declining and now trails Android by several percent-
age points.



17The Open Handset Alliance

Mobile Operators: Delivering the Android Experience
After you have the phones, you have to get them out to the users. Mobile operators from
North, South, and Central America; Europe,Asia, India,Australia,Africa, and the Middle
East have joined the OHA, ensuring a worldwide market for the Android movement.
With almost half a billion subscribers alone, telephony giant China Mobile is a founding
member of the alliance.

Much of Android’s success is also due to the fact that many Android handsets don’t
come with the traditional “smartphone price tag”—quite a few are offered free with acti-
vation by carriers. Competitors such as the Apple iPhone have no such offering as of yet.
For the first time, the average Jane or Joe can afford a feature-full phone. I’ve lost count of
the number of times I’ve had a waitress, hotel night manager, or grocery store checkout
person tell me that they just got an Android phone and it has changed their life.This phe-
nomenon has only added to the Android’s rising underdog status.

In the United States, the Android platform was given a healthy dose of help from car-
riers such as Verizon, who launched a $100 million dollar campaign for the first Droid
handset. Many other Droid-style phones have followed from other carriers. Sprint re-
cently launched the Evo 4G (America’s first 4G phone) to much fanfare and record one-
day sales (http://j.mp/cNhb4b).

Content Providers: Developing Android Applications
When users have Android handsets, they need those killer apps, right?

Google has led the pack, developing Android applications, many of which, such as the
email client and web browser, are core features of the platform. OHA members are also
working on Android application integration. eBay, for example, is working on integration
with its online auctions.

The first ADC received 1,788 submissions, with the second ADC being voted upon by
26,000 Android users to pick a final 200 applications that would be judged profession-
ally—all newly developed Android games, productivity helpers, and a slew of location-
based services (LBS) applications.We also saw humanitarian, social networking, and
mash-up apps. Many of these applications have debuted with users through the Android
Market—Google’s software distribution mechanism for Android. For now, these chal-
lenges are over.The results, though, are still impressive.

For those working on the Android platform from the beginning, handsets couldn’t
come fast enough.The T-Mobile G1 was the first commercial Android device on the
market, but it had the air of a developer pre-release handset. Subsequent Android handsets
have had much more impressive hardware, allowing developers to dive in and design awe-
some new applications.

http://j.mp/cNhb4b


18 Chapter 1 Introducing Android

As of October 2010, there are more than 80,000 applications available in the Android
Market, which is growing rapidly.This takes into account only applications published
through this one marketplace—not the many other applications sold individually or on
other markets.This also does not take into account that, as of Android 2.2, Flash applica-
tions can run on Android handsets.This opens up even more application choices for An-
droid users and more opportunities for Android developers.

There are now more than 180,000 Android developers writing interesting and exciting
applications. By the time you finish reading this book, you will be adding your expertise
to this number.

Taking Advantage of All Android Has to Offer
Android’s open platform has been embraced by much of the mobile development com-
munity—extending far beyond the members of the OHA.

As Android phones and applications have become more readily available, many other
mobile operators and handset manufacturers have jumped at the chance to sell Android
phones to their subscribers, especially given the cost benefits compared to proprietary
platforms.The open standard of the Android platform has resulted in reduced operator
costs in licensing and royalties, and we are now seeing a migration to open handsets from
proprietary platforms such as RIM,Windows Mobile, and the Apple iPhone.The market
has cracked wide open; new types of users are able to consider smartphones for the first
time.Android is well suited to fill this demand.

Android Platform Differences
Android is hailed as “the first complete, open, and free mobile platform”:

n Complete:The designers took a comprehensive approach when they developed the
Android platform.They began with a secure operating system and built a robust soft-
ware framework on top that allows for rich application development opportunities.

n Open:The Android platform is provided through open source licensing. Develop-
ers have unprecedented access to the handset features when developing applica-
tions.

n Free: Android applications are free to develop.There are no licensing or royalty fees
to develop on the platform. No required membership fees. No required testing fees.
No required signing or certification fees.Android applications can be distributed
and commercialized in a variety of ways.

Android: A Next-Generation Platform
Although Android has many innovative features not available in existing mobile plat-
forms, its designers also leveraged many tried-and-true approaches proven to work in the
wireless world. It’s true that many of these features appear in existing proprietary 



19Android Platform Differences

Figure 1.5 The Android mascot and logo.

platforms, but Android combines them in a free and open fashion while simultaneously
addressing many of the flaws on these competing platforms.

The Android mascot is a little green robot, shown in Figure 1.5.This little guy (girl?) is
often used to depict Android-related materials.

Android is the first in a new generation of mobile platforms, giving its platform devel-
opers a distinct edge on the competition.Android’s designers examined the benefits and
drawbacks of existing platforms and then incorporated their most successful features.At
the same time,Android’s designers avoided the mistakes others suffered in the past.

Since the Android 1.0 SDK was released,Android platform development has continued
at a fast and furious pace. For quite some time, there was a new Android SDK out every
couple of months! In typical tech-sector jargon, each Android SDK has had a project
name. In Android’s case, the SDKs are named alphabetically after sweets (see Figure 1.6).

The latest version of Android is codenamed Gingerbread.

Figure 1.6 Some Android SDKs and their codenames.



20 Chapter 1 Introducing Android

Free and Open Source
Android is an open source platform. Neither developers nor handset manufacturers pay
royalties or license fees to develop for the platform.

The underlying operating system of Android is licensed under GNU General Public
License Version 2 (GPLv2), a strong “copyleft” license where any third-party improve-
ments must continue to fall under the open source licensing agreement terms.The An-
droid framework is distributed under the Apache Software License (ASL/Apache2),
which allows for the distribution of both open- and closed-source derivations of the
source code. Commercial developers (handset manufacturers especially) can choose to en-
hance the platform without having to provide their improvements to the open source
community. Instead, developers can profit from enhancements such as handset-specific
improvements and redistribute their work under whatever licensing they want.

Android application developers have the ability to distribute their applications under
whatever licensing scheme they prefer. Developers can write open source freeware or tra-
ditional licensed applications for profit and everything in between.

Familiar and Inexpensive Development Tools
Unlike some proprietary platforms that require developer registration fees, vetting, and
expensive compilers, there are no upfront costs to developing Android applications.

Freely Available Software Development Kit
The Android SDK and tools are freely available. Developers can download the Android
SDK from the Android website after agreeing to the terms of the Android Software De-
velopment Kit License Agreement.

Familiar Language, Familiar Development Environments
Developers have several choices when it comes to integrated development environments
(IDEs). Many developers choose the popular and freely available Eclipse IDE to design
and develop Android applications. Eclipse is the most popular IDE for Android develop-
ment, and there is an Android plug-in available for facilitating Android development.An-
droid applications can be developed on the following operating systems:

n Windows XP (32-bit) or Vista (32-bit or 64-bit)
n Mac OS X 10.5.8 or later (x86 only)
n Linux (tested on Linux Ubuntu 8.04 LTS, Hardy Heron)

Reasonable Learning Curve for Developers
Android applications are written in a well-respected programming language: Java.

The Android application framework includes traditional programming constructs, such
as threads and processes and specially designed data structures to encapsulate objects com-
monly used in mobile applications. Developers can rely on familiar class libraries, such as
java.net and java.text. Specialty libraries for tasks such as graphics and database 



21Android Platform Differences

management are implemented using well-defined open standards such as OpenGL Em-
bedded Systems (OpenGL ES) or SQLite.

Enabling Development of Powerful Applications
In the past, handset manufacturers often established special relationships with trusted
third-party software developers (OEM/ODM relationships).This elite group of software
developers wrote native applications, such as messaging and web browsers, which shipped
on the handset as part of the phone’s core feature set.To design these applications, the
manufacturer would grant the developer privileged inside access and knowledge of a
handset’s internal software framework and firmware.

On the Android platform, there is no distinction between native and third-party appli-
cations, enabling healthy competition among application developers.All Android applica-
tions use the same libraries.Android applications have unprecedented access to the
underlying hardware, allowing developers to write much more powerful applications.Ap-
plications can be extended or replaced altogether. For example,Android developers are
now free to design email clients tailored to specific email servers, such as Microsoft Ex-
change or Lotus Notes.

Rich, Secure Application Integration
Recall from the bat story I previously shared that I accessed a variety of phone applica-
tions in the course of a few moments: text messaging, phone dialer, camera, email, picture
messaging, and the browser. Each was a separate application running on the phone—
some built-in and some purchased. Each had its own unique user interface. None were
truly integrated.

Not so with Android. One of the Android platform’s most compelling and innovative
features is well-designed application integration.Android provides all the tools necessary
to build a better “bat trap,” if you will, by allowing developers to write applications that
seamlessly leverage core functionality such as web browsing, mapping, contact manage-
ment, and messaging.Applications can also become content providers and share their data
among each other in a secure fashion.

Platforms such as Symbian have suffered from setbacks due to malware.Android’s vig-
orous application security model helps protect the user and the system from malicious
software.

No Costly Obstacles to Publication
Android applications have none of the costly and time-intensive testing and certification
programs required by other platforms such as BREW and Symbian.



22 Chapter 1 Introducing Android

A “Free Market” for Applications
Android developers are free to choose any kind of revenue model they want.They can
develop freeware, shareware, or trial-ware applications, ad-driven, and paid applications.
Android was designed to fundamentally change the rules about what kind of wireless ap-
plications could be developed. In the past, developers faced many restrictions that had lit-
tle to do with the application functionality or features:

n Store limitations on the number of competing applications of a given type
n Store limitations on pricing, revenue models, and royalties
n Operator unwillingness to provide applications for smaller demographics

With Android, developers can write and successfully publish any kind of application they
want. Developers can tailor applications to small demographics, instead of just large-scale
money-making ones often insisted upon by mobile operators.Vertical market applications
can be deployed to specific, targeted users.

Because developers have a variety of application distribution mechanisms to choose
from, they can pick the methods that work for them instead of being forced to play by oth-
ers’ rules.Android developers can distribute their applications to users in a variety of ways:

n Google developed the Android Market (see Figure 1.7), a generic Android applica-
tion store with a revenue-sharing model.

Figure 1.7 The Android market.

n Handango.com added Android applications to its existing catalogue using their
billing models and revenue-sharing model.

n Developers can come up with their own delivery and payment mechanisms.

Mobile operators are still free to develop their own application stores and enforce their
own rules, but it will no longer be the only opportunity developers have to distribute
their applications.

A New and Growing Platform
Android might be the next generation in mobile platforms, but the technology is still in
its early stages. Early Android developers have had to deal with the typical roadblocks as-
sociated with a new platform: frequently revised SDKs, lack of good documentation, and
market uncertainties.

On the other hand, developers diving into Android development now benefit from
the first-to-market competitive advantages we’ve seen on other platforms such as BREW



23The Android Platform

and Symbian. Early developers who give feedback are more likely to have an impact on
the long-term design of the Android platform and what features will come in the next
version of the SDK. Finally, the Android forum community is lively and friendly. Incen-
tive programs, such as the ADC, have encouraged many new developers to dig into the
platform.

Each new version of the Android SDK has provided a number of substantial improve-
ments to the platform. In recent revisions, the Android platform has received some much-
needed UI “polish,” both in terms of visual appeal and performance.Although most of
these upgrades and improvements were welcome and necessary, new SDK versions often
cause some upheaval within the Android developer community.A number of published
applications have required retesting and resubmission to the Android Marketplace to con-
form to new SDK requirements, which are quickly rolled out to all Android phones in
the field as a firmware upgrade, rendering older applications obsolete.

Some older Android handsets are not capable of running the latest versions of the plat-
form.This means that Android developers often need to target several different SDK ver-
sions to reach all users. Luckily, the Android development tools make this easier than ever.

The Android Platform
Android is an operating system and a software platform upon which applications are de-
veloped.A core set of applications for everyday tasks, such as web browsing and email, are
included on Android handsets.

As a product of the OHA’s vision for a robust and open source development environ-
ment for wireless,Android is an emerging mobile development platform.The platform was
designed for the sole purpose of encouraging a free and open market that all mobile appli-
cations phone users might want to have and software developers might want to develop.

Android’s Underlying Architecture
The Android platform is designed to be more fault-tolerant than many of its predecessors.
The handset runs a Linux operating system upon which Android applications are exe-
cuted in a secure fashion. Each Android application runs in its own virtual machine (see
Figure 1.8).Android applications are managed code; therefore, they are much less likely to
cause the phone to crash, leading to fewer instances of device corruption (also called
“bricking” the phone, or rendering it useless).

The Linux Operating System
The Linux 2.6 kernel handles core system services and acts as a hardware abstraction layer
(HAL) between the physical hardware of the handset and the Android software stack.

Some of the core functions the kernel handles include

n Enforcement of application permissions and security
n Low-level memory management



24 Chapter 1 Introducing Android

Physical Hardware

Linux 2.6 Operating System
(Hardware Abstraction Layer)

The Android Platform

Written Using
Android

Java Framework

Android
Application

A

DALVIK Virtual Machine

Linux User
A

Written Using
Android

Java Framework

Android
Application

B

DALVIK Virtual Machine

Linux User
B

Written Using
Android

Java Framework

Android
Application

C

DALVIK Virtual Machine

Linux User
C

Memory
Management

Process
Management

Binder IPC

I/O

Display
Keypad

Touchscreen

Power
Management

Other Drivers
WiFi, Bluetooth, Camera, Audio,

Telephony, Flash, Device Sensors

Network
Stack

Security

Figure 1.8 Diagram of the Android platform architecture.

n Process management and threading
n The network stack
n Display, keypad input, camera,Wi-Fi, Flash memory, audio, and binder (IPC)

driver access



25The Android Platform

Android Application Runtime Environment
Each Android application runs in a separate process, with its own instance of the Dalvik
virtual machine (VM). Based on the Java VM, the Dalvik design has been optimized for
mobile devices.The Dalvik VM has a small memory footprint, and multiple instances of
the Dalvik VM can run concurrently on the handset.

Security and Permissions
The integrity of the Android platform is maintained through a variety of security meas-
ures.These measures help ensure that the user’s data is secure and that the device is not
subjected to malware.

Applications as Operating System Users
When an application is installed, the operating system creates a new user profile associated
with the application. Each application runs as a different user, with its own private files on
the file system, a user ID, and a secure operating environment.

The application executes in its own process with its own instance of the Dalvik VM
and under its own user ID on the operating system.

Explicitly Defined Application Permissions
To access shared resources on the system,Android applications register for the specific
privileges they require. Some of these privileges enable the application to use phone func-
tionality to make calls, access the network, and control the camera and other hardware
sensors.Applications also require permission to access shared data containing private and
personal information, such as user preferences, user’s location, and contact information.

Applications might also enforce their own permissions by declaring them for other ap-
plications to use.The application can declare any number of different permission types,
such as read-only or read-write permissions, for finer control over the application.

Limited Ad-Hoc Permissions
Applications that act as content providers might want to provide some on-the-fly permis-
sions to other applications for specific information they want to share openly.This is done
using ad-hoc granting and revoking of access to specific resources using Uniform Re-
source Identifiers (URIs).

URIs index specific data assets on the system, such as images and text. Here is an ex-
ample of a URI that provides the phone numbers of all contacts:

content://contacts/phones

To understand how this permission process works, let’s look at an example.
Let’s say we have an application that keeps track of the user’s public and private birth-

day wish lists. If this application wanted to share its data with other applications, it could
grant URI permissions for the public wish list, allowing another application permission
to access this list without explicitly having to ask for it.



26 Chapter 1 Introducing Android

Application Signing for Trust Relationships
All Android applications packages are signed with a certificate, so users know that the ap-
plication is authentic.The private key for the certificate is held by the developer.This
helps establish a trust relationship between the developer and the user. It also enables the
developer to control which applications can grant access to one another on the system.
No certificate authority is necessary; self-signed certificates are acceptable.

Marketplace Developer Registration
To publish applications on the popular Android Market, developers must create a devel-
oper account.The Android Market is managed closely and no malware is tolerated.

Developing Android Applications
The Android SDK provides an extensive set of application programming interfaces (APIs)
that is both modern and robust.Android handset core system services are exposed and ac-
cessible to all applications.When granted the appropriate permissions,Android applica-
tions can share data among one another and access shared resources on the system
securely.

Android Programming Language Choices
Android applications are written in Java (see Figure 1.9). For now, the Java language is the
developer’s only choice on the Android platform.

There has been some speculation that other programming languages, such as C++,
might be added in future versions of Android. If your application must rely on native
code in another language such as C or C++, you might want to consider integrating it
using the Android Native Development Kit (NDK).We talk more about this in Chapter
18,“Using the Android NDK.”

Figure 1.9 Duke, the Java mascot.



27The Android Platform

No Distinctions Made Between Native and Third-Party Applications
Unlike other mobile development platforms, there is no distinction between native appli-
cations and developer-created applications on the Android platform. Provided the applica-
tion is granted the appropriate permissions, all applications have the same access to core
libraries and the underlying hardware interfaces.

Android handsets ship with a set of native applications such as a web browser and con-
tact manager.Third-party applications might integrate with these core applications, ex-
tend them to provide a rich user experience, or replace them entirely with alternative
applications.

Commonly Used Packages
With Android, mobile developers no longer have to reinvent the wheel. Instead, develop-
ers use familiar class libraries exposed through Android’s Java packages to perform com-
mon tasks such as graphics, database access, network access, secure communications, and
utilities (such as XML parsing).

The Android packages include support for

n Common user interface widgets (Buttons, Spin Controls,Text Input)
n User interface layout
n Secure networking and web browsing features (SSL,WebKit)
n Structured storage and relational databases (SQLite)
n Powerful 2D and 3D graphics (including SGL and OpenGL ES)
n Audio and visual media formats (MPEG4, MP3, Still Images)
n Access to optional hardware such as location-based services (LBS),Wi-Fi, Blue-

tooth, and hardware sensors

Android Application Framework
The Android application framework provides everything necessary to implement your aver-
age application.The Android application lifecycle involves the following key components:

n Activities are functions the application performs.
n Groups of views define the application’s layout.
n Intents inform the system about an application’s plans.
n Services allow for background processing without user interaction.
n Notifications alert the user when something interesting happens.

Android applications can interact with the operating system and underlying hardware us-
ing a collection of managers. Each manager is responsible for keeping the state of some
underlying system service. For example, there is a LocationManager that facilitates inter-
action with the location-based services available on the handset.The ViewManager and
WindowManager manage user interface fundamentals.



Applications can interact with one another by using or acting as a ContentProvider.
Built-in applications such as the Contact manager are content providers, allowing third-
party applications to access contact data and use it in an infinite number of ways.The sky
is the limit.

Summary
Mobile software development has evolved over time.Android has emerged as a new mo-
bile development platform, building on past successes and avoiding past failures of other
platforms.Android was designed to empower the developer to write innovative applica-
tions.The platform is open source, with no up-front fees, and developers enjoy many
benefits over other competing platforms. Now it’s time to dive deeper and start writing
Android code, so you can evaluate what Android can do for you.

References and More Information
Android Development:

http://developer.android.com
Open Handset Alliance:

http://www.openhandsetalliance.com

28 Chapter 1 Introducing Android

http://developer.android.com
http://www.openhandsetalliance.com


Index
Symbols

# (hash symbol), 111

… (ellipsis), 136

3D graphics

cubes, drawing, 378
lighting, 379-382
OpenGL ES, 368
SurfaceView, creating, 370
texturing, 381-384
vertices

coloring, 377-378
drawing, 376-377

3GPP Specifications website, 365

A
AbsoluteLayout class, 190

AbstractAccountAuthenticator class, 490

abstracted LCD density AVD hardware
option, , 620

AbstractThreadedSyncAdapter class, 491

AccelerateDecelerateInterpolator, 230

AccelerateInterpolator, 230

accelerometer sensor, 410-411, 619

accessibility framework, 502-503

android.speech package, 503
speech recognition services, 504-506
Text-To-Speech services,

503, 506-508
converting text into sound files,

508
initializing, 507
language settings, 507
OnInitListener interface, 506



accessing

application preferences, 70
Browser content provider, 263
Contacts private data, 264-266
content providers with permissions,

262-263
database files, 240
device sensors, 408-409
hardware, 407
images, 270-271
Internet. See HTTP
layout XML, 126
menus, 120
preferences, 231-234
resources, 103
secondary logs, 654
strings, 108-109
telephony state, 354
WiFi networks, 412-413

AccountManager class, 490, 497

accounts

AccountManager class, 490
android.accounts package, 489
authenticators, 490
credentials, protecting, 490
developer accounts

benefits, 609
creating, 604-606
Distribution Agreement, 604

providers, 490
registering, 490
sync adapters, 491

activities

App Widget configuration, 455
dialogs, adding, 166-167
external, launching, 77
game application examples, 71

intents, processing, 468
lifecycle, 72

callbacks, 72-73
destroying activities, 75
initializing static activity data, 74
killing activities, 75
releasing activity data, 74
retrieving activity data, 74
saving activity data, 74
saving state to Bundle objects, 75
stopping activity data, 74

live folders, 282, 481-482
manifest file definition, 92
MapActivity, 324
organizing with menus, 78
primary entry point, 92-93
reference website, 80
searches, creating, 475-477
stacks, 72
starting, 76-77
themes, applying, 170
transitioning with intents, 76

action/data types, 77
external Activities, launching, 77
new activities, launching, 76-77
passing additional information, 78

Activity class, 71

<activity> tag, 92

ad revenue, 612

adapters, 194

arrays, 194-195
binding data, 196
cursor, 195-196
database data, binding, 254-256
event handling, 197
ImageUriAdapter, 272
sync, 491, 497

684 accessing



AdapterView classes

ArrayAdapter class, 194-195
binding data, 196
CursorAdapter class, 195-196
event handling, 197

ADB (Android Debug Bridge), 39

applications
installing, 651
reinstalling, 651
testing, 656
uninstalling, 651

backup services
archived data, wiping, 655
controlling, 654-655
forcing restores, 655
scheduling, 655

bug reports, 655-656
command listing, 660
connected devices/emulators, listing,

647-648
copying files, 650
custom binaries, installing, 659-660
functionality, 647
LogCat utility

clearing logs, 654
dates and times, 652
filtering, 652-653
output redirection, 654
secondary logs, accessing, 654
viewing logs, 652

shell commands, 649-650
emulator, starting/stopping,

649-650
issuing single, 649
shell sessions, starting, 649

specific device commands, 648
sqlite3 database tool, 656

starting/stopping server processes, 648
stress testing applications

event listening, 656-657
event types, weighting, 657-658
monkey tool, launching, 656
repeating events, 658
throttle, 658

website, 39
ADC (Android Developer Challenge), 16

addGlobalFocusChangeListener() method,
163

addGlobalLayoutListener() method, 163

addOnPreDrawListener() method, 163

addOnTouchModeChangeListener() method,
162

addView() method, 178

ad-hoc permissions, 25

Adobe AIR

applications, building, 313
beta program, 313
Tool Suite website, 314

ADT plug-in, 35-36

AIDL (Android Interface Definition Language)

Parcelable class file, 448
remote interfaces, declaring, 444

alert dialogs, 165

aliases (resources), 123

alpha transparency transformations, 228

alternate marketplaces, 610-611

alternative layouts, 127

alternative resources, 102-103, 531

configuration changes, handling, 539
data retention, 539
default application icon resources

example, 531
directory qualifiers

Android platform, 536 
applying, 532

685alternative resources



bad examples, 536-537
case, 532
combining, 532
default resources, 536
dock mode, 534
good examples, 536
keyboard type and availability, 535
language and region code, 533
mobile country code, 533
mobile network code, 533
names, 532
navigation key availability, 535
navigation method, 536
night mode, 534
required strings, 533
screen aspect ratio, 534
screen orientation, 534
screen pixel density, 534
screen size, 533
text input method, 535
touch screen type, 535

efficiency, 538-539
hierarchy, 531
internationalization, 540-542

device language and locale 
example, 541-542

dual language support example,
540-541

performance, 539
programmatic configurations, 538
screen orientation customization

example, 537-538
websites, 549

AnalogClock class, 156-157

Android

benefits, 18
completeness, 18

Debug Bridge. See ADB
Dev Guide:“Developing on a

Device” website, 67
Developer Challenge (ADC), 16
Developers blog, 574
Development website, 28, 398
first-to-market advantages, 23
freedoms, 18
Interface Definition Language. See

AIDL
mascot/logo, 19
open source, 18, 20
packages, 35, 131

android.accounts, 489
android.bluetooth, 415
android.content, 232
android.database.sqlite, 239
android.gesture, 509
android.graphics, 230
android.graphics.drawable.shapes,

215
android.hardware, 408, 412
android.sax.*, 237
android.speech, 503
android.telephony, 354, 357
android.test, 582
android.util.Xml.*, 237
android.view, 133
android.view.animation, 226
android.webkit, 307
android.widget, 134

Project Wizard, 44
Virtual Devices. See AVDs

Android Market, 603-609

applications
deleting, 609
upgrading, 609
uploading, 606-608

686 alternative resources



country requirements, 604
developer accounts

benefits, 609
creating, 604-606
Distribution Agreement, 604

help, 607
licensing service, 604
publication, 608
refund policy, 608-609
sign-up website, 604
website, 612

AndroidManifest.xml file, 52

Android.net package website, 299

animations, 116

android.view.animation package, 226
frame-by-frame, 116, 117, 223-225

animation loops, naming, 224
genie juggling gifts example,

223-224
starting, 224
stopping, 224

helper utilities, 116
interpolators, 230
loading, 227-228
moving, 229-230
rotating, 228-229
scaling, 229
storing, 101
transparency, 228
tweening, 116-118, 224-230

defining as XML resources, 226
defining programmatically, 226
loading, 227-228
moving transformations, 229-230
rotating, 228-229
scaling, 229
simultaneously/sequentially,

226-227

transformations, defining, 224
transparency, 228

types, 221-223
AnimationUtils class, 227-228

antialiasing paints, 207

AnticipateInterpolator, 230

AnticipateOvershootInterpolator, 230

Apache Software License (ASL/Apache2), 20

API levels

finding, 546-547
website, 96

ApiDemos application, 40

App Widgets

AppWidgetProvider class, 455
creating

application support, 453
configuration activities, 455
dimensions, 454
providers, 455
sizing, 454
XML definition, 453-454

hosts, 460
implementing, 455-456
installing, 460-461
manifest file, configuring, 459
overview, 452-453
providers, 452
reference websites, 487
update service, creating, 458-459
updating, 453, 454

onUpdate() method, 458
update service, creating, 458-459

view hierarchies, 456-457
applications

activities. See activities
Adobe AIR, building, 313
ApiDemos, 40
architectures, 565

687applications



AVDs, creating, 51
Browser, 302
build targets, 50
compatibility

alternative resources. See
alternative resources

device differentiators, 523-524
forward, 554
hardware configuration support,

545-546
internationalization, 539-545
maximizing, 523-525
user interfaces, 525-531
versions, 546-548
website, 549

as content providers, 274
content provider interfaces,

implementing, 275
data, adding, 278-279
data columns, defining, 276
deleting data, 280-281
manifest files, updating, 282
MIME types, returning, 281-282
queries, 276-277
updates, 279-280
URIs, 276-277

as content type handlers, 466-467
Context, 70

Activity instances, 71
application preferences, accessing,

70
application resources, retrieving, 70
retrieving, 70

core files/directories, 52-51
debugging

emulator, 56-59
on handsets, 65-66
registering as debuggable, 65

deploying, 568
descriptions, 87
developer competition, 21
development. See development
distributing

ad revenue, 612
alternate marketplaces, 610-611
Android Market, 603-609
billing users, 611-612
considerations, 597-598
copy protection, 611
manufacturer/operator 

partnerships, 611
self-distribution, 609-610

enhancing, 451-452
extending, 451-452
files, backing up, 494-495
Flash

Adobe AIR applications, building,
313

advantages/disadvantages, 311-312
enabling, 312-313

framework, 27-28
free market, 22
functionality, 97
global searches, enabling, 478
heap activity, monitoring, 639-640
hello-jni sample, 399
icons, 87
images, adding, 269

accessing images, 270-271
binding data to Gallery control,

272
data retrieval, 272
finding content with URIs, 271
gallery image retrieval, 273
retrieved images, viewing, 273-274

688 applications



implementing, 567
installing, 593, 651
integration, 21-12
interoperability, 451
JavaScript interface application,

308-312
Button control click handler, 311
JavaScript control, 311
JavaScript namespace, 309
JavaScriptExtensions class, 309
onCreate() method, 309
sample.html file JavaScript func-

tions, 310-311
web page, defining, 310

launch configurations, creating, 52-53
location-based services, adding, 62-64

AVDs with Google APIs, creating,
62

emulator location, configuring,
62-63

last known location, finding, 63-64
logging, adding, 59-60
LunarLander, 40
media, adding, 60-62
names, 50, 87
network-driven, 565
NotePad, 40
as operating system users, 25
packaging preparations

debugging, disabling, 600
icons, 599
logging, disabling, 600
manifest files for market filtering,

configuring, 599
market requirements, 599-600
names, 50, 599
permissions, 600

target platforms, verifying, 599
versions, 599

permissions, 25
PetTracker

binding data, 253-244
field names, 251
SQLiteOpenHelper class,

extending, 251-256
PetTracker3, 270-274
preferences

accessing, 70, 231-234
adding, 232, 233-234
data types, 231
deleting, 233
file formats, 234
finding, 232
functionality, 232
methods, 233
private, 232
reading, 232
shared, 232
updating, 234

projects, creating, 50
publishing 

Android Market, 608
certification, 603
exporting package files, 601-602
release versions, testing, 603
requirements, 598
signing package files, 600-602

reinstalling, 651
resources

accessing programmatically, 103
adding, 98
aliases, 123
alternative, 102-103
animations. See animations

689applications



Boolean, 110
colors. See colors
default, 132
defined, 97
defining types with Eclipse,

104-107
dimensions, 112-113
directory hierarchy, 97-98
drawables, 113-114
images. See images
integer, 111
layout. See layouts
menus. See menus
raw files, 121-122
referencing, 122-123
retrieving, 70
selector, 116
storing, 97, 101
strings. See strings
styles, 127-130
system, referencing, 131
themes, 131
types, 99-101
website, 132
XML files, 120-121

responsiveness, 573-574
running in Android emulator, 47-48,

53-55
sample, 40
screen orientation customization

example, 537-538
searches, 469-470-471

activities, creating, 475-477
enabling, 471-472
manifest files, 477-478
Search buttons, 478
Searchable Configuration docu-

mentation website, 475

suggestions, 472-474
voice capabilities, 474-475
website, 487
XML configuration file, 471

SimpleDatabase
file, accessing, 240
openOrCreateDatabase() method,

240
properties, configuring, 241

SimpleMultiTouchGesture example,
516-519

SimpleNDK, 399-400
exception handling, 402-403
parameters, handling, 401-402
return values, handling, 401-402

Snake, 40
adding to Eclipse workspace, 43-44
AVD, creating, 44-46
launch configurations, creating,

46-48
running in Android emulator,

47-48
stability, 573-574
stand-alone, 565
support requirements, 568

documentation, 569
firmware upgrades, 569
live server changes, 569
low-risk porting, identifying, 569
user crash/bug reports, 569

Sync Adapter example, 491
testing, 567-568
threads

activity, monitoring, 638-639
viewing, 637-638

uninstalling, 651
uploading applications to Android

Market, 606-608

690 applications



user interfaces. See user interfaces
versioning, 86

AppWidgetProvider class, 455

<appwidget-provider> tag, 454

architectures

applications, 565
platform, 23

Linux Operating System, 23-24
runtime environment, 25

arcs, drawing, 219-220

ArcShape object, 220

ArrayAdapter class, 194-195

arrays

adapters, 194-195
converting to buffers, 377
strings, 109-110

ash shell, 649

ASL/Apache2 (Apache Software License), 20

Asset Packaging tool, 98

assets folder, 52

asynchronous processing, 291-293

AsyncTask class, 292-293

attributes

autoLink, 136-137
completionThreshold, 141
ellipsize, 136
ems, 136
FrameLayout views, 183-185
glEsVersion, 368
hint, 138
includeInGlobalSearch, 478
inputType, 501
interpolator, 230
layouts, 181-182
LinearLayout views, 186
lines, 138
maxEms, 136

maxLines, 136
maxSdkVersion, 88
minEms, 136
minLines, 136
minSdkVersion, 88
permission, 95
prompt, 144
RelativeLayout views, 187-189
search suggestions, 472
TableLayout views, 191
targetSdkVersion, 88, 89
textOn/textOff, 147
TextView class, 135
View class, 127
ViewGroups, 182

audio, 346

AudioManager service, 349
finding, 350
formats website, 351
notifications, 431-432
playing, 348-349, 620
recording, 347-348, 619
ringtones, 351
sharing, 349-350
voice searches, 474-475
website, 351

Audio.Albums class, 260

Audio.Artists class, 260

Audio.Genres class, 260

AudioManager service, 349

Audio.Media class, 260

Audio.Playlists class, 260

audioRecorder object, 348

authenticators (accounts), 490

auto-complete

Java code, 664
text editors, 139-142

691auto-complete



AutoCompleteTextView class, 139

autoLink attribute, 136-137

automated testing, 590

AVDs (Android Virtual Devices)

creating, 44-46, 51, 616-618
emulator

configuring, 616-617
launching, 623
phone call simulation, 625
settings, configuring, 615-616

Google APIs, 319
hardware options, 618-620
Manager, 36-37
skin options, 618

B
backup agents

implementing, 492-493
registering, 495-496

backup services, 491

application files, 494-495
archived data, wiping, 655
backup agents

implementing, 492-493
registering, 495-496

controlling with ADB, 654-655
forcing restores, 655
remote, choosing, 492
requesting backups, 496
restore operations, 496-497
scheduling, 655
shared preferences files, 493-494
troubleshooting, 497
website, 497

BackupAgentHelper class, 492

backward compatibility

Java Reflection, 547-548
without reflection website, 548

basic buttons, 144-146

BasicGLThread class, 372

batteries

AVD hardware option, 619
monitoring, 417-420

BatteryManager class, 419

beginTransaction() method, 244

benefits, 18

best practices

design
Android Developers blog, 574
billing and revenue generation, 575
network diagnostics, 576-577
responsiveness, 573-574
rules, 571-572
silly mistakes, avoiding, 578
stability, 573-574
third-party standards, 576
tools, 578
updates/upgrades, 577-578
user demands, meeting, 572
user interfaces, 572-573

development, 579
code diagnostics, 581
code quality, 580
code reviews, 581
coding standards, 580-581
device specific bugs, 582
feasibility testing, 579-580
silly mistakes, avoiding, 583
software processes, 579
tools, 583
unit testing, 581-582

emulator, 613-614
security, 574

handling private data, 575
transmitting private data, 575

692 AutoCompleteTextView class



testing, 585
application installations, 593
automation, 590
backup services, 594
billing, 594
black box, 591
build acceptance tests, 589
conformance, 593
coverage, maximizing, 589
defect tracking systems, 585-587
device fragmentation, 587
emulator limitations, 590-591
emulator versus actual device,

589-590
environments, 587
integration points, 592-593
internationalization, 593
outsourcing, 596
performance, 594
preproduction devices, 590
priorities, 588
quality, 594
real-life device configurations, 588
servers, 591-592
services, 591-592
silly mistakes, avoiding, 595
signal loss, 589
software integration, 588-589
specialized scenarios, 592
starting states, 588
third-party firmware, 587
third-party standards, 592
tools, 595
unexpected events, 594
upgrades, 593
usability, 592
white box, 591

websites, 584

billing users, 611-612

generation methods, 575
testing, 594

bindService() method, 438

Bitmap class, 212

BitmapDrawable class, 116

bitmaps, 212

Bitmap class, 212
drawing, 213
scaling, 213
transforming into matrixes, 213

black box testing, 591

blinking light notifications, 430-431

clearing, 431
colors, 430
customizing, 431
precedence, 430
testing, 430
urgency, 430-431

Bluetooth

available, finding, 415
classes, 415
connections, 416-417
device discovery, 416
enabling, 415-416
functionality, 414
implementation example, 417-418
paired devices, querying, 416
permissions, 415
websites, 421

BluetoothAdapter class, 415

BluetoothDevice class, 415

BluetoothServerSocket class, 415

BluetoothSocket class, 415

Bodlaender, Hans, 211

bold strings, 108

<bool> tag, 110

693<bool> tag



Boolean resources, 110

Borland SilkTest, 589

BounceInterpolator, 230

boundCenterBottom() method, 330

broadcasting

intents, 79
receivers, registering, 93-94

broadcastIntent() method, 79

Browser application, 259, 263, 302

accessing, 263
querying for most visited bookmarked

sites, 263-264
browser images, downloading, 271

browsing the Web, 301-302

chrome, adding, 305-307
event handling, 304-305
Flash support

Adobe AIR applications, building,
313

advantages/disadvantages, 311-312
enabling, 312-313

JavaScript, enabling, 304
mouseovers, 304
settings, configuring, 304
WebKit rendering engine, 301

android.webkit package, 307
classes, 307
functionality, 308
JavaScript interface application,

308-312
Open Source Project website, 314
support, 307

zooming, 304
buffers, 377

bugs

device specific, 582
reports, 569, 655-656
resolution process website, 32

build acceptance tests, 589

build errors, resolving, 667

build targets, 50

built-ins

content providers, 259
layouts, 181
themes, 171
view containers, 193

Bundle objects, 75

BusyBox

binary, installing, 660
websites, 660

Button class, 144

buttons, 144

basic, 144-146
check boxes, 144, 146-147
images, 146
margin example, 183
radio, 144, 148-149
Search, 478
toggles, 144, 147

C
C2DM (Cloud to Device Messaging), 438

cache files

AVD hardware option, 620
creating, 238-239
retrieving, 236

CacheManager class, 307

calculateAndDisplayFPS() method, 385

calibrating device sensors, 410-411

call states

listening for changes, 355
permissions, 354
querying, 354-355
roaming, 356
service state, 355-356

694 Boolean resources



CallLog content provider, 259, 261-263

access permissions, 262-263
tagging phone numbers with custom

labels, 262
camera

AVD hardware option, 619
image capturing, 336-340

adding, 336-337
button click handler, 340
Camera object, instantiating,

337-338
camera parameters, 338
CameraSurfaceView class, 337
layouts, 339
starting preview, 338-339
stopping preview, 338
takePicture() method, 339

settings, configuring, 340-341
zoom controls, 341

Camera class, 340

CameraSurfaceView class, 337

cancel() method, 428

cancelDiscovery() method, 416

canDetectOrientation() method, 521

canvases, 205-207

bitmaps, drawing, 213
Canvas object, 207
dimensions, 207
red circle on black canvas example,

205-206
cellular networks, emulating, 298

certifying applications, 603

change listeners

call states, 355
entire screen events

GlobalFocusChange events, 163
GlobalLayout events, 163
PreDraw events, 163

entire screen events, listening, 162-163
focus changes, 164-165
touch mode changes, 161-162

character picker dialogs, 165

check boxes, 144, 146-147

chess font, 211

child views, 178

choosing

build targets, 50
devices for device databases, 556
IDEs (integrated development 

environments), 20
paint colors, 207
programming languages, 26
remote backup services, 492
SDK versions

maximum, 90
minimum, 89
target, 89

software keyboards, 500-502
source control systems, 563-564
target markets, 568
versioning systems, 564

Chronometer class, 155-156

circles, drawing, 219

classes

AbsoluteLayout, 190
AbstractAccountAuthenticator, 490
AbstractThreadedSyncAdapter, 491
AccountManager, 490, 497
Activity, 71
AdapterView

ArrayAdapter class, 194-195
binding data, 196
CursorAdapter class, 195-196
event handling, 197

AnalogClock, 156-157
AnimationUtils, 227-228

695classes



AppWidgetProvider, 455
ArcShape, 220
ArrayAdapter, 194-195
AsyncTask, 292-293
audioRecorder, 348
AutoCompleteTextView, 139
BackupAgentHelper, 492
BasicGLThread, 372
BatteryManager, 419
Bitmap, 212
BitmapDrawable, 116
Bluetooth, 415
Bundle, 75
Button, 144
CacheManager, 307
Camera, 340
CameraSurfaceView, 337
Canvas, 207
Chronometer, 155-156
Configuration, 544
ConnectivityManager, 297
ConsoleMessage, 307
ContactsContract, 264
ContentValues, 268
ContentResolver, 276
Context class, 70

Activity instances, 71
application preferences, accessing,

70
application resources, retrieving, 70
reference website, 80
retrieving, 70

ContextMenu, 159-161
CookieManager, 307
CursorAdapter, 195-196
CustomGL2SurfaceView, 392
CustomRenderer, 392
DatePicker, 150-151

Dialog, 165
DigitalClock, 156
DisplayMetrics, 526
EditText, 138-142

auto-complete, 139-142
defining, 138
input filters, 142
long presses, 138-140

FileBackupHelper, 494-495
Gallery, 178
GalleryView, 194
GameAreaView

defining, 511
methods, 511, 513
multi-touch gestures, 516-519
single-touch gestures, 510-513

Geocoder, 319
address line queries, 320
named locations, 320-322
specific information queries, 320

GeomagneticField, 412
GeoPoint, 324
GestureDetector, 509

interfaces, 510
single-touch gesture support,

509-510
GestureOverlayView, 509
gestures, 509
GLDebugHelper, 373
GLES20, 392
GLSurfaceView

functionality, 388
implementing, 375-390

GPS satellite, 333
GPXService, 439
GridView, 194
Handler, 384
HorizontalScrollView, 201

696 classes



HttpURLConnection, 289
InputMethodManager, 502
Intent, 78
ItemizedOverlay, 329-332, 333
Java, creating, 664
JavaScriptExtensions, 309
JNIEnv, 402
LayoutParams, 182
LinearGradient, 208
LinearInterpolator 230
ListView, 178, 194, 197-198
LocationListener, 316
LocationManager, 316
Log

importing, 59
methods, 59

MapController, 324
MarginLayoutParams, 182
Matrix, 213
MediaPlayer, 60

audio, playing, 348-349
methods, 61
video, 346

MediaRecorder
audio, 347-348
video, 343-345

MediaScannerConnection, 342
MediaStore content provider, 260
MotionEvent, 509
MultiAutoCompleteTextView, 141
NativeBasicsActivity.java, 400
NotificationManager, 425, 435
OnRatingBarChangeListener, 155
OrientationEventListener, 520
OvalShape, 219
Paint, 207
Parcelable, implementing, 446-449
Path, 220-222

PrefListenerService, 458
ProgressBar class, 151-153
RadialGradient, 209
RatingBar class, 154-155
RecognizerIntent, 504-505
RectShape, 216
RemoteViews, 456-457
Renderer

functionality, 388
implementing, 375-390

RestoreObserver, 496-497
RingtoneManager, 351
RotateAnimation, 229
RoundRectShape, 217
ScaleAnimation, 229
ScaleGestureDetector

multi-touch gestures, 516
navigational gestures, 509

ScanResult, 413
ScrollView, 201
SearchManager, 470
SeekBar, 153-154
Sensor, 408
SensorEvent, 410
SensorManager, 408
Service, 439, 449
ServiceConnection, implementing,

445-446
shapes, 214
SharedPreferencesBackupHelper, 493
SimpleDataUpdateService, 458
SimpleOnGestureListener, 510
SimpleOrientationActivity, 520-521
SimpleViewDetailsActivity, 468
SlidingDrawer, 202-203
SmsManager

divideMessage() method, 362
getDefault() method, 358

697classes



Spinner, 143-144
SQLite

databases, managing, 239
deleting, 249

SQLiteDatabase, 246-247
SQLiteOpenHelper, 250, 251-252
SQLiteQueryBuilder, 248-249
SweepGradient, 209
TabActivity, 198-200
TabHost, 178, 198

creating tabs from scratch, 200-201
TabActivity class implementation,

198-200
TelephonyManager, 354
TextView, 134-138

contextual links, creating, 136-138
height, 136
retrieving, 126
styles, applying, 169
text attribute, 135
width, 136

TimePicker, 151
TranslateAnimation, 230
Uri, 61
UriMatcher, 277-278
URL, 288
URLUtil, 307
View. SeeView class
ViewGroups, 178

attributes, 182
child View objects, adding, 178
layout classes, 178
subclass categories, 178
View container controls, 178

ViewSwitcher, 202
ViewTreeObserver

OnGlobalFocusChangeListener
interface, 163

OnGlobalLayoutListener, 163
OnPreDrawListener interface, 163
OnTouchModeChangeListener

interface, 162
ViewWithRedDot, 205-206
WallpaperManager, 342
WallpaperService, 462
WebBackForwardList, 307
WebChromeClient, 305-307
WebHistoryItem, 307
WebKit rendering engine, 307
WebSettings, 304
WebView. See also WebKit rendering

engine
benefits, 307
chrome, adding, 305-307
content, loading, 302-304
event handling, 304-305
layouts, designing, 302
settings, configuring, 304
Web browsing, 301-302

WebViewClient, 304-305
WifiManager, 412-413

clear() method, 233

clearing logs, 654

click events, handling

AdapterView controls, 197
basic button controls, 146
image capturing, 340
long clicks, 164
menu option selection

context menus, 161
options menus, 159

client-server testing, 562

clock controls, 156-157

close() method, 250

closing SQLite databases, 250

698 classes



cloud computing Wikipedia website, 497

Cloud to Device Messaging (C2DM), 438

code. See also development

diagnostics, 581
quality, 580
reviewing, 581
standards, 580-581
unit testing, 581-582

code obfuscation tools, 611

collapseColumns attribute, 191

colors, 111-112

# (hash symbol), 111
blinking light notifications, 430
formats, 111
paints, 207

antialiasing, 207
choosing, 207
gradients, 207-208
linear gradients, 208
Paint class, 207
radial gradients, 209
styles, 207
sweep gradients, 209

resource file example, 111
vertices (3D graphics), 377-378

<color> tag, 111

command-like gestures, 509

commit() method, 234

compare() method, 357

compatibility

alternative resources. See alternative
resources

device differentiators, 523-524
forward, 554
hardware configuration support,

545-546
internationalization, 539-545

default language, configuring,
541-543

language alternative resources,
540-542

locales, 544-545
testing, 593

maximizing, 523-525
user interfaces, 525-531

Nine-Patch Stretchable images,
526-528

screen support, 526
working square principle, 528-531

versions, 546-548
API levels, finding, 546-547
backward compatibility with Java

Reflection, 547-548
website, 549

completionThreshold attribute, 141

complex queries (SQL), 248-249

Configuration class, 544

configuring

alternative resources, 538
App Widget manifest file, 459
AVDs (Android Virtual Devices), 616-

617
camera settings, 340-341
emulator locations, 62-63, 623-624
intent filters, 93
languages, 541-543
live wallpaper manifest file, 464-465
manifest files for market filtering, 599
multimedia optional features, 335-336
operating system for debugging, 30
OpenGL ES 2.0, 391
platform requirements, 90-92

device features, 91
input methods, 90
screen sizes, 91-92

699configuring



SQLite database properties, 241
system requirements, 87-90

conformance, testing, 593

connections

services, 438
speeds, monitoring, 356-357

ConnectivityManager class, 297

console (Emulator)

commands, 632
connections, 628
GPS coordinates, 630
incoming call simulations, 628-629
network status, monitoring, 631
power settings, 631
SMS message simulation, 629-630

ConsoleMessage class, 307

Contacts content provider, 259, 264

private data, accessing, 264-266
querying, 266-267
records

adding, 267-268
deleting, 269
updating, 268-269

ContactsContract class, 264

containers (views), 193

adapters, 194
arrays, 194-195
binding data, 196
cursor, 195-196
event handling, 197

galleries, 194
grids, 194
lists, 194, 197-198
scrolling support, 201
sliding drawers, 202-203
switchers, 202
tabs, 198

creating from scratch, 200-201
TabActivity class implementation,

198-200
contains() method, 233

content providers

adding images to applications, 269
accessing images, 270-271
binding data to Gallery control,

272
data retrieval, 272
finding content with URIs, 271
gallery image retrieval, 273
retrieved images, viewing, 273-274

applications as, 274
data, adding, 278-279
data columns, defining, 276
deleting data, 280-281
interfaces, implementing, 275
manifest files, updating, 282
MIME types, returning, 281-282
queries, 276-277
updating, 279-280
URI pattern matching, 277-278
URIs, defining, 276

Browser, 259, 263
accessing, 263
querying for most visited 

bookmarked sites, 263-264
built-in, 259
CallLog, 259, 261-263

access permissions, 262-263
tagging phone numbers with 

custom labels, 262
Contacts, 259, 264

adding records, 267-268
deleting records, 269
private data, accessing, 264-266

700 configuring



querying, 266-267
updating records, 268-269

data
adding, 267-268
deleting, 269
retrieving, 272
updating, 268-269

interfaces, implementing, 275
live folder 

enabling, 283
projections, 284
queries, handling, 482-484
URIs, defining, 283-284

MediaStore, 259, 260
classes, 260
data requests, 260-261

permissions, 95
registering, 94
Settings, 259, 267
UserDictionary, 259, 267
website, 285

content type handlers, 466-467

ContentResolver class, 276

ContentValues class, 268

Context class, 70

Activity instances, 71
application preferences, accessing, 70
application resources, retrieving, 70
reference website, 80
retrieving, 70

context menus, enabling, 159-161

ContextMenu class, 159-161

contextual links, creating, 136-138

controls, 134. See also classes

buttons, 144
basic, 144-146
check boxes, 144, 146-147

radio, 144, 148-149
toggles, 144, 147

clocks, 156-157
hardware for debugging, 30-31
layout, 134
OptionsMenu, 157-159
progress bars

Chronometer class, 155-156
RatingBar class, 154-155
SeekBar class, 153-154

progress indicators, 151-153
services, 443-444
source control systems, 563-564

choosing, 563-564
Eclipse IDE integration, 661

CookieManager class, 307

copy protection, 611

copying files

ADB commands, 650
DDMS File Explore, 641-642

/core files/directories, 52-51

crash reports, 569

createBitmap() method, 213

createScaledBitmap() method, 213

createTabContent() method, 200

credentials (accounts), 490

cubes, drawing, 378

cursors

CursorAdapter class, 195-196
SQLite databases, querying, 245

custom binaries, installing, 659-660

CustomGL2SurfaceView class, 392

customization method (project 
requirements), 554

customizing

blinking light notifications, 431
dialogs, 168
fonts, 211-212

701customizing



locales, 544
log filters, 663
notifications, 432

layouts, 433-434
text, 432-433

screen orientation example, 537-538
software keyboards, 502

CustomRenderer class, 392

CycleInterpolator, 230

Cygwin website, 398

D
Dalvik

Debug Monitor Server. See DDMS
packages, 35
virtual machine, 25

data synchronization, 491, 497

/data/app directory, 641

databases

devices
data storage, 556
devices, choosing, 556
functionality, 558
managing, 555-557
third-party, 558

persistent, creating, 250
SQLite. See SQLite databases
student grade example, 675-682

adding data to tables, 677
calculated columns, 680-682
deleting tables, 682
editing, 679
foreign keys, 678-679
multiple queries, 680
purpose, 675-676
querying, 677-678
schema, 676

Students table, 676
Tests table, 676
updating, 679

dataChanged() method, 496

/data/data/<package name>/cache/ 
directory, 641

/data/data/<package name>/databases
directory, 641

/data/data/<package name> directory, 641

/data/data/<package name>/files/ 
directory, 641

/data/data/<package name>/
shared_prefs/ directory, 641

date input retrieval, 150-151

date picker dialogs, 165

DatePicker class, 150-151

DDMS (Dalvik Debug Monitor Server), 36, 38

application threads
activity, monitoring, 638-639
viewing, 637-638

availability, 635
debuggers, attaching, 638
Eclipse Perspective, 636
Emulator Control tab

functionality, 642-643
location fixes, 643
SMS message simulation, 643
voice calls, simulating, 643

features, 636-637
File Explorer

browsing, 641
copying files, 641-642
deleting files, 642
directory listing, 641
drag-and-drop support, 642

garbage collection, 639
heap activity, monitoring, 639-640
LogCat utility, 644
memory allocation, 640

702 customizing



processes, stopping, 640
screen captures, 645
stand-alone tool, 636
website, 38

debugging

ADB (Android Debug Bridge). See
ADB

applications, 56-59
bugs

device specific, 582
reports, 569, 655-656
resolution process website, 32

configurations, creating, 53
on handsets, 65-66
hardware configuration, 30-31
operating system configuration, 30
registering applications as debuggable,

65
SDK, 32
user interfaces, 180
View object drawing issues, 180

DecelerateInterpolator, 230

default.properties file, 52

default resources, 132

defect tracking systems

defects
defining, 586-587
information, logging, 585-586

designing, 585
delete() method

contacts, 269
content provider data, 280-281

deleteFile() method, 235

deleting

Android Market applications, 609
content provider data, 269, 280-281
dialogs, 167
files, 235, 642

preferences, 233
SQLite database 

records, 243-244
objects, 249

wallpapers, 343
deploying applications, 568. See also

distributing applications

designing

Android Developers blog, 574
best practices

billing and revenue generation, 575
network diagnostics, 576-577
responsiveness, 573-574
stability, 573-574
third-party standards, 576
updates/upgrades ease, 577-578
user demands, 572
user interfaces, 572-573
websites, 584

extensibility, 565-566
handsets, 16
interoperability, 566-567
layouts, 125-127
locale support, 544-545
maintenance, 565-566
notifications, 434
rules, 571-572
security, 574

handling private data, 575
transmitting private data, 575

silly mistakes, avoiding, 578
tools, 578

destroying Activities, 75

developers

accounts
benefits, 609
creating, 26, 604-606

Distribution Agreement, 604

703developers



development

best practices, 579
code diagnostics, 581
code quality, 580
code reviews, 581
coding standards, 580-581
device specific bugs, 582
feasibility testing, 579-580
software processes, 579
unit testing, 581-582
websites, 584

common packages, 27
Eclipse IDE. See Eclipse IDE
environment, testing, 43

adding projects to Eclipse 
workspace, 43-44

AVDs, creating, 44-46
launch configurations, creating,

46-48
running applications in Android

emulator, 47-48
framework, 27-28
hardware configuration, 30-31
history, 17-18
mobile software

acquiring target devices, 560
applications, implementing, 567
architectures, 565
deployment, 568
device databases, 555-558
device limitations, 561, 564
extensibility, 565-566
interoperability, 566-567
iteration, 553, 570
maintenance, 565-566
overview, 551
project documentation, 562-563

project requirements, 553-554
quality assurance risks, 561-562
Rapid Application Development

website, 570
source control systems, choosing,

563-564
support requirements, 568-569
target device identification,

558-560
testing, 567-568
third-party requirements, 555
use cases, 555
versioning systems, choosing, 564
waterfall approaches, 552, 570
Wikipedia website, 570

native versus third-party, 27
operating system configuration, 30
programming languages, 26
SDK upgrades, 31
silly mistakes, avoiding, 583
software requirements, 29
system requirements, 29
tools, 578, 583

devices

acquiring, 560
ADB commands, 648
battery monitoring, 417-420
Bluetooth

connections, 416-417
discovery, 416
paired devices, querying, 416

bugs, handling, 582
compatibility

alternative resources. See
alternative resources

differentiators, 523-524
forward, 554

704 development



hardware configuration support,
545-546

internationalization, 539-545
maximizing, 523-525
user interfaces, 525-531
versions, 546-548
website, 549

connected, listing, 647-648
convergence, 13
custom binaries, installing, 659-660
databases

data storage, 556
devices, choosing, 556
functionality, 558
managing, 555-557
third-party, 558

debugging applications, 65-66
defect tracking systems, 585

defect information, logging,
585-586

defects, defining, 586-587
features, configuring, 91
files

browsing, 641
copying, 641-642, 650
deleting, 642

fragmentation, 587
hardware

accessing, 407
emulator support, 408
features, 408

identifying, 558-560
indicator lights, 430
languages, configuring, 541-543
limitations, 561, 564
locations, finding, 316-318
manufacturers, 16

customizations, 559
distribution partnerships, 611

market availability, 559-560
mobile operators, 17
Nexus One and Android Dev Phones

website, 570
notifications support, 424
OpenGL ES compatibility, 368-369
preproduction, testing, 590
RAM size AVD hardware option, 619
real-life configurations, 588
screen captures, 645
sensors, 408

accelerometer, 410-411
accessing, 408, 409
availability, 409
calibrating, 410-411
data, reading, 409-410
most common, 408-409
orientations, 411-412
Sensor Simulator, 409
testing, 409
true north, finding, 412

Dialog class, 165

dialogs, 165

adding to activities, 166-167
alert, 165
character picker, 165
customizing, 168
date picker, 165
defining, 167
Dialog class, 165
dismissing, 167
initializing, 167
launching, 167
lifecycle, 166-167
progress, 165

705dialogs



removing, 167
time picker, 166
types, 165-166

DigitalClock class, 156

<dimen> tag, 112

dimensions, 112-113

App Widgets, 454
canvases, 207
resource file example, 113
retrieving, 113
unit measurements, 112

directories, 235. See also files

alternative resource qualifiers
Android platform, 536
applying, 532-537
bad examples, 536-537
case, 532
combining, 532
default resources, 536
dock mode, 534
good examples, 536
keyboard type and availability, 535
language and region code, 533
mobile country code, 533
mobile network code, 533
names, 532
navigation key availability, 535
navigation method, 536
night mode, 534
required strings, 533
screen aspect ratio, 534
screen orientation, 534
screen pixel density, 534
screen size, 533
text input method, 535
touch screen type, 535

cache files
creating, 238-239
retrieving, 236

core, 52-51
/data/app, 641
/data/data/<package name>, 641
/data/data/<package name>/cache/,

641
/data/data/<package name>/ 

databases, 641
/data/data/<package name>/files/,

641
/data/data/<package name>/

shared_prefs/, 641
files

creating, 236, 238
reading, 236
reading byte-by-byte, 237
retrieving, 236, 238
XML, 237

listing of, 641
/mnt/sdcard, 641
/mnt/sdcard/download/, 641
resources, 97-98
retrieving, 236

dismissDialog() method, 166, 167

dismissing dialogs, 167

display characteristics, finding, 526

DisplayMetrics class, 526

distributing applications, 568. See also
publishing applications

ad revenue, 612
alternate marketplaces, 610-611
Android Market, 603-609

country requirements, 604
deleting applications, 609
developer accounts, 604-606, 609

706 dialogs



Developer Distribution Agreement,
604

help, 607
licensing service, 604
publication, 608
refund policy, 608-609
sign-up website, 604
upgrading applications, 609
uploading applications, 606-608
website, 612

billing users, 611-612
generation methods, 575
testing, 594

considerations, 597-598
copy protection, 611
manufacturer/operator partnerships,

611
self-distribution, 609-610

divideMessage() method, 362

dock mode alternative resource qualifier, 534

documentation

Javadoc-Style documentation, 667
maintaining, 569
porting, 563
SDK, 33-34
Searchable Configuration 

documentation website, 475
software development, 562-563

quality assurance plans, 562-563
third-party, 563

third-party, 563
user interfaces, 563

doInBackground() method, 292

doStartService() method, 441

downloading images from browsers, 271

DPad AVD hardware option, 619

Draw Nine-patch tool, 40, 527-528

<drawable> tag, 114

drawables, 113-114

drawBitmap() method, 213

drawFrame() method, 404

drawing

3D graphics
coloring vertices, 377-378
cubes, 378
lighting, 379-382
texturing, 381-384
vertices, 376-377

android.graphics package, 230
animations

android.view.animation package,
226

frame-by-frame, 223-225
interpolators, 230
loading, 227-228
moving, 229-230
rotating, 228-229
scaling, 229
transparency, 228
tweening. See tweening animations
types, 221-223

bitmaps, 212, 213
Bitmap class, 212
scaling, 213
transforming into matrixes, 213

canvases, 205-207
Canvas object, 207
dimensions, 207

paints, 207-210
antialiasing, 207
colors, choosing, 207
gradients, 207-208
linear gradients, 208
Paint class, 207

707drawing



radial gradients, 209
styles, 207
sweep gradients, 209
utilities, 210

red circle on black canvas example,
205-206

shapes
arcs, 219-220
classes, 214
defining as XML resources,

214-215
defining programmatically, 215-216
ovals/circles, 219
paths, 220-222
round-corner rectangles, 217-218
squares/rectangles, 216-217
stars, 221-222

triangles on the screen, 375-376

E
Eclipse IDE, 30

auto-complete, 664
build errors, resolving, 667
download website, 29
Java code

classes, creating, 664
formatting, 664
imports, organizing, 664-665
methods, creating, 664

Javadoc-Style documentation, 667
layouts, designing, 125-127
log filters, creating, 663
manifest files, editing, 82
multiple file sections, viewing, 662
perspectives, 56, 662
Plug-In, 35
projects, adding, 43-44
refactoring code, 665

Extract Local Variable tool, 666
Extract Method tool, 666

Rename tool, 665
reorganizing code, 667
resources, defining, 104-107
SimpleNDK application, 399-400

exception handling, 402-403
native code from Java, calling,

400-401
parameters, handling, 401-402
return values, handling, 401-402

source control services integration,
661

tabs
repositioning, 661-662
unwanted, closing, 662

website, 41
windows

maximizing, 662
minimizing, 662
open, limiting, 663
side by side view, 662

edit() method, 233

editing

manifest files, 82
application-wide settings, 83-84
Eclipse, 82
manually, 84-86
package-wide settings, 82-83
permissions, 83
test instrumentation, 83

strings, 107
EditText class, 138-142

auto-complete, 139-142
defining, 138
input filters, 142
long presses, 138-140

EGL, initializing, 373-374

708 drawing



eglDestroyContext() method, 387

eglDestroySurface() method, 387

eglMakeCurrent() method, 387

eglTerminate() methods, 387

elapsedRealtime() method, 156

ellipsis (…), 136

ellipsize attribute, 136

emergency phone numbers, 357

ems attribute, 136

emulator, 37-38

actual device testing, compared,
589-590

AVDs (Android Virtual Devices),
615-616

configuring, 616-617
creating, 616-618
hardware options, 618-620
skin options, 618

best practices, 613-614
blinking lights, 430
connected, listing, 647-648
console

commands, 632
connections, 628
GPS coordinates, 630
incoming call simulations, 628-629
network status, monitoring, 631
power settings, 631
SMS message simulation, 629-630

custom binaries, installing, 659-660
DDMS Emulator Control tab

functionality, 642-643
location fixes, 643
SMS message simulation, 643
voice calls, simulating, 643

debugging applications, 56-59
files

browsing, 641
copying, 641-642, 650
deleting, 642

fun tips, 632
hardware support, 408
launching, 620-623

running applications, 621-623
SDK and AVD Manager, 623
startup options, 621

limitations, 590-591, 632-633
location, configuring,

62-63, 318, 623-624
messaging between, 625-628
overview, 613
phone call simulation, 625
running applications through, 47-48,

53-55
screen captures, 645
starting/stopping, 649-650
vibration, 429
website, 38
WiFi testing, 414

enhancing applications, 451-452

entire screen event handling, 162-163

GlobalFocusChange, 163
GlobalLayout, 163
PreDraw, 163

event handling

AdapterView controls, 197
button clicks

basic button controls, 146
image capturing, 340

entire screen events, 162-163
GlobalFocusChange, 163
GlobalLayout, 163
PreDraw, 163

focus changes, 164-165
live wallpapers, 463

709event handling



long clicks, 164
menu option selection

context menus, 161
options menus, 159

screen orientation changes, 520-521
touch mode changes, 161-162
WebView class, 304-305

execSQL() method, 241

Exerciser Monkey command-line tool, 594,
596

database data, 672
package files, 601-602

extending applications, 451-452

extensibility designs, 565-566

Extensible Markup Language. See XML

external Activities, launching, 77

external libraries, 92

Extract Local Variable tool, 666

Extract Method tool, 666

Extras property, 78

extreme programming website, 570

F
feasibility testing, 579-580

FileBackupHelper class, 494-495

fileList() method, 236

files. See also directories

application, backing up, 494-495
browsing, 641
cache

AVD hardware option, 620
creating, 238-239
retrieving, 236

copying
ADB commands, 650
DDMS File Explore, 641-642

core, 52-51

database formats, 669
deleting, 235, 642
image extensions, 114-115
listing, 236
locations, 50
manifest. See manifest files
opening, 235
packages, signing/exporting, 601-602
preferences, 231-234
raw, 121-122
resource, storing, 97
shared preferences, backing up,

493-494
SQL script files, creating, 673
storing, 101, 235
XML

App Widget definitions, 453-454
attributes, 120
in-application search files, 471
layouts, 120-121, 126, 173-175
live wallpaper definition, 464
parsing, 290-291
services permissions file, 443
shapes, defining, 214-215
SMS permissions, 358
telephony state information, 354
tweened animations, defining, 226
utility packages, 237

filter() method, 142

filters

input, 142
intents

configuring, 93
creating, 77
primary entry point activities,

92-93

710 event handling



registering, 469
remote interfaces, implementing,

446
logging, 652-653
market, 599, 612

finding

API levels, 546-547
audio, 350
content with URIs, 271
device locations, 316-318
display characteristics, 526
last known location, 63-64
multimedia, 350
preferences, 232
true north, 412

finish() method, 76

firmware upgrades, 569

first generation mobile phones, 9-10

first-to-market advantages, 23

Flash applications

Adobe AIR applications, building, 313
advantages/disadvantages, 311-312
enabling, 312-313

fling gestures, 515

focus changes, handling, 164-165

folders

assets, 52
gen, 52
live, 282

activities, 282, 481-482
components, 282-283
content provider queries, 482-484
creating, 481
enabling, 283
installing, 485-486
list with dates example, 285
manifest files, configuring, 484

overview, 480
picker information, 484
projections, 284
URIs, defining, 283-284
website, 487

res, 52
res/drawable-*/icon.png, 52
src, 52

fonts

chess font, 211
customizing, 211-212
default, 210
italic, 210
Monotype example, 210
Sans Serif example, 210
setFlags() method, 211
support, 210-211

forceError() method, 56

foreground attribute, 183

foregroundGravity attribute, 183

form layout example, 129-130

format strings, creating, 108

formatNumber() method, 357

formatting

colors, 111
database files, 669
images, 114-115
Java code, 664
phone numbers, 357-358
resource references, 122
strings, 107
video, 351

forward compatibility, 554

frame-by-frame animations, 116-117,
223-225

animation loops, naming, 224
genie juggling gifts example, 223-224
starting, 224
stopping, 224

711frame-by-frame animations



FrameLayout views, 183-185

attributes, 183-185
XML resource file example, 184-185

framework

applications, 27-28
FAQ website, 449
SDK, 35

free market for applications, 22

functionality

applications, 97
Bluetooth, 414
DDMS (Dalvik Debug Monitor

Server), 636-637
DDMS Emulator Control tab,

642-643
device databases, 558
GLSurfaceView class, 388
GPS, 316
manifest files, 81-82
OpenGL ES, 369
preferences, 232
Renderer class, 388
WebKit rendering engine, 308

G
galleries, 194

data-binding, 272
image retrieval, 273

Gallery class, 178

GalleryView class, 194

GameAreaView class

defining, 511
methods, 511, 513
multi-touch gestures, 516-519
single-touch gestures, 510-513

GC (Garbage Collector), 639

gen folder, 52

gen/com.androidbook.myfirstandroidapp/
R.java file, 52

genie juggling gifts animation example,
223-224

Geocoder class, 319

named locations, 320-322
querying

address lines, 320
specific information, 320

geocoding, 318

AVDs with Google APIs, 319
GeoPoint objects, 324
Location object names, retrieving, 319
named locations, 320-322
network connections, 321
queries

address lines, 320
specific information, 320

GeomagneticField class, 412

GeoPoint objects, 324

GestureDetector class, 509

interfaces, 510
single-touch gesture support, 509-510

GestureListener interface

methods, 515
multi-touch implementation, 517
single-touch implementation, 514

GestureOverlayView class, 509

gestures, 508-509

android.gesture package, 509
classes, 509
command-like, 509
motion detection, 509
multi-touch, 516-519

ScaleGestureDetector class, 516
SimpleMultiTouchGesture applica-

tion example, 516-519
natural, 518

712 FrameLayout views



navigational, 509
single-touch, 509-516

common, 509-510
detectors, 511
fling, 515
game screen example, 510-513
interpreting, 514
scroll, 515

getAddressLine() method, 320

getAll() method, 233

getAvailableLocales() method, 544

getBondedDevices() method, 416

getBoolean() method, 233

getCacheDir() method, 236

getCenter() method, 332

getConfiguredNetworks() method, 414

getContentResolver() method, 268

getDefault() method, 358

getDefaultSensor() method, 409

getDesiredMinimumHeight() method, 343

getDesiredMinimumWidth() method, 343

getDir() method, 236

getDisplayMessageBody() method, 361

getDrawable() method, 116, 343

getExternalStoragePublicDirectory() method,
548

getFeatureName() method, 320

getFilesDir() method, 236

getFloat() method, 233

getFromLocationName() method, 321

getInt() method, 233

getItem() method, 272

getItemId() method, 272

getLastNonConfigurationInstance() method,
539

getLocality() method, 320

getLocation() method, 63-64

getLong() method, 233

getMaxAddressLineIndex() method, 320

getMaxZoom() method, 341

getOrientation() method, 411-412

getResources() method, 70

getRoaming() method, 356

getSettings() method, 304

getSharedPreferences() method, 70

getString() method, 233

getSystemService() method

ConnectivityManager, 297
NotificationManager class, 425
SensorManager class, 408
TelephonyManager class, 354
WifiManager class, 412-413

getTextBounds() method, 212

getType() method, 281-282

getView() method, 272

getZoom() method, 341

getZoomRatios() method, 341

GIF (Graphics Interchange Format), 115

GL, initializing, 374-375

glColorPointer() method, 377

glCompileShader() method, 394

GLDebugHelper class, 373

glDrawArrays() method, 376

glDrawElements() method, 376

GLES20 class, 392

glEsVersion attribute, 368

Global Positioning Services. See GPS

global searches, 478

GlobalFocusChange events, 163

GlobalLayout events, 163

GLSurfaceView class

functionality, 388
implementing, 375-390

713GLSurfaceView class



gluLookAt() method, 375

gluPerspective() method, 375

glUseProgram() method, 394

GLUT (OpenGL Utility Toolkit), 375

GNU

Awk (Gawk) or Nawk website, 398
General Public License Version 2

(GPLv2), 20
Make 3.81 website, 398

Google, 15

Android Developer’s Guide, 41
APIs Add-On, 35
backup service, 492
intents, 77
Maps API key, 274, 325-326, 333
maps integration

AVDs with Google APIs, 62, 319
emulator location, configuring,

62-63
locations, mapping, 322-324

GPLv2 (GNU General Public License Version
2), 20

GPS (Global Positioning Services), 315-318

application functionality, 316
AVD hardware option, 619
device locations, finding, 316-318
emulator, locating, 318, 623-624
satellite classes, 333

GPXService class, 439

gradients (paints), 207-208

linear, 208
radial, 209
sweep, 209

<grant-uri-permissions> tag, 95

graphics. See images

Graphics Interchange Format (GIF), 115

gravity attribute

LinearLayout views, 186
RelativeLayout views, 187-189

grids, 194

GridView class, 194

groups (permissions), 95

GSM Modem AVD hardware option, 619

H
Handler class, 384

handling events. See event handling

handsets. See devices

hardware

accessing, 407
AVD configuration options, 618-620
batteries, monitoring, 417-420
Bluetooth

available, finding, 415
classes, 415
connections, 416-417
device discovery, 416
enabling, 415-416
functionality, 414
implementation example, 417-418
paired devices, querying, 416
permissions, 415
websites, 421

configuration support, 545-546
device sensors, 408

accelerometer, 410-411
accessing, 408, 409
availability, 409
calibrating, 410-411
data, reading, 409-410
most common, 408-409
orientations, 411-412
Sensor Simulator, 409
testing, 409
true north, finding, 412

emulator support, 408

714 gluLookAt() method



features, 408
WiFi

access points, scanning, 412-413
permissions, 412
sensors, 412
signal strength, 413
testing, 414

hash symbol (#), 111

heap activity, monitoring, 639-640

hello-jni sample application, 399

Hierarchy Viewer, 39, 179-180

drawing issues, debugging, 180
launching, 179
layout view, 180
layouts, deconstructing, 180
pixel perfect view, 180-181
user interfaces, debugging, 180

hint attribute, 138

history of mobile software development

applications, 17-18
device convergence, 13
first generation, 9-10
first time waster games, 10
Google, 15
market, 14
OHA (Open Handset Alliance)

formation, 16
manufacturers, 16
mobile operators, 17
website, 28

OpenGL ES, 367
proprietary platforms, 13
WAP (Wireless Application Protocol),

11-13
horizontal progress bars, 152

horizontal scrolling, 201

HorizontalScrollView class, 201

hosts (App Widgets), 460

HTTP, 288

asynchronous processing, 291-293
images, viewing, 295-297
latency, 298
network calls with threads, 293-295
network status, retrieving, 297
reading Web data, 288-289

errors, 289
exception handling, 288
permissions, 289
URL class, 288

URL queries, 289
XML, parsing, 290-291

HttpURLConnection class, 289

HVGA skin, 618

hybrid project requirement methods, 554

I
IANA (Internet Assigned Numbers Authority),

467

icons (applications), 87, 599

IDEs (integrated development environ-
ments), 20

ImageButtons, 146

images, 114-116

3D. See 3D graphics
accessing, 270-271
adding, 115, 269

accessing images, 270-271
binding data to Gallery control,

272
data retrieval, 272
finding content with URIs, 271
gallery image retrieval, 273
retrieved images, viewing, 273-274

android.graphics package, 230

715images



animations, 116
android.view.animation package,

226
frame-by-frame, 116, 117, 223-225
helper utilities, 116
interpolators, 230
loading, 227-228
moving, 229-230
rotating, 228-229
scaling, 229
transparency, 228
tweening. See tweening animations
types, 221-223

BitmapDrawable class, 116
bitmaps, 212

Bitmap class, 212
drawing, 213
scaling, 213
transforming into matrixes, 213

buttons, 146
capturing with camera, 336-340

adding, 336-337
button click handler, 340
Camera object, instantiating,

337-338
camera parameters, 338
camera settings, 340-341
camera zoom controls, 341
CameraSurfaceView class, 337
layouts, 339
starting preview, 338-339
stopping preview, 338
takePicture() method, 339

downloading from browsers, 271
drawing

canvases, 205-207
paints, 207
red circle on black canvas example,

205-206

formats, 114-115
live wallpapers. See live wallpapers
NDK, 404
network, viewing, 295-297
Nine-Patch Stretchable

compatibility, 526-528
creating, 527-528
overview, 115
scaling, 527

OpenGL ES
3D graphics, 368
API documentation websites, 396
cleaning up, 387
device compatibility, 368-369
drawing on the screen, 375-376
EGL, initializing, 373-374
functionality, 369
GL, initializing, 374-375
GLDebugHelper class, 373
GLSurfaceView class, 388
history, 367
initializing, 369-370
Khronos OpenGL ES website, 396
main application thread communi-

cating with OpenGL thread, 387
OpenGL thread talking to applica-

tion thread, 386
overview, 367
Renderer class, 388
SurfaceView, creating, 370
thread, starting, 371-373
versions, 368
websites, 396

OpenGL ES 2.0, 391
configuring, 391
surface, requesting, 391-395

retrieved, viewing, 273-274
screen captures, 645
shapes

716 images



arcs, 219-220
classes, 214
defining as XML resources, 214-

215
defining programmatically, 215-216
ovals/circles, 219
paths, 220-222
round-corner rectangles, 217-218
squares/rectangles, 216-217
stars, 221-222

sharing, 341-342
storing, 101
wallpapers

live wallpapers, 461-466
still images, 342-343

Images.Media class, 260

Images.Thumbnails class, 260

ImageUriAdapter, 272

IMEs (Input Method Editors), 499

importing

database data, 673-674
Log class, 59

in-application searches

activities, creating, 475-477
enabling, 470-472
manifest files, 477-478
Search buttons, 478
Searchable Configuration documenta-

tion website, 475
suggestions, 472-474
voice capabilities, 474-475
XML configuration file, 471

includeInGlobalSearch attribute, 478

<include> tag, 124

indicator controls. See progress bars

initializing

dialogs, 167
EGL, 373-374

GL, 374-375
OpenGL ES, 369-370
shader programs, 392-394
static Activity data, 74
Text-To-Speech services, 507

input

date retrieval, 150-151
filters, 142
gestures, 508-509

android.gesture package, 509
classes, 509
command-like, 509
motion detection, 509
multi-touch, 516-519
natural, 518
navigational, 509
single-touch, 509-516

methods
configuring, 90
IMEs (Input Method Editors), 499
software keyboards, 499-502
technical articles website, 502

screen orientation changes,
520-522

text
alternative resource qualifier, 535
EditText controls, 138-142
prediction, 502
Spinner controls, 143-144

time retrieval, 151
trackballs, 519

Input Method Editors (IMEs), 499

InputMethodManager class, 502

inputType attribute, 501

insert() method

content provider data, 278-279
SQLite database records, 242

717insert() method



insertOrThrow() method, 242

installing

App Widgets, 460-461
applications, 651
custom binaries, 659-660
live folders, 485-486
live wallpapers, 465-466
NDK, 398

<integer> tag, 111

<integer-array> tag, 111

integer resources, 111

integrated development environments
(IDEs), 20

Integrated Raster Imaging System Graphics
Library (IRIS GL), 367

integration of applications, 21-12

integration points, testing, 592-593

Intent class, 78

<intent-filter> tag, 92

intents

activity transitions, 76
creating, 77
external Activities, launching, 77
Google, 77
new activities, launching, 76-77
organizing with menus, 78
passing additional information, 78
Registry of Intents protocols, 77

battery monitoring, 417
Bluetooth, 415-416
broadcasting, 79
filters

configuring, 93
creating, 77
primary entry point activities,

92-93
registering, 469
remote interfaces, implementing,

446

live folders, 481
phone calls, making, 364
processing with activities, 468
receiving, 79
reference website, 80
SMS messages

receiving, 360
sending, 359

speech recognition services, 506
interfaces

content provider, implementing, 275
ContentResolver, 276
GestureDetector class, 510

GestureListener
methods, 515
multi-touch implementation, 517
single-touch implementation, 514

OnChronometerTickListener, 156
OnDoubleTapListener, 510
OnFocusChangeListener, 164
OnGestureListener, 510
OnGlobalFocusChangeListener, 163
OnGlobalLayoutListener, 163
OnInitListener, 506
OnLongClickListener, 164
OnPreDrawListener, 163
OnTouchModeChangeListener, 162
remote, implementing, 444

AIDL declaration, 444
binder interface class name, 445
code implementation, 445
connecting/disconnecting services,

445-446
disconnecting, 446
intent filters, 446
multiple interfaces, 445
onBind() method, 445
sharing across applications, 446

718 insertOrThrow() method



SensorEventListener, 409
SharedPreferences, 232, 233
SharedPreferences.Editor, 233-234
user. See user interfaces

internationalization, 539-545

default language, configuring, 541-543
language alternative resources,

540-542
device language and locale 

example, 541-542
dual language support example,

540-541
locales

customizing, 544
support, designing, 544-545

testing, 593
Internet access. See HTTP

Internet Assigned Numbers Authority (IANA),
467

interoperability, 566-567

interpolator attribute, 230

interpolators (animations), 230

IRIS GL (Integrated Raster Imaging System
Graphics Library), 367

isAfterLast() method, 246

isDiscovering() method, 416

isEmergencyNumber() method, 357

isFinishing() method, 75

isSmoothZoomSupported() method, 341

Issue Tracker website, 32

isZoomSupported() method, 341

italic strings, 108

italic text, 210

ItemizedOverlay class, 329-333

iteration

mobile software development, 553
query results, 246-247
Wikipedia website, 570

J
Java, 21

code
auto-complete, 664
build errors, resolving, 667
classes, creating, 664
formatting, 664
imports, organizing, 664-665
methods, creating, 664
obfuscation tools, 611
refactoring, 665-666
reorganizing, 667

Development Kit (JDK), 29
Javadoc-Style documentation, 667
JUnit, 35, 581-582
packages, 35
Platform website, 41
Reflection for backward compatibility,

547-548
Javadoc-Style documentation, 667

Java.net package, 299

JavaScript

enabling, 304
interface application, 308-312

Button control click handler, 311
JavaScript control, 311
JavaScript namespace, 309
JavaScriptExtensions class, 309
onCreate() method, 309
sample.html file JavaScript 

functions, 310-311
web page, defining, 310

tutorial website, 314
JavaScriptExtensions class, 309

javax packages, 35

javax.xml package, 237

JDK (Java Development Kit), 29

719JDK (Java Development Kit)



JNIEnv object, 402

JPEG (Joint Photographic Experts Group),
115

K
keyboards

AVD hardware option, 619
software, 499-502

choosing, 500-502
customizing, 502

type and availability alternative
resource qualifier, 535

Khronos Group, 367

Khronos OpenGL ES website, 396

killing Activities, 75

L
language support

alternative resources, 533
device language and locale 

example, 541-542
dual language example, 540-541

default, configuring, 541-543
locales

customizing, 544
support, designing, 544-545

websites, 549
last known location, finding, 63-64

launching

activities, 71, 76-77
ADB server processes, 648
configurations, creating, 46-48, 52-53
dialogs, 167
emulator, 620-623, 649-650

running applications, 621-623
SDK and AVD Manager, 623
startup options, 621

external activities, 77
files, 235
Hierarchy Viewer, 179
monkey tool, 656
services, 438
shell sessions, 649

layout_above attribute, 189

layout_alignBottom attribute, 188

layout_alignLeft attribute, 188

layout_alignParentBottom attribute, 188

layout_alignParentLeft attribute, 188

layout_alignParentRight attribute, 188

layout_alignParentTop attribute, 188

layout_alignRight attribute, 188

layout_alignTop attribute, 188

layout_below attribute, 189

layout_centerHorizontal attribute, 188

layout_centerInParent attribute, 187

layout_centerVertical attribute, 188

layout_column attribute, 191

layout_gravity attribute

FrameLayout views, 184
LinearLayout views, 186

layout_height attribute, 182

layout_margin attribute, 182

layout_span attribute, 191

layout_toLeftOf attribute, 189

layout_toRightOf attribute, 189

layout_weight attribute, 186

layout_width attribute, 182

LayoutParams class, 182

layouts, 123-124

alternative, 127
attributes, 181-182
built-in, 181
Button object margin example, 183

720 JNIEnv object



controls, 134
creating

programmatically, 175-177
XML resources, 173-175

custom notifications, 433-434
deconstructing, 180
designing, 125-127
FrameLayout, 183-185

attributes, 183-185
XML resource file example,

184-185
image capturing, 339
LinearLayout, 185-186

attributes, 186
examples, 182, 175-177
horizontal orientation, 185

main.xml example, 123-124
multiple, 192
RelativeLayout, 186-190

attributes, 187
button controls example, 187
views, 189

TableLayout, 190-192
attributes, 191
example, 190
XML resource file example,

191-192
TextView object, retrieving, 126
ViewGroup subclasses, 178
Web, designing, 302
XML, accessing, 126

LBS (location-based services), 62-64, 315

AVDs with Google APIs, creating, 62
emulator location, configuring, 62-63,

623-624
geocoding, 318

address line queries, 320

AVDs with Google APIs, 319
GeoPoint objects, 324
Location object location names,

retrieving, 319
named locations, 320-322
network connections, 321
specific information queries, 320

GPS, 315-318
application functionality, 316
AVD hardware option, 619
device locations, finding, 316-318
emulator, locating, 318, 623-624
satellite classes, 333

ItemizedOverlay class, 333
last known location, finding, 63-64
locations, mapping

application integration, 322-324
Google Maps API Key, 325-326
URIs, 322

maps
panning, 326-327
points of interest, marking, 327-332
zooming, 327

permissions, 64
Proximity Alerts, 332
website, 333

Licensing Agreement, 32-33, 41

lifecycles

activities, 72
callbacks, 72-73
destroying Activities, 75
initializing static activity data, 74
killing Activities, 75
releasing activity data, 74
retrieving activity data, 74
saving activity data, 74

721lifecycles



saving state to Bundle objects, 75
stopping activity data, 74

dialogs, 166-167
services, 438, 449

lighting 3D graphics, 379-382

linear gradients, 208

LinearGradient class, 208

linear gradients, 208

LinearInterpolator class, 230

LinearLayout views, 134, 185-186

attributes, 186
example, 175-177, 182
horizontal orientation example, 185

lines attribute, 138

links (contextual), 136-138

Linux

Blog Man website, 649
Operating System, 23-24

lists, 194, 197-198

ListView class, 178, 194, 197-198

live folders, 282

activities, 282, 481-482
components, 282-283
content provider queries, 482-484
creating, 481
enabling, 283
installing, 485-486
list with dates example, 285
manifest files, configuring, 484
overview, 480
picker information, 484
projections, 284
URIs, defining, 283-284
website, 487

live server changes, managing, 569

live wallpapers, 461

application support, 462
creating, 462

examples, 461
installing, 465-466
manifest file, configuring, 464-465
service

creating, 462
implementing, 462

service engine implementation, 463
user events, handling, 463
website, 487
XML definition, 464

loadAndCompileShader() method, 393-394

loading animations, 227-228

locales

customizing, 544
ISO 3166-1-alpha-2 Regions website,

549
support, designing, 544-545

location-based services. See LBS

LocationListener class, 316

LocationManager class, 316

Log class

importing, 59
methods, 59

LogCat utility, 60, 644

clearing logs, 654
dates and times, 652
filters, 652-653
output redirection, 654
secondary logs, accessing, 654
viewing logs, 652

logo, 19

logs

clearing, 654
dates and times, 652
filters, 652-653, 663
LogCat utility, 60, 644
methods, 59

722 lifecycles



output redirection, 654
secondary, accessing, 654
support, adding, 59-60
viewing, 652

long click events, 164

low memory, killing Activities, 75

lowest common denominator method 
(project requirements), 553-554

low-risk porting, identifying, 569

LunarLander application, 40

M
Magic Eight Ball service, 438

magnetic fields, 412

maintenance designs, 565-566

main.xml layout example, 123-124

making phone calls, 362-364

managedQuery() method, 261

managing

Activity transitions with intents, 76
device databases, 555-558
live server changes, 569

manifest files, 81

activities
defining, 92
primary entry point, 92-93

App Widgets, configuring, 459
application settings

descriptions, 87
icons, 87
names, 87
versioning, 86

backup agents, registering, 495-496
broadcast receivers, registering, 93-94
content providers, registering, 94
editing, 82

application-wide settings, 83-84

Eclipse, 82
manually, 84-86
package-wide settings, 82-83
permissions, 83
test instrumentation, 83

external libraries, 92
functionality, 81-82
intent filters, configuring, 93
live folders, configuring, 484
live wallpapers, configuring, 464-465
MapView widget, 323
market filtering, configuring, 599
names, 81
permissions, registering

application-defined, 95
content providers, 95
required, 94-95

platform requirements, configuring,
90-92

device features, 91
input methods, 90
screen sizes, 91-92

searches, 477-478
services, registering, 93-94
settings, configuring, 96
system requirements, configuring,

87-90
updating, 282
website, 96

<manifest> tag, 89, 526

manufacturers, 16

device customizations, 559
distribution partnerships, 611

MapActivity, 324

MapController objects, 324

maps, 62-64

AVDs with Google APIs, creating, 62
emulator location, configuring, 62-63

723maps



ItemizedOverlay class, 333
last known location, finding, 63-64
locations, mapping

application integration, 322-324
Google Maps API Key, 325-326
URIs, 322

panning, 326-327
points of interest, marking, 327-332

ItemizedOverlay class, 329-332
MapView widget, 327-329

Proximity Alerts, 332
zooming, 327

MapView widget, 323-324

Google Maps API Key, 325-326
manifest file, 323
MapController objects, 324
panning, 326-327
permissions, 324
points of interest, marking, 327-329

MarginLayoutParams class, 182

markers (maps), 327-332

ItemizedOverlay class, 329-332
MapView widget, 327-329

markets

alternatives, 610-611
Android Market

country requirements, 604
deleting applications, 609
developer accounts, 604-606, 609
Distribution Agreement, 604
help, 607
licensing service, 604
publication, 608
refund policy, 608-609
signing-up website, 604
upgrading applications, 609
uploading applications, 606-608
website, 612

device availability, 559-560
filters, 599, 612
first-to-market advantages, 23
packaging requirements, 599-600
target, choosing, 568

mascot, 19

Matrix class, 213

Max VM App Heap Size AVD hardware
option, 620

maxEms attribute, 136

maximum SDK version, 90

maxLines attribute, 136

maxSdkVersion attribute, 88

measureAllChildren attribute, 184

measureText() method, 212

media. See multimedia

MediaController widget, 345-346

MediaPlayer class, 60

audio, 348-349
methods, 61
video, 346

MediaRecorder class

audio, 347-348
video, 343-345

MediaScannerConnection class, 342

MediaStore content provider, 259, 260

classes, 260
data requests, 260-261

medium-size circular progress indicators, 152

memory allocation, monitoring, 640

menus

accessing, 120
activity organization, 78
context menus, enabling, 159-161
creating, 119
intent organization, 78
options menus, enabling, 157-159

724 maps



resource file example, 119
storing, 101
XML attributes reference, 120

messaging (SMS)

3GPP Specifications website, 365
android.telephony package, 357
emulator messaging, 625-628
permissions, 358
receiving, 360-362
sending, 358-360
Wikipedia Write-Up website, 365

<meta-data> tag, 478

methods

addGlobalFocusChangeListener(), 163
addGlobalLayoutListener(), 163
addOnPreDrawListener(), 163
addOnTouchModeChangeListener(),

162
addView(), 178
AppWidgetProvider class, 455-456
beginTransaction(), 244
bindService(), 438
boundCenterBottom(), 330
broadcastIntent(), 79
calculateAndDisplayFPS(), 385
cancel(), 428
cancelDiscovery(), 416
canDetectOrientation(), 521
close(), 250
compare(), 357
createBitmap(), 213
createScaledBitmap() method, 213
createTabContent(), 200
dataChanged(), 496
delete()

contacts, 269
content provider data, 280-281

deleteFile(), 235
dismissDialog(), 166, 167
divideMessage(), 362
doInBackground(), 292
doStartService(), 441
drawBitmap(), 213
drawFrame(), 404
eglDestroyContext(), 387
eglDestroySurface(), 387
eglMakeCurrent(), 387
eglTerminate(), 387
elapsedRealtime(), 156
execSQL(), 241
file/directory management, 235-236
fileList(), 236
filter(), 142
finish(), 76
forceError(), 56
formatNumber(), 357
GameAreaView class, 511, 513
GestureListener interface, 515
getAddressLine(), 320
getAvailableLocales(), 544
getBondedDevices(), 416
getCacheDir(), 236
getCenter(), 332
getConfiguredNetworks(), 414
getContentResolver(), 268
getDefault(), 358
getDefaultSensor(), 409
getDesiredMinimumHeight(), 343
getDesiredMinimumWidth(), 343
getDir(), 236
getDisplayMessageBody(), 361
getDrawable(), 116, 343
getExternalStoragePublicDirectory(),

548

725methods



getFeatureName(), 320
getFilesDir(), 236
getFromLocationName(), 321
getItem(), 272
getItemId(), 272
getLastNonConfigurationInstance(),

539
getLocality(), 320
getLocation(), 63-64
getMaxAddressLineIndex(), 320
getMaxZoom(), 341
getOrientation(), 411-412
getResources(), 70
getRoaming(), 356
getSettings(), 304
getSharedPreferences(), 70
getSystemService()

ConnectivityManager, 297
NotificationManager class, 425
SensorManager class, 408
TelephonyManager class, 354
WifiManager class, 412-413

getTextBounds(), 212
getType(), 281-282
getView(), 272
getZoom(), 341
getZoomRatios(), 341
glColorPointer(), 377
glCompileShader(), 394
glDrawArrays(), 376
glDrawElements(), 376
gluLookAt(), 375
gluPerspective(), 375
glUseProgram(), 394
insert()

content provider data, 278-279
SQLite database records, 242

insertOrThrow(), 242
isAfterLast(), 246
isDiscovering(), 416
isEmergencyNumber(), 357
isFinishing(), 75
isSmoothZoomSupported(), 341
isZoomSupported(), 341
Java, creating, 664
loadAndCompileShader(), 393-394
logging, 59
managedQuery(), 261
measureText(), 212
MediaPlayer class, 61
moveToFirst(), 246
moveToNext(), 246
notify(), 425-426
onAccuracyChanged(), 409
onActivityResult(), 76
onAnimateMove()

GameAreaView class, 513
GestureListener interface, 515

onAnimateStep(), 513
onBind(), 445
onCheckedChangedListener(), 149
onClick(), 146
onConfigurationChanged(), 539
onContextItemSelected(), 161
onCreate(), 74
onCreateContextMenu(), 160
onCreateDialog(), 167
onCreateEngine(), 462
onCreateOptionsMenu(), 120, 158
onDateChanged(), 150
onDeleted(), 456
onDestroy(), 75, 442-443
onDisabled(), 455
onDraw(), 205, 511

726 methods



onDrawFrame(), 390, 404
onEnabled(), 455
onFling(), 515
onInit(), 507
onJsBeforeUnload(), 305
onKeyDown(), 386
onKeyUp(), 386
onListItemClick(), 197
onLongClick(), 164
onMove()

GameAreaView class, 513
GestureListener interface, 515

onOptionsItemSelected(), 159
onPageFinished(), 304
onPause(), 74
onPerformSync(), 491
onPostExecute(), 292
onPreExecute(), 292
onPrepareDialog(), 167
onRatingChanged(), 155
onResetLocation()

GameAreaView class, 513
GestureListener interface, 515

onResume(), 74
onRetainNonConfigurationInstance()

539
onSaveInstanceState(), 75
onScroll(), 515
onSensorChanged(), 409
onServiceConnected(), 445-446
onServiceDisconnected(), 445-446
onStart(), 440
onStartCommand(), 440
onStop(), 62
onTouchEvent(), 509, 511
onTouchModeChanged(), 162
onTrackballEvent(), 519

onUpdate(), 456, 458
openFileInput(), 235
openFileOutput(), 235, 236
openOrCreateDatabase(), 240
peekDrawable(), 343
playMusicFromWeb(), 61
populate(), 330
post(), 384
preferences, editing, 233-234
query()

applications as content providers,
276-277

SQLite databases, 246-247
rawQuery(), 249
readFromParcel(), 448
recordSpeech(), 505
registerForContextMenu(), 159
registerListener(), 409
remove()

preferences, 233
SQLite database records, 243

removeDialog(), 166, 167
requestRestore(), 496-497
requestRouteToHost(), 297
sendTextMessage(), 359
setAccuracy(), 317
setBase(), 155
setBuiltInZoomControls(), 304
setColor(), 207
setContentView(), 171
setCurrentTabByTag(), 201
setEGLContextClientVersion(), 392
setFilters(), 142
setFlags(), 211
setInterpolator(), 230
setJavaScriptEnabled(), 304
setLatestEventInfo(), 432

727methods



setLightTouchEnabled(), 304
setListAdapter(), 197
setOnClickListener(), 146
setOneShot(), 224
setOnFocusChangeListener(), 164
setOnLongClickListener(), 164
setOnTimeChangedListener(), 151
setParameters(), 340
setShader(), 207
setSupportZoom(), 304
setTheme(), 170
setTransactionSuccessful(), 244
setVideoURI(), 346
setWebChromeClient(), 305
setWebViewClient(), 304
setZoom(), 341
SharedPreferences interface, 233
showDialog(), 166, 167
speak(), 508
start(), 224
startActivity(), 76-77
startActivityForResult(), 76
startDiscovery(), 416
startScan(), 413
startService(), 438
startSmoothZoom(), 341
stop(), 224
stopScan(), 413
stopService(), 438
surfaceChanged(), 336
surfaceCreated(), 336, 371
takePicture(), 339
ThrowNew(), 402
toggleFPSDisplay(), 386
unbindService(), 446

update()
applications as content providers,

279-280
SQLite databases, 242

Uri parsing, 61
writeToParcel(), 448

MIME types

formats, 467
returning, 281-282

minEms attribute, 136

minimum SDK versions, 89

minLines attribute, 136

minSdkVersion attribute, 88

mnt/sdcard directory, 641

mnt/sdcard/download/ directory, 641

mobile country code alternative resource
qualifier, 533

mobile network code alternative resource
qualifier, 533

mobile operators, 17

mobile software development, 17-18

applications, implementing, 567
architectures, 565
deployment, 568
device databases

data storage, 556
devices, choosing, 556
functionality, 558
managing, 555-557
third-party, 558

device limitations, 561, 564
extensibility, 565-566
Google, 15
history

device convergence, 13
first generation, 9-10
first time waster games, 10
market, 14

728 methods



proprietary platforms, 13-14
WAP (Wireless Application

Protocol), 11-13
interoperability, 566-567
iteration, 553
maintenance, 565-566
OHA (Open Handset Alliance)

formation, 16
manufacturers, 16
mobile operators, 17
website, 28

overview, 551
project documentation, 562-563

porting, 563
quality assurance plans, 562-563
third-party, 563

project requirements
customization method, 554
hybrid approaches, 554
lowest common denominator

method, 553-554
quality assurance risks, 561-562

client-server testing, 562
early testing, 561
real-world testing limitations,

561-562
testing on the device, 561

source control systems, choosing,
563-564

support requirements, 568
documentation, 569
firmware upgrades, 569
live server changes, 569
low-risk porting, identifying, 569
user crash/bug reports, 569

target devices
acquiring, 560
identifying, 558-560

testing, 567-568
third-party requirements, 555
use cases, 555
versioning systems, choosing, 564
waterfall approaches, 552
websites

iterative development, 570
Rapid Application Development,

570
waterfall development, 570
Wikipedia, 570

monkey tool

event types, weighting, 657-658
launching, 656
listening, 656-657
seed feature, 658
throttle, 658
website, 659

Monotype font example, 210

MotionEvent object, 509

mouseovers (Web browsing), 304

moveToFirst() method, 246

moveToNext() method, 246

moving animations, 229-230

MP3 playback support, adding, 61

MultiAutoCompleteTextView class, 141

multimedia

audio, 346
AudioManager service, 349
finding, 350
formats, 351
notifications, 431-432
playing, 348-349, 620
recording, 347-348, 619
ringtones, 351
sharing, 349-350
voice searches, 474-475
website, 351

729multimedia



categories, 335
finding, 350
formats website, 351
hardware, 335
images. See images
optional features, configuring,

335-336
support, adding, 60-62
video, 343

formats, 351
playing, 345-346
recording, 343-345
website, 351

multiple layouts, 192

multiple screens support website, 96

multiple themes, 170-171

multi-touch gestures, 516-519

ScaleGestureDetector class, 516
SimpleMultiTouchGesture application

example, 516-519
MyFirstAndroidApp

AVD, creating, 51
build targets, 50
core files/directories, 52-51
debugging

emulator, 56-59
handset, 65-66

launch configurations, creating, 52-53
location-based services, adding, 62-64

AVDs with Google APIs, creating,
62

emulator location, configuring,
62-63

last known location, finding, 63-64
logging, adding, 59-60
MP3 playback support, adding, 60-62
names, 50
package name, 50
running in Android emulator, 53-55

N
named locations, 320-322

names

alternative resource directory 
qualifiers, 532

animation loops, 224
applications, 50, 87, 599
database fields, 251
manifest files, 81
packages, 50
permissions, 95
projects, 50
SDKs, 19

native applications versus third-party 
applications, 27

NativeBasicsActivity.java class, 400

natural gestures, 518

navigation. See also LBS

alternative resource qualifiers, 535
gestures, 509

NDK (Native Development Kit), 397

C/C++ advantages, 398
components, 398
disadvantages, 397-398
hello-jni sample application, 399
image performance, 404
installing, 398
platform support, 397
SimpleNDK application, 399-400

exception handling, 402-403
native code from Java, calling,

400-401
parameters, handling, 401-402
return values, handling, 401-402

websites, 405
network-driven applications, 565

730 multimedia



networking

asynchronous processing, 291-293
calls with threads, 293-295
cellular networks, emulating, 298
diagnostics, 576-577
fundamentals, 287
HTTP, 288

errors, 289
permissions, 289
reading data from the Web,

288-289
URL queries, 289

images, viewing, 295-297
latency, 298
status, retrieving, 297
WiFi

access points, scanning, 412-413
permissions, 412
sensors, 412
signal strength, 413
testing, 414

XML, parsing, 290-291
Nexus One and Android Dev Phones website,

570

night mode alternative resource qualifier, 534

Nine-Patch Stretchable images

compatibility, 526-528
creating, 527-528
overview, 115
scaling, 527

NOAA: World Magnetic Model website, 421

nonprimitive storage, 257

NotePad application, 40

NotificationManager class, 425, 435

notifications

audio, 431-432

blinking lights, 430-431
clearing, 431
colors, 430
customizing, 431
precedence, 430
testing, 430
urgency, 430-431

clearing, 428
components, 424
creating, 425
customizing, 432

layouts, 433-434
text, 432-433

designing, 434
device support, 424
examples, 423
importance, 423
NotificationManager class, 425
reference websites, 435
services, 442
status bar, 424

queues, 426-427
text notification, creating, 425-426
website, 435

types, 423-424
updating, 427-428
vibration, 429

notify() method, 425-426

O
objects. See classes

OHA (Open Handset Alliance)

formation, 16
manufacturers, 16
mobile operators, 17
website, 28

731OHA (Open Handset Alliance)



onAccuracyChanged() method, 409

onActivityResult() method, 76

onAnimateMove() method

GameAreaView class, 513
GestureListener interface, 515

onAnimateStep() method, 513

onBind() method, 445

onCheckedChangedListener() method, 149

OnChronometerTickListener interface, 156

onClick() method, 146

onConfigurationChanged() method, 539

onContextItemSelected() method, 161

onCreate() method, 74

onCreateContextMenu() method, 160

onCreateDialog() method, 167

onCreateEngine() method, 462

onCreateOptionsMenu() method, 120, 158

onDateChanged() method, 150

onDeleted() method, 456

onDestroy() method, 75, 442-443

onDisabled() method, 455

onDoubleTap gesture, 510

onDoubleTapEvent gesture, 510

OnDoubleTapListener interface, 510

onDown gesture, 510

onDraw() method, 205, 511

onDrawFrame() method, 390, 404

onEnabled() method, 455

onFling gesture, 510

onFling() method, 515

OnFocusChangeListener interface, 164

OnGestureListener interface, 510

OnGlobalFocusChangeListener interface, 163

OnGlobalLayoutListener interface, 163

onInit() method, 507

OnInitListener interface, 506

onJsBeforeUnload() method, 305

onKeyDown() method, 386

onKeyUp() method, 386

onListItemClick() method, 197

onLongClick() method, 164

OnLongClickListener interface, 164

onLongPress gesture, 510

onMove() method

GameAreaView class, 513
GestureListener interface, 515

onOptionsItemSelected() method, 159

onPageFinished() method, 304

onPause() method, 74

onPerformSync() method, 491

onPostExecute() method, 292

OnPreDrawListener interface, 163

onPreExecute() method, 292

onPrepareDialog() method, 167

OnRatingBarChangeListener class, 155

onRatingChanged() method, 155

onResetLocation() method

GameAreaView class, 513
GestureListener interface, 515

onResume() method, 74

onRetainNonConfigurationInstance()
method, 539

onSaveInstanceState() method, 75

onScroll gesture, 510

onScroll() method, 515

onSensorChanged() method, 409

onServiceConnected() method, 445-446

onServiceDisconnected() method, 445-446

onShowPress gesture, 510

onSingleTapConfirmed gesture, 510

onSingleTapUp gesture, 510

onStart() method, 440

onStartCommand() method, 440

732 onAccuracyChanged() method



onStop() method, 62

onTouchEvent() method, 509, 511

onTouchModeChanged() method, 162

OnTouchModeChangeListener interface, 162

onTrackballEvent() method, 519

onUpdate() method, 456, 458

Open Handset Alliance (OHA). See OHA

open source licensing, 18, 20

openFileInput() method, 235

openFileOutput() method, 235, 236

OpenGL ES

2.0, 391
configuring, 391
surface, requesting, 391-395

3D graphics. See 3D graphics
API documentation websites, 396
cleaning up, 387
device compatibility, 368-369
drawing on the screen, 375-376
EGL, initializing, 373-374
functionality, 369
GL, initializing, 374-375
GLDebugHelper class, 373
GLSurfaceView class

functionality, 388
implementing, 375-390

history, 367
initializing, 369-370
Khronos OpenGL ES website, 396
overview, 367
Renderer class

functionality, 388
implementing, 375-390

SurfaceView, creating, 370
threads

communication, 384-386
starting, 371-373

versions, 368
website, 396

OpenGL Utility Toolkit (GLUT), 375

openOrCreateDatabase() method, 240

operating system configuration, 30

options menus, enabling, 157-159

OptionsMenu control, 157-159

org.apache.http packages, 35

org.json packages, 35

org.w3c.dom package, 35, 237

org.xmlpull package, 35, 237

org.xml.sax package, 35, 237

orientation attribute, 186

OrientationEventListener class, 520

orientation (screen)

alternative resource qualifier, 534
changes, 520-522
customization example, 537-538

outsourcing testing, 596

ovals, drawing, 219

OvalShape object, 219

OvershootInterpolator, 230

P
packages

android, 35, 131
android.accounts, 489
android.bluetooth, 415
android.content, 232
android.database.sqlite, 239
android.gesture, 509
android.graphics, 230
android.graphics.drawable.shapes, 215
android.hardware

GeomagneticField class, 412
SensorManager class, 408

android.speech, 503

733packages



android.telephony, 354, 357
android.test, 582
android.view, 133
android.view.animation, 226
android.webkit, 307
android.widget, 134
dalvik, 35
java, 35
javax, 35
junit, 35
names, 50
org.apache.http, 35
org.json, 35
org.w3c.dom, 35
org.xmlpull, 35, 237
org.xml.sax, 35, 237
XML utility, 237

packaging applications

certification, 603
debugging, disabling, 600
exporting package files, 601-602
icons, 599
logging, disabling, 600
manifest files for market filtering,

configuring, 599
market requirements, 599-600
names, 599
permissions, 600
release versions, testing, 603
signing package files, 600-602
target platforms, verifying, 599
versions, 599

Paint class, 207

paints, 207

antialiasing, 207
colors, choosing, 207
gradients, 207-208

linear, 208
radial, 209
sweep, 209

Paint class, 207
styles, 207
tools, 210

panning maps, 326-327

Parcelable classes, implementing, 446-449

parent views, 178

parsing XML, 290-291

Path class, 220-222

paths (shapes), 220-222

peekDrawable() method, 343

performance, testing, 594

permission attribute, 95

<permission> tag, 95

permissions

ad-hoc, 25
application defined, 25
audio recording, 348
battery monitoring, 417
Bluetooth, 415
Contacts private data, 264-266
content providers, 95, 262-263
groups, 95
location-based service, 64
manifest files, 83
MapView widget, 324
names, 95
networking, 289
packaging applications, 600
phone calls, making, 362
protection levels, 95
registering

application-defined, 95
required, 94-95

ringtones, 351

734 packages



services, 443
SMS messages, 358
telephony, 354
vibration, 429
video recording, 345
wallpapers, 343
website, 96
WebView class, 301
WiFi, 412

persistent databases, creating, 250

field names, 251
SQLiteOpenHelper class, extending,

251-252
perspectives (Eclipse), 56, 662

PetListAdapter, 273

PetTracker application

binding data, 253-244, 254
field names, 251
SQLiteOpenHelper class, extending,

251-252
PetTracker2 application, 254-256

PetTracker3 application, images

accessing, 270-271
adding

binding data to Gallery control,
272

data retrieval, 272
finding content with URIs, 271
gallery image retrieval, 273
retrieved images, viewing, 273-274

phone calls

making, 362-364
receiving, 364-365

phone numbers

comparing, 357
emergency, 357
formatting, 357-358

PhoneGap project, 311

platforms

alternative resource qualifiers, 536
architecture, 23

Linux Operating System, 23-24
runtime environment, 25

completeness, 18
freedoms, 18
market, 14
mascot/logo, 19
open source, 18, 20
proprietary, 13-14
requirements, configuring, 90-92

device features, 91
input methods, 90
screen sizes, 91-92

security, 25
applications as operating system

users, 25
developer registration, 26
permissions, 25
trust relationships, 26

playing

audio, 348-349, 620
video, 345-346

playMusicFromWeb() method, 61

PNG (Portable Network Graphics), 114

points of interest, marking on maps,
327-332

ItemizedOverlay class, 329-332
MapView widget, 327-329

populate() method, 330

Portable Network Graphics (PNG), 114

porting

documentation, 563
low-risk projects, identifying, 569

post() method, 384

PreDraw events, 163

735PreDraw events



preferences

accessing, 231-234
adding, 232, 233-234
applications, accessing, 70
data types, 231
deleting, 233
file formats, 234
finding, 232
functionality, 232
methods, 233
private, 232
reading, 232
shared, 232
updating, 234

PrefListenerService class, 458

preproduction devices, testing, 590

press-and-hold actions, 164

primary entry point activities, 92-93

private data

handling, 575
preferences, 232

processes

ADB server, starting/stopping, 648
debuggers, attaching, 638
development, 579
reference website, 449
stopping, 640

programming languages, choosing, 26

progress bars

adjusting, 153-157
exact values, viewing, 154
ratings, setting, 154
thumb selectors, 153-154
time passage, 155-156

clock controls, 156-157
horizontal, 152
medium-size circular, 152
placing in title bars, 153
ProgressBar class, 151-153

standard, 151
visibility, 153

progress dialogs, 165

ProgressBar class, 151-153

ProGuard website, 611

projections (live folders), 284

projects

adding to Eclipse workspace, 43-44
AVDs, creating, 51
file locations, 50
launch configurations, creating, 52-53
names, 50
requirements

customization method, 554
hybrid approaches, 554
lowest common denominator

method, 553-554
prompt attribute, 144

properties

Extras, 78
SQLite databases, configuring, 241

proprietary platforms, 13-14

protection levels (permissions), 95

<provider> tag, 94

providers

accounts, 490
App Widgets, 452, 455
content. See content providers

Proximity Alerts, 332

publishing applications. See also distributing
applications

Android Market, 608
certification, 603
exporting package files, 601-602
packaging preparations

debugging, disabling, 600
icons, 599

736 preferences



logging, disabling, 600
manifest files for market filtering,

configuring, 599
market requirements, 599-600
names, 599
permissions, 600
target platforms, verifying, 599
versions, 599

release versions, testing, 603
requirements, 598
signing package files, 600-602

putBoolean() method, 233

putFloat() method, 233

putInt() method, 233

putLong() method, 234

putString() method, 234

Q
quality assurance, 561-562. See also testing

code, 580
diagnostics, 581
reviews, 581
standards, 580-581
unit testing, 581-582

documentation, 562-563
third-party, 563
user interfaces, 563

killer apps, 594
query() method

applications as content providers,
276-277

SQLite databases, 246-247
querying

applications as content providers,
276-277

Bluetooth paired devices, 416

Browser content provider, 263-264
call states, 354-355
CallLog content provider, 262
Contacts content provider, 266-267
Geocoder class

address lines, 320
specific information, 320

live folder content providers, 482-484
MediaStore content provider, 260-261
SQLite databases, 244

complex queries, 248-249
cursors, 245
filtering results, 248
iterating results, 246-247
query() method, 246-247
raw queries, 249
WHERE clauses, 247

URLs, 289
QVGA skin, 618

R
radial gradients, 209

RadialGradient class, 209

radio buttons, 144, 148-149

Rapid Application Development website,
570

rapid prototyping, 553

RatingBar class, 154-155

raw files, 121-122

raw queries (SQL), 249

rawQuery() method, 249

readFromParcel() method, 448

reading

device sensor data, 409-410
directory files, 236

byte-to-byte, 237
XML, 237

preferences, 232

737reading



Web data, 288-289
errors, 289
exception handling, 288
permissions, 289
URL class, 288

<receiver> tag, 94

receiving

intents, 79
phone calls, 364-365
SMS messages, 360-362

RecognizerIntent class, 504-505

recording

audio, 347-348, 619
speech, 504-505
video, 343-345

records (SQLite databases)

deleting, 243-244
inserting, 242
updating, 242-243

recordSpeech() method, 505

rectangles, drawing, 216-217

rectangles with rounded corners, drawing,
217-218

RectShape object, 216

red circle on black canvas example,
205-206

refactoring code, 665

Extract Local Variable tool, 666
Extract Method tool, 666

referencing

resources, 122-123
system resources, 131

refunding applications (Android Market),
608-609

registerForContextMenu() method, 159

registering

accounts, 490
applications as debuggable, 65

backup agents, 495-496
backup services, 492
broadcast receivers, 93-94
content providers, 94
intent filters, 469
permissions

application-defined, 95
required, 94-95

services, 93-94
registerListener() method, 409

Registry of Intents protocols, 77

reinstalling applications, 651

RelativeLayout views, 186-190

attributes, 187
button controls example, 187
XML resource file example, 189

release versions, testing, 603

releasing activity data, 74

remote backup services, 492

remote interfaces, implementing, 444

AIDL declaration, 444
binder interface class name, 445
code implementation, 445
connecting, 445-446
disconnecting, 445-446
intent filters, 446
multiple interfaces, 445
onBind() method, 445
sharing across applications, 446

RemoteViews class, 456-457

remove() method

preferences, 233
SQLite database records, 243

removeDialog() method, 166, 167

Rename tool, 665

738 reading



Renderer class

functionality, 388
implementing, 375-390

reorganizing code, 667

requestRestore() method, 496-497

requestRouteToHost() method, 297

res folder, 52

/res/drawable-*/ directory, 98

/res/drawable-*/icon.png folders, 52

/res/layout/ directory, 98

res/layout/main.xml file, 52

resources

accessing programmatically, 103
adding, 98
aliases, 123
alternative, 102-103, 531

configuration changes, handling,
539

data retention, 539
default application icon resources

example, 531
directory qualifiers, 532-537
efficiency, 538-539
hierarchy, 531
internationalization, 540-542
performance, 539
programmatic configurations, 538
screen orientation customization

example, 537-538
websites, 549

animations, 116
android.view.animation package,

226
frame-by-frame, 116, 117, 223-225
helper utilities, 116
interpolators, 230
loading, 227-228
moving, 229-230
rotating, 228-229

scaling, 229
storing, 101
transparency, 228
tweening, 116-118, 224-230
types, 221-223

applications, retrieving, 70
Boolean, 110
colors, 111-112

# (hash symbol), 111
formats, 111
resource file example, 111

default, 132
defined, 97
defining types with Eclipse, 104-107
dimensions, 112-113

resource file example, 113
retrieving, 113
unit measurements, 112

directory hierarchy, 97-98
drawables, 113-114
images. See images
integer, 111
layout, 123-124

alternative, 127
attributes, 181-182
built-in, 181
Button object margin example, 183
controls, 134
creating programmatically, 175-177
creating with XML resources,

173-175
custom notifications, 433-434
deconstructing, 180
designing, 125-127
FrameLayout, 183-185
image capturing, 339
LinearLayout, 185-186

739resources



main.xml example, 123-124
multiple, 192
RelativeLayout, 186-190
RelativeLayout views, 189
TableLayout, 190-192
TextView object, retrieving, 126
ViewGroup subclasses, 178
Web, designing, 302
XML, accessing, 126

menus, 119-120
accessing, 120
activity organization, 78
context menus, enabling, 159-161
creating, 119
intent organization, 78
options menus, enabling, 157-159
resource file example, 119
storing, 101
XML attributes reference, 120

raw files, 121-122
referencing, 122-123
selector, 116
storing, 97, 101

animations/graphics/files, 101
strings, 101

strings, 107
accessing, 108-109
arrays, 109-110
bold/italic/underlining, 108
editing, 107
formatting, 107, 108
resource file example, 108
storing, 101

styles, 127-130
applying with a parent, 169-170
attribute references example, 128
form layout example, 129-130

inheritance, 169-170
padding example, 168
paints, 207
previewing, 128
resource ids, 130
storing, 128
styles.xml example, 128
text size example, 168
TextView class, applying, 169

system
android package, 131
referencing, 131

themes, 131, 170-171
activities, 170
built-in, 171
entire screen, 170
multiple, 170-171
setTheme() method, 170
View objects, 170

types, 99-101
website, 132
XML files, 120-121

responsiveness, designing, 573-574

restore operations, 496-497

RestoreObserver class, 496-497

/res/values/ directory, 98

res/values/strings.xml file, 52

retrieving

Activity data, 74
application resources, 70
content provider data, 272
Context, 70
date input, 150-151
dimensions, 113
directories, 236

caches, 236
files, 236, 238

740 resources



gallery images, 273
network status, 297
text input

EditText controls, 138-142
Spinner controls, 143-144

TextView object, 126
time input, 151

revenue

ads, 612
generation methods, 575

RingtoneManager object, 351

ringtones, 351

risks (software development)

device limitations, 561
quality assurance, 561-562

client-server testing, 562
early testing, 561
real-world testing limitations,

561-562
testing on the device, 561

target devices
acquiring, 560
identifying, 558-560
manufacturer customizations, 559
market availability, 559-560

roaming state, 356

RotateAnimation class, 229

rotating animations, 228-229

round-corner rectangles, 217-218

RoundRectShape object, 217

Rubin, Andy, 16

Run configurations, creating, 52-53

runtime

changes website, 549
environment, 25

S
sample applications, 40

Sans Serif font example, 210

saving

activity data, 74
Activity state to Bundle objects, 75

ScaleAnimation class, 229

ScaleGestureDetector class

multi-touch gestures, 516
navigational gestures, 509

scaling

animations, 229
bitmaps, 213
Nine-Patch Stretchable images, 527

ScanResult class, 413

screens

aspect ratio alternative resource 
qualifier, 534

compatibility. See user interfaces,
compatibility

display characteristics, finding, 526
image captures, 645
multiple screen support websites,

96, 549
orientations

alternative resource qualifiers, 534
changes, 520-521, 522
customization example, 537-538

pixel density alternative resource 
qualifiers, 534

sizes
alternative resource qualifiers, 533
configuring, 91-92
screen aspect ratio alternative

resource qualifier, 534
scroll gestures, 515

scrolling, 201

ScrollView class, 201

SD card AVD hardware option, 620

741SD card AVD hardware option



SDK (Software Development Kit)

accessibility framework, 502-503
android.speech package, 503
speech recognition services,

504-506
Text-To-Speech services,

503, 506-508
android.view package, 133
android.widget package, 134
availability, 20
buttons, 144

basic, 144-146
check boxes, 144, 146-147
radio, 144, 148-149
toggles, 144, 147

clock controls, 156-157
context menus, enabling, 159-161
data retrieval from users, 150-151

EditText controls, 138-142
Spinner controls, 143-144

dialogs, 165
adding to activities, 166-167
alert, 165
character picker, 165
customizing, 168
date picker, 165
defining, 167
Dialog class, 165
dismissing, 167
initializing, 167
launching, 167
lifecycle, 166-167
progress, 165
removing, 167
time picker, 166
types, 165-166

documentation, 33-34
download website, 29, 41

emulator, launching, 623
framework, 35
Google APIs Add-On, 35
Hierarchy Viewer, 179-180

drawing issues, debugging, 180
launching, 179
layout view, 180
layouts, deconstructing, 180
pixel perfect view, 180-181
user interfaces, debugging, 180

License Agreement, 32-33, 41
names, 19
options menus, enabling, 157-159
pixel perfect view, 180-181
progress indicator controls

Chronometer class, 155-156
ProgressBar class, 151-153
RatingBar class, 154-155
SeekBar class, 153-154

services. See services
styles. See styles
themes. See themes
time input retrieval, 151
tools, 35-36

ADB. See ADB
ADT plug-in, 35-36
AVD Manager, 36-37
DDMS, 36 See also DDMS
Draw Nine-patch, 40
Eclipse Plug-In, 35
emulator. See emulator
Hierarchy Viewer. See Hierarchy

Viewer
troubleshooting, 32
updating, 23, 31
user interface controls, 134

layout, 134
TextView, 134-138

742 SDK (Software Development Kit)



versions, 87-90
maximum, 90
minimum, 89
target, choosing, 89

View class, 133
Search buttons, 478

Searchable Configuration documentation
website, 475

searches, 469-470

global, 478
in-application, 470-471

activities, creating, 475-477
enabling, 471-472
manifest files, 477-478
Search buttons, 478
Searchable Configuration docu-

mentation website, 475
suggestions, 472-474
voice capabilities, 474-475
XML configuration file, 471

website, 487
SearchManager class, 470

searchSuggestAuthority attribute, 472

searchSuggestIntentAction attribute, 472

searchSuggestIntentData attribute, 472

searchSuggestPath, 472

searchSuggestSelection attribute, 472

searchSuggestThreshold attribute, 472

Secure Sockets Layer (SSL), 288

security, 25, 574

applications as operating system users,
25

certifying applications, 603
copy protection, 611
developer registration, 26
permissions

ad-hoc, 25
application defined, 25, 95

audio recording, 348
battery monitoring, 417
Bluetooth, 415
CallLog content, 262-263
Contacts private data, 264-266
content providers, 95
groups, 95
location-based service, 64
manifest files, 83
MapView widget, 324
names, 95
networking, 289
packaging applications, 600
phone calls, making, 362
protection levels, 95
required, registering, 94-95
ringtones, 351
services, 443
SMS, 358
telephony, 354
vibrations, 429
video recording, 345
wallpapers, 343
website, 96
WebView class, 301
WiFi, 412

private data
handling, 575
transmitting, 575

signing package files, 600-602
trust relationships, 26
website, 96

SeekBar class, 153-154

exact values, viewing, 154
simple thumb selector example,

153-154
selector resources, 116

743selector resources



self-distribution, 609-610

sending SMS messages, 358-360

sendTextMessage() method, 359

Sensor class, 408

Sensor Simulator, 409

SensorEvent class, 410

SensorEventListener interface, 409

SensorManager class, 408

sensors

device
accelerometer, 410-411
accessing, 408, 409
availability, 409
calibrating, 410-411
data, reading, 409-410
most common, 408-409
orientations, 411-412
Sensor Simulator, 409
testing, 409
true north, finding, 412

website, 421
WiFi, 412

servers

ADB, starting/stopping, 648
application distribution, 609-610
testing, 591-592

Service class, 439, 449

ServiceConnection object, implementing,
445-446

<service> tag

broadcast receivers, registering, 94
WallpaperService class, 464

services, 437

Android Market licensing, 604
App Widget update, creating, 458-459
AudioManager, 349
backup, 491

application files, 494-495
archived data, wiping, 655
backup agent implementations,

492-493
controlling with ADB, 654-655
forcing restores, 655
registering backup agents, 495-496
remote, choosing, 492
requesting backups, 496
restore operations, 496-497
scheduling, 655
shared preferences files, backing up,

492-493
C2DM, 438
communicating data to users

notifications, 442
toast messages, 442

connections, 438
controlling, 443-444
creating, 439-443

background processing, 441
doStartService() method, 441
GPXService class implementation,

440
onStart()/onStartCommand()

methods, 440
Service class, defining, 439

criteria, 437
examples, 79
GPS, 315-318

application functionality, 316
AVD hardware option, 619
device locations, finding, 316-318
emulator, locating, 318, 623-624
satellite classes, 333

implementing, 438
LBS (location-based services). See

LBS

744 self-distribution



lifecycle, 438, 449
live wallpapers, 461

creating, 462
implementing, 462

Magic Eight Ball, 438
overview, 79
Parcelable classes, implementing,

446-449
registering, 93-94
remote interfaces, implementing, 444

AIDL declaration, 444
binder interface class name, 445
code implementation, 445
connecting/disconnecting, 445-446
disconnecting, 446
intent filters, 446
multiple interfaces, 445
onBind() method, 445
sharing across applications, 446

Service class website, 449
SimpleDroidWallpaper, 462
speech recognition, 504-506
starting, 438
stopping, 438, 442-443
telephony

information, retrieving, 356
state, 355-356

testing, 591-592
Text-To-Speech, 503, 506-508

converting text into sound files,
508

initializing, 507
language settings, 507
OnInitListener interface, 506

updating, 442
XML permissions file, 443

setAccuracy() method, 317

setBase() method, 155

setBuiltInZoomControls() method, 304

setColor() method, 207

setContentView() method, 171

setCurrentTabByTag() method, 201

setEGLContextClientVersion() method, 392

setFilters() method, 142

setFlags() method, 211

setInterpolator() method, 230

setJavaScriptEnabled() method, 304

setLatestEventInfo() method, 432

setLightTouchEnabled() method, 304

setListAdapter() method, 197

setOnClickListener() method, 146

setOneShot() method, 224

setOnFocusChangeListener() method, 164

setOnLongClickListener() method, 164

setOnTimeChangedListener() method, 151

setParameters() method, 340

setShader() method, 207

setSupportZoom() method, 304

setTheme() method, 170

Settings content provider, 259, 267

setTransactionSuccessful() method, 244

setVideoURI() method, 346

setWebChromeClient() method, 305

setWebViewClient() method, 304

setZoom() method, 341

shader programs, initializing, 392-394

ShapeDrawable class, 214

shapes

arcs, 219-220
classes, 214
defining

programmatically, 215-216
XML resources, 214-215

ovals/circles, 219
paths, 220-222

745shapes



round-corner rectangles, 217-218
squares/rectangles, 216-217
stars, 221-222

SharedPreferencesBackupHelper class, 493

SharedPreferences.Editor interface, 233-234

shared preferences files, backing up,
493-494

SharedPreferences interface, 232, 233

sharing

audio, 349-350
images, 341-342
preferences, 232
remote interfaces, 446

shell commands, 649-650

backup services
archived data, wiping, 655
forcing restores, 655
scheduling, 655

bug reports, 655-656
custom binaries, installing, 659-660
emulator, starting/stopping, 649-650
issuing single, 649
listing, 660
monkey tool

event types, weighting, 657-658
launching, 656
listening, 656-657
seed feature, 658
throttle, 658

shell sessions, starting, 649
Short Message Service. See SMS messages

showDialog() method, 166, 167

shrinkColumns attribute, 191

signals

loss, testing, 589
strength, monitoring, 356-357

signing package files, 600-602

silly mistakes, avoiding

designs, 578
development, 583
testing, 595

SimpleDatabase application

file, accessing, 240
openOrCreateDatabase() method, 240
properties, configuring, 241

SimpleDataUpdateService class, 458

SimpleDroidWallpaper service, 462

SimpleMultiTouchGesture application 
example, 516-519

SimpleNDK application

exception handling, 402-403
native code from Java, calling, 400-401
parameters, handling, 401-402
return values, handling, 401-402

SimpleOnGestureListener class, 510

SimpleOrientationActivity class, 520-521

SimpleSearchableActivity, 475-477

SimpleViewDetailsActivity class, 468

single-touch gestures, 509-516

common, 509-510
detectors, 511
fling, 515
game screen example, 510-513
interpreting, 514
scroll, 515

sizing

App Widgets, 454
screens

alternative resource qualifiers, 533
configuring, 85-92
screen aspect ratio alternative

resource qualifier, 534
text, 136, 212
wallpapers, 343

skins (AVDs), 618

746 shapes



sliding drawers, 202-203

SlidingDrawer class, 202-203

SMS (Short Message Service) messages,
357

3GPP Specifications website, 365
android.telephony package, 357
emulator messaging, 625-628
permissions, 358
receiving, 360-362
sending, 358-360
Wikipedia Write-Up website, 365

SmsManager class

divideMessage(), 362
getDefault() method, 358

Snake application, 40

adding to Eclipse workspace, 43-44
AVD, creating, 44-46
launch configurations, creating, 46-48
running in Android emulator, 47-48

software

development. See mobile software
development

integration, testing, 588-589
keyboards, 499-502

choosing, 500-502
customizing, 502

requirements, 29
source control systems

choosing, 563-564
Eclipse IDE integration, 661

speak() method, 508

speech recognition services, 504-506

Spinner class, 143-144

SQL

commands, executing, 674
script files, creating, 673
SQLzoo.net website, 258

sqlite3 command-line tool, 240, 656, 670

ADB shell, launching, 670
commands, listing, 675
data

dumping, 672-673
exporting, 672
importing, 673-674

limitations, 675
SQL commands, executing, 674
SQL script files, creating, 673
SQLite databases

connecting/disconnecting, 670-671
schemas, 672

tables
indices, 671
listing, 671
schemas, 672

SQLiteDatabase class, 246-247

SQLite databases, 239

binding data to user interfaces,
253-244

adapter with ListView, 254-256
adapters, 254

closing, 250
creating, 240

file, accessing, 240
openOrCreateDatabase() method,

240
properties, configuring, 241

data
dumping, 672-673
exporting, 672
importing, 673-674
SQL script files, creating, 673

deleting, 250
file formats, 669
limitations, 675
listing available, 671

747SQLite databases



management classes, 239
nonprimitive storage, 257
persistent, creating, 250

field names, 251
SQLiteOpenHelper class,

extending, 251-252
querying, 244

complex queries, 248-249
cursors, 245
filtering results, 248
iterating results, 246-247
query() method, 246-247
raw queries, 249
WHERE clauses, 247

records
deleting, 243-244
inserting, 242
updating, 242-243

schemas, 672
sqlite3 command-line tool, 240, 656,

670
ADB shell, launching, 670
command listing, 675
dumping data, 672-673
exporting data, 672
importing data, 673-674
limitations, 675
SQL commands, executing, 674
SQL script files, creating, 673
SQLite databases, connecting/

disconnecting, 670-671
SQLite databases, schemas, 672
tables, 671-672

storing, 669
student grade example, 675-682

adding data to tables, 677
calculated columns, 680-682
deleting tables, 682

editing, 679
foreign keys, 678-679
multiple queries, 680
purpose, 675-676
querying, 677-678
schema, 676
Students table, 676
Tests table, 676
updating, 679

tables
creating, 241-242
deleting, 249
indices, 671
listing available, 671
schemas, 672

transactions, 244
triggers, 241-242

SQLiteOpenHelper class, 250-252

SQLiteQueryBuilder class, 248-249

SQLite website, 258

SQLzoo.net website, 258

squares, drawing, 216-217

src folder, 52

src/com.androidbook.myfirstandroidapp/My
FirstAndroidAppActivity.java file, 52

SSL (Secure Sockets Layer), 288

stability, designing, 573-574

stand-alone applications, 565

standard progress bars, 151

stars, drawing, 221-222

start() method, 224

startActivity() method, 76-77

startActivityForResult() method, 76

startDiscovery() method, 416

starting. See launching

startScan() method, 413

startService() method, 438

startSmoothZoom() method, 341

748 SQLite databases



status bar notifications, 424

clearing, 428
queues, 426-427
text notification, creating, 425-426
updating, 427-428
website, 435

stop() method, 224

stopping

activity data, 74
ADB server processes, 648
animations, 224
camera preview, 338
emulator, 649-650
processes, 640
services, 438, 442-443
shell sessions, 649

stopScan() method, 413

stopService() method, 438

storing

databases, 669
files, 235
nonprimitive types in databases, 257
resources, 97, 101

animations/graphics/files, 101
strings, 101

styles, 128
stress testing applications

events
listening, 656-657
types, weighting, 657-658

monkey tool, 656
repeating events, 658
throttle, 658

stretchColumns attribute, 191

<string> tag, 107

<string-array> tag, 109

strings, 107

accessing, 108-109
arrays, 109-110
bold/italic/underlining, 108
editing, 107
formatting, 107, 108
resource file example, 108
storing, 101

student grades database, 675-682

calculated columns, 680-682
editing, 679
foreign keys, 678-679
multiple queries, 680
purpose, 675-676
querying, 677-678
schema, 676
tables

data, adding, 677
deleting, 682
Students table, 676
Tests, 676

updating, 679
<style> tag, 128

styles, 127-130, 168-170

applying with a parent, 169-170
attribute references example, 128
form layout example, 129-130
inheritance, 169-170
padding example, 168
paints, 207
previewing, 128
resource ids, 130
storing, 128
styles.xml example, 128
text size example, 168
TextView class, applying, 169

749styles



support requirements, 568

documentation, 569
firmware upgrades, 569
live server changes, 569
low-risk porting, identifying, 569
user crash/bug reports, 569

<supports-screen> tag, 91, 526

surfaceChanged() method, 336

surfaceCreated() method, 336, 371

SurfaceView widget, 370-371

sweep gradients, 209

SweepGradient class, 209

switchers, 202

Sync Adapter example application, 491, 497

sync adapters, 491

system

requirements, configuring, 29, 87-90
resources

android package, 131
referencing, 131

T
TabActivity class, 198-200

TabHost class, 178

TabHost class, creating tabs, 198

from scratch, 200-201
TabActivity class, 198-200

TableLayout views, 190-192

attributes, 191
example, 190
XML resource file example, 191-192

tables (SQLite databases)

creating, 241-242
deleting, 249
indices, 671
listing available, 671
schemas, 672

tabs, creating, 198

from scratch, 200-201
TabActivity class, 198-200

tags

<activity>, 92
<appwidget-provider>, 454
<bool>, 110
<color>, 111
<dimen>, 112
<drawable>, 114
<grant-uri-permissions>, 95
<include>, 124
<integer>, 111
<integer-array>, 111
<intent-filter>, 92
<manifest>, 89
<meta-data>, 478
<permission>, 95
<provider>, 94
<receiver>, 94
<service>

broadcast receivers, registering, 94
WallpaperService class, 464

<string>, 107
<string-array>, 109
<style>, 128
<supports-screen>, 91, 526
<uses-configuration>

input methods, 90
trackballs, 519

<uses-feature>
device features, configuring, 91
GPS, 316

<uses-permission>, 94
<uses-sdk>, 88
<wallpaper>, 464
Manifest, 526

750 support requirements



takePicture() method, 339

target devices

acquiring, 560
identifying, 558-560
manufacturer customizations, 559
market availability, 559-560

targetSdkVersion attribute, 88, 89

telephony

call states
listening for changes, 355
permissions, 354
querying, 354-355
roaming, 356

connection speeds, monitoring,
356-357

permissions, 354
phone calls

making, 362-364
receiving, 364-365

phone numbers
comparing, 357
emergency, 357
formatting, 357-358

services
information, retrieving, 356
state, 355-356

signal strength, monitoring, 356-357
SMS messages, 357

3GPP Specifications website, 365
android.telephony package, 357
permissions, 358
receiving, 360-362
sending, 358-360
Wikipedia Write-Up website, 365

TelephonyManager class, 354
TelephonyManager class, 354

testing. See also quality assurance

applications, 567-568
automating, 590
backup services, 594
best practices, 585
billing, 594
black box, 591
build acceptance tests, 589
client-server, 562
conformance, 593
coverage, maximizing, 589
defect tracking systems, 585

defect information, logging,
585-586

defects, defining, 586-587
development environment, 43

adding projects to Eclipse 
workspace, 43-44

AVDs, creating, 44-46
launch configurations, creating,

46-48
running applications in Android

emulator, 47-48
devices, 561

early testing, 561
fragmentation, 587
sensors, 409

emulator. See emulator
environments, 587
feasibility testing, 579-580
installations, 593
integration points, 592-593
internationalization, 593
outsourcing, 596
performance, 594
preproduction devices, 590
priorities, 588
quality, 594

751testing



real-life
device configurations, 588
limitations, 561-562

reference websites, 596
release versions, 603
servers, 591-592
services, 591-592
signal loss, 589
silly mistakes, avoiding, 595
software integration, 588-589
specialized scenarios, 592
starting states, 588
stress testing applications

event listening, 656-657
event types, weighting, 657-658
monkey tool, launching, 656
repeating events, 658
throttle, 658

third-party
firmware upgrades, 587
standards, 592

tools, 595
unexpected events, 594
unit testing, 581-582
upgrades, 593
usability, 592
vibration, 429
white box, 591
WiFi, 414

text

contextual links, creating, 136-138
displaying, 134-135
fonts

chess font, 211
customizing, 211-212
default, 210
Monotype example, 210

Sans Serif example, 210
setFlags() method, 211
support, 210-211

input methods
alternative resource qualifier, 535
IMEs (Input Method Editors), 499
software keyboards, 499-502
text prediction, 502

input retrieval
EditText controls, 138-142
Spinner controls, 143-144

italic, 210
notifications, customizing, 432-433
prediction, 502
sizing, 136, 212
status bar notification, creating,

425-426
text attribute, 135

textOn/textOff attributes, 147

Text-To-Speech services, 503, 506-508

converting text into sound files, 508
initializing, 507
language settings, 507
OnInitListener interface, 506

texturing 3D graphics, 381-384

TextView class, 134-138

contextual links, creating, 136-138
height, 136
retrieving, 126
styles, applying, 169
text attribute, 135
width, 136

themes, 131, 170-171

applying
activities, 170
entire screen, 170
View objects, 170

built-in, 171

752 testing



multiple, 170-171
setTheme() method, 170

third-party

applications versus native applications, 27
design standards, 576
device databases, 558
documentation, 563
firmware considerations, 587
software development requirements,

555
testing standards, 592

threads

application
activity, monitoring, 638-639
viewing, 637-638

OpenGL
starting, 371-373
talking to application thread,

384-385
reference website, 449

ThrowNew() method, 402

time

input retrieval, 151
passage progress bars, 155-156
picker dialogs, 166

TimePicker class, 151

Toast messages, 146, 442

toggle buttons, 144

toggleFPSDisplay() method, 386

toggles, 147

tools, 35-36

ADB. See ADB
ADT plug-in, 35-36
animation helper, 116
Asset Packaging, 98
AVD Manager, 36-37
code obfuscation, 611
DDMS. See DDMS

design, 578
development, 583
Draw Nine-patch, 40, 527-528
Eclipse Plug-In, 35
emulator. See emulator
Exerciser Monkey, 594, 596
Extract Local Variable, 666
Extract Method, 666
GLUT (OpenGL Utility Toolkit), 375
Hierarchy Viewer, 39, 179-180

drawing issues, debugging, 180
launching, 179
layout view, 180
layouts, deconstructing, 180
pixel perfect view, 180-181
user interfaces, debugging, 180

LogCat, 60, 644
clearing logs, 654
dates and times, 652
filters, 652-653
output redirection, 654
secondary logs, accessing, 654
viewing logs, 652

monkey
event types, weighting, 657-658
launching, 656
listening, 656-657
seed feature, 658
throttle, 658
website, 659

paints, 210
Rename, 665
sqlite3, 240, 670, 656

ADB shell, launching, 670
command listing, 675
database connections, 670-671

753tools



database schemas, 672
dumping data, 672-673
exporting data, 672
importing data, 673-674
limitations, 675
listing available databases, 671
SQL commands, executing, 674
SQL script files, creating, 673
table indices, 671
table schemas, 672
tables, listing, 671

testing, 595
XML packages, 237

touch gestures. See gestures

touch screen

alternative resource qualifier, 535
AVD hardware option, 619
mode changes, 161-162

trackballs, 519, 619

transactions (SQL), 244

transformations (tweened animations)

alpha transparency, 228
defining, 224
interpolators, 230
moving, 229-230
rotating, 228-229
scaling, 229

transitions (activities), 76

external Activities, launching, 77
intent action/data types, 77
new activities, launching, 76-77
passing additional information, 78

TranslateAnimation class, 230

transmitting private data, 575

transparency (animations), 228

triangles, drawing, 375-376

triggers (SQL), 241-242

troubleshooting

backup services, 497
build errors, 667
device specific bugs, 582
SDK, 32
signal loss, 589
support requirements, 568

documentation, 569
firmware upgrades, 569
live server changes, 569
low-risk porting, identifying, 569
user crash/bug reports, 569

true north, finding, 412

trust relationships, 26

tweening animations,
116, 117-118, 224-230

defining
programmatically, 226
XML resources, 226

loading, 227-228
simultaneously/sequentially, 226-227
transformations

alpha transparency, 228
defining, 224
interpolators, 230
moving, 229-230
rotating, 228-229
scaling, 229

TYPE_ACCELEROMETER sensor, 408

TYPE_GYROSCOPE sensor, 408

TYPE_LIGHT sensor, 409

TYPE_MAGNETIC_FIELD sensor, 409

TYPE_ORIENTATION sensor, 408

TYPE_PRESSURE sensor, 409

TYPE_PROXIMITY sensor, 409

TYPE_TEMPERATURE sensor, 409

754 tools



U
unbindService() method, 446

underlining strings, 108

unexpected events, testing, 594

Uniform Resource Identifiers. See URIs

uninstalling applications, 651

update() method

applications as content providers,
279-280

SQLite databases, 242
updating

Android Market applications, 609
App Widgets, 453, 454

onUpdate() method, 458
update service, creating, 458-459

applications as content providers, 279-
280

best practices, 577-578
content provider data, 268-269
firmware upgrades, 569
manifest files, 282
notifications, 427-428
preferences, 234
SDK, 23, 31
services, 442
SQLite database records, 242-243
testing, 593

uploading applications to Android Market,
606-608

Uri class, 61

UriMatcher class, 277-278

URIs (Uniform Resource Identifiers), 25

content, finding, 271
defining, 276
LiveFolders, defining, 283-284
locations, mapping, 322
pattern matching, 277-278

URL class, 288

URLs, querying, 289

URLUtil class, 307

usability testing, 592

USB drivers for Windows website, 67

use cases, developing, 555

UserDictionary content provider, 259, 267

user event handling. See event handling

user interfaces, 134

adapters, 194
arrays, 194-195
binding data, 196
cursor, 195-196
event handling, 197

buttons, 144
basic, 144-146
check boxes, 144, 146-147
radio, 144, 148-149
toggles, 144, 147

clocks, 156-157
compatibility

Nine-Patch Stretchable images,
526-528

screen support, 526
working square principle, 528-531

context menus, enabling, 159-161
database data, binding, 253-244

adapter with ListView, 254-256
adapters, 254

date input retrieval, 150-151
debugging, 180
designing, 572-573
dialogs, 165

adding to activities, 166-167
alert, 165
character picker, 165
customizing, 168

755user interfaces



date picker, 165
defining, 167
Dialog class, 165
dismissing, 167
initializing, 167
launching, 167
lifecycle, 166-167
progress, 165
removing, 167
time picker, 166
types, 165-166

documentation, 563
galleries, 194
grids, 194
layouts, creating, 134

programmatically, 175-177
XML resources, 173-175

lists, 194, 197-198
options menus, enabling, 157-159
progress indicators

Chronometer class, 155-156
ProgressBar class, 151-153
RatingBar class, 154-155
SeekBar class, 153-154

scrolling support, 201
sliding drawers, 202-203
styles. See styles
switchers, 202
tabs, 198

creating from scratch, 200-201
TabActivity class implementation,

198-200
text input retrieval

EditText controls, 138-142
Spinner controls, 143-144

TextView, 134-138
contextual links, creating, 136-138
height, 136

text attribute, 135
width, 136

themes. See themes
time input retrieval, 151
view containers, 193
ViewGroups, 178

child View objects, adding, 178
layout classes, 178
subclass categories, 178
View container controls, 178

users

applications as operating system users,
25

billing, 611-612
generation methods, 575
testing, 594

crash/bug reports, 569, 655-656
demands, meeting, 572
input retrieval

EditText controls, 138-142
Spinner controls, 143-144

<uses-configuration> tag

input methods, 90
trackballs, 519

<uses-feature> tag

device features, configuring, 91
GPS, 316

<uses-permission> tag, 94

<uses-sdk> tag, 88

utilities. See tools

V
versions

applications, 86, 599
compatibility, 546-548

API levels, finding, 546-547

756 user interfaces



backward compatibility with Java Reflection,
547-548

OpenGL ES, 368
SDK, 87-90

maximum, 90
minimum, 89
target, choosing, 89

versioning systems, choosing, 564
vertical scrolling, 201

vertices (3D graphics)

coloring, 377-378
drawing, 376-377

vibration notifications, 429

video, 343

formats, 351
playing, 345-346
recording, 343-345
website, 351

Video.Media class, 260

VideoView widget, 345-346

View class, 133

attributes, 127
binding data. See adapters
containers

adapters, 194-197
built-in, 193
galleries, 194
grids, 194
lists, 194, 197-198
scrolling support, 201
sliding drawers, 202-203
switchers, 202
tabs. See tabs

drawing issues, debugging, 180
galleries, 178
Hierarchy Viewer, 179-180

drawing issues, debugging, 180
launching, 179

layout view, 180
pixel perfect view, 180-181
user interfaces, debugging, 180

list views, 178
OnFocusChangeListener interface, 164
OnLongClickListener interface, 164
parent-child relationships, 178
tab hosts, 178
themes, applying, 170
ViewWithRedDot subclass, 205-206

ViewGroups class, 178

attributes, 182
child View objects, adding, 178
subclasses

categories, 178
layout classes, 178
View container controls, 178

viewing

application threads, 637-638
live folder picker information, 484
logs, 652
network images, 295-297
progress bars, 153
retrieved images, 273-274
styles, 128
text, 134-135
Web content, 302-304

ViewSwitcher class, 202

ViewTreeObserver class

OnGlobalFocusChangeListener 
interface, 163

OnGlobalLayoutListener, 163
OnPreDrawListener interface, 163
OnTouchModeChangeListener 

interface, 162
ViewWithRedDot class, 205-206

voice searches, 474-475

757voice searches



W
W3School’s JavaScript Tutorial website, 314

WallpaperManager class, 342

wallpapers

live, 461
application support, 462
creating, 462
implementing services, 462
installing, 465-466
manifest file, configuring, 464-465
service engine implementation, 463
user events, handling, 463
XML definition, 464

still images, 342-343
WallpaperService class, 462

<wallpaper> tag, 464

WAP (Wireless Application Protocol), 11-13

waterfall development, 552, 570

Web

browsing, 301-302
chrome, adding, 305-307
event handling, 304-305
Flash support, 311-313
JavaScript, enabling, 304
mouseovers, 304
settings, configuring, 304
zooming, 304

content, loading, 302-304
data, reading, 288-289

errors, 289
exception handling, 288
permissions, 289
URL class, 288

layouts, designing, 302
WebKit rendering engine, 301

android.webkit package, 307
classes, 307

functionality, 308
JavaScript interface application,

308-312
Open Source Project website, 314
support, 307

WebBackForwardList class, 307

WebChromeClient class, 305-307

WebHistoryItem class, 307

WebKit rendering engine, 301

android.webkit package, 307
classes, 307
functionality, 308
JavaScript interface application,

308-312
Button control click handler, 311
JavaScript control, 311
JavaScript namespace, 309
JavaScriptExtensions class, 309
onCreate() method, 309
sample.html file JavaScript func-

tions, 310-311
web page, defining, 310

Open Source Project website, 314
support, 307

WebSettings class, 304

websites

3GPP Specifications, 365
Activity class, 80
ADB, 39
Adobe AIR for Android

beta program, 313
Tool Suite, 314

alternative resources, 549
Android

Dev Guide:“Developing on a
Device” website, 67

Development, 28, 398, 574
sign-up, 604

758 W3School’s JavaScript Tutorial website



Android Market, 612
country requirements, 604
Developer Distribution Agreement,

604
help, 607
licensing service, 604

Android.net package, 299
API levels, 96
ApiDemos application, 40
App Widgets, 454, 487
ash shell, 649
audio, 351
backup services, 497
backward compatibility without

reflection, 548
best practices, 584
Bluetooth, 421
Borland SilkTest, 589
bug resolution process, 32
BusyBox, 660
C2DM (Cloud to Device Messaging),

438
chess font, 211
cloud computing Wikipedia, 497
compatibility, 549
ContactsContract content provider,

264
content providers, 285
Context class reference, 80
Cygwin, 398
DDMS, 38
Eclipse, 41

download, 29
IDE, 30

emulator, 38
Exerciser Monkey command-line

tool, 596

extreme programming, 570
framework FAQ, 449
GNU

Awk (Gawk) or Nawk, 398
Make 3.81, 398

Google
Android Developer’s Guide, 41
APIs Add-On, 35
backup service, 492
intents, 77
Maps API key, 274, 333

IANA (Internet Assigned Numbers
Authority), 467

input methods, 502
inputType attribute, 501
intent reference, 80
ISO 3166-1-alpha-2 Regions, 549
Issue Tracker, 32
Java

JDK (Java Development Kit), 29
JUnit, 582
Platform, 41, 548

Java.net package, 299
Khronos OpenGL ES, 396
language support, 549
Licensing Agreement, 41
Linux Blog Man, 649
live folders, 487
live wallpapers, 487
locations and maps, 333
LunarLander application, 40
Manifest tag, 526
manifest files, 96
market filters, 599, 612
memory allocation, monitoring, 640
monkey tool, 659
multimedia formats, 351

759websites



multiple screen support, 96, 549
NDK, 405
Nexus One and Android Dev Phones,

570
NOAA:World Magnetic Model, 421
NotePad application, 40
NotificationManager class, 435
notifications, 435
Open Handset Alliance (OHA), 28
OpenGL ES, 396
OpenGL ES API documentation, 396
PhoneGap project, 311
processes and threads, 449
ProGuard, 611
Registry of Intents protocols, 77
resources, 132
runtime changes, 549
screen orientation changes, 522
SDK

documentation, 33-34
download, 29, 41
updates, 31

Searchable Configuration documenta-
tion, 475

searches, 487
security and permissions, 96
Sensor Simulator, 409
sensors, 421
services

lifecycle, 449
Service class, 449

Snake application, 40
SQLite, 258
SQLzoo.net, 258
Sync Adapter example application,

491, 497
system requirements, 29

testing references, 596
unit testing tutorial, 582
USB drivers for Windows, 67
video, 351
W3School’s JavaScript Tutorial, 314
WebKit

Open Source Project, 314
rendering engine, 301

Wikipedia
iterative development, 570
Rapid Application Development,

570
software process, 570
software testing, 596
waterfall development, 570
Write-Up, 365

Windows USB driver, 30
XML

attributes for menus reference, 120
Pull Parsing, 299

WebView class. See also WebKit rendering
engine

benefits, 307
chrome, adding, 305-307
content, loading, 302-304
event handling, 304-305
layouts, designing, 302
settings, configuring, 304
Web browsing, 301-302

WebViewClient class, 304-305

WHERE clauses (SQL queries), 247

white box testing, 591

widgets

MapView, 323-324
Google Maps API Key, 325-326
manifest file, 323
MapController objects, 324

760 websites



panning, 326-327
permissions, 324
points of interest, marking, 327-329

MediaController, 345-346
SurfaceView, 370-371
VideoView, 345-346

WiFi

access points, scanning, 412-413
permissions, 412
sensors, 412
signal strength, 413
testing, 414

WifiManager class, 412-413

Wikipedia websites

iterative development, 570
Rapid Application Development, 570
software

processes, 570
testing, 596

waterfall development, 570
Write-Up, 365

windows (Eclipse IDE)

maximizing, 662
minimizing, 662
multiple file sections, viewing, 662
open, limiting, 663
side by side view, 662

Windows USB drivers, 30, 67

Wireless Application Protocol (WAP), 11-13

WML (Wireless Markup Language), 12

working square principle, 528-531

World Magnetic Model, 412

WQVGA400 skin, 618

WQVGA432 skin, 618

writeToParcel() method, 448

WVGA800 skin, 618

WVGA854 skin, 618

X
XML (Extensible Markup Language)

App Widget definitions, 453-454
attributes, 120
in-application search files, 471
layouts

accessing, 120-121, 126
creating, 173-175

live wallpaper definition, 464
manifest files. See manifest files
parsing, 290-291
Pull Parsing website, 299
services permissions file, 443
shapes, defining, 214-215
SMS permissions, 358
tags. See tags
telephony state information, 354
tweened animations, defining, 226
utility packages, 237

Z
zooming

cameras, 341
maps, 327
Web browsing, 304

761zooming


	Table of Contents
	Introduction
	Who Should Read This Book
	Key Questions Answered in This Book
	How This Book Is Structured
	An Overview of Changes in This Edition
	Development Environment Used in This Book
	Supplementary Materials Available
	Where to Find More Information
	Conventions Used in This Book
	Contacting the Authors

	1 Introducing Android
	A Brief History of Mobile Software Development
	The Open Handset Alliance
	Android Platform Differences
	The Android Platform
	Summary
	References and More Information

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z




