

Peachpit Press

iPhone
Application

Development
for iOS 4

Duncan Campbell

V I S U A L Q U I C K s ta r t G U I D E

Visual QuickStart Guide
iPhone Application Development for iOS 4
Duncan Campbell

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com.
To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2011 by Duncan Campbell

Editor: Whitney Walker and Cliff Colby	 Indexer: Valerie Perry
Production Coordinator: Danielle Foster	 Cover Design:	RHDG/Riezebos
Copyeditor/proofreader: Kim Wimpsett		 Holzbaur. Peachpit Press
Technical Editor: James Sugrue	 Logo Design: MINE™ www.minesf.com
Compositor: Danielle Foster	 Interior Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission for
reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of the book, neither the author nor
Peachpit shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer software and hardware products described in it.

Trademarks
Visual QuickStart Guide is a registered of Peachpit Press, a division of Pearson
Education. Any other product names used in this book may be trademarks of their
respective owners.

Apple, Cocoa, Cocoa Touch, Dashcode, iPhone, iPod touch, Safari, and Xcode are
trademarks of Apple Inc. registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
Peachpit was aware of a trademark claim, the designations appear as requested by the
owner of the trademark. All other product names and services identified throughout this
book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is
intended to convey endorsement or other affiliation with this book.

ISBN-13:	978-0-321-71968-3
ISBN-10:	 0-321-71968-9

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com
www.minesf.com

Dedication
For my son, Hamish.

Acknowledgments
Thanks to Whitney Walker, Clifford Colby, Kim Wimpsett, Danielle Foster,
Valerie Perry, and everyone else at Peachpit Press who worked so hard
to make this book happen.

Thanks to James Sugrue for his technical-editing expertise.

A big thank-you to my good friend Kane Nickolichuck who all those years
ago pestered me relentlessly into buying my first Macintosh computer.

Cuddles and pets to my dog, Kip, for again keeping me company dur-
ing the cold (yes, even in Australia!) winter evenings I spent working on
this book.

Finally, the biggest thanks go to my wife, Sarah, for single-handedly
looking after our newborn son while I spent the evenings locked away
in my office each night.

Table of Contents  v

Contents at a Glance

	 Introduction . xv

Chapter 1	 Objective-C and Cocoa 1

Chapter 2	 The iPhone Developer’s Toolbox 41

Chapter 3	 Common Tasks . 83

Chapter 4	 iPhone User Interface Elements 111

Chapter 5	 Tabs and Tables . 181

Chapter 6	 Files and Networking 233

Chapter 7	 Touches, Shakes, and Orientation 279

Chapter 8	 Location and Mapping 311

Chapter 9	 Multimedia . 349

Chapter 10	 Contacts, Calendars, E-mail, and SMS 405

Chapter 11	 Multitasking . 455

	 Index . 469

This page intentionally left blank

Table of Contents  vii

Table of Contents

	 Introduction . . xv

Chapter 1	 Objective-C and Cocoa 1

Frameworks . 2

Classes . 3

Methods . 5

Creating objects . 7

Properties . 8

Memory Management . 10

Autorelease pools . 11

Commonly Used Classes 14

Strings . 14

Dates and times . 20

Arrays . 24

Dictionaries . 27

Notifications . 30

Timers . 32

Design Patterns . 35

Model View Controller 35

Delegate . 36

Target-Action . 37

Categories . 37

Singletons . 39

viii  Table of Contents

Chapter 2	 The iPhone Developer’s Toolbox 41

About the Xcode IDE . 42

About the Groups & Files pane 44

Targets . 46

About the toolbar . 48

About the details pane 49

About the editor pane 50

Gutter and focus ribbon 52

Find-and-replace operations 53

Bookmarks . . 53

Jump-to-definition and help 53

Code completion . 54

About the navigation bar 55

Creating new files . 57

Building and running your application 58

Cleaning . 59

About the iPhone Simulator 61

About Interface Builder 64

About the document window 65

About the Library window 67

About the inspector window 67

About the Documentation 78

The Xcode Organizer . 79

Projects & Sources . 80

Devices . . 80

iPhone Development 81

Table of Contents  ix

Chapter 3	 Common Tasks . 83

Application Startup and Configuration 84

Using the application delegate 84

Understanding application settings 87

Working with user preferences 87

Application preferences 90

Adding controls . 92

Localization . . 94

Accessibility . 98

Making your applications accessible 99

Accessibility attributes 101

Interapp Communication 103

Sharing information between applications 105

Using the pasteboard 109

Chapter 4	 iPhone User Interface Elements 111

Views . 112

Frames . 112

Bounds . 113

Animation . 115

Autosizing . 117

Custom drawing . . 118

Transforms . 123

Image Views . 126

Animating images . 127

Scrolling . 129

x  Table of Contents

Zoom . 130

Paging . 131

Labels . 136

Progress and Activity Indicators 139

Indicating progress 139

Showing activity . 140

Alerts and Actions . 142

Alerting users . 142

Confirming an action 144

Picker Views . 146

Toolbars . 152

Toolbar items . 153

Text . 156

To use keyboards: . 157

Restricting content . 159

Text views . 160

Data detectors . 161

Hiding the keyboard 161

Scrolling the interface 162

Web Views . 164

Running JavaScript . 167

Loading local content and handling hyperlinks 168

Controls . 170

Buttons . 170

Switches . 172

Sliders . 175

Segmented controls 177

Table of Contents  xi

Chapter 5	 Tabs and Tables . 181

View Controllers . 182

Presenting views . 183

Responding to changes in orientation 184

Displaying modal views 189

Handling low-memory conditions 193

Tab Views . 194

Adding graphics and titles to tabs 196

Table Views . 200

Grouping rows into sections and styles 204

Editing and searching table views 210

Drilling down in table views 217

Creating custom cells 223

Chapter 6	 Files and Networking 233

Files . 234

The file system . 236

Common directories 237

Working with files . 239

Previewing documents 244

Networking . 248

Retrieving content from web pages 248

Parsing XML . 254

Sending data to Web pages 262

Responding to HTTP Authentication 266

Creating peer-to-peer applications 271

xii  Table of Contents

Chapter 7	 Touches, Shakes, and Orientation 279

Touch . 280

Adding tapping support 285

Adding long-touch support 288

Multi-Touch Gestures . 292

The iPhone Accelerometer 298

Detecting shakes . 298

Determining orientation 299

Redrawing the interface when the
orientation changes 303

Responding to the accelerometer 307

Chapter 8	 Location and Mapping 311

About Core Location . 312

Handling location updates 314

Testing outside the simulator 315

Increasing the accuracy 317

Adding a timeout . 318

Accessing the compass 323

About Map Kit . 325

Map Overlays . 329

Adding annotations 333

Adding reverse geocoding 338

Putting It All Together 341

Chapter 9	 Multimedia . 349

Playing Audio . 350

Providing more control 352

Table of Contents  xiii

Responding to audio events 356

Playing audio in the background 358

Controlling audio from the background 361

Recording Audio . 366

Using the iPhone’s Camera 371

Taking photos and video 375

Playing Video . 381

To gain more control over movie playback 386

Using the iPod Library 392

Accessing media items 392

Accessing media collections 394

Using the media picker 396

Playing media . 398

Chapter 10	 Contacts, Calendars, E-mail, and SMS 405

Working with the Address Book 406

Group records . 410

Person records . 411

Adding a User Interface 418

Picking people . 418

Editing people . 421

The iPhone Calendar . 428

Events . 430

Viewing event details 434

Editing events . 438

E-mail . 443

SMS . 450

xiv  Table of Contents

Chapter 11	 Multitasking . 455

What Is Multitasking? . 456

Entering and exiting background mode 457

Multitasking services 459

Responding to Local Notifications 466

	 Index . 469

Introduction  xv

Welcome to the updated version of this
Visual QuickStart Guide for iPhone applica-
tion development.

A lot has happened since the last ver-
sion of this book was published: In only
one short year, not only have we seen the
introduction of the revolutionary iPad, but
we’ve also seen the all-new iPhone 4, with
its gorgeous high-resolution display and
powerful new hardware capabilities.

The tools for iPhone development have
also had a major upgrade. iOS 4 brings
with it many new application programming
interfaces (APIs) that give developers even
more access to the iPhone’s underlying
hardware, as well as adds exciting new
capabilities, such as multitasking and high-
definition (HD) video recording and editing.

Introduction

At the time of this writing, more than
250,000 applications are available for
download from the iTunes App Store, with
more being added every minute—it’s an
exciting time to be an iPhone developer!

This book is geared mainly toward new
iPhone developers, but you should have
some prior knowledge of a C-based lan-
guage and be familiar with object-oriented
(OO) concepts. It would take a book many
times this size to cover all of the iPhone
software development kit (SDK), so I focus
on some of the more common and inter-
esting subjects I think you should know
about when developing your own iPhone
applications.

xvi  Introduction

How to Use This Book
I find that I always learn better by example,
so I have created stand-alone applica-
tions when demonstrating the concepts in
the book. The aim is to give you enough
information to get you started coding (and
building something useful) and then point
you to the relevant place in the documen-
tation for more information.

You should be able to jump straight into
a chapter and start coding without read-
ing the prior chapters, but if you are a
beginner, I recommend you read the first
few chapters, which discuss the tools and
language used for iPhone development.

This book is a Visual QuickStart Guide, so
it’s filled with images to walk you through
what you’ll see on your computer screen
as you build your iPhone applications.
However, the interfaces for most of the
examples are created directly in code,
rather than by using Interface Builder. You
might think this is unusual, since Apple
has provided you with a powerful tool that
makes laying out your application’s user
interface quick and easy, but it’s important
that you first learn what’s happening under
the hood. This will make it much easier
for you to figure out where to look when
things aren’t working the way they should.

The source code for all the examples in
this book—more than 65 projects—is avail-
able as a free download from my Web site:

http://objective-d.com/iphonebook/

I strongly encourage you to check them out.

http://objective-d.com/iphonebook/

iOS offers a rich set of buttons, sliders,
switches, and other user interface elements
for you to use in creating your applications.
These elements can be roughly divided into
two main groups, views and controls.

Views provide the primary canvas and
drawing functionality of your user interface.
They also give your application the ability
to handle touch events.

Controls extend upon this functionality
and provide a way for users to interact with
your application by defining what is known
as the target-action mechanism: the ability
for a control to send an action (method
call) to a target (object) when an event
(touch) occurs.

In this chapter, you’ll look at the various
views and controls available in iOS and
examine how to use them.

All the examples use the View-based Appli-
cation template, with the code running in
the view controller.

4
iPhone User

Interface Elements

In This Chapter
Views	 112

Image Views	 126

Scrolling	 129

Labels	 136

Progress and Activity Indicators	 139

Alerts and Actions 	 142

Picker Views	 146

Toolbars	 152

Text	 156

Web Views	 164

Controls	 170

112  Chapter 4

Views
A view is the common name given to
instances of UIView. You can think of a
view as your application’s canvas; in other
words, if you are adding UI elements to
your iPhone’s interface, you are add-
ing them to a view. All the UI elements
discussed in this chapter are themselves
subclasses of UIView and so inherit its
properties and behavior.

The root level of your iPhone application
interface consists of a single UIWindow
to which you would typically add one or
more views to work with, instead of using
UIWindow directly.

Since UIView is a subclass of UIResponder,
it can receive touch events. For most views,
you’ll receive only a single-touch event
unless you set the multipleTouchEnabled
property to TRUE. You can determine
whether a view can receive touch events
by modifying its userInteractionEnabled
property. You can also force a view to be
the only view to receive touch events by
setting the exclusiveTouch property to YES.
(For more information on working with touch
events, see Chapter 7, “Touches, Shakes,
and Orientation.”)

You can also nest views within each other
in what’s known as the view hierarchy.
Child views are known as subviews, and
a view’s parent is its superview.

Frames
Views are represented by a rectangular
region of the screen called a frame. The
frame specifies the origin (x, y) and size
(width, height) of the view, in relation to
its parent superview. The origin of the
coordinate system for all views is the
upper-left corner of the screen A.

subview subview

subview

Origin {0,0}

superview

Height

Width

A Child views (subviews) are nested inside their
parent view (superview). A view’s origin is at the
top-left corner.

iPhone User Interface Elements  113

To add a view to your application:
1.	 Create a CGRect to represent the frame

of the view, and pass it as the first
parameter of the view’s initWithFrame:
method:

CGRect viewFrame = CGRectMake
 (10,10,100,100);

UIView *myView = [[UIView alloc]
 initWithFrame:viewFrame];

Here you are creating a view that is
inset 10 pixels from the top left of its
superview and that has a width and
height of 100 pixels.

2.	 Since the view is transparent by default,
set its background color before adding it
to the view controller’s existing view B:

myView.backgroundColor =
 [UIColor blueColor];

[[self view] addSubview:myView];

Code Listing 4.1 shows the completed
code.

  To improve performance, set
your UIView’s opaque property to YES
wherever possible.

Bounds
A view’s bounds are similar to its frame,
but the location and size are relative to
the view’s own coordinate system rather
than those of its superview. In the previous
example, the frame’s origin is {10,10}, but
the origin of its bounds is {0,0}. (The width
and height for both the frame and the
bounds are the same.)

The console output illustrates this C: After
moving the view 25 pixels in the x direc-
tion (using the view’s center property), the
frame origin is now {35,10}, whereas the
bounds origin remains at {0,0}.

B Adding a subview to the view controller’s
main view.

C Console output after moving the view. Notice
that although the frame changes, the bounds
remain the same.

Code Listing 4.1  Creating a new view.

114  Chapter 4

Let’s say you want to create a view so that
it completely fills its superview. A common
mistake is to use the frame of the superview.

If you tried to run this code in your appli-
cation, you’d see a gap at the top of the
subview D.

Recall that, in the project, the UIWindow
is at the top level. The UIWindow has two
subviews: the status bar and the main
view 20 pixels below E. The origin of the
frame of the main view is actually {0,20}.
(Remember, a view’s frame is in relation to
its superview’s coordinate system.)

The solution to this problem is to use the
bounds of the superview (Code Listing 4.2),
which causes the view to correctly fill its
superview.

  You can use the NSStringFromCGRect()
function to convert a CGRect into an
NSString, making it useful for logging
CGRects to the console via NSLog().
Other useful functions when dealing with
CGRects are NSStringFromCGPoint()
and NSStringFromCGSize().

D Setting the frame incorrectly by using the frame
of the superview. Notice the gap at the top.

Origin {0,0}
status bar 20px

Origin {0,20}

Window

view controller view

E The enclosing UIWindow contains both the
status bar and the view controller’s view as
subviews. Notice how the controller’s view has an
origin starting at {0,20} for its frame.

Code Listing 4.2  Initializing the view’s frame with
its superview’s bounds.

iPhone User Interface Elements  115

Animation
Many properties of a view can be
animated, including its frame, bounds,
backgroundColor, alpha level, and more.
You’ll now look at some simple examples
that illustrate additional view concepts.

To animate your view:
1.	 Retrieve the center of the view control-

ler’s main view:

CGPoint frameCenter =
 self.view.center;

2.	 Create a view, set its background color,
and, just as you did earlier, add it to the
main view:

float width = 50.0;

float height = 50.0;

CGRect viewFrame = CGRectMake
 (frameCenter.x-width,
 frameCenter.y-height,width*2,
 height*2);

UIView *myView = [[UIView alloc]
 initWithFrame:viewFrame];

myView.backgroundColor =
 [UIColor blueColor];

[[self view] addSubview:myView];

Here you are positioning your view in
the center of its superview and giving it
a width and height of 50 pixels.

3.	 Set up an animation block:

[UIView beginAnimations:nil
 context: NULL];

[UIView setAnimationDuration:1.0];

An animation block is a wrapper around
a set of changes to animatable proper-
ties. In this example, the animation lasts
for one second.

continues on next page

116  Chapter 4

4.	 Resize the view:

viewFrame = CGRectInset(viewFrame,
 -width, -height);

[myView setFrame:viewFrame];

The CGRectInset() function takes a
source rectangle and then creates
a smaller or larger rectangle with the
same center point. In this example,
a negative value for the width and
height creates a larger rectangle.

5.	 Close the animation block:

[UIView commitAnimations];

This will cause all of the settings within
the animation block to be applied.

6. 	Build and run the application.

You should see the view grow in size over
a period of one second. Code Listing 4.3
shows the completed code.

  Try changing the setAnimationDuration:
line to see how you can affect the speed of the
animation.

Code Listing 4.3  Animating a view.

  Try setting some other properties on
the view within the animation block (such
as backgroundColor) to see what effect
they have.

iPhone User Interface Elements  117

Autosizing
When a view changes size or position,
you often want any subviews contained
within the view to change size or position
in proportion to their containing superview.
You can accomplish this by using a view’s
autoresizing mask. Now let’s add a sec-
ond subview inside the view you created in
the previous exercise.

To add a subview:
1. 	 Create a CGRect for the subview’s

frame, again using the shortcut
CGRectInset() function:

CGRect subViewFrame =
 CGRectInset(myView.bounds,
 width/2.0, height/2.0);

UIView *mySubview =
 [[UIView alloc]
 initWithFrame:subViewFrame];

mySubview.backgroundColor =
 [UIColor yellowColor];

[myView addSubview:mySubview];

This time, the positive width and height
values for the CGRectInset function
make the new view smaller. To make
them stand out, give it a different back-
ground color.

2. 	Build and run the application F. The
new subview starts off in the center
of its superview, but then it remains
“pinned” to its initial location as the
animation progresses and ends up in
the top-left corner.

continues on next page

F Animating multiple views without using an
autoresizing mask. Notice how the new subview
ends up in the top-left corner of its superview.

118  Chapter 4

Code Listing 4.4 shows this code
updated to use an autoresizing mask.
Notice how you set all four margins
of the subview using the bitwise OR
operator (the | symbol) between the
constant values (Table 4.1). Notice also
that even though the animation is speci-
fied on the superview, the subview still
animates automatically G.

3. 	You can visually set the autoresizingMask
property in the size pane of the Inspec-
tor window in Interface Builder H.

Custom drawing
By default, the visual representation of a
UIView is fairly boring. You can manipulate
the size, background color, and alpha lev-
els of the view, but not much else.

Luckily, it’s relatively simple to create your
own UIView subclasses where you can
implement custom drawing behavior. To
see how this might be done, you’ll now
learn how to create a UIView subclass with
rounded corners.

G Using the autoresizing mask property,
the subview remains in the center of its
superview during an animation.

H Setting the autoresizing
mask in Interface Builder.

iPhone User Interface Elements  119

Table 4.1   Available autoresizingMask values

Value Description

UIViewAutoresizingNone The view does not resize.

UIViewAutoresizingFlexibleLeftMargin The view resizes by expanding or shrinking in the
direction of the left margin.

UIViewAutoresizingFlexibleWidth The view resizes by expanding or shrinking its width.

UIViewAutoresizingFlexibleRightMargin The view resizes by expanding or shrinking in the
direction of the right margin.

UIViewAutoresizingFlexibleTopMargin The view resizes by expanding or shrinking in the
direction of the top margin.

UIViewAutoresizingFlexibleHeight The view resizes by expanding or shrinking its height.

UIViewAutoresizingFlexibleBottomMargin The view resizes by expanding or shrinking in the
direction of the bottom margin.

Code Listing 4.4  Using an autoresizing mask.

120  Chapter 4

To create a custom
rounded-corner view:
1.	 In Xcode, select File > New File. Create

a new Objective-C class, making sure
that “Subclass of” is set to UIView I.
Save the file as roundedCornerView.

2.	 Open roundedCornerView.m, and modify
your code to look like Code Listing 4.5.

3.	 Open UITestViewController.m, and
replace all instances of UIView with
roundedCornerView. Don’t forget
to also import the header file for
roundedCornerView.h at the top of
the file. Code Listing 4.6 shows the
updated code.

4. 	Build and run your application to see
the result with rounded corners for
the views J.

As you can see, custom drawing
happens in the drawRect: method of
roundedCornerView. You set a couple
of variables here—one to determine the
width of the line you will be drawing
and another to determine the color.

5. 	By setting the color to the superview’s
background color, you are essentially
“erasing” any time you draw in the
subview.

float lineWidth = 10.0;

UIColor *parentColor = [[self
 superview] backgroundColor];

continues on page 122

I Adding a custom class to draw the rounded
corner view.

J In the updated application, the views now have
rounded corners.

iPhone User Interface Elements  121

Code Listing 4.5  The roundedCornerView class.

122  Chapter 4

6. 	Now you get a reference to the current
graphics context and set the pen color
and width.

A graphics context is a special type
that represents the current drawing
destination, in this case the custom
view’s contents.

CGContextRef ctx =
 UIGraphicsGetCurrentContext();

CGContextSetStrokeColorWithColor
 (ctx, parentColor.CGColor);

CGContextSetLineWidth(ctx,
 lineWidth);

7. 	 Finally, call a custom function that draws
a line around the outside of the view,
rounding at each corner:

CGContextStrokeCorners(ctx,rect);

Code Listing 4.6  Replacing regular views with the custom class.

iPhone User Interface Elements  123

Transforms
You’ve already looked at resizing a view
by increasing the width and height of its
frame. Another way to perform the same
task is by using a transform.

A transform maps the coordinates system
of a view from one set of points to another.
Transformations are applied to the bounds
of a view. In addition to scaling, you can also
rotate and move a view using transforms.

To resize your view using
a scale transform:
n	 Add the following code to your application:

CGAffineTransform scale =
 CGAffineTransformMakeScale
 (2.0,2.0);

myView.transform = scale;

This creates a scale transform, doubling
both the width and the height of your view.

or

Transforms can also be used to move
views by using a translate transform:

CGAffineTransform translate =
 CGAffineTransformMakeTranslation
 (50,50);

myView.transform = translate;

This would cause a view to move by
50 pixels along both the x- and y-axes.

or

Finally, you can apply a rotation trans-
form to rotate your views:

CGAffineTransform rotate =
 CGAffineTransformMakeRotation
 (radiansForDegrees(180));

myView.transform = rotate;

Because rotations are specified in
radians, you use a function to convert
from degrees.

124  Chapter 4

To apply both a rotation transform
and a scale transform to your view:
1. 	 Update the code to look like the

following:

CGAffineTransform scale =
 CGAffineTransformMakeScale
 (2.0,2.0);

CGAffineTransform rotate =
 CGAffineTransformMakeRotation
 (radiansForDegrees(180));

CGAffineTransform myTransform =
 CGAffineTransformConcat
 (scale,rotate);

myView.transform = myTransform;

Note how you can combine transfor-
mations using the CGAffineTransform
Concat() function.

Code Listing 4.7 shows the completed
code.

2. 	Build and run your application K.

Your view should rotate and scale at the
same time.

  You no longer need to set the
autoresizingMask property of the subview
because the transform is applied to the view
and its subviews at the same time.

  You can return a view to its original
state by setting its transform property to
CGAffineTransformIdentity.

K The view both rotating and scaling.

iPhone User Interface Elements  125

Code Listing 4.7  Rotating and scaling the view.

126  Chapter 4

Image Views
The UIImageView class extends UIView
to provide support for displaying images.
Its default initializer, initWithImage:,
takes a UIImage as its only parameter
(Code Listing 4.8):

UIImage *anImage = [UIImage
 imageNamed:@"myImage.png"];

UIImageView *myImageView =
 [[UIImageView alloc]
 initWithImage:anImage];

Note that initWithImage: automatically
adjusts the frame of the new image view
to match the width and height of the image
assigned A.

If you resize the image view, you can see
that the image automatically scales to fit B:

CGSize viewSize =
 myImageView.bounds.size;

//shrink width 50%

viewSize.width = viewSize.width
 * 0.5;

//keep height the same

viewSize.height = viewSize.height;

	

CGRect newFrame = CGRectMake
 (0,0,viewSize.width,
 viewSize.height);

[myImageView setFrame:newFrame];

Code Listing 4.8  Creating an image view.

A The image displaying a graphic.

B Resizing the image view.

iPhone User Interface Elements  127

You can control scaling behav-
ior by the contentMode prop-
erty of UIView, which defaults to
UIViewContentModeScaleToFill.

For example, to maintain the aspect ratio of
the image, you would write this:

myImageView.contentMode =
 UIViewContentModeScaleAspectFit;

In the resulting image, note that although
the image itself is scaled, the image view
still has the same bounds C. Any part of
the bounds not rendered in the image will
be transparent.

Animating images
UIImageView lets you animate over an
array of images, which is handy for creat-
ing progress animations. Code Listing 4.9
shows the code updated to animate over
three images.

C Resizing the image view while maintaining
its aspect ratio.

Code Listing 4.9  Animating over an array of images.

128  Chapter 4

To animate over an image:
1.	 Create the image view, and set its frame:

CGRect viewFrame = CGRectMake
 (0,0,200,200);

UIImageView *myImageView =
 [[UIImageView alloc]
 initWithFrame:viewFrame];

2.	 Create and set the image array:

NSArray *arrImages =
 [[NSArray alloc] initWithObjects:

	 [UIImage imageNamed:
	  @"apple.png"],

	 [UIImage imageNamed: 	
	  @"apple2.png"],

	 [UIImage imageNamed: 	
	  @"apple3.png"],nil];

[myImageView
 setAnimationImages:arrImages];

[arrImages release];

3.	 You can control the speed of the anima-
tion (in seconds) and number of times
the animation is repeated. The default is
0, making the animation loop indefinitely:

[myImageView
 setAnimationDuration:0.5];

[myImageView setAnimation
 RepeatCount:0];

4.	 To begin the animation, add the following:

[myImageView startAnimating];

5.	 To stop the animation, you call
stopAnimating.

  For simplicity, the previous examples use
imageNamed: to create the images. Although
convenient, this method creates autoreleased
objects that can’t be manually released in a low-
memory situation. So, it’s usually wiser to use
something like the initWithContentsOfFile:
method and manually allocate/release your images.

iPhone User Interface Elements  129

Scrolling
Often your views will be larger than the vis-
ible area, and you need a way to scroll. For
this, you use the UIScrollView class.

A scroll view acts as a container for a
larger subview, allowing you to pan around
the subview by touching the screen. Verti-
cal and horizontal scroll bars indicate the
position in the subview.

Code Listing 4.10 shows an example of
using a scroll view.

To create a scroll view:
1.	 Set the frame as usual:

CGRect scrollFrame = CGRectMake
 (20,90,280,280);

UIScrollView *scrollView =
 [[UIScrollView alloc]
 initWithFrame:scrollFrame];

2.	 Create an image view, assigning it an
image that is larger than the scroll view:

UIImage *bigImage = [UIImage
 imageNamed:@"appleLogo.jpg"];

UIImageView *largeImageView =
 [[UIImageView alloc]
 initWithImage:bigImage];

continues on next page

Code Listing 4.10  Using a scroll view.

130  Chapter 4

3.	 Add the image view to the scroll view,
and set the contentSize property of
the scroll view:

[scrollView addSubview:
 largeImageView];

scrollView.contentSize =
 largeImageView.frame.size;

This is an important step: If you don’t
tell the scroll view how large its subview
is, it won’t know how to scroll at all.

4.	 Finally, add the scroll view to the
main view:

[self.view addSubview:scrollView];

You'll now see the scroll view with hori-
zontal and vertical scroll bars indicating
the current position in the image view
A. You can hide these scroll bars using
the showsHorizontalScrollIndicator
and showsVerticalScrollIndicator
properties.

  If you play around with the previous code,
you’ll notice that if you scroll quickly to the
edge of the subview, the scroll view actually
moves a little too far before springing back.
This behavior is controlled by the bounce prop-
erty. You can restrict bouncing to the x- or y-axis
using the alwaysBounceHorizontal and
alwaysBounceVertical properties, or you can
disable it entirely by setting bounce to NO.

Zoom
You can also zoom in and out of an image
using a scroll view. The minimumZoom-
Scale and maximumZoomScale properties
control the scale by which you can zoom in
and out. By default, both of these proper-
ties are set to the same value (1.0), which
disables zooming. You must implement one
of the UIScrollViewDelegate methods to
return the view that is being zoomed.

A Using a scroll view to pan around a
large image.

iPhone User Interface Elements  131

To enable zooming:
1.	 Add the UIScrollViewDelegate proto-

col in the controller.h file:

@interface UITestViewController :
 UIViewController
 <UIScrollViewDelegate>

2.	 Update the scroll view code to allow
you to zoom out by 1/2 and in by 2x:

scrollView.minimumZoomScale = 0.5;

scrollView.maximumZoomScale = 2.0;

scrollView.delegate = self;

You’ve also set the delegate to be the
controller (self).

3.	 Implement the viewForZoomingInScroll
View: delegate method, and return the
image view. Code Listing 4.11 shows the
updated code.

Paging
Scroll views support the paging of their
content—the ability to add multiple sub-
views as “pages” and then scroll between
them as you might turn the pages of a
book. Adding a UIPageControl will provide
a visual depiction of your current page B.

Code Listing 4.11  Adding zoom to the scroll view.

B The page control indicating the total number of
pages and the current page as a series of dots at
the bottom of the iPhone’s screen.

132  Chapter 4

To create a page control:
1.	 Update the code to remove the image

from the scroll view, and set some new
properties:

float pageControlHeight = 18.0;

int pageCount = 3;

	

CGRect scrollViewRect =
 [self.view bounds];

scrollViewRect.size.height -=
 pageControlHeight;

	

myScrollView =
 [[UIScrollView alloc]
 initWithFrame:scrollViewRect];

myScrollView.pagingEnabled = YES;

The pagingEnabled property turns
paging on for the scroll view.

2.	 Since you have three pages, set the
contentView of the scroll view to be
three times wider than its frame. You’ll
also turn off the scroll view indicators:

myScrollView.contentSize =
 CGSizeMake(scrollViewRect.size.
 width * pageCount,1);

myScrollView.showsHorizontal
 ScrollIndicator = NO;

myScrollView.showsVertical
 ScrollIndicator = NO;

myScrollView.delegate = self;

3.	 Set up the page control by creating a
frame below the scroll view, and add a
target to the page control so that when
it is tapped, it will call the changePage:
method:

iPhone User Interface Elements  133

CGRect pageViewRect =
 [self.view bounds];

pageViewRect.size.height =
 pageControlHeight;

pageViewRect.origin.y =
 scrollViewRect.size.height;

	

myPageControl = [[UIPageControl
 alloc] initWithFrame:
 pageViewRect];

myPageControl.backgroundColor =
 [UIColor blackColor];

myPageControl.numberOfPages =
 pageCount;

myPageControl.currentPage = 0;

[myPageControl addTarget:self
 action:@selector(changePage:)
 orControlEvents:UIControlEvent
 ValueChanged];

4.	 Call the createPages method by adding
three UIViews side by side to the scroll
view to represent the three pages.

5.	 Set the backgroundColor property of
the views.

In a real-world application, these would
be more interesting! At this stage, your
scroll view will actually work, but you
need some more work to get the page
control to reflect the current page.

6.	 Implement the scrollViewDidScroll:
delegate method:

CGFloat pageWidth = sender.frame.
 size.width;

int page = floor((sender.content
 Offset.x - pageWidth / 2) /
 pageWidth) + 1;

myPageControl.currentPage = page;

continues on next page

134  Chapter 4

This simply does some math to calculate
your current page during the scroll and
then updates the page control accordingly.

7.	 Finally, implement the changePage:
method called when the page control
is tapped:

int page = myPageControl.
 currentPage;

CGRect frame = myScrollView.frame;

frame.origin.x = frame.size.width
 * page;

frame.origin.y = 0;

[myScrollView scrollRectToVisible:
 frame animated:YES];

This scrolls the scroll view horizontally
based on the page you have selected
in the page control. Code Listing 4.12
shows the completed code.

Code Listing 4.12  Implementing a page control.

code continues on next page

iPhone User Interface Elements  135

Code Listing 4.12  continued

136  Chapter 4

Labels
Instances of the UILabel class display a
read-only view that can contain one or
more lines of text. For example, to create
a simple label and set its text, font,
textColor, and backgroundColor proper-
ties (Code Listing 4.13), use this:

myLabel.backgroundColor =
 [UIColor clearColor];

myLabel.textColor =
 [UIColor redColor];

myLabel.font = [UIFont
 systemFontOfSize: 18.0];

myLabel.text = @"Hello World!";

By default, a label is rendered as black text
on a white background. You can also set a
font by name:

myLabel.font = [UIFont fontWithName:
 @"Verdana" size:18.0];

Table 4.2 shows the available fonts you
can use.

If you don’t specify a font size, the label
will automatically reduce the font to fit
the text within the label’s frame. You can
control how small the font gets with the
minimumFontSize property, and you can
disable this behavior entirely with the
adjustsFontSizeToFitWidth property.

To add a shadow to a label’s text, you
could write the following:

myLabel.shadowColor = 	

 [UIColor darkGrayColor];

myLabel.shadowOffset = 	

 CGSizeMake(1.0,1.0);

The shadowOffset controls set how far on
the x- and y-axes from the label’s text the
shadow is drawn. The default is {0,-1}.

Code Listing 4.13  Creating a label.

iPhone User Interface Elements  137

Table 4.2   Fonts available on the iPhone

Family Name

American Typewriter AmericanTypewriter, AmericanTypewriter-Bold

AppleGothic AppleGothic

Arial ArialMT, Arial-BoldMT, Arial-BoldItalicMT, Arial-ItalicMT

Arial Hebrew ArialHebrew, ArialHebrew-Bold

Arial Rounded MT Bold ArialRoundedMTBold

Arial Unicode MS ArialUnicodeMS

Courier Courier, Courier-BoldOblique, Courier-Oblique, Courier-Bold

Courier New CourierNewPS-BoldMT, CourierNewPS-ItalicMT, CourierNewPS-BoldItalicMT,
CourierNewPSMT

DB LCD Temp DBLCDTempBlack

Geeza Pro GeezaPro-Bold, GeezaPro

Georgia Georgia-Bold, Georgia, Georgia-BoldItalic, Georgia-Italic

Hiragino Kaku Gothic ProN HiraKakuProN-W6, HiraKakuProN-W3

Heiti J STHeitiJ-Medium, STHeitiJ-Light

Heiti K STHeitiK-Medium, STHeitiK-Light

Heiti SC STHeitiSC-Medium, STHeitiSC-Light

Heiti TC STHeitiTC-Light, STHeitiTC-Medium

Helvetica Helvetica-Oblique, Helvetica-BoldOblique, Helvetica, Helvetica-Bold

Helvetica Neue HelveticaNeue, HelveticaNeue-Bold

Marker Felt MarkerFelt-Thin

Times New Roman TimesNewRomanPSMT, TimesNewRomanPS-BoldMT,
TimesNewRomanPS-BoldItalicMT, TimesNewRomanPS-ItalicMT

Thonburi Thonburi-Bold, Thonburi

Trebuchet MS TrebuchetMS-Italic, TrebuchetMS, TrebuchetMS-BoldItalic, TrebuchetMS-Bold

Verdana Verdana-Bold, Verdana-BoldItalic, Verdana, Verdana-Italic

Zapfino Zapfino

138  Chapter 4

The textAlignment property allows you to
align the label text to the left (the default),
center, or right.

The lineBreakMode property controls how
a label wraps text that is too wide to fit
within its frame. You can specify whether
you want the text to be word or character
wrapped, clipped, or truncated at the start,
end, or middle of the text.

To display multiple lines of text in a label,
use the numberOfLines property and the
\n newline escape character:

myLabel.numberOfLines = 2;

myLabel.text = @"Hello World\nSecond 	

 line";

The height of the label’s frame property
needs to be tall enough to accommodate
the number of lines of text you specify,
or the text will be wrapped using the value
defined in the lineBreakMode property
(Code Listing 4.14).

  Setting the numberOfLines property
to 0 will make the label dynamically set the
line count.

Code Listing 4.14  Setting various properties of
a label.

iPhone User Interface Elements  139

Progress and
Activity Indicators
When performing tasks that may take some
time, you often need to provide some kind
of visual feedback to your users. If you
know how long the task will take to com-
plete, you can use a progress indicator to
show the user how much of the task has
been performed and how much still has to
run. If you are unable to determine the dura-
tion of the task, use a “busy” indicator (such
as the beach ball or hourglass on OS X).

iOS provides classes for showing both
progress and activity.

Indicating progress
When you want to show the progress of a
task, use UIProgressView, a very simple
class, consisting of only two properties.

You create a progress view and set its style
using the initWithProgressViewStyle:
method:

UIProgressView *myProgressView = 	

 [[UIProgressView alloc] 	

 initWithProgressViewStyle: 	

 UIProgressViewStyleDefault];

The indicator appears as a horizontal bar
that fills from left to right to show comple-
tion A. This is controlled by the progress
property, using a value between 0.0 (not
started) and 1.0 (completed):

[myProgressView setProgress:0.33];

Although you set the frame of the prog-
ress view, the maximum height of a
progress view is 9 pixels, so any larger
value will be ignored.

A A progress view at 33 percent completion.

140  Chapter 4

Code Listing 4.15 shows an example of
using UIProgressView with the progress
updated in a timer to simulate a long-
running task.

  The other progress bar style,
UIProgress ViewStyleBar, also uses a
horizontal bar indicator but is more suitable
for using in a toolbar (explained in the follow-
ing section).

Showing activity
For tasks of an indeterminate duration, you
can use the UIActivityIndicatorView
class, represented by an animated “spin-
ner” graphic B.

Code Listing 4.15  Updating the progress view.

B An activity indicator view.

iPhone User Interface Elements  141

Similar to a progress view, you can
create an activity indicator using the
initWithActivityIndicatorStyle:
method:

UIActivityIndicatorView
 *myActivityView =
 [[UIActivityIndicatorView alloc]
 initWithActivityIndicatorStyle:
 UIActivityIndicatorViewStyleWhite];

The default size of an activity view is a
21-pixel square. If you use the UIActivity
IndicatorViewStyleWhiteLarge style, this
increases to a 36-pixel square.

Unlike the progress view, however, the frame
property controls both the height and the
width of the view. For activity views larger
than 36 pixels, it’s best to use the larger style
so the image won’t become pixelated.

The activity view will initially be invis-
ible. Calling the startAnimating method
shows the activity view and causes the
spinner graphic to animate:

[myActivityView startAnimating];

Calling stopAnimating will stop the
spinner animation, but you need to
remember to set the hidesWhenStopped
property if you want the activity view to
hide (Code Listing 4.16).

Code Listing 4.16  Creating an activity indicator view.

142  Chapter 4

Alerts and Actions
Often in your applications you’ll want to
present a message to your users. Perhaps
you want to alert them about an error or
present them with options for a given
action. As an iPhone developer, you handle
these situations using alert views and
action sheets.

Alerting users
To display an alert message, use the
UIAlert View class. You define a title,
message, and delegate, and then you
configure buttons to be shown in the view.

To display an alert view:
1.	 First, create a simple alert view A:

UIAlertView *myAlert =
 [[UIAlertView alloc]
 initWithTitle:@"title"
 message:@"message"
 delegate:nil
 cancelButtonTitle:@"OK",
 otherButtonTitles:nil]
 [myAlert show];

2.	 Using the otherButtonTitles property,
you can create the same alert view with
up to four additional buttons B:

UIAlertView *myAlert = 	

 [[UIAlertView alloc] 	

 initWithTitle:@"title"
 message:@"message"
 delegate:nil
 cancelButtonTitle:@"OK"
 otherButtonTitles:@"button1", 		
 @"button2", @"button3", 	 	

 @"button4",nil];

A A bare-bones alert view.

B An alert view with several
buttons added.

iPhone User Interface Elements  143

If you have only two buttons in your
alert view, they will be displayed side
by side. Otherwise, buttons are added
from top to bottom, with the cancel
button always being at the very bottom.
If you don’t need the message or title
text, there is room for five buttons in
addition to the cancel button.

3.	 You can add buttons after creating your
alert view by using the addButtonWith
Title: method:

[myAlert addButtonWithTitle: 	

 @"new button"];

4.	 To determine which button is tapped,
set the delegate, and implement the
alertView:clickedButtonAtIndex:
delegate method (Code Listing 4.17).

The buttonIndex parameter tells you
which button was tapped, starting with the
cancel button at index 0. Alert views close
automatically when a button is tapped.

  Another way to alert the user is by
making the iPhone vibrate by calling the
function AudioServicesPlayAlertSound
(kSystemSoundID_Vibrate). You’ll need to
add the AudioToolbox framework to your
project for this to work.

Code Listing 4.17  Display an alert view.

  Using the dismissWithClickedButton
Index:animated: method, you can program-
matically close an alert view without the user
having to tap a button. This might be useful in
a situation where you want to show an alert
for a short time and then hide it automatically.

144  Chapter 4

Confirming an action
When presenting the user with a number of
options, you can use a UIActionSheet.

To create an action sheet:
1.	 An action sheet is created in a similar

way to an alert view C:

UIActionSheet *mySheet = 	

 [[UIActionSheet alloc] 	

 initWithTitle:@"Do you really 	

 want to delete?" delegate:nil 	

 cancelButtonTitle:@"No" 	

 destructiveButtonTitle:@"Yes" 	

 otherButtonTitles:nil];

[mySheet showInView:self.view];

2.	 Define titles for three types of button.

The cancel button is generally used to
dismiss the action sheet.

The destructive button acts as the
confirmation of the action and is usually
shown in red to indicate its importance.

The other buttons are similar to the alert
view and allow you to add more buttons.

Setting any of these parameters to nil
prevents the button type from showing.

3.	 Set the delegate, and implement the
actionSheet:clickedButtonAtIndex:
method, which is called when a but-
ton is tapped.

You can compare the buttonIndex
parameter to the action sheet’s
cancelButtonIndex and
destructiveButtonIndex properties
to determine which button was tapped.

Code Listing 4.18 shows the code
updated with some of these options.

C An action sheet is “pinned” to the bottom of
the screen, and it contains only a title.

iPhone User Interface Elements  145

Code Listing 4.18  Adding more options to the action sheet.

Action sheets vs. alert views
Action sheets are functionally similar to alert views, with a number of important differences:

Action sheets are attached to a view. The code used in the previous exercise attaches the ..
action sheet to the controller’s main view.

You can optionally show the alert sheet from a tab bar or a toolbar using the .. showFromTabBar:
and showFromToolbar: methods.

Action sheets do not have a .. message property; they have a single title property.

You can change how the action sheet looks by using the .. actionSheetStyle property. In addi-
tion to the default style, you can give your action sheet a black transparent or opaque style.
Setting the style to UIActionSheetStyleAutomatic will give your action sheet the same
appearance as the bottom bar if one exists.

146  Chapter 4

Picker Views
The UIPickerView class allows users to
“spin” a wheel-type control to select one
or more values. Each picker view consists
of one or more components consisting of
one or more rows. Each component can
be spun independently of the others. For
example, the picker view can be used to
select a date value with three components
in the control, representing the month, day,
and year A.

The number of components and rows
in a picker view is determined by its
datasource, an object that adopts the
UIPickerViewDataSource protocol. The
display and selection of the picker view
content is handled by the delegate, which
adopts the UIPickerViewDelegate proto-
col (the datasource and the delegate can
be the same object).

To create a simple picker view:
1.	 Add the protocol declarations to your

interface definition:

@interface UITestViewController : 	

 UIViewController 	

 <UIPickerViewDataSource, 	

 UIPickerViewDelegate>

2.	 Create a picker view, and add it to the
main view (Code Listing 4.19):

CGRect pickerFrame = 	

 CGRectMake(0,120,0,0);

	

UIPickerView *myPicker = 	

 [[UIPickerView alloc] 	

 initWithFrame:pickerFrame];

myPicker.dataSource = self;

myPicker.delegate = self;

	

[self.view addSubview:myPicker];

A A picker view being used to select a date.

iPhone User Interface Elements  147

Picker views are always 320 pixels by
216 pixels in size and cannot be resized.

3.	 The showsSelectionIndicator prop-
erty creates a translucent bar across
the control to indicate the selected row.

4.	 At a minimum, you need to implement
two data source methods.

numberOfComponentsInPickerView:
returns the number of segments or
components in the picker view. In this
example, you want a single component,
so return the value 1.

pickerView:numberOfRowsInComponent:
returns the number of rows for each
component. Again, ignore the compo-
nent parameter (since you have only
a single component), and return the
number of rows.

continues on next page

Code Listing 4.19  A bare-bones picker view implementation.

148  Chapter 4

5.	 Implement the delegate pickerView:
titleForRow:forComponent: method,
returning an NSString representation of
the current row B:

return [NSString stringWithFormat: 	
 @"Row %i",row];

The picker view can display much more
interesting data than this simple example.
Components can be of different widths
and, rather than just simple text, can actu-
ally have entire views embedded within
them C.

To enhance the picker view:
1.	 After calling the initComp1 and

initComp2 methods to create
some sample data, update the
numberOfComponentsInPickerView:
method to return two components
(one for each of the sample arrays).
Also, update the pickerView:numberof
RowsInComponent: method to return
the size of each array:

if (component == 0)

	 return [comp1 count];

else

	 return [comp2 count];

The arrays here contain different
numbers of elements; in other words,
components do not need the same
number of rows.

2.	 Define a new delegate method, picker
View:widthFormComponent:, and set
the widths of the components to differ-
ent values:

if (component == 0)

	 return 100.0;

else

	 return 200.0;

B The picker view shows the sample data.

C The updated picker view. Not only do the two
components display different content, but they
also have different widths and numbers of items.

iPhone User Interface Elements  149

3.	 Implement the pickerView:viewForRow:
forComponent:reusingView: delegate,
returning either an image view or a
label. This method allows you to embed
almost any view subclass in a picker
view component.

4.	 Finally, in the pickerView:didSelectRow:
inComponent: delegate, log the
selected row and component to
the console.

When you spin the picker view, this
method isn’t fired until the scrolling ani-
mation ends. Code Listing 4.20 shows
the updated code.

Code Listing 4.20  The updated picker view.

code continues on next page

150  Chapter 4

Code Listing 4.20  continued

iPhone User Interface Elements  151

Picking dates and times
iOS also has a special version of a picker,
UIDatePicker, geared toward picking dates
as well as times. The datePickerMode prop-
erty determines the style of the picker D.

Since the date picker is localized, it will auto-
matically display dates and times in the format
of the device locale. You can, however, over-
ride these settings to display dates and times
for other locales.

You can set properties for start and end dates
(for the date-style pickers) and for minute and
countdown values (for the time-style pickers).

UIDatePicker is not actually a subclass of
UIPickerView. It is a UIControl subclass that
has a custom UIPickerView as a subview.
This means that you use the target-action
mechanism to manage the selection of values.
As with other controls, you set the action:

[myPicker addTarget:self action:@selector(pickerChanged:) forControlEvents:
 UIControlEventValueChanged];

The date picker creates a UIControlEventValueChanged event when a date or time is selected
(Code Listing 4.21).

Code Listing 4.21  Implementing a date picker.

D A date picker with the default style of
UIDatePickerModeDateAndTime lets you pick
both the date and the time.

152  Chapter 4

Toolbars
You can create toolbars in iPhone applica-
tions using the UIToolbar class. A toolbar
usually spans the entire width of the dis-
play and is aligned to either the top or the
bottom of the screen A.

To create a toolbar:
1.	 As with many other views, you can cre-

ate a toolbar with the initWithFrame:
method. Use the size of the main view
to calculate the y position of the toolbar.
This is important since you may not
know the orientation of the iPhone and
want the toolbar to sit at the bottom of
the screen.

CGSize viewSize = 	

 self.view.frame.size;

float toolbarHeight = 44.0;

CGRect toolbarFrame = CGRectMake 	

 (0,viewSize.height-toolbarHeight, 	
 viewSize.width,toolbarHeight);

UIToolbar *myToolbar = 	

 [[UIToolbar alloc] initWithFrame: 	
 toolbarFrame];

2.	 Set the autoresizingMask property of
the toolbar to ensure that it stays in the
same position (in this case, aligned to
the bottom of the screen) even if the
user rotates their iPhone.

myToolbar.autoresizingMask = 	

 UIViewAutoresizingFlexible
 Width | UIViewAutoresizing
 FlexibleLeftMargin | UIView
 AutoresizingFlexibleRight
 Margin | UIViewAutoresizing
 FlexibleTopMargin;

A Most of the controls sit on the toolbar in Safari.

iPhone User Interface Elements  153

3.	 You can change the color and translu-
cency of the toolbar using the tintColor
and translucent properties:

myToolbar.tintColor = 	

 [UIColor redColor];

myToolbar.translucent = YES;

Toolbar items
Buttons you add to a toolbar are known as
toolbar items and are created using the
UIBarButtonItem class. Several types of
buttons are available, and you can create
them in several ways:

n	 The simplest way to create a button
with some title text is by using the
initWithTitle:style:target:action:
method B. Use the target and action
parameters to indicate which method to
call when the button is pressed.

n	 Similarly, the initWithImage:style:
target:action: method lets you create
a button with an image instead of text.
The button will automatically resize its
width to that of the image.

n	 You can create a button from your
own custom UIView subclass using
the initWithCustomView: method.
However, you must set the target and
action properties manually.

n	 The final way is to use the initWithBar
ButtonSystemItem:target:action:
method.

iOS offers a set of predefined buttons,
known as system items, to ensure your
application adheres to the iPhone interface
guidelines. Use them whenever possible.

There are system items for play, pause,
and stop buttons, as well as for search,
trash, and camera C. For a complete list
of system items available, refer to the
UIBarButtonSystemItem type in the devel-
oper documentation.

B A toolbar showing the three toolbar item styles
for the initWithTitle:style:target:action:
method.

C Some of the available system item styles.

154  Chapter 4

You will often use two particular system item
types: UIBarButtonSystemItemFlexibleSpace
and UIBarButtonSystemItemFixedSpace.
Both are not visible and represent spaces
on a toolbar. The flexible-space item lets
you force a button to the other side of the
toolbar, while the fixed-space item simply
lets you add a space between buttons. You
can set the width property of a fixed-space
item to determine how wide you want the
space to be.

Once you’ve created these buttons, add
them to an NSArray and then use the
setItems: method of the UIToolbar to
add them to the toolbar itself. The optional
animated: parameter allows you to have
buttons fade in as they are added to
the toolbar.

Code Listing 4.22 shows the updated
code, with buttons of various types and
a flexible-space item being used to push a
button to the right side of the toolbar. If
you try rotating the phone, you will notice
that the toolbar and buttons correctly align
themselves regardless of orientation D.

D The toolbar has correctly sized itself with the iPhone in landscape mode. The trash toolbar
item is aligned to the right.

iPhone User Interface Elements  155

Code Listing 4.22  Creating several different types of toolbar items.

156  Chapter 4

Text
For entering text into your applications,
iOS provides two classes, UIText Field
and UITextView. Both allow the user to
enter and edit text using an onscreen
keyboard and support features such as
cut/copy and paste, spell check, and more,
but the two classes function differently.

To create a text field:
1.	 You can use the UITextField class

to enter small amounts of text, such
as user names, passwords, or search
terms. This field is limited to a single
line of text.

2.	 As with most other views, you use the
initWithFrame: method to create them:

CGRect textRect = CGRectMake 	

 (10,10,300,20);

UITextField *myTextField = 	

 [[UITextField alloc] 	

 initWithFrame:textRect];

myTextField.backgroundColor = 	

 [UIColor whiteColor];

This also sets the background color of
the text field; otherwise, it’s transparent
by default. Text fields also don’t have a
border by default.

3. 	Use the borderStyle property to
choose from four different styles A.

The UITextBorderStyleRoundedRect
style has a white background and will
ignore the backgroundColor property.
If you set a custom UIImage as the
background, the borderStyle property
will be ignored.

4. 	You can set the text font, color, and align-
ment to apply to the entire text field.

Text fields do not support the styling of
individual text elements.

A Border styles available for text fields.

iPhone User Interface Elements  157

5. 	You can set your text field to automati-
cally resize the font to accommodate
larger text:

myTextField.font = 	

 [UIFont systemFontOfSize:22.0];

myTextField.adjustsFontSizeTo 	

 FitWidth = YES;

myTextField.minimumFontSize = 2.0;

This example sets the initial font size as
22 and then tells the text field to auto-
matically shrink the font to a minimum
size of 2 if the text is wider than the text
field’s bounds.

6. 	Setting the clearsOnBeginEditing
property to YES will clear any existing
text when you first touch the control:

myTextField.clearsOnBeginEditing = 	
YES;

myTextField.clearButtonMode = 	

 UITextFieldViewModeWhileEditing;

The clearButtonMode property adds a
small button to the end of the text field,
letting you clear the text at any time B.
You can determine when this button
is shown, such as only when editing
the text.

To use keyboards:
1.	 Tap in the text field to open a keyboard

from the bottom of the screen.

2. 	You can choose from a number of
keyboard styles C, each designed for
particular situations such as entering
numbers or using a web browser.

3. 	Set the style with the keyboardType
property.

By default, the keyboard will automati-
cally suggest words as you type.

continues on next page

Clicking the clear button removes
any text in the text field.

B Press the clear button to remove any text in the
text field.

C Two of the keyboards available by setting the
keyboardType property of a text field.

158  Chapter 4

4. 	To disable this function, set the
autocorrectionType property to
UITextAutocorrectTypeNo.

5. 	Set the autocaptializationType
property to determine whether the key-
board capitalizes your typing by word,
sentence, or even all characters.

6. 	You can change the text on the Return
key via the returnKeyType property.

7.	 Use the enablesReturnKeyAutomatically
property to determine whether the
Return key is enabled even if you haven’t
entered any text into the text field.

In Code Listing 4.23, the secureTextEntry
property is set to YES, which is useful for
text fields that contain passwords or other
sensitive information. As you enter text,
you will see only the last letter typed.

8. 	You may have noticed that the keyboard
doesn’t disappear when you press the
Return key. To hide the text field, you
must implement the textFieldShould
Return: delegate and tell the text field
to resign its first responder status:

[textField resignFirstResponder];

return YES;

Code Listing 4.23  Creating a secure text field.

iPhone User Interface Elements  159

9. 	Similarly, you can make the keyboard
appear automatically when the view is
loaded by setting the first responder
status in the viewDidLoad: method:

[myTextField
 becomeFirstResponder];

10.	To prevent the keyboard from showing
at all, which is useful if you are imple-
menting your own custom keyboard,
return NO from the textFieldShould
BeginEditing: delegate method.

  For a complete list of keyboard options,
refer to the “UITextInputTraits Protocol” sec-
tion of the developer documentation.

Restricting content
You can also use the delegate methods
to control the text being entered into the
text field. The textField:shouldChange
CharactersInRange:replacementString:
delegate is called whenever the text is
changed. You could, for example, use this
method to restrict the number of charac-
ters entered. Code Listing 4.24 shows a
text field that allows a maximum of ten
characters.

Code Listing 4.24  Limiting the contents of a text field to ten characters.

160  Chapter 4

You should check the length of the replace-
ment rather than just looking at the length
of the text in the text field, since the text
field’s contents can be altered via copy and
paste as well as by using the keyboard.

For the same reason, simply changing the
keyboard type to numeric does not guaran-
tee that a user will enter only numeric val-
ues (since a user could paste non-numeric
values into the field). Code Listing 4.25
shows the same delegate method, this time
restricting the text field to allow numeric
values only.

Text views
The UITextView class allows for multiline
editable text. Although similar to text fields,
text views feature a number of important
differences.

Text views don’t have any support for
automatically reducing the font size like
text fields have. Also, they don’t have any
support for clearing the text other than
through programmatically setting the text
property. There is also no support for
secure text entry.

As with text fields, text views also apply
the same text style to the entire text. Apple
recommends using a UIWebView (see the
“Web Views” section) if you require mul-
tiple styles in your text.

Code Listing 4.25  Restricting the contents of a
text field to numeric values.

iPhone User Interface Elements  161

Data detectors
Text views can analyze their contents and
convert any links or phone numbers into
tappable links by using a capability known as
data detectors. Tapping the link will either
launch the browser or call the phone number.

Two data detector types are available:
UIData DetectorTypePhoneNumber for phone
numbers and UIDataDetectorTypeLink
for Web http: links. To enable both, set
the data DetectorTypes property:

myTextView.dataDetectorTypes = 	

 UIDataDetectorTypeAll;

There’s one caveat with data detectors:
The default behavior of text views is to
show the keyboard when tapped, so you
can’t tap the link of a data detector. For
data detectors to work, you must set the
editable property of the text view to NO.
In D, the URL is underlined just as it would
be in a web browser. Tapping it will launch
the Safari application.

Hiding the keyboard
A text view’s keyboard behaves the same
as a text field, with one important differ-
ence: Since a text view supports multiline
editing, pressing the Return button on
the keyboard will insert a carriage return
instead of calling a delegate method. Just
as with the text field, resign the text view’s
first responder status to hide the keyboard
when you have finished editing the text.
This is often done as an action within
another control.

D A text view with an active data detector.

162  Chapter 4

Scrolling the interface
You may have noticed that since the
iPhone’s keyboards are very large, they
take up a lot of the screen and can overlap
other controls when shown. It would be
handy if your interface moved up when the
keyboard appeared and then moved back
down once it disappeared.

You can make that happen by placing the
controls inside a UIScrollView. When
the keyboard appears, you simply scroll
everything up, scrolling back down when
the keyboard hides.

To scroll the interface in
response to the keyboard:
1.	 Create and add a scroll view, making it

the full size of the main view:

CGRect viewRect = 	

 [self.view bounds];

myScrollView = [[UIScrollView
 alloc] initWithFrame:viewRect];

myScrollView.contentSize = 	

 viewRect.size;

[self.view
 addSubview:myScrollView];

2.	 Add the controls to the scroll view
instead of the main view (since you
want them to scroll).

3.	 Implement the textViewDidBeginEditing:
delegate method, which is called when
the keyboard is shown.

Here you need to calculate both the
bottom of the text view and the top of
the keyboard and then tell the scroll
view to scroll the difference. You must
also look at the orientation property
of the iPhone because the keyboard
will have a different height in portrait
mode than in landscape mode.

iPhone User Interface Elements  163

4.	 Implement the textViewDidEndEditing:
delegate so that when the keyboard is
hidden, you scroll the text view to its origi-
nal position. Code Listing 4.26 shows the
completed code.

Code Listing 4.26  Scrolling an interface in response to a keyboard.

164  Chapter 4

Web Views
Just as with iPhone’s native Safari applica-
tion, you can display web-based content
in your own applications by using the
UIWebView class. (In fact, Safari on the
iPhone uses a UIWebView for display.)

Web views provide touch-based control for
zooming in and out of pages, panning, and
scrolling. Tapping links can load pages,
and tapping in text controls will open a
keyboard for data entry.

To display a web page in
your application:
1.	 Just as with other views, you can add

web views to your interface in the usual
way:

CGRect webRect = CGRectMake 	

 (10,10,300,400);

UIWebView *myWebView = 	

 [[UIWebView alloc] 	

 initWithFrame:webRect];

myWebView.scalesPageToFit = YES;

The scalesPageToFit property ensures
that larger pages are zoomed out or
in enough to fit correctly in the current
frame as well as letting you zoom in and
out in response to pinch gestures.

iPhone User Interface Elements  165

2.	 Use the loadRequest: method to load
content into the web view, which takes
an NSURLRequest object as its only
parameter:

NSURL *url = [NSURL URLWithString: 	
 @"http://www.google.com"];

NSURLRequest *request = 	

 [NSURLRequest
requestWithURL:url];

[myWebView loadRequest:request];

[self.view addSubview:myWebView];

This would load the Google homepage A.

3.	 If your page is taking a long time or
you want to cancel loading, use the
stopLoading method. You can also
check the loading property to make
sure the page is actually in the process
of loading.

What’s the status?
Web views provide four optional delegate methods that will notify you about changes in the status
of loading a web page:

webView:shouldStartLoadWithRequest:navigationType: is sent before the web view begins
to load the content and is a handy place to handle navigation within your web views (see the
“Loading local content and handling hyperlinks” section).

webViewDidStartLoad: is sent when your web page starts loading and is a good place to show a
progress indicator.

webViewDidFinishLoad: is sent when the web view finishes loading a page and is a good place
for you to stop a progress indicator. This will not be sent if the page fails to load for any reason.

webView:didFailLoadWithError: is sent if an error occurs in loading the web page.

A A web view displaying the Google homepage.

166  Chapter 4

If you are building a web browser–type
interface with Forward and Backward but-
tons, you can use the canGoForward and
canGoBackward properties to determine
whether your buttons should be enabled,
and you can use the goForward and
goBackward methods to navigate through
the web view’s page history.

Although there is no direct access to the
page history, you can easily maintain his-
tory via the delegate methods mentioned
in the “What’s the status?” sidebar. Code
Listing 4.27 shows the code updated to
include an activity indicator when the page
is loading.

Code Listing 4.27  Implementing a web view.

iPhone User Interface Elements  167

Running JavaScript
You can execute JavaScript in a web view by
using the stringByEvaluatingJavaScript
FromString: method. For example, if you
wanted to open an alert dialog box in your
web view, write the following:

[webView stringByEvaluating
JavaScript FromString:@"alert
 ('Hello World!);"];

This lets you manipulate your web page’s
style sheet or DOM or even call existing
JavaScript functions defined within the
page itself. For example, to change the
background color of your web page, you
could write the following:

[webView stringByEvaluating
JavaScript FromString:
 @"document.bgColor= \"#000000\";"];

To call the JavaScript function myFunction
defined in the web page, you could use this:

[webView stringByEvaluating
JavaScript FromString:
 @"myFunction();"];

For performance reasons, any JavaScript
you call must execute fully within ten sec-
onds and must be less than 10MB in size.

168  Chapter 4

Loading local content and
handling hyperlinks
You can also use web views to display
local content, such as an .html file that
ships in your application bundle. This
makes web views handy for displaying
content that mixes graphics with text or
requires multiple text styles. (Remem-
ber that UILabels and UITextViews are
restricted to only a single style per control.)

To load content from a local file:
1.	 Use the loadHTMLString:baseURL:

method to load content contained
in the resources folder of the
application bundle:

myWebView.scalesPageToFit = NO;

NSString *htmlPath =
 [[NSBundle mainBundle]
 pathForResource:@"myPage"
 ofType:@"html"];

NSString *htmlContent =
 [NSString stringWithContents
 OfFile:htmlPath encoding:
 NSUTF8StringEncoding error:nil];

[myWebView loadHTMLString:
 htmlContent baseURL:nil];

This time, scalePageToFit has been
set to NO because you don’t want the
user to be able to zoom in and out
of the web view as if it were a web
page B.

2.	 To prevent a user from tapping any
hyperlinks in the document, you can set
userInteractionEnabled to NO for the
web view. This also disables the ability
to scroll content that may be longer than
the control can fit on the screen at once.

or

B A web view displaying some local content,
including a hyperlink to another page.

iPhone User Interface Elements  169

To disable links entirely, return NO from
the webView:shouldStartLoadWith
Request:navigationType: delegate
method.

3.	 To open a link in the native Safari applica-
tion, you could write the following in the
webView:shouldStartLoadWithRequest:
navigationType: delegate method
(Code Listing 4.28):

NSURL *pageURL = [request URL];

if (([[pageURL scheme] 	

 isEqualToString: @"http"]) && 	

 (navigationType == UIWebView 	

 NavigationTypeLinkClicked))

[[UIApplication sharedApplication] 	
 openURL:pageURL];

return NO;

Here you are trapping only http: links.
Other link types, such as https:, would
have no effect.

Code Listing 4.28  Capturing clicks on a web view.

  When implementing this type of func-
tionality, it’s common to warn the user they
are navigating away from your application
and have them confirm the action. You can do
this with the UIAlertView described in the
exercise, “To display an alert view,” earlier in
this chapter.

170  Chapter 4

Controls
Almost all the drawing functionality you’ve
learned about so far also applies to con-
trols. Most controls inherit their class from
UIControl, and UIControl is a subclass of
UIView A; this is how controls know how
to draw themselves.

You’ll never actually create instances of
UIControl directly the way you do with
UIView. UIControl is simply used to define
a common set of functionality and behavior
for its subclasses.

As mentioned at the beginning of this
chapter, controls use the target-action
mechanism to respond to touch events.
Since the iPhone is a Multi-Touch device,
many different events can occur, such
as tapping, multitapping, dragging, and
releasing. Luckily, each control has been
designed to respond to only those events
appropriate for its usage, and each does
so in an intuitive and consistent manner.

You’ll now take a closer look at the controls
available to iPhone developers.

Buttons
When adding buttons to your applica-
tion, you’ll use the UIButton class B.
The default initializer for buttons is the
buttonWithType: method:

UIButton *myButton = 	

 [[UIButton buttonWithType: 	

 UIButtonTypeRoundedRect];

A The UIControl
class hierarchy.

NSObject

UIResponder

UIView

UIControl

B The default button types for UIButton.

iPhone User Interface Elements  171

To be notified when a button changes
state, add a target and action:

[myButton addTarget:self action: 	

 @selector(buttonClick:) 	

 forControlEvents:UIControlEvent 	

TouchUpInside];

The UIControlEventTouchUpInside event
is most commonly used for handling regu-
lar button presses.

The UIButtonTypeCustom type lets you
create buttons with images or even draw
them yourself using your own custom
drawing code (as discussed earlier in the
“Views” section).

To create a button with an image:
1.	 Specify an image for the but-

ton’s default state using
NSControlStateNormal:

UIImage *buttonImage = 	

 [UIImage imageNamed: 	

 @"myButtonImage.png"];

[myButton setImage:buttonImage 	

 forState:UIControlStateNormal];

UIButton will automatically apply high-
light effects to indicate that the button
is pressed or disabled.

2.	 You can also set multiple appearance
properties for each of these states,
including the title text, font, and color.

You can use different images for the
four different states: the default (as
shown in step 1), highlighted, selected,
and disabled. This enables you to cre-
ate buttons to represent other controls.

172  Chapter 4

To create a checkbox button:
1.	 Assign images for both of the buttons’

states:

[checkbox setImage:[UIImage 	

 imageNamed:@"checkbox_off.png"] 	

 forState:UIControlStateNormal];

[checkbox setImage:[UIImage 	

 imageNamed:@"checkbox_on.png"] 	

 forState:UIControlStateSelected
];

2.	 Set the target method to call when the
button is tapped:

[checkbox addTarget:self action: 	

 @selector(checkboxClick:) 	

 forControlEvents:UIControlEvent 	

TouchUpInside];

3.	 In the checkboxClick: method, simply
flip the button’s selected property:

btn.selected = !btn.selected;

Since you’ve previously defined images
for the two different states, the button
automatically updates to display the
correct image. Code Listing 4.29 shows
the updated code.

  If you specify an image or title for any
button type other than UIButtonTypeRounded
Rect, the button effectively becomes a button
of UIButtonTypeCustom.

Switches
Switches, represented by the UISwitch
class, let you create an on/off control C.

To create a switch:
1.	 Use the initWithFrame: method:

CGRect switchRect = CGRectMake 	

 (120,50,0,0);

UISwitch *mySwitch = [[UISwitch 	

 alloc] initWithFrame:switchRect];

Code Listing 4.29  Creating a check box.

iPhone User Interface Elements  173

Since switches are always the same
size, the width and height properties
are ignored.

2.	 When you change a switch’s value, it gen-
erates a UIControlEventValueChanged
event:

[mySwitch addTarget:self action: 	

 @selector(switchAction:) 	

 forControlEvents:UIControlEvent 	

 ValueChanged];

3.	 To turn a switch on/off, call the
setOn:Animated: method:

[mySwitch setOn:YES animated:YES];

Switches don’t have any properties for
modifying the default visual appearance,
but with a little digging, you can control a
couple of elements.

Within the control hierarcy of a UISwitch,
the “on” and “off” elements are UILabels
D. You can manipulate the text, font, color,
and more.

To alter the appearance of a switch:
1.	 To retrieve the two UILabels within the

switch that hold the switch’s text , you
can use this:

UIView *mainView = [[[[mySwitch 	

 subviews] objectAtIndex:0] 	

 subviews] objectAtIndex:2];

UILabel *onLabel = [[mainView 	

 subviews] objectAtIndex:0];

UILabel *offLabel = [[mainView 	

 subviews] objectAtIndex:1];

continues on next page

C Switches are used extensively in
the Settings application of the iPhone.

UISwitchSlider

UIView

UILabel
(“ON”)

UILabel
(“OFF”)

UIImage
View

UIImage
View

UIImage
View

D The control hierarchy that makes up a UISwitch.

174  Chapter 4

2.	 Now you can change the text and color
of these labels. The choice of text val-
ues is quite limited since the labels are
small in size and are clipped by their
containing view:

onLabel.text = @"YES";

offLabel.text = @"NO";

onLabel.textColor =
 [UIColor yellow Color];

offLabel.textColor =
 [UIColor green Color];

3.	 When setting the text values, you
should localize your replacement text
wherever possible. Code Listing 4.30
shows the updated code.

Code Listing 4.30  Customizing the switch control.

iPhone User Interface Elements  175

Sliders
Although switches have only two possible
states, sliders let you select from a range
of values on a horizontal bar, or track, with
a thumb indicator that can be moved from
side to side to select values E.

Unlike the UISwitch, there’s quite a lot you
can do to customize the visual appearance
of sliders, such as putting images to repre-
sent the values at either end of the track.
You can also customize the thumb image
and the graphics that appear on the track
on both sides of the thumb as the values
change F.

Just as with the UISwitch, sliders create
a UIControlEventValueChanged event
when their value is changed. By setting the
continuous property, you can choose to
have these events fired either as the slider
is changed or at the end of a change. Code
Listing 4.31 demonstrates this with a cus-
tom UISlider, with minimum, maximum,
and thumb images. In the sliderAction:
method, you are forcing a “step” behavior,
making the slider jump to the next value
in increments of ten. A label added to the
view displays the current slider value.

  Although not specified in the developer
documentation, setting the thumb image of
a UISlider also hides the tracking image.
You must also set the minimum and maximum
track images.

  The stretchableImageWithLeft
CapWidth:topCapHeight: method lets you
create an image that can stretch in the center
but does not stretch on either side, as shown
in the rounded edges of the track images.

E The brightness slider control indicates the
change in value with graphics at both ends of
the control.

F A custom slider control.

176  Chapter 4

Code Listing 4.31  Implementing a custom slider.

iPhone User Interface Elements  177

Segmented controls
The UISegmentedControl consists of a
horizontal control divided into segments
G. Segmented controls are useful for
allowing users to pick from a group or
set of values.

Each segment functions as its own but-
ton. By default, selecting a segment will
deselect the others in the control (much as
a radio button does in HTML). You can alter
this behavior by setting the momentary
property.

To create a segmented control:
1.	 Create an array of UIImages or

NSStrings, and then call the default
initializer initWithItems: (Code Listing
4.32).

2.	 Set the frame, and the control will
automatically resize to accommodate
its segments.

Each segment will initially be the
same size.

continues on next page

G A segment control.

Code Listing 4.32  Creating a segment control.

178  Chapter 4

3.	 Set the width of individual segments
using the setWidth:forSegmentIndex:
method.

This will automatically resize any other
segments that have not had their widths
explicitly set to fit within the control.

4.	 Select segments using the setSelected
SegmentIndex: method.

5.	 Disable individual segments using the
setEnabled:forSegementAtIndex:
method.

6.	 Add more segments using
insertSegments WithImage:atIndex:
animated:

or

insertSegmentsWithTitle:atIndex:
animated:.

7.	 Set the animated property to YES so
your segments will “slide in” as they
are added.

8.	 To remove segments, use the remove
SegmentsAtIndex:animated: method.

9.	 Use removeAllSegments to clear the
entire control.

iPhone User Interface Elements  179

Segment control styles
Segment controls have three different styles, which can
be set using the segmentedControlStyle property H.
Set the style to UISegmentedControlStyleBar to change
the color of the control via the tintColor property, but
depending on the color you use, you may not be able to
see the difference between selected and unselected.
Code Listing 4.33 shows an example of how to use some of
the properties of a segmented control.

Use the UISegmentControl to create a “glass” alternative
to a UIButton. Use the tintColor property to change the
color of the button.

Code Listing 4.33  Setting some of the segment control properties.

H The three styles available for
segmented controls.

This page intentionally left blank

Index  469

Index

Symbols
: (colon), using with methods, 7
{ } (braces), using in header (.h) file, 3
+ (plus) sign, prefixing class methods with, 7
[] (square brackets), using with methods, 5

A
ABGroup type, using with Address Book, 406
ABPerson type, using with Address Book, 406
accelerometer

creating tilt-sensitive applications, 307–310
detecting shakes, 298–299
determining orientation, 299, 301–302
redrawing for orientation changes, 303
responding to, 307
updating for autorotation, 304–306

accelerometer data, smoothing out, 307
accessibility

enabling via VoiceOver, 98–99
overview of, 98

accessibility attributes
Frame, 101
Hint, 101
Label, 101
Traits, 101
Value, 101

Accessibility inspector, using with IB (Interface
Builder), 102

accessible applications, creating, 99–100
action sheets

versus alert views, 145
changing appearance of, 145
creating, 144–145

actions
confirming, 144–145
creating in IB (Interface Builder)

ma manually, 72–75
activity indicator view, creating, 140–141
Address Book

creating contacts, 413–417
creating multivalue properties, 414–415
getting reference to, 407
group records, 410
group records stored in, 406
kABPerson* properties, 411
logging records to console, 407, 409
person records, 411–412
person records stored in, 406
record ID of records, 408
retrieving contact records in, 406–408
retrieving multivalue properties, 412
retrieving records from, 406–409
setting values for addresses, 415
setting values for phone numbers, 414

Address Book UI framework
adding contacts, 424
adding labels for contact names, 423
adding to projects, 419
displaying contact information, 424
editing people, 421–427
people picker, 418–420
tapping contact images, 424

AddressBookExampleViewController.h file, 406
addresses, displaying in map annotations, 339
alarms, setting in calendar, 432
alert messages, displaying, 142–143
alert views versus action sheets, 145

470  Index

alloc method
calling, 13
using to create objects, 10

annotation callouts, altering, 337
annotation class, creating for maps, 334
annotations, displaying addresses in, 339
<app>Info.plist file

contents of, 44–45
settings, 87–88

Apple Developer Connection Web site, 41, 307
application delegate, using, 84–86
application icons

key for, 88
removing “gloss effect” from, 88

application name, displaying, 88
application settings

adding controls, 92–93
application preferences, 90
creating settings pages, 91
user preferences, 87–90

application setup, setting unique identifier for,
88

applications. See also interapp communication;
projects; settings page

adding classes to, 57
adding strings file to, 95–96
adding views to, 113
building in Xcode IDE, 58
creating settings page for, 91
with custom URL scheme, 104–105
force-quitting, 90
launching from other applications, 103
localizing, 95–97
making accessible, 99–100
peer-to-peer, 271–273
peer-to-peer chat, 273–278
running in Xcode IDE, 58
setting preferences for, 90
setting version numbers for, 88
sharing information between, 105, 109–110
shipping with default settings files, 239–243
terminating in background, 88
updating in IB (Interface Builder), 70–72
view-based, 312

arrays
accessing objects in, 25
creating, 24
creating for parsed data, 256
getting lengths of, 24
looping back through values of, 25
mutable, 26
sorting for strings, 25
using @selector keyword with, 25
using with drill-down details application, 220
using with table views, 204–205
verifying objects in, 25

articles array, using with parsed RSS feed,
255

asynchronous connections
updating applications for, 251–253
using, 251

audio. See also background audio
controlling from background, 361–365
creating Play button for, 368
playing, 398
playing from iPod library, 399
playing in background, 358–360
recording, 366–370

audio controls, accessing, 362
audio events, responding to, 356
audio player application

adding controls to, 352–356
checking playing status of, 352
completing, 354–355
creating, 350–351
creating user interface, 352
implementing delegate methods, 357
implementing play: method, 352
implementing scrub: method, 354
implementing stop method, 352
preloading buffers, 352
resetting audio controls, 357
responding to events, 356–357
setting volume for, 352–353
setting volume property, 354

audio recorders
passing nil to settings parameter, 368, 370
settings for, 368

Index  471

audio session, setting up, 359
audio settings, configuring, 368
AudioPlayerExampleViewController.h file, 350,

352, 356, 358
AudioRecorderExample.h file, 366
autorelease pools, using in memory

management, 11–13
autoresizingMask values, described, 118
autorotation

defined, 303
using, 304–306

AVAudioPlayer class
behavior of, 351
explained, 350

AVAudioPlayerDelegate protocol
adopting, 356
implementing, 396
implementing methods for, 357

B
background audio, controlling volume of, 362.

See also audio
background audio service, 461
background color

changing for orientation, 302
setting for movies, 389

background location service, 459–461. See
also location manager

background mode, entering and exiting,
457–458

battery power, preserving for location manager,
315, 319

birthdays, creating events for, 431–433
bookmarks, using in Xcode IDE, 53
border styles, using with text fields, 156
bounds, using with views, 113–114
braces ({ }), using in header (.h) file, 3
breakpoints

adding in Xcode IDE, 52
removing in Xcode IDE, 52

brightness slider, 175
Build Results window, displaying in Xcode IDE,

58

buttons
adding for alert views, 142–143
adding to applications, 170–171
adding to main view, 184
adding to toolbars, 153–156
checkbox, 172
creating for custom cells, 227
creating for taking photos and videos, 377
predefined, 153
specifying images for, 171
using target-action pattern with, 37

C
calendar event store, querying, 429
calendar events

editing, 438–442
viewing, 434–437

calendars, using with dates, 22. See also
iPhone calendar

calendars property, passing nil in, 429
camel case notation, variation of, 5
camera application, 378–379
camera mode, launching image picker in, 378
camera support, checking for, 376
capitalization, setting for keyboards, 158
categories, using as alternative to subclassing,

37–38
cells, customizing in table views, 224–232
CGRect

converting to NSString, 114
creating for frame of view, 113
creating for subview, 117
uses of, 286

checkbox buttons, creating, 172
class files, adding in Xcode IDE, 57
class methods

autoreleased objects returned by, 6
defining, 6
prefixing with plus (+) sign, 6
using, 6

classes. See also subclassing
adding to applications, 57
arrays, 24–26
class methods provided by, 6

472  Index

Contacts application
displaying people picker in, 418
viewing contacts in, 416

Control key. See keyboard shortcuts
controls

buttons, 170–171
defined, 111
segmented, 177–179
sliders, 175–176
switches, 172–173
using UIControl class with, 170

copy method, calling, 13
Core Location framework. See also location

manager
accessing compass, 323–324
adding logging of data to screen, 316–317
adding timeouts, 318–323
adding to projects, 327
CLLocation events, 312
CLLocationManager class, 312
decreasing desiredAccuracy level, 323
handling location updates, 314–315
increasing accuracy, 317–318
power used by, 315
testing outside simulator, 315–316

Core OS framework group, described, 2
Core Services framework group, described, 2
CoreLocationExampleViewController.h file, 312,

316, 318

D
data detectors, using with text views, 161
date and time intervals, calculating, 20–21
date objects, creating for calendar, 428
date picker, creating, 151
dates

calculating seconds between, 20–21
comparing, 20–21
creating, 20
getting day, month, and year from, 21
localizing, 94
setting styles for, 23

classes (continued)
dates and times, 20–23
dictionaries, 27–29
header (.h) file, 3
implementation (.m) file, 4
methods, 5–7
with methods for handling files, 234–235
notifications, 30–31
saving in Xcode IDE, 57
strings, 14–20
timers, 32–34

clicks, capturing in web views, 169
CLLocation events

generating, 312
properties of, 318

CLLocationManager class, delegate methods,
314

CLPreviewController object, using, 244
Cocoa, defined, 1
Cocoa Touch Class, adding, 57
Cocoa Touch framework group, described, 2
code

collapsed in Xcode IDE, 52
commenting in Xcode IDE, 53
displaying in functional groups, 52
hiding in Xcode IDE, 52
uncommenting in Xcode IDE, 53

code completion, using in Xcode IDE, 53
code-signing identities, resource for, 79
colon (:), using with methods, 7
Command key. See keyboard shortcuts
compass, accessing in Core Location

framework, 323–324
contact information

displaying, 424
editing in Address Book, 425

contact names, adding labels for, 423
contact records, retrieving in Address Book,

406–408
ContactExampleViewController.h file, 413
contacts

adding to Address Book, 424
creating for Address Book, 413–417
grouping in Address Book, 410

Index  473

E
editor pane in Xcode IDE, using, 50–51
EKEventViewController, using, 436–437
e-mail

attaching files to, 447
composing and sending, 443–449
showing compose interface for, 447

e-mail libraries, using, 444
EmailExampleViewController.h file, 444
event store

adding events to, 432
creating for birthdays, 431–433

F
file sharing, enabling, 238
file system, overview of, 236
files

adding to projects, 51
attaching to e-mail, 447
classes related to, 234
copying, 236
creating in Xcode IDE, 57
editing in Xcode Organizer, 79
finding quickly in projects, 51
opening from keyboard, 51
reading in application bundles, 238

FilesExampleViewController.h file, 240
“flip” animation, using with modal views,

189–192
FlipModalExampleViewController.h file, 189
focus ribbon in Xcode IDE, explained, 52
font size, specifying for labels, 136
fonts, list of, 137
force-quitting applications, 90
Frame accessibility attribute, 101
frames, representing views as, 112
frameworks

adding to projects, 2
defined, 2
referencing in code, 2

French localization, displaying, 97
French strings file, adding to application,

95–96

Debugger Console
displaying location information in, 314
logging tap counts to, 286
logging touch locations to, 294

defaults system, reading and writing to, 88
Delegate design pattern, using, 36
delegate methods

for CLLocationManager class, 314
defining for picker view, 148
implementing for alert view, 143, 162–163
implementing for page control, 133
implementing for zooming, 131
for multitasking, 458
using to manage heading updates, 324
for web pages, 165

design patterns
categories, 37–38
Delegate, 36
MVC (Model View Controller), 35
singletons, 39
Target-Action, 37

DetailViewController.h file, 218
developer, registering with Apple as, 41
dictionaries

accessing objects in, 28
creating, 27
mutable, 29
populating from files, 28
verifying number of elements in, 28

directories
Documents, 237
Library, 238
tmp, 237

documentation viewer, launching for iOS, 78
documents, previewing, 244
Documents directory, explained, 237
double-tap support, adding, 287
drill-down details application, main header file

for, 219

474  Index

displaying class’s outlets, 70
document window, 65–66
features of, 64–65
File’s Owner object, 65
First Responder object, 66
increasing width of time label, 73
inspector window, 67–69
laying out applications, 69
Library window, 67
outlets, 64
updating applications, 70–72
using to set styles for table views, 207
View object, 66
XIB files, 65

image picker
closing, 374
creating application with, 372–375
hiding, 374
launching in camera mode, 378
setting sourceType property of, 371–372

image views. See also views
controlling scrolling behavior of, 127
creating, 126
resizing, 126
using with scroll views, 129–130

ImagePickerExample.h file, 372
images

animating, 127
animating over, 128
choosing from photo library, 371
displaying as annotations, 336–337
getting paths of, 238
panning around, 130
specifying for buttons, 171
using scroll view with, 129–130
zooming in and out of, 130

implementation (.m) file
@end directive, 4
@implementation line, 4
#import directive, 4
@synthesize directive, 4

interapp communication, using openURL:
method in, 103. See also applications

interface, redrawing when rotating, 303

G
Game Kit API, using for peer-to-peer

applications, 271–273
Get Info in Xcode IDE, keyboard shortcut,

46–47
getter methods, generating, 9
GetWebContentViewController.h file, 248, 251
graphics

adding for load screen, 79
adding to tabs, 196
using in image views, 126

groups in Xcode
creating, 45
static, 44

gutter in Xcode IDE, explained, 52

H
header (.h) file

@end directive, 3
#import directive, 3
@interface line, 3
use of braces ({ }) in, 3

heading updates, checking support for, 324
helloWorld target in Xcode, features of, 46–47
helloWorldViewController.h file, 72
helloWorldViewController.xib file

construction of, 76–77
opening in IB, 65

Hint accessibility attribute, setting, 100–101
home directory, contents of, 237
HTTP authentication, responding to, 266
hyperlinks

handling in web views, 168–169
opening in Safari application, 169

I
IB (Interface Builder)

Accessibility inspector, 102
actions, 64
configuring slider in, 74
creating actions manually, 72–75
creating interfaces, 69–70
creating outlets manually, 72–75
displaying class’s actions, 70

Index  475

title event, 430
viewing calendar events, 434–437
viewing details of events, 436–437
viewing event details, 434

IPhone screen, adding logging location data to,
316–317

iPhone Simulator
adding photos to, 63
backing up data on, 63
features of, 61–63
limitations of, 61–62
removing applications from, 63
resetting, 63

iPhone vs. iPhone Simulator, building for, 58
iPhones, identifying via UDID, 79
iPod library

accessing media items, 392
playing audio from, 399
selecting songs from, 397

iPodLibraryExample.h file, 396, 399–400
iPods, identifying via UDID, 79
iTunes file sharing, support for, 88

J
JavaScript, executing in web views, 167

K
keyboard shortcuts

bookmarks in Xcode IDE, 53
building applications in Xcode IDE, 58
code management in Xcode IDE, 52
documentation viewer, 78
finding text in Xcode IDE, 53
force-quitting applications, 90
Get Info in Xcode IDE, 46–47
help in Xcode IDE, 53
jump-to-definition in Xcode IDE, 53
opening files in windows (Xcode), 51
Project Find window in Xcode IDE, 53
Redo in Xcode IDE, 60
Single File Find in Xcode IDE, 53
Undo in Xcode IDE, 60
Xcode IDE, 60

Interface Builder (IB)
Accessibility inspector, 102
actions, 64
configuring slider in, 74
creating actions manually, 72–75
creating interfaces, 69–70
creating outlets manually, 72–75
displaying class’s actions, 70
displaying class’s outlets, 70
document window, 65–66
features of, 64–65
File’s Owner object, 65
First Responder object, 66
increasing width of time label, 73
inspector window, 67–69
laying out applications, 69
Library window, 67
outlets, 64
updating applications, 70–72
using to set styles for table views, 207
View object, 66
XIB files, 65

Internet connections, testing for, 252
iOS SDK (software development kit)

documentation, 78
downloading, 41
frameworks, 2

iPhone, displaying logging information on, 317
iPhone calendar. See also calendars

accessing database for, 428
adding events, 430
alarms event, 430
calendar event, 430
creating date objects, 428
creating events for birthdays, 431–433
editing events, 438–442
Event Kit UI classes, 434
eventIdentifier event, 430
location event, 430
notes event, 430
recurrenceRule event, 430
retrieving events from, 428–429
setting alarms, 432
startDate/endDate event, 430

476  Index

localized applications, creating, 95–97
location aware applications, creating, 312–313
location events

checking ages of, 320
filtering, 317–318

location manager. See also background
location service; Core Location framework

adding timeouts to, 318–323
generating, 319
heading Available class method, 324

location search, results of, 323
location updates, handling, 314–315
locations

setting and showing on maps, 328
showing in maps, 328

logging information, displaying on iPhone, 317
long-touch support, adding, 288–291
low-memory conditions, handling, 193. See

also memory management

M
.m (implementation) file

@end directive, 4
@implementation line, 4
#import directive, 4
@synthesize directive, 4

Mail application, launching, 103, 443
MainWindow.xib, objects for, 76–77
map center coordinate, creating variable for,

328
Map Kit framework, adding to projects, 325
map overlays, creating, 329–330
mapping application

adding helper methods, 344
adding instance variables to, 342
completing, 345–348
creating CGRect for address view, 343
header file for, 342
implementing delegates for, 344

MappingExampleViewController.h file, 325,
330, 338, 341

maps
adding annotations to, 333–337
adding reverse geocoding to, 338–340

keyboards
hiding, 161
scrolling interface in response to, 162–163
setting capitalization for, 158
using, 157–159

keyboardType property
disabling, 158
setting, 157

L
Label accessibility attribute, 101
label text

adding shadows to, 136
aligning, 138
displaying lines of, 138

labels
controlling wrapping of, 138
creating and setting properties of, 136, 138
setting line counts for, 138
specifying font sizes for, 136

landscape versus portrait orientation, 186, 303,
305–306. See also orientation

language codes, resource for, 97
launch image, specifying name of, 88
launchOptions values, displaying, 107
layoutSubviews method, using with table

views, 225
Library directory, explained, 238
links

handling in web views, 168–169
opening in Safari application, 169

load screen, adding graphic for, 79
load time, speeding perception of, 79
loadView method, explained, 183
local notifications. See also notifications

creating application for, 462–465
responding to, 466–468
service, 461

localization
dates, 94
numbers, 94
overview of, 94–95
support for, 88

Index  477

modal views, displaying, 189–193
Model View Controller (MVC) design pattern, 35
motion* methods, using to detect shakes, 298
movement detection. See accelerometer
movie playback, controlling, 386
movie player, customizing, 387–390
movie player video controller

completed code, 385
header file for, 382
using, 384

movie recording, time limitation of, 375
MoviePlayerExampleViewController.h file,

382, 387
movies. See also videos

loading from network locations, 390–391
setting background color of, 389
showing activity indicator for, 390

MPMediaItem class, explained, 392
MPMediaPickerController view controller

class, 396
MPMoviePlayerController:, using, 387–391
MPMusicPlayerController class, 398
multitasking

delegate methods, 458
overview of, 456
preventing, 457
verifying capability for, 457

multitasking services
background audio, 461
background location, 459–461
local notifications, 461
task completion, 459
VoIP (Voice over IP), 461

multi-touch gestures. See also touch-based
applications

pinch, 292–294
rotate, 292–294
supporting, 292–294
zoom, 292–294

MultiTouchExampleViewController.h file,
292, 295

music players, types of, 398
MVC (Model View Controller) design pattern, 35
MyCustomCell.h file, 224

adding to applications, 325–327
defining regions on, 330
displaying, 329
displaying addresses in annotations, 339
drawing routes on, 330–332
drawing shapes on, 329–330
removing annotations from, 337
showing locations on, 327–328
zooming into, 328

Maps application, launching and searching, 104
mapType property, using to display maps, 329
media collections, accessing, 394–395
Media framework group, described, 2
media items

accessing in iPod library, 392–393
metadata properties for, 394
playing, 398

media picker
adding, 396–397
closing, 397

media player, creating, 400–404
media query, console output of, 393–394
MediaPlayer framework, adding, 382
memory management. See also low-memory

conditions
autorelease pools, 11–13
referencing counting, 10

MessageUI framework, using, 443–444
messaging methods, 5
method calls

nesting, 7
performing steps in, 8

methods
calling, 5–6
initializer, 8
passing values into, 5
phrases used with, 5
syntax for, 6
use of square brackets ([]) with, 5
using colon (:) with, 7
writing, 7

MKCircle class, using with maps, 330
MKMapView, example of, 326
MKPolygon class, using with maps, 330

478  Index

NSMutableDictionary class, using, 29
NSNotification object, using, 30
NSNumberFormatter class, using, 94
NSString class

containing numbers, 15
converting CGRect to, 114
creating, 14
file functions, 18
format specifiers, 14
immutable quality of, 14
initializer methods in, 8
stringWithContentsOfURL: method, 248
using to read and write to URL, 18
using with files, 234

NSTimer class, using, 32
NSURLConnection class, using, 251–252
NSUserDefaults class, using, 87, 90
NSXMLParser class, using, 254, 256
numbers, localizing, 94

O
Objective-C

classes, 3–4
creating objects, 7–8
defined, 1
methods, 5–7
properties, 8–9

objects
calling release method for, 10–11
creating, 7–8

on/off controls, creating, 172–173
openURL: method, using with UIApplication

class, 103
Option key. See keyboard shortcuts
orientation. See also landscape mode versus

portrait orientation; view controllers
autorotating, 303
detecting, 299, 301–302
determining for shakes, 299–301
Portrait versus Landscape, 186
responding to changes in, 184–188
specifying for applications, 88
tracking changes in, 187

orientation changes, redrawing interface for, 303

N
Name property, using with settings page, 93
navigation bar in Xcode IDE, using, 55–56
navigation controllers, using with table views,

217
network locations, loading movies from,

390–391
networking

creating peer-to-peer applications, 271–273
creating peer-to-peer chat applications,

273–278
parsing RSS feeds, 255–261
parsing XML, 254
responding to HTTP authentication, 266
retrieving content from web pages, 248
retrieving stock quotes from web pages,

248–251
searching Wikipedia, 262–265
sending data to web pages, 262
updating status on Twitter, 266–271
using asynchronous connections, 251–253

NIB (NeXT Interface Builder), 65
NIB Name property, using with

MainWindow.xib, 76
notifications. See also local notifications

described, 30
registering objects as observers for, 30
using, 30–31

NSCalendar class, using, 21
NSData class, using with files, 234
NSDate class, using, 20
NSDate objects, creating, 21
NSDateFormatter class, using, 22–23, 94
NSDictionary

loading and saving as file, 239–243
using, 27
using with files, 234

NSFileManager class, explained, 236
NSHomeDirectory() function, using, 237
NSLog() statements

using with asynchronous connections,
252–253

using with stock quotes, 250
NSMutableArray class, using, 26

Index  479

playlists, retrieving, 395
plus (+) sign, prefixing class methods with, 6
portrait versus landscape orientation, 186, 303,

305–306. See also orientation
PostTweetViewController.h file, 266
PostWebContentController. h file, 262
predicate, creating for search text, 214
preferences

application, 90
user, 87, 89–90

PreferenceSpecifiers key, using, 91
progress views, creating, 139–140
Project Find history, accessing in Xcode IDE, 53
projects. See also applications

adding files to, 51
adding frameworks to, 2
creating in Xcode IDE, 43

properties
defining, 9
using getter methods with, 8
using setter methods with, 8

property list files, selecting in Xcode IDE, 50
provisioning profiles, use of, 79, 82

Q
QuartzCore framework, adding to long-touch

project, 289
Quick Look framework

adding, 244
resource for, 246

R
Record button, creating for audio, 368
recording settings, controlling, 370
rectangles. See CGRect
referencing counting, using in memory

management, 10
release method, calling for objects, 10–11
responder objects, defined, 280
retain method, calling, 13
Return key

changing text on, 158
hiding text field for, 158

reverse geocoding, adding to maps, 338–340

OrientationExampleViewController.h file, 304
outlets, creating in IB (Interface Builder)

manually, 72–75
Overview toolbar, using in Xcode IDE, 59

P
P2PExampleViewController.h file, 274
page control, creating for scroll view, 132–135
parser delegate methods, implementing, 256
parser variable, using with RSS feed, 255
passwords, saving in settings file, 239–242
pasteboard, using, 109–110
paths

getting array of filenames for, 236
retrieving for applications, 237

patterns. See design patterns
PDF viewer, creating, 244–247
peer picker controller, 272
peer picker delegate method, implementing,

275
peer-to-peer applications, creating, 271–273
peer-to-peer chat application, creating,

273–278
people picker

adding to Address Book, 418–420
editing in Address Book, 421–427
updates for editing contacts, 426–427

PeoplePickerExampleViewController.h, 419, 421
phone numbers

dialing, 104
setting values in Address Book, 414

photo library
choosing images from, 371
determining empty status of, 375

photos
adding to iPhone Simulator, 63
taking, 375–380

picker views. See also views
creating, 146–148
enhancing, 148–150

pictures. See images; photos
pinch gestures, adding, 295–297
Play button, creating for audio, 368
playback queue, using with audio, 398

480  Index

setting Title property for, 93
setView: method, using with table views, 224
ShakeExampleViewController.m file, 299
shakes

detecting, 298
determining orientation for, 299–301
supporting, 299

Shift key. See keyboard shortcuts
simulator. See iPhone Simulator
single-tap support, adding, 287
singletons, using, 39
skpsmtpmessage class, availability of, 444
slider, configuring in IB (Interface Builder), 74
sliders

features of, 175
implementing, 175–176

smart groups, creating in Xcode IDE, 48
SMS (Short Message Service)

composing and sending, 450–454
creating body of, 452

SMS application, launching, 103, 450
SMSExampleViewController.h file, 451
songs, selecting from iPod library, 397
splash screens, adding to applications, 86
square brackets ([]), using with methods, 5
startWiggle: method, using with long-touch

support, 289
status bar

choosing display styles for, 88
launching applications without, 88
leaving visible, 88

stock quotes, retrieving from web pages,
248–251

stopWiggle: method, using with long-touch
support, 289

string methods, common uses of, 19
strings

combining, 17
comparing, 15
converting case of, 15
creating arrays with substrings, 17
creating substrings, 16
getting lengths of, 15
NSString class, 14–19

RootViewController.h file, 201, 204, 210, 218,
225, 434

rotate gestures, adding, 295–297
rotating

iPhones, 303
views, 296–297

rotation transforms, applying to views, 124–125
roundedCornerView class, creating, 120–122
routes, drawing on maps, 330–332
rows

grouping into sections and styles, 204
indicating for custom cells, 230

RSS feeds
format of XML records for, 254
parsing, 255–261

S
Safari application, opening links in, 169
sandbox, defined, 233
saveClick: method, implementing, 241–242
scale transforms, using with views, 123–125
scope highlighting effect, using in Xcode IDE, 52
screen, adding logging location data to,

316–317
scroll views

adding zoom to, 131
paging content of, 131
using to zoom in and out of images, 130
using with images, 129–130

search text, creating predicate for, 214
segmented controls

creating, 177–178
properties, 179
removing, 178
styles, 179

setter methods, generating, 9
Settings example, header for, 240
settings file

saving password in, 239–242
saving username in, 239–242

settings page
adding controls to, 92–93
creating for applications, 91
setting Name property for, 93

Index  481

suppressing delete button, 214
UITableView class, 200
UITableViewCell class, 200
using, 200
using navigation controllers with, 217
using sections with, 204–209

tabs
adding graphics to, 196
adding titles to, 196
creating applications with, 194–195
disabling, 197
limiting number of, 195
selecting in code, 195

tap counts,logging to Debugger Console, 286
tap delay, setting, 288–289
tapCount property, using with touch objects,

285
tappable links, converting data into, 161
tapping support

adding, 285–286
single and double, 287–288

target-action pattern
defined, 111
using, 37

targets in Xcode IDE
cleaning, 58
helloWorld, 46–47
using, 46–47

task completion service, 459
templates, choosing in Xcode IDE, 42–43
text fields

border styles for, 156
creating, 156–158
hiding for Return key, 158
removing text from, 157
resizing automatically, 157
restricting content entered into, 159–160

text views
using, 160
using data detectors with, 161

thumb image, setting for UISlider, 175
TiltingExampleViewController.h file, 307
tilt-sensitive applications, creating, 307–310

performing case-sensitive comparisons, 15
replacing substrings in, 17
searching for substrings in, 17
trimming characters from, 16
verifying substrings in, 17

strings file, adding to applications, 95–96
stringWithContentsOfURL: method, using, 248
subclassing, alternative to, 37–38. See also

classes
substrings. See strings
switches

altering appearance of, 173–174
creating, 172–173
creating for custom cells, 227

synchronous connection, explained, 250
system items

availability of, 153
types of, 154

T
tab bar items

hiding, 217
updating applications for use of, 196–199

tab view controllers, implementation files for,
198–199

tab views, using 194–199. See also views
table views. See also views

cells in, 200
creating applications with, 201–203
creating arrays for sections of, 204–205
creating predicate for search text, 214
creating with drill-down behavior, 218–222
customizing cells in, 224–232
drilling down in, 217
editable for searching, 210–216
editing, 210
elements of, 200
grouped, 204–209
grouping rows in, 204
implementing data sources for, 200
implementing delegates for, 200
searching, 210
setting styles in IB (Interface Builder), 207
styles for cells, 223

482  Index

UIImagePickerController class, using, 371
UIImageView class, using, 126–127
UILabel class

instances of, 136
retrieving for switches, 173–174

UIPageControl, using with scroll views, 131
UISegmentedControl class, described, 177
UISlider, setting thumb image of, 175
UISwitch class, using, 172–173
UITabBarController class, using, 194
UITableView class, explained, 200
UITextField class, using, 156
UITextView class

using, 160
using with stock quotes, 249

UIToolbar class, using, 152–153
UITouch object, explained, 280
UIView class

creating subclasses for, 118
using, 112

UIViewController class, described, 182
Unicode Consortium homepage Web site, 97
unique device identifier (UDID), 79
URL identifiers, support for, 88
URL scheme

responding to being launched via, 106–108
using in interapp communication, 103–105

user preferences
setting, 87, 89
storage of, 87

username, saving in settings file, 239–242

V
Value accessibility attribute, 101
version number, setting for applications, 88
vibrate feature, adding, 143
video button, availability of, 380
videos. See also movies

playing, 381–385
taking, 375–380

view controllers. See also orientation
displaying modal views, 189–192
main views, 182
responsibilities of, 182

time. See date and time intervals; World Clock
application

time picker, creating, 151
timers

creating, 32, 34
stopping, 33

Title property, using with settings page, 93
titles, adding to tabs, 196
tmp directory, explained, 237
toolbar items, creating, 154–155
toolbars

adding buttons to, 153–156
autoresizingMask property of, 152
creating, 152–153
sizing, 154
updating in Xcode IDE, 49

touch locations, logging to Debugger Console,
294

touch-based applications. See also multi-touch
gestures

adding long-touch support, 288–291
creating, 281–283
header file of, 281
updated header file, 283
updating, 283–285

touch-based events, methods for, 280
TouchExampleViewController.h file, 281, 283,

287, 289
Traits accessibility attribute, 101
tweetClick: method, implementing, 267
Twitter, updating status on, 266–271

U
UDID (unique device identifier), 79
UIApplication class, using openURL: method

with, 103
UIApplicationDelegate class, using, 84
UIBarButtonItem class, using, 153–156
UIButton class, using, 170–171
UIControl class, using, 170
UIDatePicker class, using, 151
UIDevice class, using, 86
UIDevice singleton, using with shakes, 299
UIImage class, using with files, 234

Index  483

W
Web pages

delegate methods for, 165
displaying in applications, 164–166
retrieving, 251
retrieving content from, 248
retrieving stock quotes from, 248–251
sending data to, 262
using Backward buttons in, 166
using Forward buttons in, 166

Web sites
Apple Developer Connection, 41, 307
code-signing identities, 79
documentation for iOS, 78
iOS SDK, 41
language codes, 97
registering as Apple developer, 41
skpsmtpmessage class, 444
Unicode Consortium homepage, 97

web views. See also views
capturing clicks in, 169
executing JavaScript in, 167
handling hyperlinks, 168–169
implementing, 166
loading local content, 168–169

Wi-Fi, setting property for, 88
Wikipedia, searching, 262–265
World Clock application, 194

X
Xcode IDE

Action toolbar feature, 48
adding classes to applications, 57
<app>-Info.plist properties, 44–45
bookmarks, 53
Bookmarks pop-up menu, 56
Bookmarks smart group, 45
Breakpoints pop-up menu, 56
Build and Go toolbar feature, 48
building and running applications, 58
building for iPhone vs. Iphone Simulator, 58
choosing project templates in, 42–43
Class hierarchy pop-up menu, 56

UIViewController class, 182
view-based applications, creating, 312
viewDidAppear method, explained, 183
viewDidDisappear method, explained, 184
viewDidLoad method

explained, 183–184
implementing, 241

viewDidUnload method, explained, 183
views. See also image views; picker views; tab

views; table views; web views
activity indicator, 140–141
adding subviews to, 113, 117–118
adding to applications, 113
alert, 142–143, 145
animating, 289
animating properties of, 115–117
applying rotation transform to, 124–125
applying scale transform to, 124–125
autosizing, 117–119
bounds, 113–114
creating custom rounded-corner, 120–122
custom drawing, 118
defined, 111
locating origins of, 112
nesting, 112
overview of, 112
presenting, 183–184
presenting modally, 191
replacing with custom classes, 122
representing as frames, 112
resizing for animations, 116
resizing via scale transform, 123
rotating, 296–297
rounded-corner, 120–123
specifying origins and sizes of, 112
text, 160

viewWillAppear method, explained, 183
viewWillDisappear method, explained, 184
VoiceOver

enabling over iPhone, 98–99
improving descriptions used by, 100–101

VoIP (Voice over IP) service, 461
volume, controlling for background audio, 362

484  Index

SCM (source-code management) smart
group, 45

scope highlighting effect, 52
Search toolbar feature, 48
selecting property list files, 50
Single File Find dialog box, 53
static groups, 44
targets, 46–47
Targets smart group, 45
Tasks toolbar feature, 48
toolbar features, 48
uncommenting code, 53
Undo keyboard shortcut, 60
updating toolbar in, 49

Xcode Organizer
Archived Applications feature, 81
Developer Profile feature, 82
Device Logs feature, 82
Devices section, 80
editing files in, 80
iPhone development area, 81–82
Provisioning Profiles feature, 82
Screenshots feature, 82
Share Application feature, 81
Sharing section, 81
Software Images feature, 82
Submit to iTunesConnect feature, 82
Validate Application feature, 81

XIB files
changing view mode of, 66
displaying two of, 76–77
using with IB (Interface Builder), 65

XML, parsing, 254
XMLExampleViewController.h file, 255

Z
zoom gestures, adding, 295–297
zooming

adding to scroll view, 131
enabling, 131
into maps, 328
in and out of images, 130

Xcode IDE (continued)
cleaning targets, 59
code completion, 53
collapsed code in, 52
commenting code, 53
Counterpart pop-up menu, 56
creating files, 57
creating groups in, 45
creating projects in, 43
creating smart groups, 48
Debug configuration, 47
default smart groups in, 45
details pane, 49–50
displaying breakpoints in, 52
displaying errors in, 52
displaying line numbers in, 52
displaying warnings in, 52
editor pane, 50–51
Errors and Warnings smart group, 45
Executables smart group, 45
Find Results smart group, 45
find-and-replace operations, 53
Groups & Files pane, 44–45, 47
gutter and focus ribbon, 52
help feature, 53
hiding code in, 52
Included files pop-up menu, 56
Info toolbar feature, 48
jump-to-definition, 53
keyboard shortcuts, 60
Lock pop-up menu, 56
navigation bar, 55–56
opening files in windows, 51
overview of, 41–42
Overview toolbar, 59
Overview toolbar feature, 48
Project Find history, 53
Project Find window, 53
Redo keyboard shortcut, 60
Release configuration, 47
saving classes, 57
saving projects in, 43

	Table of Contents
	Introduction
	Chapter 4 iPhone User Interface Elements
	Views
	Frames
	Bounds
	Animation
	Autosizing
	Custom drawing
	Transforms

	Image Views
	Animating images

	Scrolling
	Zoom
	Paging

	Labels
	Progress and Activity Indicators
	Indicating progress
	Showing activity

	Alerts and Actions
	Alerting users
	Confirming an action

	Picker Views
	Toolbars
	Toolbar items

	Text
	To use keyboards
	Restricting content
	Text views
	Data detectors
	Hiding the keyboard
	Scrolling the interface

	Web Views
	Running JavaScript
	Loading local content and handling hyperlinks

	Controls
	Buttons
	Switches
	Sliders
	Segmented controls

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

