

The C# Programming Language
Fourth Edition

The award-winning Microsoft .NET Development Series was

established in 2002 to provide professional developers with the

most comprehensive, practical coverage of the latest .NET technologies.

Authors in this series include Microsoft architects, MVPs, and other

experts and leaders in the field of Microsoft development technologies.

Each book provides developers with the vital information and critical

insight they need to write highly effective applications.

Visit informit.com/msdotnetseries for a complete list of available products.

Microsoft® .NET Development Series

The award-winning Microsoft .NET Development Series was

established in 2002 to provide professional developers with the

most comprehensive, practical coverage of the latest .NET technologies.

Authors in this series include Microsoft architects, MVPs, and other

experts and leaders in the field of Microsoft development technologies.

Each book provides developers with the vital information and critical

insight they need to write highly effective applications.

Visit informit.com/msdotnetseries for a complete list of available products.

Microsoft® .NET Development Series

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

The C#
 Programming
Language
Fourth Edition

 Anders Hejlsberg
Mads Torgersen
Scott Wiltamuth
Peter Golde

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the Unit-
ed States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

The C# programming language / Anders Hejlsberg ... [et al.]. — 4th ed.
 p. cm.
 Includes index.
 ISBN 978-0-321-74176-9 (hardcover : alk. paper)
 1. C# (Computer program language) I. Hejlsberg, Anders.
 QA76.73.C154H45 2010
 005.13’3—dc22
 2010032289

Copyright © 2011 Microsoft Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-74176-9
ISBN-10: 0-321-74176-5
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, October 2010

v

Contents

Foreword xi
Preface xiii
About the Authors xv
About the Annotators xvii

1	 Introduction 1
1.1	 Hello, World 3
1.2	 Program Structure 4
1.3	 Types and Variables 6
1.4	 Expressions 13
1.5	 Statements 16
1.6	 Classes and Objects 21
1.7	 Structs 50
1.8	 Arrays 53
1.9	 Interfaces 56
1.10	 Enums 58
1.11	 Delegates 60
1.12	 Attributes 61

2 Lexical Structure 65
2.1	 Programs 65
2.2	 Grammars 65
2.3	 Lexical Analysis 67
2.4	 Tokens 71
2.5	 Preprocessing Directives 85

vi

Contents

3 Basic Concepts 99
3.1	 Application Start-up 99
3.2	 Application Termination 100
3.3	 Declarations 101
3.4	 Members 105
3.5	 Member Access 107
3.6	 Signatures and Overloading 117
3.7	 Scopes 120
3.8	 Namespace and Type Names 127
3.9	 Automatic Memory Management 132
3.10	 Execution Order 137

4 Types 139
4.1	 Value Types 140
4.2	 Reference Types 152
4.3	 Boxing and Unboxing 155
4.4	 Constructed Types 160
4.5	 Type Parameters 164
4.6	 Expression Tree Types 165
4.7	 The dynamic Type 166

5 Variables 169
5.1	 Variable Categories 169
5.2	 Default Values 175
5.3	 Definite Assignment 176
5.4	 Variable References 192
5.5	 Atomicity of Variable References 193

6 Conversions 195
6.1	 Implicit Conversions 196
6.2	 Explicit Conversions 204
6.3	 Standard Conversions 213
6.4	 User-Defined Conversions 214
6.5	 Anonymous Function Conversions 219
6.6	 Method Group Conversions 226

vii

Contents

7 Expressions 231
7.1	 Expression Classifications 231
7.2	 Static and Dynamic Binding 234
7.3	 Operators 238
7.4	 Member Lookup 247
7.5	 Function Members 250
7.6	 Primary Expressions 278
7.7	 Unary Operators 326
7.8	 Arithmetic Operators 331
7.9	 Shift Operators 343
7.10	 Relational and Type-Testing Operators 344
7.11	 Logical Operators 355
7.12	 Conditional Logical Operators 358
7.13	 The Null Coalescing Operator 360
7.14	 Conditional Operator 361
7.15	 Anonymous Function Expressions 364
7.16	 Query Expressions 373
7.17	 Assignment Operators 389
7.18	 Expression 395
7.19	 Constant Expressions 395
7.20	 Boolean Expressions 397

8 Statements 399
8.1	 End Points and Reachability 400
8.2	 Blocks 402
8.3	 The Empty Statement 404
8.4	 Labeled Statements 406
8.5	 Declaration Statements 407
8.6	 Expression Statements 412
8.7	 Selection Statements 413
8.8	 Iteration Statements 420
8.9	 Jump Statements 429
8.10	 The try Statement 438
8.11	 The checked and unchecked Statements 443
8.12	 The lock Statement 443
8.13	 The using Statement 445
8.14	 The yield Statement 449

viii

Contents

9 Namespaces 453
9.1	 Compilation Units 453
9.2	 Namespace Declarations 454
9.3	 Extern Aliases 456
9.4	 Using Directives 457
9.5	 Namespace Members 463
9.6	 Type Declarations 464
9.7	 Namespace Alias Qualifiers 464

10 Classes 467
10.1	 Class Declarations 467
10.2	 Partial Types 481
10.3	 Class Members 490
10.4	 Constants 506
10.5	 Fields 509
10.6	 Methods 520
10.7	 Properties 545
10.8	 Events 559
10.9	 Indexers 566
10.10	Operators 571
10.11	 Instance Constructors 579
10.12	 Static Constructors 586
10.13	Destructors 589
10.14	 Iterators 592

11 Structs 607
11.1	 Struct Declarations 608
11.2	 Struct Members 609
11.3	 Class and Struct Differences 610
11.4	 Struct Examples 619

12 Arrays 625
12.1	 Array Types 625
12.2	 Array Creation 628
12.3	 Array Element Access 628

ix

Contents

12.4	 Array Members 628
12.5	 Array Covariance 629
12.6	 Array Initializers 630

13 Interfaces 633
13.1	 Interface Declarations 633
13.2	 Interface Members 639
13.3	 Fully Qualified Interface Member Names 645
13.4	 Interface Implementations 645

14 Enums 663
14.1	 Enum Declarations 663
14.2	 Enum Modifiers 664
14.3	 Enum Members 665
14.4	 The System.Enum Type 668
14.5	 Enum Values and Operations 668

15 Delegates 671
15.1	 Delegate Declarations 672
15.2	 Delegate Compatibility 676
15.3	 Delegate Instantiation 676
15.4	 Delegate Invocation 677

16 Exceptions 681
16.1	 Causes of Exceptions 683
16.2	 The System.Exception Class 683
16.3	 How Exceptions Are Handled 684
16.4	 Common Exception Classes 685

17 Attributes 687
17.1	 Attribute Classes 688
17.2	 Attribute Specification 692
17.3	 Attribute Instances 698
17.4	 Reserved Attributes 699
17.5	 Attributes for Interoperation 707

x

Contents

18 Unsafe Code 709
18.1	 Unsafe Contexts 710
18.2	 Pointer Types 713
18.3	 Fixed and Moveable Variables 716
18.4	 Pointer Conversions 717
18.5	 Pointers in Expressions 720
18.6	 The fixed Statement 728
18.7	 Fixed-Size Buffers 733
18.8	 Stack Allocation 736
18.9	 Dynamic Memory Allocation 738

A Documentation Comments 741
A.1	 Introduction 741
A.2	 Recommended Tags 743
A.3	 Processing the Documentation File 754
A.4	 An Example 760

B Grammar 767
B.1	 	Lexical Grammar 767
B.2	 Syntactic Grammar 777
B.3	 Grammar Extensions for Unsafe Code 809

C References 813

Index 815

xi

Foreword

It’s been ten years since the launch of .NET in the summer of 2000. For me, the significance
of .NET was the one-two combination of managed code for local execution and XML mes-
saging for program-to-program communication. What wasn’t obvious to me at the time
was how important C# would become.

From the inception of .NET, C# has provided the primary lens used by developers for
understanding and interacting with .NET. Ask the average .NET developer the difference
between a value type and a reference type, and he or she will quickly say, “Struct versus
class,” not “Types that derive from System.ValueType versus those that don’t.” Why?
Because people use languages—not APIs—to communicate their ideas and intention to the
runtime and, more importantly, to each other.

It’s hard to overstate how important having a great language has been to the success of the
platform at large. C# was initially important to establish the baseline for how people think
about .NET. It’s been even more important as .NET has evolved, as features such as itera-
tors and true closures (also known as anonymous methods) were introduced to developers
as purely language features implemented by the C# compiler, not as features native to the
platform. The fact that C# is a vital center of innovation for .NET became even more appar-
ent with C# 3.0, with the introduction of standardized query operators, compact lambda
expressions, extension methods, and runtime access to expression trees—again, all driven
by development of the language and compiler. The most significant feature in C# 4.0,
dynamic invocation, is also largely a feature of the language and compiler rather than
changes to the CLR itself.

It’s difficult to talk about C# without also talking about its inventor and constant shepherd,
Anders Hejlsberg. I had the distinct pleasure of participating in the recurring C# design
meetings for a few months during the C# 3.0 design cycle, and it was enlightening watch-
ing Anders at work. His instinct for knowing what developers will and will not like is truly

xii

Foreword

world-class—yet at the same time, Anders is extremely inclusive of his design team and
manages to get the best design possible.

With C# 3.0 in particular, Anders had an uncanny ability to take key ideas from the func-
tional language community and make them accessible to a very broad audience. This is no
trivial feat. Guy Steele once said of Java, “We were not out to win over the Lisp program-
mers; we were after the C++ programmers. We managed to drag a lot of them about half-
way to Lisp.” When I look at C# 3.0, I think C# has managed to drag at least one C++
developer (me) most of the rest of the way. C# 4.0 takes the next step toward Lisp (and
JavaScript, Python, Ruby, et al.) by adding the ability to cleanly write programs that don’t
rely on static type definitions.

As good as C# is, people still need a document written in both natural language (English,
in this case) and some formalism (BNF) to grok the subtleties and to ensure that we’re all
speaking the same C#. The book you hold in your hands is that document. Based on my
own experience, I can safely say that every .NET developer who reads it will have at least
one “aha” moment and will be a better developer for it.

Enjoy.

Don Box
Redmond, Washington

May 2010

xiii

Preface

The C# project started more than 12 years ago, in December 1998, with the goal to create a
simple, modern, object-oriented, and type-safe programming language for the new and
yet-to-be-named .NET platform. Since then, C# has come a long way. The language is now
in use by more than a million programmers and has been released in four versions, each
with several major new features added.

This book, too, is in its fourth edition. It provides a complete technical specification of the
C# programming language. This latest edition includes two kinds of new material not
found in previous versions. Most notably, of course, it has been updated to cover the new
features of C# 4.0, including dynamic binding, named and optional parameters, and cova-
riant and contravariant generic types. The overarching theme for this revision has been to
open up C# more to interaction with objects outside of the .NET environment. Just as LINQ
in C# 3.0 gave a language-integrated feel to code used to access external data sources, so
the dynamic binding of C# 4.0 makes the interaction with objects from, for example,
dynamic programming languages such as Python, Ruby, and JavaScript feel native to C#.

The previous edition of this book introduced the notion of annotations by well-known C#
experts. We have received consistently enthusiastic feedback about this feature, and we are
extremely pleased to be able to offer a new round of deep and entertaining insights, guide-
lines, background, and perspective from both old and new annotators throughout the
book. We are very happy to see the annotations continue to complement the core material
and help the C# features spring to life.

Many people have been involved in the creation of the C# language. The language design
team for C# 1.0 consisted of Anders Hejlsberg, Scott Wiltamuth, Peter Golde, Peter Sollich,
and Eric Gunnerson. For C# 2.0, the language design team consisted of Anders Hejlsberg,
Peter Golde, Peter Hallam, Shon Katzenberger, Todd Proebsting, and Anson Horton.

xiv

Preface

 Furthermore, the design and implementation of generics in C# and the .NET Common
Language Runtime is based on the “Gyro” prototype built by Don Syme and Andrew
 Kennedy of Microsoft Research. C# 3.0 was designed by Anders Hejlsberg, Erik Meijer,
Matt Warren, Mads Torgersen, Peter Hallam, and Dinesh Kulkarni. On the design team for
C# 4.0 were Anders Hejlsberg, Matt Warren, Mads Torgersen, Eric Lippert, Jim Hugunin,
Lucian Wischik, and Neal Gafter.

It is impossible to acknowledge the many people who have influenced the design of C#,
but we are nonetheless grateful to all of them. Nothing good gets designed in a vacuum,
and the constant feedback we receive from our large and enthusiastic community of devel-
opers is invaluable.

C# has been and continues to be one of the most challenging and exciting projects on which
we’ve worked. We hope you enjoy using C# as much as we enjoy creating it.

Anders Hejlsberg
Mads Torgersen
Scott Wiltamuth

Peter Golde
Seattle, Washington

September 2010

1

Introduction1.	

C# (pronounced “See Sharp”) is a simple, modern, object-oriented, and type-safe program-
ming language. C# has its roots in the C family of languages and will be immediately
familiar to C, C++, and Java programmers. C# is standardized by ECMA International as
the ECMA-334 standard and by ISO/IEC as the ISO/IEC 23270 standard. Microsoft’s C#
compiler for the .NET Framework is a conforming implementation of both of these
standards.

C# is an object-oriented language, but C# further includes support for component-oriented
programming. Contemporary software design increasingly relies on software components
in the form of self-contained and self-describing packages of functionality. Key to such
components is that they present a programming model with properties, methods, and
events; they have attributes that provide declarative information about the component;
and they incorporate their own documentation. C# provides language constructs to directly
support these concepts, making C# a very natural language in which to create and use
software components.

Several C# features aid in the construction of robust and durable applications: Garbage
collection automatically reclaims memory occupied by unused objects; exception handling
provides a structured and extensible approach to error detection and recovery; and the
type-safe design of the language makes it impossible to read from uninitialized variables,
to index arrays beyond their bounds, or to perform unchecked type casts.

C# has a unified type system. All C# types, including primitive types such as int and
double, inherit from a single root object type. Thus all types share a set of common opera-
tions, and values of any type can be stored, transported, and operated upon in a consistent
manner. Furthermore, C# supports both user-defined reference types and value types,
allowing dynamic allocation of objects as well as in-line storage of lightweight structures.

To ensure that C# programs and libraries can evolve over time in a compatible manner,
much emphasis has been placed on versioning in C#’s design. Many programming lan-
guages pay little attention to this issue. As a result, programs written in those languages
break more often than necessary when newer versions of dependent libraries are intro-
duced. Aspects of C#’s design that were directly influenced by versioning considerations
include the separate virtual and override modifiers, the rules for method overload reso-
lution, and support for explicit interface member declarations.

1. Introduction

2

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

The rest of this chapter describes the essential features of the C# language. Although later
chapters describe rules and exceptions in a detail-oriented and sometimes mathematical
manner, this chapter strives for clarity and brevity at the expense of completeness. The
intent is to provide the reader with an introduction to the language that will facilitate the
writing of early programs and the reading of later chapters.

n
n  CHRIS SELLS I’m absolutely willing to go with “modern, object-oriented, and

type-safe,” but C# isn’t nearly as simple as it once was. However, given that the lan-
guage gained functionality such as generics and anonymous delegates in C# 2.0,
LINQ-related features in C# 3.0, and dynamic values in C# 4.0, the programs them-
selves become simpler, more readable, and easier to maintain—which should be the
goal of any programming language.

n
n  ERIC LIPPERT C# is also increasingly a functional programming language. Fea-

tures such as type inference, lambda expressions, and monadic query comprehensions
allow traditional object-oriented developers to use these ideas from functional lan-
guages to increase the expressiveness of the language.

n
n  CHRISTIAN NAGEL C# is not a pure object-oriented language but rather a lan-

guage that is extended over time to get more productivity in the main areas where C#
is used. Programs written with C# 3.0 can look completely different than programs
written in C# 1.0 with functional programming constructs.

n
n  JoN SkEET Certain aspects of C# have certainly made this language more func-

tional over time—but at the same time, mutability was encouraged in C# 3.0 by both
automatically implemented properties and object initializers. It will be interesting to
see whether features encouraging immutability arrive in future versions, along with
support for other areas such as tuples, pattern matching, and tail recursion.

n
n  BILL WAGNER This section has not changed since the first version of the C# spec.

Obviously, the language has grown and added new idioms—and yet C# is still an
approachable language. These advanced features are always within reach, but not
always required for every program. C# is still approachable for inexperienced devel-
opers even as it grows more and more powerful.

1.1		 Hello, World

3

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

1.1 Hello, World
The “Hello, World” program is traditionally used to introduce a programming language.
Here it is in C#:

using System;

class Hello
{
 static void Main() {
 Console.WriteLine("Hello, World");
 }
}

C# source files typically have the file extension .cs. Assuming that the “Hello, World”
program is stored in the file hello.cs, the program can be compiled with the Microsoft C#
compiler using the command line

csc hello.cs

which produces an executable assembly named hello.exe. The output produced by this
application when it is run is

Hello, World

The “Hello, World” program starts with a using directive that references the System
namespace. Namespaces provide a hierarchical means of organizing C# programs and
libraries. Namespaces contain types and other namespaces—for example, the System
namespace contains a number of types, such as the Console class referenced in the pro-
gram, and a number of other namespaces, such as IO and Collections. A using directive
that references a given namespace enables unqualified use of the types that are members
of that namespace. Because of the using directive, the program can use Console.WriteLine
as shorthand for System.Console.WriteLine.

The Hello class declared by the “Hello, World” program has a single member, the method
named Main. The Main method is declared with the static modifier. While instance meth-
ods can reference a particular enclosing object instance using the keyword this, static
methods operate without reference to a particular object. By convention, a static method
named Main serves as the entry point of a program.

The output of the program is produced by the WriteLine method of the Console class in
the System namespace. This class is provided by the .NET Framework class libraries, which,
by default, are automatically referenced by the Microsoft C# compiler. Note that C# itself
does not have a separate runtime library. Instead, the .NET Framework is the runtime
library of C#.

1. Introduction

4

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  BRAD ABRAMS It is interesting to note that Console.WriteLine() is simply a

shortcut for Console.Out.WriteLine. Console.Out is a property that returns an imple-
mentation of the System.IO.TextWriter base class designed to output to the console.
The preceding example could be written equally correctly as follows:

using System;
class Hello
{
 static void Main() {
 Console.Out.WriteLine("Hello, World");
 }
}

Early in the design of the framework, we kept a careful eye on exactly how this section
of the C# language specification would have to be written as a bellwether of the com-
plexity of the language. We opted to add the convenience overload on Console to
make “Hello, World” that much easier to write. By all accounts, it seems to have paid
off. In fact, today you find almost no calls to Console.Out.WriteLine().

1.2 Program Structure
The key organizational concepts in C# are programs, namespaces, types, members, and
assemblies. C# programs consist of one or more source files. Programs declare types, which
contain members and can be organized into namespaces. Classes and interfaces are exam-
ples of types. Fields, methods, properties, and events are examples of members. When C#
programs are compiled, they are physically packaged into assemblies. Assemblies typi-
cally have the file extension .exe or .dll, depending on whether they implement applica-
tions or libraries.

The example

using System;

namespace Acme.Collections
{
 public class Stack
 {
 Entry top;

 public void Push(object data) {
 top = new Entry(top, data);
 }

 public object Pop() {
 if (top == null) throw new InvalidOperationException();
 object result = top.data;

1.2		 Program Structure

5

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 top = top.next;
 return result;
 }

 class Entry
 {
 public Entry next;
 public object data;

 public Entry(Entry next, object data) {
 this.next = next;
 this.data = data;
 }
 }
 }
}

declares a class named Stack in a namespace called Acme.Collections. The fully qualified
name of this class is Acme.Collections.Stack. The class contains several members: a field
named top, two methods named Push and Pop, and a nested class named Entry. The Entry
class further contains three members: a field named next, a field named data, and a con-
structor. Assuming that the source code of the example is stored in the file acme.cs, the
command line

csc /t:library acme.cs

compiles the example as a library (code without a Main entry point) and produces an
assembly named acme.dll.

Assemblies contain executable code in the form of Intermediate Language (IL) instructions,
and symbolic information in the form of metadata. Before it is executed, the IL code in an
assembly is automatically converted to processor-specific code by the Just-In-Time (JIT)
compiler of .NET Common Language Runtime.

Because an assembly is a self-describing unit of functionality containing both code and
metadata, there is no need for #include directives and header files in C#. The public types
and members contained in a particular assembly are made available in a C# program sim-
ply by referencing that assembly when compiling the program. For example, this program
uses the Acme.Collections.Stack class from the acme.dll assembly:

using System;
using Acme.Collections;

class Test
{
 static void Main() {
 Stack s = new Stack();
 s.Push(1);
 s.Push(10);
 s.Push(100);

1. Introduction

6

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 Console.WriteLine(s.Pop());
 Console.WriteLine(s.Pop());
 Console.WriteLine(s.Pop());
 }
}

If the program is stored in the file test.cs, when test.cs is compiled, the acme.dll assem-
bly can be referenced using the compiler’s /r option:

csc /r:acme.dll test.cs

This creates an executable assembly named test.exe, which, when run, produces the fol-
lowing output:

100
10
1

C# permits the source text of a program to be stored in several source files. When a multi-
file C# program is compiled, all of the source files are processed together, and the source
files can freely reference one another—conceptually, it is as if all the source files were con-
catenated into one large file before being processed. Forward declarations are never needed
in C# because, with very few exceptions, declaration order is insignificant. C# does not
limit a source file to declaring only one public type nor does it require the name of the
source file to match a type declared in the source file.

n
n  ERIC LIPPERT This is unlike the Java language. Also, the fact that the declaration

order is insignificant in C# is unlike the C++ language.

n
n  CHRIS SELLS Notice in the previous example the using Acme.Collections

statement, which looks like a C-style #include directive, but isn’t. Instead, it’s merely
a naming convenience so that when the compiler encounters the Stack, it has a set of
namespaces in which to look for the class. The compiler would take the same action if
this example used the fully qualified name:

Acme.Collections.Stack s = new Acme.Collections.Stack();

1.3 Types and Variables
There are two kinds of types in C#: value types and reference types. Variables of value
types directly contain their data, whereas variables of reference types store references to
their data, the latter being known as objects. With reference types, it is possible for two

1.3		 Types and Variables

7

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

variables to reference the same object and, therefore, possible for operations on one vari-
able to affect the object referenced by the other variable. With value types, the variables
each have their own copy of the data, and it is not possible for operations on one to affect
the other (except in the case of ref and out parameter variables).

n
n  JoN SkEET The choice of the word “reference” for reference types is perhaps

unfortunate. It has led to huge amounts of confusion (or at least miscommunication)
when considering the difference between pass-by-reference and pass-by-value seman-
tics for parameter passing.

The difference between value types and reference types is possibly the most important
point to teach C# beginners: Until that point is understood, almost nothing else makes
sense.

n
n  ERIC LIPPERT Probably the most common misconception about value types is

that they are “stored on the stack,” whereas reference types are “stored on the heap.”
First, that behavior is an implementation detail of the runtime, not a fact about the
language. Second, it explains nothing to the novice. Third, it’s false: Yes, the data asso-
ciated with an instance of a reference type is stored on the heap, but that data can
include instances of value types and, therefore, value types are also stored on the heap
sometimes. Fourth, if the difference between value and reference types was their stor-
age details, then the CLR team would have called them “stack types” and “heap
types.” The real difference is that value types are copied by value, and reference types
are copied by reference; how the runtime allocates storage to implement the lifetime
rules is not important in the vast majority of mainline programming scenarios.

n
n  BILL WAGNER C# forces you to make the important decision of value semantics

versus reference semantics for your types. Developers using your type do not get to
make that decision on each usage (as they do in C++). You need to think about the
usage patterns for your types and make a careful decision between these two kinds of
types.

n
n  VLADIMIR RESHETNIkoV C# also supports unsafe pointer types, which are

described at the end of this specification. They are called “unsafe” because their neg-
ligent use can break the type safety in a way that cannot be caught by the compiler.

1. Introduction

8

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

C#’s value types are further divided into simple types, enum types, struct types, and nul-
lable types. C#’s reference types are further divided into class types, interface types, array
types, and delegate types.

The following table provides an overview of C#’s type system.

Category Description

Value
types

Simple types Signed integral: sbyte, short, int, long

Unsigned integral: byte, ushort, uint, ulong

Unicode characters: char

IEEE floating point: float, double

High-precision decimal: decimal

Boolean: bool

Enum types User-defined types of the form enum E {...}

Struct types User-defined types of the form struct S {...}

Nullable types Extensions of all other value types with a null value

Reference
types

Class types Ultimate base class of all other types: object

Unicode strings: string

User-defined types of the form class C {...}

Interface types User-defined types of the form interface I {...}

Array types Single- and multi-dimensional; for example, int[] and
int[,]

Delegate types User-defined types of the form e.g. delegate int
D(...)

The eight integral types provide support for 8-bit, 16-bit, 32-bit, and 64-bit values in signed
or unsigned form.

1.3		 Types and Variables

9

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  JoN SkEET Hooray for byte being an unsigned type! The fact that in Java a byte

is signed (and with no unsigned equivalent) makes a lot of bit-twiddling pointlessly
error-prone.

It’s quite possible that we should all be using uint a lot more than we do, mind you:
I’m sure many developers reach for int by default when they want an integer type.
The framework designers also fall into this category, of course: Why should
String.Length be signed?

n
n  ERIC LIPPERT The answer to Jon’s question is that the framework is designed to

work well with the Common Language Specification (CLS). The CLS defines a set of
basic language features that all CLS-compliant languages are expected to be able to
consume; unsigned integers are not in the CLS subset.

The two floating point types, float and double, are represented using the 32-bit single-
precision and 64-bit double-precision IEEE 754 formats.

The decimal type is a 128-bit data type suitable for financial and monetary calculations.

n
n  JoN SkEET These two paragraphs imply that decimal isn’t a floating point type.

It is—it’s just a floating decimal point type, whereas float and double are floating
binary point types.

C#’s bool type is used to represent boolean values—values that are either true or false.

Character and string processing in C# uses Unicode encoding. The char type represents a
UTF-16 code unit, and the string type represents a sequence of UTF-16 code units.

The following table summarizes C#’s numeric types.

Category Bits Type Range/Precision

Signed
integral

8 sbyte –128...127

16 short –32,768...32,767

32 int –2,147,483,648...2,147,483,647

64 long –9,223,372,036,854,775,808...9,223,372,036,854,775,807

Continued

1. Introduction

10

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Category Bits Type Range/Precision

Unsigned
integral

8 byte 0...255

16 ushort 0...65,535

32 uint 0...4,294,967,295

64 ulong 0...18,446,744,073,709,551,615

Floating
point

32 float 1.5 × 10−45 to 3.4 × 1038, 7-digit precision

64 double 5.0 × 10−324 to 1.7 × 10308, 15-digit precision

Decimal 128 decimal 1.0 × 10−28 to 7.9 × 1028, 28-digit precision

n
n  CHRISTIAN NAGEL One of the problems we had with C++ on different platforms

is that the standard doesn’t define the number of bits used with short, int, and long.
The standard defines only short <= int <= long, which results in different sizes on
16-, 32-, and 64-bit platforms. With C#, the length of numeric types is clearly defined,
no matter which platform is used.

C# programs use type declarations to create new types. A type declaration specifies the
name and the members of the new type. Five of C#’s categories of types are user-definable:
class types, struct types, interface types, enum types, and delegate types.

A class type defines a data structure that contains data members (fields) and function
members (methods, properties, and others). Class types support single inheritance and
polymorphism, mechanisms whereby derived classes can extend and specialize base
classes.

n
n  ERIC LIPPERT Choosing to support single rather than multiple inheritance on

classes eliminates in one stroke many of the complicated corner cases found in mul-
tiple inheritance languages.

A struct type is similar to a class type in that it represents a structure with data members
and function members. However, unlike classes, structs are value types and do not require
heap allocation. Struct types do not support user-specified inheritance, and all struct types
implicitly inherit from type object.

1.3		 Types and Variables

11

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  VLADIMIR RESHETNIkoV Structs inherit from object indirectly. Their implicit

direct base class is System.ValueType, which in turn directly inherits from object.

An interface type defines a contract as a named set of public function members. A class or
struct that implements an interface must provide implementations of the interface’s func-
tion members. An interface may inherit from multiple base interfaces, and a class or struct
may implement multiple interfaces.

A delegate type represents references to methods with a particular parameter list and
return type. Delegates make it possible to treat methods as entities that can be assigned to
variables and passed as parameters. Delegates are similar to the concept of function point-
ers found in some other languages, but unlike function pointers, delegates are object-ori-
ented and type-safe.

Class, struct, interface, and delegate types all support generics, whereby they can be
parameterized with other types.

An enum type is a distinct type with named constants. Every enum type has an underlying
type, which must be one of the eight integral types. The set of values of an enum type is the
same as the set of values of the underlying type.

n
n  VLADIMIR RESHETNIkoV Enum types cannot have type parameters in their

declarations. Even so, they can be generic if nested within a generic class or struct
type. Moreover, C# supports pointers to generic enum types in unsafe code.

Sometimes enum types are called “enumeration types” in this specification. These two
names are completely interchangeable.

C# supports single- and multi-dimensional arrays of any type. Unlike the types listed
above, array types do not have to be declared before they can be used. Instead, array types
are constructed by following a type name with square brackets. For example, int[] is a
single-dimensional array of int, int[,] is a two-dimensional array of int, and int[][] is
a single-dimensional array of single-dimensional arrays of int.

Nullable types also do not have to be declared before they can be used. For each non- nullable
value type T there is a corresponding nullable type T?, which can hold an additional value
null. For instance, int? is a type that can hold any 32 bit integer or the value null.

n
n  CHRISTIAN NAGEL T? is the C# shorthand notation for the Nullable<T>

structure.

1. Introduction

12

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  ERIC LIPPERT In C# 1.0, we had nullable reference types and non-nullable value

types. In C# 2.0, we added nullable value types. But there are no non-nullable refer-
ence types. If we had to do it all over again, we probably would bake nullability and
non-nullability into the type system from day one. Unfortunately, non-nullable refer-
ence types are difficult to add to an existing type system that wasn’t designed for
them. We get feature requests for non-nullable reference types all the time; it would be
a great feature. However, code contracts go a long way toward solving the problems
solved by non-nullable reference types; consider using them if you want to enforce
non-nullability in your programs. If this subject interests you, you might also want to
check out Spec#, a Microsoft Research version of C# that does support non-nullable
reference types.

C#’s type system is unified such that a value of any type can be treated as an object. Every
type in C# directly or indirectly derives from the object class type, and object is the ulti-
mate base class of all types. Values of reference types are treated as objects simply by view-
ing the values as type object. Values of value types are treated as objects by performing
boxing and unboxing operations. In the following example, an int value is converted to
object and back again to int.

using System;

class Test
{
 static void Main() {
 int i = 123;
 object o = i; // Boxing
 int j = (int)o; // Unboxing
 }
}

When a value of a value type is converted to type object, an object instance, also called
a “box,” is allocated to hold the value, and the value is copied into that box. Conversely,
when an object reference is cast to a value type, a check is made that the referenced
object is a box of the correct value type, and, if the check succeeds, the value in the box is
copied out.

C#’s unified type system effectively means that value types can become objects “on
demand.” Because of the unification, general-purpose libraries that use type object can be
used with both reference types and value types.

There are several kinds of variables in C#, including fields, array elements, local variables,
and parameters. Variables represent storage locations, and every variable has a type that
determines what values can be stored in the variable, as shown by the following table.

1.4		 Expressions

13

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Type of Variable Possible Contents

Non-nullable value
type

A value of that exact type

Nullable value type A null value or a value of that exact type

object A null reference, a reference to an object of any reference type, or a
reference to a boxed value of any value type

Class type A null reference, a reference to an instance of that class type, or a
reference to an instance of a class derived from that class type

Interface type A null reference, a reference to an instance of a class type that
implements that interface type, or a reference to a boxed value of
a value type that implements that interface type

Array type A null reference, a reference to an instance of that array type, or a
reference to an instance of a compatible array type

Delegate type A null reference or a reference to an instance of that delegate type

1.4 Expressions
Expressions are constructed from operands and operators. The operators of an expression
indicate which operations to apply to the operands. Examples of operators include +, -, *,
/, and new. Examples of operands include literals, fields, local variables, and expressions.

When an expression contains multiple operators, the precedence of the operators controls
the order in which the individual operators are evaluated. For example, the expression x +
y * z is evaluated as x + (y * z) because the * operator has higher precedence than the +
operator.

n
n  ERIC LIPPERT Precedence controls the order in which the operators are executed,

but not the order in which the operands are evaluated. Operands are evaluated from left
to right, period. In the preceding example, x would be evaluated, then y, then z, then the
multiplication would be performed, and then the addition. The evaluation of operand x
happens before that of y because x is to the left of y; the evaluation of the multiplication
happens before the addition because the multiplication has higher precedence.

Most operators can be overloaded. Operator overloading permits user-defined operator
implementations to be specified for operations where one or both of the operands are of a
user-defined class or struct type.

1. Introduction

14

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

The following table summarizes C#’s operators, listing the operator categories in order of
precedence from highest to lowest. Operators in the same category have equal
precedence.

Category Expression Description

Primary x.m Member access

x(...) Method and delegate invocation

x[...] Array and indexer access

x++ Post-increment

x-- Post-decrement

new T(...) Object and delegate creation

new T(...){...} Object creation with initializer

new {...} Anonymous object initializer

new T[...] Array creation

typeof(T) Obtain System.Type object for T

checked(x) Evaluate expression in checked context

unchecked(x) Evaluate expression in unchecked context

default(T) Obtain default value of type T

delegate {...} Anonymous function (anonymous method)

Unary +x Identity

-x Negation

!x Logical negation

~x Bitwise negation

++x Pre-increment

--x Pre-decrement

(T)x Explicitly convert x to type T

1.4		 Expressions

15

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Category Expression Description

Multiplicative x * y Multiplication

x / y Division

x % y Remainder

Additive x + y Addition, string concatenation, delegate
combination

x – y Subtraction, delegate removal

Shift x << y Shift left

x >> y Shift right

Relational and type
testing

x < y Less than

x > y Greater than

x <= y Less than or equal

x >= y Greater than or equal

x is T Return true if x is a T, false otherwise

x as T Return x typed as T, or null if x is not a T

Equality x == y Equal

x != y Not equal

Logical AND x & y Integer bitwise AND, boolean logical AND

Logical XOR x ^ y Integer bitwise XOR, boolean logical XOR

Logical OR x | y Integer bitwise OR, boolean logical OR

Conditional AND x && y Evaluates y only if x is true

Conditional OR x || y Evaluates y only if x is false

Null coalescing X ?? y Evaluates to y if x is null, to x otherwise

Conditional x ? y : z Evaluates y if x is true, z if x is false

Continued

1. Introduction

16

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Category Expression Description

Assignment or
anonymous
function

x = y Assignment

x op= y Compound assignment; supported operators are
*= /= %= += -= <<= >>= &= ^= |=

(T x) => y Anonymous function (lambda expression)

n
n  ERIC LIPPERT It is often surprising to people that the lambda and anonymous

method syntaxes are described as operators. They are unusual operators. More typi-
cally, you think of an operator as taking expressions as operands, not declarations of
formal parameters. Syntactically, however, the lambda and anonymous method syn-
taxes are operators like any other.

1.5 Statements
The actions of a program are expressed using statements. C# supports several kinds of
statements, a number of which are defined in terms of embedded statements.

A block permits multiple statements to be written in contexts where a single statement is
allowed. A block consists of a list of statements written between the delimiters { and }.

Declaration statements are used to declare local variables and constants.

Expression statements are used to evaluate expressions. Expressions that can be used as
statements include method invocations, object allocations using the new operator, assign-
ments using = and the compound assignment operators, and increment and decrement
operations using the ++ and -- operators.

Selection statements are used to select one of a number of possible statements for
 execution based on the value of some expression. In this group are the if and switch
statements.

Iteration statements are used to repeatedly execute an embedded statement. In this group
are the while, do, for, and foreach statements.

Jump statements are used to transfer control. In this group are the break, continue, goto,
throw, return, and yield statements.

1.5		 Statements

17

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

The try...catch statement is used to catch exceptions that occur during execution of a
block, and the try...finally statement is used to specify finalization code that is always
executed, whether an exception occurred or not.

n
n  ERIC LIPPERT This is a bit of a fib; of course, a finally block does not always

execute. The code in the try block could go into an infinite loop, the exception could
trigger a “fail fast” (which takes the process down without running any finally
blocks), or someone could pull the power cord out of the wall.

The checked and unchecked statements are used to control the overflow checking context
for integral-type arithmetic operations and conversions.

The lock statement is used to obtain the mutual-exclusion lock for a given object, execute
a statement, and then release the lock.

The using statement is used to obtain a resource, execute a statement, and then dispose of
that resource.

The following table lists C#’s statements and provides an example for each one.

Statement Example

Local variable
declaration

static void Main() {
 int a;
 int b = 2, c = 3;
 a = 1;
 Console.WriteLine(a + b + c);
}

Local constant
declaration

static void Main() {
 const float pi = 3.1415927f;
 const int r = 25;
 Console.WriteLine(pi * r * r);
}

Expression
statement

static void Main() {
 int i;
 i = 123; // Expression statement
 Console.WriteLine(i); // Expression statement
 i++; // Expression statement
 Console.WriteLine(i); // Expression statement
}

Continued

1. Introduction

18

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Statement Example

if statement static void Main(string[] args) {
 if (args.Length == 0) {
 Console.WriteLine("No arguments");
 }
 else {
 Console.WriteLine("One or more arguments");
 }
}

switch statement static void Main(string[] args) {
 int n = args.Length;
 switch (n) {
 case 0:
 Console.WriteLine("No arguments");
 break;
 case 1:
 Console.WriteLine("One argument");
 break;
 default:
 Console.WriteLine("{0} arguments", n);
 break;
 }
 }
}

while statement static void Main(string[] args) {
 int i = 0;
 while (i < args.Length) {
 Console.WriteLine(args[i]);
 i++;
 }
}

do statement static void Main() {
 string s;
 do {
 s = Console.ReadLine();
 if (s != null) Console.WriteLine(s);
 } while (s != null);
}

1.5		 Statements

19

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Statement Example

for statement static void Main(string[] args) {
 for (int i = 0; i < args.Length; i++) {
 Console.WriteLine(args[i]);
 }
}

foreach
statement

static void Main(string[] args) {
 foreach (string s in args) {
 Console.WriteLine(s);
 }
}

break statement static void Main() {
 while (true) {
 string s = Console.ReadLine();
 if (s == null) break;
 Console.WriteLine(s);
 }
}

continue
statement

static void Main(string[] args) {
 for (int i = 0; i < args.Length; i++) {
 if (args[i].StartsWith("/")) continue;
 Console.WriteLine(args[i]);
 }
}

goto statement static void Main(string[] args) {
 int i = 0;
 goto check;
 loop:
 Console.WriteLine(args[i++]);
 check:
 if (i < args.Length) goto loop;
}

return statement static int Add(int a, int b) {
 return a + b;
}
static void Main() {
 Console.WriteLine(Add(1, 2));
 return;
}

Continued

1. Introduction

20

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Statement Example

yield statement static IEnumerable<int> Range(int from, int to) {
 for (int i = from; i < to; i++) {
 yield return i;
 }
 yield break;
}
static void Main() {
 foreach (int x in Range(-10,10)) {
 Console.WriteLine(x);
 }
}

throw and try
statements

static double Divide(double x, double y) {
 if (y == 0) throw new DivideByZeroException();
 return x / y;
}
static void Main(string[] args) {
 try {
 if (args.Length != 2) {
 throw new Exception("Two numbers required");
 }
 double x = double.Parse(args[0]);
 double y = double.Parse(args[1]);
 Console.WriteLine(Divide(x, y));
 }
 catch (Exception e) {
 Console.WriteLine(e.Message);
 }
 finally {
 Console.WriteLine(“Good bye!”);
 }
}

checked and
unchecked
statements

static void Main() {
 int i = int.MaxValue;
 checked {
 Console.WriteLine(i + 1); // Exception
 }
 unchecked {
 Console.WriteLine(i + 1); // Overflow
 }
}

1.6		 Classes and objects

21

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Statement Example

lock statement class Account
{
 decimal balance;
 public void Withdraw(decimal amount) {
 lock (this) {
 if (amount > balance) {
 throw new Exception("Insufficient funds");
 }
 balance -= amount;
 }
 }
}

using statement static void Main() {
 using (TextWriter w = File.CreateText("test.txt")) {
 w.WriteLine("Line one");
 w.WriteLine("Line two");
 w.WriteLine("Line three");
 }
}

1.6 Classes and objects
Classes are the most fundamental of C#’s types. A class is a data structure that combines
state (fields) and actions (methods and other function members) in a single unit. A class
provides a definition for dynamically created instances of the class, also known as objects.
Classes support inheritance and polymorphism, mechanisms whereby derived classes can
extend and specialize base classes.

New classes are created using class declarations. A class declaration starts with a header
that specifies the attributes and modifiers of the class, the name of the class, the base class
(if given), and the interfaces implemented by the class. The header is followed by the
class body, which consists of a list of member declarations written between the delimit-
ers { and }.

1. Introduction

22

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

The following is a declaration of a simple class named Point:

 public class Point
 {
 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 }

Instances of classes are created using the new operator, which allocates memory for a new
instance, invokes a constructor to initialize the instance, and returns a reference to the
instance. The following statements create two Point objects and store references to those
objects in two variables:

Point p1 = new Point(0, 0);
Point p2 = new Point(10, 20);

The memory occupied by an object is automatically reclaimed when the object is no longer
in use. It is neither necessary nor possible to explicitly deallocate objects in C#.

1.6.1 Members
The members of a class are either static members or instance members. Static members
belong to classes, and instance members belong to objects (instances of classes).

n
n  ERIC LIPPERT The term “static” was chosen because of its familiarity to users of

similar languages, rather than because it is a particularly sensible or descriptive term
for “shared by all instances of a class.”

n
n  JoN SkEET I’d argue that “shared” (as used in Visual Basic) gives an incorrect

impression, too. “Sharing” feels like something that requires one or more participants,
whereas a static member doesn’t require any instances of the type. I have the perfect
term for this situation, but it’s too late to change “static” to “associated-with-the-type-
rather-than-with-any-specific-instance-of-the-type” (hyphens optional).

The following table provides an overview of the kinds of members a class can contain.

1.6		 Classes and objects

23

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Member Description

Constants Constant values associated with the class

Fields Variables of the class

Methods Computations and actions that can be performed by the class

Properties Actions associated with reading and writing named properties of the class

Indexers Actions associated with indexing instances of the class like an array

Events Notifications that can be generated by the class

Operators Conversions and expression operators supported by the class

Constructors Actions required to initialize instances of the class or the class itself

Destructors Actions to perform before instances of the class are permanently discarded

Types Nested types declared by the class

1.6.2 Accessibility
Each member of a class has an associated accessibility, which controls the regions of pro-
gram text that are able to access the member. The five possible forms of accessibility are
summarized in the following table.

Accessibility Meaning

public Access not limited

protected Access limited to this class or classes derived from this class

internal Access limited to this program

protected internal Access limited to this program or classes derived from this class

private Access limited to this class

n
n  kRzySzToF CWALINA People need to be careful with the public keyword.

 public in C# is not equivalent to public in C++! In C++, it means “internal to my
compilation unit.” In C#, it means what extern meant in C++ (i.e., everybody can
call it). This is a huge difference!

1. Introduction

24

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  CHRISTIAN NAGEL I would describe the internal access modifier as “access lim-

ited to this assembly” instead of “access limited to this program.” If the internal access
modifier is used within a DLL, the EXE referencing the DLL does not have access to it.

n
n  ERIC LIPPERT protected internal has proven to be a controversial and some-

what unfortunate choice. Many people using this feature incorrectly believe that
 protected internal means “access is limited to derived classes within this pro-
gram.” That is, they believe it means the more restrictive combination, when in fact it
means the less restrictive combination. The way to remember this relationship is to
remember that the “natural” state of a member is “private” and every accessibility
modifier makes the accessibility domain larger.

Were a hypothetical future version of the C# language to provide a syntax for “the
more restrictive combination of protected and internal,” the question would then be
which combination of keywords would have that meaning. I am holding out for either
“proternal” or “intected,” but I suspect I will have to live with disappointment.

n
n  CHRISTIAN NAGEL C# defines protected internal to limit access to this assem-

bly or classes derived from this class. The CLR also allows limiting access to this
assembly and classes derived from this class. C++/CLI offers this CLR feature with the
public private access modifier (or private public—the order is not relevant). Real-
istically, this access modifier is rarely used.

1.6.3 Type Parameters
A class definition may specify a set of type parameters by following the class name with
angle brackets enclosing a list of type parameter names. The type parameters can then be
used in the body of the class declarations to define the members of the class. In the follow-
ing example, the type parameters of Pair are TFirst and TSecond:

 public class Pair<TFirst, TSecond>
 {
 public TFirst First;

 public TSecond Second;
 }

A class type that is declared to take type parameters is called a generic class type. Struct,
interface, and delegate types can also be generic.

1.6		 Classes and objects

25

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  ERIC LIPPERT If you need a pair, triple, and so on, the generic “tuple” types

defined in the CLR 4 version of the framework are handy types.

When the generic class is used, type arguments must be provided for each of the type
parameters:

Pair<int,string> pair = new Pair<int,string> { First = 1, Second = "two" };
int i = pair.First; // TFirst is int
string s = pair.Second; // TSecond is string

A generic type with type arguments provided, like Pair<int,string> above, is called a
constructed type.

1.6.4 Base Classes
A class declaration may specify a base class by following the class name and type param-
eters with a colon and the name of the base class. Omitting a base class specification is the
same as deriving from type object. In the following example, the base class of Point3D is
Point, and the base class of Point is object:

 public class Point
 {
 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
 }

 public class Point3D : Point
 {
 public int z;

 public Point3D(int x, int y, int z): base(x, y)
 {
 this.z = z;
 }
 }

A class inherits the members of its base class. Inheritance means that a class implicitly con-
tains all members of its base class, except for the instance and static constructors, and the
destructors of the base class. A derived class can add new members to those it inherits, but
it cannot remove the definition of an inherited member. In the previous example, Point3D

1. Introduction

26

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

inherits the x and y fields from Point, and every Point3D instance contains three fields, x,
y, and z.

n
n  JESSE LIBERTy There is nothing more important to understand about C# than

inheritance and polymorphism. These concepts are the heart of the language and the
soul of object-oriented programming. Read this section until it makes sense, or ask for
help or supplement it with additional reading, but do not skip over it—these issues
are the sine qua non of C#.

An implicit conversion exists from a class type to any of its base class types. Therefore, a
variable of a class type can reference an instance of that class or an instance of any derived
class. For example, given the previous class declarations, a variable of type Point can refer-
ence either a Point or a Point3D:

Point a = new Point(10, 20);
Point b = new Point3D(10, 20, 30);

1.6.5 Fields
A field is a variable that is associated with a class or with an instance of a class.

A field declared with the static modifier defines a static field. A static field identifies
exactly one storage location. No matter how many instances of a class are created, there is
only ever one copy of a static field.

n
n  ERIC LIPPERT Static fields are per constructed type for a generic type. That is, if

you have a

class Stack<T> {
 public readonly static Stack<T> empty = whatever; ...
}

then Stack<int>.empty is a different field than Stack<string>.empty.

A field declared without the static modifier defines an instance field. Every instance of a
class contains a separate copy of all the instance fields of that class.

In the following example, each instance of the Color class has a separate copy of the r, g,
and b instance fields, but there is only one copy of the Black, White, Red, Green, and Blue
static fields:

1.6		 Classes and objects

27

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 public class Color
 {
 public static readonly Color Black = new Color(0, 0, 0);
 public static readonly Color White = new Color(255, 255, 255);
 public static readonly Color Red = new Color(255, 0, 0);
 public static readonly Color Green = new Color(0, 255, 0);
 public static readonly Color Blue = new Color(0, 0, 255);

 private byte r, g, b;

 public Color(byte r, byte g, byte b)
 {
 this.r = r;
 this.g = g;
 this.b = b;
 }
 }

As shown in the previous example, read-only fields may be declared with a readonly
modifier. Assignment to a readonly field can occur only as part of the field’s declaration or
in a constructor in the same class.

n
n  BRAD ABRAMS readonly protects the location of the field from being changed

outside the type’s constructor, but does not protect the value at that location. For
example, consider the following type:

public class Names
{
 public static readonly StringBuilder FirstBorn = new StringBuilder("Joe");
 public static readonly StringBuilder SecondBorn = new StringBuilder("Sue");
}

Outside of the constructor, directly changing the FirstBorn instance results in a com-
piler error:

Names.FirstBorn = new StringBuilder("Biff");
// Compile error

However, I am able to accomplish exactly the same results by modifying the
 StringBuilder instance:

Names.FirstBorn.Remove(0,6).Append("Biff");
Console.WriteLine(Names.FirstBorn); // Outputs "Biff"

It is for this reason that we strongly recommend that read-only fields be limited to
immutable types. Immutable types do not have any publicly exposed setters, such as
int, double, or String.

1. Introduction

28

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  BILL WAGNER Several well-known design patterns make use of the read-only

fields of mutable types. The Adapter, Decorator, Façade, and Proxy patterns are the
most obvious examples. When you are creating a larger structure by composing
smaller structures, you will often express instances of those smaller structures using
read-only fields. A read-only field of a mutable type should indicate that one of these
structural patterns is being used.

1.6.6 Methods
A method is a member that implements a computation or action that can be performed by
an object or class. Static methods are accessed through the class. Instance methods are
accessed through instances of the class.

Methods have a (possibly empty) list of parameters, which represent values or variable
references passed to the method, and a return type, which specifies the type of the value
computed and returned by the method. A method’s return type is void if it does not return
a value.

Like types, methods may also have a set of type parameters, for which type arguments
must be specified when the method is called. Unlike types, the type arguments can often
be inferred from the arguments of a method call and need not be explicitly given.

The signature of a method must be unique in the class in which the method is declared.
The signature of a method consists of the name of the method, the number of type param-
eters, and the number, modifiers, and types of its parameters. The signature of a method
does not include the return type.

n
n  ERIC LIPPERT An unfortunate consequence of generic types is that a constructed

type may potentially have two methods with identical signatures. For example, class
C<T> { void M(T t){} void M(int t){} ...} is perfectly legal, but C<int> has two
methods M with identical signatures. As we’ll see later on, this possibility leads to
some interesting scenarios involving overload resolution and explicit interface imple-
mentations. A good guideline: Don’t create a generic type that can create ambiguities
under construction in this way; such types are extremely confusing and can produce
unexpected behaviors.

1.6		 Classes and objects

29

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

1.6.6.1 Parameters
Parameters are used to pass values or variable references to methods. The parameters of a
method get their actual values from the arguments that are specified when the method is
invoked. There are four kinds of parameters: value parameters, reference parameters, out-
put parameters, and parameter arrays.

A value parameter is used for input parameter passing. A value parameter corresponds to
a local variable that gets its initial value from the argument that was passed for the param-
eter. Modifications to a value parameter do not affect the argument that was passed for the
parameter.

n
n  BILL WAGNER The statement that modifications to value parameters do not

affect the argument might be misleading because mutator methods may change the
contents of a parameter of reference type. The value parameter does not change, but
the contents of the referred-to object do.

Value parameters can be optional, by specifying a default value so that corresponding
arguments can be omitted.

A reference parameter is used for both input and output parameter passing. The argument
passed for a reference parameter must be a variable, and during execution of the method,
the reference parameter represents the same storage location as the argument variable. A
reference parameter is declared with the ref modifier. The following example shows the
use of ref parameters.

using System;

class Test
{
 static void Swap(ref int x, ref int y) {
 int temp = x;
 x = y;
 y = temp;
 }

 static void Main() {
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine("{0} {1}", i, j); // Outputs "2 1"
 }
}

1. Introduction

30

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  ERIC LIPPERT This syntax should help clear up the confusion between the two

things both called “passing by reference.” Reference types are called this name in C#
because they are “passed by reference”; you pass an object instance to a method, and
the method gets a reference to that object instance. Some other code might also be
holding on to a reference to the same object.

Reference parameters are a slightly different form of “passing by reference.” In this case,
the reference is to the variable itself, not to some object instance. If that variable happens
to contain a value type (as shown in the previous example), that’s perfectly legal. The
value is not being passed by reference, but rather the variable that holds it is.

A good way to think about reference parameters is that the reference parameter
becomes an alias for the variable passed as the argument. In the preceding example, x
and i are essentially the same variable. They refer to the same storage location.

An output parameter is used for output parameter passing. An output parameter is similar
to a reference parameter except that the initial value of the caller-provided argument is
unimportant. An output parameter is declared with the out modifier. The following exam-
ple shows the use of out parameters.

using System;

class Test
{
 static void Divide(int x, int y, out int result, out int remainder) {
 result = x / y;
 remainder = x % y;
 }

 static void Main() {
 int res, rem;
 Divide(10, 3, out res, out rem);
 Console.WriteLine("{0} {1}", res, rem); // Outputs "3 1"
 }
}

n
n  ERIC LIPPERT The CLR directly supports only ref parameters. An out param-

eter is represented in metadata as a ref parameter with a special attribute on it indi-
cating to the C# compiler that this ref parameter ought to be treated as an out
parameter. This explains why it is not legal to have two methods that differ solely in
“out/ ref-ness”; from the CLR’s perspective, they would be two identical methods.

1.6		 Classes and objects

31

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

A parameter array permits a variable number of arguments to be passed to a method. A
parameter array is declared with the params modifier. Only the last parameter of a method
can be a parameter array, and the type of a parameter array must be a single-dimensional
array type. The Write and WriteLine methods of the System.Console class are good exam-
ples of parameter array usage. They are declared as follows.

public class Console
{
 public static void Write(string fmt, params object[] args) {...}

 public static void WriteLine(string fmt, params object[] args) {...}

 ...
}

Within a method that uses a parameter array, the parameter array behaves exactly like a
regular parameter of an array type. However, in an invocation of a method with a param-
eter array, it is possible to pass either a single argument of the parameter array type or any
number of arguments of the element type of the parameter array. In the latter case, an array
instance is automatically created and initialized with the given arguments. This example

Console.WriteLine("x={0} y={1} z={2}", x, y, z);

is equivalent to writing the following.

string s = "x={0} y={1} z={2}";
object[] args = new object[3];
args[0] = x;
args[1] = y;
args[2] = z;
Console.WriteLine(s, args);

n
n  BRAD ABRAMS You may recognize the similarity between params and the C pro-

gramming language’s varargs concept. In keeping with our goal of making C# very
simple to understand, the params modifier does not require a special calling conven-
tion or special library support. As such, it has proven to be much less prone to error
than varargs.

Note, however, that the C# model does create an extra object allocation (the containing
array) implicitly on each call. This is rarely a problem, but in inner-loop type scenarios
where it could get inefficient, we suggest providing overloads for the mainstream
cases and using the params overload for only the edge cases. An example is the
 StringBuilder.AppendFormat() family of overloads:

public StringBuilder AppendFormat(string format, object arg0);
public StringBuilder AppendFormat(string format, object arg0, object arg1);
public StringBuilder AppendFormat(string format, object arg0, object arg1, object arg2);
public StringBuilder AppendFormat(string format, params object[] args);

1. Introduction

32

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  CHRIS SELLS One nice side effect of the fact that params is really just an optional

shortcut is that I don’t have to write something crazy like the following:

static object[] GetArgs() { ... }

static void Main() {
 object[] args = GetArgs();
 object x = args[0];
 object y = args[1];
 object z = args[2];
 Console.WriteLine("x={0} y={1} z={2}", x, y, z);
}

Here I’m calling the method and cracking the parameters out just so the compiler can
create an array around them again. Of course, I should really just write this:

static object[] GetArgs() { ... }

static void Main() {
 Console.WriteLine("x={0} y={1} z={2}", GetArgs());
}

However, you’ll find fewer and fewer methods that return arrays in .NET these days,
as most folks prefer using IEnumerable<T> for its flexibility. This means you’ll proba-
bly be writing code like so:

static IEnumerable<object> GetArgs() { ... }

static void Main() {
 Console.WriteLine("x={0} y={1} z={2}", GetArgs().ToArray());
}

It would be handy if params “understood” IEnumerable directly. Maybe next time.

1.6.6.2 Method Body and Local Variables
A method’s body specifies the statements to execute when the method is invoked.

A method body can declare variables that are specific to the invocation of the method. Such
variables are called local variables. A local variable declaration specifies a type name, a
variable name, and possibly an initial value. The following example declares a local vari-
able i with an initial value of zero and a local variable j with no initial value.

1.6		 Classes and objects

33

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

using System;

class Squares
{
 static void Main() {
 int i = 0;
 int j;
 while (i < 10) {
 j = i * i;
 Console.WriteLine("{0} x {0} = {1}", i, j);
 i = i + 1;
 }
 }
}

C# requires a local variable to be definitely assigned before its value can be obtained. For
example, if the declaration of the previous i did not include an initial value, the compiler
would report an error for the subsequent usages of i because i would not be definitely
assigned at those points in the program.

A method can use return statements to return control to its caller. In a method returning
void, return statements cannot specify an expression. In a method returning non-void,
return statements must include an expression that computes the return value.

1.6.6.3 Static and Instance Methods
A method declared with a static modifier is a static method. A static method does not
operate on a specific instance and can only directly access static members.

n
n  ERIC LIPPERT It is, of course, perfectly legal for a static method to access instance

members should it happen to have an instance handy.

A method declared without a static modifier is an instance method. An instance method
operates on a specific instance and can access both static and instance members. The
instance on which an instance method was invoked can be explicitly accessed as this. It is
an error to refer to this in a static method.

The following Entity class has both static and instance members.

 class Entity
 {
 static int nextSerialNo;

 int serialNo;

 public Entity()
 {

1. Introduction

34

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 serialNo = nextSerialNo++;
 }
 public int GetSerialNo()
 {
 return serialNo;
 }

 public static int GetNextSerialNo()
 {
 return nextSerialNo;
 }

 public static void SetNextSerialNo(int value)
 {
 nextSerialNo = value;
 }
 }

Each Entity instance contains a serial number (and presumably some other information
that is not shown here). The Entity constructor (which is like an instance method) initial-
izes the new instance with the next available serial number. Because the constructor is an
instance member, it is permitted to access both the serialNo instance field and the
 nextSerialNo static field.

The GetNextSerialNo and SetNextSerialNo static methods can access the nextSerialNo
static field, but it would be an error for them to directly access the serialNo instance
field.

The following example shows the use of the Entity class.

using System;

class Test
{
 static void Main() {
 Entity.SetNextSerialNo(1000);

 Entity e1 = new Entity();
 Entity e2 = new Entity();

 Console.WriteLine(e1.GetSerialNo()); // Outputs "1000"
 Console.WriteLine(e2.GetSerialNo()); // Outputs "1001"
 Console.WriteLine(Entity.GetNextSerialNo()); // Outputs "1002"
 }
}

Note that the SetNextSerialNo and GetNextSerialNo static methods are invoked on the
class, whereas the GetSerialNo instance method is invoked on instances of the class.

1.6		 Classes and objects

35

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

1.6.6.4 Virtual, Override, and Abstract Methods
When an instance method declaration includes a virtual modifier, the method is said to
be a virtual method. When no virtual modifier is present, the method is said to be a non-
virtual method.

When a virtual method is invoked, the runtime type of the instance for which that invoca-
tion takes place determines the actual method implementation to invoke. In a nonvirtual
method invocation, the compile-time type of the instance is the determining factor.

A virtual method can be overridden in a derived class. When an instance method declara-
tion includes an override modifier, the method overrides an inherited virtual method with
the same signature. Whereas a virtual method declaration introduces a new method, an
override method declaration specializes an existing inherited virtual method by providing
a new implementation of that method.

n
n  ERIC LIPPERT A subtle point here is that an overridden virtual method is still

considered to be a method of the class that introduced it, and not a method of the class
that overrides it. The overload resolution rules in some cases prefer members of more
derived types to those in base types; overriding a method does not “move” where that
method belongs in this hierarchy.

At the very beginning of this section, we noted that C# was designed with versioning
in mind. This is one of those features that helps prevent “brittle base-class syndrome”
from causing versioning problems.

An abstract method is a virtual method with no implementation. An abstract method is
declared with the abstract modifier and is permitted only in a class that is also declared
abstract. An abstract method must be overridden in every non-abstract derived class.

The following example declares an abstract class, Expression, which represents an expres-
sion tree node, and three derived classes, Constant, VariableReference, and Operation,
which implement expression tree nodes for constants, variable references, and arithmetic
operations. (This is similar to, but not to be confused with, the expression tree types intro-
duced in §4.6).

using System;
using System.Collections;

public abstract class Expression
{
 public abstract double Evaluate(Hashtable vars);
}

1. Introduction

36

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

public class Constant: Expression
{
 double value;

 public Constant(double value) {
 this.value = value;
 }

 public override double Evaluate(Hashtable vars) {
 return value;
 }
}
public class VariableReference: Expression
{
 string name;

 public VariableReference(string name) {
 this.name = name;
 }

 public override double Evaluate(Hashtable vars) {
 object value = vars[name];
 if (value == null) {
 throw new Exception("Unknown variable: " + name);
 }
 return Convert.ToDouble(value);
 }
}

public class Operation: Expression
{
 Expression left;
 char op;
 Expression right;

 public Operation(Expression left, char op, Expression right) {
 this.left = left;
 this.op = op;
 this.right = right;
 }

 public override double Evaluate(Hashtable vars) {
 double x = left.Evaluate(vars);
 double y = right.Evaluate(vars);
 switch (op) {
 case '+': return x + y;
 case '-': return x - y;
 case '*': return x * y;
 case '/': return x / y;
 }
 throw new Exception("Unknown operator");
 }
}

1.6		 Classes and objects

37

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

The previous four classes can be used to model arithmetic expressions. For example, using
instances of these classes, the expression x + 3 can be represented as follows.

Expression e = new Operation(
 new VariableReference("x"),
 '+',
 new Constant(3));

The Evaluate method of an Expression instance is invoked to evaluate the given expres-
sion and produce a double value. The method takes as an argument a Hashtable that con-
tains variable names (as keys of the entries) and values (as values of the entries). The
Evaluate method is a virtual abstract method, meaning that non-abstract derived classes
must override it to provide an actual implementation.

A Constant’s implementation of Evaluate simply returns the stored constant. A
 VariableReference’s implementation looks up the variable name in the hashtable and
returns the resulting value. An Operation’s implementation first evaluates the left
and right operands (by recursively invoking their Evaluate methods) and then performs
the given arithmetic operation.

The following program uses the Expression classes to evaluate the expression x * (y + 2)
for different values of x and y.

using System;
using System.Collections;

class Test
{
 static void Main() {

 Expression e = new Operation(
 new VariableReference("x"),
 '*',
 new Operation(
 new VariableReference("y"),
 '+',
 new Constant(2)
)
);

 Hashtable vars = new Hashtable();

 vars["x"] = 3;
 vars["y"] = 5;
 Console.WriteLine(e.Evaluate(vars)); // Outputs "21"

 vars["x"] = 1.5;
 vars["y"] = 9;
 Console.WriteLine(e.Evaluate(vars)); // Outputs "16.5"
 }
}

1. Introduction

38

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  CHRIS SELLS Virtual functions are a major feature of object-oriented program-

ming that differentiate it from other kinds of programming. For example, if you find
yourself doing something like this:

double GetHourlyRate(Person p) {
 if(p is Student) { return 1.0; }
 else if(p is Employee) { return 10.0; }
 return 0.0;
}

You should almost always use a virtual method instead:

class Person {
 public virtual double GetHourlyRate() {
 return 0.0;
 }
}
class Student {
 public override double GetHourlyRate() {
 return 1.0;
 }
}
class Employee {
 public override double GetHourlyRate() {
 return 10.0;
 }
}

1.6.6.5 Method Overloading
Method overloading permits multiple methods in the same class to have the same name as
long as they have unique signatures. When compiling an invocation of an overloaded
method, the compiler uses overload resolution to determine the specific method to invoke.
Overload resolution finds the one method that best matches the arguments or reports an
error if no single best match can be found. The following example shows overload resolu-
tion in effect. The comment for each invocation in the Main method shows which method
is actually invoked.

class Test
{
 static void F() {
 Console.WriteLine("F()");
 }

 static void F(object x) {
 Console.WriteLine("F(object)");
 }

1.6		 Classes and objects

39

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 static void F(int x) {
 Console.WriteLine("F(int)");
 }

 static void F(double x) {
 Console.WriteLine("F(double)");
 }

 static void F<T>(T x) {
 Console.WriteLine("F<T>(T)");
 }

 static void F(double x, double y) {
 Console.WriteLine("F(double, double)");
 }

 static void Main() {
 F(); // Invokes F()
 F(1); // Invokes F(int)
 F(1.0); // Invokes F(double)
 F("abc"); // Invokes F(object)
 F((double)1); // Invokes F(double)
 F((object)1); // Invokes F(object)
 F<int>(1); // Invokes F<T>(T)
 F(1, 1); // Invokes F(double, double)

}
}

As shown by the example, a particular method can always be selected by explicitly casting
the arguments to the exact parameter types and/or explicitly supplying type arguments.

n
n  BRAD ABRAMS The method overloading feature can be abused. Generally

speaking, it is better to use method overloading only when all of the methods do
semantically the same thing. The way many developers on the consuming end think
about method overloading is that a single method takes a variety of arguments. In
fact, changing the type of a local variable, parameter, or property could cause a differ-
ent overload to be called. Developers certainly should not see side effects of the deci-
sion to use overloading. For users, however, it can be a surprise when methods with
the same name do different things. For example, in the early days of the .NET Frame-
work (before version 1 shipped), we had this set of overloads on the string class:

public class String {
 public int IndexOf (string value);
 // Returns the index of value with this instance
 public int IndexOf (char value);
 // Returns the index of value with this instance
 public int IndexOf (char [] value);
 // Returns the first index of any of the
 // characters in value within the current instance
}

Continued

1. Introduction

40

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

This last overload caused problems, as it does a different thing. For example,

"Joshua, Hannah, Joseph".IndexOf("Hannah");// Returns 7

but

"Joshua, Hannah, Joseph".IndexOf(new char [] {'H','a','n','n','a,'h;");
// Returns 3

In this case, it would be better to give the overload that does something a differ-
ent name:

public class String {
 public int IndexOf (string value);
 // Returns the index of value within this instance
 public int IndexOf (char value);
 // Returns the index of value within this instance
 public int IndexOfAny(char [] value);
 // Returns the first index of any of the
 // characters in value within the current instance
}

n
n  BILL WAGNER Method overloading and inheritance don’t mix very well. Because

overload resolution rules sometimes favor methods declared in the most derived class,
that can sometimes mean a method declared in the derived class may be chosen
instead of a method that appears to be a better match in the base class. For that reason,
I recommend not overloading members that are declared in a base class.

1.6.7 other Function Members
Members that contain executable code are collectively known as the function members of
a class. The preceding section describes methods, which are the primary kind of function
members. This section describes the other kinds of function members supported by C#:
constructors, properties, indexers, events, operators, and destructors.

The following table shows a generic class called List<T>, which implements a growable
list of objects. The class contains several examples of the most common kinds of function
members.

1.6		 Classes and objects

41

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

public class List<T>
{

 const int defaultCapacity = 4; Constant

 T[] items;
 int count;

Fields

 public List(int capacity = defaultCapacity) {
 items = new T[capacity];
 }

Constructors

 public int Count {
 get { return count; }
 }
 public int Capacity {
 get {
 return items.Length;
 }
 set {
 if (value < count) value = count;
 if (value != items.Length) {
 T[] newItems = new T[value];
 Array.Copy(items, 0, newItems, 0, count);
 items = newItems;
 }
 }
 }

Properties

 public T this[int index] {
 get {
 return items[index];
 }
 set {
 items[index] = value;
 OnChanged();
 }
 }

Indexer

Continued

1. Introduction

42

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 public void Add(T item) {
 if (count == Capacity) Capacity = count * 2;
 items[count] = item;
 count++;
 OnChanged();
 }
 protected virtual void OnChanged() {
 if (Changed != null) Changed(this, EventArgs.Empty);
 }
 public override bool Equals(object other) {
 return Equals(this, other as List<T>);
 }
 static bool Equals(List<T> a, List<T> b) {
 if (a == null) return b == null;
 if (b == null || a.count != b.count) return false;
 for (int i = 0; i < a.count; i++) {
 if (!object.Equals(a.items[i], b.items[i])) {
 return false;
 }
 }
 return true;
 }

Methods

 public event EventHandler Changed; Event

 public static bool operator ==(List<T> a, List<T> b) {
 return Equals(a, b);
 }
 public static bool operator !=(List<T> a, List<T> b) {
 return !Equals(a, b);
 }

Operators

}

1.6.7.1 Constructors
C# supports both instance and static constructors. An instance constructor is a member
that implements the actions required to initialize an instance of a class. A static constructor
is a member that implements the actions required to initialize a class itself when it is first
loaded.

A constructor is declared like a method with no return type and the same name as the con-
taining class. If a constructor declaration includes a static modifier, it declares a static
constructor. Otherwise, it declares an instance constructor.

1.6		 Classes and objects

43

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Instance constructors can be overloaded. For example, the List<T> class declares two
instance constructors, one with no parameters and one that takes an int parameter. Instance
constructors are invoked using the new operator. The following statements allocate two
List<string> instances using each of the constructors of the List class.

List<string> list1 = new List<string>();
List<string> list2 = new List<string>(10);

Unlike other members, instance constructors are not inherited, and a class has no instance
constructors other than those actually declared in the class. If no instance constructor is
supplied for a class, then an empty one with no parameters is automatically provided.

n
n  BRAD ABRAMS Constructors should be lazy! The best practice is to do minimal

work in the constructor—that is, to simply capture the arguments for later use. For
example, you might capture the name of the file or the path to the database, but don’t
open those external resources until absolutely necessary. This practice helps to ensure
that possibly scarce resources are allocated for the smallest amount of time possible.

I was personally bitten by this issue recently with the DataContext class in Linq to
Entities. It opens the database in the connection string provided, rather than waiting
to perform that operation until it is needed. For my test cases, I was providing test
suspect data directly and, in fact, never wanted to open the database. Not only does
this unnecessary activity lead to a performance loss, but it also makes the scenario
more complicated.

1.6.7.2 Properties
Properties are a natural extension of fields. Both are named members with associated
types, and the syntax for accessing fields and properties is the same. However, unlike
fields, properties do not denote storage locations. Instead, properties have accessors that
specify the statements to be executed when their values are read or written.

n
n  JESSE LIBERTy A property looks to the creator of the class like a method allow-

ing the developer to add behavior prior to setting or retrieving the underlying value.
In contrast, the property appears to the client of the class as if it were a field, providing
direct, unencumbered access through the assignment operator.

1. Introduction

44

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  ERIC LIPPERT A standard “best practice” is to always expose field-like data as

properties with getters and setters rather than exposing the field. That way, if you ever
want to add functionality to your getter and setter (e.g., logging, data binding, secu-
rity checking), you can easily do so without “breaking” any consumer of the code that
might rely on the field always being there.

Although in some sense this practice is a violation of another bit of good advice
(“Avoid premature generalization”), the new “automatically implemented proper-
ties” feature makes it very easy and natural to use properties rather than fields as part
of the public interface of a type.

n
n  CHRIS SELLS Eric makes such a good point that I wanted to show an example.

Don’t ever make a field public:

class Cow
{
 public int Milk; // BAD!
}

If you don’t want to layer in anything besides storage, let the compiler implement the
property for you:

class Cow
{
 public int Milk { get; set; } // Good
}

That way, the client binds to the property getter and setter so that later you can take
over the compiler’s implementation to do something fancy:

class Cow {
 bool gotMilk = false;
 int milk;
 public int Milk {
 get {
 if(!gotMilk) {
 milk = ApplyMilkingMachine();
 gotMilk = true; }
 return milk;
 }
 set {

1.6		 Classes and objects

45

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 ApplyReverseMilkingMachine(value); // The cow might not like this..
 milk = value;
 }
 }
 ...
}

Also, I really love the following idiom for cases where you know a calculated value
will be used in your program:

class Cow {
 public Cow() {
 Milk = ApplyMilkingMachine();
 }

 public int Milk { get; private set; }
 ...
}

In this case, we are precalculating the property, which is a waste if we don’t know
whether we will need it. If we do know, we save ourselves some complication in the
code by eliminating a flag, some branching logic, and the storage management.

n
n  BILL WAGNER Property accesses look like field accesses to your users—and they

will naturally expect them to act like field accesses in every way, including perfor-
mance. If a get accessor needs to do significant work (reading a file or querying a
database, for example), it should be exposed as a method, not a property. Callers
expect that a method may be doing more work.

For the same reason, repeated calls to property accessors (without intervening code)
should return the same value. DateTime.Now is one of very few examples in the frame-
work that does not follow this advice.

A property is declared like a field, except that the declaration ends with a get accessor
and/or a set accessor written between the delimiters { and } instead of ending in a semi-
colon. A property that has both a get accessor and a set accessor is a read-write property,
a property that has only a get accessor is a read-only property, and a property that has only
a set accessor is a write-only property.

A get accessor corresponds to a parameterless method with a return value of the property
type. Except as the target of an assignment, when a property is referenced in an expression,
the get accessor of the property is invoked to compute the value of the property.

1. Introduction

46

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

A set accessor corresponds to a method with a single parameter named value and no
return type. When a property is referenced as the target of an assignment or as the operand
of ++ or --, the set accessor is invoked with an argument that provides the new value.

The List<T> class declares two properties, Count and Capacity, which are read-only and
read-write, respectively. The following is an example of use of these properties.

List<string> names = new List<string>();
names.Capacity = 100; // Invokes set accessor
int i = names.Count; // Invokes get accessor
int j = names.Capacity; // Invokes get accessor

Similar to fields and methods, C# supports both instance properties and static properties.
Static properties are declared with the static modifier, and instance properties are declared
without it.

The accessor(s) of a property can be virtual. When a property declaration includes a
 virtual, abstract, or override modifier, it applies to the accessor(s) of the property.

n
n  VLADIMIR RESHETNIkoV If a virtual property happens to have a private acces-

sor, this accessor is implemented in CLR as a nonvirtual method and cannot be over-
ridden in derived classes.

1.6.7.3 Indexers
An indexer is a member that enables objects to be indexed in the same way as an array. An
indexer is declared like a property except that the name of the member is this followed by
a parameter list written between the delimiters [and]. The parameters are available in the
accessor(s) of the indexer. Similar to properties, indexers can be read-write, read-only, and
write-only, and the accessor(s) of an indexer can be virtual.

The List class declares a single read-write indexer that takes an int parameter. The indexer
makes it possible to index List instances with int values. For example:

List<string> names = new List<string>();
names.Add("Liz");
names.Add("Martha");
names.Add("Beth");
for (int i = 0; i < names.Count; i++) {
 string s = names[i];
 names[i] = s.ToUpper();
}

1.6		 Classes and objects

47

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

Indexers can be overloaded, meaning that a class can declare multiple indexers as long as
the number or types of their parameters differ.

1.6.7.4 Events
An event is a member that enables a class or object to provide notifications. An event is
declared like a field except that the declaration includes an event keyword and the type
must be a delegate type.

n
n  JESSE LIBERTy In truth, event is just a keyword that signals C# to restrict the

way a delegate can be used, thereby preventing a client from directly invoking an
event or hijacking an event by assigning a handler rather than adding a handler. In
short, the keyword event makes delegates behave in the way you expect events to
behave.

n
n  CHRIS SELLS Without the event keyword, you are allowed to do this:

delegate void WorkCompleted();

class Worker {
 public WorkCompleted Completed; // Delegate field, not event
 ...
}

class Boss {
 public void WorkCompleted() { ... }
}

class Program {
 static void Main() {
 Worker peter = new Worker();
 Boss boss = new Boss();

 peter.Completed += boss.WorkCompleted; // This is what you want to happen
 peter.Completed = boss.WorkCompleted; // This is what the compiler allows
 ...
 }
}

Continued

1. Introduction

48

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

Unfortunately, with the event keyword, Completed is just a public field of type dele-
gate, which can be stepped on by anyone who wants to—and the compiler is okay with
that. By adding the event keyword, you limit the operations to += and -= like so:

class Worker {
 public event WorkCompleted Completed;
 ...
}
...
 peter.Completed += boss.WorkCompleted; // Compiler still okay
 peter.Completed = boss.WorkCompleted; // Compiler error

The use of the event keyword is the one time where it’s okay to make a field public,
because the compiler narrows the use to safe operations. Further, if you want to take
over the implementation of += and -+ for an event, you can do so.

Within a class that declares an event member, the event can be accessed like a field of a
delegate type (provided the event is not abstract and does not declare accessors). The field
stores a reference to a delegate that represents the event handlers that have been added to
the event. If no event handlers are present, the field is null.

The List<T> class declares a single event member called Changed, which indicates that a
new item has been added to the list. The Changed event is raised by the OnChanged virtual
method, which first checks whether the event is null (meaning that no handlers are pres-
ent). The notion of raising an event is precisely equivalent to invoking the delegate repre-
sented by the event—thus there are no special language constructs for raising events.

Clients react to events through event handlers. Event handlers are attached using the +=
operator and removed using the -= operator. The following example attaches an event
handler to the Changed event of a List<string>.

using System;

class Test
{
 static int changeCount;

 static void ListChanged(object sender, EventArgs e) {
 changeCount++;
 }

1.6		 Classes and objects

49

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 static void Main() {
 List<string> names = new List<string>();
 names.Changed += new EventHandler(ListChanged);
 names.Add("Liz");
 names.Add("Martha");
 names.Add("Beth");
 Console.WriteLine(changeCount); // Outputs "3"
 }
}

For advanced scenarios where control of the underlying storage of an event is desired, an
event declaration can explicitly provide add and remove accessors, which are somewhat
similar to the set accessor of a property.

n
n  CHRIS SELLS As of C# 2.0, explicitly creating a delegate instance to wrap a

method was no longer necessary. As a consequence, the code

names.Changed += new EventHandler(ListChanged);

can be more succinctly written as

names.Changed += ListChanged;

Not only does this shortened form require less typing, but it is also easier to read.

1.6.7.5 Operators
An operator is a member that defines the meaning of applying a particular expression
operator to instances of a class. Three kinds of operators can be defined: unary operators,
binary operators, and conversion operators. All operators must be declared as public and
static.

The List<T> class declares two operators, operator == and operator !=, and thus gives
new meaning to expressions that apply those operators to List instances. Specifically, the
operators define equality of two List<T> instances as comparing each of the contained
objects using their Equals methods. The following example uses the == operator to com-
pare two List<int> instances.

using System;

class Test
{
 static void Main() {
 List<int> a = new List<int>();
 a.Add(1);

1. Introduction

50

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 a.Add(2);
 List<int> b = new List<int>();
 b.Add(1);
 b.Add(2);
 Console.WriteLine(a == b); // Outputs "True"
 b.Add(3);
 Console.WriteLine(a == b); // Outputs "False"
 }
}

The first Console.WriteLine outputs True because the two lists contain the same number
of objects with the same values in the same order. Had List<T> not defined operator ==,
the first Console.WriteLine would have output False because a and b reference different
List<int> instances.

1.6.7.6 Destructors
A destructor is a member that implements the actions required to destruct an instance of a
class. Destructors cannot have parameters, they cannot have accessibility modifiers, and
they cannot be invoked explicitly. The destructor for an instance is invoked automatically
during garbage collection.

The garbage collector is allowed wide latitude in deciding when to collect objects and run
destructors. Specifically, the timing of destructor invocations is not deterministic, and
destructors may be executed on any thread. For these and other reasons, classes should
implement destructors only when no other solutions are feasible.

n
n  VLADIMIR RESHETNIkoV Destructors are sometimes called “finalizers.”

This name also appears in the garbage collector API—for example,
GC.WaitForPendingFinalizers.

The using statement provides a better approach to object destruction.

1.7 Structs
Like classes, structs are data structures that can contain data members and function mem-
bers, but unlike classes, structs are value types and do not require heap allocation. A vari-
able of a struct type directly stores the data of the struct, whereas a variable of a class type
stores a reference to a dynamically allocated object. Struct types do not support user-
specified inheritance, and all struct types implicitly inherit from type object.

1.7		 Structs

51

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  ERIC LIPPERT The fact that structs do not require heap allocation does not mean

that they are never heap allocated. See the annotations to §1.3 for more details.

Structs are particularly useful for small data structures that have value semantics. Complex
numbers, points in a coordinate system, or key–value pairs in a dictionary are all good
examples of structs. The use of structs rather than classes for small data structures can
make a large difference in the number of memory allocations an application performs. For
example, the following program creates and initializes an array of 100 points. With Point
implemented as a class, 101 separate objects are instantiated—one for the array and one
each for the 100 elements.

class Point
{
 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

class Test
{
 static void Main()
 {
 Point[] points = new Point[100];
 for (int i = 0; i < 100; i++) points[i] = new Point(i, i);
 }
}

An alternative is to make Point a struct.

 struct Point
 {
 public int x, y;
 public Point(int x, int y)

 {
 this.x = x;
 this.y = y;
 }
 }

Now, only one object is instantiated—the one for the array—and the Point instances are
stored in-line in the array.

1. Introduction

52

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

n
n  ERIC LIPPERT The takeaway message here is that certain specific data-intensive

applications, which would otherwise be gated on heap allocation performance, benefit
greatly from using structs. The takeaway message is emphatically not “Always use
structs because they make your program faster.”

The performance benefit here is a tradeoff: Structs can in some scenarios take less time
to allocate and deallocate, but because every assignment of a struct is a value copy,
they can take more time to copy than a reference copy would take.

Always remember that it makes little sense to optimize anything other than the slowest
thing. If your program is not gated on heap allocations, then pondering whether to
use structs or classes for performance reasons is not an effective use of your time. Find
the slowest thing, and then optimize it.

Struct constructors are invoked with the new operator, but that does not imply that memory
is being allocated. Instead of dynamically allocating an object and returning a reference to
it, a struct constructor simply returns the struct value itself (typically in a temporary loca-
tion on the stack), and this value is then copied as necessary.

With classes, it is possible for two variables to reference the same object and thus possible
for operations on one variable to affect the object referenced by the other variable. With
structs, the variables each have their own copy of the data, and it is not possible for opera-
tions on one to affect the other. For example, the output produced by the following code
fragment depends on whether Point is a class or a struct.

Point a = new Point(10, 10);
Point b = a;
a.x = 20;
Console.WriteLine(b.x);

If Point is a class, the output is 20 because a and b reference the same object. If Point is a
struct, the output is 10 because the assignment of a to b creates a copy of the value, and this
copy is unaffected by the subsequent assignment to a.x.

The previous example highlights two of the limitations of structs. First, copying an entire
struct is typically less efficient than copying an object reference, so assignment and value
parameter passing can be more expensive with structs than with reference types. Second,
except for ref and out parameters, it is not possible to create references to structs, which
rules out their usage in a number of situations.

1.8		 Arrays

53

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

n
n  BILL WAGNER Read those last two paragraphs again. They describe the most

important design differences between structs and classes. If you don’t want value
semantics in all cases, you must use a class. Classes can implement value semantics in
some situations (string is a good example), but by default they obey reference seman-
tics. That difference is more important for your designs than size or stack versus heap
allocations.

1.8 Arrays
An array is a data structure that contains a number of variables that are accessed through
computed indices. The variables contained in an array, also called the elements of the array,
are all of the same type, and this type is called the element type of the array.

Array types are reference types, and the declaration of an array variable simply sets aside
space for a reference to an array instance. Actual array instances are created dynamically
at runtime using the new operator. The new operation specifies the length of the new array
instance, which is then fixed for the lifetime of the instance. The indices of the elements of
an array range from 0 to Length - 1. The new operator automatically initializes the elements
of an array to their default value, which, for example, is zero for all numeric types and null
for all reference types.

n
n  ERIC LIPPERT The confusion resulting from some languages indexing arrays

starting with 1 and some others starting with 0 has befuddled multiple generations of
novice programmers. The idea that array “indexes” start with 0 comes from a subtle
misinterpretation of the C language’s array syntax.

In C, when you say myArray[x], what this means is “start at the beginning of the array
and refer to the thing x steps away.” Therefore, myArray[1] refers to the second element,
because that is what you get when you start at the first element and move one step.

Really, these references should be called array offsets rather than indices. But because
generations of programmers have now internalized that arrays are “indexed” starting
at 0, we’re stuck with this terminology.

1. Introduction

54

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

The following example creates an array of int elements, initializes the array, and prints out
the contents of the array.

using System;

class Test
{
 static void Main() {
 int[] a = new int[10];
 for (int i = 0; i < a.Length; i++) {
 a[i] = i * i;
 }
 for (int i = 0; i < a.Length; i++) {
 Console.WriteLine("a[{0}] = {1}", i, a[i]);
 }
 }
}

This example creates and operates on a single-dimensional array. C# also supports multi-
dimensional arrays. The number of dimensions of an array type, also known as the rank
of the array type, is one plus the number of commas written between the square brackets
of the array type. The following example allocates one-dimensional, two-dimensional, and
three-dimensional arrays.

int[] a1 = new int[10];
int[,] a2 = new int[10, 5];
int[,,] a3 = new int[10, 5, 2];

The a1 array contains 10 elements, the a2 array contains 50 (10 × 5) elements, and the a3
array contains 100 (10 × 5 × 2) elements.

n
n  BILL WAGNER An FxCop rule recommends against multi-dimensional arrays;

it’s primarily guidance against using multi-dimensional arrays as sparse arrays. If you
know that you really are filling in all the elements in the array, multi-dimensional
arrays are fine.

The element type of an array can be any type, including an array type. An array with
 elements of an array type is sometimes called a jagged array because the lengths of
the element arrays do not all have to be the same. The following example allocates an array
of arrays of int:

int[][] a = new int[3][];
a[0] = new int[10];
a[1] = new int[5];
a[2] = new int[20];

The first line creates an array with three elements, each of type int[] and each with an
initial value of null. The subsequent lines then initialize the three elements with references
to individual array instances of varying lengths.

1.8		 Arrays

55

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

The new operator permits the initial values of the array elements to be specified using an
array initializer, which is a list of expressions written between the delimiters { and }. The
following example allocates and initializes an int[] with three elements.

int[] a = new int[] {1, 2, 3};

Note that the length of the array is inferred from the number of expressions between { and
}. Local variable and field declarations can be shortened further such that the array type
does not have to be restated.

int[] a = {1, 2, 3};

Both of the previous examples are equivalent to the following:

int[] t = new int[3];
t[0] = 1;
t[1] = 2;
t[2] = 3;
int[] a = t;

n
n  ERIC LIPPERT In a number of places thus far, the specification notes that a par-

ticular local initialization is equivalent to “assign something to a temporary variable,
do something to the temporary variable, declare a local variable, and assign the tem-
porary to the local variable.” You may be wondering why the specification calls out
this seemingly unnecessary indirection. Why not simply say that this initialization is
equivalent to this:

int[] a = new int[3];
a[0] = 1; a[1] = 2; a[2] =3;

In fact, this practice is necessary because of definite assignment analysis. We would like
to ensure that all local variables are definitely assigned before they are used. In particu-
lar, we would like an expression such as object[] arr = {arr}; to be illegal because
it appears to use arr before it is definitely assigned. If this were equivalent to

object[] arr = new object[1];
arr[0] = arr;

then that would be legal. But by saying that this expression is equivalent to

object[] temp = new object[1];
temp[0] = arr;
object[] arr = temp;

then it becomes clear that arr is being used before it is assigned.

1. Introduction

56

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

1.9 Interfaces
An interface defines a contract that can be implemented by classes and structs. An interface
can contain methods, properties, events, and indexers. An interface does not provide
implementations of the members it defines—it merely specifies the members that must be
supplied by classes or structs that implement the interface.

Interfaces may employ multiple inheritance. In the following example, the interface
 IComboBox inherits from both ITextBox and IListBox.

 interface IControl
 {
 void Paint();
 }

 interface ITextBox : IControl
 {
 void SetText(string text);
 }

 interface IListBox : IControl
 {
 void SetItems(string[] items);
 }

 interface IComboBox : ITextBox, IListBox { }

Classes and structs can implement multiple interfaces. In the following example, the class
EditBox implements both IControl and IDataBound.

 interface IDataBound
 {
 void Bind(Binder b);
 }

 public class EditBox : IControl, IDataBound
 {
 public void Paint() {...}

 public void Bind(Binder b) {...}
 }

n
n  kRzySzToF CWALINA Perhaps I am stirring up quite a bit of controversy with

this statement, but I believe the lack of support for multiple inheritance in our type
system is the single biggest contributor to the complexity of the .NET Framework.
When we designed the type system, we explicitly decided not to add support for mul-
tiple inheritance so as to provide simplicity. In retrospect, this decision had the exact
opposite effect. The lack of multiple inheritance forced us to add the concept of inter-
faces, which in turn are responsible for problems with the evolution of the framework,
deeper inheritance hierarchies, and many other problems.

1.9		 Interfaces

57

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

When a class or struct implements a particular interface, instances of that class or struct can
be implicitly converted to that interface type. For example:

EditBox editBox = new EditBox();
IControl control = editBox;
IDataBound dataBound = editBox;

In cases where an instance is not statically known to implement a particular interface,
dynamic type casts can be used. For example, the following statements use dynamic type
casts to obtain an object’s IControl and IDataBound interface implementations. Because
the actual type of the object is EditBox, the casts succeed.

object obj = new EditBox();
IControl control = (IControl)obj;
IDataBound dataBound = (IDataBound)obj;

In the previous EditBox class, the Paint method from the IControl interface and the Bind
method from the IDataBound interface are implemented using public members. C# also
supports explicit interface member implementations, using which the class or struct can
avoid making the members public. An explicit interface member implementation is writ-
ten using the fully qualified interface member name. For example, the EditBox class could
implement the IControl.Paint and IDataBound.Bind methods using explicit interface
member implementations as follows.

 public class EditBox : IControl, IDataBound
 {
 void IControl.Paint() {...}

 void IDataBound.Bind(Binder b) {...}
 }

Explicit interface members can only be accessed via the interface type. For example, the
implementation of IControl.Paint provided by the previous EditBox class can only be
invoked by first converting the EditBox reference to the IControl interface type.

EditBox editBox = new EditBox();
editBox.Paint(); // Error; no such method
IControl control = editBox;
control.Paint(); // Okay

n
n  VLADIMIR RESHETNIkoV Actually, explicitly implemented interface members

can also be accessed via a type parameter, constrained to the interface type.

1. Introduction

58

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

1.10 Enums
An enum type is a distinct value type with a set of named constants. The following exam-
ple declares and uses an enum type named Color with three constant values, Red, Green,
and Blue.

using System;

enum Color
{
 Red,
 Green,
 Blue
}

class Test
{
 static void PrintColor(Color color) {
 switch (color) {
 case Color.Red:
 Console.WriteLine("Red");
 break;
 case Color.Green:
 Console.WriteLine("Green");
 break;
 case Color.Blue:
 Console.WriteLine("Blue");
 break;
 default:
 Console.WriteLine("Unknown color");
 break;
 }
 }

 static void Main() {
 Color c = Color.Red;
 PrintColor(c);
 PrintColor(Color.Blue);
 }
}

Each enum type has a corresponding integral type called the underlying type of the enum
type. An enum type that does not explicitly declare an underlying type has an underlying
type of int. An enum type’s storage format and range of possible values are determined
by its underlying type. The set of values that an enum type can take on is not limited by its
enum members. In particular, any value of the underlying type of an enum can be cast to
the enum type and is a distinct valid value of that enum type.

The following example declares an enum type named Alignment with an underlying type
of sbyte.

 enum Alignment : sbyte
 {
 Left = -1,

1.10		 Enums

59

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

 Center = 0,
 Right = 1
 }

VLADIMIR RESHETNIkoV Although this syntax resembles base type specification,
it has a different meaning. The base type of Alignment is not sbyte, but System.Enum,
and there is no implicit conversion from Alignment to sbyte.

As shown by the previous example, an enum member declaration can include a constant
expression that specifies the value of the member. The constant value for each enum mem-
ber must be in the range of the underlying type of the enum. When an enum member
declaration does not explicitly specify a value, the member is given the value zero (if it is
the first member in the enum type) or the value of the textually preceding enum member
plus one.

Enum values can be converted to integral values and vice versa using type casts. For
example:

int i = (int)Color.Blue; // int i = 2;
Color c = (Color)2; // Color c = Color.Blue;

BILL WAGNER The fact that zero is the default value for a variable of an enum type
implies that you should always ensure that zero is a valid member of any enum
type.

The default value of any enum type is the integral value zero converted to the enum type.
In cases where variables are automatically initialized to a default value, this is the value
given to variables of enum types. For the default value of an enum type to be easily avail-
able, the literal 0 implicitly converts to any enum type. Thus the following is permitted.

Color c = 0;

BRAD ABRAMS My first programming class in high school was in Turbo Pascal
(Thanks, Anders!). On one of my first assignments I got back from my teacher, I saw a
big red circle around the number 65 in my source code and the scrawled note, “No
Magic Constants!!” My teacher was instilling in me the virtues of using the constant
RetirementAge for readability and maintenance. Enums make this a super-easy deci-
sion to make. Unlike in some programming languages, using an enum does not incur
any runtime performance overhead in C#. While I have heard many excuses in API
reviews, there are just no good reasons to use a magic constant rather than an enum!

1. Introduction

60

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

1.11 Delegates
A delegate type represents references to methods with a particular parameter list and
return type. Delegates make it possible to treat methods as entities that can be assigned to
variables and passed as parameters. Delegates are similar to the concept of function point-
ers found in some other languages, but unlike function pointers, delegates are object-
oriented and type-safe.

The following example declares and uses a delegate type named Function.

using System;

delegate double Function(double x);

class Multiplier
{
 double factor;

 public Multiplier(double factor) {
 this.factor = factor;
 }

 public double Multiply(double x) {
 return x * factor;
 }
}

class Test
{
 static double Square(double x) {
 return x * x;
 }

 static double[] Apply(double[] a, Function f) {
 double[] result = new double[a.Length];
 for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
 return result;
 }

 static void Main() {
 double[] a = {0.0, 0.5, 1.0};

 double[] squares = Apply(a, Square);

 double[] sines = Apply(a, Math.Sin);

 Multiplier m = new Multiplier(2.0);
 double[] doubles = Apply(a, m.Multiply);
 }
}

An instance of the Function delegate type can reference any method that takes a double
argument and returns a double value. The Apply method applies a given Function to the
elements of a double[], returning a double[] with the results. In the Main method, Apply is
used to apply three different functions to a double[].

1.12		 Attributes

61

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

A delegate can reference either a static method (such as Square or Math.Sin in the previous
example) or an instance method (such as m.Multiply in the previous example). A delegate
that references an instance method also references a particular object, and when the instance
method is invoked through the delegate, that object becomes this in the invocation.

Delegates can also be created using anonymous functions, which are “in-line methods”
that are created on the fly. Anonymous functions can see the local variables of the sur-
rounding methods. Thus the multiplier example above can be written more easily without
using a Multiplier class:

double[] doubles = Apply(a, (double x) => x * 2.0);

An interesting and useful property of a delegate is that it does not know or care about the
class of the method it references; all that matters is that the referenced method has the same
parameters and return type as the delegate.

BILL WAGNER This property of delegates make them an excellent tool for providing
interfaces between components with the lowest possible coupling.

1.12 Attributes
Types, members, and other entities in a C# program support modifiers that control certain
aspects of their behavior. For example, the accessibility of a method is controlled using the
public, protected, internal, and private modifiers. C# generalizes this capability such
that user-defined types of declarative information can be attached to program entities and
retrieved at runtime. Programs specify this additional declarative information by defining
and using attributes.

The following example declares a HelpAttribute attribute that can be placed on program
entities to provide links to their associated documentation.

using System;

public class HelpAttribute: Attribute
{
 string url;
 string topic;

 public HelpAttribute(string url) {
 this.url = url;
 }

 public string Url {
 get { return url; }
 }

1. Introduction

62

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

In
tr

od
uc

ti
on

1.
	

 public string Topic {
 get { return topic; }
 set { topic = value; }
 }
}

All attribute classes derive from the System.Attribute base class provided by the .NET
Framework. Attributes can be applied by giving their name, along with any arguments,
inside square brackets just before the associated declaration. If an attribute’s name ends in
Attribute, that part of the name can be omitted when the attribute is referenced. For exam-
ple, the HelpAttribute attribute can be used as follows.

[Help("http://msdn.microsoft.com/.../MyClass.htm")]
public class Widget
{
 [Help("http://msdn.microsoft.com/.../MyClass.htm", Topic = "Display")]
 public void Display(string text) { }
}

This example attaches a HelpAttribute to the Widget class and another HelpAttribute to
the Display method in the class. The public constructors of an attribute class control the
information that must be provided when the attribute is attached to a program entity.
Additional information can be provided by referencing public read-write properties of the
attribute class (such as the reference to the Topic property previously).

The following example shows how attribute information for a given program entity can be
retrieved at runtime using reflection.

using System;
using System.Reflection;

class Test
{
 static void ShowHelp(MemberInfo member) {
 HelpAttribute a = Attribute.GetCustomAttribute(member,
 typeof(HelpAttribute)) as HelpAttribute;
 if (a == null) {
 Console.WriteLine("No help for {0}", member);
 }
 else {
 Console.WriteLine("Help for {0}:", member);
 Console.WriteLine(" Url={0}, Topic={1}",
 a.Url, a.Topic);
 }
 }

 static void Main() {
 ShowHelp(typeof(Widget));
 ShowHelp(typeof(Widget).GetMethod("Display"));
 }
}

1.12		 Attributes

63

Introduction
1.	

Introduction
1.	

Introduction
1.	

Introduction
1.	

When a particular attribute is requested through reflection, the constructor for the attribute
class is invoked with the information provided in the program source, and the resulting
attribute instance is returned. If additional information was provided through properties,
those properties are set to the given values before the attribute instance is returned.

BILL WAGNER The full potential of attributes will be realized when some future ver-
sion of the C# compiler enables developers to read attributes and use them to modify
the code model before the compiler creates IL. I’ve wanted to be able to use attributes
to change the behavior of code since the first release of C#.

139

Types4.	

The types of the C# language are divided into two main categories: value types and refer-
ence types. Both value types and reference types may be generic types, which take one or
more type parameters. Type parameters can designate both value types and reference
types.

type:
value-type
reference-type
type-parameter

A third category of types, pointers, is available only in unsafe code. This issue is discussed
further in §18.2.

Value types differ from reference types in that variables of the value types directly contain
their data, whereas variables of the reference types store references to their data, the latter
being known as objects. With reference types, it is possible for two variables to reference
the same object, and thus possible for operations on one variable to affect the object refer-
enced by the other variable. With value types, the variables each have their own copy of
the data, so it is not possible for operations on one to affect the other.

C#’s type system is unified such that a value of any type can be treated as an object. Every type
in C# directly or indirectly derives from the object class type, and object is the ultimate
base class of all types. Values of reference types are treated as objects simply by viewing the
values as type object. Values of value types are treated as objects by performing boxing
and unboxing operations (§4.3).

n
n  ERIC LIPPERT We normally do not think of interface types or the types associ-

ated with type parameters as having a “base class” per se. What this discussion is
getting at is that every concrete object—no matter how you are treating it at compile
time—may be treated as an instance of object at runtime.

4. Types

140

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

4.1 Value Types
A value type is either a struct type or an enumeration type. C# provides a set of pre-
defined struct types called the simple types. The simple types are identified through
reserved words.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
nullable-type

simple-type:
numeric-type
bool

numeric-type:
integral-type
floating-point-type
decimal

integral-type:
sbyte
byte
short
ushort
int
uint
long
ulong
char

floating-point-type:
float
double

nullable-type:
non-nullable-value-type ?

non-nullable-value-type:
type

enum-type:
type-name

4.1		 Value Types

141

Types
4.	

Types
4.	

Types
4.	

Types
4.	

Unlike a variable of a reference type, a variable of a value type can contain the value null
only if the value type is a nullable type. For every non-nullable value type, there is a cor-
responding nullable value type denoting the same set of values plus the value null.

Assignment to a variable of a value type creates a copy of the value being assigned. This
differs from assignment to a variable of a reference type, which copies the reference but not
the object identified by the reference.

4.1.1 The System.ValueType Type
All value types implicitly inherit from the class System.ValueType, which in turn inherits
from class object. It is not possible for any type to derive from a value type, and value
types are thus implicitly sealed (§10.1.1.2).

Note that System.ValueType is not itself a value-type. Rather, it is a class-type from which all
value-types are automatically derived.

n
n  ERIC LIPPERT This point is frequently confusing to novices. I am often asked,

“But how is it possible that a value type derives from a reference type?” I think the
confusion arises as a result of a misunderstanding of what “derives from” means.
Derivation does not imply that the layout of the bits in memory of the base type is
somewhere found in the layout of bits in the derived type. Rather, it simply implies
that some mechanism exists whereby members of the base type may be accessed from
the derived type.

4.1.2 Default Constructors
All value types implicitly declare a public parameterless instance constructor called the
default constructor. The default constructor returns a zero-initialized instance known as
the default value for the value type:

For all •	 simple-types, the default value is the value produced by a bit pattern of all zeros:

For - sbyte, byte, short, ushort, int, uint, long, and ulong, the default value is 0.

For - char, the default value is '\x0000'.

For - float, the default value is 0.0f.

For - double, the default value is 0.0d.

For - decimal, the default value is 0.0m.

For - bool, the default value is false.

4. Types

142

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

For an •	 enum-type E, the default value is 0, converted to the type E.

For a •	 struct-type, the default value is the value produced by setting all value type fields
to their default values and all reference type fields to null.

n
n  VLADIMIR RESHETNIkoV Obviously, the wording “all fields” here means only

instance fields (not static fields). It also includes field-like instance events, if any exist.

For a •	 nullable-type, the default value is an instance for which the HasValue property is
false and the Value property is undefined. The default value is also known as the null
value of the nullable type.

Like any other instance constructor, the default constructor of a value type is invoked
using the new operator. For efficiency reasons, this requirement is not intended to actually
have the implementation generate a constructor call. In the example below, variables i and
j are both initialized to zero.

class A
{
 void F() {
 int i = 0;
 int j = new int();
 }
}

Because every value type implicitly has a public parameterless instance constructor, it is not
possible for a struct type to contain an explicit declaration of a parameterless constructor. A
struct type is, however, permitted to declare parameterized instance constructors (§11.3.8).

n
n  ERIC LIPPERT Another good way to obtain the default value of a type is to use

the default(type) expression.

n
n  JoN SkEET This is one example of where the C# language and the underlying

platform may have different ideas. If you ask the .NET platform for the constructors
of a value type, you usually won’t find a parameterless one. Instead, .NET has a spe-
cific instruction for initializing the default value for a value type. Usually these small
impedence mismatches have no effect on developers, but it’s good to know that they’re
possible—and that they don’t represent a fault in either specification.

4.1		 Value Types

143

Types
4.	

Types
4.	

Types
4.	

Types
4.	

4.1.3 Struct Types
A struct type is a value type that can declare constants, fields, methods, properties, index-
ers, operators, instance constructors, static constructors, and nested types. The declaration
of struct types is described in §11.1.

4.1.4 Simple Types
C# provides a set of predefined struct types called the simple types. The simple types are
identified through reserved words, but these reserved words are simply aliases for pre-
defined struct types in the System namespace, as described in the table below.

Reserved Word Aliased Type

sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

Because a simple type aliases a struct type, every simple type has members. For example,
int has the members declared in System.Int32 and the members inherited from System.
Object, and the following statements are permitted:

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = i.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

4. Types

144

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

The simple types differ from other struct types in that they permit certain additional
operations:

Most simple types permit values to be created by writing •	 literals (§2.4.4). For example,
123 is a literal of type int and 'a' is a literal of type char. C# makes no provision for
literals of struct types in general, and nondefault values of other struct types are ulti-
mately always created through instance constructors of those struct types.

n
n  ERIC LIPPERT The “most” in the phrase “most simple types” refers to the fact

that some simple types, such as short, have no literal form. In reality, any integer lit-
eral small enough to fit into a short is implicitly converted to a short when used as
one, so in that sense there are literal values for all simple types.

There are a handful of possible values for simple types that have no literal forms. The
NaN (Not-a-Number) values for floating point types, for example, have no literal form.

When the operands of an expression are all simple type constants, it is possible for the •	
compiler to evaluate the expression at compile time. Such an expression is known as a
constant-expression (§7.19). Expressions involving operators defined by other struct types
are not considered to be constant expressions.

n
n  VLADIMIR RESHETNIkoV It is not just “possible”: The compiler always does

fully evaluate constant-expressions at compile time.

Through •	 const declarations, it is possible to declare constants of the simple types (§10.4).
It is not possible to have constants of other struct types, but a similar effect is provided
by static readonly fields.

Conversions involving simple types can participate in evaluation of conversion opera-•	
tors defined by other struct types, but a user-defined conversion operator can never
participate in evaluation of another user-defined operator (§6.4.3).

n
n  JoSEPH ALBAHARI The simple types also provide a means by which the com-

piler can leverage direct support within the IL (and ultimately the processor) for
 computations on integer and floating point values. This scheme allows arithmetic on
simple types that have processor support (typically float, double, and the integral
types) to run at native speed.

4.1		 Value Types

145

Types
4.	

Types
4.	

Types
4.	

Types
4.	

4.1.5 Integral Types
C# supports nine integral types: sbyte, byte, short, ushort, int, uint, long, ulong, and
char. The integral types have the following sizes and ranges of values:

The •	 sbyte type represents signed 8-bit integers with values between –128 and 127.

The •	 byte type represents unsigned 8-bit integers with values between 0 and 255.

The •	 short type represents signed 16-bit integers with values between –32768 and
32767.

The •	 ushort type represents unsigned 16-bit integers with values between 0 and 65535.

The •	 int type represents signed 32-bit integers with values between –2147483648 and
2147483647.

The •	 uint type represents unsigned 32-bit integers with values between 0 and
4294967295.

The •	 long type represents signed 64-bit integers with values between –9223372036854775808
and 9223372036854775807.

The •	 ulong type represents unsigned 64-bit integers with values between 0 and
18446744073709551615.

The •	 char type represents unsigned 16-bit integers with values between 0 and 65535. The
set of possible values for the char type corresponds to the Unicode character set.
Although char has the same representation as ushort, not all operations permitted on
one type are permitted on the other.

n
n  JESSE LIBERTy I have to confess that with the power of modern PCs, and the

greater cost of programmer time relative to the cost of memory, I tend to use int for
just about any integral (nonfractional) value and double for any fractional value. All
the rest, I pretty much ignore.

The integral-type unary and binary operators always operate with signed 32-bit precision,
unsigned 32-bit precision, signed 64-bit precision, or unsigned 64-bit precision:

For the unary •	 + and ~ operators, the operand is converted to type T, where T is the first
of int, uint, long, and ulong that can fully represent all possible values of the operand.
The operation is then performed using the precision of type T, and the type of the
result is T.

For the unary •	 – operator, the operand is converted to type T, where T is the first of int
and long that can fully represent all possible values of the operand. The operation is then

4. Types

146

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

performed using the precision of type T, and the type of the result is T. The unary –
operator cannot be applied to operands of type ulong.

For the binary •	 +, –, *, /, %, &, ^, |, ==, !=, >, <, >=, and <= operators, the operands are con-
verted to type T, where T is the first of int, uint, long, and ulong that can fully represent
all possible values of both operands. The operation is then performed using the preci-
sion of type T, and the type of the result is T (or bool for the relational operators). It is
not permitted for one operand to be of type long and the other to be of type ulong with
the binary operators.

For the binary •	 << and >> operators, the left operand is converted to type T, where T is the
first of int, uint, long, and ulong that can fully represent all possible values of the oper-
and. The operation is then performed using the precision of type T, and the type of the
result is T.

The char type is classified as an integral type, but it differs from the other integral types in
two ways:

There are no implicit conversions from other types to the •	 char type. In particular, even
though the sbyte, byte, and ushort types have ranges of values that are fully repre-
sentable using the char type, implicit conversions from sbyte, byte, or ushort to char
do not exist.

Constants of the •	 char type must be written as character-literals or as integer-literals in
combination with a cast to type char. For example, (char)10 is the same as '\x000A'.

The checked and unchecked operators and statements are used to control overflow check-
ing for integral-type arithmetic operations and conversions (§7.6.12). In a checked context,
an overflow produces a compile-time error or causes a System.OverflowException to be
thrown. In an unchecked context, overflows are ignored and any high-order bits that do not
fit in the destination type are discarded.

4.1.6 Floating Point Types
C# supports two floating point types: float and double. The float and double types are
represented using the 32-bit single-precision and 64-bit double-precision IEEE 754 formats,
which provide the following sets of values:

Positive zero and negative zero. In most situations, positive zero and negative zero •	
behave identically as the simple value zero, but certain operations distinguish between
the two (§7.8.2).

4.1		 Value Types

147

Types
4.	

Types
4.	

Types
4.	

Types
4.	

n
n  VLADIMIR RESHETNIkoV Be aware that the default implementation of the
Equals method in value types can use bitwise comparison in some cases to speed up
performance. If two instances of your value type contain in their fields positive and
negative zero, respectively, they can compare as not equal. You can override the Equals
method to change the default behavior.

using System;

struct S
{
 double X;

 static void Main()
 {
 var a = new S {X = 0.0};
 var b = new S {X = -0.0};
 Console.WriteLine(a.X.Equals(b.X)); // True
 Console.WriteLine(a.Equals(b)); // False
 }
}

n
n  PETER SESToFT Some of the confusion over negative zero may stem from the

fact that the current implementations of C# print positive and negative zero in
the same way, as 0.0, and no combination of formatting parameters seems to affect
that display. Although this is probably done with the best of intentions, it is unfortu-
nate. To reveal a negative zero, you must resort to strange-looking code like this, which
works because 1/(-0.0) = -Infinity < 0:

public static string DoubleToString(double d) {
 if (d == 0.0 && 1/d < 0)
 return "-0.0";
 else
 return d.ToString();
}

Positive infinity and negative infinity. Infinities are produced by such operations as •	
dividing a non-zero number by zero. For example, 1.0 / 0.0 yields positive infinity, and
–1.0 / 0.0 yields negative infinity.

The •	 Not-a-Number value, often abbreviated NaN. NaNs are produced by invalid float-
ing point operations, such as dividing zero by zero.

n
n  PETER SESToFT A large number of distinct NaNs exist, each of which has a dif-

ferent “payload.” See the annotations on §7.8.1.

4. Types

148

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

The finite set of non-zero values of the form •	 s × m × 2e, where s is 1 or −1, and m and e
are determined by the particular floating point type: For float, 0 < m < 224 and −149 ≤ e
≤ 104; for double, 0 < m < 253 and −1075 ≤ e ≤ 970. Denormalized floating point numbers
are considered valid non-zero values.

The float type can represent values ranging from approximately 1.5 × 10−45 to 3.4 × 1038
with a precision of 7 digits.

The double type can represent values ranging from approximately 5.0 × 10−324 to 1.7 × 10308
with a precision of 15 or 16 digits.

If one of the operands of a binary operator is of a floating point type, then the other oper-
and must be of an integral type or a floating point type, and the operation is evaluated as
follows:

If one of the operands is of an integral type, then that operand is converted to the float-•	
ing point type of the other operand.

Then, if either of the operands is of type •	 double, the other operand is converted to
double, the operation is performed using at least double range and precision, and the
type of the result is double (or bool for the relational operators).

Otherwise, the operation is performed using at least •	 float range and precision, and the
type of the result is float (or bool for the relational operators).

The floating point operators, including the assignment operators, never produce excep-
tions. Instead, in exceptional situations, floating point operations produce zero, infinity, or
NaN, as described below:

If the result of a floating point operation is too small for the destination format, the result •	
of the operation becomes positive zero or negative zero.

If the result of a floating point operation is too large for the destination format, the result •	
of the operation becomes positive infinity or negative infinity.

If a floating point operation is invalid, the result of the operation becomes NaN.•	

If one or both operands of a floating point operation is NaN, the result of the operation •	
becomes NaN.

Floating point operations may be performed with higher precision than the result type of
the operation. For example, some hardware architectures support an “extended” or “long
double” floating point type with greater range and precision than the double type, and
implicitly perform all floating point operations using this higher precision type. Only at
excessive cost in performance can such hardware architectures be made to perform float-
ing point operations with less precision. Rather than require an implementation to forfeit

4.1		 Value Types

149

Types
4.	

Types
4.	

Types
4.	

Types
4.	

both performance and precision, C# allows a higher precision type to be used for all float-
ing point operations. Other than delivering more precise results, this rarely has any mea-
surable effects. However, in expressions of the form x * y / z, where the multiplication
produces a result that is outside the double range, but the subsequent division brings the
temporary result back into the double range, the fact that the expression is evaluated in a
higher range format may cause a finite result to be produced instead of an infinity.

n
n  JoSEPH ALBAHARI NaNs are sometimes used to represent special values. In

Microsoft’s Windows Presentation Foundation, double.NaN represents a measure-
ment whose value is “automatic.” Another way to represent such a value is with a
nullable type; yet another is with a custom struct that wraps a numeric type and adds
another field.

4.1.7 The decimal Type
The decimal type is a 128-bit data type suitable for financial and monetary calculations.
The decimal type can represent values ranging from 1.0 × 10−28 to approximately 7.9 × 1028
with 28 or 29 significant digits.

The finite set of values of type decimal are of the form (–1)s × c × 10-e, where the sign s is 0
or 1, the coefficient c is given by 0 ≤ c < 296, and the scale e is such that 0 ≤ e ≤ 28.The decimal
type does not support signed zeros, infinities, or NaNs. A decimal is represented as a 96-bit
integer scaled by a power of 10. For decimals with an absolute value less than 1.0m, the
value is exact to the 28th decimal place, but no further. For decimals with an absolute value
greater than or equal to 1.0m, the value is exact to 28 or 29 digits. Unlike with the float and
double data types, decimal fractional numbers such as 0.1 can be represented exactly in the
decimal representation. In the float and double representations, such numbers are often
infinite fractions, making those representations more prone to round-off errors.

n
n  PETER SESToFT The IEEE 754-2008 standard describes a decimal floating point

type called decimal128. It is similar to the type decimal described here, but packs a lot
more punch within the same 128 bits. It has 34 significant decimal digits, a range from
10-6134 to 106144, and supports NaNs. It was designed by Mike Cowlishaw at IBM UK.
Since it extends the current decimal in all respects, it would seem feasible for C# to
switch to IEEE decimal128 in some future version.

If one of the operands of a binary operator is of type decimal, then the other operand must
be of an integral type or of type decimal. If an integral type operand is present, it is con-
verted to decimal before the operation is performed.

4. Types

150

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

n
n  BILL WAGNER You cannot mix decimal and the floating point types (float,

 double). This rule exists because you would lose precision mixing computations
between those types. You must apply an explicit conversion when mixing decimal
and floating point types.

The result of an operation on values of type decimal is what would result from calculating
an exact result (preserving scale, as defined for each operator) and then rounding to fit the
representation. Results are rounded to the nearest representable value and, when a result
is equally close to two representable values, to the value that has an even number in the
least significant digit position (this is known as “banker’s rounding”). A zero result always
has a sign of 0 and a scale of 0.

n
n  ERIC LIPPERT This method has the attractive property that it typically intro-

duces less bias than methods that always round down or up when there is a “tie”
between two possibilities.

Oddly enough, despite the nickname, there is little evidence that this method of round-
ing was ever in widespread use in banking.

If a decimal arithmetic operation produces a value less than or equal to 5 × 10-29 in absolute
value, the result of the operation becomes zero. If a decimal arithmetic operation produces
a result that is too large for the decimal format, a System.OverflowException is thrown.

The decimal type has greater precision but smaller range than the floating point types.
Thus conversions from the floating point types to decimal might produce overflow excep-
tions, and conversions from decimal to the floating point types might cause loss of preci-
sion. For these reasons, no implicit conversions exist between the floating point types and
decimal, and without explicit casts, it is not possible to mix floating point and decimal
operands in the same expression.

n
n  ERIC LIPPERT C# does not support the Currency data type familiar to users of

Visual Basic 6 and other OLE Automation-based programming languages. Because
decimal has both more range and precision than Currency, anything that you could
have done with a Currency can be done just as well with a decimal.

4.1.8 The bool Type
The bool type represents boolean logical quantities. The possible values of type bool are
true and false.

4.1		 Value Types

151

Types
4.	

Types
4.	

Types
4.	

Types
4.	

No standard conversions exist between bool and other types. In particular, the bool type
is distinct and separate from the integral types; a bool value cannot be used in place of an
integral value, and vice versa.

In the C and C++ languages, a zero integral or floating point value, or a null pointer, can
be converted to the boolean value false, and a non-zero integral or floating point value, or
a non-null pointer, can be converted to the boolean value true. In C#, such conversions are
accomplished by explicitly comparing an integral or floating point value to zero, or by
explicitly comparing an object reference to null.

n
n  CHRIS SELLS The inability of a non-bool to be converted to a bool most often

bites me when comparing for null. For example:

object obj = null;
if(obj) { ... } // Okay in C/C++, error in C#
if(obj != null) { ... } // Okay in C/C++/C#

4.1.9 Enumeration Types
An enumeration type is a distinct type with named constants. Every enumeration type has
an underlying type, which must be byte, sbyte, short, ushort, int, uint, long, or ulong.
The set of values of the enumeration type is the same as the set of values of the underlying
type. Values of the enumeration type are not restricted to the values of the named con-
stants. Enumeration types are defined through enumeration declarations (§14.1).

n
n  ERIC LIPPERT This is an important point: Nothing stops you from putting a

value that is not in the enumerated type into a variable of that type. Do not rely on the
language or the runtime environment to verify that instances of enumerated types are
within the bounds you expect.

n
n  VLADIMIR RESHETNIkoV The CLR also supports char as an underlying type of

an enumeration. If you happen to reference an assembly containing such a type in
your application, the C# compiler will not recognize this type as an enumeration and
will not allow you, for example, to convert it to or from an integral type.

4.1.10 Nullable Types
A nullable type can represent all values of its underlying type plus an additional null value.
A nullable type is written T?, where T is the underlying type. This syntax is shorthand for
System.Nullable<T>, and the two forms can be used interchangeably.

4. Types

152

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

A non-nullable value type, conversely, is any value type other than System.Nullable<T>
and its shorthand T? (for any T), plus any type parameter that is constrained to be a non-
nullable value type (that is, any type parameter with a struct constraint). The System.
Nullable<T> type specifies the value type constraint for T (§10.1.5), which means that the
underlying type of a nullable type can be any non-nullable value type. The underlying
type of a nullable type cannot be a nullable type or a reference type. For example, int??
and string? are invalid types.

An instance of a nullable type T? has two public read-only properties:

A •	 HasValue property of type bool

A •	 Value property of type T

An instance for which HasValue is true is said to be non-null. A non-null instance contains
a known value and Value returns that value.

An instance for which HasValue is false is said to be null. A null instance has an undefined
value. Attempting to read the Value of a null instance causes a System.InvalidOperation-
Exception to be thrown. The process of accessing the Value property of a nullable instance
is referred to as unwrapping.

In addition to the default constructor, every nullable type T? has a public constructor that
takes a single argument of type T. Given a value x of type T, a constructor invocation of
the form

new T?(x)

creates a non-null instance of T? for which the Value property is x. The process of creating
a non-null instance of a nullable type for a given value is referred to as wrapping.

Implicit conversions are available from the null literal to T? (§6.1.5) and from T to T?
(§6.1.4).

4.2 Reference Types
A reference type is a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

4.2		 Reference Types

153

Types
4.	

Types
4.	

Types
4.	

Types
4.	

class-type:
type-name
object
dynamic
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
type

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorsopt]

dim-separators:
,
dim-separators ,

delegate-type:
type-name

A reference type value is a reference to an instance of the type, the latter known as an
object. The special value null is compatible with all reference types and indicates the
absence of an instance.

4.2.1 Class Types
A class type defines a data structure that contains data members (constants and fields),
function members (methods, properties, events, indexers, operators, instance constructors,
destructors, and static constructors), and nested types. Class types support inheritance, a
mechanism whereby derived classes can extend and specialize base classes. Instances of
class types are created using object-creation-expressions (§7.6.10.1).

Class types are described in §10.

4. Types

154

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Certain predefined class types have special meaning in the C# language, as described in
the table below.

Class Type Description

System.Object The ultimate base class of all other types. (See §4.2.2.)

System.String The string type of the C# language. (See §4.2.3.)

System.ValueType The base class of all value types. (See §4.1.1.)

System.Enum The base class of all enum types. (See §14.)

System.Array The base class of all array types. (See §12.)

System.Delegate The base class of all delegate types. (See §15.)

System.Exception The base class of all exception types. (See §16.)

4.2.2 The object Type
The object class type is the ultimate base class of all other types. Every type in C# directly
or indirectly derives from the object class type.

The keyword object is simply an alias for the predefined class System.Object.

4.2.3 The dynamic Type
The dynamic type, like object, can reference any object. When operators are applied to
expressions of type dynamic, their resolution is deferred until the program is run. Thus, if
the operator cannot legally be applied to the referenced object, no error is given during
compilation. Instead, an exception will be thrown when resolution of the operator fails at
runtime.

The dynamic type is further described in §4.7, and dynamic binding in §7.2.2.

4.2.4 The string Type
The string type is a sealed class type that inherits directly from object. Instances of the
string class represent Unicode character strings.

Values of the string type can be written as string literals (§2.4.4.5).

The keyword string is simply an alias for the predefined class System.String.

4.3		 Boxing and Unboxing

155

Types
4.	

Types
4.	

Types
4.	

Types
4.	

4.2.5 Interface Types
An interface defines a contract. A class or struct that implements an interface must adhere
to its contract. An interface may inherit from multiple base interfaces, and a class or struct
may implement multiple interfaces.

Interface types are described in §13.

4.2.6 Array Types
An array is a data structure that contains zero or more variables that are accessed through
computed indices. The variables contained in an array, also called the elements of the array,
are all of the same type, and this type is called the element type of the array.

Array types are described in §12.

4.2.7 Delegate Types
A delegate is a data structure that refers to one or more methods. For instance methods, it
also refers to their corresponding object instances.

The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a func-
tion pointer can reference only static functions, a delegate can reference both static and
instance methods. In the latter case, the delegate stores not only a reference to the method’s
entry point, but also a reference to the object instance on which to invoke the method.

Delegate types are described in §15.

n
n  CHRIS SELLS Although C++ can reference instance member functions via a

member function pointer, it’s such a difficult thing to get right that the feature might
as well be illegal!

4.3 Boxing and Unboxing
The concept of boxing and unboxing is central to C#’s type system. It provides a bridge
between value-types and reference-types by permitting any value of a value-type to be con-
verted to and from type object. Boxing and unboxing enables a unified view of the type
system wherein a value of any type can ultimately be treated as an object.

4. Types

156

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

n
n  JoSEPH ALBAHARI Prior to C# 2.0, boxing and unboxing were the primary

means by which you could write a general-purpose collection, such as a list, stack, or
queue. Since the introduction of C# 2.0, generics have provided an alternative solution
in these cases, which leads to better static type safety and performance. Boxing/
unboxing necessarily demands a small performance overhead, because it means copy-
ing values, dealing with indirection, and allocating memory on the heap.

n
n  JESSE LIBERTy I would go further and say that the introduction of generics has,

for all practical purposes, dislodged boxing and unboxing from a central concern to a
peripheral one, of interest only when passing value types as out or ref parameters.

n
n  CHRISTIAN NAGEL The normally small performance overhead associated with

boxing and unboxing can become huge if you are iterating over large collections.
Generic collection classes help with this problem.

4.3.1 Boxing Conversions
A boxing conversion permits a value-type to be implicitly converted to a reference-type. The
following boxing conversions exist:

From any •	 value-type to the type object.

From any •	 value-type to the type System.ValueType.

From any •	 non-nullable-value-type to any interface-type implemented by the value-type.

From any •	 nullable-type to any interface-type implemented by the underlying type of the
nullable-type.

n
n  VLADIMIR RESHETNIkoV The nullable-type does not implement the interfaces

from its underlying type; it is simply convertible to them. This distinction is impor-
tant in some contexts—for example, in checking generic constraints.

From any •	 enum-type to the type System.Enum.

From any •	 nullable-type with an underlying enum-type to the type System.Enum.

4.3		 Boxing and Unboxing

157

Types
4.	

Types
4.	

Types
4.	

Types
4.	

n
n  BILL WAGNER The choice of the word “conversion” here is illustrative of the

behavior seen in these circumstances. You are not reinterpreting the same storage as a
different type; you are converting it. That is, you are examining different storage, not
looking at the same storage through two different variable types.

Note that an implicit conversion from a type parameter will be executed as a boxing con-
version if at runtime it ends up converting from a value type to a reference type (§6.1.10).

Boxing a value of a non-nullable-value-type consists of allocating an object instance and
copying the non-nullable-value-type value into that instance.

Boxing a value of a nullable-type produces a null reference if it is the null value (HasValue
is false), or the result of unwrapping and boxing the underlying value otherwise.

The actual process of boxing a value of a non-nullable-value-type is best explained by imag-
ining the existence of a generic boxing class, which behaves as if it were declared as
follows:

sealed class Box<T>: System.ValueType
{
 T value;

 public Box(T t) {
 value = t;
 }
}

Boxing of a value v of type T now consists of executing the expression new Box<T>(v) and
returning the resulting instance as a value of type object. Thus the statements

int i = 123;
object box = i;

conceptually correspond to

int i = 123;
object box = new Box<int>(i);

A boxing class like Box<T> above doesn’t actually exist, and the dynamic type of a boxed
value isn’t actually a class type. Instead, a boxed value of type T has the dynamic type T, and
a dynamic type check using the is operator can simply reference type T. For example,

int i = 123;
object box = i;
if (box is int) {
 Console.Write("Box contains an int");
}

will output the string “Box contains an int” on the console.

4. Types

158

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

A boxing conversion implies making a copy of the value being boxed. This is different from
a conversion of a reference-type to type object, in which the value continues to reference the
same instance and simply is regarded as the less derived type object. For example, given
the declaration

struct Point
{
 public int x, y;
 public Point(int x, int y) {

 this.x = x;
 this.y = y;
 }
}

the following statements

Point p = new Point(10, 10);
object box = p;
p.x = 20;
Console.Write(((Point)box).x);

will output the value 10 on the console because the implicit boxing operation that occurs
in the assignment of p to box causes the value of p to be copied. Had Point been declared a
class instead, the value 20 would be output because p and box would reference the same
instance.

n
n  ERIC LIPPERT This possibility is just one reason why it is a good practice to make

structs immutable. If the struct cannot mutate, then the fact that boxing makes a copy
is irrelevant: Both copies will be identical forever.

4.3.2 Unboxing Conversions
An unboxing conversion permits a reference-type to be explicitly converted to a value-type.
The following unboxing conversions exist:

From the type •	 object to any value-type.

From the type •	 System.ValueType to any value-type.

From any •	 interface-type to any non-nullable-value-type that implements the interface-type.

From any •	 interface-type to any nullable-type whose underlying type implements the
 interface-type.

From the type •	 System.Enum to any enum-type.

From the type •	 System.Enum to any nullable-type with an underlying enum-type.

4.3		 Boxing and Unboxing

159

Types
4.	

Types
4.	

Types
4.	

Types
4.	

n
n  BILL WAGNER As with boxing, unboxing involves a conversion. If you box a

struct and then unbox it, three different storage locations may result. You most cer-
tainly do not have three variables examining the same storage.

Note that an explicit conversion to a type parameter will be executed as an unboxing con-
version if at runtime it ends up converting from a reference type to a value type (§6.2.6).

An unboxing operation to a non-nullable-value-type consists of first checking that the object
instance is a boxed value of the given non-nullable-value-type, and then copying the value
out of the instance.

n
n  ERIC LIPPERT Although it is legal to convert an unboxed int to an unboxed
double, it is not legal to convert a boxed int to an unboxed double—only to an
unboxed int. This constraint exists because the unboxing instruction would then have
to know all the rules for type conversions that are normally done by the compiler. If
you need to do these kinds of conversions at runtime, use the Convert class instead of
an unboxing cast.

Unboxing to a nullable-type produces the null value of the nullable-type if the source oper-
and is null, or the wrapped result of unboxing the object instance to the underlying type
of the nullable-type otherwise.

Referring to the imaginary boxing class described in the previous section, an unboxing
conversion of an object box to a value-type T consists of executing the expression ((Box<T>)
box).value. Thus the statements

object box = 123;
int i = (int)box;

conceptually correspond to

object box = new Box<int>(123);
int i = ((Box<int>)box).value;

For an unboxing conversion to a given non-nullable-value-type to succeed at runtime, the
value of the source operand must be a reference to a boxed value of that non-nullable-value-
type. If the source operand is null, a System.NullReferenceException is thrown. If the
source operand is a reference to an incompatible object, a System.InvalidCastException
is thrown.

4. Types

160

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

n
n  JoN SkEET Some unboxing conversions aren’t guaranteed to work by the C#

specification, yet are legal under the CLI specification. For example, the previously
given description precludes unboxing from an enum value to its underlying type, and
vice versa:

object o = System.DayOfWeek.Sunday;
int i = (int) o;

This conversion will succeed in .NET, but would not be guaranteed to succeed on a
different C# implementation.

For an unboxing conversion to a given nullable-type to succeed at runtime, the value of the
source operand must be either null or a reference to a boxed value of the underlying non-
nullable-value-type of the nullable-type. If the source operand is a reference to an incompati-
ble object, a System.InvalidCastException is thrown.

n
n  CHRIS SELLS Boxing and unboxing are designed such that you almost never

have to think about them unless you’re trying to reduce your memory usage (in which
case, profiling is your friend!). However, if you see out or ref values whose values
don’t seem to be set properly at the caller’s site, suspect boxing.

4.4 Constructed Types
A generic type declaration, by itself, denotes an unbound generic type that is used as a
“blueprint” to form many different types, by way of applying type arguments. The type
arguments are written within angle brackets (< and >) immediately following the name of
the generic type. A type that includes at least one type argument is called a constructed
type. A constructed type can be used in most places in the language in which a type name
can appear. An unbound generic type can be used only within a typeof-expression (§7.6.11).

Constructed types can also be used in expressions as simple names (§7.6.2) or when access-
ing a member (§7.6.4).

When a namespace-or-type-name is evaluated, only generic types with the correct number of
type parameters are considered. Thus it is possible to use the same identifier to identify
different types, as long as the types have different numbers of type parameters. This is use-
ful when mixing generic and nongeneric classes in the same program:

4.4		 Constructed Types

161

Types
4.	

Types
4.	

Types
4.	

Types
4.	

namespace Widgets
{
 class Queue {...}
 class Queue<TElement> {...}
}

namespace MyApplication
{
 using Widgets;

 class X
 {
 Queue q1; // Nongeneric Widgets.Queue
 Queue<int> q2; // Generic Widgets.Queue
 }
}

A type-name might identify a constructed type even though it doesn’t specify type param-
eters directly. This can occur where a type is nested within a generic class declaration, and
the instance type of the containing declaration is implicitly used for name lookup
(§10.3.8.6):

class Outer<T>
{
 public class Inner {...}

 public Inner i; // Type of i is Outer<T>.Inner
}

In unsafe code, a constructed type cannot be used as an unmanaged-type (§18.2).

4.4.1 Type Arguments
Each argument in a type argument list is simply a type.

type-argument-list:
< type-arguments >

type-arguments:
type-argument
type-arguments , type-argument

type-argument:
type

In unsafe code (§18), a type-argument may not be a pointer type. Each type argument must
satisfy any constraints on the corresponding type parameter (§10.1.5).

4. Types

162

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

4.4.2 open and Closed Types
All types can be classified as either open types or closed types. An open type is a type that
involves type parameters. More specifically:

A type parameter defines an open type.•	

An array type is an open type if and only if its element type is an open type.•	

A constructed type is an open type if and only if one or more of its type arguments is an •	
open type. A constructed nested type is an open type if and only if one or more of its
type arguments or the type arguments of its containing type(s) is an open type.

A closed type is a type that is not an open type.

At runtime, all of the code within a generic type declaration is executed in the context of a
closed constructed type that was created by applying type arguments to the generic decla-
ration. Each type parameter within the generic type is bound to a particular runtime type.
The runtime processing of all statements and expressions always occurs with closed types,
and open types occur only during compile-time processing.

Each closed constructed type has its own set of static variables, which are not shared with
any other closed constructed types. Since an open type does not exist at runtime, there are
no static variables associated with an open type. Two closed constructed types are the same
type if they are constructed from the same unbound generic type, and their corresponding
type arguments are the same type.

4.4.3 Bound and Unbound Types
The term unbound type refers to a nongeneric type or an unbound generic type. The term
bound type refers to a nongeneric type or a constructed type.

n
n  ERIC LIPPERT Yes, nongeneric types are considered to be both bound and

unbound.

An unbound type refers to the entity declared by a type declaration. An unbound generic
type is not itself a type, and it cannot be used as the type of a variable, argument, or return
value, or as a base type. The only construct in which an unbound generic type can be ref-
erenced is the typeof expression (§7.6.11).

4.4.4 Satisfying Constraints
Whenever a constructed type or generic method is referenced, the supplied type argu-
ments are checked against the type parameter constraints declared on the generic type or

4.4		 Constructed Types

163

Types
4.	

Types
4.	

Types
4.	

Types
4.	

method (§10.1.5). For each where clause, the type argument A that corresponds to the named
type parameter is checked against each constraint as follows:

If the constraint is a class type, an interface type, or a type parameter, let •	 C represent that
constraint with the supplied type arguments substituted for any type parameters that
appear in the constraint. To satisfy the constraint, it must be the case that type A is con-
vertible to type C by one of the following:

An identity conversion (§6.1.1). -

An implicit reference conversion (§6.1.6). -

A boxing conversion (§6.1.7), provided that type A is a non-nullable value type. -

An implicit reference, boxing, or type parameter conversion from a type parameter -
A to C.

If the constraint is the reference type constraint (•	 class), the type A must satisfy one of
the following:

A - is an interface type, class type, delegate type, or array type. Both System.ValueType
and System.Enum are reference types that satisfy this constraint.

A - is a type parameter that is known to be a reference type (§10.1.5).

If the constraint is the value type constraint (•	 struct), the type A must satisfy one of the
following:

A - is a struct type or enum type, but not a nullable type. Both System.ValueType and
System.Enum are reference types that do not satisfy this constraint.

A - is a type parameter having the value type constraint (§10.1.5).

If the constraint is the constructor constraint •	 new(), the type A must not be abstract
and must have a public parameterless constructor. This is satisfied if one of the follow-
ing is true:

A - is a value type, since all value types have a public default constructor (§4.1.2).

A - is a type parameter having the constructor constraint (§10.1.5).

A - is a type parameter having the value type constraint (§10.1.5).

A - is a class that is not abstract and contains an explicitly declared public constructor
with no parameters.

A - is not abstract and has a default constructor (§10.11.4).

A compile-time error occurs if one or more of a type parameter’s constraints are not satis-
fied by the given type arguments.

4. Types

164

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Since type parameters are not inherited, constraints are never inherited either. In the exam-
ple below, D needs to specify the constraint on its type parameter T so that T satisfies the
constraint imposed by the base class B<T>. In contrast, class E need not specify a constraint,
because List<T> implements IEnumerable for any T.

class B<T> where T: IEnumerable {...}

class D<T>: B<T> where T: IEnumerable {...}

class E<T>: B<List<T>> {...}

4.5 Type Parameters
A type parameter is an identifier designating a value type or reference type that the
 parameter is bound to at runtime.

type-parameter:
identifier

Since a type parameter can be instantiated with many different actual type arguments,
type parameters have slightly different operations and restrictions than other types:

A type parameter cannot be used directly to declare a base class (§10.2.4) or interface •	
(§13.1.3).

The rules for member lookup on type parameters depend on the constraints, if any, •	
applied to the type parameter. They are detailed in §7.4.

The available conversions for a type parameter depend on the constraints, if any, applied •	
to the type parameter. They are detailed in §6.1.10 and §6.2.6.

The literal •	 null cannot be converted to a type given by a type parameter, except if the
type parameter is known to be a reference type (§6.1.10). However, a default expression
(§7.6.13) can be used instead. In addition, a value with a type given by a type parameter
can be compared with null using == and != (§7.10.6) unless the type parameter has the
value type constraint.

A •	 new expression (§7.6.10.1) can be used with a type parameter only if the type parameter
is constrained by a constructor-constraint or the value type constraint (§10.1.5).

A type parameter cannot be used anywhere within an attribute. •	

A type parameter cannot be used in a member access (§7.6.4) or type name (§3.8) to •	
identify a static member or a nested type.

In unsafe code, a type parameter cannot be used as an •	 unmanaged-type (§18.2).

4.6		 Expression Tree Types

165

Types
4.	

Types
4.	

Types
4.	

Types
4.	

As a type, type parameters are purely a compile-time construct. At runtime, each type
parameter is bound to a runtime type that was specified by supplying a type argument to
the generic type declaration. Thus the type of a variable declared with a type parameter
will, at runtime, be a closed constructed type (§4.4.2). The runtime execution of all state-
ments and expressions involving type parameters uses the actual type that was supplied
as the type argument for that parameter.

4.6 Expression Tree Types
Expression trees permit anonymous functions to be represented as data structures instead
of executable code. Expression trees are values of expression tree types of the form System.
Linq.Expressions.Expression<D>, where D is any delegate type. For the remainder of this
specification, we will refer to these types using the shorthand Expression<D>.

If a conversion exists from an anonymous function to a delegate type D, a conversion also
exists to the expression tree type Expression<D>. Whereas the conversion of an anonymous
function to a delegate type generates a delegate that references executable code for the
anonymous function, conversion to an expression tree type creates an expression tree rep-
resentation of the anonymous function.

Expression trees are efficient in-memory data representations of anonymous functions and
make the structure of the anonymous function transparent and explicit.

Just like a delegate type D, Expression<D> is said to have parameter and return types,
which are the same as those of D.

The following example represents an anonymous function both as executable code and
as an expression tree. Because a conversion exists to Func<int,int>, a conversion also
exists to Expression<Func<int,int>>:

Func<int,int> del = x => x + 1; // Code
Expression<Func<int,int>> exp = x => x + 1; // Data

Following these assignments, the delegate del references a method that returns x + 1,
and the expression tree exp references a data structure that describes the expression x =>
x + 1.

The exact definition of the generic type Expression<D> as well as the precise rules for con-
structing an expression tree when an anonymous function is converted to an expression
tree type are implementation defined.

4. Types

166

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Ty
pe

s
4.
	

Two things are important to make explicit:

Not all anonymous functions can be represented as expression trees. For instance, anon-•	
ymous functions with statement bodies and anonymous functions containing assign-
ment expressions cannot be represented. In these cases, a conversion still exists, but will
fail at compile time.

Expression<D>•	 offers an instance method Compile that produces a delegate of type D:

Func<int,int> del2 = exp.Compile();

Invoking this delegate causes the code represented by the expression tree to be executed.
Thus, given the definitions above, del and del2 are equivalent, and the following two
statements will have the same effect:

int i1 = del(1);
int i2 = del2(1);

After executing this code, i1 and i2 will both have the value 2.

4.7 The dynamic Type
The type dynamic has special meaning in C#. Its purpose is to allow dynamic binding,
which is described in detail in §7.2.2.

The dynamic type is considered identical to the object type except in the following
respects:

Operations on expressions of type •	 dynamic can be dynamically bound (§7.2.2).

Type inference (§7.5.2) will prefer •	 dynamic over object if both are candidates.

Because of this equivalence, the following statements hold:

There is an implicit identity conversion between •	 object and dynamic, and between con-
structed types that are the same when replacing dynamic with object.

Implicit and explicit conversions to and from •	 object also apply to and from dynamic.

Method signatures that are the same when replacing •	 dynamic with object are consid-
ered the same signature.

The type dynamic is indistinguishable from object at runtime.

An expression of the type dynamic is referred to as a dynamic expression.

4.7		 The dynamic Type

167

Types
4.	

Types
4.	

Types
4.	

Types
4.	

n
n  ERIC LIPPERT The type dynamic is a bizarre type, but it is important to note

that, from the compiler’s perspective, it is a type. Unlike with var, you can use it in
most of the situations that call for a type: return types, parameter types, type argu-
ments, and so on.

n
n  PETER SESToFT Actually, var is a reserved word, not a compile-time type,

whereas dynamic is a compile-time type. The var keyword tells the compiler, “Please
infer the compile-time type of this variable from its initializer expression.” The
dynamic type essentially tells the compiler, “Do not worry about compile-time type
checking of expressions in which this variable appears; the runtime system will do
the right thing based on the runtime type of the value of the variable (or throw an
exception, where the compiler would have reported a type error).” The type dynamic
cannot be used as receiver (this type) of an extension method, as base type of a class,
or as type bound for a generic type parameter, but otherwise it can be used pretty
much like any other type.

n
n  MAREk SAFAR Method signatures are considered to be same when using the
dynamic and object types. This allows use of a nice trick: The interface method
declared using type object can be directly implemented using a method with type
dynamic.

n
n  CHRIS SELLS I begin to wonder about any language where the following string

of characters is both valid and meaningful:

class Foo {
 public static dynamic DoFoo() {...}
}

Of course, this means that the DoFoo method is a type method (as opposed to an
instance method) and that the type of the return value is unknown until runtime, but
it’s hard not to read DoFoo as both static and dynamic at the same time and worry
about an occurrence of a singularity.

815

Index

A
\a escape sequence, 81
Abstract accessors, 46, 557–558
Abstract classes

and interfaces, 661
overview, 468–469

Abstract events, 566
Abstract indexers, 567
Abstract methods, 35, 539–540
Access and accessibility

array elements, 628
containing types, 502–503
events, 253
indexers, 253, 300–301
members, 23–24, 107, 496

accessibility domains, 110–113
constraints, 116–117
declared accessibility, 107–109
interface, 642–644
pointer, 721–722
in primary expressions, 283–288
protected, 113–116

nested types, 499–503
pointer elements, 723
primary expression elements, 298–301
properties, 252, 555–556

Accessors
abstract, 46, 557–558
attribute, 695

event, 564–565
property, 43, 46, 547–553

Acquire semantics, 514
Acquisition in using statement, 445–446
add accessors

attributes, 695
events, 49, 564

Add method
IEnumerable, 311
List, 42

AddEventHandler method, 565
Addition operator

described, 15
uses, 337–340

Address-of operator, 724–725
Addresses

fixed variables, 728–733
pointers for, 714, 724–725

after state for enumerator objects, 593–596
Alert escape sequence, 81
Aliases

for namespaces and types, 456–461
qualifiers, 464–466
uniqueness, 466

Alignment enumeration, 58–59
Alloc method, 738
Allocation, stack, 736–738
AllowMultiple parameter, 688

816

Ambiguities n Asterisks (*)

Ambiguities
grammar, 287–288
in query expressions, 376

Ampersands (&)
for addresses, 716
in assignment operators, 389
definite assignment rules, 188–189
for logical operators, 355–359
for pointers, 724–725
in preprocessing expressions, 87

AND operators, 15
Angle brackets (<>) for type arguments, 160
Anonymous functions

bodies, 367
conversions, 219–221

evaluation to delegate types, 165–166,
221–222

evaluation to expression tree types, 222
implementation example, 222–226
implicit, 204

definite assignment rules, 192
delegate creation, 61
dynamic binding, 369
evaluation of, 373
expressions, 165–166, 326, 364–366
outer variables, 369–373
overloaded, 368
signatures, 365–366

Anonymous objects, 317–319
AppendFormat method, 31
Applicable function members, 271–272
Application domains, 99
ApplicationExcpetion class, 681
Applications, 4

startup, 99–100
termination, 100–101

Apply method, 60
Arguments, 28. See also Parameters

command-line, 99
for function members, 254–259
type, 161–162
type inference, 259–270

Arithmetic operators, 331–332
addition, 337–340
division, 334–335

multiplication, 332–333
pointer, 725–726
remainder, 336–337
shift, 344
subtraction, 340–342

ArithmeticException class, 335, 685
Arrays and array types, 625

access to, 299–300, 628
content, 13
conversions, 200
covariance, 200, 629–630
creating, 628
description, 8, 155
elements, 53, 171, 628
with foreach, 429
IList interface, 627–628
initializers, 55, 630–632
members, 106, 628
new operator for, 53, 55, 312–315
overview, 53–55
parameter, 31, 528–531
and pointers, 719–720, 730–731
rank specifiers, 625–626
syntactic grammar, 804–805

ArrayTypeMismatchException class
description, 685
type mismatch, 390–391, 629

as operator, 353–355
Assemblies, 4–5
Assignment

in classes vs. structs, 612
definite. See Definite assignment
fixed size buffers, 736

Assignment operators, 16
compound, 393–394
event, 394–395
overview, 389–390
simple, 390–393

Associativity of operators, 238–240
Asterisks (*)

assignment operators, 389
comments, 69–70, 741–742
multiplication, 332–333
pointers, 713–716, 721
transparent identifiers, 385

817

At sign characters (@) for identifiers n Box class

At sign characters (@) for identifiers, 72–74
Atomicity of variable references, 193
Attribute class, 62, 688
Attributes, 687

classes, 688–691, 704–705
compilation of, 698–699
compilation units, 454
instances, 698–699
for interoperation, 707
overview, 61–63
parameters for, 690–691
partial types, 482–483
reserved, 699–700

AttributeUsage, 700
Conditional, 701–705
Obsolete, 705–706

sections for, 692
specifications, 692–698
syntactic grammar, 807–809

AttributeUsage attribute, 688–690, 700
Automatic memory management, 132–137
Automatically implemented properties, 548,

553–555

B
\b escape sequence, 81
Backslash characters (\)

for characters, 80–81
escape sequence, 80–81
for strings, 82

Backspace escape sequence, 81
Backtick character (`), 83
Banker’s rounding, 150
Base access, 302–303
Base classes, 22, 25–26

partial types, 484
specifications for, 472–475
type parameter constraints, 476

Base interfaces
inheritance from, 637–638
partial types, 484–485

Base types, 249–250
before state for enumerator objects, 593–596
Better conversions, 274–275
Better function members, 272–273

Binary operators, 238
declarations, 574–575
in ID string format, 759
lifted, 246
numeric promotions, 244–245
overload resolution, 243
overloadable, 241

Binary point types, 9
Bind method, 56
Binding

constituent expressions, 237
dynamic, 166, 234–237
name, 490
static, 234–235
time, 235

BitArray class, 569–570
Bitwise complement operator, 328
Blocks

in declarations, 102–104
definite assignment rules, 179
exiting, 430
in grammar notation, 66
invariant meaning in, 281–283
in methods, 544
reachability of, 401
in statements, 402–404
for unsafe code, 710

Bodies
classes, 481
interfaces, 638
methods, 32–33, 544
struct, 609

Boneheaded exceptions, 686
bool type, 8–9, 150–151
Boolean values

expressions, 397
literals, 76
operators

conditional logical, 359
equality, 348
logical, 357

in struct example, 622–623
Boss class, 47
Bound types, 162
Box class, 539

818

Boxed instances n Classes

Boxed instances, invocations on, 278
Boxing, 12, 155–156

in classes vs. structs, 613–616
conversions, 156–158, 201

break statement
definite assignment rules, 182
example, 19
for for statements, 423
overview, 431
for switch, 416–417
for while, 420
yield break, 449–452, 594–595

Brittle base class syndrome, 35, 292
Brittle derived class syndrome, 292, 297
Buffers, fixed-size

declarations, 733–735
definite assignment, 736
in expressions, 735–736

Bugs. See Unsafe code
Button class, 549, 561
byte type, 10

C
<c> tag, 744
Cache class, 444
Callable entities, 671
Candidate user-defined operators, 243
Captured outer variables, 369–370
Carets (^)

in assignment operators, 389
for logical operators, 355–357

Carriage-return characters
escape sequence, 81
as line terminators, 68–69

Case labels, 415–419
Cast expressions, 330–331
cast operator vs. as operator, 355
catch blocks

definite assignment rules, 183–185
for exceptions, 684–685
throw statements, 436–437
try statements, 438–443

char type, 146

Character literals, 80–81
Characters, 9
checked statement

definite assignment rules, 179
example, 20
overview, 443
in primary expressions, 322–325

Chooser class, 259–260
Classes

accessibility, 23
attribute, 688–691, 704–705
base, 25–26, 472–475
bodies, 481
constants for, 506–508
constructors for, 42–43

instance, 579–586
static, 586–589

declarations, 467
base specifications, 472–475
bodies, 481
modifiers, 467–471
partial type, 471
type parameter constraints, 475–481
type parameters, 471–472

defined, 467
destructors for, 50, 589–591
events in, 47–49

accessors, 564–565
declaration, 559–562
field-like, 562–564
instance and static, 565

fields in, 26–27
declarations, 509–510
initializing, 515–516
read-only, 511–513
static and instance, 510–511
variable initializers, 516–519
volatile, 514–515

function members in, 40–50
indexers in, 46–47, 566–571
instance variables in, 170–171
interface implementation by, 57
iterators. See Iterators

819

Classes n Comparison operators

members in, 22–23, 106, 490–492
access modifiers for, 496
constituent types for, 496
constructed types, 493–494
inheritance of, 494–496
instance types, 492
nested types for, 498–504
new modifier for, 496
reserved names for, 504–506
static and instance, 496–498

methods in, 28–40
abstract, 539–540
bodies, 544
declaration, 520–522
extension, 541–543
external, 539–540
parameters, 522–531
partial, 541
sealed, 537–538
static and instance, 531
virtual, 532–534

operators in, 49–50
binary, 574–575
conversion, 575–578
declaration, 571–573
unary, 573–574

overview, 21–22
partial types. See Partial types
in program structure, 4–5
properties in, 43–46

accessibility, 555–556
accessors for, 547–553
automatically implemented, 553–555
declarations, 545–546
static and instance, 546

vs. structs, 610–619
syntactic grammar, 794–803
type parameters, 24–25
types, 6–13, 153–154

Classifications, expression, 231–234
Click events, 562–563
Closed types, 162
CLS (Common Language Specification), 9
<code> tag, 744

Collections
for foreach, 425
initializers, 310–312

Colons (:)
alias qualifiers, 464–465
grammar productions, 66
interface identifiers, 637
ternary operators, 191, 361–362
type parameter constraints, 476

Color class, 27, 512
Color enumeration, 58, 664–666
Color struct, 286
COM, interoperation with, 707
Combining delegates, 340, 675
Command-line arguments, 99
Commas (,)

arrays, 54
attributes, 692
collection initializers, 310
ID string format, 755
interface identifiers, 637
method parameter lists, 522
object initializers, 307

Comments, 741
documentation file processing, 754–759
example, 760–766
lexical grammar, 69–70, 768
overview, 741–743
tags, 743–753
XML for, 741–742, 762–765

Commit method, 92
Common Language Specification (CLS), 9
Common types for type inference, 270
CompareExchange method, 600
Comparison operators, 49

booleans, 348
decimal numbers, 348
delegates, 351–352
enumerations, 348
floating point numbers, 346–347
integers, 346
overview, 344–345
pointers, 726
reference types, 349–351
strings, 351

820

Compatibility of delegates and methods n Conversions

Compatibility of delegates and methods, 676
Compilation

attributes, 698–699
binding, 235
dynamic overload resolution checking,

275–276
just-in-time, 5

Compilation directives, 90–93
Compilation symbols, 87
Compilation unit productions, 67
Compilation units, 65, 453–454
Compile-time type of instances, 35, 532
Complement operator, 328
Component-oriented programming, 1–2
Compound assignment

operator, 389
process, 393–394

Concatenation, string, 339
Conditional attribute, 701–705
Conditional classes, 704–705
Conditional compilation directives, 90–93
Conditional compilation symbols, 87
Conditional logical operators, 15, 358–360
Conditional methods, 701–703
Conditional operator, 15, 361–363
Console class, 31, 552–553
Constant class, 35–36
Constants, 41

declarations, 411–412, 506–508
enums for. See Enumerations and enum

types
expressions, 203, 395–397
static fields for, 512–513
versioning of, 512–513

Constituent expressions, 237
Constituent types, 496
Constraints

accessibility, 116–117
constructed types, 162–164
partial types, 483–484
type parameters, 475–481

Constructed types, 160–161
bound and unbound, 162
constraints, 162–164
members, 493–494

open and closed, 162
type arguments, 161

Constructors, 41
for classes, 42–43
for classes vs. structs, 617–618
default, 141–142, 584
in ID string format, 757
instance. See Instance constructors
invocation, 254
static, 42, 586–589

Contact class, 311
Contexts

for attributes, 694–696
unsafe, 710–713

Contextual keywords, 75
continue statement

definite assignment rules, 182
for do, 421
example, 19
for for statements, 423
overview, 432
for while, 420

Contracts, interfaces as, 633
Contravariant type parameters, 635
Control class, 564–565
Control-Z character, 68
Conversions, 195

anonymous functions, 165–166, 219–226,
365–366

boxing, 156–158, 201
constant expression, 203
dynamic, 202, 210
enumerations, 198, 207
explicit, 204–213
expressions, 330–331
function members, 274–275
identity, 196–197
implicit, 195–204

standard, 213
user-defined, 217–219

method groups, 226–229
null literal, 199
nullable, 198–199, 207–208, 360–361
numeric, 197, 205–207
as operator for, 353–355

821

Conversions n default expressions

operators, 575–578, 759
for pointers, 717–720
reference, 199–201, 208–210
standard, 213–214
type parameters, 203–204, 211–212
unboxing, 158–160, 210
user-defined. See User-defined

conversions
variance, 636

Convert class, 207
Copy method, 739
Counter class, 552
Counter struct, 614
CountPrimes class, 570
Covariance

array, 200, 629–630
type parameters, 635

cref attribute, 742
Critical execution points, 137
.cs extension, 3
Curly braces ({})

arrays, 55
collection initializers, 310
grammar notation, 66
object initializers, 307

Currency type, 150
Current property, 595
Customer class, 488–489

D
Database structure example

boolean type, 622–623
integer type, 619–621

DBBool struct, 622–623
DBInt struct, 619–621
Decimal numbers and type, 9–10

addition, 338–339
comparison operators, 348
division, 335
multiplication, 333
negation, 327
remainder operator, 337
subtraction, 341
working with, 149–150

decimal128 type, 149
Declaration directives, 88–89
Declaration space, 101
Declaration statements, 407–412
Declarations

classes, 467
base specifications, 472–475
bodies, 481
modifiers, 467–471
partial type, 471
type parameter constraints, 475–481
type parameters, 471–472

constants, 411–412, 506–508
definite assignment rules, 180
delegates, 672–675
enums, 59, 663–664
events, 559–562
fields, 509–510
fixed-size buffers, 733–735
indexer, 566–571
instance constructors, 579–580
interfaces, 633–638
methods, 520–522
namespaces, 103, 454–456
operators, 571–573
order, 6, 103
overview, 101–104
parameters, 522–525
pointers, 714
properties, 545–546
property accessors, 547
static constructors, 586–589
struct members, 609
structs, 608–609
types, 10, 464
variables, 175, 407–411

Declared accessibility
nested types, 499–500
overview, 107–109

Decrement operators
pointers, 725
postfix, 303–305
prefix, 328–330

default expressions, 142

822

Defaults n DoubleToInt64Bits method

Defaults
constructors, 141–142, 584
switch statement labels, 415–416
values, 141, 175–176

classes vs. structs, 612–613
expressions, 325

#define directive, 87, 89
Defining partial method declarations, 486
Definite assignment, 33, 169, 176–177

fixed size buffers, 736
initially assigned variables, 177
initially unassigned variables, 177
rules for, 178–192

Degenerate query expressions, 379–380
Delegate class, 671
Delegates and delegate type, 671–672

combining, 340, 675
compatible, 676
contents, 13
conversions, 165–166, 221–222
declarations, 672–675
description, 8, 11, 155
equality, 351–352
instantiation, 676–677
invocations, 298, 677–680
members of, 107
new operator for, 315–317
overview, 60–61
removing, 342
syntactic grammar, 807

Delimited comments, 69–70, 741–742
Dependence

on base classes, 473–474
in structures, 611
type inference, 263

Depends on relationships, 473–474, 611
Derived classes, 22, 25–26
Destructors

for classes, 50, 589–591
for classes vs. structs, 619
exceptions for, 685
garbage collection, 132–137
in ID string format, 757

member names reserved for, 506
members, 23

Diagnostic directives, 93–94
Digit struct, 578
Dimensions, array, 11, 54, 625, 631–632
Direct base classes, 472–473
Directives

preprocessing. See Preprocessing
directives

using. See Using directives
Directly depends on relationships,

473–474, 611
Disposal in using statement, 446
Dispose method, 591

for enumerator objects, 596, 604–605
for resources, 445–446

Divide method, 30
DivideByZeroException class, 333–334,

683, 685
Division operator, 334–335
DllImport attribute, 541
DLLs (Dynamic Link Libraries), 541
do statement

definite assignment rules, 181–182
example, 18
overview, 421

Documentation comments, 741
documentation files for, 741, 754

ID string examples, 755–759
ID string format, 754–756

example, 760–766
overview, 741–743
tags for, 743–753
XML files for, 741–742, 762–765

Documentation generators, 741
Documentation viewers, 741
Domains

accessibility, 110–113
application, 99

Double quotes (")
characters, 80
strings, 80

double type, 9–10, 146–149
DoubleToInt64Bits method, 334

823

Dynamic binding n Event handlers

Dynamic binding
anonymous functions, 369
overview, 234–237

Dynamic Link Libraries (DLLs), 541
Dynamic memory allocation, 738–740
Dynamic overload resolution, 275–276
dynamic type, 154

conversions, 202, 210
identity conversions, 197
overview, 166–167

E
ECMA-334 standard, 1
EditBox class, 56–57
Effective base classes, 480
Effective interface sets, 480
Elements

array, 53, 171, 628
foreach, 425–427
pointer, 723
primary expression, 298–301

#elif directive, 87–88, 91
Ellipse class, 539
#else directive, 87, 90–93
Embedded statements and expressions

general rules, 186–187
in grammar notation, 66

Empty statements, 404–406
Encompassed types, 216
Encompassing types, 216
End-of-file markers, 68
End points, 400–402
#endif directive, 91
#endregion directive, 94
Entity class, 33–34
Entry class, 5
Entry points, 99
Enumerable interfaces, 592
Enumerable objects for iterators, 596–597
Enumerations and enum types

addition of, 339
comparison operators, 348
conversions

explicit, 207
implicit, 198

declarations, 663–664
description, 8, 11, 663, 668
logical operators, 356–357
members, 106, 665–668
modifiers, 664–665
overview, 58–59
subtraction of, 341
syntactic grammar, 806–807
types for, 151
values and operations, 668–669

Enumerator interfaces, 592
Enumerator objects for iterators, 593–596
Enumerator types for foreach, 425–426
Equal signs (=)

assignment operators, 389
comparisons, 345
operator ==, 49–50
pointers, 726
preprocessing expressions, 87

Equality operators, 15
boolean values, 348
delegates, 351–352
lifted, 246–247
and null, 352
reference types, 349–351
strings, 351

Equals method
on anonymous types, 319
DBBool, 623
DBInt, 621
List, 42
with NaN values, 347
Point, 761

#error directive, 94
Error property, 553
Error strings in ID string format, 754
Escape sequences

characters, 81
lexical grammar, 769
strings, 81
unicode character, 71–72

Evaluate method, 37
Evaluation of user-defined conversions,

215–216
Event handlers, 48, 559, 562

824

Events n Expressions

Events, 4
access to, 253
accessors, 564–565
assignment operator, 394–395
declarations, 559–562
example, 42
field-like, 562–564
in ID string format, 754, 758–759
instance and static, 565
interface, 642
member names reserved for, 506
overview, 47–49

Exact parameter type inferences, 264
<example> tag, 745
Exception class, 436, 438, 682–684
Exception propagation, 437
<exception> tag, 745
Exception variables, 438
Exceptions

causes, 683
classes for, 685–686
for delegates, 677
handling, 1, 684–685
overview, 681–682
throwing, 436–437
try statement for, 438–443

Exclamation points (!)
comparisons, 345
definite assignment rules, 190
logical negation, 327
operator !=, 49
pointers, 726
preprocessing expressions, 87

Execution
instance constructors, 582–584
order of, 137–138

Exiting blocks, 430
Exogenous exceptions, 686
Expanded form function members, 272
Explicit base interfaces, 637
Explicit conversions, 204–205

dynamic, 210
enumerations, 207
nullable types, 207–208
numeric, 205–207

reference, 208–210
standard, 214
type parameters, 211–212
unboxing, 210
user-defined, 213, 218–219

Explicit interface member implementations,
57, 647–650

explicit keyword, 576–578
Explicit parameter type inferences, 264
Expression class, 35–37
Expression statements, 17, 179, 412–413
Expressions, 231

anonymous function. See Anonymous
functions

binding, 234–237
boolean, 397
cast, 330–331
classifications, 231–234
constant, 203, 395–397
constituent, 237
definite assignment rules, 186–191
dynamic, 166
fixed-size buffers in, 735–736
function members

argument lists, 254–259
categories, 250–254
invocation, 276–278
overload resolution, 270–275
type inference, 259–270

member lookup, 247–250
operators for, 238

arithmetic. See Arithmetic operators
assignment, 389–395
logical, 355–357
numeric promotions, 244–246
overloading, 240–243
precedence and associativity, 238–240
relational, 345
shift, 343–344
unary, 326–331

overview, 13–16
pointers in, 720–727
preprocessing, 87–88
primary. See Primary expressions

825

Expressions n Function members

query, 373–375
ambiguities in, 376
patterns, 387–389
translations in, 376–387

syntactic grammar, 779–788
tree types, 165–166, 222
values of, 233

Extensible Markup Language (XML),
741–742, 762–765

Extension methods
example, 541–543
invocation, 293–297

Extensions class, 542
extern aliases, 456–457
External constructors, 580, 586
External destructors, 589
External events, 560
External indexers, 569
External methods, 539–540
External operators, 572
External properties, 546

F
\f escape sequence, 81
False value, 76
Fatal exceptions, 686
Field-like events, 562–564
Fields, 4

declarations, 509–510
example, 41
in ID string format, 754, 756–757
initializing, 515–516, 616–617
instance, 26–27, 510–511
overview, 26–27
read-only, 27–28, 511–513
static, 510–511
variable initializers, 516–519
volatile, 514–515

Fill method, 629
Filters, 442
Finalize method, 591
Finalizers, 50
finally blocks

definite assignment rules, 184–185
for exceptions, 684
execution, 682

with goto, 434
with try, 438–443

Fixed-size buffers
declarations, 733–735
definite assignment, 736
in expressions, 735–736

fixed statement, 716, 728–733
Fixed variables, 716–717
Fixing type inferences, 266–267
float type, 9–10, 146–149
Floating point numbers

addition, 338
comparison operators, 346–347
division, 334–335
multiplication, 332
NaN payload, 333–334
negation, 327
remainder operator, 336
subtraction, 340–341
types, 9–10, 146–149

for statement
definite assignment rules, 182
example, 19
overview, 422–423

foreach statement
definite assignment rules, 185
example, 19
overview, 423–429

Form feed escape sequence, 81
Forward declarations, 6
Fragmentation, heap, 729
Free method, 739
from clauses, 375, 379–387
FromTo method, 599–600
Fully qualified names

described, 131
interface members, 645
nested types, 499

Function members
argument lists, 254–259
in classes, 40–50
dynamic overload resolution checking,

275–276
overload resolution, 270–275
overview, 250–254
type inference, 259–270

826

Function pointers n Hello, World program

Function pointers, 671
Functional notation, 241
Functions, anonymous. See Anonymous

functions

G
Garbage collection, 1

at application termination, 101
for destructors, 50
in memory management, 132–137, 176
and pointers, 713
for variables, 716

GC class, 133, 136
Generic classes and types, 25, 139

anonymous objects, 318
boxing, 156, 613
constraints, 162, 475–477, 483
declarations, 467, 473
delegates, 220
instance type, 492
interfaces, 650–651
member lookup, 247
methods, 521, 532, 652–653
nested, 247, 503
overloading, 275
overriding, 536
query expression patterns, 387
signatures, 28
static fields, 26
type inferences, 259–261, 267
unbound, 160

Generic interface, 627–628
get accessors

for attributes, 695
defined, 45
description, 557
working with, 547–553

GetEnumerator method
for foreach, 425
for iterators, 596–603

GetEventHandler method, 565

GetHashCode method
on anonymous types, 319
comparisons, 347
DBBool, 623
DBInt, 621

GetHourlyRate method, 38
GetInvocationList method, 677
GetNextSerialNo method, 34
GetProcessHeap method, 739
Global declaration space, 101
Global namespace, 105
goto statement

definite assignment rules, 182
example, 19
for switch, 416–417, 419
working with, 433–434

Governing types of switch statements,
415, 418

Grammars, 65
ambiguities, 287–288
lexical. See Lexical grammar
notation, 65–67
syntactic. See Syntactic grammar
for unsafe code, 809–812

Greater than signs (>)
assignment operators, 389
comparisons, 345
pointers, 716, 721–722, 726
shift operators, 343–344

Grid class, 570–571
group clauses, 375, 378, 385

H
Handlers, event, 48, 559, 562
HasValue property, 152
Heap, 7

accessing functions of, 738–740
fragmentation, 729

HeapAlloc method, 739
HeapFree method, 739
HeapReAlloc method, 740
HeapSize method, 740
Hello, World program, 3

827

Hello class n Inaccessible members

Hello class, 93
HelpAttribute class, 61–62, 690
HelpStringAttribute class, 697
Hexadecimal escape sequences

for characters, 80
for strings, 83

Hiding
inherited members, 102, 125–127, 495
in multiple-inheritance interfaces, 644
in nesting, 124–127, 500
properties, 550
in scope, 120

Hindley-Milner-style algorithms, 261
Horizontal tab escape sequence, 81

I
IBase interface, 644, 655, 660
ICloneable interface, 645–646, 649, 654
IComboBox interface, 56, 638
IComparable interface, 646
IControl interface, 56–57, 638

implementations, 646
inheritance, 657–659
mapping, 654–656
member implementations, 650
member names, 645
reimplementations, 659–660

ICounter interface, 643
ICounter struct, 615
ID string format

for documentation files, 754–756
examples, 755–759

IDataBound interface, 56–57
Identical simple names and type names,

286–287
Identifiers

interface, 634
lexical grammar, 769–770
rules for, 72–74

Identity conversions, 196–197
IDerived interface, 655
IDictionary interface, 648

IDisposable interface, 136, 428, 445–447,
591, 648

IDouble interface, 644
IEnumerable interface, 311, 427–428, 596–597
IEnumerator interface, 592
#if directive, 87–88, 90–93
if statement

definite assignment rules, 180
example, 18
working with, 413–414

IForm interface, 655
IInteger interface, 643–644
IL (Intermediate Language) instructions, 5
IList interface, 627–628, 643, 647
IListBox interface, 56, 638, 656
IListCounter interface, 643
IMethods interface, 659–661
Implementing partial method

declarations, 486
Implicit conversions, 195–196

anonymous functions and method
groups, 204

boxing, 201
constant expression, 203
dynamic, 202
enumerations, 198
identity, 196
null literal, 199
nullable, 198–199
numeric, 197
operator for, 575–578
standard, 213
type parameters, 203–204
user-defined, 204, 217

implicit keyword, 575–578
Implicitly typed array creation

expressions, 313
Implicitly typed iteration variables, 423, 427
Implicitly typed local variable declarations,

408–409
Importing types, 461–463
In-line methods, 61
In property, 553
Inaccessible members, 107

828

<include> tag n Interface sets

<include> tag, 742, 745–746
Increment operators

for pointers, 725
postfix, 303–305
prefix, 328–330

IndexerName Attribute, 707
Indexers

access to, 253, 300–301
declarations, 566–571
example, 42
in ID string format, 758
interface, 642
member names reserved for, 506
overview, 46–47
signatures in, 119

IndexOf method, 39–40
IndexOutOfRangeException class, 300, 685
Indices, array, 53
Indirection, pointer, 716, 721
Inference, type, 259–270
Infinity values, 147–148
Inheritance, 22

from base interfaces, 637–638
in classes, 25–26, 105, 494–496
in classes vs. structs, 612
hiding through, 102, 125–127, 495
interface, 640, 657–659
parameters, 689
properties, 550

Initializers
array, 55, 630–632
field, 515–516, 616–617
in for statements, 422
instance constructors, 580–581
stack allocation, 736–738
variables, 516–519, 581

Initially assigned variables, 169, 177
Initially unassigned variables, 169, 177
Inlining process, 552
InnerException property, 683
Input production, 67
Input-safe types, 636
Input types in type inference, 263
Input-unsafe types, 636

Instance constructors
declarations, 579–580
default, 584
description, 42
execution, 582–584
initializers, 580–581
invocation, 254
optional parameters, 585–586
private, 584–585

Instance events, 565
Instance fields

class, 510–511
example, 26–27
initialization, 515–516, 519
read-only, 511–513

Instance members
class, 496–498
description, 22
protected access for, 113–116

Instance methods, 28, 33–34, 531
Instance properties, 546
Instance types, 492
Instance variables, 170–171, 510–511
Instances, 21–22

attribute, 698–699
type, 153

Instantiation
delegates, 676–677
local variables, 370–373

int type, 9–10
Int64BitsToDouble method, 334
Integers

addition, 338
comparison operators, 346
division, 334
literals, 76–78
logical operators, 356
multiplication, 332
negation, 327
remainder, 336
in struct example, 619–621
subtraction, 340

Integral types, 9–10, 145–146
interface keyword, 634
Interface sets, 480

829

Interfaces n Just-In-Time (JIT) compiler

Interfaces, 4, 633
base, 637–638
bodies, 638
declarations, 633–638
enumerable, 592
enumerator, 592
generic, 650–651
implementations, 645–647

abstract classes, 661
base classes, 475
explicit member, 647–650
generic methods, 652–653
inheritance, 657–659
mapping, 653–656
reimplementation, 659–660
uniqueness, 650–652

inheritance from, 637–638
members, 106, 639–640

access to, 642–644
events, 642
fully qualified names, 645
indexers, 642
methods, 640–641
properties, 641–642

modifiers, 634
overview, 56–57
partial types, 484–485
struct, 609
syntactic grammar, 805–806
types, 8, 11–13, 155
variant type parameter lists, 635–637

Intermediate Language (IL) instructions, 5
Internal accessibility, 23, 107
Interning, 84
Interoperation attributes, 707
IntToString method, 737–738
IntVector class, 574
InvalidCastException class, 159, 210, 355, 685
InvalidOperationException class, 152, 600
Invariant meaning in blocks, 281–283
Invariant type parameters, 635
Invocable members, 247–248
Invocation

delegates, 298, 677–680
function members, 276–278

instance constructors, 254
methods, 251
operators, 254

Invocation expressions, 187, 288–298
Invocation lists, 675, 677
Invoked members, 247–248
IronPython, 236
is operator, 352–353
isFalse property, 622
IsNan method, 334
isNull property

DBBool, 622
DBInt, 620

ISO/IEC 23270 standard, 1
IStringList interface, 639
isTrue property, 622
Iteration statements, 420

do, 421
for, 422–423
foreach, 423–429
while, 420–421

Iteration variables in foreach, 423–424
Iterators, 592

blocks, 403
enumerable interfaces, 592
enumerable objects for, 596–597
enumerator interfaces, 592
enumerator objects for, 593–596
implementation example, 597–603
yield type, 592

ITest interface, 119–120
ITextBox interface, 56, 638, 645–647, 650, 656

J
Jagged arrays, 54
JIT (Just-In-Time) compiler, 5
join clauses, 380–384
Jump statements

break, 431
continue, 432
goto, 433–434
overview, 429–431
return, 435
throw, 436–437

Just-In-Time (JIT) compiler, 5

830

keyValuePair struct n Local variables

K
KeyValuePair struct, 613
Keywords

lexical grammar, 770
list, 74–75

L
Label class, 551–552
Label declaration space, 102–103
Labeled statements

for goto, 433–434
overview, 406–407
for switch, 181, 415–419

Left-associative operators, 239
Left shift operator, 343–344
Length of arrays, 53, 625, 631–632
Less than signs (<)

assignment operators, 389
comparisons, 345
pointers, 726
shift operators, 343–344

let clauses, 380–384
Lexical grammar, 67, 767

comments, 69–70, 768
identifiers, 769–770
keywords, 770
line terminators, 68–69, 767
literals, 771–773
operators and punctuators, 773
preprocessing directives, 774–777
tokens, 769
unicode character escape sequences, 769
whitespace, 70–71, 769

Lexical structure, 65
grammars, 65–67

lexical. See Lexical grammar
syntactic. See Syntactic grammar

lexical analysis, 67–71
preprocessing directives, 85–87

conditional compilation, 87, 90–93
declaration, 88–89
diagnostic, 93–94
line, 95–96
pragma, 96–97

preprocessing expressions, 87–88
region, 94

programs, 65
tokens, 71

identifiers, 72–74
keywords, 74–75
literals, 76–84
operators, 84–85
unicode character escape sequence,

71–72
Libraries, 4, 541
Lifted conversions, 215
Lifted operators, 246–247
#line directive, 94
#line default directive, 96
Line directives, 95–96
Line-feed characters, 69
#line hidden directive, 96
Line-separator characters, 69
Line terminators, 68–69, 767
List class, 40–50
<list> tag, 746–747
ListChanged method, 48
Lists, statement, 403–404
Literals

boolean, 76
character, 80–81
in constant expressions, 395
conversions, 199
defined, 76
integer, 76–78
lexical grammar, 771–773
null, 84
in primary expressions, 279
real, 78–79
simple values, 144
string, 81–84

Local constant declarations, 17, 411–412
Local variable declaration space, 103
Local variables

declarations, 17, 407–411
instantiation, 370–373
in methods, 32–33
scope, 124–125
working with, 173–175

831

lock statement n Methods

lock statement
definite assignment rules, 186
example, 21
overview, 443–445

Logical operators
AND, 15
for boolean values, 357
conditional, 358–360
for enumerations, 356–357
for integers, 356
negation, 327–328
OR, 15
overview, 356–357
shift, 344
XOR, 15

LoginDialog class, 561
long type, 9–10
Lookup, member, 247–250
Lower-bound type inferences, 264–265
lvalues, 193

M
Main method

for startup, 99–100
for static constructors, 587–588

Mappings
interface, 653–656
pointers and integers, 719

Math class, 334
Members, 4, 22–23, 105

access to, 23, 107, 496
accessibility domains, 110–113
constraints, 116–117
declared accessibility, 107–109
interface, 642–644
pointer, 721–722
in primary expressions, 283–288
protected, 113–116

accessibility of, 23–24
array, 106, 628
class, 106, 490–492

access modifiers for, 496
constituent types, 496
constructed types, 493–494
inheritance of, 494–496

instance types, 492
nested types, 498–504
new modifier for, 496
reserved names for, 504–506
static and instance, 496–498

delegate, 107
enumeration, 106, 665–668
function. See Function members
inherited, 102, 105, 125–127, 494–496
interface, 106, 639–640

access to, 642–644
events, 642
explicit implementations, 57, 647–650
fully qualified names, 645
indexers, 642
methods, 640–641
properties, 641–642

lookup, 247–250
namespaces, 105, 463–464
partial types, 485
pointer, 721–722
struct, 105–106, 609

Memory
automatic management of, 132–137, 176
dynamic allocation of, 738–740

Memory class, 738–740
Memory leaks from events, 561
Message property, 683
Metadata, 5
Method group conversions

implicit, 204
overview, 226–229
type inference, 269

Methods, 4, 28
abstract, 35, 539–540
bodies, 32–33, 544
conditional, 701–703
declarations, 520–522
extension, 541–543
external, 539–540
in ID string format, 754, 757–758
instance, 28, 33–34, 531
interface, 640–641
invocations, 251, 288–298
in List, 42

832

Methods n Nested members

Methods (continued)
overloading, 38–40
overriding, 35, 535–537
parameters, 29–32

arrays, 528–531
declarations, 522–525
output, 526–527
reference, 525–526
value, 525

partial, 486–490, 541
sealed, 537–538
static, 28, 33–34, 531
virtual, 35–38, 532–534

Minus (-) operator, 327
Minus signs (-)

assignment operators, 389
decrement operator, 303–305, 328–330
pointers, 716, 721–722, 725
subtraction, 340–342

Modifiers
class, 467–471
enums, 664–665
interface, 634
partial types, 483
struct, 609

Modulo operator, 336–337
Most derived method implementation,

532–533
Most encompassing types, 216
Most specific operators, 215
Move method, 760–761
Moveable variables

described, 716–717
fixed addresses for, 728–733

MoveNext method, 426
enumerator objects, 451, 593–595
Stack, 599
Tree, 603–604

Multi-dimensional arrays, 11, 54, 625,
631–632

Multi-use attribute classes, 688
Multiple inheritance, 56–57, 644
Multiple statements, 402–403
Multiplication operator, 15, 332–333
Multiplicative operators, 15
Multiplier class, 60–61

Multiply method, 60
Mutual-exclusion locks, 443–445

N
\n escape sequence, 81
Named constants. See Enumerations and

enum types
Named parameters, 690–691
Names

anonymous types, 318–319
binding, 490
fully qualified, 131

interface members, 645
nested types, 499

hiding, 124–127
methods, 521
reserved, 504–506
simple

in primary expressions, 279–283
and type names, 286–287

variables, 170
namespace keyword, 454
Namespaces, 3–4, 453

aliases, 456–461, 464–466
compilation units, 453–454
declarations, 103, 454–456
using directives in, 457–463
fully qualified names in, 131
in ID string format, 754
members, 105, 463–464
overview, 127–130
purpose, 104
syntactic grammar, 793–794
type declarations, 464

NaN (Not-a-Number) value
causes, 147, 149
exceptions, 682
in floating point comparisons, 347
payload results, 333–334

Negation
logical, 327–328
numeric, 327

Nested array initializers, 631–632
Nested blocks, 104
Nested classes, 468
Nested members, 110–111

833

Nested scopes n objects

Nested scopes, 120
Nested types, 498–499

accessibility, 499–503
description, 464
fully qualified names for, 499
in generic classes, 503
member access contained by, 502–503
partial, 482
this access to, 500–501

Nesting
aliases, 460
with break, 431
comments, 70
hiding through, 124–125, 500
object initializers, 308

New line escape sequence, 81
new modifier

class members, 496
classes, 468
delegates, 672
interface members, 640
interfaces, 634

new operator
anonymous objects, 317–319
arrays, 53, 55, 312–315
collection initializers, 310–312
constructors, 43
delegates, 315–317
hidden methods, 126
object initializers, 307–310
objects, 305
structs, 52

No fall through rule, 416–417
No side effects convention, 552
Non-nested types, 498
Non-nullable value type, 152
Non-virtual methods, 35
Nonterminal symbols, 65–66
Normal form function members, 272
Normalization Form C, 73
Not-a-Number (NaN) value

causes, 147, 149
exceptions, 682
in floating point comparisons, 347
payload results, 333–334

Notation, grammar, 65–67

NotSupportedException class, 593
Null coalescing operator, 360–361
Null field for events, 48
Null literals, 84, 152, 199
Null pointers, 714
Null-termination of strings, 733
Null values

for array elements, 54
in classes vs. structs, 613
escape sequence for, 81
garbage collector for, 134

Nullable boolean logical operators, 357
Nullable types, 11–12

contents, 13
conversions

explicit, 207–208
implicit, 198–199
operators, 353–355

description, 8
equality operators with, 352
overview, 151–152

NullReferenceException class
array access, 300
with as operator, 355
delegate creation, 316
delegate invocation, 678
description, 685
foreach statement, 427
throw statement, 436
unboxing conversions, 159

Numeric conversions
explicit, 205–207
implicit, 197

Numeric promotions, 244–246

O
object class, 141, 154
Object variables, 12–13
Objects

creation expressions for
definite assignment rules, 187
new operator, 305–307

deallocating, 22
description, 139
initializers, 307–310
as instance types, 153

834

obsolete attribute n Paragraph-separator characters

Obsolete attribute, 705–706
Octal literals, 77
OnChanged method, 42, 48
One-dimensional arrays, 54
Open types, 162
Operands, 13, 238
Operation class, 35–36
Operator notation, 241
Operators, 13, 42, 49, 84–85

arithmetic. See Arithmetic operators
assignment operators, 16, 389

compound, 393–394
event, 394–395
simple, 390–393

binary. See Binary operators
conditional, 361–363
conversion, 575–578, 759
declaration, 571–573
enums, 668–669
in ID string format, 759
invocation, 254
lexical grammar, 773
lifted, 246–247
logical, 355–357
null coalescing, 360–361
numeric promotions, 244–246
operator !=, 49
operator ==, 49–50
overloading, 240–243
overview, 238
precedence and associativity, 238–240
relational. See Relational operators
shift, 343–344
type-testing, 352–353
unary. See Unary operators

Optional parameters, 522, 585–586
Optional symbols in grammar notation, 66
OR operators, 15
Order

declaration, 103
execution, 137–138

orderby clauses, 375, 380–384
Out property, 553
Outer variables, 369–373

OutOfMemoryException class, 313, 316,
339, 685

Output parameters, 30, 173, 526–527
Output-safe types, 636
Output types in type inference, 263
Output-unsafe types, 636
Overflow checking context, 322–325, 443
OverflowException class

addition, 338
arrays, 313
checked operator, 323–324
decimal type, 150
description, 686
division, 335
increment and decrement operators, 329
multiplication, 332–333
remainder operator, 336

Overload resolution
anonymous functions, 368
function members, 270–275

Overloaded operators, 13
purpose, 238
shift, 343

Overloading
indexers, 47
methods, 38–40
operators, 240–243
signatures in, 38, 117–120

Overridden base methods, 535
Override events, 566
Override indexers, 567
Override methods, 535–537
Overriding

event declarations, 566
methods, 35
property accessors, 46, 557
property declarations, 557–558

P
Padding for pointers, 727
Paint method, 56, 539
Pair class, 24
Pair-wise declarations, 575
<para> tag, 748
Paragraph-separator characters, 69

835

<param> tag n Positional parameters

<param> tag, 742, 748
Parameter lists, variant type, 635–637
Parameters

anonymous functions, 365
arrays, 528–531
attributes, 690–691
entry points, 99
function member invocations, 255–256
indexers, 46–47, 567–568
instance constructors, 581, 585–586
methods, 29–32

declaration, 522–525
types, 524–531

optional, 585–586
output, 173, 526–527
in overloading, 117–118
reference, 172, 525–526
type. See Type parameters
value, 171, 525

<paramref> tag, 749
params modifier, 31–32, 528–531
Parentheses ()

anonymous functions, 365
in grammar notation, 66
in ID string format, 755
for operator precedence, 240

Parenthesized expressions, 283
Partial methods, 541
partial modifier, 471

interfaces, 634
structs, 609
types, 481–482

Partial types, 471
attributes, 482–483
base classes, 484
base interfaces, 484
members, 485
methods, 486–490
modifiers, 483
name binding, 490
overview, 481–482
type parameters and constraints, 483–484

Patterns, query expression, 387–389
Percent signs (%)

assignment operators, 389
remainder operator, 336–337

Periods (.)
base access, 302
members, 105

<permission> tag, 749
Permitted user-defined conversions, 214–215
Phases, type inference, 262
Plus (+) operator, 326
Plus signs (+)

addition, 337–340
assignment operators, 389
increment operator, 303–305, 328–330
pointers, 725

Point class
base class, 25
coordinates, 308
declaration, 22
instantiated objects, 51
properties, 554
source code, 760–762

Point struct, 611–612
assignment operators, 391–392
default values, 613
field initializers, 616–618
instantiated objects, 51–52

Point3D class, 25
Pointers

arithmetic, 725–726
arrays, 719–720
conversions, 717–720
element access, 723
in expressions, 720–727
for fixed variables, 728–733
function, 671
indirection, 716, 721
member access, 721–722
operators

address-of, 724–725
comparison, 726
increment and decrement, 725
sizeof, 727

types, 713–716
unsafe, 7, 709
variables with, 716–717

Polymorphism, 22, 26
Pop method, 4–5
Positional parameters, 690–691

836

Postfix increment and decrement operators n Quotes (',") for characters

Postfix increment and decrement operators,
303–305

#pragma directive, 96
#pragma warning directive, 96–97
Precedence of operators, 13, 238–240
Prefix increment and decrement operators,

328–330
Preprocessing directives

conditional compilation, 87, 90–93
declaration, 88–89
diagnostic, 93–94
lexical grammar, 774–777
line, 95–96
overview, 85–87
pragma, 96–97
preprocessing expressions, 87–88
region, 94

Preprocessing expressions, 87–88
Primary expressions

anonymous method, 326
checked and unchecked operators,

322–325
default value, 325
element access, 298–301
forms of, 278–279
invocation, 288–298
literals in, 279
member access, 283–288
new operator in

anonymous objects, 317–319
arrays, 312–315
collection initializers, 310–312
delegates, 315–317
object initializers, 307–310
objects, 305–307

parenthesized, 283
postfix increment and decrement

operators, 303–305
simple names in, 279–283
this access in, 301–302
typeof operator, 319–322

Primary operators, 14
PrintColor method, 58
Private accessibility, 23–24, 107
Private constructors, 584–585
Productions, grammar, 65

Program class, 47, 602–603, 614–615
Program structure, 4–6
Programs, 4, 65
Projection initializers, 319
Promotions, numeric, 244–246
Propagation, exception, 437
Properties, 4

access to, 252
accessibility, 555–556
automatically implemented, 553–555
declarations, 545–546
example, 42
in ID string format, 754, 758
indexers, 568
interface, 641–642
member names reserved for, 504–505
overview, 43–46
static and instance, 546

Property accessors, 46
declarations, 547
overview, 547–553
types of, 553

Protected accessibility, 23–24
declared, 107
instance members, 113–116
internal, 23–24, 107

Public accessibility, 23–24, 107
Punctuators

lexical grammar, 773
list of, 84–85

PurchaseTransaction class, 92
Push method, 4

Q
Qualifiers, alias, 464–466
Query expressions

ambiguities in, 376
overview, 373–375
patterns, 387–389
translations in, 376–387

Question marks (?)
null coalescing operator, 360–361
ternary operators, 191, 361–362

Quotes (',") for characters, 80–81

837

\r escape sequence n Right shift operator

R
\r escape sequence, 81
Range variables, 375, 379
Rank of arrays, 54, 625–626
Reachability

blocks, 401
do statements, 421
for statements, 424
labeled statements, 406–407
overview, 400–402
return statements, 435
statement lists, 403
throw statements, 437
while statements, 420–421

Read-only fields, 27–28, 511–513
Read-only properties, 45, 549–550, 554
Read-write properties, 45, 549–550
readonly modifier, 27, 511
ReadOnlyPoint class, 554
Reads, volatile, 514
Real literals, 78–79
ReAlloc method, 739
Recommended tags for comments, 743–753
Rectangle class, 308–309
Rectangle struct, 392
ref modifier, 30
Reference conversions

explicit, 208–210
implicit, 199–201

Reference parameters, 29–30, 172, 525–526
Reference types, 6–8, 152–153

array, 53, 155
class, 153–154
constraints, 476
delegate, 155
dynamic, 154
equality operators, 349–351
interface, 155
object, 154
string, 154

References, 139
parameter passing by, 29–30
variable, 192–193

Referencing static class types, 470–471
Referent types, pointer, 713

Region directives, 94
Regular string literals, 81–82
Reimplementation, interface, 659–660
Relational operators

booleans, 348
decimal numbers, 348
delegates, 351–352
descriptions, 15
enumerations, 348
integers, 346
lifted, 247
overview, 344–345
reference types, 349–351
strings, 351

Release semantics, 514
Remainder operator, 336–337
<remarks> tag, 750
remove accessors

attributes, 695
events, 49, 564

RemoveEventHandler method, 565
Removing delegates, 342
Required parameters, 522
Reserved attributes, 699–700

AttributeUsage, 700
Conditional, 701–705
Obsolete, 705–706

Reserved names for class members, 504–506
Reset method, 604
Resolution

function members, 270–275
operator overload, 38, 243

Resources, using statement for, 445–449
return statement

definite assignment rules, 182–183
example, 19
methods, 33
overview, 435
with yield, 449–452

Return type
entry points, 100
inferred, 267–269
methods, 28, 521–522

<returns> tag, 750
Right-associative operators, 239
Right shift operator, 343–344

838

Rounding n Single-use attribute classes

Rounding, 150
Rules for definite assignment, 178–192
running state for enumerator objects, 593–596
Runtime processes

argument list evaluation, 257–259
array creation, 313
attribute instance retrieval, 699
binding, 235
delegate creation, 316
function member invocations, 276–277
increment and decrement operators, 304
object creation, 306–307
prefix increment and decrement

operations, 329
unboxing conversions, 160

Runtime types, 35, 532
RuntimeWrappedException class, 439

S
sbyte type, 9
Scopes

aliases, 459–460
attributes, 694
vs. declaration space, 101
local variables, 410
for name hiding, 124–127
overview, 120–124

Sealed accessors, 557
Sealed classes, 469, 474–475
Sealed events, 566
Sealed indexers, 567
Sealed methods, 537–538
sealed modifier, 469, 537–538
Sections for attributes, 692
<see> tag, 751
<seealso> tag, 751–752
select clauses, 375, 378, 384–385
Selection statements, 413

if, 413–414
switch, 414–419

Semicolons (;)
accessors, 548
interface identifiers, 642
method bodies, 544
namespace declarations, 454

Sequences in query expressions, 375
set accessors

for attributes, 695
defined, 45
description, 557
working with, 547–550

SetItems method, 56
SetNextSerialNo method, 34
SetText method, 56
Shape class, 539
Shift operators

described, 15
overview, 343–344

Short-circuiting logical operators, 358
short type, 9–10, 144
ShowHelp method, 62
Side effects

with accessors, 552
and execution order, 137–138

Signatures
anonymous functions, 365–366
indexers, 568
methods, 28, 521
operators

binary, 575
conversion, 578
unary, 573

in overloading, 38, 117–120
Signed integrals, 8–9
Simple assignment

definite assignment rules, 188
operator, 389
overview, 390–393

Simple expression assignment rules, 186
Simple names

in primary expressions, 279–283
and type names, 286–287

Simple types, 8, 140–144
Single-dimensional arrays

defined, 625
example, 54
initializers, 631

Single-line comments, 69–70, 741–742
Single quotes (') for characters, 80–81
Single-use attribute classes, 688

839

Sizeof method n Strings

SizeOf method, 739
sizeof operator, 727
Slashes (/)

assignment operators, 389
comments, 69–70, 741–742
division, 334–335

Slice method, 542–543
Source files

compilation, 6
described, 65
Point class, 760–762

Source types in conversions, 215
SplitPath method, 527
SqlBoolean struct, 621
SqlInt32 struct, 621
Square brackets ([])

arrays, 11, 54
attributes, 692
indexers, 46
pointers, 716, 723

Square method, 60
Squares class, 33
Stack

allocation, 736–738
values on, 7

Stack class, 4–5, 597–598
stackalloc operator, 716, 736–738
StackOverflowException class, 686, 737
Standard conversions, 213–214
Startup, application, 99–100
Statement lists, 403–404
Statements, 399–400

blocks in, 402–404
checked and unchecked, 443
declaration, 407–412
definite assignment rules, 179
empty, 404–406
end points and reachability, 400–402
expression, 17, 179, 412–413
in grammar notation, 66
iteration, 420

do, 421
for, 422–423
foreach, 423–429
while, 420–421

jump, 429–431
break, 431
continue, 432
goto, 433–434
return, 435
throw, 436–437

labeled, 406–407
lock, 443–445
overview, 16–21
selection, 413

if, 413–414
switch, 414–419

syntactic grammar, 788–793
try, 438–443
using, 445–449
yield, 449–452

States, definite assignment, 178
Static binding, 234–235
Static classes, 470–471
Static constructors, 42

in classes vs. structs, 619
overview, 586–589

Static events, 565
Static fields, 26, 510–511

for constants, 512–513
initialization, 515–519
read-only, 511–513

Static members, 22, 496–498
Static methods, 28

garbage collection, 133
vs. instance, 33–34, 531

static modifier, 470–471
Static properties, 546
Static variables, 170, 510–511
Status codes, termination, 100
String class, 39–40, 154
string type, 9, 154
StringFromColor method, 667
StringListEvent method, 639
Strings

concatenation, 339
equality operators, 351
literals, 81–84
null-termination, 733
switch governing type, 418

840

Structs n Tokens

Structs
assignment, 612
boxing and unboxing, 613–616
vs. classes, 610–619
constructors, 617–618
declarations, 608–609
default values, 612–613
destructors, 619
examples

database boolean type, 622–623
database integer type, 619–621

field initializers in, 616–617
inheritance, 612
instance variables, 171
interface implementation by, 57
members, 105–106, 609
overview, 50–53, 607
syntactic grammar, 803–804
this access in, 616
types, 6, 8, 10–11, 143
value semantics, 610–612

Subtraction operator, 340–342
Suffixes, numeric, 76–79
<summary> tag, 742, 752
SuppressFinalize method, 101
suspended state, 593–596
Swap method, 29
switch statement

definite assignment rules, 180
example, 18
overview, 414–419
reachability, 402

Syntactic grammar, 67
arrays, 804–805
attributes, 807–809
basic concepts, 777
classes, 794–803
delegates, 807
enums, 806–807
expressions, 779–788
interfaces, 805–806
namespaces, 793–794
statements, 788–793
structs, 803–804

types, 777–779
variables, 779

System-level exceptions, 682
System namespace, 143

T
\t escape sequence, 81
Tab escape sequence, 81
Tags for comments, 743–753
Target types in conversions, 215
Targets

goto, 433–434
jump, 430

Terminal symbols, 65–66
Termination, application, 100–101
Terminators, line, 68–69, 767
Ternary operators, 238, 361–363
TextReader class, 449
TextWriter class, 449
this access

classes vs. structs, 616
indexers, 46
instance constructors, 585–586
nested types, 500–501
overview, 301–302
properties, 546
static methods, 33

Thread-safe delegates, 677
Three-dimensional arrays, 54
Throw points, 437
throw statement

definite assignment rules, 182
example, 20
for exceptions, 683
overview, 436–437

Tildes (~)
bitwise complement, 328
conversion, 759

Time, binding, 235
ToInt32 method, 542
Tokens, 71

identifiers, 72–74
keywords, 74–75

841

Tokens n Unbound types

lexical grammar, 769
literals, 76–84
operators, 84–85
unicode character escape sequence, 71–72

ToString method, 339
and boxing, 614–615
DBBool, 623
DBInt, 621
Point, 761–762

Translate method, 761
Translations in query expressions, 376–387
Transparent identifiers in query expressions,

377, 385–387
Tree class, 602–603
Tree types, expression, 165–166
Trig class, 585
True value, 76
try statement

definite assignment rules, 183–185
example, 20
for exceptions, 684–685
with goto, 434
overview, 438–443

TryParse method, 527
Two-dimensional arrays

allocating, 54
initializers, 631

Type casts, 59
Type inference, 259–270
Type names, 127–130

fully qualified, 131
identical, 286–287

Type parameters, 139
class declarations, 24–25, 471–472
constraints, 475–481
conversions, 211–212
implicit conversions, 203–204
overview, 164–165
partial types, 483–484

Type-safe design, 1
Type testing operators

as, 353–355
described, 15
is, 352–353

TypeInitializationException class, 684, 686
typeof operator

pointers with, 713
primary expressions, 319–322

<typeparam> tag, 753
<typeparamref> tag, 753
Types

aliases for, 456–461
attribute parameter, 691
boxing and unboxing, 156–158
constructed, 160–164, 493–494
declarations, 10, 464
dynamic, 166–167
in ID string format, 754–756
importing, 461–463
instance, 492
nested, 464, 498–504
nullable. See Nullable types
overview, 6–13, 139
partial. See Partial types
pointer. See Pointers
reference. See Reference types
syntactic grammar, 777–779
underlying, 58–59, 151
value. See Value types

U
uint type, 10
ulong type, 10
Unary operators, 326

cast expressions, 330–331
described, 14, 238
in ID string format, 759
lifted, 246
minus, 327
numeric promotions, 244
overload resolution, 242–243
overloadable, 240–241
overview, 573–574
plus, 326
prefix increment and decrement, 328–330

Unassigned variables, 177
Unbound types, 160, 162

842

Unboxing conversions n Value types

Unboxing conversions
described, 210
overview, 158–160

Unboxing operations
in classes vs. structs, 613–616
example, 12

unchecked statement
definite assignment rules, 179
example, 20
overview, 443
in primary expressions, 322–325

#undef directive, 87–89
Undefined conditional compilation

symbols, 87
Underlying types

enums, 58–59, 664
nullable, 151

Underscore characters (_) for identifiers,
72–74

Unicode characters
escape sequence, 71–72
lexical grammar, 67, 769
for strings, 9

Unicode Normalization Form C, 73
Unified type system, 1
Uniqueness

aliases, 466
interface implementations, 650–652

Unmanaged types, 713
Unreachable statements, 400
Unsafe code, 709

contexts in, 710–713
dynamic memory allocation, 738–740
fixed-size buffers, 733–736
fixed statement, 728–733
grammar extensions for, 809–812
pointers

arrays, 719–720
conversions, 717–720
in expressions, 720–727
support for, 7
types, 713–716

stack allocation, 736–738
unsafe modifier, 710–713

Unsigned integrals, 8–10
Unwrapping non-nullable value types, 152
Upper-bound type inferences, 265–266
User-defined conversions, 214

evaluation, 215–216
explicit, 213, 218–219
implicit, 204, 217
lifted operators, 215
overview, 575–578
permitted, 214–215

User-defined operators
candidate, 243
conditional logical, 359–360

ushort type, 10
Using directives

for aliases, 458–461
definite assignment rules, 185–186
example, 21
for importing types, 461–463
overview, 445–449, 457
purpose, 3

V
\v escape sequence, 81
Value method, 620
Value parameters, 29, 171, 525
Value property, 152
<value> tag, 752
Value types

bool, 150–151
constraints, 476
contents, 13
decimal, 149–150
default constructors, 141–142
described, 8
enumeration, 151
floating point, 146–149
integral, 145–146
nullable, 151–152
overview, 140–141
simple, 143–144
storing, 7
struct, 143

843

Values n Write method

Values
array types, 626
classes vs. structs, 610–612
default, 141

classes vs. structs, 612–613
initialization, 175–176

enums, 668–669
expressions, 233
fields, 510–511
local constants, 412
variables, 169, 175–176, 408–409

ValueType class, 141, 612
VariableReference class, 35–36
Variables, 169

anonymous functions, 369–373
array elements, 171
declarations, 175, 407–411
default values, 175–176
definite assignment. See Definite

assignment
fixed addresses for, 728–733
fixed and moveable, 716–717
initializers, 516–519, 581
instance, 170–171, 510–511
local, 173–175
in methods, 32–33
names, 170
output parameters, 173
overview, 12–13
query expressions, 375, 379
reference parameters, 172
references, 192–193
scope, 124–125, 410
static, 170, 510–511
syntactic grammar, 779
value parameters, 171

Variant type parameter lists, 635–637
Verbatim identifiers, 74
Verbatim string literals, 81–83
Versioning

of constants, 512–513
described, 1

Vertical bars (|)
assignment operators, 389
definite assignment rules, 189–190

logical operators, 355–359
preprocessing expressions, 87

Vertical tab escape sequence, 81
Vexing exceptions, 686
Viewers, documentation, 741
Virtual accessors, 46, 557–559
Virtual events, 566
Virtual indexers, 567
Virtual methods

description, 236
overview, 35–38
working with, 532–534

Visibility in scope, 120, 124
void type and values

entry point method, 100
events, 564
pointers, 714
return, 28, 33
with typeof, 320

Volatile fields, 514–515

W
WaitForPendingFinalizers method, 136
#warning directive, 94
warnings, preprocessing directives,

96–97
where clauses

query expressions, 380–384
type parameter constraints, 163, 476

while statement
definite assignment rules, 181
example, 18
overview, 420–421

Whitespace
in comments, 742
defined, 70–71
in ID string format, 754
lexical grammar, 769

Win32 component interoperability, 707
workCompleted method, 47
Worker class, 47–48
Wrapping non-nullable value types, 152
Write method, 31

844

Write-only properties n zero values

Write-only properties, 45, 549–550, 554
WriteLine method, 3, 31, 136
Writes, volatile, 514

X
\x escape sequence, 80
XAttribute class, 696–697
XML (Extensible Markup Language),

741–742, 762–765
XOR operators, 15

Y
yield statement

definite assignment rules, 186
example, 20
overview, 449–452
yield break, 594–595
yield return, 594–595

Yield type iterators, 592

Z
Zero values, 146–148

	Contents
	Foreword
	Preface
	1 Introduction
	1.1 Hello, World
	1.2 Program Structure
	1.3 Types and Variables
	1.4 Expressions
	1.5 Statements
	1.6 Classes and Objects
	1.7 Structs
	1.8 Arrays
	1.9 Interfaces
	1.10 Enums
	1.11 Delegates
	1.12 Attributes

	4 Types
	4.1 Value Types
	4.2 Reference Types
	4.3 Boxing and Unboxing
	4.4 Constructed Types
	4.5 Type Parameters
	4.6 Expression Tree Types
	4.7 The dynamic Type

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

