

Building
Applications
in the Cloud

This page intentionally left blank

Building
Applications
in the Cloud
Concepts, Patterns,

and Projects

Christopher M. Moyer

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of
this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing
focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Howard, Ken, 1962-
Individuals and interactions : an agile guide / Ken Howard,

Barry Rogers.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-71409-1 (pbk. : alk. paper) 1. Teams in the

workplace. 2. Communication. I. Rogers, Barry, 1963- II. Title.
HD66.H695 2011
658.4'022 - - dc22

2011001898

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This
publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-72020-7
ISBN-10: 0-321-72020-2

Text printed in the United States on recycled paper at R.R.
Donnelley & Sons, Crawfordsville, Indiana.

First printing April 2011

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Michael Thurston

Managing Editor
Kristy Hart

Senior Project Editor
Lori Lyons

Copy Editor
Apostrophe Editing
Services

Indexer
Ken Johnson

Proofreader
Sheri Cain

Technical Reviewers
Kevin Davis
Mocky Habeeb
Colin Percival

Publishing Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Cover Illustrator
Lynn A. Moyer
www.designbylynn.com

Compositor
Nonie Ratcliff

www.designbylynn.com

❖

To my wonderful wife Lynn,
without whom this book would never

have been finished.

❖

This page intentionally left blank

vii

Table of Contents

Preface xv

About the Author xx

Introduction 1
What Is Cloud Computing? 1

The Evolution of Cloud Computing 2

The Main Frame 3

The PC Revolution 4

The Fast Internet 5

The Cloud 6

HTML5 and Local Storage 7

The Dawn of Mobile Devices 9

Threading, Parallel Processing, and
Parallel Computing 10

How Does Cloud-Based Development Differ
from Other Application Development? 11

What to Avoid 13

Getting Started in the Cloud 14

Selecting a Cloud Pattern 16

Implementing a Cloud Pattern 17

I: Concepts

1 Fundamentals of Cloud Services 21
Origins of Cloud Computing 21

What Is a Cloud Service? 23

Compute 24

Storage 24

Connectivity 24

viii Contents

The Legacy Pattern 25

Just Because It’s in the Cloud Doesn’t
Mean It Scales 26

Failure as a Feature 27

Consistency, Availability, and Partition Tolerance 28

Consistency 29

Availability 30

Partition Tolerance 30

Eventual Consistency 31

Summary 32

2 Making Software a Service 33
Tools Used in This Book 34

Signing Up for Amazon Web Services 34

Installing boto 35

Setting Up the Environment 36

Testing It All 38

What Does Your Application Need? 39

Data Layer 40

Introducing the AWS Databases 41

Application Layer 47

Using Elastic Load Balancing 47

Adding Servers to the Load Balancer 49

Automatically Registering an Instance with
a Load Balancer 51

HTTP and REST 53

The Header 53

The Body 57

Methods 58

Authorization Layer 62

Client Layer 64

Browser-Based Clients 65

Native Applications 66

Summary 67

ixContents

3 Cloud Service Providers 69
Amazon Web Services 69

Simple Storage Service (S3) 71

CloudFront 77

Simple Queue Service (SQS) 80

Elastic Compute Cloud (EC2) 83

Elastic Block Storage (EBS) 88

Elastic Load Balancing (ELB) 91

SimpleDB 93

Relational Database Service (RDS) 95

Simple Notification Service (SNS) 102

Virtual Private Cloud (VPC) 106

Google Cloud 108

AppEngine 108

Google Storage 111

Rackspace Cloud 112

CloudFiles 112

CloudServers 113

CloudSites 113

Summary 114

II: Patterns

4 Designing an Image 117
Prepackaged Images 119

Overview 119

Reasons for Usage 119

Description 120

Implementation 120

Example 122

Summary 125

Singleton Instances 127

Overview 127

Reasons for Usage 127

Description 128

Implementation 128

x Contents

Example 128

Summary 130

Prototype Images 131

Overview 131

Reasons for Usage 131

Description 132

Implementation 132

Example 133

Summary 135

5 Designing an Architecture 137
Adapters 139

Overview 139

Reasons for Usage 140

Description 140

Implementation 140

Example 141

Summary 146

Facades 147

Overview 147

Reasons for Usage 148

Description 148

Implementation 148

Example 149

Summary 152

Proxies and Balancers 153

Overview 153

Reasons for Usage 153

Description 154

Implementation 154

Example 155

Summary 158

6 Executing Actions on Data 159
Queuing 161

Overview 161

Reasons for Usage 162

xiContents

Description 162

Implementation 163

Example 163

Summary 170

Command 173

Overview 173

Reasons for Usage 173

Description 174

Implementation 174

Example 175

Summary 179

Iterator 181

Overview 181

Reasons for Usage 181

Description 182

Implementation 182

Example 183

Summary 185

Observer 187

Overview 187

Reasons for Usage 188

Description 188

Implementation 188

Example 189

Summary 191

7 Clustering 193
The n-Tier Web Pattern 195

Overview 195

Reasons for Usage 196

Description 196

Implementation 197

Example 198

Summary 210

Semaphores and Locking 211

Overview 211

Reasons for Usage 211

xii Contents

Description 212

Implementation 212

Example 213

Summary 218

Map/Reduce 219

Overview 219

Reasons for Usage 220

Description 220

Implementation 220

Example 222

Summary 226

III: Projects

8 A Simple Weblog 229
Storage 229

Creating a Domain 231

The User Object 232

The Post Object 234

The Comment Object 237

Application 240

A Brief Introduction to WSGI 241

The DB Handler 243

The User, Post, and Comment Handlers 248

Spam Classification 249

Presentation 253

Setting Up the HTTP Proxy 254

Posts 255

Comments 266

Deploying 272

Starting the Base Instance 272

Installing the Software 273

Installing the Application 275

Installing Apache 276

Bundling the Image 277

Creating the Proxy 279

Summary 279

xiiiContents

9 A Weblog Using Marajo 281
Initializing the Environment 282

handlers 283

resources 283

static 283

templates 283

Creating the Resources 284

Creating the Handlers 286

Configuring the Application 287

Creating the Templates 288

Running the Application 289

Creating Custom Templates 289

The List Template 289

The Edit Template 292

Summary 296

Glossary 297

Index 307

This page intentionally left blank

Preface

After a few months working as a developer in a small start-up
company migrating existing services to the cloud, I started realiz-
ing that there was way too much work to be done just by myself. I
started looking around for other developers like myself that could
assist me, or replace me if I were to find a better and more exciting
opportunity elsewhere. I quickly realized that there are so few peo-
ple that actually fully comprehend the level of complexity it
requires to develop a cloud-based application, and almost all these
people were happy with their current companies.

I began to create a series of blog posts about working with
cloud-based platforms, still available at http://blog.coredumped.
org, but soon realized that I could quite literally spend an entire
year writing up everything there is to know.This documentation
would be better placed in a reference book than simply scattered
throughout several blog posts, so I decided to write this book.

The Purpose of This Book
This book isn’t designed as a tutorial to be read through from
cover to cover. It’s not a guide for how to build an application for
the cloud, but instead it’s designed as a reference point for when
you have specific questions.When your boss hands you a new
project and tells you to make it scale, check the patterns discussed
in this book to see what fits.When you work on a project and you
find a specific problem that you don’t know how to handle, pick
up this book. If you’re trying to start on a new project, and you
have a perfect idea, but you don’t know how to scale it, pick up
this book. If you’re trying to modify an existing project to scale in
the cloud, pick up this book. If you don’t know what kinds of

http://blog.coredumped.org
http://blog.coredumped.org

applications you can build with cloud computing, pick up this
book.

This book doesn’t invent many new patterns but simply shows
you the tricks and new techniques that you need to consider while
running them in the cloud.Although you can use any patterns dis-
cussed in this book in any sort of clustering environment, they’re
designed to take full advantage of the services provided by cloud
computing.

How This Book Should Be Used
This book is divided into three parts. Everyone should read Part I,
“Concepts,” for a basic understanding of cloud computing. In Part
II,“Patterns,” you can skip to the patterns you’re most interested
in. If you’ve never developed any sort of cloud-based application,
you may want to go over the example applications in Part III,
“Projects,” so that you can see exactly what kinds of applications
are best suited for this type of system.

Part I, “Concepts”
Part I is designed to give you a general concept of how to develop
in the cloud. It’s designed to be read from start to finish and is bro-
ken into different key chapters important to development:
n Chapter 1,“Fundamentals of Cloud Services”—Provides a

basic set of fundamental ideals when working with cloud-
based solutions.This is an absolute must read for any devel-
oper beginning with this book.

n Chapter 2,“Making Software a Service”—Provides a basic set
of instructions for providing Software as a Service (SaaS). It
includes details on why this is a good idea and some basics as
to how to properly construct your SaaS.

n Chapter 3,“Cloud Service Providers”—Provides some spe-
cific examples of services offered by cloud providers.

Part II, “Patterns”
Part II functions more like a reference manual and provides you
with a problem and the pattern that solves that problem:
n Chapter 4,“Designing an Image”—Includes basic patterns for

use in building your basic image that is the basis for the rest
of your application.

n Chapter 5,“Designing an Architecture”—Includes the pat-
terns used for interacting with external systems, not systems
offered by your cloud provider.

n Chapter 6,“Executing Actions on Data”—Includes the pat-
terns used to execute code segments against your data.

n Chapter 7,“Clustering”—Includes the patterns used within a
basic framework designed to take advantage of multiserver
deployments.

Part III, “Projects”
Part III includes examples of real-world applications of the patterns
provided throughout this book.These chapters use the same overall
hello world tutorial, but in two different ways:
n Chapter 8,“A Simple Weblog”—Details how to build a sim-

ple weblog from scratch, not using any existing frameworks.
n Chapter 9,“A Weblog Using Marajo”—Details how to build

a weblog using the Marajo cloud-based Web framework.

Conventions Used in This Book
Throughout this book you occasionally see bold words.These
words represent a new term, followed by the definition. If you find
a term in the book that you don’t know, see the Glossary for a full
listing of definitions.

Words listed in italic highlight key important ideas to take away
from the section.These are usually used to highlight important
keywords in a topic, so if you’re skimming over a section looking
for something specific, this should help you find exactly what you
need.

Where to Begin
The first question for most people now is, where do you start?
How do you quickly begin developing applications? What if you
don’t want to go through and read about all these things you could
do and simply want to get into the meat of how things work?

By picking up this book, you’re already on the right track.You
already know that you can’t simply go to a cloud provider and start
launching servers and expect to get exactly what you want out of
them. People who just pick up a cloud provider and don’t do
enough research beforehand typically end up with lots of prob-
lems, and usually end up blaming the cloud provider for those
problems.This is like buying a stick-shift car without first knowing
how to drive it and then complaining to the dealership for selling
it to you. If you don’t first do some research and preparation, you
shouldn’t be surprised when you have problems with the cloud.
If you’re not a developer, you probably would be better suited to
using a third party to manage your cloud; but if you’re reading this
book, I’m going to assume that you’re interested in more than just
“let that guy handle it.”

Acknowledgments

I’d like to thank my peer and mentor Mitch Garnaat for all his
help and inspiration to push me to cloud computing. I’d also like
to thank the team at Amazon Web Services for pushing the market
forward and constantly bringing out new products that make
everything in this book possible.

About the Author

Chris Moyer is a recent graduate of RIT, the Rochester Institute
of Technology, with a bachelor’s degree in Software Engineering.
Chris has more than five years experience in programming with a
main emphasis on cloud computing. Much of his time has been
spent working on the popular boto client library, used for commu-
nicating with Amazon Web Services. Having studied under the cre-
ator of boto, Mitch Garnaat, Chris then went on to create two web
frameworks based on this client library, known as Marajo and
botoweb. He has also created large scaled applications based on those
frameworks.

Chris is currently Vice President of Technology for Newstex,
LLC, where he manages the technological development of migrat-
ing applications to the cloud, and he also manages his own depart-
ment, which is actively maintaining and developing several
applications. Chris lives with his wife, Lynn, in the New York area.

Introduction

Before diving into how to develop your cloud applications, you
need to understand a few key concepts behind cloud computing.
The term cloud computing has been around for only a few
years, but the concepts and patterns behind how to use it have
been in use since the dawn of the computing age.

What Is Cloud Computing?
There are literally hundreds of definitions for cloud computing,
and most of them make little to no sense at all to anyone other
than the people that originally created them. Most companies call
their virtual hosting environments clouds simply because it con-
notes power, speed, and scalability. In reality, a cloud is little more
then a cluster of computational and storage resources that has almost limit-
less expandability. Most cloud offerings also charge you only by
what you use.

The advantage to running your application in a cloud comput-
ing environment is typically a lower cost because you have no ini-
tial investment for most services, and you don’t have to pay for
expensive IT staff.Although this is a great reason to switch over to
using cloud computing services, it’s not the only one. Cloud com-
puting also offers you the advantage of instantly scaling any applica-
tion built using the proper design patterns.Additionally, it offers
you the ability to offload your work to the people that have been
managing it best for years. It would take a full-trained staff much
longer to react to the increased demand because it has to go out
and purchase new hardware. In contrast, when you work with a
cloud-based platform, you can simply request more hardware usage
time from the large pool of available resources. Because these cloud

services are typically provided by larger corporations, they can
afford to have the staff available all the time to keep their systems
running at peak performance.

If you’ve ever had a server fail in the middle of the night and
have to get it back up and running, then you know how much of
a pain it can be to get someone to fix it. By offloading your physi-
cal servers to the cloud, you can stop worrying about systems man-
agement and start working on your applications.

The goal of any entrepreneur is to build a booming business
with millions of customers, but most people don’t have enough
initial capital to build a server farm that can scale to that sort of
potential. If you’re just starting up a business, you don’t even know
if it’s going to take off. But say your business does take off sud-
denly, and now you have to quickly scale your web-based applica-
tion from handling 20 customers to handling 20,000 customers
overnight.

In a traditional environment in which you host your own
servers, this could mean you need to not only get a faster pipe out
of your server farm, but you also actually need to purchase new or
faster servers and build them all up and hope they all work
together well.You then need to worry about data management and
all sorts of other fun and interesting things that go with maintain-
ing your own cluster. If you had been using a cloud, you’d have
simply run a few API calls to your cloud vendor and had 40 new
machines behind your application within minutes. In a week if that
number drops down to 200 customers, you can terminate those
unused instances.You’d have saved money because you didn’t have
to buy them outright.

The Evolution of Cloud Computing
There’s been talk lately about how cloud computing and other
new software architectures have been designed similar to how
things were designed in the past, and that perhaps we’ve actually
taken a step backward.Although there may be some similarities
between how things were done in the past and how things are

2 Introduction

done now, the design techniques are actually quite different.
Following is a brief history of application development.

The Main Frame
In the beginning, there was the mainframe.The mainframe was a
single supercomputer with the fastest processing chips money
could buy, and they were a prized commodity.They were so large
and took so much cooling and electricity that typically even large
businesses wouldn’t even have one locally to work with, so you
had to communicate with it remotely via a dumb terminal, a
special computer with almost no resources other then to connect
to the mainframe (see Figure I.1). Eventually these mainframe’s got
smaller, but you were still forced to interact with them via these
thin clients.

3The Evolution of Cloud Computing

Dumb
Terminal

Dumb
Terminal

Dumb
Terminal

MainFrame

Figure I.1 The mainframe.

These mainframes were designed to run a single process quickly,
so there was no need to even think about parallel processing;
everything was simply done in sequence. Mainframes needed a
complicated scheduling system so that they could allot a given
amount of time to any single process but enable others to interject
requests in between.

This method of client-server interaction was a huge leap forward
from the original system with only one interface to a computer.
In many cases, this is still a widely used architecture, although the
dumb terminals have been replaced with thin clients, which
was actually software designed to run on standard computers, not
providing much functionality apart from simply connecting to the
mainframe.A good example of a thin client still in use today is the
modern web browser.

The PC Revolution
As robust as the first mainframes were, they were actually less
powerful than a modern digital wrist watch. Eventually technology
evolved past the powerful mainframe and into smaller and more
powerful devices that were actually housed in an average-sized
room.These new devices revolutionized the way software was
built, by enabling application developers to run everything locally
on the client’s system.This meant that your Internet connection
speed was no longer a bottleneck and was completely removed
from the equation, and the only slowness you would ever see was
from your own personal computer.As machines got faster, software
continued to demand more from local systems. PCs today, how-
ever, are overpowered for most average tasks.This led to the inter-
esting prospect of multitasking, where a single system can be used
to run multiple tasks at the same time. Originally, tasking was sim-
ply handled by a more advanced version of the scheduler used in
the mainframe but eventually became replaced with hardware
threading, and even multiprocessor systems.

Many developers refused to adapt to this new multitasking tech-
nology, but some did.Those that did developed massively scaled
systems that could run in fractions of the time of a single-process

4 Introduction

system, taking full advantage of the hardware at hand.This would
help aid in the next big leap in technology, the fast Internet.

The Fast Internet
Previously the concern was with network latency and throughput,
but eventually the telecommunications industry caught up with
the rest of the market.What previously took minutes to send over-
the-wire now takes seconds, or even fractions of seconds.With the
introduction of the largest infrastructure system ever created, the
Internet was born and provided enough throughput and band-
width to make us rethink how our systems were architected. Many
people had come to terms with the idea that software needed to
be threaded, but now they took it one step further—developing
clustering.

Clustering took the idea of processing in parallel to a new level.
Instead of simply processing things in parallel on the same
machine, clustering is the concept of processing things in parallel
on multiple machines (see Figure I.2).All these personal computers
had much more power than was being used, and most of the time
they were entirely idle.

As an example, a few years ago a graphics design company was
looking into buying a few servers to run its graphics processing.
Graphics manipulation, conversion, and processing is one of the
most processor-intensive things required from a computer, so usu-
ally it can’t be done on local systems without bogging them down
or taking a long time. Instead of buying expensive hardware to run
and maintain graphics processing, this company decided to take a
revolutionary approach.

Its solution was to use the unused processing power on the local
systems for graphics processing. It designed a simple queue service
that would accept jobs and a simple client interface that ran on
every PC in the office that would accept and process jobs only
when the computers had downtime.This meant that during off-
hours or other periods when employees weren’t using their com-
puters, the jobs could be completed, and no additional expensive

5The Evolution of Cloud Computing

hardware was required! This idea of distributed computing across
commodity hardware created a new way to develop software
applications.

6 Introduction

Client
System

Client
System

Client
System

Client
System

Figure I.2 The cluster system.

The Cloud
Then Amazon released its concept of cloud computing.The idea
of a cloud is almost identical to the distributed processing concept,
except it uses dedicated systems instead of employees’ systems to
run the processing jobs (see Figure I.3).This ensures that you’ll
always have the capacity required to run your jobs.Although it is
more expensive (although not much so), you don’t have to provide
upfront capital to purchase the extra systems; instead you can
instantly acquire a few more servers for temporary usage.Again,
this revolutionized the way people thought about software and
how to design it. However, haven’t you seen this approach before?

7The Evolution of Cloud Computing

Server

Client

Server

ServerServer

Figure I.3 The cloud system.

Indeed, it does look similar to the original mainframe architec-
ture; from a purely black-box perspective, it’s almost identical.The
big difference is how the server actually achieves its processing
capabilities by combining the best of both architectures into one.

HTML5 and Local Storage
But really, can’t we do better? Isn’t there some new technology
coming out that will enable us to merge these two separate systems
better?

Yes, there is. Client-server interaction mostly involves web appli-
cations.The problem with most modern web applications is that
they have to ask the server for everything; they can’t run any pro-
cessing locally, and they certainly can’t store enough data locally in
a usable format.

In comes HTML5 with a local storage option, a way to store
application-level information within the browser.This new tech-
nology enables you to literally distribute every trusted action
between client and server.The best non-web example is
Mercurial, a distributed version control system.

Mercurial doesn’t require a central server to push and pull
change-sets from, but instead keeps a local copy of your entire
repository within the directory you’re working on.You can con-
tinue to work, check in, revert, update, merge, branch, whatever,
even if you’re entirely offline.All the client processing happens
locally. If you then want to share your changes with others, you
can do so either by manually transferring update files, or using a
central sync server.Although it does support having one default
sync server to push and pull changes to and from, that’s not its
limit. It can push and pull from as many servers as you’d like with-
out breaking your local repository.These sync servers are simply
designed to provide an authenticated distribution point and ensure
that the data its providing is updated only by trusted sources.

What this provides is the ability to create a local application on a
clients system that synchronizes its database with your central
server and then enables you to perform regular tasks on it. Because
you only get information from your central server that you have
access to, you can open your server up and let any client connect
to it, and you can just plop your permissions on top and only let
the client see what you want it to see from the database. Unlike
the old client-server interaction, your central server’s full power is
used, and your client’s full power is used.Anything requiring mas-
sive processing (such as processing graphics) can still run on the
server side so that you don’t bog down your client’s systems, but
simple things such as searching through a database and rendering
records into visuals can all happen locally on your client!

8 Introduction

The biggest question for the new-age application is where to
put each bit of functionality.The best answer to this is through
trial-and-error. Other than for security, there’s no true set of rules
on what should be processed where; it’s just a matter of seeing
what your client is capable of. For example, some clients are capa-
ble of running XSLT natively in their browsers, but some don’t do
it correctly. If you can convince your clients to simply not use
unsupported browsers, you can probably offload all of that to
them, but you may need to allow your server to run it if you need
to support all browsers.

The Dawn of Mobile Devices
Why are we moving away from an all-client infrastructure? Quite
simply, it’s because of Apple. Smart phones (such as Blackberrys)
had previously been thought of for only large businesses, and even
then it was usually just for email.There are two different scales of
devices: the mobile touch pad and the mobile smart phone.These
devices have revolutionized the way you think of the client-server
interaction because you can pick up where you left off with one
device on another.

Now look at Netflix for a good example. Netflix has recently
announced that it will support both the iPhone and the iPad for
viewing movies.Additionally, it recently made available Netflix on
console gaming systems, and even on some TVs. It also provides
specific streaming boxes if you don’t want to buy either of these
things.The best thing Netflix offers is the ability to pause a movie
and resume play on any other device.You can start watching a
movie on your way home from the airport, and pick it up again
on your TV when you get home!

So what does that mean in the general sense? Quite simply, users
want a seamless interaction between their PC and their mobile
devices.They don’t want to have two totally different systems, just
two different interfaces.They want to pick up right where they left
off on their desktop when they move to their laptop or iPad.They
want to have everything synced automatically for them without

9The Evolution of Cloud Computing

having to copy files.They also want to have offline support so that
when they go into one of those pesky areas where there’s no AT&T
coverage, they can still continue to work, and the system will simply
sync the tasks when it can.These are all things that every developer
needs to be thinking about when designing their systems.

Threading, Parallel Processing, and
Parallel Computing
Whenever dealing with large applications, you often need to split
processes into multiple segments to speed things up.Typically this is
done by a simple process of threading, which is using the lan-
guage’s internal capabilities to process bits of code simultaneously.
Threading uses shared memory; you have access to exactly the
same information in each thread without having to handle any-
thing else.You have to worry about locking and using semaphores
or some other methodology to prevent your application from hav-
ing problems when accessing the same data. For example, if you
have two threads of execution that each increment a single variable
by one, they could both read the data at the same time, increment
it by one, and then write that back. In this instance, instead of the
ending value of the variable being incremented by 2, it would only
be incremented by 1 because you didn’t properly lock to ensure
that only one thread was operating on that bit of data at the same
time.This problem of simultaneous write-ability can also be seen
in other forms of segmenting code, but in threading, several built-
in methods handle locking for you.Threading typically relies on a
scheduler built into the language; code is technically not running
at the same time, but instead it’s given little bits of time to execute
in between other threads.

Parallel processing, on the other hand, doesn’t have shared mem-
ory. Instead of using the language’s built-in capabilities of running
code in a scheduler, you’re actually using the operating system’s
capability of executing multiple processes, possibly on different
CPUs. Because of how this processing is handled, you can’t simply
share variables, but you can share resources such as files and other

10 Introduction

data on the physical machine.Although you don’t have the ability
to use semaphores anymore for locking, you still have the native
filesystem, and you can use file-locks to prevent your code from
overlapping writes.Although this is a much better way to separate
out bits of code that can run asynchronously, you still need to
build one giant supercomputer to process a lot of data because
even the most advanced commodity hardware usually tops out at
about 12 virtual cores.

The most complex of asynchronous design is parallel com-
puting. Instead of simply splitting your code into different
processes and relying on the attached filesystem and other native
sources on your local machine, each machine is a large processing
unit with a lot of memory to spare.Although you can use the local
filesystem as an extension of the RAM for extra storage, you
shouldn’t rely on it being there in each process, and it can’t be used
to share data between processes. Because each process could be on
an entirely different system, you need to focus on putting any
shared data on some other shared datasource.Typically this is a
form of database or shared filesystem.This method of design also
scales almost infinitely because it’s only limited to how many
machines you can run at the same time, and how much bandwidth
the machines have between them and the shared data sources.
Using this methodology, you don’t need to build a supercomputer,
but you can instead use smaller processing units in a clustered
manor to expand almost infinitely. It also enables you to scale and
rescale on-the-fly by simply starting and stopping extra servers
whenever the demand changes.This is the typical design used
behind almost all cloud-based applications.

How Does Cloud-Based Development
Differ from Other Application
Development?
Unlike server-based application development, cloud-based applica-
tion development is focused on splitting the two things that every
application needs: compute power and data storage. Essentially, this

11How Does Cloud-Based Development Differ from Other Application Development?

is the data and compute power to manipulate that data. Data can
also be sorted into different levels: shared and nonshared.
Nonshared data is like RAM, small, fast, and accessible but can be
removed at any point.Although not all cloud computing environ-
ments throw away all your data on a local system when you take it
down, it’s generally a good idea to think of anything on a local sys-
tem exactly as you would RAM, and assume that after you’re done
with that specific thread of execution, it will be gone forever.Any
data you want to persist or share between processes needs to be
stored in some other form, either a database or a data store.

You can’t use the local filesystem to send messages between
processes when they need to communicate. For example, if you
need to fire off new processes or send a message for an existing
process to do something, you have to handle that by using a queue,
not just making a file somewhere. If your cloud computing service
doesn’t offer it’s own queue service (such as Simple Queue Service
with Amazon Web Services), you can do the exact same thing with
a locking database (such as MySQL or MsSQL).

The most typical thing that’s stored in RAM or on local file-
systems is session data in Internet applications. Because all cloud
applications have some component of the Internet to it (even if
you’re not making a browser-based application, you’re still talking
to your application over some Internet protocol), this is an impor-
tant bit of design to think about. If at all possible, your application
should be exactly like the HTTP or HTTPS protocols, completely
sessionless. If you do need to store session data, you need to store it
in a shared database, not something local because when you’re
properly scaling your application, you don’t know which process
the user will access next, nor do you know which server that
process is on.You don’t even know if the process that first handled
that request is even running because you’re operating on a con-
stantly scaling system that could be changing, adapting, and even
recovering from failures.

Although the cloud can be used to implement legacy code and
save you money, in general you probably want to change things

12 Introduction

around instead of simply copying existing systems. It’s a good idea
to use as much as your cloud provider has to offer, which includes
using any shared database systems, queuing systems, and computing
systems.All cloud providers offer a compute cloud, a utility to
execute code against data, but most also offer hosted databases and
storage. Some cloud providers even provide queuing systems that
can help you send messages between processes.

The most important thing to remember when developing a
cloud-based application is that failure is inevitable. Instead of spending
hours trying to figure out why something failed, just replace it. It
usually takes only about a minute to launch a new server, and if
you’ve built everything properly, there won’t be any data loss and
little impact, if any, from the outside world.You can achieve this by
using the proper patterns and design techniques outlined in Part
III,“Projects.”.

If you have experience developing cluster-based applications,
you already have a good start to move to the cloud.The main dif-
ference between developing with cluster-based applications and
cloud-based applications is using existing systems instead of build-
ing your own. For example, you may have already built your own
proxy system, but many cloud providers offer their own solutions,
which will cost you less and require much less maintenance work.

What to Avoid
As soon as people hear they can put their application “in the
cloud,” they assume the application is now simply infallible, super
scalable, and will easily adapt and save money. Just because your appli-
cation is running in the cloud doesn’t make it scalable or infallible.You
need to actually build your application around the cloud to take
the full advantages it has to offer. Most cloud offerings use com-
modity hardware in a clustered fashion; it’s exactly as likely to fail
as any desktop put under the same pressure. Get ready for failures.
The goal of cloud computing isn’t to avoid failures but to be pre-
pared and recover from them.

13What to Avoid

One of the worst things you can do is make everything rely on
one single point of failure, such as a server responsible for main-
taining some data or handing out requests.The biggest part of
making an application run in the cloud is avoiding bottlenecks. In
the past, the biggest bottleneck used to be physical servers, band-
width, and money.With cloud-computing services, you suddenly
are no longer limited by these, so you now can focus on other
areas where things could get stuck in a bottleneck.Typically this is
something like generating sequential numbers or some other non-
threadable process. Whenever possible, avoid using sequential numbers for
IDs. Instead, try using random UUIDs, which are almost guaran-
teed to never overlap. Switching away from requiring a single
blocking thread to generate the next number in a series for IDs
means that you no longer rely on a single point of failure, and you
avoid that bottleneck.This process scales almost infinitely because
you can simply throw more threads or processes at the service
when you have more demand.

Getting Started in the Cloud
The first thing to tackle when working with cloud-based applica-
tions is creating your instance image.This is the core set of code
that will be used and can either be everything you need or only
the base subset of what all your instances need.The more you put
into an image, the larger it will be and the slower it will start up,
but if you don’t put enough onto an instance, it will take even
longer to install those extra features before the rest of your services
can start.You can use a simple package-management system on a
core image to limit what you need to update to a single image,
configuring extra packages on boot, or you can build multiple
images, each with its own set of packages and update each of them
individually. Each cloud-provider enables you to create an image
and then set specific instance-level data when running a single
instance of that image.You can use this configuration data to load
up extra packages, perform updates, or just simply pass in secure
information that you would not want to bundle in your image.

14 Introduction

In Amazon Web Services, this instance data is typically used to
store your AWS credentials so that you can access other services
from that instance.

Next, you need to decouple your data from your processing
threads. You want to process all data locally and then upload your
results to some shared data storage system. For Amazon Web
Services, this would be Simple Storage Service (S3) for large data
or SimpleDB (SDB) for small searchable data. If you prefer to use a
relational database instead of SDB, you can also use MySQL in the
cloud.

After you know where to store your data, you need to know
when to process it and why you are processing it.This is typically
done with a messaging method. If you’ve ever dealt with Aspect-
Oriented programming languages (such as Objective-C), you know
that you already deal with messaging in your programming, but
most of it is handled behind the scenes. In a message queue, you
send a message with your request for a specific processing instruc-
tion, such as a function call, to a shared and lockable data source,
and other processes listen on that queue for instructions. If a
process picks up an instruction it can handle, it locks that message
from being read by anyone else, processes the instruction, and then
pushes the resulting data to another shared data source, and finally
deletes the message so that no other processes will reprocess the
same instruction. If your cloud-provider doesn’t offer a solution to
this, you can simply use a locking database such as MySQL or
MSSQL to create your own queue.

When you know how to send messages between processes, you
have to manage locking between processes to ensure that multiple
processes don’t override each other when accessing the same data.
If you use MySQL or MsSQL, you can simply use the locking
capabilities provided there and lock on tables or on specific rows if
possible. Be wary, though, of locking tables because this will hold
up other threads, and if something goes wrong with the process
that created the lock before it can free it, you’ll end up in a dead-
lock state.You can handle this in several ways, but most of them are
better documented in the manual for your respective database.

15Getting Started in the Cloud

Locking in a nonrelational database, however, usually is an inexact
science and involves a lot of waiting. Nonrelational databases, such
as SDB, also have problems with eventual consistency, meaning
that even if you write your own lock into a database, you’ll have to
wait a reasonable amount of time to make sure it wasn’t overrid-
den by someone else before you can actually assume you have the
lock. Even with waiting, this isn’t a guarantee because you can’t
actually put a time limit on “eventually.” Even with the best prac-
tices, you can’t reliably use any nonconsistent database for locking.
Fortunately, SimpleDB now provides the option to use consistent
read and write, but then you lose the advantages provided by even-
tual consistency.

Selecting a Cloud Pattern
After you know what you’re building, you need to select the cloud
patterns to use to make your application take full advantage of the
cloud.This is more of an art than a science, so read over the intro-
duction on each pattern before selecting one.You’ll probably need
to select multiple patterns to implement your full application, so
don’t try to find one pattern to fit all your needs. If you find a case
study in Part II,“Patterns,” that closely matches your situation, you
can use that as a good starting point and build from there.You can
also jump directly to Part III and find the specific pattern that fits
your needs.

In general, you should try to split your application as much as
possible and use the patterns as needed. Most applications can ben-
efit from the clustering patterns in Chapter 7,“Clustering,” because
just about every cloud application will be based on the web pat-
terns shown there. If you work with asynchronous processing of
data, see Chapter 6,“Executing Actions on Data.” If you need to
access data from outside of the cloud, see Chapter 5,“Designing an
Architecture.” If you’re just starting and you need to know how
to build an instance and start developing from scratch, start at
Chapter 4,“Designing an Image,” and continue from there.

16 Introduction

Implementing a Cloud Pattern
After you select your patterns, you need to put them into practice.
The last section of each pattern includes details and code examples
for Amazon Web Services, but this code can easily be extracted and
used in almost any cloud-based system.As cloud providers con-
tinue to grow, they’re also continuing to merge to provide one
unified set of offerings.The boto python library currently supports
Amazon Web Services, Google Storage, and Eucalyptus.Work is
also being done to bring in the Rackspace cloud, which uses the
free and open source Open Stack library. Because all the exam-
ples provided in this book use Python and boto, many of these
examples can be easily transitioned to any number of cloud pro-
viding platforms with little or no code modifications.

17Getting Started in the Cloud

This page intentionally left blank

2
Making Software a Service

Developing your Software as a Service (SaaS) takes you away
from the dark ages of programming and into the new age in which
copyright protection, DMA, and pirating don’t exist. In the current
age of computing, people don’t expect to pay for software but
instead prefer to pay for the support and other services that come
with it.When was the last time anyone paid for a web browser?
With the advent of Open Source applications, the majority of paid
software is moving to hosted systems which rely less on the users’
physical machines.This means you don’t need to support more
hardware and other software that may conflict with your software,
for example, permissions, firewalls, and antivirus software.

Instead of developing a simple desktop application that you need
to defend and protect against pirating and cloning, you can develop
your software as a service; releasing updates and new content seam-
lessly while charging your users on a monthly basis.With this
method, you can charge your customers a small monthly fee
instead of making them pay a large amount for the program
upfront, and you can make more money in the long run. For
example, many people pirate Microsoft Office instead of shelling
out $300 upfront for a legal copy, whereas if it were offered soft-
ware online in a format such as Google Docs, those same people
might gladly pay $12.50 a month for the service. Not only do they
get a web-based version that they can use on any computer, but
everything they save is stored online and backed up.After two years
of that user paying for your service, you’ve made as much money

from that client as the desktop version, plus you’re ensuring that
they’ll stay with you as long as they want to have access to those
documents. However, if your users use the software for a month
and decide they don’t like it, they don’t need to continue the sub-
scription, and they have lost only a small amount of money. If you
offer a trial-based subscription, users can test your software at no
cost, which means they’re more likely to sign up.

Tools Used in This Book
You need to take a look at some of the tools used throughout this
book. For the examples, the boto Python library is used to com-
municate with Amazon Web Services.This library is currently the
most full-featured Python library for interacting with AWS, and it’s
one I helped to develop. It’s relatively easy to install and configure,
so you can now receive a few brief instructions here. boto cur-
rently works only with Python 2.5 to 2.7, not Python 3. It’s rec-
ommended that you use Python 2.6 for the purposes of this book.

Signing Up for Amazon Web Services
Before installing the libraries required to communicate with
Amazon Web Services, you need to sign up for an account and any
services you need.This can be done by going to http://aws.ama-
zon.com/ and choosing Sign Up Now and following the instruc-
tions.You need to provide a credit card to bill you for usage, but
you won’t actually be billed until the end of each month.You can
log in here at any time to sign up for more services.You pay for
only what you use, so don’t worry about accidentally signing up
for too many things.At a minimum, you need to sign up for the
following services:

n Elastic Compute Cloud (EC2)
n Simple Storage Service (S3)
n SimpleDB
n Simple Queue Service (SQS)

34 Chapter 2 Making Software a Service

http://aws.amazon.com/
http://aws.amazon.com/

After you create your account, log in to your portal by clicking
Account and then choosing Security Credentials. Here you can see
your Access Credentials, which will be required in the configura-
tion section later.At any given time you may have two Access keys
associated with your account, which are your private credentials to
access Amazon Web Services.You may also inactivate any of these
keys, which helps when migrating to a new set of credentials
because you may have two active until everything is migrated over
to your new keys.

Installing boto
You can install boto in several different ways, but the best way to
make sure you’re using the latest code is to download the source
from github at http://github.com/boto/boto.There are several dif-
ferent ways to download this code, but the easiest is to just click
the Downloads button and choose a version to download.
Although the master branch is typically okay for development pur-
poses, you probably want to just download the latest tag because
that’s guaranteed to be stable, and all the tests have been run
against it before bundling.You need to download that to your local
disk and unpack it before continuing.

The next step will be to actually install the boto package.As
with any Python package, this is done using the setup.py file, with
either the install or develop command. Open up a terminal, or
command shell on Windows, change the directory to where you
downloaded the boto source code, and run
$ python setup.py install

Depending on what type of system you run, you may have to
do this as root or administrator. On UNIX-based systems, this can
be done by prepending sudo to the command:
$ sudo python setup.py install

On Windows, you should be prompted for your administrative
login if it’s required, although most likely it’s not.

35Tools Used in This Book

http://github.com/boto/boto

Setting Up the Environment
Although there are many ways to set up your environment for
boto, use the one that’s also compatible with using the downloaded
Amazon Tools, which you can find at
http://aws.amazon.com/developertools. Each service has its own
set of command-line-based developer tools written in Java, and
most of them enable you to also use the configuration file shown
here to set up your credentials. Name this file credentials.cfg and
put it somewhere easily identified:
AWSAccessKeyID=MyAccessKey

AWSSecretKey=MySecretKey

You can make this the active credential file by setting an envi-
ronment variable AWS_CREDENTIAL_FILE and pointing it to the full
location of this file. On bash-based shells, this can be done with
the following:
export AWS_CREDENTIAL_FILE=/full/path/to/credentials.cfg

You can also add this to your shell’s RC file, such as .bashrc or
.zshrc, or add the following to your .tcshrc if you use T-Shell
instead:
setenv AWS_CREDENTIAL_FILE=/full/path/to/credentials.cfg

For boto, create a boto.cfg that enables you to configure some of
the more boto-specific aspects of you systems. Just like in the pre-
vious example, you need to make this file and then set an environ-
ment variable, this time BOTO_CONFIG, to point to the full path of
that file.Although this configuration file isn’t completely necessary,
some things can be useful for debugging purposes, so go ahead and
make your boto.cfg:
File: boto.cfg

Imitate some EC2 configs

[Instance]

local-ipv4 = 127.0.0.1

local-hostname = localhost

security-groups = default

public-ipv4 = 127.0.0.1

public-hostname = my-public-hostname.local

36 Chapter 2 Making Software a Service

http://aws.amazon.com/developertools

hostname = localhost

instance-type = m1.small

instance-id = i-00000000

Set the default SDB domain

[DB]

db_name = default

Set up base logging

[loggers]

keys=root,boto

[handlers]

keys=hand01

[formatters]

keys=form01

[logger_boto]

level=INFO

handlers=hand01

[logger_root]

level=INFO

handlers=hand01

[handler_hand01]

class=StreamHandler

level=INFO

formatter=form01

args=(sys.stdout,)

[formatter_form01]

format=%(asctime)s [%(name)s] %(levelname)s %(message)s

datefmt=

class=logging.Formatter

The first thing to do here is set up an [Instance] section that
makes your local environment act like an EC2 instance.This sec-
tion is automatically added when you launch a boto-based EC2
instance by the startup scripts that run there.These configuration

37Tools Used in This Book

options may be referenced by your scripts later, so adding this sec-
tion means you can test those locally before launching an EC2
instance.

Next, set the default SimpleDB domain to “default,” which will
be used in your Object Relational Mappings you’ll experiment
with later in this chapter. For now, all you need to know is that this
will store all your examples and tests in a domain called “default,”
and that you’ll create this domain in the following testing section.

Finally, you set up a few configuration options for the Python
logging module, which specifies that all logging should go to stan-
dard output, so you’ll see it when running from a console.These
configuration options can be custom configured to output the log-
ging to a file, and any other format you may want, but for the
basics here just dump it to your screen and show only log messages
above the INFO level. If you encounter any issues, you can drop this
down to DEBUG to see the raw queries being sent to AWS.

Testing It All
If you installed and configured boto as provided in the previous
steps, you should be able to launch a Python instance and run the
following sequence of commands:
>>> import boto

>>> sdb = boto.connect_sdb()

>>> sdb.create_domain("default")

The preceding code can test your connectivity to SimpleDB
and create the default domain referenced in the previous configu-
ration section.This can be useful in later sections in this chapter, so
make sure you don’t get any errors. If you get an error message
indicating you haven’t signed up for the service, you need to go to
the AWS portal and make sure to sign up for SimpleDB. If you get
another error, you may have configured something incorrectly, so
just check with that error to see what the problem may have been.
If you’re having issues, you can always head over to the boto home
page: http://github.com/boto/boto or ask for help in the boto
users group: http://groups.google.com/group/boto-users.

38 Chapter 2 Making Software a Service

http://github.com/boto/boto
http://groups.google.com/group/boto-users

What Does Your Application Need?
After you have the basic requirements for your application and
decide what you need to implement, you can then begin to
describe what you need to implement this application.Typically
this is not a question that you think about when creating smaller
scale applications because you have everything you need in a single
box. Instead of looking at everything together as one complete
unit or “box,” you need to split out what you actually need and
identify what cloud services you can use to fit these requirements.
Typical applications need the following:

n Compute power
n Fast temporary storage
n Large long-term storage
n Small queryable long-term storage
n Communication between components or modules

Think about this application as a typical nonstatic website that
requires some sort of execution environment or web server, such as
an e-commerce site or web blog.When a request comes in, you
need to return an HTML page, or perhaps an XML or JSON rep-
resentation of just the data, that may be either static or dynamically
created.To determine this, you need to process the actual request
using your compute power.This process also requires fast tempo-
rary storage to store the request and build the response. It may also
require you to pull information about the users out of a queryable
long-term storage location.After you look up the users’ informa-
tion, you may need to pull out some larger long-term storage
information, such as a picture that they may have requested or a
specific blog entry that is too large to store in a smaller queryable
storage engine. If the users request to upload a picture, you may
have to store that image in your larger long-term storage engine
and then request that the image be resized to multiple sizes, so it
may be used for a thumbnail image. Each of these requirements
your application has on the backend may be solved by using ser-
vices offered by your cloud provider.

39What Does Your Application Need?

If you expand this simple website to include any service, you
can realize that all your applications need the same exact thing. If
you split apart this application into multiple layers, you can begin
to understand what it truly means to build SaaS, instead of just the
typical desktop application. One major advantage of SaaS is that it
lends itself to subscription-based software, which doesn’t require
complex licensing or distribution points, which not only cuts cost,
but also ensures that you won’t have to worry about pirating.
Because you’re actually providing a service, you’re locking your
clients into paying you every time that they want to use the ser-
vice. Clients also prefer this method because, just like with a cloud-
hosting provider, they don’t have to pay as much upfront, and they
can typically buy in a small trial account to see if it will work for
them.They also don’t have to invest in any local hardware and can
access their information and services from any Internet access.This
type of application moves away from the requirements of having
big applications on your client’s systems to processing everything
on your servers, which means clients need less money to get into
your application.

Taking a look back at your website, you can see that there are
three main layers of this application.This is commonly referred to
as a three-tier application pattern and has been used for years to
develop SaaS.The three layers include the data layer to store all
your long-term needs, the application layer to process your data,
and the client or presentation layer to present the data and the
processes you can perform for your client.

Data Layer
The data layer is the base of your entire application, storing all the
dynamic information for your application. In most applications,
this is actually split into two parts. One part is the large, slow stor-
age used to store any file-like objects or any data that is too large
to store in a smaller storage system.This is typically provided for

40 Chapter 2 Making Software a Service

you by a network-attached-storage type of system provided by
your cloud hosting solution. In Amazon Web Services, this is called
Simple Storage Service or S3.

Another large part of this layer is the small, fast, and queryable
information. In most typical systems, this is handled by a database.
This is no different in cloud-based applications, except for how
you host this database.

Introducing the AWS Databases
In Amazon Web Services, you actually have two different ways to
host this database. One option is a nonrelational database, known as
SimpleDB or SDB, which can be confusing initially to grasp but in
general is much cheaper to run and scales automatically.This non-
relational database is currently the cheapest and easiest to scale
database provided by Amazon Web Services because you don’t have
to pay anything except for what you actually use.As such, it can be
considered a true cloud service, instead of just an adaptation on
top of existing cloud services.Additionally, this database scales up
to one billion key-value pairs per domain automatically, and you
don’t have to worry about over-using it because it’s built using the
same architecture as S3.This database is quite efficient at storing
and retrieving data if you build your application to use with it, but
if you’re looking at doing complex queries, it doesn’t handle that
well. If you can think of your application in simple terms relating
directly to objects, you can most likely use this database. If, how-
ever, you need something more complex, you need to use a
Relational DB (RDB).

RDB is Amazon’s solution for applications that cannot be built
using SDB for systems with complex requirements of their data-
bases, such as complex reporting, transactions, or stored procedures.
If you need your application to do server-based reports that use
complex select queries joining between multiple objects, or you
need transactions or stored procedures, you probably need to use

41Data Layer

RDB.This new service is Amazon’s solution to running your own
MySQL database in the cloud and is actually nothing more than
an Amazon-managed solution.You can use this solution if you’re
comfortable with using MySQL because it enables you to have
Amazon manage your database for you, so you don’t have to worry
about any of the IT-level details. It has support for cloning, backing
up, and restoring based on snapshots or points-in-time. In the near
future,Amazon will be releasing support for more database engines
and expanding its solutions to support high availability (write clus-
tering) and read-only clustering.

If you can’t figure out which solution you need to use, you can
always use both. If you need the flexibility and power of SDB, use
that for creating your objects, and then run scripts to push that
data to MySQL for reporting purposes. In general, if you can use
SDB, you probably should because it is generally a lot easier to use.
SDB is split into a simple three-level hierarchy of domain, item,
and key-value pairs.A domain is almost identical to a “database” in
a typical relational DB; an Item can be thought of as a table that
doesn’t require any schema, and each item may have multiple key-
value pairs below it that can be thought of as the columns and val-
ues in each item. Because SDB is schema-less, it doesn’t require
you to predefine the possible keys that can be under each item,
so you can push multiple item types under the same domain.
Figure 2.1 illustrates the relation between the three levels.

In Figure 2.1, the connection between item to key-value pairs is
a many-to-one relation, so you can have multiple key-value pairs
for each item.Additionally, the keys are not unique, so you can
have multiple key-value pairs with the same value, which is essen-
tially the same thing as a key having multiple values.

42 Chapter 2 Making Software a Service

Figure 2.1 The SDB hierarchy.

Connecting to SDB
Connecting to SDB is quite easy using the boto communication
library.Assuming you already have your boto configuration envi-
ronment set up, all you need to do is use the proper connection
methods:
>>> import boto

>>> sdb = boto.connect_sdb()

>>> db = sdb.get_domain("my_domain_name")

>>> db.get_item("item_name")

This returns a single item by its name, which is logically equivalent
to selecting all attributes by an ID from a standard database.You
can also perform simple queries on the database, as shown here:
>>> db.select("SELECT * FROM `my_domain_name` WHERE `name`

➥LIKE '%foo%' ORDER BY `name` DESC")

43Data Layer

Item

Domain

Key Value

The preceding example works exactly like a standard relational
DB query does, returning all attributes of any item that contains a
key name that has foo in any location of any result, sorting by name
in descending order. SDB sorts and operates by lexicographical
comparison and handles only string values, so it doesn’t understand
that [nd]2 is less than [nd]1.The SDB documentation provides
more details on this query language for more complex requests.

Using an Object Relational Mapping
boto also provides a simple persistence layer to translate all values
so that they can be lexicographically sorted and searched for prop-
erly.This persistence layer operates much like the DB layer of
Django, which it’s based on. Designing an object is quite simple;
you can read more about it in the boto documentation, but the
basics can be seen here:
from boto.sdb.db.model import Model

from boto.sdb.db.property import StringProperty, IntegerProperty,

ReferenceProperty, ListProperty

class SimpleObject(Model):

"""A simple object to show how SDB

Persistence works in boto"""

name = StringProperty()

some_number = IntegerProperty()

multi_value_property = ListProperty(str)

class AnotherObject(Model):

"""A second SDB object used to show how references work"""

name = StringProperty()

object_link = ReferenceProperty(SimpleObject,

collection_name="other_objects")

This code creates two classes (which can be thought of like tables)
and a SimpleObject, which contains a name, number, and multi-
valued property of strings.The number is automatically converted
by adding the proper value to the value set and properly loaded
back by subtracting this number.This conversion ensures that the
number stored in SDB is always positive, so lexicographical sorting

44 Chapter 2 Making Software a Service

and comparison always works.The multivalue property acts just
like a standard python list, enabling you to store multiple values in
it and even removing values. Each time you save the object, every-
thing that was in there is overridden. Each object also has an id
property by default that is actually the name of the item because
that is a unique ID. It uses Python’s UUID module to generate this
ID automatically if you don’t manually set it.This UUID module
generates completely random and unique strings, so you don’t rely
on a single point of failure to generate sequential numbers.The
collection_name attribute on the object_link property of
AnotherObject is optional but enables you to specify the property
name that is automatically created on the SimpleObject.This
reverse reference is generated for you automatically when you
import the second object.

boto enables you to create and query on these objects in the
database in another simple manor. It provides a few unique meth-
ods that use the values available in the SDB connection objects of
boto for you so that you don’t have to worry about building your
query.To create an object, you can use the following code:
>>> my_obj = SimpleObject("object_id")

>>> my_obj.name = "My Object Name"

>>> my_obj.some_number = 1234

>>> my_obj.multi_value_property = ["foo", "bar"]

>>> my_obj.put()

>>> my_second_obj = AnotherObject()

>>> my_second_obj = "Second Object"

>>> my_second_obj.object_link = my_obj

>>> my_second_obj.put()

To create the link to the second object, you have to actually save
the first object unless you specify the ID manually. If you don’t
specify an ID, it will be set automatically for you when you call the
put method. In this example, the ID of the first object is set but
not for the second object.

To select an object given an ID, you can use the following code:
>>> my_obj = SimpleObject.get_by_id("object_id")

45Data Layer

This call returns an instance of the object and enables you to
retrieve any of the attributes contained in it.There is also a “lazy”
reference to the second object, which is not actually fetched until
you specifically request it:
>>> my_obj.name

u'My Object Name'

>>> my_obj.some_number

1234

>>> my_obj.multi_value_property

[u'foo', u'bar']

>>> my_obj.other_objects.next().name

u'Second Object'

You call next() on the other_objects property because what’s
returned is actually a Query object.This object operates exactly
like a generator and only performs the SDB query if you actually
iterate over it. Because of this, you can’t do something like this:
>>> my_obj.other_objects[0]

This feature is implemented for performance reasons because the
query could actually be a list of thousands of records, and perform-
ing a SDB request would consume a lot of unnecessary resources
unless you’re actually looking for that property.Additionally,
because it is a query, you can filter on it just like any other query:
>>> query = my_obj.other_objects

>>> query.filter("name like", "%Other")

>>> query.order("-name")

>>> for obj in query:

...

In the preceding code, you would then be looping over each
object that has a name ending with Other, sorting in descending
order on the name.After returning all matching results, a
StopIteration exception is raised, which results in the loop
terminating.

46 Chapter 2 Making Software a Service

Application Layer
The application layer is where you’ll probably spend most of your
time because it is the heart and soul of any SaaS system.This is
where your code translates data and requests into actions, chang-
ing, manipulating, and returning data based on inputs from users,
or other systems.This is the only layer that you have to actually
maintain and scale, and even then, some cloud providers offer you
unique solutions to handle that automatically for you. In Google
AppEngine, this is handled automatically for you. In Amazon Web
Services, this can be handled semi-automatically for you by using
Auto-Scaling Groups, for which you can set rules on when to start
and stop instances based on load averages or other metrics.

Your application layer is built on top of a base image that you
created and may also contain scripts that tell it to update or add
more code to that running instance. It should be designed to be as
modular as possible and enable you to launch new modules with-
out impacting the old ones.This layer should be behind a proxy
system that hides how many actual modules are in existence.
Amazon enables you to do this by providing a simple service
known as Elastic Load Balancing, or ELB.

Using Elastic Load Balancing
Amazon’s Elastic Load Balancing, or ELB, can be used simply and
cheaply to proxy all requests to your modules based on their
Instance ID. ELB is even smart enough to proxy only to systems
that are actually live and processing, so you don’t have to worry
about server failures causing long-term service disruptions. ELB
can be set up to proxy HTTP or standard TCP ports.This is
simple to accomplish using code and can even be done on the
actual instance as it starts, so it can register itself when it’s ready to
accept connections.This, combined with Auto-Scaling Groups,
can quickly and easily scale your applications seamlessly in a matter
of minutes without any human interaction. If, however, you want
more control over your applications, you can just use ELB without
Auto-Scaling Groups and launch new modules manually.

47Application Layer

Creating and managing ELBs is quite easy to accomplish using
boto and the elbadmin command-line tool that I created, which
comes with boto. Detailed usage of this tool can be found by run-
ning it on the command line with no arguments:
% elbadmin

Usage: elbadmin [options] [command]

Commands:

list|ls List all Elastic Load Balancers

delete <name> Delete ELB <name>

get <name> Get all instances associated
with <name>

create <name> Create an ELB

add <name> <instance> Add <instance> in ELB <name>

remove|rm <name> <instance> Remove <instance> from ELB
<name>

enable|en <name> <zone> Enable Zone <zone> for ELB
<name>

disable <name> <zone> Disable Zone <zone> for ELB
<name>

Options:

--version show program's version number and exit

-h, --help show this help message and exit

-z ZONES, --zone=ZONES

Operate on zone

-l LISTENERS, --listener=LISTENERS

Specify Listener in,out,proto

The first thing to do when starting out is to create a new ELB.
This can be done simply as shown here:
% elbadmin -l 80,80,http -z us-east-1a create test

Name: test

DNS Name: test-68924542.us-east-1.elb.amazonaws.com

Listeners

IN OUT PROTO

80 80 HTTP

48 Chapter 2 Making Software a Service

Zones

us-east-1a

Instances

You must pass at least one listener and one zone as arguments to
create the instance. Each zone takes the same distribution of
requests, so if you don’t have the same amount of servers in each
zone, the requests will be distributed unevenly. For anything other
than just standard HTTP, use the tcp protocol instead of http.
Note the DNS Name returned by this command, which can also be
retrieved by using the elbadmin get command.This command can
also be used at a later time to retrieve all the zones and instances
being proxied to by this specific ELB.The DNS Name can be
pointed to by a CNAME in your own domain name.This must be
a CNAME and not a standard A record because the domain name
may point to multiple IP addresses, and those IP addresses may
change over time.

Recently,Amazon also released support for adding SSL termina-
tion to an ELB by means of the HTTPS protocol.You can find
instructions for how to do this on Amazon’s web page.At the time
of this writing, boto does not support this, so you need to use the
command-line tools provided by Amazon to set this up.The most
typical use for this will be to proxy port 80 to port 443 using
HTTPS. Check with the boto home page for updates on how to
do this using the elbadmin command-line script.

Adding Servers to the Load Balancer
After you have your ELB created, it’s easy to add a new instance to
route your incoming requests to.This can be done using the
elbadmin add command:
% elbadmin add test i-2308974

49Application Layer

This instance must be in an enabled zone for requests to be
proxied.You can add instances that are not in an enabled zone, but
requests are not proxied until you enable it.This can be used for
debugging purposes because you can disable a whole zone of
instances if you suspect a problem in that zone.Amazon does offer
a service level agreement (SLA), ensuring that it will have 99%
availability, but this is not limited to a single zone, thus at any given
time, three of the four zones may be down. (Although this has
never happened.)

It’s generally considered a good idea to use at least two different
zones in the event one of them fails.This enables you the greatest
flexibility because you can balance out your requests and even take
down a single instance at a time without effecting the service.
From a developer’s perspective, this is the most ideal situation you
could ever have because you can literally do upgrades in a matter
of minutes without having almost any impact to your customers by
upgrading a single server at a time, taking it out of the load bal-
ancer while you perform the upgrade.

Although ELB can usually detect and stop proxying requests
quickly when an instance fails, it’s generally a good idea to remove
an instance from the balancer before stopping it. If you’re inten-
tionally replacing an instance, you should first verify that the new
instance is up and ready, add it to the load balancer, remove the old
instance, and then kill it.This can be done with the following three
commands provided in boto package:
% elbadmin add test i-2308974

% elbadmin rm test i-0983123

% kill_instance i-0983123

The last command actually terminates the instance, so be sure
there’s nothing on there you need to save, such as log files, before
running this command.After each of these elbadmin commands,
the full status of that load balancer is printed, so be sure before
running the next command that the previous command succeeded.
If a failure is reported, it’s most likely because of an invalid instance
ID, so be sure you’re copying the instance IDs exactly. One useful

50 Chapter 2 Making Software a Service

tool for this process is the list_instances command, also provided
in the boto package:
% list_instances

ID Zone Groups Hostname

--

i-69c3e401 us-east-1a Wordpress ..compute-1.amazonaws.com

i-e4675a8c us-east-1c default ..compute-1.amazonaws.com

i-e6675a8e us-east-1d default ..compute-1.amazonaws.com

i-1a665b72 us-east-1a default ..compute-1.amazonaws.com

This command prints out the instance IDs, Zone, Security Groups,
and public hostname of all instances currently running in your
account, sorted ascending by start date.The last instances launched
will be at the bottom of this list, so be sure to get the right
instance when you’re adding the newest one to your ELB.The
combination of these powerful yet simple tools makes it easy to
manage your instances and ELB by hand.

Although the load balancer is cheap (about 2.5 cents per hour
plus bandwidth usage), it’s not free.After you finish with your load
balancer, remove it with the following command:
% elbadmin delete test

Automatically Registering an Instance with
a Load Balancer
If you use a boto pyami instance, you can easily tell when an
instance is finished loading by checking for the email sent to the
address you specify in the Notification section of the configura-
tion metadata passed in at startup.An example of a configuration
section using gmail as the smtp server is shown here:
[Notification]

smtp_host = smtp.gmail.com

smtp_port = 587

51Application Layer

smtp_tls = True

smtp_user = my-sending-user@gmail.com

smtp_pass = MY_PASSWORD

smtp_from = my-sending-user@gmail.com

smtp_to = my-recipient@gmail.com

Assuming there were no error messages, your instance should be
up and fully functional. If you want the instance to automatically
register itself when it’s finished loading, add an installer to your
queue at the end of your other installers. Ensure that this is done
after all your other installers finish so that you add only the
instance if it’s safe.A simple installer can be created like the one
here for ubuntu:
from boto.pyami.installers.ubuntu.installer import Installer

import boto

class ELBRegister(Installer):

"""Register this instance with a specific ELB"""

def install(self):

"""Register with the ELB"""

code here to verify that you're

successfully installed and running
elb_name = boto.config.get("ELB", "name")

elb = boto.connect_elb()

b = ebl.get_all_load_balancers(elb_name)

if len(b) <1:

raise Exception, "No Load balancer found"

b = b[0]

b.register_instances([boto.config.get_instance
➥("instance_id")])

def main(self):

self.install()

This requires you to set your configuration file on boot to contain
a section called ELB with one value name that contains the name of
the balancer to register to.You could also easily adapt this installer
to use multiple balancers if that’s what you need.Although this
installer will be called only if all the other installers before it suc-
ceed, it’s still a good idea to test anything important before actually
registering yourself with your balancer.

52 Chapter 2 Making Software a Service

HTTP and REST
Now that you have your instances proxied and ready to accept
requests, it’s time to think about how to accept requests. In general,
it’s a bad practice to reinvent the wheel when you can just use
another protocol that’s already been established and well tested.
There are entire books on using HTTP and REST to build your
own SaaS, but this section provides the basic details.

Although you can use HTTP in many ways, including SOAP,
the simplest of all these is Representational State Transfer (REST),
which was officially defined in 2000 by Roy Fielding in a doctoral
dissertation “Architectural Styles and the Design of Network-based
Software Architectures” (http://www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm). It uses HTTP as a communication medium
and is designed around the fundamental idea that HTTP already
defines how to handle method names, authentication, and many
other things needed when working with these types of communi-
cations. HTTP is split into two different sections: the header and
the body (not to be confused with the HTML <head> and <body>

tags), each of which is fully used by REST.
This book uses REST and XML for most of the examples, but

this is not the only option and may not even suite your specific
needs. For example, SOAP is still quite popular for many people
because of how well it integrates with Java. It also makes it easy for
other developers to integrate with your APIs if you provide them
with a Web Service Definition Language (WSDL) that describes
exactly how a system should use your API.The important point
here is that the HTTP protocol is highly supported across systems
and is one of the easiest to use in many applications because much
of the lower-level details, such as authentication, are already taken
care of.

The Header
The HTTP header describes exactly who the message is designed
for, and what method the user is instantiating on the recipient end.
REST uses this header for multiple purposes. HTTP method

53HTTP and REST

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

names can be used to define the method called and the arguments
(path) which is sent to that method.The HTTP header also
includes a name, which can be used to differentiate between appli-
cations running on the same port.This shouldn’t be used for any-
thing other than differentiating between applications because it’s
actually the DNS name and shouldn’t be used for anything other
than a representation of the server’s address.

The method name and path are both passed into the applica-
tion.Typically you want to use the path to define the module,
package, or object to use to call your function.The method name
is typically used to determine what function to call on that mod-
ule, package, or object. Lastly, the path also contains additional
arguments after the question mark (?) that usually are passed in as
arguments to your function. Now take a look at a typical HTTP
request:
GET /module_name/id_argument?param1=value1¶m2=value2

In this example, most applications would call module_name.

get(id_argument,param1=value1,param2=value2) or
module_name.get(id_argument,{param1=value1,param2=value2}).
By using this simple mapping mechanism, you’re decoupling your
interface (the web API) from your actual code, and you won’t
actually need to call your methods from the website.This helps
greatly when writing unit tests.

Many libraries out there can handle mapping a URI path to
this code, so you should try to find something that matches your
needs instead of creating your own.Although REST and RESTful
interfaces are defined as using only four methods, most proxies
and other systems, including every modern web browser, support
adding your own custom methods.Although many REST devel-
opers may frown on it, in general it does work, and when a simple
CRUD interface isn’t enough, it’s much better than overloading
an existing function to suit multiple needs.The following sections
reference some of the most common HTTP headers and how
you can use them in a REST API.

54 Chapter 2 Making Software a Service

If-Match
The most interesting header that you can provide for is the
If-Match header.This header can be used on any method to indi-
cate that the request should be performed only if the conditions in
the header represent the current object.This header can be excep-
tionally useful when you operate with databases that are eventually
consistent, but in general, because your requests can be made in
rapid succession, it’s a good idea to allow for this so that they don’t
overwrite each other. One possible solution to this is to provide for
a version number or memento on each object or resource that can
then be used to ensure that the user knows what the value was
before it replaces it.

In some situations, it may be good to require this field and not
accept the special * case for anyone other than an administrative
user. If you require this field to be sent and you receive a request
that doesn’t have it, you should respond with an error code of 412
(Precondition Failed) and give the users all they need to know
to fill in this header properly. If the conditions in this header do
not match, you must send back a 412 (Precondition Failed)
response.This header is typically most used when performing PUT
operations because those operations override what’s in the database
with new values, and you don’t know if someone else may have
already overridden what you thought was there.

If-Modified-Since
The If-Modified-Since header is exceptionally useful when you
want the client to contain copies of the data so that they can query
locally. In general, this is part of a caching system used by most
browsers or other clients to ensure that you don’t have to send
back all the data if it hasn’t been changed.The If-Modified-Since
header takes an HTTP-date, which must be in GMT, and should
return a 304 (Not Modified) response with no content.

55HTTP and REST

If-Unmodified-Since
If you don’t have an easy way to generate a memento or version
ID for your objects, you can also allow for an If-Unmodified-Since
header.This header takes a simple HTTP date, formatted in GMT,
which is the date the resource was last retrieved by the client.This
puts a lot of trust in the client, however, to indicate the proper
date. It’s generally best to use the If-Modified header instead, unless
you have no other choice.

Accept
The Accept header is perhaps the most underestimated header in
the entire arsenal. It can be used not only to handle what type of
response to give (JSON, XML, and so on), but also to handle what
API version you’re dealing with. If you need to support multiple
versions of your API, you can support this by attaching it to the
content type.This can be done by extending the standard content
types to include the API version number:
Accept: text/xml+app-1.0

This enables you to specify not only a revision number (in this
case, 1.0) and content type, but also the name of the application so
that you can ensure the request came from a client that knew who
it was talking to.Traditionally, this header will be used to send
either HTML, XML, JSON, or some other format representing the
resource or collection being returned.

Authorization
The Authorization header can be used just like a standard HTTP
authentication request, encoding both the password and the user-
name in a base64 encoded string, or it can optionally be used to
pass in an authentication token that eventually expires.Authenti-
cation types vary greatly, so it’s up to you to pick the right version
for your application.The easiest method is by using the basic
HTTP authentication, but then you are sending the username and

56 Chapter 2 Making Software a Service

password in every single request, so you must ensure that you’re
using SSL if you’re concerned about security.

In contrast, if you choose to use a token or signing-based
authentication method, the user has to sign the request based on
some predetermined key shared between the client and server. In
this event, you can hash the entire request in a short string that
validates that the request did indeed come from the client.You also
need to make sure to send the username or some other unique
identifier in this header, but because it’s not sending a reversible
hash of the password, it’s relatively safe to send over standard HTTP.
We won’t go into too much depth here about methods of hashing
because there are a wide variety of hashing methods all well-docu-
mented online.

The Body
The body of any REST call is typically either XML or JSON. In
some situations, it’s also possible to send both, depending on the
Accept header.This process is fairly well documented and can be
used to not only define what type of response to return, but also
what version of the protocol the client is using.The body of any
request to the system should be in the same format as the response
body.

In my applications, I typically use XML only because there are
some powerful tools, such as XSLT, that can be used as middleware
for authorization purposes. Many clients, however, like the idea of
using JSON because most languages serialize and deserialize this
quite well. REST doesn’t specifically require one form of represen-
tation over the other and even enables for the clients to choose
which type they want, so this is up to you as the application devel-
oper to decide what to support.

57HTTP and REST

Methods
REST has two distinct, important definitions that you need to
understand before continuing.A collection is a group of objects; in
your case this usually is synonymous with either a class in object
terms, or a table in database terms.A resource is a specific instantia-
tion of a collection, which can be thought of as an instance in
object terms or a row in a table in database terms.This book also
uses the term property to define a single property or attribute on
an instance in object terms, or a cell in database terms.Although
you can indeed create your own methods, in general you can prob-
ably fit most of your needs into one of the method calls listed next.

GET
The GET method is the center of all requests for information. Just
like a standard webpage, applications can use the URL in two
parts; everything before the first question mark (?) is used as the
resource to access, and everything after that is used as query
parameters on that resource.The URL pattern can be seen here:
/collection_name/resource_id/property_name?query

The resource_id property_name and query in the preceding exam-
ple are all optional, and the query can be applied to any level of
the tree.Additionally, this tree could expand exponentially down-
ward if the property is considered a reference. Now take a simple
example of a request on a web blog to get all the comments of a
post specified by POST-ID submitted in 2010.This query could look
like this:
/posts/POST-ID/comments?submitted=2010%

The preceding example queries for the posts collection for a spe-
cific post identified as POST-ID. It then asks for just the property
named comments and filters specifically for items with the property
submitted that matches 2010%.

Responses to this method call can result in a redirection if the
resource is actually located at a different path.This can be achieved
by sending a proper redirect response code and a Location header
that points to the actual resource.

58 Chapter 2 Making Software a Service

A GET on the root of the collection should return a list of all
resources under that path. It can also have the optional ?query on
the end to limit these results. It’s also a good idea to implement
some sort of paging system so that you can return all the results
instead of having to limit because of HTTP timeouts. In general,
it’s never a good idea to have a request that takes longer then a few
seconds to return on average because most clients will assume this
is an error. In general, most proxy systems will time out any con-
nection after a few minutes, so if your result takes longer than a
minute, it’s time to implement paging.

If you use XML as your communication medium, think about
implementing some sort of ATOM style next links.These simple
tags give you a cursor to the next page of results, so you can store a
memento or token of your query and allow your application to pick
up where it left off.This token can then be passed in via a query
parameter to the same URL that was used in the original request. In
general, your next link should be the full URL to the next page of
results. By doing this, you leave yourself open to the largest range of
possibilities for implementing your paging system, including having
the ability to perform caching on the next page of results, so you
can actually start building it before the client even asks for it.

If you use Amazon Web Services and SimpleDB, it’s generally a
good idea to use the next_token provided by a SimpleDB query as
your memento.You also need to provide enough information in the
next link to build the entire original query, so just using the URL
that was originally passed and adding the next_token to the end of
the query is generally a good idea. Of course if this is a continua-
tion, you have to replace the original next_token with the new one.

Performing a GET operation on the root path (/) should return
a simple index that states all the available resource types and the
URLs to those resource types.This machine-readable code should
be simple enough that documentation is not required for new
developers to build a client to your system.This methodology
enables you to change around the URLs of the base resources
without modifying your client code, and it enables you build a
highly adaptable client that may adapt to new resources easily
without making any modifications.

59HTTP and REST

PUT
The HTTP definition of a PUT is replace, so if you use this on the
base URL of a resource collection, you’re actually requesting that
everything you don’t pass in is deleted, anything new is created,
and any existing resources passed in are modified. Because PUT is
logically equivalent to a SET operation, this is typically not allowed
on a collection.

A PUT on a resource should update or create the record with a
specific ID.The section after the collection name is considered the
ID of the resource, and if a GET is performed after the PUT, it
should return the resource that was just created or updated. PUT is
intended as an entire replacement, but in general, if you don’t pass
in an attribute, that is assumed to be “don’t change,” whereas if you
pass in an empty value for the attribute, you are actually requesting
it to be removed or set to blank.

A PUT on a property should change just that specific property
for the specified resource.This can be incredibly useful when
you’re putting files to a resource because those typically won’t seri-
alize very well into XML without lots of base64 conversions.

Most PUT requests should return either a 201 Created with the
object that was just created, which may have been modified due to
server application logic, or a 204 No Content if there are no changes
to the original object request. If you operate with a database that has
eventual consistency, it may also be a good idea to instead return a
202 Accepted request to indicate that the client should try to fetch
the resource at a later time.You should also return an estimate of
how long it will be before this object is created.

POST
A POST operation on a collection is defined as a creation request.
This is the user requesting to add a new resource to the collection
without specifying a specific ID. In general, you want to either
return a redirection code and a Location header, or at the least the
ID of the object you just created (if not the whole object serialized
in your representation).

A POST operation on a resource should actually create a sub-
object of that resource; although, this is often not used.Traditionally,

60 Chapter 2 Making Software a Service

browsers don’t handle changing form actions to PUT, so a POST is
typically treated as a special form of a PUT that takes form-
encoded values.

A POST operation on a property is typically used only for
uploading files but could also be used as appending a value to a
list. In general, this could be considered an append operation, but if
your property is a single value, it’s probably safe to assume that the
client wanted this to be a PUT, not a POST.

DELETE
A DELETE operation on a collection is used to drop the entire col-
lection, so you probably don’t want to allow this. If you do allow
it, this request should be treated as a request to remove every single
resource in the collection.

A DELETE operation on a specific resource is simply a request to
remove that specific resource. If there are errors in this request, the
client should be presented with a message explaining why the
request failed.The resulting error code should explain if the request
can be issued again, or if the user is required to perform another
operation before reissuing the request.The most typical error mes-
sage back from this request is a 409 Conflict, which indicates that
another resource is referencing this resource, and the server is
refusing to cascade the delete request.A DELETE may also return a
202 Accepted response if the database has eventual consistency.

A DELETE operation on a specific property is identical to a PUT with
an empty value for that property. It can be used to delete just a single
property from a resource instead of having to send a PUT request.This
can also be used as a differentiation between setting a value to blank
and removing the value entirely. In programming terms, this the dif-
ference between an empty string and None or Null.

HEAD
A HEAD request on any URL should return the exact same headers
as a standard GET request but shouldn’t send back the body.This is
typically used to get a count of the number of results in a response
without retrieving the actual results. In my applications, I use this

61HTTP and REST

to send an additional header X-Results, which contains the num-
ber of results that would have been retrieved.

OPTIONS
An OPTIONS request on any URL returns the methods allowed to
be performed on this URL.This can return just the headers with
the additional Accept header, but it can also return a serialized ver-
sion of them in the body of the results that describes what each
method actually does.This response should be customized for the
specific user that made the request, so if the user is not allowed to
perform DELETE operations on the given resource for any reason,
that option should not be returned.This allows the client to specif-
ically hide options that the users aren’t allowed to perform so that
they don’t get error responses.

Authorization Layer
The authorization layer sits just above your application layer but is
still on the sever. In most application systems, this is actually inte-
grated directly with your application layer.Although this is gener-
ally accepted, it doesn’t provide for as much flexibility, and it’s a lot
harder to code application logic and authorization in the same
location.Additionally, if you go to change your authentication, you
now have to worry about breaking your application layer and your
authentication layer. If you build this as a separate layer, you can
most likely pull all authorization directly out of a database, so you
don’t have to worry about changing your code just for a minor
change in business logic.

If you use XML for your object representation, you can use
XSLT for your authorization layer, and use some custom tags to
pull out this authorization logic directly from your database. If you
use an application framework such as Django or Ruby Rails,
chances are you already have this layer built for you, either directly
or in a third-party module. Check your specific language for how
to build your own extensions for XSLT.When you can build your
own extensions into your XSLT processor, not only can your filters

62 Chapter 2 Making Software a Service

be retrieved from a shared filesystem so that you can update them
without redistributing them to each of your servers, but you can
also pull the exact details about authorization from there.These
XSLT filters can be used to specifically hide elements of the
response XML that the user shouldn’t see.The following example
code assumes you’ve already built a function called hasAuth that
takes three arguments, authorization type (read, write, delete),
object type, and property name:
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:app="url/to/app">

<!-- By default pass through all XML elements -->

<xsl:template match="@*|node()" priority="-10">

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>

</xsl:template>

<!-- Object-level permissions -->

<xsl:template match="/node()">

<xsl:if test="app:hasAuth('read', current())">

<xsl:copy>

<xsl:apply-templates select="@*|node()" mode="property"/>

</xsl:copy>

</xsl:if>

</xsl:template>

<!-- Property-level permissions -->

<xsl:template match="node()" mode="property">

<xsl:if test="app:hasAuth('read', .., current())">

<xsl:copy>

<xsl:apply-templates select="@*|node()" />

</xsl:copy>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

The preceding example is for output from your server, but you
could easily adapt this to any method you need by changing the

63Authorization Layer

first argument to each hasAuth call to whatever method this is fil-
tering on.You could also easily use this as a base template and pass
in the method name to the filter.This example assumes you have
an input XML that looks something like the following example:
<User id="DEAD-BEAF">

<name>Foo</name>

<username>foo</username>

<email>someone@example.com</email>

</User>

Using this example as a base, you could also build filters to operate
with JSON or any other representation, but XSLT still seems to be
the simplest because you can also use it to create more complex
authorization systems, including a complicated group-based authen-
tication, and it can be used to include filters within other filters.
If you do need to support sending and receiving information in
other formats, you can always use another filter layer on top of
your application to translate between them.

Client Layer
After you build your complex application server, you need to focus
on making that simple WebAPI usable to your clients.Although
developers may be fine with talking XML or JSON to your ser-
vice, the average user probably won’t be, so you need to build a
client layer.The biggest concept to understand about this layer is
that you cannot trust anything it sends.To do so means you’re authen-
ticating the client, and no matter what kind of protection you try
to do, it’s impossible to ensure that the information you get from
any client is your client.

You must assume that everything you send to your client is
viewable by the user. Don’t assume the client will hide things that
the user shouldn’t see.Almost every web service-based vulnerabil-
ity comes from just blindly trusting data coming from a client,
which can often be formed specifically for the purpose of making
your application do something you didn’t intend.This is the entire
basis behind the SQL injection issues many websites still suffer

64 Chapter 2 Making Software a Service

from. Because of these types of security concerns, you have to
ensure that all authentication and authorization happens outside of
this layer.

You can develop this layer in several different ways, the easiest of
which is to expose the API and allow other third-party companies
to build their own clients.This is the way that companies such as
Twitter handled creating its clients.You can also make your own
clients, but by having a well-documented and public-facing API,
you expose yourself to having other people and companies devel-
oping their own clients. In general, you have to be ready for this
event, so it’s always a good idea to ensure that the client layer has
only the access you want it to have.You can never tell for sure that
the client you’re talking to is one that you’ve developed.

Browser-Based Clients
With the release of the HTML5 specifications and local database
storage, it’s become increasingly easier to make rich HTML and
JavaScript-based clients.Although not all browsers support
HTML5, and even less support local databases, it’s still possible to
create a rich experience for the user with just a browser.

Although some browsers do support cross-site Ajax requests, it’s
generally not a good idea to rely on that. Instead, use something
such as Apache or NginX to proxy a sub-URL that can be used by
your JavaScript client. Don’t be afraid to use Ajax requests for load-
ing data. It’s also a good idea to build up a good base set of func-
tions or use an existing library to handle all your serializing and
deserializing of your objects, and making Ajax requests and han-
dling caching of objects.You don’t want to hit your server more
often than absolutely required because HTTP requests are rela-
tively expensive. So it’s a good idea to keep a local cache if your
browser supports it, but don’t forget to either keep the memento
provided, or the time when it was retrieved so that you can send
an If-Modified-Since header with each request.

If you use a JavaScript-based client layer, it’s strongly recom-
mended that you use something such as jQuery to handle all your

65Client Layer

cross-browser issues. Even if you hate using JavaScript, jQuery can
make creating this client layer simple.This, however, can be tricky
because it relies a lot on the browsers feature support, which can
be entirely out of your own control.Additionally, this generally
doesn’t work well for mobile devices because those browsers have
much less JavaScript support, and they typically don’t have much
memory at all.

If you don’t want to use JavaScript, Flash is another option. Flash
has several libraries for communicating over HTTP using XML, so
you should use something that already exists there if you want to
support this. If you don’t like the representations that these libraries
supply, you can also use the Accept header and a different version
number to allow your system to support multiple different repre-
sentations. Flash has the advantage of being easy to code in, in
addition to providing a much more unified interface. It’s also quite
heavy and can be easy to forget that this is an untrusted layer. Most
mobile devices don’t support Flash, so if that’s important to you,
you need to stick to JavaScript and HTML.

Another option if you don’t want to use either HTML/
JavaScript or Flash is using a Java Applet.Although there’s a lot of
possibilities that you can do with these little applets, they’re also
heavy weight, and if you’re trying to get it to work on mobile
browsers, this just won’t work.Additionally, few mobile devices
support either Flash or Java Applets, so if you’re going for the most
support, you probably want to stick with HTML and JavaScript.
Still, if you need more features than Flash or HTML can support,
this might be a good option for you.

Native Applications
If you’ve ever used Twitter, chances are you know that not only is
there a web interface, but there are also dozens of native client
applications that work on a wide variety of platforms. In your sys-
tem, you can make as many different client applications as you
want to, so eventually you may want to branch out and make some
native applications for your users. If you’re building that wonderful

66 Chapter 2 Making Software a Service

new electronic filing cabinet to organize your entire world online,
it might be a good idea to also provide some native apps, such as
an iPhone application that also communicates to the same API as
every other client to bring you the same content wherever you are
in the world.

Even if you’re not the one building native applications, it may
still be a good idea to let other third parties have this option. If
you make your API public and let third-party companies make
money from creating client layers, you not only provide businesses
with a reason to buy into your app, but you also don’t need to do
any of the development work yourself to increase your growth.
Although this may not seem intuitive because people are making a
profit off your system, every penny they earn is also bringing you
business, and chances are they’re marketing as well. Not only does
this give your users more options for clients, but it also gives your
system more exposure and potential clients.

Summary
Just like cloud providers give you hardware as a service, developing
your applications as Software as a Service gives you another level of
benefit, expanding your applications beyond the standard services.
By expanding your application to be a service instead of just soft-
ware, you’re giving yourself a huge advantage over any competi-
tion. Services are always growing and have infinite potential to
keep customers. SaaS gives your customers the same advantage that
the cloud gives to you, low initial cost and a reason to keep paying.
Everything from business-level applications to the newest games
are being transformed from standard single-person applications into
services. Don’t let your development time go to waste by develop-
ing something that will be out of date by the time it’s released.

67Summary

This page intentionally left blank

Index

NUMBERS
409 Conflict error message, 61

412 (Precondition Failed) error code, 55

A
Accept headers, 56

Access Credentials (Amazon Web
Services), viewing, 35

adapters

description of, 140
example of, 141-145
Gui-Over-Database application
framework, 141

implementing, 140-141
ORM layers, 141
parts of, 139
usefulness of, 146
using, reasons for, 140

Amazon Web Services, 69

Access Credentials, viewing, 35
account setup, 34
CloudFront

accessing, 78
deleting HTTP distributions, 80
delivering updates via, 78
disabling HTTP
distributions, 79

disadvantages of, 78
hierarchy of, 77
invalidating file caches, 79
obtaining usage statistics, 78
private data distributions, 78
resuming HTTP
distributions, 79

RTMP streams, 77
serving files from HTTP
distributions, 79

static HTTP distributions, 79
streaming HTTP
distributions, 79

EBS, 88-91, 129
EC2, 83

creating connection objects, 84
creating security groups, 84
creating SSH key-pairs, 85
filtering images, 86
finding images, 86
instances, 87-92
opening ports to security
groups, 85

removing rules from security
groups, 85

reservation objects, 87
running images, 87
searching for images, 86
viewing regions, 84

ELB, 47, 91-93, 155-158, 279
legacy patterns, 25
logging into, 35
RDS, 95-102
regions, 70, 84
Relational Data Service, 231

S3, 41
accessing files, 75
billing for usage, 72
buckets, 71-73, 77
getting file contents as
strings, 77

hierarchy of, 71
keys, 74-77
making files public, 76
RSS, 73
sending files to S3, 75
signed URLs, 76
SLA, 72
using file objects directly, 77

SDB commands, 175
SimpleDB, 43, 93-95
SNS, 102-105, 189
SQS, 165-166

asynchronous procedure
calls, 80

commands, 175
counting messages in queues, 82
creating messages in queues,
81-82

creating queues, 80
default queue timeouts, 81
deleting in queues, 83
deleting messages from
queues, 82

finding queues, 81
hiding messages in queues, 82
launching, 80
reading messages from
queues, 82

sqs read loops, 165

308 Amazon Web Services

VPC, 106-108
zones, 70

Amazon.com

clouds and, 6, 22
Content Distribution Network, 77
SimpleDB, 31

Analytics, obtaining via CloudFront, 78

Apache, installing (blog building
example), 276-277

Apache2, 254

AppEngine, 108-110

application layers

ELB,Auto-Scaling Groups, 47
n-tier web clusters, 198

applications. See also blogs, building

configuring, 287
CRUD applications,
configuring, 287

deployment strategies, 272. See also
blogs, building

development of
cloud-based versus server-based,
11-13

failure and, 13
implementing cloud patterns, 17
instance images, 14
locking processes, 15
messaging and, 15
processing data locally, 15
selecting cloud patterns, 16
sequential numbers as ID, 14
uploading data to shared storage
systems, 15

UUID, 14

Gui-Over-Database application
framework, 141

Installing, blog building example,
275-276

logic (blog building example), 240
Comment handlers, 249-250
DB handlers, 243-247
post handlers, 248
spam classification, 250-253
User handlers, 248
WSGI, 241-250

REST, accepting requests via
collections, 58
DELETE method, 61
GET method, 58-59
HEAD method, 61
headers, 53-56
OPTIONS method, 62
POST method, 60
properties, 58
PUT method, 60
resources, 58
writing REST bodies, 57

SaaS applications, developing
accepting requests via REST,
53-62

application layer, 47-52
authorization layer, 62-64
browser-based clients, 65-66
client layer, 64-67
data layer, 40-46
determining application
requirements, 39-40

HTTP headers, 55-56
launching python instances, 38

309applications

native applications, 66-67
REST collections, 58
REST method, 58
REST methods, 58-62
REST properties, 58
REST resources, 58
setting up EC2 instances, 37
setting up SimpleDB
domains, 38

setting up working
environment, 36-38

testing SimpleDB
connectivity, 38

writing REST bodies, 57
WSDL, 53

scalability, 229
self-healing applications, 28

architectures

adapters
description of, 140
example of, 141-145
Gui-Over-Database application
framework, 141

implementing, 140-141
ORM layers, 141
parts of, 139
reasons for using, 140
usefulness of, 146

balancers
ELB, 155-158
proxy balancers, 153-158
usefulness of, 158

Facades, 138
description of, 148
example of, 149-152

implementing, 148-149
mappers, 148-152
reasons for using, 148
request handling, 147
usefulness of, 152

proxies
ELB, 155-158
proxy balancers, 137, 153-158
reasons for using, 153
usefulness of, 158

asynchronous procedure calls, SQS, 80

asynchronous requests, 137, 161

ATOM feeds

current page links, 182
iterators, 182
next page links, 182
paging in, 183-185

authentication, Twitter, 141

Authorization headers, 56

authorization layer (applications), 62-64

Auto-Scaling Groups, 47

Availability, cloud services and, 30

B
balancers

ELB, 155-158
proxy balancers, 153

description of, 154
example of, 155-158
implementing, 154-155
usefulness of, 158

usefulness of, 158
base instances, starting (application

deployment strategies), 272-273

310 applications

Bayesian filtering systems, spam
classification, 250-253

blogs, building, 229

application logic, 240
Comment handlers, 249-250
DB handlers, 243-247
post handlers, 248
spam classification, 250-253
User handlers, 248
WSGI, 241-250

deployment strategies
bundling images, 278
creating proxies, 279
installing Apache, 276-277
installing applications, 275-276
installing software, 273-275
starting base instances, 272-273

Marajo blog building example
configuring applications, 287
creating handlers, 286
creating resources, 284-286
creating templates, 288-289
custom templates, 289-296
initializing web environment,
282-283

running applications, 289
presentation, 253

adding comments, 270-271
comments, 266-269
creating posts, 259-261
deleting posts, 262-263
editing posts, 263-266
HTTP Proxy configurations,
254-255

listing posts, 255-259
marking comments as
spam/ham, 271-272

viewing comments, 269-270
storage, 229

Comment objects, 237-240
database schema, 230
domains, creating, 231
Post objects, 230, 234-237
Relational Data Service, 231
User objects, 230-234

boto python library, 17

boto.cfg files, creating, 36
CloudFront, accessing, 78
downloading, 35
EBS, accessing, 89
EC2, accessing, 84
ELB, accessing, 92
installing, 35
objects

creating, 45
querying, 46

pyami images, 133
RDS, accessing, 96
requirements for, 34
SimpleDB, accessing, 94
SNS, accessing, 103
software installations, application
deployment strategies, 273-275

VPC, accessing, 106
browsers

browser-based clients, 65-66
thin clients as, 3

311browsers

buckets (S3), 71

accessing, 72
deleting, 77
keys

deleting, 77
fetching contents of, 76
listing, 75-76
naming, 74

naming, 73
sharing, 72
uniqueness of, 73

bundling images, blog building
example, 278

bwclient-js, 205

C
CAN-SPAM Unsubscribe policy, SNS, 189

CAP theorem, eventual consistency, 31

client layer (applications), 64

browser-based clients, 65-66
n-tier web clusters, 197
native applications, 66-67

cloud providers. See also clouds

Amazon Web Services, 69
CloudFront, 77-80
EBS, 88-91
EC2, 83-88
ELB, 91-93
RDS, 95-102
regions, 70, 84
S3, 71-77
SimpleDB, 93-95
SNS, 102-105
SQS, 80-83

VPC, 106-108
zones, 70

commodity hardware, 25-28
failure, 27-28
Google cloud, 69
performance, complaints
against, 25

Rackspace cloud, 69
scalability, 26

CloudFiles, 112-113

CloudFront

accessing, 78
disadvantages of, 78
hierarchy of, 77
HTTP distributions

deleting, 80
disabling, 79
invalidating file caches, 79
resuming, 79
serving files, 79
static distributions, 79
streaming distributions, 79

private data distributions, 78
RTMP streams, 77
updates, delivering via, 78
usage statistics, obtaining, 78

clouds. See also cloud providers

advantages of, 1-2
application development,
server-based versus cloud-based,
11-13

cloud services
availability and, 30
compute services, 24
connectivity services, 24

312 buckets (S3)

consistent systems and, 29-30
defining, 23
legacy patterns, 25-26
partition tolerance and, 30-31
storage, 23-24

compute clouds, 13
defining, 1
evolution of

Amazon.com, 6
clustering, 5
HTML5, 8-9
Internet speeds, 5-6
local storage, 8-9
mainframes, 3
mobile devices, 9-10
multitasking’s role in, 4
parallel computing, 11
parallel processing, 10-11
PC development, 3-4
processing speeds, 5-6
threading, 10

migrating to, 26
origins of, 21-22
scalability, 26

CloudServers, 113

CloudSites, 113-114

clusters, 193

cloud evolution, 5
graphics and, 5-6
hadoop clusters, 174
locking clusters, semaphores and

description of, 212
example of, 213-218

implementing, 212
parts of, 211
reasons for using, 211
usefulness of, 218

map/reduce clusters
description of, 220
example of, 222-226
implementing, 220
parts of, 219
reasons for using, 220
usefulness of, 226

n-tier web clusters
application layers, 198
client layers, 197
database layers, 198
description of, 196
example of, 198-210
filter layers, 198
implementing, 197-198
parts of, 195-196
reasons for using, 196
representation layers, 198
usefulness of, 210

collections (objects), 58

commands

description of, 174
example of, 175-179
implementing, 174
usefulness of, 179
using, reasons for, 173

Comment handlers, building blog
application logic, 249-250

Comment objects, data storage,
237-240

313Comment objects, data storage

comments, building blogs, 266-268

adding, 270-271
marking as spam/ham, 271-272
viewing, 269-270

commodity hardware, 25

compute clouds, 13

compute services, 24

configuring applications, 287

connectivity services, 24

consistent systems, cloud services and,
29-30

Content Distribution Network, 77

CRUD applications, configuring, 287

current page links (ATOM feeds), 182

custom templates, Marajo blog building
example

edit templates, 292-296
list templates, 289-292

D
data layer (applications), SimpleDB

connections, 40-43

data, executing actions on

commands
description of, 174
example of, 175-179
implementing, 174
reasons for using, 173
usefulness of, 179

iterators
ATOM feeds, 182-185
description of, 182
example of, 183-185
implementing, 182-183

reasons for using, 181
usefulness of, 185

observers
description of, 188
example of, 189-191
implementing, 188
mailing lists, 189-191
parts of, 187
reasons for using, 188
usefulness of, 191

queues
description of, 162
example of, 163-170
implementing, 163
parts of, 161-162
reasons for using, 162
SQS, 165-166
usefulness of, 170

database layers, n-tier web
clusters, 198

databases (nonrelational), eventual
consistency, 16

DB handlers, building blog application
logic, 243-247

de-serialize method, User objects,
233-234

DELETE method, 61

deleting

buckets (S3), 77
HTTP distributions in
CloudFront, 80

keys (S3), 77
load balancers (ELB), 93
messages from SQS queues, 82

314 comments, building blogs

posts (building blogs), 262-263
SQS queues, 83
volumes (EBS), 91

deploying applications, blog building
example

base instances, starting, 272-273
images, bundling, 278
installing

Apache, 276-277
applications, 275-276
software, 273-275

proxies, creating, 279
disposable instances, 83

Django, Jinja, 282

Domains, creating, 231

downloading

boto python library, 35
Marajo, 283

dumb terminals, 3

E
EBS (Elastic Block Storage), 88-91, 129

EC2 (Elastic Compute Cloud), 83

connection objects, creating, 84
images

filtering, 86
finding, 86
running, 87
searching for, 86

instances, 87-92
regions, viewing, 84
reservation objects, 87

security groups
creating, 84
opening ports to, 85
removing rules from, 85

SSH key-pairs, creating, 85
edit templates, creating, 292-296

editing posts (building blogs), 263-266

Elastic IP, 84

ELB (Elastic Load Balancing), 91-93,
155-158

Auto-Scaling Groups, 47
proxies, creating, 279

encoding video, 165-170

entry points (Setuptools), 177

environment (web), initializing, 282-283

ephemeral stores, 121

error messages

409 Conflict, 61
412 (Precondition Failed), 55

events

observers
description of, 188
example of, 189-191
implementing, 188
mailing lists, 189-191
parts of, 187
reasons for using, 188
usefulness of, 191

SNS, 189
eventual consistency, 16, 31-32

external servers, querying, 138

315external servers, querying

F–G
Facades, 138

description of, 148
example of, 149-152
implementing, 148-149
mappers, 148

building, 149
example of, 149-152
request handling, 149-152

requests, handling, 147
usefulness of, 152
using, reasons for, 148

failure, cloud providers, 27-28

filter layers, n-tier web clusters, 198

filtering images, EC2, 86

Flash browser-based clients, SaaS
applications, 66

GET method, 58-59

Google

map/reduce clusters, 220
PaaS, 23

Google App Engine, Jinja, 282

Google Cloud, 69

AppEngine, 108-110
Google Storage, 111-112

Google Storage, 111-112

Graphics, clustering and, 5-6

Gui-Over-Database application
framework, 141

H
hadoop clusters, 174

ham/spam, marking comments as,
271-272

handlers, Marajo blog building example

creating, 286
handlers directory, 283

hardware (commodity), 25

HEAD method, 61

Headers. See HTTP, headers

hiding messages in SQS queues, 82

horizontal scaling, 25

HTML browser-based clients, SaaS
applications, 65-66

HTML5, 8-9

HTTP

CloudFront, 79-80
headers

Accept headers, 56
Authorization headers, 56
If-Match headers, 55
If-Modified-Since headers, 55
If-Unmodified-Since
headers, 56

REST
collections, 58
DELETE method, 61
GET method, 58-59
HEAD method, 61
headers, 55-56
OPTIONS method, 62
POST method, 60
properties, 58
PUT method, 60
resources, 58
writing REST bodies, 57

316 Facades

HTTP Proxy

blogs, building, 254-255
Mod Proxy Balancer, 254
Mod Proxy HTTP, 254

HTTPDate, 235

I
I/O throughput, performance and, 26

IaaS (Infrastructure as a Service), 23

If-Match headers, 55

If-Modified-Since headers, 55

If-Unmodified-Since headers, 56

images, 117-118

bundling, blog building
example, 278

EC2
filtering images, 86
finding images, 86
running images, 87
searching for images, 86

prepackaged images
boot process, 119
description of, 120
example of, 122-125
implementing, 120-122
reasons for using, 119
usefulness of, 125

prototype images
description of, 132
example of, 133-135
implementing, 132-133
reasons for using, 131
usefulness of, 135

pyami images, 133

singleton instances
description of, 128
example of, 128-130
implementing, 128
reasons for using, 127
usefulness of, 130

initializing web environments, Marajo
blog building example, 282-283

installing

boto python library, 35
Marajo, 283
Software, blog building example,
273-275

instances

base instances, starting (application
deployment strategies), 272-273

Elastic Block Storage backed
instance, 129

prepackaged images
boot process, 119
description of, 120
example of, 122-125
implementing, 120-122
reasons for using, 119
usefulness of, 125

prototype images, 131
description of, 132
example of, 133-135
implementing, 132-133
reasons for using, 131
usefulness of, 135

pyami images, 133
singleton instances

description of, 128
example of, 128-130

317instances

implementing, 128
reasons for using, 127
usefulness of, 130

instances (EC2), 87-92

Internet speeds, cloud evolution, 5-6

IP (Elastic), 84

iterators, 181

ATOM feeds, 182-185
description of, 182
example of, 183-185
implementing, 182-183
usefulness of, 185
using, reasons for, 181

J–K–L
Java Applets, SaaS applications, 66

JavaScript browser-based clients, SaaS
applications, 65-66

Jinja, 282

keys (S3)

deleting, 77
fetching contents of, 76
listing, 75-76
naming, 74

legacy patterns, 25-26

list templates, creating, 289-292

listeners. See observers

listing keys (S3), 75-76

listing posts, building blogs, 255-259

load balancers (ELB)

creating, 92
deleting, 93
registering instances to, 92

local storage

clouds, evolution of, 8-9
HTML5, 8-9
Mercurial, 8

locking clusters, semaphores and, 211

parts of, 211
using

description of, 212
example of, 213-218
implementing, 212
reasons for, 211
usefulness of, 218

locking processes, cloud-based
application development, 15

logrotate, 121

loops (sqs read), 165

M
mailing lists, 189-191

mainframes, 3

map/reduce clusters

description of, 220
example of, 222-226
implementing, 220
parts of, 219
usefulness of, 226
using, reasons for, 220

mappers, 148

building, 149
example of, 149-152
requests, handling, 149-152

Marajo

blog building example
configuring applications, 287
creating handlers, 286

318 instances

creating resources, 284-286
creating templates, 288-289
custom templates, 289-296
initializing web environment,
282-283

running applications, 289
development of, 282
downloading, 283
features of, 282
installing, 283

Mercurial, 8, 142

messaging

message queues, 15
MHMessage Format, 165

MHMessage Format, 165

migrating to clouds, 26

mobile devices

clouds, evolution of, 9-10
Netflix and, 9

Mod Proxy Balancer, 254

Mod Proxy HTTP, 254

Multitasking, clouds and, 4

N
n-tier web clusters

application layers, 198
client layers, 197
database layers, 198
description of, 196
example of, 198-210
filter layers, 198
implementing, 197-198
parts of, 195-196
representation layers, 198

usefulness of, 210
using, reasons for, 196

naming

buckets (S3), 73
keys (S3), 74

Netflix, mobile devices and, 9

next page links (ATOM feeds), 182

next tokens, 181, 184

nonrelational databases, eventual
consistency, 16

O
oAuth authentication, Twitter, 141

objects

commands
description of, 174
example of, 175-179
implementing, 174
reasons for using, 173
usefulness of, 179

REST, 58
observers

description of, 188
example of, 189-191
implementing, 188
mailing lists, 189-191
parts of, 187
usefulness of, 191
using, reasons for, 188

Open Stack library, 17

OPTIONS method, 62

ORM (Object Relational Mapping)
layers, 141

319ORM (Object Relational Mapping) layers

P
PaaS (Platform as a Service), 23

paging, 181

parallel computing, 11

parallel processing, cloud evolution,
10-11

partition tolerance, cloud services and,
30-31

PCs, cloud evolution, 3-4

performance

cloud providers, complaints
against, 25

I/O throughput’s effects on, 26
post handlers, building blog application

logic, 248

POST method, 60

Post objects

data storage, building blogs, 230,
234-237

Reverse References, 235
posts (building blogs)

creating, 259-261
deleting, 262-263
editing, 263-266
listing, 255-259

prepackaged images

boot process, 119
description of, 120
implementing, 120-122
using

example of, 122-125
reasons for, 119
usefulness of, 125

presentation (blog building
example), 253

comments, 266-269
adding, 270-271
marking as spam/ham, 271-272
viewing, 269-270

HTTP Proxy configuration,
254-255

posts
creating, 259-261
deleting, 262-263
editing, 263-266
listing, 255-259

processing

locking processes, cloud-based
application development, 15

parallel processing, 10-11
speeds of, cloud evolution, 5-6

properties (objects), 58

prototype images

description of, 132
example of, 133-135
implementing, 132-133
usefulness of, 135
using, reasons for, 131

proxies

creating, 279
ELB, 155-158
proxy balancers, 137, 153

description of, 154
example of, 155-158
implementing, 154-155
usefulness of, 158

usefulness of, 158
using, reasons for, 153

320 PaaS (Platform as a Service)

PUT method, 60

pyami images, 133

Python

boto python library
downloading, 35
installing, 35
requirements for, 34
software installations
(application deployment
strategies), 273-275

python eggs, 199
python paste, 241
Reverend, Bayesian filtering
systems, 250-253

webob, 241
WSGI, 241

Q
queries

external servers, 138
object queries, boto python
library, 46

SimpleDB, 43
queues

description of, 162
example of, 163-170
implementing, 163
message queues, 15
parts of, 161-162
SQS, 165-166

counting messages in queues, 82
creating messages in queues,
81-82

creating queues in, 80
default timeouts, 81

deleting messages from
queues, 82

deleting queues, 83
finding queues in, 81
hiding messages in queues, 82
reading messages from
queues, 82

usefulness of, 170
using, reasons for, 162

R
Rackspace Cloud, 69

CloudFiles, 112-113
CloudServers, 113
CloudSites, 113-114

rate limiting, Twitter, 141

RDS (Relational Database Service),
95-102

regions (Amazon Web Services), 70, 84

Relational Data Service, data storage in
blogs, 231

representation layers, n-tier web
clusters, 198

requests

asynchronous requests, 137, 161
commands

description of, 174
example of, 175-179
implementing, 174
reasons for using, 173
usefulness of, 179

example of, 137
Facades, 147
handling requests. See architectures

321requests

iterators
ATOM feeds, 182-185
description of, 182
example of, 183-185
implementing, 182-183
reasons for using, 181
usefulness of, 185

proxy balancers, handling
requests, 154

queues
description of, 162
example of, 163-170
implementing, 163
parts of, 161-162
reasons for using, 162
SQS, 165-166
usefulness of, 170

synchronous requests, 137
reservation objects (EC2), 87

resources, 58

deadlock, preventing, 212
Marajo blog building example

creating resources, 284-286
resources directory, 283

REST (Representational State Transfer)

bodies of, writing, 57
collections, 58
headers

Accept headers, 56
Authorization headers, 56
If-Match headers, 55
If-Modified-Since headers, 55
If-Unmodified-Since
headers, 56

methods
DELETE method, 61
GET method, 58-59
HEAD method, 61
OPTIONS method, 62
POST method, 60
PUT method, 60

properties, 58
resources, 58

Reverend, Bayesian filtering systems,
250-253

Reverse References, Post objects, 235

RRS (Reduced Redundancy
Storage), 73

RTMP streams, CloudFront, 77

S
S3 (Simple Storage Service), 41

billing for usage, 72
buckets, 71

accessing, 72
deleting, 77
keys, 74-77
naming, 73
sharing, 72
uniqueness of, 73

files
accessing, 75
getting contents as strings, 77
making public, 76
sending to S3, 75
using objects directly, 77

hierarchy of, 71

322 requests

keys
deleting, 77
fetching contents of, 76
listing, 75-76
naming, 74

RSS, 73
signed URLs, creating, 76
SLA, 72

SaaS (Software as a Service). See also
software

Amazon Web Services
account setup, 34
logging into, 35
viewing Access Credentials, 35

applications, developing
accepting requests via REST,
53-62

application layer, 47-52
authorization layer, 62-64
browser-based clients, 65-66
.cfg files, 36-37
client layer, 64-67
data layer, 40-46
determining application
requirements, 39-40

EC2 instances, 37
file structures, 36-37
HTTP headers, 53-56
launching python instances, 38
native applications, 66-67
python logging modules, 38
REST collections, 58
REST methods, 58-62
REST properties, 58
REST resources, 58

setting up working
environment, 36-38

SimpleDB, 38
writing REST bodies, 57
WSDL, 53

boto python library
creating objects, 45
downloading, 35
installing, 35
querying objects, 46

business model, 33-34
subscriptions, 33-34

scalability

applications, 229
cloud providers, 26
eventual consistency, 31
horizontal scaling, 25
scaling out, 25
scaling upward, 25

scaling out, 25

scaling upward, 25

scheduling systems (mainframe), 3

SDB, commands, 175

searches (image), EC2, 86

security groups, EC2

creating, 84
ports, opening, 85
rules, removing, 85

self-healing applications, 28

semaphores, locking clusters and

description of, 212
example of, 213-218
implementing, 212
parts of, 211

323semaphores, locking clusters and

usefulness of, 218
using, reasons for, 211

serialize function, User objects, 232

servers

application development,
cloud-based versus server-based,
11-13

external servers, querying, 138
sync servers, Mercurial and, 8

Setuptools, entry points, 177

sharing buckets (S3), 72

signed URLs, 76

SimpleDB, 31, 43, 93-95

singleton instances

description of, 128
example of, 128-130
implementing, 128
usefulness of, 130
using, reasons for, 127

SLA (service level agreements), 72

SNS (Simple Notification Service),
102-105, 189

software. See also SaaS

installing, blog building example,
273-275

paying for, 33
spam filtering, building blogs

Bayesian filtering systems, 250-253
comments, marking as spam/ham,
271-272

SQS (Simple Queue Service), 165-166

asynchronous procedure calls, 80
commands, 175
launching, 80

queues
counting messages in, 82
creating, 80
creating messages in, 81-82
default timeouts, 81
deleting, 83
deleting messages from, 82
finding, 81
hiding messages in, 82
reading messages from, 82

read loops, 165
SSH key-pairs, creating in EC2, 85

static directory, Marajo blog building
example, 283

statistics (usage), obtaining via
cloudFront, 78

storage

blogs, building, 229
Comment objects, 237-240
database schema, 230
domains, creating, 231
Post objects, 230, 234-237
Relational Data Service, 231
User objects, 230-234

cloud services, 23
EBS (Elastic Block Storage),
88-91, 129

Google Storage, 111-112
local storage

clouds, evolution of, 8-9
Mercurial, 8

shared storage systems, uploading
data to, 15

storage services, 24

324 semaphores, locking clusters and

strings, getting file objects as (S3), 77

subscriptions

Amazon Web Services, 34
SaaS business model, 33-34

sync servers, Mercurial and, 8

synchronous requests, 137

syslog, 121

T
templates, Marajo blog building

example

Creating, 288-289
custom templates, 289-296
edit templates, 292-296
list templates, 289-292
templates directory, 283

testing SimpleDB connectivity, SaaS
applications, 38

thin clients, 3

threading clouds, evolution of, 10

transcoding video in multiple
formats/definitions, 222-226

Twitter

application architectures, example
of, 141-145

oAuth authentication, 141
rate limiting, 141

U–V
Ubuntu, application deployment

strategies, 272-273

UNIX

logrotate, 121
syslog, 121

Unsubscribe policy (CAN-SPAM),
SNS, 189

updates

CloudFront, delivering updates
via, 78

instances (EC2), 90
volumes (EBS), 89-90

URLs (signed), creating in S3, 76

usage statistics, obtaining via
CloudFront, 78

User handlers, building application logic
in blogs, 248

User objects

data storage, building blogs,
230-234

de-serialize method, 233-234
serialize function, 232

UUID

cloud-based application
development, 14

object relational mapping in SaaS
applications, 45

video

encoding, 165-170
transcoding in multiple
formats/definitions, 222-226

viewing comments (building blogs),
269-270

volumes (EBS), 89-91

VPC (Virtual Private Cloud), 106-108

W–Z
web browsers

browser-based clients, 65-66
thin clients as, 3

325web browsers

web environment, initializing, 282-283

weblogs. See blogs, building

webob, 241

WSGI (Web Service Gateway Interface),
building blogs, 241-242

Comment handlers, 249-250
DB handlers, 243-247
post handlers, 248
User handlers, 248

YAML applications, configuring, 287

zones (Amazon Web Services), 70

326 web environment, initializing

	Table of Contents
	Preface
	About the Author
	Introduction
	What Is Cloud Computing?
	The Evolution of Cloud Computing
	The Main Frame
	The PC Revolution
	The Fast Internet
	The Cloud
	HTML5 and Local Storage
	The Dawn of Mobile Devices

	Threading, Parallel Processing, and Parallel Computing
	How Does Cloud-Based Development Differ from Other Application Development?
	What to Avoid
	Getting Started in the Cloud
	Selecting a Cloud Pattern
	Implementing a Cloud Pattern

	2 Making Software a Service
	Tools Used in This Book
	What Does Your Application Need?
	Data Layer
	Application Layer
	HTTP and REST
	Authorization Layer
	Client Layer
	Summary

	Index
	A
	B
	C
	D
	E
	F–G
	H
	I
	J–K–L
	M
	N
	O
	P
	Q
	R
	S
	T
	U–V
	W–Z

