

Praise for Software Testing with Visual Studio 2010

“Jeff Levinson has written a remarkable book. Remarkable because it distills a mas-
sive amount of information into a clear, readable book that will teach you how to
best use the Visual Studio 2010 Testing Tools. Remarkable because it shows not
just how to use the strengths of the tools, but also how to work around any of their
weaknesses. Remarkable because Jeff walks you through the implementation
strategies that can bring real business value, not just to the testing team, but also
to test the entire organization. If you are implementing the test tools, this book
belongs on your desk. My dog-eared and marked-up copy sits on mine.”

—Steven Borg, Owner, Northwest Cadence

“Testing—and testers—don’t get enough respect. By providing a great mix of the
what, why, and how of testing with Visual Studio 2010, this book will help change
that. More important, it will help make the software we use better.”

—David Chappell, Principal, Chappell & Associates

“Jeff has once again written a great book, filled with nice nuggets of testing wis-
dom. A great addition to your testing and ALM library for anyone using Visual
Studio 2010 and Team Foundation Server 2010.”

—Mickey Gousset, Microsoft ALM MVP and Senior
Technical Developer, Infront Consulting Group

“Jeff’s book is by far the most in-depth investigation of the Test features in Visual
Studio ALM I have seen. His insight and experience help the readers understand
the impact of poor testing and how they can improve the quality of their software.
I particularly liked the obvious real-world understanding of the realities of soft-
ware testing when applied in practice and the effort by the author to show the
readers the ways around those realities.”

—Martin Hinshelwood, Visual Studio ALM MVP
and Visual Studio ALM Ranger

“Software Testing defines much more than the usage of a testing tool; it shows the
practical way in which we test at Microsoft Corporation. Additionally, this book
provides the definitive process to using Microsoft Test Manager with the rigor
that we test here at Microsoft.”

—Randy Miller, ALM Architect, Microsoft

“Jeff provides the rare combination of deep, insider knowledge of Microsoft’s 2010
testing tools coupled with pragmatic details about how to plan, manage, and exe-
cute testing in the real world.”

—Mark Mydland, Director of Test, Visual Studio
Ultimate, Microsoft

“With Jeff’s extensive knowledge with Microsoft’s ALM offering, this book will get
you started on the right track with all the new testing capabilities offered by the
Visual Studio 2010 suite. Whether you are a new or veteran tester, the personal
insights the author brings to the testing topic are very interesting and useful….”

—Etienne Tremblay, Microsoft ALM MVP

Software Testing with
Visual Studio® 2010

The award-winning Microsoft .NET Development Series was

established in 2002 to provide professional developers with the

most comprehensive, practical coverage of the latest .NET technologies.

Authors in this series include Microsoft architects, MVPs, and other

experts and leaders in the field of Microsoft development technologies.

Each book provides developers with the vital information and critical

insight they need to write highly effective applications.

Visit informit.com/msdotnetseries for a complete list of available products.

Microsoft
®

 .NET Development Series

Jeff Levinson

Software Testing
with Visual
Studio® 2010

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris

Madrid • Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States
and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Studio, Visual Basic, Visual C#, and Visual C++ are either registered trademarks
or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Levinson, Jeff.
Software testing with Visual studio 2010 / Jeff Levinson.

p. cm.
Includes index.
ISBN 978-0-321-73448-8 (pbk. : alk. paper) 1. Computer software—Testing—Automation. 2. Microsoft

Visual studio. I. Title.
QA76.76.T48L48 2010
005.1’4—dc22

2010038104

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-73448-8
ISBN-10: 0-321-73448-3
Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville,
Indiana.

First printing February 2011

To my wife, Tami, and my daughter, Caitlin, who supported

me and had to deal with me for the last year.
And my new son, Sean: I hope you start sleeping through the night soon.

This page intentionally left blank

Contents at a Glance

Foreword xvii
Preface xxi
Acknowledgments xxix
About the Author xxxi

1 State of Testing 1

2 Software Quality and Testing Overview 13

3 Planning Your Testing 29

4 Executing Manual Tests 71

5 Resolving Bugs 107

6 Automating Test Cases 135

7 Executing Automated Test Cases 183

8 Lab Management 209

9 Reporting and Metrics 239

ix

This page intentionally left blank

Contents

Foreword xvii
Preface xxi
Acknowledgments xxix
About the Author xxxi

1 State of Testing 1
Software Testing Challenges 1
The Need for Testers 3
A Different Approach 5

Fixing Communication 5

Increasing Project Visibility 6

What Are the Tools Designed to Do? 7

Metrics 10
Citations 12

2 Software Quality and Testing Overview 13
Software Quality 13

Requirements 14

Business Value 14

Expectations 15

Nonfunctional Requirements 15

Where Do You Build Quality? 17

Process and Quality 19

xi

Software Testing 19
The Testing Mindset 20

Software Testing Strategies 21

Types of Software Testing 22

Test Management 27

After the Product Is Shipped or Deployed 27

3 Planning Your Testing 29
Microsoft Test Manager 30

Test Plans 36

Properties 38

Contents 43

Adding Suites and Test Cases to Your Plan 46

Testing Configurations 48
Managing Test Configurations 49

Assigning Test Configurations 51

Assigning Testers 53
Test Case Planning Workflow 55

Analysis and Initial Design 56

Construction 61

User Acceptance Testing 62

Common Scenarios 64
Scheduling and Tracking Test Case Creation and Execution 64

Feature Driven Development 65

Moving from One Iteration to Another 67

Handling Different Test Configurations 68

4 Executing Manual Tests 71
Using the Test Case Work Item Type 72

Shared Steps 75

Data Driven Test Cases (Test Parameters) 77

Running Your First Tests 79
Test Runner 80

Contentsxii

Examining Test Results 92
Test Run Results 93

Detailed Test Results 95

Exploratory Testing with MTM 101

5 Resolving Bugs 107
A Bug’s Life 107

Customer Reported Bug 110

Test Team Reported Bug 110

Triaging the Bug 110

Reactivations 111

Bug Differences and Modifications 111
The Generated Bug 116
How a Developer Uses IntelliTrace 120
Fixing the Bug 122

Associated Changesets 124

Associated Work Items 124

Impacted Tests 125

Setting the Build Quality 125
Assigning a New Build 127
Verifying That the Bug Is Fixed 129
Dealing with Impacted Tests 131

6 Automating Test Cases 135
To Automate or Not to Automate 136
The Automated Testing Framework 139
Creating an Automated Test from a Manual Test 141

Examining a Generated Web Application Coded UI Test 142

Adding Validations 157
Adding Additional Recorded Steps 164
Parameterized Coded UI Tests 166

Handling Issues Due to Inconsistency 168

Resolving the Data Inconsistency 169

Contents xiii

Handling Dynamic Values 172
Other Tips 177

Combining Multiple Tests 178
Associating Coded UI Tests and Test Cases 178

7 Executing Automated Test Cases 183
Executing Automated Tests Through Visual Studio 183

Local Execution 184

Local Execution with Remote Collection 184

Remote Execution 185

Executing Automated Tests from the Command Line 190
Executing Automated Tests in MTM 191

Creating an Automated Build 191

Setting Up the Physical Environment 193

Running a Coded UI Test Through MTM 196

Executing Automated Tests with Team Build 202
Automated Testing Gotchas 205

Custom Dialogs 205

Cleaning Up Your Tests 207

8 Lab Management 209
Managing Virtual Environments Through MTM 210
Finishing Virtual Environment Configuration 217
Automated Test Settings 221

Lab Management Workflow 222

Executing a Lab Build 231
Running Automated Tests Through MTM 233
Manual Tests in a Virtual Environment 234

9 Reporting and Metrics 239
Understanding the Reporting Structure 240
Built-In Reports 242

Bug Status 244

Bug Trends 245

Reactivations 246

Contentsxiv

Build Quality Indicators 246

Build Success over Time 248

Build Summary 249

Stories Overview 250

Test Case Readiness 251

Test Plan Progress 252

Excel Services Reports (Dashboards) 253
Reporting with Microsoft Excel 254

Creating a Generated Report 255

The Testing Measures 256

Metrics 268
What to Measure 271

First-Time Defect Rate 273

Bug Reactivations 276

General Bug Counts 277

Index 283

Contents xv

This page intentionally left blank

xvii

Foreword

OU R P R O D U C T T E A M L I K E S TO S AY that when we started building Visual
Studio Test Professional 2010 we wanted to deliver world peace as a feature.
To make our ship date, we reduced our aspirations to making peace between
software developers and software testers.

Even with this drastic reduction in scope, we faced a daunting task. Our
profession often creates substantial separation, organizationally and some-
times physically, between those responsible for creating and maintaining
software and those responsible for validating that the software meets the
needs of businesses and customers. Because of the separation developers and
testers often communicate by throwing information “over the wall,” which
results in poor communication of issues (bugs); in uncertainty about what
features, bug fixes, and improvements development has added to a particu-
lar build; and in mistrust between the development and test organizations.
All of which, in turn, contribute to the quality issues, schedule delays, and
outright project cancellations that continue to plague our industry. Many of
the QA tools currently available in the market exacerbate the communication
problems by managing the planning, testing, and tracking of the test effort
independently from the tools used to track planning and development.

As we began to dig into the source of the communication breakdowns, we
found, somewhat to our surprise, that manual black-box style testing
accounts for approximately 70 percent of all testing in our industry. To suc-
ceed with this style of testing, testers develop deep domain knowledge
around the products they test but spend less time cultivating their knowledge

of the deep technical and architectural aspects of the system. To manage their
testing efforts, these testers relied largely on Microsoft Word, Microsoft Excel,
handwritten notes, and whiteboards. Worse, testers had no tool support for
running tests and therefore spent significant portions of the day on time-con-
suming and often menial tasks such as deploying software, writing bug
reports, and finding clear steps to reproduce bugs.

As a software development company, Microsoft clearly recognizes the
importance of allowing all members of software development teams, devel-
opers, testers, architects, project and program managers, and business ana-
lysts to participate fully in the development process. We built Microsoft
Visual Studio Test Professional 2010 and the Lab Management capability of
Microsoft Team Foundation Server 2010 to help eliminate the friction
between developers and testers by providing self-documenting builds that
include tests impacted by developers’ changes, single-click actionable bugs
that eliminate the “No Repro” problem, and work item-based test planning
and management that enables visibility and traceability by all project stake-
holders. To streamline the test effort and increase the effectiveness of testing,
we added streamlined virtual build, deploy and test, fast forward for manual
testing, and the capability to generate an automated Coded UI test based on
a previously completed manual test.

During development, we relied heavily on feedback and advice from a
number of external sources who could provide both industry perspective and
feedback based on extensive personal experience. In that capacity, Jeff Levin-
son helped to shape Microsoft’s test offering and TFS’s Lab Management
capability in just about every way possible. Jeff participated in every formal
design review, special interest group, technology preview, and beta program
that existed. Beyond the formal interactions, Jeff spent days and weeks of his
“free time” installing, using, and testing our product followed by hours spent
with me and other members of the team providing feedback, pushing for
improvements, and making suggestions. I can’t say that all Jeff’s feedback
made it into the final product, but our product is better for his effort.

As much as I would like to believe that Jeff spent all this time and effort
just to make my life easier, I know that Jeff’s real motivation came from his
passion for helping teams to build quality software. In his book, Jeff brings

Forewordxviii

a pragmatic approach, years of experience, and a clear understanding of how
the entire development team must work together to build truly great soft-
ware. The combination of Jeff’s insider knowledge and deep understanding
of Microsoft Visual Studio Test Professional 2010 with his proven approach to
software testing create a roadmap that can help any team to build high-qual-
ity software while avoiding the pitfalls and friction that so often lead to
“death marches,” missed deadlines, and unsatisfied customers.

Mark Mydland
Director of Test, Microsoft

Foreword xix

This page intentionally left blank

Preface

AS A P R O C E S S I M P R O V E M E N T professional, I have experienced many team
challenges. Big challenges. It is not unusual to see teams that seem so per-
fectly compatible start in excitement only to fizzle in different directions and
end up not working together. Products suffer, customers suffer, and ulti-
mately relationships suffer. When Microsoft introduced a new set of tools to
help ensure quality applications and bring teams together in an evolution-
ary way, I was at first skeptical, but not now.

From one company to the next, one organization to the next, or even
within a given team, the same problems arise. Granted, the circumstances can
make basic problems much more challenging, but you can consistently iden-
tify the following issues:

• Challenged or poor communication between developers and testers

• Constant churning with precious little progress due to fixing the same
things over and over again

• Organizational structures that sabotage quality work and the capabil-
ity to productively manage resources

• Management that focuses on the shipping date with no consideration
of the long-term cost of poor quality

• Lack of proven toolsets to maximize productivity and efficiency of teams

Enter Microsoft Test Manager. Now there is this single point at which
teams can coalesce: quality. Microsoft Test Manager offers the following
proposition: Do you want to build a better quality product with less rework,

xxi

less divisiveness in a shorter period of time? If so, what are you willing to do
to achieve this goal? The response seems simple enough:

• Incorporate a basic process with some good old-fashioned common
sense.

• Use common tools.

• Share data.

In my experience, there is one obvious set of tools: Team Foundation
Server, Visual Studio, and Microsoft Test Manager. Using these tools has been
proven to break down barriers, get teams talking, and deliver the promises of
the preceding proposition. It is my goal to demonstrate how to accomplish
this to as many people as possible. With the tools that Microsoft provides, the
level of effort required to use them is minimal and the benefits are huge. Will
the tools work for everyone? Well, with the wide variety of tools and plat-
forms that individuals need to test against, I can’t make any promises. But if,
for the most part, the platforms and languages you test against are somewhat
commonplace, you can reap benefits from using this tool suite.

It’s funny how we see the process differently depending on our role on a
project. I have served in many roles (some better than others). As a developer,
I couldn’t stand testers because they always broke my code because they
didn’t know how to use the application. As a tester, I couldn’t stand devel-
opers because they didn’t know how to code. As an architect, I looked on
much of the process as a necessary evil. As a process improvement expert, I
realized (even though this may be patently obvious) that without testers I
couldn’t get the metrics I needed to make a difference. As an author, I hope
to communicate that by bringing testers and developers together to work
cooperatively we can make positive changes across the board in a fun and coop-
erative environment. We can accomplish this by objectively assessing and
learning about these unique and valuable new tools from Microsoft.

Thank you for reading this book, and I hope it helps you improve
the quality of your software. If you have questions, errata, suggestions,
additions, or disagreements with anything you read, please drop me a note at
jeffstuff@jtlevinson.com.

Prefacexxii

Who Should Read This Book?

This book is primarily for software testers or people who test software as one
of their primary job roles—from the professional tester or developer to the
business analyst who needs to verify software for end users.

The testing process with Microsoft Test Professional 2010 and Visual Stu-
dio 2010 Ultimate is structured in a way that the tester can perform manual
testing, and the developer can automate the tests. For this reason, developers
can also find this book useful because considerable resources are dedicated to
the developer’s role in the testing process. Further, much of this book covers
best practices for developers and testers working together. Chapter 6,
“Automating Test Cases,” and Chapter 7, “Executing Automated Test Cases,”
are especially relevant to the topic.

For those new, or relatively new, testers Chapter 2, “Software Quality and
Testing Overview” provides a solid introduction to the goals of testing,
approaches to testing, and considerations when testing. This is designed to be
a primer and can be skipped by those already familiar with testing processes.

Test and development managers, in particular those looking for a better
understanding of the overall process or those wanting to leverage the report-
ing offered in Team Foundation Server, can also benefit from reading this
book. Understanding reporting is often a conduit for discovering that a seem-
ingly insurmountable problem can actually be fixed. Add to that mix the
capability to quantify metrics and improve them over time, and you have a
powerful tool for managers. Chapter 1, “State of Testing,” Chapter 3, “Plan-
ning Your Testing,” and Chapter 9, “Reporting and Metrics,” are most appli-
cable to managers.

I hope you find this book helpful in your organization and as a guide for
your testing teams.

What This Book Does Not Cover

One topic not covered is the virtualization infrastructure required to run Lab
Management. The lab infrastructure requires a network administrator and
people familiar with virtualization technologies including hardware and soft-
ware. It would have been too complicated to include everything and would
have been beyond the scope of this book. This includes information such as

Preface xxiii

System Center Virtual Machine Manager and Hyper-V. Setup of the Test
Agent, Test Controller, and Build Hosts are discussed because these are items
the testing or development team will probably need to deal with at some
point—especially if teams switch back and forth between user interface test-
ing and unit testing.

Additionally, you will not find information on load testing, stress testing,
and Web performance testing, and only minimal information on unit testing
is available. The information on unit testing is presented from the perspective
of how a tester or developer might execute these automated tests and relate
them to requirements. You will not find any in-depth discussions on the phi-
losophy of unit testing or specific unit testing techniques.

About the Application Used in This Book

The application used throughout this book (and in the exercises) is the Blo-
gEngine.NET application because it is a popular real-world application used
by many individuals. It is also open source with a thriving community
behind it. BlogEngine.NET was created by Al Nyveldt and Mads Kristensen.
You can get more information about it from dotnetblogengine.net and down-
load the original version of this application at blogengine.codeplex.com.

The version used in this book has been modified somewhat because it was
ported to Visual Studio 2010 and converted to a Web Application for use with
Team Build. You can download the source from here: informit.com/title/
9780321734488. This download includes a readme file describing how to set
up the application so that you can follow along with the examples. Aside
from these modifications, no other material modifications have been made
to the source code. The Database project and the MSDeploy project were
added to support the different capabilities of the tools demonstrated.

Other software is required to follow these examples. You must have either
Visual Studio Ultimate or Premium to create Coded UI tests. You must also
have Microsoft Test Professional or Visual Studio Ultimate to get Microsoft
Test Manager. Although not a tested configuration, you might run these exam-
ples with Microsoft’s all-up Lab Management virtual machine. This virtual
machine can be downloaded here: www.microsoft.com/downloads/details.
aspx?FamilyID=592e874d-8fcd-4665-8e55-7da0d44b0dee&displaylang=en.

Prefacexxiv

www.microsoft.com/downloads/details.aspx?FamilyID=592e874d-8fcd-4665-8e55-7da0d44b0dee&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyID=592e874d-8fcd-4665-8e55-7da0d44b0dee&displaylang=en

How This Book Is Organized

This book is structured to not only be used as a reference but also as a step-
by-step guide for a process. The book guides you through the testing process
as it would occur on an application. The book starts with a discussion of
problems the industry faces and quickly moves to development methodolo-
gies and the role of testers. From there, you learn how to plan the testing
process using Microsoft Test Manager to write first-draft Test Cases and exe-
cute those Test Cases. During the course of execution, bugs can be filed, and
developers can fix those bugs. Testers can verify the fix and then determine
which Test Cases to automate. Developers automate the Test Cases and then
they can be executed by developers and testers in a physical or a virtual envi-
ronment. Finally, the book ends with a discussion of reporting and metrics
and offers some ideas that you can apply to your processes to improve
quality.

• Chapter 1, “State of Testing”—This chapter provides an introduction
to the problems facing software development teams today from a
quality perspective. It covers the cost of poor quality, legal actions
because of poor quality, and other commonly known but frequently
ignored issues. It also discusses the author’s philosophy of software
testing and the goals of this book. Finally, it covers some of the basic
software development methodologies and where software testing fits
in with these methodologies. This chapter provides an overview of the
Microsoft technology stack and end-to-end process flow.

• Chapter 2, “Software Quality and Testing Overview”—This chapter
presents an introduction to software testing. This includes why we
need to do software testing, what the goals of software testing are, dif-
ferent types of software testing and software testing techniques. It pro-
vides a foundational view of the tester’s world.

• Chapter 3, “Planning Your Testing”—First, you must plan for testing.
This chapter shows you how to use the tools in Microsoft Test Man-
ager (MTM). It also details how to navigate MTM, create test settings,
and structure Test Cases. It explains how to manage the testing
process using the Test Case work item type and requirements.

Preface xxv

• Chapter 4, “Executing Manual Tests”—This is your introduction to
executing tests with Microsoft Test Manager and Test Runner. You
learn how to create Test Cases, reuse test steps, execute manual tests,
and file bugs. When teams first start using MTM, this is what they do
on a day-to-day basis. This chapter also covers exploratory testing.

• Chapter 5, “Resolving Bugs”—When you file a bug, the process and
lifecycle of the bug is critical to reducing rework and driving report-
ing. This chapter discusses the Bug work item type, some customiza-
tions you might want to make to it, and how it serves as a
communication mechanism for testers and developers. You are also
introduced to how developers can use the Bug work item type to fix
software correctly the first time and then how testers can verify that
fix. This chapter introduces Test Impact Analysis.

• Chapter 6, “Automating Test Cases”—This is largely a developer-
focused chapter on creating automated Test Cases. These Test Cases
can be manual (recorded by testers) or automated (unit sting and
other types of tests). One key item in this chapter is associating any
type of automated test with a requirement. The features in this chapter
require Visual Studio 2010 Premium or Ultimate.

• Chapter 7, “Executing Automated Test Cases “—After automating the
Test Cases, teams need to execute those automated tests. This chapter
describes all possible ways to execute an automated test. This is both a
developer-focused chapter (using Visual Studio to execute the tests)
and a tester-focused chapter (using Microsoft Test Manager to execute
the tests). You also learn how to execute tests as part of the build
process.

• Chapter 8, “Lab Management”—This chapter focuses on the Lab Man-
agement features of Microsoft Test Professional 2010 and Visual Studio
2010 Ultimate. You learn how to use the virtualization platform to test
applications and how to snapshot environments to help developers
reproduce bugs. This chapter also focuses on both developers and
testers: Developers learn how to set up the code to be deployed in a
lab environment and executed through the build process. Testers learn

Prefacexxvi

how to execute both manual and automated tests in a virtual environ-
ment and file actionable bugs.

• Chapter 9, “Reporting and Metrics”—This chapter covers reporting
and metrics. By following the processes in this book, a team has
detailed metrics by which they can determine the quality of their
product and where the testing process can be improved. You explore
the built-in reports provided by TFS but also how to do custom report-
ing on the data cube to get detailed information about your testing
endeavors. This also serves as a brief guide to what type of customiza-
tions you can make to the Test Case work item type to capture more
detailed information.

Preface xxvii

This page intentionally left blank

Acknowledgments

WR I T I N G T H I S B O O K H A S been a labor of love over the last year, and there
is no way I could have done it alone. Writing about beta software requires
cooperation from the teams at Microsoft, and in this case I got more than I
could have imagined. The number of people who provided input is long.
If I have left anyone out, my apologies. First a special thanks to Mark Myd-
land, Ram Cherala, and Euan Garden—all of them put up with me for what
seemed like hours on end. Long before starting the book, I pestered them
on the philosophy of testing and their approaches to it and tools to imple-
ment it. I learned a lot from all of them. Other members of the testing team
helped with everything from technical aspects to the understanding of spe-
cific decisions made during the creation of Microsoft Test Manager, Lab
Management, and the Coded UI features. Many thanks to Naysawn Nadiri,
David “Dr. Will” Williamson, Dominic Hopton, Pradeep Narayan, Ravi
Shanker, Chris Patterson, Anutthara Bharadwaj, Daryush Laqab, Shay
Mandel, Vinod Malhotra, Gautam Goenka, Vijay Machiraju, and Mathew
Aniyan.

One other group of individuals helped as well, whether they knew it—
the Application Lifecycle Management (ALM) Most Valuable Professionals
(MVPs). They put up with hundreds of e-mails and provided responses
that helped shape my approach to using the testing tools. Many were sup-
portive during the writing process. I am honored to be included in this
exceptionally talented and knowledgeable group of people.

xxix

On a personal note, my wife Tami and daughter Caitlin have had to put
up with an absentee husband and father for the last several months. Needless
to say I could not have done this without their love and support.

My four reviewers deserve a big thank-you. Mario Cardinal, Etienne
Tremblay, and Mike Vincent are fellow ALM MVPs who thoroughly vetted
my content not once but twice. The book is better for their input. And to
Anutthara Bharadwaj (a member of the test team), even after a long plane
flight with no power and bad service, she provided excellent feedback and
comments and continued to teach me even after I thought I “knew it all.”
Thank you, Anu, for putting up with me.

I want to call out Mike Vincent specifically here for not only his help but
his contributions. Mike was the last reviewer of this book. During the pro-
duction of this book many ideas were discussed as to what this book should
be about and what it should cover. Late in the process we decided that Chap-
ter 2 should be added to provide an introduction for those just coming into
the testing space. I did not have time at that point in the schedule to write this
chapter. In came Mike to the rescue. Chapter 2 was contributed by Mike and
helps round out the book in a way that makes it better than it was before.
Thanks Mike!

For Brian Keller, a senior technical evangelist with Visual Studio, I can
only say “Thank you.” I am just in awe of his ability to quickly read, distill,
and correct information or add the tiny details that were missed. And to Sam
Guckenheimer for helping iron out the most difficult part of any technical
book—the direction.

And to my co-workers at Northwest Cadence who were supportive of the
entire process from beginning to end and through the days, weeks, and
months of the writing process.

Most important, thanks to my editor Joan Murray and assistant editor
Olivia Basegio, without whom this book would not have been possible. As
with any endeavor, it isn’t the big stuff that trips you up; it’s the small stuff.
And to the rest of the team at Addison-Wesley from San Dee Phillips my copy
editor to Andrew Beaster who shepherded the book through production
twice, thank you for sticking with it!

Acknowledgmentsxxx

About the Author

Jeff Levinson has 16 years of experience in software development in many
different roles—developer, tester, architect, project manager, and scrum
master at several large companies. Jeff is currently a Senior Application
Lifecycle Management (ALM) Consultant for Northwest Cadence, which is
a company that specializes in Team Foundation Server, Visual Studio,
methodologies, and process improvement. In his day-to-day work, Jeff
helps teams, organizations, and companies adopt more efficient processes,
improve quality, and reduce costs associated with software development.
Jeff is a frequent speaker at industry events and writes a twice-monthly col-
umn for Visual Studio Magazine Online. This is his fourth book on software
development. His other books are Building Client/Server Applications with

VB.NET (Apress 2003), Pro Visual Studio Team System 2005 (Apress 2006), and
Pro Visual Studio Team System with Team Edition for Database Professionals (Apress
2007). Jeff has a master’s degree in software engineering from Carnegie
Mellon University and is an MCP, MCAD, MCSD, MCDBA, and MCT.

Jeff currently lives in Washington State with his wife and two children.

xxxi

This page intentionally left blank

3
Planning Your Testing

T O B E G I N, Y O U N E E D A P L A N . The plan does not need to be 500 pages of
documentation or a massive Gantt chart. This chapter covers how to cre-

ate a Test Plan with Microsoft Test Manager (MTM) and the various options
that the Test Plan provides to you. More important, this chapter covers what
to test and how to get involved as a tester early in the development process.
In addition, Microsoft provides a little-used Test Plan Word template that can
help answer some questions about the testing process up front.

Another key item covered here is how to plan and test for multiple itera-
tions. Can you reuse your Test Cases, and does it make sense to do that?
Many items come into play when planning the testing for an entire release
versus a single iteration. By the end of this chapter, you will know how to use
the Plan tab of MTM, create new plans, and create a framework for testers to
work in for a given period of time.

As mentioned in Chapter 1, “State of Testing,” testers should be involved,
ideally, during the requirements gathering process. In a waterfall cycle this
is during the Analysis phase. In an agile cycle this is during the period of time
in which the business analyst or product owner fills in the details for items on
the Product Backlog but before introducing the item into an Iteration Backlog.
This chapter covers what the testers’ responsibilities should be and what they
can do to help reduce the potential for bugs to be introduced into the
software.

29

Microsoft Test Manager

Microsoft provides a separate tool for testers: Microsoft Test Manager (MTM)
where you can create Test Plans and add and update Test Cases and where
manual and automated tests are executed from. Before getting into the details
of creating Test Plans, you need to understand how to navigate within MTM.
Figure 3-1 shows the navigation controls.

Chapter 3: Planning Your Testing30

TEST APPROACH
When starting any testing endeavor, you need an approach to the process.

Consider what is acceptable, what are the criteria for release, how you can

perform each type of test, and other information that forms the framework of

the approach. If you use the MSF for Agile v5.0 process template, there is a

Test Approach Word template located in the sample documents on the

SharePoint site. (The path to the document is Documents/Samples and

Templates/Test/Document Template - Test Approach.dotx.) You can also find

a sample document showing how the Test Approach looks when filled out.

Navigation

Pages in this Tab

Add/Change Test Plan

Create New Work Item Jump to
Open Pages

Add/Change Test Plan

Current Center

Tabs in this Center

Figure 3-1: MTM navigation controls

MTM is organized into Centers, Tabs, and Pages, as shown in Figure 3-2.

Figure 3-2: Microsoft Test Manager navigation layout

Table 3-1 briefly describes each section. These pages and the options they
enable are described throughout the book.
Table 3-1: MTM Pages Described

Microsoft Test Manager 31

Contents

Properties

Plan

Run Tests

Analyze Bugs

Test

Queries

Assign Build

Track

Test Plan
Manager

Test Configuration
Manager

Analyze Test
Runs

Recommended
Tests

Test Case
Manager

Project Portal
Shared Steps

Manager

Organize
Te

st
in

g
C

en
te

r

Environments

Lab

Test Setting
Managers

Test Settings

Environments

Virtual Machines
and Templates

Library

Test Controller
Manager

Controllers

La
b

C
en

te
r

Test Plan Summary

Test Run Summary

Documentation

To
ol

s

Center Tab Page Description

Testing Plan Contents Contains the settings for the
given Test Plan including manual
and automated test settings, test
configurations, and the build in
use

Properties Contains the suites and Test
Cases that need testing for the
selected plan

Table 3-1: Continued

Chapter 3: Planning Your Testing32

Center Tab Page Description

Test Run Tests Main page for executing test runs

Verify Bugs Contains bugs that have been
resolved that the tester can
quickly get to and verify

Analyze Test Runs Shows all test runs (manual and
automated) but used mainly to
view an automated test run and
take appropriate actions based on
the outcome of the test runs

Track Queries Same as in Team Explorer; it
enables you to execute stored
work item queries or create new
queries

Assign Build Enables a tester to assign an auto-
mated build to the Test Plan

Recommended Shows the list of all tests that have
Tests been impacted by a code change

Project Portal Provides a quick link to the proj-
ect portal (opens a web browser)

Organize Test Plan Manager Lists all the Test Plans in the cur-
rent Team Project

Test Configuration Lists all test configurations
Manager

Test Case Manager Lists all Test Cases in the current
Team Project

Shared Steps Lists all the shared steps (reusable
Manager test steps) in the current Team

Project

Lab Lab Environments Contains all the physical and vir-
tual environments ready for test-
ing purposes

Microsoft Test Manager 33

Center Tab Page Description

Test Settings Test Settings Contains all manual and auto-
Manager mated test settings

Library Environments Lists all the environments
prepped for use in testing, includ-
ing environments that have been
deployed

Virtual Machines Contains all the virtual machines
and Templates available to be composed into a

test environment

Controllers Test Controller Contains a list of all test
Manager controllers and all agents associ-

ated with those controllers

Tools Documentation Test Plan Summary Generates a document with the
selected Test Plans, associated
Test Suites, Test Cases, Test Steps
and related work items

Test Run Summary Generates a document with the
results of the selected test runs

TEST SCRIBE AND THE TOOLS CENTER
The Tools Center does not exist when you first install MTM. After the release

of Visual Studio 2010, Microsoft released a Test Scribe tool (available at

http://visualstudiogallery.msdn.microsoft.com/en-us/e79e4a0f-f670-47c2-

9b8a-3b6f664bf4ae.) (Or you can Bing "Test Scribe Visual Studio Gallery,"

and this link will be the first one.)

This addition is critically important to most organizations and should be in-

stalled immediately after installing MTM. The documentation it generates

can be provided to users or external testers and serves as an excellent,

detailed document showing the tests and test runs.

When you first start MTM, you will be asked to connect to a server
(Figure 3-3), select a Team Project (Figure 3-4), and then select a Test Plan
(Figure 3-5).

http://visualstudiogallery.msdn.microsoft.com/en-us/e79e4a0f-f670-47c2-9b8a-3b6f664bf4ae
http://visualstudiogallery.msdn.microsoft.com/en-us/e79e4a0f-f670-47c2-9b8a-3b6f664bf4ae

Chapter 3: Planning Your Testing34

Figure 3-3: Connect to a Team Foundation Server

Figure 3-4: Connect to Your Team Project

Figure 3-5: Select or add a Test Plan

Note the Copy URL for the plan option in Figure 3-5. MTM enables you
to provide URLs to specific plans, so you can send the URL to someone who
can then click it and have MTM open to the right plan. Only Active plans
show up in this dialog. You can view all plans (Active and Closed) from the
Testing Center, Organize Tab, Test Plan Manager page.

MTM enables you to work in one Team Project and only one Plan in that
Team Project at a time, although you can change plans and projects as
needed. After doing this the first time, MTM remembers your last selection,
so MTM can open to the last selected Plan.

Microsoft Test Manager 35

Before starting the exercises, see the section "About the Application Used in

This Book" in the front matter. These exercises assume that you have fol-

lowed the steps in that section.

Test Plans
Before using the testing tools, you need to understand where all the various
artifacts fit together because it matters when you start to manage an actual
project. Figure 3-6 shows a container view of the artifacts.

Chapter 3: Planning Your Testing36

Team Project

Work Items Source Code

Test Suite(s)

Requirement based Query-based Static

Test Plan(s)

Start and End Dates Run Settings

Test Case(s)

Test Steps Test Data

Figure 3-6: Relationships between Team Projects, Test Plans, Test Suites, and Test
Cases

Figure 3-6 shows that a Test Plan in MTM is associated with a specific
Team Project. A Test Plan is composed of one or more Test Suites, and each
Test Suite is composed of one or more Test Cases. This is a straightforward
structure that enables flexible reporting and easy management of the Test
Plans.

E X E R C I S E 3 - 1

Create a New Test Plan
This step assumes that you have not used MTM before. If you have, but you
want to work through this exercise, you need to select the Home button in the
upper-left corner of the screen and select Change Project:

1. Open MTM.

2. Select Add Server, or select an existing server if the correct server is
listed.

3. Select the BlogEngine.NET project, and click Connect Now.

4. On the Testing Center screen, click Add to create a new Test Plan.

5. Enter the name as Iteration 1 and click Add.

6. Highlight the Plan, and click Select Plan.

Figure 3-7 shows the Iteration 1 Test Plan.

Test Plans 37

Figure 3-7: Test Plan

Properties
Test Plans have a name and a description, and if you use multiple Test Plans
concurrently, you need to give them a descriptive name and also a more
detailed description. The owner is usually the test manager but can also be a
test lead if a lead is responsible for the testing that occurs within a plan. The
state can either be Active or Inactive depending on whether it is currently
used, and this is not customizable. Inactive Test Plans can either be previ-
ously completed Test Plans or Test Plans that have yet to be started and are
still being created. The default state for new Test Plans is Active, but you
might want to set the plan to Inactive if it is still being designed.

The area and iteration are the standard work item classification scheme. In
general Test Plans should be related to iterations in some way (or whatever
scheme the development team uses to produce software) because the testing
follows the requirements or the coding, which are distinct phases in any
methodology whether they are called out.

Test Plans are not work items such as a requirement, user story, or task.
They are independent of the work item system. This is both a benefit and a
disadvantage. The benefits are in the flexibility: the Test Plan contains more
information and is more dynamic than a work item. On the other hand, items
such as the Start and End date cannot be reported through a simple mecha-
nism. You need to use the data warehouse (refer to Chapter 9, “Reporting and
Metrics”) to report on Test Plans.

Run Settings

Run settings define where tests execute and what diagnostic data adapters
are implemented. Figure 3-7 shows the two categories of Run settings: Man-
ual and Automated. Manual Run settings relate to any tests executed with the
Test Runner (refer to Chapter 4, “Executing Manual Tests”). Automated Run
settings relate to the execution of any automated tests (refer to Chapter 6,
“Automating Test Cases”) through MTM.

Chapter 3: Planning Your Testing38

To create a new Run setting, go to the Lab Center, Test Settings tab, Test
Settings Manager page, and copy an existing setting or add a new setting.
These can then be assigned in the Test Plan Properties page. Figure 3-8 shows
the Test Settings creation screen.

Test Plans 39

CHANGE THE TEST SETTINGS IMMEDIATELY
When the test settings are set to <Default> you have no control over them.

You cannot set any diagnostic data adapters to run specifically or any other

options associated with manual or automated runs. For the manual settings,

simply select the drop-down list, and pick Local Test Run, or create a new test

setting and change the properties as needed.

Figure 3-8: Test settings

Depending on whether you create an automated or manual setting, the
options will be slightly different. Figure 3-8 shows a manual test setting on
the Data and Diagnostics tab that contains the diagnostic data adapters. Table
3-2 lists the default diagnostic data adapters you can choose.

Table 3-2: Default Diagnostic Data Adapters

Chapter 3: Planning Your Testing40

Collector Description

Action Recording and Records each step that the tester takes in the application
Action Log during a manual test run.

ASP.NET Client Proxy Enables you to capture IntelliTrace and Test Impact
for IntelliTrace and information during a test execution of an ASP.NET
Test Impact application. Note: This setting does not actually per-

form the capture; you must check the IntelliTrace
and/or Test Impact collectors in addition to this
collector.

Event Log Captures selected events written to the Event Log dur-
ing a test run.

IntelliTrace Enables capturing of the debug log.

Network Emulation Throttles the network performance based on the speci-
fied settings.

System Information Captures system configuration information for the sys-
tem on which the test is performed.

Test Impact Records Test Impact information for calculating Test
Cases affected by modified code.

Video Recorder Records a video of all actions taken on the screen dur-
ing a test run.

Diagnostic data adapters enable the test infrastructure to gather data—
any particular piece of data you want. They are fully extensible and easy to
create and modify (literally 20 lines of code plus whatever code is needed to
collect data).

Builds
If you aren’t using automated builds right now, you should be. Automated
builds are one of the most effective ways to reduce the amount of time it takes
to find and fix bugs. These automated builds can be Continuous Integration
builds (the process of running a build immediately upon check-in to deter-
mine if the check-in broke anything) or nightly builds, and they can discover

build breaks faster and with fewer lines of code to review to find the problem.
They are also critical to manual testing; although not required for automated
testing, they will certainly make things easier.

Builds enable you to specify which build you can execute the tests against.
After you select a build to execute the Test Cases against, MTM provides you
with information related to the build. Automated builds help light up the Test
Impact Analysis results and provide the testing team with a list of all changes
made to the code since the build they were previously using.

The build filter enables you to filter by build definition and build quality.
Chapter 5, “Resolving Bugs,” discusses build quality.

Configurations
On one hand configurations play an important part in test execution, and on
the other hand they provide only metadata. Configurations enable you to
specify various pieces of information about the tests you execute in the Test
Plan. They also have a material effect on the number of tests that you need
to execute and how you plan your Test Suites. For example, the default set-
ting in MTM is Windows 7 and IE 8. If you have a Test Suite with 20 Test
Cases, you need to execute 20 Test Cases. For every configuration that you
add to a suite, all the tests need to be executed against the additional config-
urations as well. (By default, but you can change this.) So, if you have three
configurations that you need to test against, you need to run 60 tests. The
effect of configuration on testing and reporting are discussed in the “Assign-
ing Test Configurations” section later in this chapter.

Test Plans 41

Obviously, you do not have to execute any Test Cases you don’t want to, and

in many cases you can't execute every Test Case because of the time avail-

able to you.

The “Test Configurations” section covers Test Configuration details.

Test Plan Status

This section provides status on the current Test Plan. The first pie chart lists
the total number of tests broken down by successful tests, failed tests, and
tests that have not yet been executed. The Failures by Type pie chart breaks
down the categories of each failure. Table 3-3 shows the available categories.
Table 3-3: Failure Categories

Chapter 3: Planning Your Testing42

Category Description

None Use if the test failure is a nonissue.

Regression Where the previous test results indicate a pass.

New issue Has not been seen before.

Known issue Possibly because a previous run found this bug or the devel-
opment team has notified the testing team that the build is
ready to test, but it knows about this particular failure.

Unknown An error occurred, but the tester is not sure what the classifica-
tion of the issue is. A test lead or manager should look further
at Unknown issues.

You can also provide a category for a failure type before or after it has
been fixed, but leave this empty until the defect has been fixed. Table 3-4 lists
the analysis categories.
Table 3-4: Analysis Categories (Also Called Resolution Type)

Category Description

None No resolution at this time.

Needs investigation The test team has decided to do a further investigation
because it isn’t sure of the cause.

Test issue Usually set if the Test Case were at fault or the setup for
the test were incorrect. This might be cause for concern
because if a Test Case is wrong, the requirement it is
based on might also have potential inaccuracies that need
to be investigated.

Product issue A valid failure occurred in the code.

Configuration issue Usually a failure in the configuration files or on the
machine on which the test was deployed.

These graphs are updated as changes are made to the Test Plan and as test
runs are completed and analyzed. (For performance reasons you might need
to click the Refresh button to see the latest data.) This is a great view that
quickly enables a testing team to see the progress of its testing within a given
plan (as shown at the bottom of Figure 3-7).

Contents
The Contents portion of a Test Plan contains information on what will be
tested; that is, it contains a list of all the Test Cases broken down into Test
Suites. Figure 3-9 shows the Contents page of the Plan tab.

Test Plans 43

FAILURE AND RESOLUTION EXTENSIBILITY
You can customize the Resolution type through the process template or the

object model; however, you cannot customize the Failure type. (It looks like

you can do it by editing the process template, but it does not actually work

because of technical reasons.)

Figure 3-9: Test Plan contents

Refer to Figure 3-3 for the relationships between items. Test Suites can be
composed in three ways: requirement-based, query-based, or customized
with a static suite, and there are good uses for each of the three. The type of
Test Suite is differentiated by icons next to the suite name (see Figure 3-10).

Chapter 3: Planning Your Testing44

Requirements-based Suite

Static Suite

Static Suite

Remove Suite

Copy Test Suites
from another Plan

Add New Static or
Query-based Suite

Add Requirements-based Suite

Figure 3-10: Test Suites

Requirements-Based Suites

For most teams developing line-of-business applications, the entire applica-
tion is based around completing requirements; therefore, it makes sense that
testers should test in relationship to the requirements that the developers fin-
ish. In other words, testers can rarely perform testing on partially completed
requirements. They also can’t perform testing on random pieces of the appli-
cation because, in general, functional and integration testing relies on com-
plete features. Even performing boundary tests must be done in the context
of a requirement.

And, for the most part, customers want to know the status of their
requirements. Are they close to completion? Did they pass their tests? How
many bugs does a given requirement have? This is true regardless of what
type of methodology you use. Grouping suites by requirement makes it
extremely easy to report this information back to the customer.

To create requirements-based suites, simply select a static suite (the root
node or another static suite) and click Add Requirements; then choose one
or more requirements. Each requirement becomes its own suite. Any Test
Cases already associated with the requirement are automatically added to
the suite.

Query-Based Suites

These are suites created based on the results of a work item query. An exam-
ple of why you might want to create a suite of this type is the need to test a
specific area of your application that might be involved in different func-
tionality. Using the requirement-based suite, you could not do this. Another
reason for this type of suite can be the need to test all the bug fixes regard-
less of what requirement they are related to. The query-based suite simply
provides you with more flexibility in selecting what you test and also enables
you to run Test Cases from multiple Team Projects or requirements at the
same time.

When creating this type of suite, you are limited to the results of the query,
and the query specifies that you can query only work items in the Test Case
category. So a query-based suite is specific to Test Cases. Because this type of
suite is based on the results of a query, if the results of that query change, so
will your Test Suite. Use this suite for short-term suites or suites where you
don’t mind them changing. An example of where this is effective is auto-
mated regression testing. You can create a query where Automation Status =
Yes; when you execute the suite, all the automated tests execute.

Test Plans 45

REQUIREMENTS AND WORK ITEM TYPES
Whether you use the MSF for Agile or CMMI templates, you have a require-

ment work item type. For the CMMI template, it is a Requirement, and for the

Agile template it is a User Story. What determines a requirement from the

perspective of a requirements-based suite is the category that the require-

ment is in. Categories are new to TFS 2010 and are a classification scheme for

work item types. MTM operates on the requirement, Test Case, and bug cate-

gories. The reason it operates on categories is so that you can create a cus-

tom work item type, for example, called a Use Case that also appears in MTM

if it is in the requirement category. In addition, you can create a Defect work

item type that generates when you file a bug.

Static Suites

A static suite is a fully custom suite; you provide the title of the suite and then
add Test Cases as needed. One benefit of a static suite is that you can nest
suites. This is not possible with the other two suite types. The reasons to use
this type of suite can vary; however, an example of this might include final
application testing where you might have time to only test requirements from
various areas and iterations, and you want to break those up into subsuites so
that you can roll the results up. In MTM when you select the New drop-down
to add a new suite, the only two options you see are Suite and Query-Based
Suite. The Suite option is the static suite.

Adding Suites and Test Cases to Your Plan
The mechanics of using the Contents window are fairly straightforward but
offer a lot of options to help you control what happens when testers begin
testing. The list of Test Suites is on the left side. Figure 3-6 shows a series of
Test Suites starting with the Root Test Suite that is always the name of the Test
Plan (Iteration 1 here). The Root Test Suite is a static suite, so you can add Test
Cases directly to the root. Icons that have a red check on them are require-
ments-based suites. Another way to know this is to look above the list of Test
Cases in the right pane; you can click the Requirement 1 link to open the
requirement that these Test Cases relate to.

The Automated Regression Tests Suite in Figure 3-6 is a query-based suite,
which you can tell by looking at the icon. The last suite listed, Custom, is a
static suite with a Future Work subsuite that enables you to easily compose
and manage your Test Suites.

You can change the default configuration for all the Test Cases here, or you
can change the configuration for only individual tests. (This is not recom-
mended because it can be difficult to keep track of which test is supposed to
be run on which configuration.) You can change who the Test Cases are
assigned to—either individually by selecting a Test Case and clicking the
Assign button or by right-clicking the Test Suite on the left and selecting
Assign Testers for All Tests (or any combination of testers to Test Cases).

In addition notice where it says State: In Progress in the upper-right cor-
ner. You can set the state to be one of three states: In Planning, In Progress,

Chapter 3: Planning Your Testing46

or Completed. In Progress is the default, and tests in a Test Suite that is In
Progress may be executed. A Test Suite that is In Planning will not show up
on the Test tab, so those tests cannot be executed. The same is also true for
Completed suites.

You can also change the columns displayed for the Test Cases by right-
clicking the column headers. You can filter certain columns (any column with
a discrete list) to limit what displays. (For example, you can filter the Prior-
ity column in the default list of columns.)

Finally, you have the option to open a Test Case that has been added to a
suite, add Test Cases that already exist in the suite, or create new Test Cases
from within MTM. Any Test Cases you create or add are automatically linked
with the requirement (or user story) if the suite is a requirements-based suite
with a Tested By link type. The opposite is also true; if you remove a Test Case
from a requirements-based suite, the Test Case is no longer in a relationship
with the requirement. (The Tests/Tested By link is deleted, but the Test Case
is not deleted.)

E X E R C I S E 3 - 2

Create a Test Suite
This exercise assumes that you have completed Exercise 3-1.

1. Open MTM, if it’s not already open.

2. Select Testing Center, Test Plan, Contents tab.

3. Select the Iteration 1 suite, which is the root suite and the only one that
exists at this point.

4. Click Add Requirements from the toolbar for the suite name.

5. In the Add Existing Requirements to This Plan page, click Run (see
Figure 3-11).

6. Select the requirement As the Blog Author I Want to be Able to Log
onto the Blog Engine, and click Add Requirements to Plan in the
lower-right corner.

Test Plans 47

Figure 3-11: Add Existing Requirements to This Test Plan page

Testing Configurations

Testing configurations are configurable and can have an impact on the num-
ber of tests that need to be executed (mentioned previously). Test configura-
tions specify any particular piece of information needed to ensure that your
software is tested against all possible configuration options users could have
on their machine.

Chapter 3: Planning Your Testing48

As of this release, test configurations are strictly metadata. That is, they do

not have any impact on the test runs and cannot be used to specify the hard-

ware or software a particular test is actually executed against.

The most typical example is using different browsers to ensure the ren-
dering works correctly. Added to that may be the operating system those
browsers run on. The two default configuration options are Operating Sys-
tem and Browser; to this you can add other things such as a Silverlight ver-
sion or a particular piece of hardware, such as a webcam.

The biggest benefit to using test configurations is reporting results. All
your test results can be broken down into configurations. In addition you
have to write the Test Cases only one time, but this presents other issues, such
as that the actions you take on one configuration may not be valid on another
configuration. In some cases the differences may be so great it doesn’t make
sense to use the same Test Case. Consider these items when deciding on how
to use test configurations.

Managing Test Configurations
You can access the Test Configuration Manager in two ways. The first is to
go to Testing Center, Plan, Properties and select the drop-down arrow next
to the configuration; then click Manage. The easier way is to go to Testing
Center, Organize, Test Configuration Manager. This brings up the screen
shown in Figure 3-12.

Testing Configurations 49

Figure 3-12: Test Configuration Manager

The Manage Configuration Variables option enables to you create new
configuration categories. You can also add new values to an existing config-
uration variable.

E X E R C I S E 3 - 3

Adding a New Configuration Variable
To add a new configuration variable, follow these steps:

1. Click Manage Configuration Variables.

2. Click New Configuration Variable.

3. Enter Silverlight Version for the name.

4. Enter Default Silverlight Versions for the description.

5. In Allowed Values, enter the following (shown in Figure 3-13): 1, 2, 3,
and 4.

6. Click Save Configuration Variables.

Chapter 3: Planning Your Testing50

Figure 3-13: Silverlight Version Configuration Variable

The variables themselves cannot be used directly. You need to create an
actual configuration composed of one or more configuration variables.

Index

283

A
Acceptance Test Driven Development

(ATDD), 26
acceptance testing, 25

ATDD (Acceptance Test Driven
Development), 26

access to Test Cases, 6
active state, 93
adding

recorded steps, 164-165
validations, 157-164

advantages of Microsoft Visual
Studio 2010, 5

automated tests, 9-10
communication, 5-6
development and testing process

flow, 7-9
metrics, 10-12
project visibility, 6

agents, running as interactive
processes, 185

Agile, updating bugs, 114
agile practices, 23
agile testing, 20

Agile Testing: A Practical Guide for
Testers and Agile Teams (Crispin and
Gregory), 20

ALM (Application Lifecycle
Management), 19

analysis categories, 42-43
analysis phase (Test Cases), 56-61
Analysis section, detailed test results, 95
Application Lifecycle Management

(ALM), 19
applications

BlogEngine.NET. See application, xxiv
Asimov, Isaac, 269
ASP.NET, MSAA, 162
assigning

builds, 127-129
test configurations, 51-53
testers, 53-54

Associated Change sets, 124
Associated Work Items, 124
associating

Coded UI Tests and Test Cases, 178-181
Unit Tests, 181

ATDD (Acceptance Test Driven
Development), 26

Attachments section, detailed test results,
98-100

attributes, 186
automated builds, creating, 191
automated builds (Test Plans), 40-41
automated test settings, 221-222

Lab Management workflow, 222-231
automated testing, 24
automated testing framework, 139-141
automated tests, 9-10

creating from manual tests, 141-142
coded UI tests, 144-157
examining generated web application

coded UI tests, 142-144
executing, 183-184

from command line, 190
local execution, 184
local execution with remote

collection, 184
in MTM, 191-196
remote execution, 185-189

executing with Team Build, 202-203
issues with, 205

custom dialogs, 205-207
running through MTM, 233-234

automating manual Test Cases, 142
automation, choosing to automate,

136-138

B
best practices for parameterized tests, 88
binaries, 82
black-box testing, 21
Blocked field, 113
blocked test cases, 101
BlogEngine.NET application, xxiv

BlogEntryHTMLBasicTestCodedUI-
TestMethods, 167

boundary cases, 21
Browser Window class, 150
bug count per feature, 11, 279
bug count per phase, 11, 278
bug reactivations, 276

comparing measurements, 277
lowering, 277
measuring, 276

Bug Status reports, 244-245
Bug Trends reports, 245-246
Bug work item type, 107-110

customer reported bugs, 110
reactivations, 111
test team reported bugs, 110
triaging bugs, 110

Bug work item type, generated bugs,
116-119

bug workflow, 113
bugs

bug count per feature, 11
bug count per phase, 11
differences and modifications, 112-116
finding and filing, 88-89
fixing, 122-124

Associated Change sets, 124
Associated Work Items, 124
impacted tests, 125

regression bugs, 11, 16, 138
total bug count, 11
triaging, 116
updating in Agile, 114
verifying fixes, 129-131

$(Build Location), 228
Build Quality Indicators reports, 246-248

Index284

build reports, 232
Build Result Count Trend, 257
Build Success over Time reports, 248-249
Build Summary reports, 249-250
build warnings, 204
building quality at the beginning of

projects, 17
builds, 82

assigning, 127-129
automated builds, creating, 191
dual purpose, 233
lab builds, executing, 231-232
quality, 125-127
retention, 130
work items, 125

builds (Test Plans), 40-41
built-in reports, 242-244

Bug Status, 244-245
Bug Trends, 245-246
Build Quality Indicators, 246-248
Build Success over Time, 248-249
Build Summary, 249-250
reactivations, 246
Stories Overview, 250-251
Test Case Readiness, 251-252
Test Plan Progress, 252-253

built-in templates, 224
business value of software quality, 14

C
capturing metrics, 272
challenges of software testing, 1-3
Cigna Corporation, 4
cleaning up tests, 207
closing IE Browser window, 165
Code Complete (McConnell), 13

code coverage, 11
Coded UI Test builds, 159
Coded UI Tests, 24, 144-147

associating with Test Cases, 178-181
maintaining, 154
recording from scratch, 165
running through MTM, 196-199
searching for controls, 148-157

CodedUITestMethods, 170, 175
combining tests, 178
command line, executing automated

tests, 190
communication, improving, 5-6
$(ComputerName_), 228
Computer Science Corporation, 4
configurations (Test Plans), 41
configuring virtual environments,

217-218
connecting to Team Foundation Server,

33-34
construction phase (Test Cases), 61-62
Contents section (Test Plans), 43

query-based suites, 45
requirements-based suites, 44-45
static suites, 46

Continuous Integration builds, 40
Control Specific section, validations, 161
controls, searching for (Coded UI Tests),

148-157
corner cases, 21
cost of poor software quality, 3-5
costs, defect cost, 11
Covey, Stephen R., 26
Crispin, Lisa, 20
cube (SSAS), 240-242
Cunningham, Ward, 246
custom dialogs, automated tests, 205-207

Index 285

customer reported bugs, 110
customizing

process templates, 115, 270
work items, 61

D
cashboards, 254
data, gathering diagnostic data, 235
data driven test cases, 77
data sources, Test Cases, 168
database unit testing, 22
default diagnostic data adapters (Test

Plans), 40
defect cost, 11
defect root cause, 11
Deploy.cmd, 227
DeployDatabase.cmd, 229
deployed products, testing, 27-28
deployed VMs, 214
deploying test code, 127
detailed test results, 95

Analysis section, 95
Attachments section, 98-100
Links section, 100
Result History section, 100-101
Test Step Details section, 96-97

developer-focused testing, 184
developers, testing, 136
development

ATDD (Acceptance Test Driven
Development), 26

FDD (feature-driven development),
65-66

moving from one iteration to another,
67-68

development of Lab Management,
xviii-xix

development of Microsoft Visual Studio
Test Professional 2010, xvii-xix

diagnostic data, gathering, 235
diagnostic data adapters (Test Plans), 40
differences, bugs, 112-116
documentation, MSDN, 253
done, definition of, 18
dual purpose builds, 233
dynamic values, 172-178

E
edge cases, 21
editing test steps, 73
encrypted passwords, 148
end of projects, building quality at, 17
environments, setting up (executing

automated tests), 193-196
examining test results, 92-93

detailed test results, 95-101
test run results, 93-94

Excel Services, 243
Excel Services reports, 253-254
Exception Data, 120
executing

automated tests, 183-184
from the command line, 190
in MTM, 191-196
local execution, 184
local execution with remote

collection, 184
remote execution, 185-189
with Team Build, 202-203

lab builds, 231-232
tests, 85-86, 159

parameterized tests, 87
expectations of software quality, 15

Index286

exploratory testing, 23
MTM, 101-104

external software quality, 13-14

F
failures, failure categories, 42
FBI’s Virtual Case File system, 4
FDD (feature-driven development), 65-66
feature-driven development (FDD), 65-66
filing bugs, 88-89
finding bugs, 88-89
first-time defect rate, 273

causes of, 273
comparing measurements, 275
lowering, 274-275
measuring, 273-274
related metrics, 276

fixing bugs, 122-124
Associated Change sets, 124
Associated Work Items, 124
impacted tests, 125

formal reviews, reducing general bug
count, 280

Found in Environment field, 114
FQDN (fully qualified domain

name), 228
frameworks, automated testing, 139-141
functional testing, 24

G
general bug counts, 277

measuring, 278-279
reducing, 279-282

Generate Code dialog, 164
generated bugs, 116-119

generated control class, 174
generated web application coded UI

tests, 142-144
generating

reports from work item queries, 255-256
ValidateHTMLInfo code, 171

goals of software testing, 19
gray-box testing, 22
Gregory, Janet, 20
Group Policy Editor, 206

H
Heinlein, Robert, 269
How Found field, 114

I
IE Browser windows, closing, 165
IE DOM (Internet Explorer Document

Object Model), 136
IEFrame properties, 162
impacted tests, 125, 131-132
importing

Test Cases, 77
VMs, 210-212

improving communication, 5-6
inconsistency issues, parameterized

Coded UI Tests, 168-169
resolving, 169-170

increasing project visibility, 6
initial design (Test Cases), 56-61
integration testing, 23-24
IntelliTrace, 119-122
Intellitrace Settings, 80
internal software quality, 13-14
$(InternalComputerName_ring, 228

Index 287

Internet Explorer Document Object
Model (IE DOM), 136

iterations, moving from one iteration to
another, 67-68

K
Kelvin, Lord, 269
Kristensen, Mads, xxiv

L
lab builds, executing, 231-232
Lab Management, 194, 209

development of, xviii-xix
Lab Management workflow, 222-231
Links section, detailed test results, 100
load testing, 24
local execution, automated testing, 184

with remote collection, 184
LoggedOnUserPreFilledTestClass,

142-143
lowering

bug reactivations, 277
defect rates, 274-275

M
macros, 227-228
maintainability, 16
management, test management, 27
manual black-box testing, xvii-xviii
manual Test Cases, creating, 74-75
manual tests in virtual environments,

234-238
McConnell, Steve, 13
mean time between failures (MTBF), 16
measuring

bug reactivations, 276
defect rates, 273-274
general bug counts, 278-279

metrics, 268-271
bug reactivations, 276-277
capturing, 272
explained, 10-12
first-time defect rate, 273

causes of, 273
comparing measurements, 275
lowering, 274-275
measuring, 273-274
related metrics, 276

general bug counts, 277
measuring, 278-279
reducing, 279-282

what to measure, 271-272
Microsoft Active Accessibility. See MSAA
Microsoft Environment Viewer, 218
Microsoft Excel

fields and placement, 267
reporting with, 254

creating generated reports, 255
testing measures, 256-257

reports, creating Test Cases, 257-268
Microsoft Team Foundation Server 2010,

Lab Management, 194, 209
Microsoft Test Manager. See MTM
Microsoft Visual Studio Test Professional

2010, development of, xvii, xix
middle of project, building quality at, 17
modifications, bugs, 112-116
MOSS (Microsoft Office SharePoint

Server), 239
MSAA (Microsoft Active

Accessibility), 136
ASP.NET, 162

MSBuild, 8
MSDN (Microsoft Developer Network),

documentation, 253
MSF for Agile Bug work item types, 108
MSF for CMMI Bug work item type, 109

Index288

MSI packages, 217
MSTest.exe, 190
MTBF (mean time between failures), 16
MTM (Microsoft Test Manager), 8

connecting to Team Foundation Server,
33-34

executing automated tests, 191-192
setting up physical environment,

193-196
explained, 30
exploratory testing, 101-104
managing virtual environments,

210-216
navigation controls, 30
navigation layout, 31
running automated tests, 233-234
running Coded UI Tests, 196-199

creating test settings, 199-201
selecting team projects, 34
table of components, 31-33
Test Plans. See Test Plans
Tool Center, 33

N
NameoftheblogShortdeDocument, 163
naming test assemblies, 192
navigation controls (MTM), 30
navigation layout (MTM), 31
need for testers, 3-5
nightly builds, 40
nonfunctional requirements

explained, 15
maintainability, 16
reliability, 16
security, 16
usability, 16

Nyveldt, Al, xxiv

O
Original Estimate field, 114

P
parameterized Coded UI Tests, 166-168

inconsistency issues, 168-169
resolving inconsistency issues, 169-170

parameterized test cases, creating, 78
parameterized tests

best practices, 88
executing, 87

passwords, encrypted, 148
pausing test runs, 89-90
PeopleSoft, 4
physical environments, 198
physical machines, 194
PivotTable field sections, 261
plans. See test plans
Point Count Trend, 257
poor software quality, cost of, 3-5
PowerShell, 227
pre-user acceptance testing, 25
process, impact on quality, 19
process flow, 7-9
process templates, customizing, 115, 270
project visibility, increasing, 6
projects

relationship with test suites, test cases,
and Test Plans, 36

selecting in MTM (Microsoft Test
Manager), 34

properties of Test Plans, 38
Proposed Fix field, 115
purpose of software testing, 19

Index 289

Q
quality

as team effort, 18
building at beginning of project, 17
builds, 125-127
business value, 14
cost of poor software quality, 3-5
definition of done, 18
expectations, 15
impact of process on, 19
internal versus external, 13-14
maintainability, 16
reliability, 16
requirements, 14
security, 16
usability, 16

query-based suites, 45

R
Range Selector, 102
reactivations, 111, 246
recorded steps, adding, 164-165
recording Coded UI Tests from

scratch, 165
reducing general bug counts, 279-281

test normal pathfirst, 281-282
regression bugs, 11, 16, 138, 279
regression testing, 25
related metrics, defect rates, 276
reliability, 16
remote collection, local execution

(automated tests), 184
remote execution, automated testing,

185-189
replaying test steps, 90-91

reporting with Microsoft Excel, 254
creating generated reports, 255
testing measures, 256-257

reporting structures, 240-242
reports

built-in reports, 242-244
Bug Status, 244-245
Bug Trends, 245-246
Build Quality Indicators, 246-248
Build Success over Time, 248-249
Build Summary, 249-250
reactivations, 246
Stories Overview, 250-251
Test Case Readiness, 251-252
Test Plan Progress, 252-253

Excel Services, 253-254
generating from work item queries,

255-256
User Stories, creating Test Cases,

257-268
requirements for software quality, 14
requirements coverage, unit tests, 141
requirements-based suites, 44-45
resolution types, 42-43
resolving data inconsistency,

parameterized Coded UI Tests,
169-170

Result Count, 257
Result Count Trend, 257
Result History section, detailed test

results, 100-101
resuming test runs, 89-90
Ritchie, Arthur David, 269
Root Cause field, 115
Run settings (Test Plans), 38-40
Run Tests page, 92

Index290

running
automated tests through MTM, 233-234
Coded UI Tests through MTM, 196-199
tests, 79-80

Test Runner, 80-84

S
SAP, 3
Scheduling Test Cases, 64-65
Science Applications International

Corporation, Virtual Case File
system, 4

SCRUM, 20
SCVMM (System Center Virtual Machine

Manager), 210
search conditions, 176
searching for controls, coded UI tests,

148-157
security, 16
security groups, test controllers, 194
server names, 233
servers, Team Foundation Server

(connecting to), 33-34
service level agreements (SLAs), 16
SetupWebServer.cmd, 228
Share-Point, 243
Shared Step, executing tests, 86
shared steps

creating, 76-77
Test Case work item type, 75

shipped products, testing, 27-28
Siebel Systems, 4
SLAs (service level agreements), 16
smoke tests, 23
snapshots, 217

of environments, 219-221

software quality
as team effort, 18
building at beginning of project, 17
business value, 14
definition of done, 18
expectations, 15
impact of process on, 19
internal versus external, 13-14
maintainability, 16
reliability, 16
requirements, 14
security, 16
usability, 16

software testing, need for testers, 4
speeding up testing, 234
SSAS (SQL Server Analysis Services), 239

cube, 240-242
SSRS (SQL Server Reporting

Services), 239
built-in reports, 242-244

Bug Status, 244-245
Bug Trends, 245-246
Build Quality Indicators, 246-248
Build Success over Time, 248-249
Build Summary, 249-250
reactivations, 246
Stories Overview, 250-251
Test Case Readiness, 251-252
Test Plan Progress, 252-253

static suites, 46
Test Cases, 80

Stories Overview reports, 250-251
suites. See Test Suites
Symptom field, 115
System Center Virtual Machine Manager

(SCVMM), 210
system testing, 21, 25

Index 291

T
Tcm.exe, 190
Team Build, executing automated tests,

202-203
Team Foundation Server. See TFS

connecting to, 33-34
Team Project Collections. See TPCs
teams, involvement in building software

quality, 18
Technical Debt, 246
templates

built-in, 224
process templates, customizing, 115, 270
Test Approach Word template, 30

test approach, 30
Test Approach Word template, 30
test assemblies, naming, 192
test attachments, 119
Test Case Readiness reports, 251-252
Test Case work item type, 72-74

data driven test cases, 77
shared steps, 75

creating, 76-77
Test Cases

access to, 6
adding to Test Plans, 46-47
assigning testers to, 53-54
associating with Coded UI Tests,

178-181
automating manual Test Cases, 142
blocked, 101
creating manual, 74-75
data sources, 168
FDD (feature-driven development),

65-66
handling different test,

configurations, 68

importing, 77
moving from one iteration to another,

67-68
parameters, creating, 78
relationship with team projects, test

suites, and Test Plans, 36
scheduling and tracking, 64-65
static suites, 80
testing workflow, 55-56

analysis and initial design, 56-61
construction, 61-62
user acceptance testing, 62-64

User Stories Report, 257-268
test code, deploying, 127
Test Configuration Manager

accessing, 49
adding configuration variables, 50
assigning test configurations, 51-53
creating test configurations, 51

test configurations
accessing Test Configuration

Manager, 49
adding configuration variables, 50
assigning, 51-53
benefits of, 49
creating, 51
explained, 48
handling different test

configurations, 68
Test Controller Configuration tool, 193
Test Impact Analysis (TIA), 7, 125
Test List Editor, 158
test management, 27
Test Manager. See MTM (Microsoft Test

Manager)
test parameters, 77
Test Plan Progress reports, 252-253

Index292

Test Plan Status section (Test Plans), 42
analysis categories, 42-43
failure categories, 42

Test Plans, 55. See also testing workflow
builds, 40-41
configurations, 41
Contents section, 43-44. See also Test

Suites
static suites, 46

creating, 37
default diagnostic data adapters, 40
properties, 38
relationship with team projects, test

suites, and test cases, 36
Run settings, 38-40
Selecting, 35
Test Cases

adding to plans, 46-47
assigning testers to, 53-54
FDD (feature-driven development),

65-66
handling different test

configurations, 68
moving from one iteration to another,

67-68
scheduling and tracking, 64-65

Test Plan Status section, 42
analysis categories, 42-43
failure categories, 42

Test Suites
adding to plans, 46-47
creating, 47
query-based suites, 45
requirements-based suites, 44
static suites, 46

test results, examining, 92-93
detailed test results, 95-101
test run results, 93-94

Test Results, test attachments, 119
test run results, 93-94
Test Runner, 80-84

bugs, finding and filing, 88-89
pausing and resuming test runs, 89-90
replaying test steps, 90-91

Test Runner (TR), 71
test runs, pausing and resuming, 89-90
Test Scribe tool, 33
test settings, creating, 199-201
Test Step Details section, detailed test

results, 96-97
test steps

editing, 73
replaying, 90-91

Test Suites, 43-44
adding to Test Plans, 46-47
creating, 47
query-based suites, 45
relationship with team projects, test

cases, and Test Plans, 36
requirements-based suites, 44-45
static suites, 46

test team reported bugs, 110
testers

assigning, 53-54
need for, 3-5
testing mindset, 20

testing
automated testing framework, 139-141
developer-focused testing, 184
exploratory testing with MTM, 101-104
manual black-box testing, xvii-xviii
speeding up, 234

testing measures, Microsoft Excel,
256-257

testing mindset, 20

Index 293

testing workflow, 55-56
analysis and initial design, 56-61
construction, 61-62
user acceptance testing, 62-64

tests
automated tests. See automated tests
cleaning up, 207
Coded UI Tests. See Coded UI Tests
combining, 178
executing, 85-86, 159

parameterized tests, 87
generated web application coded UI

tests, 142-144
impacted tests, 131-132
manual tests in virtual environments,

234-238
parameterized Coded UI Tests, 166-168

inconsistency issues, 168-169
resolving inconsistency issues,

169-170
parameterized tests, best practices, 88
running, 79-80

Test Runner, 80-84
Test Runner

finding and filing bugs, 88-89
pausing and resuming test runs, 89-90
replaying test steps, 90-91

Unit Tests
associating, 181
requirements coverage, 141

tests coded UI tests, 144-147
searching for controls, 148-157

TFS (Team Foundation Server), 12, 239
automated tests, 9-10
metrics, explained, 10-12

TIA (Test Impact Analysis), 125, 132
explained, 7-9

time, 241
Tool Center, 33
tools, Test Controller Configuration

tool, 193
total bug count, 11
TPCs (Team Project Collections), 240
tracking Test Cases, 64-65
transparency, 6
triaging bugs, 110, 116

U
UAT (User Acceptance Testing), 21, 63
UI test files, 154-155
UIA (User Interface Automation), 136
UISigninDocument class, 150-152
UISigninWindowsInterneWindow

class, 148
unit testing, 22
Unit Tests, associating, 181

requirements coverage, 141
updating bugs in Agile, 114
usability, 16
User Stories reports, Test Cases

(creating), 257-268
user acceptance testing, 62-64
User Acceptance Testing (UAT), 21
User Interface Automation (UIA), 136
users, expectations of software quality, 15

V
ValidateHTMLInfo code, generating, 171
validations

adding, 157-158, 160-164
multiple validations, 158

values, dynamic values, 172-178
variables, adding to test

configurations, 50

Index294

verifying bug fixes, 129-131
videos, 97
Virtual Case File system (FBI), 4
virtual environments

configuring, 217-218
managing with MTM, 210-216
manual tests, 234-238
options, 215
snapshots, 219-221
versus virtual machines, 213

virtual machines, 194
versus virtual environments, 213

virtualized testing, 90
visibility of projects, increasing, 6
Visual Studio Test Professional 2010,

development of, xvii, xviii
VMs (virtual machines), importing,

210-212
VMWare virtual machines, 194
vsdbcmd command-line tool, 229

W-X-Y
Waste Management, Inc., 3
white-box testing, 21
Windows SharePoint Services (WSS), 243
work item queries, generating reports,

255-256
work items

builds, 125
customizing, 61

workflow, 55-56
analysis and initial design, 56-61
bugs, 113
construction, 61-62
user acceptance testing, 62-64

WSS (Windows SharePoint Services), 243

Z
zero defect releases, 3
Zumdahl, Steven S., 269

Index 295

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	3 Planning Your Testing
	Microsoft Test Manager
	Test Plans
	Properties
	Contents
	Adding Suites and Test Cases to Your Plan

	Testing Configurations
	Managing Test Configurations
	Assigning Test Configurations

	Assigning Testers
	Test Case Planning Workflow
	Analysis and Initial Design
	Construction
	User Acceptance Testing

	Common Scenarios
	Scheduling and Tracking Test Case Creation and Execution
	Feature Driven Development
	Moving from One Iteration to Another
	Handling Different Test Configurations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y
	Z

