VISUAL QUICKSTART GUIDE

iPhone Application
Development for

iOS 4

DUNCAN CAMPBELL

® LEARN THE QUICK AND EASY WAY!

VISUAL QUICKSTART GUIDE

iPhone
Application
Development

FOR IOS 4

NNNNNNNNNNNNNN

Visual QuickStart Guide
iPhone Application Development for iOS 4
Duncan Campbell

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at www.peachpit.com.
To report errors, please send a note to errata@peachpit.com.
Peachpit Press is a division of Pearson Education.

Copyright © 2011 by Duncan Campbell

Editor: Whitney Walker and Cliff Colby Indexer: Valerie Perry

Production Coordinator: Danielle Foster Cover Design: RHDG/Riezebos
Copyeditor/proofreader: Kim Wimpsett Holzbaur. Peachpit Press

Technical Editor: James Sugrue Logo Design: MINE™ www.minesf.com
Compositor: Danielle Foster Interior Design: Peachpit Press
Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission for
reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While
every precaution has been taken in the preparation of the book, neither the author nor
Peachpit shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the instructions contained in this
book or by the computer software and hardware products described in it.

Trademarks

Visual QuickStart Guide is a registered of Peachpit Press, a division of Pearson
Education. Any other product names used in this book may be trademarks of their
respective owners.

Apple, Cocoa, Cocoa Touch, Dashcode, iPhone, iPod touch, Safari, and Xcode are
trademarks of Apple Inc. registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
Peachpit was aware of a trademark claim, the designations appear as requested by the
owner of the trademark. All other product names and services identified throughout this
book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is
intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-71968-3
ISBN-10: 0-321-71968-9

987654321

Printed and bound in the United States of America

www.peachpit.com
www.minesf.com

Dedication

For my son, Hamish.

Acknowledgments

Thanks to Whitney Walker, Clifford Colby, Kim Wimpsett, Danielle Foster,
Valerie Perry, and everyone else at Peachpit Press who worked so hard
to make this book happen.

Thanks to James Sugrue for his technical-editing expertise.

A big thank-you to my good friend Kane Nickolichuck who all those years
ago pestered me relentlessly into buying my first Macintosh computer.

Cuddles and pets to my dog, Kip, for again keeping me company dur-
ing the cold (yes, even in Australial) winter evenings | spent working on
this book.

Finally, the biggest thanks go to my wife, Sarah, for single-handedly
looking after our newborn son while | spent the evenings locked away
in my office each night.

Contents at a Glance

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

Introduction. XV
Objective-CandCocoa 1
The iPhone Developer's Toolbox 41
CommonTasks. 83
iPhone User Interface Elements 111
Tabsand Tables 181
Files and Networking. 233
Touches, Shakes, and Orientation. 279
Location and Mapping. 31
Multimedia L. 349
Contacts, Calendars, E-mail, and SMS. 405
Multitasking. oL 455
Index 469

Table of Contents v

This page intentionally left blank

Table of Contents

Introduction. XV
Chapter1 Objective-CandCocoa 1
Frameworks Lo 2
Classes 3
Methods oo oo 5
Creatingobjects 7
Properties 8
Memory Management 10
Autoreleasepools oL 1
Commonly UsedClasses. 14
Strings 14
Datesandtimes. 20
Arrays ... e 24
Dictionaries L 27
Notifications. 30
Timers 32
DesignPatterns 35
Model View Controller 35
Delegate. 36
Target-Action 37
Categories. 37
Singletons 39

Table of Contents vii

Chapter 2

The iPhone Developer’s Toolbox 41

Aboutthe XcodeIDE 42
About the Groups & Filespane 44
Targets. o 46
Aboutthetoolbar. 48
About the detailspane. 49
Aboutthe editorpane 50
Gutter and focusribbon 52
Find-and-replace operations 53
Bookmarks. 53
Jump-to-definitionandhelp. 53
Codecompletion 54
About the navigationbar. 55
Creatingnewfiles. 57
Building and running your application 58
Cleaning e 59

About the iPhone Simulator 61

About Interface Builder.o 64
About the documentwindow 65
About the Library window 67
About the inspectorwindow. 67

About the Documentation 78

The Xcode Organizer.. 79
Projects&Sources 80
Devices. e 80
iPhone Development. 81

viii

Table of Contents

Chapter 3

Chapter 4

CommonTasks. 83

Application Startup and Configuration 84
Using the applicationdelegate 84
Understanding application settings 87
Working with user preferences 87
Application preferences 90
Addingcontrols. L. 92

Localization. oo 94

Accessibility 98
Making your applications accessible. 99
Accessibility attributes 101

Interapp Communication. 103
Sharing information between applications. 105
Using the pasteboard 109

iPhone User Interface Elements. 1M

Views oo 12
Frames.o 12
Bounds. oo 13
Animation Lo 15
Autosizing L 17
Customdrawing. oo 18
Transforms. Lo oo 123

ImageViews 126
Animatingimages.o L. 127

Scrolling 129

Table of Contents

ix

Paging 131
Labels. 136
Progress and Activity Indicators. 139

Indicating progress. 139

Showing activity., 140
Alertsand Actions 142

Alertingusers.. 142

Confirminganaction. 144
PickerViewso oo 146
Toolbars 152

Toolbaritems oo 153
Text . . . oo 156

Tousekeyboards: 157

Restrictingcontent 159

Textviewso 160

Datadetectors 161

Hiding the keyboard 161

Scrolling theiinterface 162
WebViews oo 164

Running JavaScript. 167

Loading local content and handling hyperlinks168

Controls. 170
Buttons. oo 170
Switches Lo 172
Sliders 175
Segmentedcontrols 177

x Table of Contents

Chapter5 TabsandTables 181

View Controllers. 182
Presentingviews L oL 183
Responding to changes in orientation 184
Displaying modalviews 189
Handling low-memory conditions. 193

TabViews oL 194
Adding graphics and titlestotabs 196

TableViews 200
Grouping rows into sections and styles 204
Editing and searching table views 210
Drilling down intableviews 217
Creating customecells. 223

Chapter 6 Files and Networking 233

Files. 234
Thefilesystem 236
Commondirectories 237
Working withfiles. 239
Previewing documents.o 244

Networking. 248
Retrieving content fromweb pages. 248
ParsingXML. 254
Sending datatoWebpages. 262
Responding to HTTP Authentication. 266
Creating peer-to-peer applications. 271

Table of Contents xi

Chapter 7

Chapter 8

Chapter 9

Touch. 280
Adding tapping support, 285
Adding long-touch support 288

Multi-Touch Gestures 292

The iPhone Accelerometer. 298
Detectingshakes 298
Determining orientation 299

Redrawing the interface when the

orientationchanges 303
Responding to the accelerometer 307
Location and Mapping. 31
About Core Location 312
Handling locationupdates. 314
Testing outside the simulator 315
Increasingtheaccuracy 317
Addingatimeout o L. 318
Accessingthecompass 323
AboutMapKit 325
MapOverlays 329
Adding annotations. Lo L 333
Adding reverse geocoding 338
Putting It All Together. 34
Multimedia 349
Playing Audio 350
Providing morecontrol. 352

xii

Table of Contents

Chapter 10

Responding to audioevents. 356

Playing audio in the background 358
Controlling audio from the background 361
Recording Audio., 366
Using the iPhone’sCamera. 371
Taking photosandvideo. 375
PlayingVideo 381
To gain more control over movie playback 386
Using theiPod Library 392
Accessing mediaitems. L. 392
Accessing media collections 394
Using the media picker. 396
Playingmedia. 398
Contacts, Calendars, E-mail, and SMS 405
Working with the Address Book 406
Grouprecords. 410
Personrecordso oL an
Adding aUserlInterface 418
Pickingpeople L. 418
Editingpeople.o 421
TheiPhoneCalendar 428
Events oo 430
Viewing eventdetails. 434
Editingevents. oL 438
E-mail 443
SMS . . 450

Table of Contents

xiii

Chapter 11

Multitasking. 455
What Is Multitasking? 456
Entering and exiting background mode 457
Multitasking services. 459
Responding to Local Notifications. 466
Index 469

xiv Table of Contents

Introduction

Welcome to the updated version of this
Visual QuickStart Guide for iPhone applica-
tion development.

A lot has happened since the last ver-
sion of this book was published: In only
one short year, not only have we seen the
introduction of the revolutionary iPad, but
we’ve also seen the all-new iPhone 4, with
its gorgeous high-resolution display and
powerful new hardware capabilities.

The tools for iPhone development have
also had a major upgrade. iOS 4 brings
with it many new application programming
interfaces (APIs) that give developers even
more access to the iPhone’s underlying
hardware, as well as adds exciting new
capabilities, such as multitasking and high-
definition (HD) video recording and editing.

At the time of this writing, more than
250,000 applications are available for
download from the iTunes App Store, with
more being added every minute—it’s an
exciting time to be an iPhone developer!

This book is geared mainly toward new
iPhone developers, but you should have
some prior knowledge of a C-based lan-
guage and be familiar with object-oriented
(OO0) concepts. It would take a book many
times this size to cover all of the iPhone
software development kit (SDK), so | focus
on some of the more common and inter-
esting subjects | think you should know
about when developing your own iPhone
applications.

Introduction xv

How to Use This Book

| find that | always learn better by example,
so | have created stand-alone applica-
tions when demonstrating the concepts in
the book. The aim is to give you enough
information to get you started coding (and
building something useful) and then point
you to the relevant place in the documen-
tation for more information.

You should be able to jump straight into

a chapter and start coding without read-
ing the prior chapters, but if you are a
beginner, | recommend you read the first
few chapters, which discuss the tools and
language used for iPhone development.

This book is a Visual QuickStart Guide, so
it’s filled with images to walk you through
what you’ll see on your computer screen
as you build your iPhone applications.
However, the interfaces for most of the
examples are created directly in code,
rather than by using Interface Builder. You
might think this is unusual, since Apple
has provided you with a powerful tool that
makes laying out your application’s user
interface quick and easy, but it’s important
that you first learn what’s happening under
the hood. This will make it much easier
for you to figure out where to look when
things aren’t working the way they should.

The source code for all the examples in
this book—more than 65 projects—is avail-
able as a free download from my Web site:

http://objective-d.com/iphonebook/

| strongly encourage you to check them out.

xvi Introduction

http://objective-d.com/iphonebook/

Interface

iOS offers a rich set of buttons, sliders,
switches, and other user interface elements
for you to use in creating your applications.
These elements can be roughly divided into
two main groups, views and controls.

Views provide the primary canvas and
drawing functionality of your user interface.
They also give your application the ability
to handle touch events.

Controls extend upon this functionality
and provide a way for users to interact with
your application by defining what is known
as the target-action mechanism: the ability
for a control to send an action (method
call) to a target (object) when an event
(touch) occurs.

In this chapter, you’ll look at the various
views and controls available in iOS and
examine how to use them.

All the examples use the View-based Appli-
cation template, with the code running in
the view controller.

IPhone

Jser

ements

In This Chapter

Views

Image Views

Scrolling

Labels

Progress and Activity Indicators
Alerts and Actions

Picker Views

Toolbars

Text

Web Views

Controls

12
126
129
136
139
142
146
152
156
164
170

Views

A view is the common name given to
instances of UIView. You can think of a
view as your application’s canvas; in other
words, if you are adding Ul elements to
your iPhone’s interface, you are add-

ing them to a view. All the Ul elements
discussed in this chapter are themselves
subclasses of UIView and so inherit its
properties and behavior.

The root level of your iPhone application
interface consists of a single UINindow
to which you would typically add one or
more views to work with, instead of using
UIWindow directly.

Since UIView is a subclass of UIResponder,
it can receive touch events. For most views,
you’ll receive only a single-touch event
unless you set the multipleTouchEnabled
property to TRUE. You can determine
whether a view can receive touch events
by modifying its userInteractionEnabled
property. You can also force a view to be
the only view to receive touch events by
setting the exclusiveTouch property to YES.
(For more information on working with touch
events, see Chapter 7, “Touches, Shakes,
and Orientation.”)

You can also nest views within each other
in what’s known as the view hierarchy.
Child views are known as subviews, and
a view’s parent is its superview.

Frames

Views are represented by a rectangular
region of the screen called a frame. The
frame specifies the origin (x, y) and size
(width, height) of the view, in relation to
its parent superview. The origin of the
coordinate system for all views is the
upper-left corner of the screen @.

Origin {0,0}
(\ A
superview
7T 1 T 1
1 1 1 1
1 subview 1 1 subview 1
1 1 1 1
| 1 | |
"""""" Height
o7 |
1 1
1 subview 1
1 1
|]
_ J \
< Width >

o Child views (subviews) are nested inside their
parent view (superview). A view’s origin is at the
top-left corner.

112 Chapter 4

il Carrier =

11:49 AM

0 Adding a subview to the view controller’s
main view.

‘ann [UlTest - Debugger Console —

Hl =

[Session stected at 2009-06-22 11.47.12 «1000.]

2009 0622 LLiATII4, 153 UTTest[$199120b] Erames {{10, 10}, {100, 100}}
2000 0622 LLiATeid, 154 UTTest[#199120b] bounds: {{0. O}. {100. 100y}
ZOUY-E-2E L1i4Ti14. 155 UITest{0199:2ub] frame: {{J3. 10}, {100, 1003}
SO0Y-E-2E 11287514150 UITest[W199: 20h] boundw: ({0, Of, {100, 100}

UlTest launched DSuccerded o

G Console output after moving the view. Notice
that although the frame changes, the bounds
remain the same.

Code Listing 4.1 Creating a new view.

- {voidiviewDidlood {
CGRect viewFrame = CGRectMoke(1@,16,108,160%;
UTView *myYiew = [[UIYiew alloc] initWithFrame:
viewFrome] ;

my¥iew. backgroundColor = [UIColor blueColor];

[zelf.view addSubview:myYiew];
[my¥iew release];

To add a view to your application:

1. Create a CGRect to represent the frame
of the view, and pass it as the first
parameter of the view’s initWithFrame:
method:

CGRect viewFrame = CGRectMake
(10,10,100,100);

UIView *myView = [[UIView alloc]
initWithFrame:viewFrame];

Here you are creating a view that is
inset 10 pixels from the top left of its
superview and that has a width and
height of 100 pixels.

2. Since the view is transparent by default,
set its background color before adding it
to the view controller’s existing view @:

myView.backgroundColoxr =
[UIColor blueColor];

[[self view] addSubview:myView];

Code Listing 4.1 shows the completed
code.

To improve performance, set
your UIView’s opaque property to YES
wherever possible.

Bounds

A view’s bounds are similar to its frame,
but the location and size are relative to
the view’s own coordinate system rather
than those of its superview. In the previous
example, the frame’s origin is {10,10}, but
the origin of its bounds is {0,0}. (The width
and height for both the frame and the
bounds are the same.)

The console output illustrates this @: After
moving the view 25 pixels in the x direc-
tion (using the view’s center property), the
frame origin is now {35,10}, whereas the
bounds origin remains at {0,0}.

iPhone User Interface Elements 113

Let’s say you want to create a view so that
it completely fills its superview. A common
mistake is to use the frame of the superview.

If you tried to run this code in your appli-
cation, you'd see a gap at the top of the
subview @.

Recall that, in the project, the UINindow

is at the top level. The UIWindow has two
subviews: the status bar and the main
view 20 pixels below @. The origin of the
frame of the main view is actually {0,20}.
(Remember, a view’s frame is in relation to
its superview’s coordinate system.)

The solution to this problem is to use the
bounds of the superview (Code Listing 4.2),
which causes the view to correctly fill its
superview.

You can use the NSStringFromCGRect()
function to convert a CGRect into an
NSString, making it useful for logging
CGRects to the console via NSLog().

Other useful functions when dealing with
CGRects are NSStringFromCGPoint()

and NSStringFromCGSize().

.all Carrier = 11:53 AM

0 Setting the frame incorrectly by using the frame
of the superview. Notice the gap at the top.

Window

Origin {0,0}
Origin {0,20} =

1
status bar J’ 20px

view controller view

G The enclosing UIWindow contains both the
status bar and the view controller’s view as
subviews. Notice how the controller’s view has an
origin starting at {0,20} for its frame.

Code Listing 4.2 Initializing the view’s frame with
its superview’s bounds.

- {voidyviewDidload {

UTYiew #myView = [[UIYiew alloc] initWithFrame:
[self.view boundz]];

iyt iew.backgroundColor = [UIColor blueColor];

[selfview addiubyview:nyYiew];
[myWiew releose];

114 Chapter 4

Animation

Many properties of a view can be
animated, including its frame, bounds,
backgroundColor, alpha level, and more.
You’ll now look at some simple examples
that illustrate additional view concepts.

To animate your view:

1. Retrieve the center of the view control-
ler’'s main view:

CGPoint frameCenter =
self.view.center;

2. Create a view, set its background color,
and, just as you did earlier, add it to the
main view:

float width = 50.0;
float height = 50.0;

CGRect viewFrame = CGRectMake
(frameCenter.x-width,
frameCenter.y-height,width*2,
height*2);

UIView *myView = [[UIView alloc]
initWithFrame:viewFrame];

myView.backgroundColoxr =
[UIColor blueColor];

[[self view] addSubview:myView];

Here you are positioning your view in
the center of its superview and giving it
a width and height of 50 pixels.

3. Set up an animation block:

[UIView beginAnimations:nil
context: NULL];

[UIView setAnimationDuration:1.0];

An animation block is a wrapper around
a set of changes to animatable proper-
ties. In this example, the animation lasts
for one second.

continues on next page

iPhone User Interface Elements 115

4. Resize the view:

viewFrame = CGRectInset(viewFrame,
-width, -height);

[myView setFrame:viewFrame];
The CGRectInset() function takes a
source rectangle and then creates
a smaller or larger rectangle with the
same center point. In this example,
a negative value for the width and
height creates a larger rectangle.

5. Close the animation block:
[UIView commitAnimations];

This will cause all of the settings within
the animation block to be applied.

6. Build and run the application.

You should see the view grow in size over
a period of one second. Code Listing 4.3
shows the completed code.

Try changing the setAnimationDuration:
line to see how you can affect the speed of the
animation.

Code Listing 4.3 Animating a view.

Try setting some other properties on
the view within the animation block (such
as backgroundColor) to see what effect
they have.

- {voidiviewDidlood {
[zuper wiewDidLoad];
CGPoint frameCenter = self .view.center;

float width = BA.8;
float height = BB.6;

my¥iew. backgroundColor = [UIColor blueColor];

[[self wiew] addSubview:myYiew];

[UI¥iew beginAnimationzinil context:MULL];

[UTYiew setinimationDurotion:l.@];

viewFrame = CGRectInset({viewFrame, -width, -height);
[my¥iew setFrame:viewFrame];

[UIYiew commitAnimations];

[mytiew releose];

UlView *myYiew = [[UIView alloc] initWithFrome:viewFrome];

CGRect viewFrame = CGRectMokedframeCenter.x-width,fromeCenter.y-height, widbh*z, height*2);

116 Chapter 4

Autosizing

When a view changes size or position,

you often want any subviews contained
within the view to change size or position
in proportion to their containing superview.
You can accomplish this by using a view’s
autoresizing mask. Now let’s add a sec-
ond subview inside the view you created in
the previous exercise.

il Carrier = 12:09 PM

To add a subview:

1. Create a CGRect for the subview’s
frame, again using the shortcut
CGRectInset() function:

CGRect subViewFrame =
CGRectInset(myView.bounds,
width/2.0, height/2.0);

UIView *mySubview =
[[UIView alloc]
initWithFrame:subViewFrame];

mySubview.backgroundColor =
[UIColor yellowColor];

[myView addSubview:mySubview];

This time, the positive width and height
values for the CGRectInset function
make the new view smaller. To make
o Animating multiple views without using an them stand out, give it a different back-
autoresizing mask. Notice how the new subview ground color.

ends up in the top-left corner of its superview. . .

2. Build and run the application @. The
new subview starts off in the center
of its superview, but then it remains
“pinned” to its initial location as the
animation progresses and ends up in
the top-left corner.

continues on next page

iPhone User Interface Elements 117

Code Listing 4.4 shows this code
updated to use an autoresizing mask.
Notice how you set all four margins

of the subview using the bitwise OR
operator (the | symbol) between the
constant values (Table 4.1). Notice also
that even though the animation is speci-
fied on the superview, the subview still
animates automatically @.

3. You can visually set the autoresizingMask
property in the size pane of the Inspec-
tor window in Interface Builder .

Custom drawing

By default, the visual representation of a
UIView is fairly boring. You can manipulate
the size, background color, and alpha lev-
els of the view, but not much else.

Luckily, it’s relatively simple to create your
own UIView subclasses where you can
implement custom drawing behavior. To
see how this might be done, you’ll now
learn how to create a UIView subclass with
rounded corners.

-all Carrier = 12:20 FM

@ Using the autoresizing mask property,
the subview remains in the center of its
superview during an animation.

o r

Alignment

Placement

0 Setting the autoresizing
mask in Interface Builder.

118 Chapter 4

Code Listing 4.4 Using an autoresizing mask.

- (voidyviewDidlood {
[zuper viewDidLoad];
CGPoint fromeCenter = =self .view.center;

float width = 5@.8;
float height = 5@.8;

myYiew.backgroundColor = [UIColor blueColor];

Jicreate subview

Afzet outoresizing mosk
|
|
|

[myt iew addSubyiew mySubyview];
[[self wiew] addSubview:myYiew];

dfaninate resize
[UI¥iew beginAnimationz:nil context:MULL];

[UIYiew setdnimationDurotion:l.@];
[my¥iew setFrame:viewFrame];
[UTYiew commitdnimations];

[mySubview release];
[myView release];

viewFrame = CGRectInset{viewFrame, -width, -height);

CoRect subViewFrame = CGRectInset(myYiew.bounds, width/2.8, height/2.8);
UTView *mySubview = [[UIYiew alloc] initWithFrome:subYiewFrome];
mySubyiew.backgroundColor = [UIColor yel lowColor];
mySubyiew.autoresizingMask = UIViewdutoresizingF lexiblelefthargin
UIYiewhutorezizingF lexibleRightMargin

UIViewbutoresizingF lexibleTopMargin

UIYiewhutoresizingF lexibleBottomMarging

CGRect viewFrame = CGRectMakedfromeCenter.x-width,fromeCenter.y-height, width*Z, height*2);
UlView #*myYiew = [[UIYiew alloc] initWithFrome:viewFrame];

TABLE 4.1 Available autoresizingMask values

Value

Description

UIViewAutoresizingNone

The view does not resize.

UIViewAutoresizingFlexibleLeftMargin

The view resizes by expanding or shrinking in the
direction of the left margin.

UIViewAutoresizingFlexibleWidth

The view resizes by expanding or shrinking its width.

UIViewAutoresizingFlexibleRightMargin

The view resizes by expanding or shrinking in the
direction of the right margin.

UIViewAutoresizingFlexibleTopMargin

The view resizes by expanding or shrinking in the
direction of the top margin.

UIViewAutoresizingFlexibleHeight

The view resizes by expanding or shrinking its height.

UIViewAutoresizingFlexibleBottomMargin

The view resizes by expanding or shrinking in the
direction of the bottom margin.

iPhone User Interface Elements 119

To create a custom ianin New Eile.

rounded_corner View: Choose a template for your new file:
1. In Xcode, select File > New File. Create -m -m I
a new Objective-C class, making sure ammlie-+~
that “Subclass of” is set to UIView @. B rmcosx
Save the file as roundedCornerView. b
iy Subelass of | Uiew =]
2. Open roundedCornerView.m, and modify e Sk 5% n..,.i...-,: —
your code to look like Code Listing 4.5. e P

3. Open UlTestViewController.m, and
replace all instances of UIView with
roundedCornerView. Don’t forget ==z]
to also import the header file for
roundedCornerView.h at the top of
the file. Code Listing 4.6 shows the
updated code.

o Adding a custom class to draw the rounded
corner view.

4. Build and run your application to see
the result with rounded corners for
the views @.

As you can see, custom drawing
happens in the drawRect: method of
roundedCornerView. You set a couple
of variables here—one to determine the
width of the line you will be drawing
and another to determine the color.

.all Carrier = 1:15 PM

5. By setting the color to the superview’s
background color, you are essentially
“erasing” any time you draw in the
subview.

float lineWidth = 10.0;

UIColor *parentColor = [[self
superview] backgroundColor];

continues on page 122

o In the updated application, the views now have
rounded corners.

120 Chapter 4

Code Listing 4.5 The roundedCornerView class.

@imp lementat ion roundedCorneryiew
- {id}yinitWithFrome: (CGRect Y rome {
if {=zelf = [super initWithFrome:frame]}
self .opoque = TRUE;

return self;

void CGContextStrokeCorners{CGContextRef ctx, CGRect rect) {
int radius = 12;

CGF logt x0rigin = rect.origin.x;
CGFlogt y0rigin = rect.origin.y;

CGF loat xMiddle = CoRectGetMidik(rect);
CGFlogt yMiddle = CoRectGetMidY(rect’;

CGF loot width = rect.size.width;
CGFlogt height = rect.size.height;

ChContextBeginPath (ot);

CiContextMoveToPoint (otx, x0rigin, yMiddle);

ChContexthddircToPoint (octx, x0rigin, wOrigin, xMiddle, wirigin, rodius);
CoContextAddércToPoint (ctx, width, yOrigin, width, yMiddle, rodius);
CoContextAdddrcToPoint (ctx, width, height, xMiddle, height, rodius);
ChContextaddércToPoint (octx, x0rigin, height, x0rigin, yMiddle, rodius);

ChiContextC lozePath (ot);
ChContextStrokePath{cts);

i
- {voidjdrawRect :(CoRect Jrect {

floot lineWidth = 18.8;

UIColor #*parentColor = [[self superview] bockgroundColor];

ChContextRef ctx = UIGrophicsGetCurrentContext();

ChContextSetStrokeCo loriithColor {ctx, parentColor.CGColor);

CoContextSetLineWidthictx, LineWidth);

Addraw corners
ChContextStrokeCorners (ot rect);

- {voidjdeal loc {
[zuper dealloc];

}

@end

iPhone User Interface Elements

121

6. Now you get a reference to the current
graphics context and set the pen color
and width.

A graphics context is a special type
that represents the current drawing

destination, in this case the custom

view’s contents.

CGContextRef ctx =
UIGraphicsGetCurrentContext();

CGContextSetStrokeColorWithColor
(ctx, parentColor.CGColor);

CGContextSetLineWidth(ctx,
lineWidth);

7. Finally, call a custom function that draws
a line around the outside of the view,
rounding at each corner:

CGContextStrokeCorners(ctx,rect);

Code Listing 4.6 Replacing regular views with the custom class.

#Himport "UITestViewControl ler.h"
#import "roundedCornerYiew.h"

@imp lementation UITestViewController

- (voidyviewDidlood {
[zuper viewDidLoad];
CGPoint fromeCenter = self .view.center;
float width = B@;

float height = 5@;

CGRect viewFrome = CGRectMokedframeCenter.x-width, fromeCenter.y-height width*Z, height*2);
roundedCornertiew *myYiew = [[roundedCorneryiew alloc] initWithFrome:viewFrame];

myWiew.backgroundColor = [UIColor blueColor];
[[=elf view] addSubview:myWiew];

CGRect subMiewFrame = CGRectInset(myYiew.bounds,width/Z, height/2%;

roundedCornertiew *mySubview = [[roundedCornertiew alloc] initWithFrome:subViewFrame];
mySubview.autoresizingMask = UIViewsutoresizingF lexibleHeight | UIViewdutoresizingF lexibleWidth;
mySubyiew.backgroundColor = [UIColor yellowColor];

[myt iew addSubyview imySubview];

[UIYiew begindnimations:nil context:bULL];
[UIYiew setdnimationDurotion:l.@];

viewFrame = CGRectInset{viewFrame, -width, -height);
[my¥iew setFrame;viewFrame];

[UTYiew commitdnimations];

[mySubview release];
[my¥iew releaze];

122 Chapter4

Transforms

You’ve already looked at resizing a view
by increasing the width and height of its
frame. Another way to perform the same
task is by using a transform.

A transform maps the coordinates system
of a view from one set of points to another.
Transformations are applied to the bounds
of a view. In addition to scaling, you can also
rotate and move a view using transforms.

To resize your view using
a scale transform:

m Add the following code to your application:

CGAffineTransform scale =
CGAffineTransformMakeScale
(2.0,2.0);

myView.transform = scale;

This creates a scale transform, doubling
both the width and the height of your view.

or

Transforms can also be used to move
views by using a translate transform:

CGAffineTransform translate =
CGAffineTransformMakeTranslation
(50,50);

myView.transform = translate;

This would cause a view to move by
50 pixels along both the x- and y-axes.
or

Finally, you can apply a rotation trans-
form to rotate your views:

CGAffineTransform rotate =
CGAffineTransformMakeRotation
(radiansForDegrees(180));

myView.transform = rotate;

Because rotations are specified in
radians, you use a function to convert
from degrees.

iPhone User Interface Elements 123

To apply both a rotation transform
and a scale transform to your view:

1. Update the code to look like the
following:

CGAffineTransform scale = Sl Cantesir 1:22 PM

CGAffineTransformMakeScale
(2.0,2.0);

CGAffineTransform rotate =
CGAffineTransformMakeRotation
(radiansForDegrees(180));

CGAffineTransform myTransform =
CGAffineTransformConcat
(scale,rotate);

myView.transform = myTransfoxrm;

Note how you can combine transfor-
mations using the CGAffineTransform
Concat() function.

Code Listing 4.7 shows the completed
code.

2. Build and run your application 9.
y PP o o The view both rotating and scaling.

Your view should rotate and scale at the
same time.

You no longer need to set the
autoresizingMask property of the subview
because the transform is applied to the view
and its subviews at the same time.

You can return a view to its original
state by setting its transform property to
CGAffineTransformIdentity.

124 Chapter4

Code Listing 4.7 Rotating and scaling the view.

CGF loat radiansForDegress(CGF loat degress)

return (M_PI * degrees / 186.8);
¥

- (voidyviewDidlood {
[zuper viewDidLood];
CGPoint fromeCenter = self .view.center;
float width = B@;
float height = 5@;

CoRect viewFrome = CGRectMoke!frameCenter.x-width, fromeCenter.y-height width*z, height*2);
roundedCornertiew *myYiew = [[roundedCornertiew alloc] initWithFrome:viewFrame];

myYiew.backgroundColor = [UIColor blueColor];
[[zelf wiew] addSubyview:myWiew];

CoRect subViewFrome = CGRectInset(myYiew.bounds,width/Z, height/2);

roundedCornertiew *mySubview = [[roundedCornertiew alloc] initWithFrome:subViewFrame];
mySubyiew.bockgroundColor = [UIColor yel lowColor];

[y iew addSubyiew imySubview];

[UIYiew beginAnimationzinil context:MULL];

[UIYiew setdnimationDurotion:l.@];

COATTineTransform scale = CGATT ineTransfornMokeScale(Z.6,2.8%;

CoATf ineTronsform rotote = CGATF ineTransformMakeRotation(radionsForbegrees (1867 ;
CoATT ineTransform myTransform = CGATTineTransformConcat (scale,rotate);
my¥iew.transform = myTronsform;

[UTYiew commitdnimaotions];

[mySubview releaze];
[my¥iew relegze];

iPhone User Interface Elements

125

Image Views

The UIImageView class extends UIView
to provide support for displaying images.
Its default initializer, initWithImage:,
takes a UIImage as its only parameter
(Code Listing 4.8):
UIImage *anImage = [UIImage
imageNamed:@"myImage.png"];
UIImageView *myImageView =
[[UIImageView alloc]
initWithImage:anImage];
Note that initWithImage: automatically
adjusts the frame of the new image view
to match the width and height of the image
assigned @.

If you resize the image view, you can see
that the image automatically scales to fit @:

CGSize viewSize =
myImageView.bounds.size;

//shxrink width 50%

viewSize.width = viewSize.width
* 0.5;

/lkeep height the same

viewSize.height = viewSize.height;

CGRect newFrame = CGRectMake
(0,0,viewSize.width,
viewSize.height);

[myImageView setFrame:newFrame];

Code Listing 4.8 Creating an image view.

- (voidyviewDidlood {

UlImoge #onImage = [UIImoge imogehomed :
@'y Image . prg" 13
UT Imagetiew *myImogeMiew = [[UIImageYiew alloc]
initWithInage :anImage] ;

[zelf.view oddSubyiew:my Inageliew] ;
[myInageView release];

}

il Carrier =

0 The image displaying a graphic.

.all Carrier = 1:29 PM

0 Resizing the image view.

126 Chapter 4

—

G Resizing the image view while maintaining
its aspect ratio.

Code Listing 4.9 Animating over an array of images.

You can control scaling behav-
ior by the contentMode prop-
erty of UIView, which defaults to
UIViewContentModeScaleToFill.

For example, to maintain the aspect ratio of
the image, you would write this:

myImageView.contentMode =
UIViewContentModeScaleAspectFit;

In the resulting image, note that although

the image itself is scaled, the image view
still has the same bounds @. Any part of

the bounds not rendered in the image will
be transparent.

Animating images

UIImageView lets you animate over an
array of images, which is handy for creat-
ing progress animations. Code Listing 4.9
shows the code updated to animate over
three images.

- (voidyviewDidLood {
[zuper viewDidlLoad];
N3Arroy *arrimages = [[NSArray alloc] initWithObjects:
[UIImoge imageNomed:@"apple.png”],
[UIImoge imageMomed:@"opplez.png"],
[UIImage imageMomed:@"appled.prg"],nil];:

CGRect viewFrame = CGRectMoke(d,@,208,206);

[myImageiew setdnimotionImogesorrinages];

[myImogeView setdnimationRepeatCount :@];
[myImageview setAnimationDuration:B.5];

[zelf.view odd3ubyiewimy InageYiew] ;
[myImageiew stortinimating];

[arrImoges release];
[myImageView release];

UlImageliew *myInageView = [[UIlmagetiew alloc] initWithFrame:viewFrame];

iPhone User Interface Elements 127

To animate over an image:
1. Create the image view, and set its frame:

CGRect viewFrame = CGRectMake
(0,0,200,200);

UIImageView *myImageView =
[[UIImageView alloc]
initWithFrame:viewFrame];

2. Create and set the image array:

NSArray *arrImages =
[[NSArray alloc] initWithObjects:

[UIImage imageNamed:
@"apple.png"],
[UIImage imageNamed:
@"apple2.png"],
[UIImage imageNamed:
@"apple3.png"],nil];
[myImageView
setAnimationImages:arrImages];
[arrImages release];

3. You can control the speed of the anima-
tion (in seconds) and number of times
the animation is repeated. The default is
0, making the animation loop indefinitely:

[myImageView
setAnimationDuration:0.5];

[myImageView setAnimation
RepeatCount:0];

4. To begin the animation, add the following:
[myImageView startAnimating];

5. To stop the animation, you call
stopAnimating.

For simplicity, the previous examples use
imageNamed: to create the images. Although
convenient, this method creates autoreleased
objects that can’t be manually released in a low-
memory situation. So, it’s usually wiser to use
something like the initWithContentsOfFile:
method and manually allocate/release your images.

128 Chapter 4

Code Listing 4.10 Using a scroll view.

Scrolling

Often your views will be larger than the vis-
ible area, and you need a way to scroll. For
this, you use the UIScrollView class.

A scroll view acts as a container for a
larger subview, allowing you to pan around
the subview by touching the screen. Verti-
cal and horizontal scroll bars indicate the
position in the subview.

Code Listing 4.10 shows an example of
using a scroll view.

To create a scroll view:
1. Set the frame as usual:

CGRect scrollFrame = CGRectMake
(20,90,280,280);

UIScrollView *scrollView =
[[UIScrollview alloc]
initWithFrame:scrollFrame];

2. Create an image view, assigning it an
image that is larger than the scroll view:
UIImage *bigImage = [UIImage

imageNamed:@"appleLogo.jpg"];
UIImageView *largeImageView =

[[UIImageView alloc]
initWithImage:bigImage];

continues on next page

- (voidiviewDidLood {

[zuper viewDidlLoad];

[scrol IView addSubview:largelInageliew];

[zelf.view addSubyiew:scrol Miew]:

[scrollView release];

}

CGRect scrol lFrame = CGRectMoke(2@,96,250,280);
UlGcrollView *scroll¥iew = [[UIScrollView alloc] initWithFrome:scrol IFrame];

UlInage *bigImage = [UIImoge imogeMomed:@"opplelogo.ipg”]s
largeImagetiew = [[UIImogeView alloc] initWithInage:bigImage];

scroll¥iew.contentSize = lorgeImogeliew.frame.size; //important!

iPhone User Interface Elements 129

3. Add the image view to the scroll view,
and set the contentSize property of
the scroll view:

[scrollView addSubview:
largeImageView];

scrollView.contentSize =
largeImageView.frame.size;

This is an important step: If you don’t
tell the scroll view how large its subview
is, it won’t know how to scroll at all.

4. Finally, add the scroll view to the
main view:

[self.view addSubview:scrollView];

You'll now see the scroll view with hori-
zontal and vertical scroll bars indicating
the current position in the image view
0. You can hide these scroll bars using
the showsHorizontalScrollIndicator
and showsVerticalScrollIndicator
properties.

If you play around with the previous code,
you’ll notice that if you scroll quickly to the
edge of the subview, the scroll view actually
moves a little too far before springing back.
This behavior is controlled by the bounce prop-
erty. You can restrict bouncing to the x- or y-axis
using the alwaysBounceHorizontal and
alwaysBounceVertical properties, or you can
disable it entirely by setting bounce to NO.

Zoom

You can also zoom in and out of an image
using a scroll view. The minimumZoom-
Scale and maximumZoomScale properties
control the scale by which you can zoom in
and out. By default, both of these proper-
ties are set to the same value (1.0), which
disables zooming. You must implement one
of the UIScrollViewDelegate methods to
return the view that is being zoomed.

il Carrier =

o Using a scroll view to pan around a
large image.

130 Chapter4

To enable zooming:
1. Add the UIScrollViewDelegate proto-
col in the controller.h file:

@interface UITestViewController :
UIViewController
<UIScrollViewDelegate>

2. Update the scroll view code to allow
you to zoom out by 1/2 and in by 2x:

0 The page control indicating the total number of
pages and the current page as a series of dots at

the bottom of the iPhone’s screen. scrollView.maximumZoomScale = 2.0;

scrollView.minimumZoomScale = 0.5;

scrollView.delegate = self;

You've also set the delegate to be the
controller (self).

3. Implement the viewForZoomingInScroll
View: delegate method, and return the
image view. Code Listing 4.11 shows the
updated code.

Paging

Scroll views support the paging of their
content—the ability to add multiple sub-
views as “pages” and then scroll between
them as you might turn the pages of a
book. Adding a UIPageControl will provide
a visual depiction of your current page @.

Code Listing 411 Adding zoom to the scroll view.

- (voidyviewDidLood {
[zuper viewDidLoad];
CiRect scrollFrome = CORectMake(28,96,280,280);
UldcrollView *scrollView = [[UIScrollView alloc] initWithFrame:scrol lIFrame];
scrollYiew.minimumZoomScale = A.5;
scrollYiew.maximumZoonScale = 2.8;
scrollYiew.delegate = self;

UlInoge *bigImage = [UIImoge imogeMomed:@"opplelogo.ipg"];
largeImagetiew = [[UIImageview alloc] initWithInage:bigImage];

[scrol IView addSubview: largeInageyiew];
scrollView.contentSize = lorgeInogeView.frame.size; //important!

[zelf.view uddSubview:scroll'\u‘iew];|

[zcrollView release];

}
- (UIView *wiewForZoomingInScrol (Miew:(UIScrollView *)zcrol lView

return largelImageyiew;

iPhone User Interface Elements 131

To create a page control:

1.

Update the code to remove the image
from the scroll view, and set some new
properties:

float pageControlHeight = 18.0;
int pageCount = 3;

CGRect scrollViewRect =
[self.view bounds];

scrollViewRect.size.height -=
pageControlHeight;

myScrollView =
[[UIScrollview alloc]
initWithFrame:scrollViewRect];

myScrollView.pagingEnabled = YES;

The pagingEnabled property turns
paging on for the scroll view.

. Since you have three pages, set the

contentView of the scroll view to be
three times wider than its frame. You’ll
also turn off the scroll view indicators:

myScrollView.contentSize =
CGSizeMake(scrollViewRect.size.
width * pageCount,1);

myScrollView.showsHorizontal
ScrollIndicator = NO;

myScrollView.showsVertical
ScrollIndicator = NO;

myScrollView.delegate = self;

Set up the page control by creating a
frame below the scroll view, and add a
target to the page control so that when
it is tapped, it will call the changePage:
method:

132 Chapter4

CGRect pageViewRect =
[self.view bounds];

pageViewRect.size.height =
pageControlHeight;

pageViewRect.origin.y =
scrollViewRect.size.height;

myPageControl = [[UIPageControl
alloc] initWithFrame:
pageViewRect];

myPageControl.backgroundColor =
[UIColor blackColor];

myPageControl.numberOfPages =
pageCount;

myPageControl.currentPage = 0;

[myPageControl addTarget:self
action:@selector(changePage:)
orControlEvents:UIControlEvent
ValueChanged];

. Call the createPages method by adding
three UIViews side by side to the scroll
view to represent the three pages.

. Set the backgroundColor property of
the views.

In a real-world application, these would
be more interesting! At this stage, your
scroll view will actually work, but you
need some more work to get the page
control to reflect the current page.

. Implement the scrollViewDidScroll:
delegate method:

CGFloat pageWidth = sender.frame.
size.width;

int page = floor((sender.content
Offset.x - pageWidth 7/ 2) /
pageWidth) + 1;

myPageControl.currentPage = page;

continues on next page

iPhone User Interface Elements 133

This simply does some math to calculate

your current page during the scroll and

then updates the page control accordingly.
7. Finally, implement the changePage:

method called when the page control

is tapped:

int page = myPageControl.

currentPage;

CGRect frame = myScrollView.frame;

frame.origin.x = frame.size.width
* page;

frame.origin.y = 0;

[myScrollView scrollRectToVisible:
frame animated:YES];

This scrolls the scroll view horizontally
based on the page you have selected
in the page control. Code Listing 412

shows the completed code.

Code Listing 412 Implementing a page control.

UIScroll¥iew *myScroll¥iew;
UIPageControl *myPageContraol;

@imp lementat ion UITestVMiewController
- {woid)loadScrol IYiewWithPage s {UIView *)page
int. pageCount. = [[my3crollView subviews] count];

CGRect bounds = myScrol lView . bounds;

bounds .origin.x = bounds.zize.width * pageCount;
bounds .origin.y = B3

poge . frame = bounds;

[mvScrol [Yiew addSubview:page];

}

- {voidicreatePoges

{

CGRect pageRect = myScrollView.frome;

Aicreate poges

Ul¥iew #*pagel = [[UIMiew alloz] initWithFrame:pogeRect];
paged .backgroundColor = [UIColor blueColor];

UlView *page2 = [[UIView alloc] initWithFrame:pageRect];
pagez .backgroundColor = [UIColor redColor];

UlView *pageld = [[UIView alloc] initWithFrame:pageRect];
pages.backgroundColor = [UIColor greenColor];

code continues on next page

134 Chapter4

Code Listing 412 continued

}

b

}

Afadd to scrollview

[zelf loodScrollYiewWithPoge :pogel];
[zelf loodScrol lVMiewdithPage pagez];
[zelf loadScrollMiewWithPage :page3];

it leanup

[pagel release];
[page? release];
[poges release];

- (voldiyviewDidlood {

[zuper viewDidlood];

floot pageControlHeight = 15.8;
int pageCount = 3;

CGRect. scrol IViewRect = [=elf.view boundz];
scrol lViewRect .zize.height —= pageControlHeight;

décreate scrol lview

myScrollView = [[UIScrollView alloc] initWithFrome:scrol IViewRect];
myScrollView.pagingEnabled = YES;

myScrollYiew.contentSize = CGSizeMake(scrol lViewRect . zize.width * pogeCount,1);
myScrol IView . showsHorizontalScral L Indicator = NOj

myScrol IV iew . showsMerticalScroll Indicator = NOj

myScrollYiew.delegate = self;

Jicreate pageview

CGRect. pogeViewRect = [zelf.view bounds];
pogeViewRect .zize.height = pogeContraolHeight;
pogeViewRect .origin.y = scrollVMiewRect .zize.height;

myPageControl = [[UIPageControl alloc] initWithFrame :pageViewRect];

myPageControl.backgroundCo lor = [UIColor blockColor];

myFageControl .number0fPages = pageCount;

nyPageControl .currentPage = B;

[myPogeControl oddTarget :zelf action:@se lector {changePage:) forControlEvents :UIControlEventValueChanged] ;

Jdcreate poges
[zelf createPages];

Aéadd to main view
[zelf.view addSubyiew:nyScroll¥iew];
[zelf.view addSubyiew:myPogeControl];

At leanup
[myPogeControl release];
[myScral [Yiew release];

- {woidjscrol¥iewDidScrol Lz {UIScral IYiew *)sender

CGF loat pageWidth = zender .frome.zize.width;
int page = floor{{zender.contentOffset.x - pogeWidth / 2) / pogeWidth) + 13
myPageControl .currentPage = page;

- (voidjchangePage :{ id)sender

int page = myPageControl .currentPage;

A/ update the scroll wiew to the appropriote poge
CGRect frame = myScrol 1Y iew.frame;

frame.origin.x = frame.size.width * page;
frame.origin.y = B3

[myScrol [Yiew scrollRectToMizible:frome animoted:YES];

iPhone User Interface Elements

135

Labels

Instances of the UILabel class display a
read-only view that can contain one or
more lines of text. For example, to create
a simple label and set its text, font,
textColor, and backgroundColox proper-
ties (Code Listing 4.13), use this:

myLabel.backgroundColor =
[UIColor clearColor];

myLabel.textColor =
[UIColor redColor];

myLabel.font = [UIFont
systemFontOfSize: 18.0];

myLabel.text = @"Hello World!";

By default, a label is rendered as black text
on a white background. You can also set a
font by name:

myLabel.font = [UIFont fontWithName:
@"Verdana" size:18.0];

Table 4.2 shows the available fonts you
can use.

If you don’t specify a font size, the label
will automatically reduce the font to fit
the text within the label’s frame. You can
control how small the font gets with the
minimumFontSize property, and you can
disable this behavior entirely with the
adjustsFontSizeToFitWidth property.

To add a shadow to a label’s text, you
could write the following:

myLabel.shadowColoxr =
[UIColor darkGrayColor];

myLabel.shadowOffset =
CGSizeMake(1.0,1.0);

The shadowOffset controls set how far on
the x- and y-axes from the label’s text the
shadow is drawn. The default is {0,-1}.

Code Listing 413 Creating a label.

- {voidyviewDidioad {
CGRect lobelFrome = CGRectMake(18,18,288,44%;

UILabel #*mylabel = [[UILabel alloc] initWithFrame:
labe |Frame] ;

myLabel backgroundColor = [UIColor clearColor];
myLobel .textColor = [UIColor redColor];

mylaobel .font = [UIFont systemFontOfSize:ls.8];
myLobel .text = @"Hello World!";

[selfview addiubview:nylabel];
[myLobel releose];

136 Chapter4

TABLE 4.2 Fonts available on the iPhone

Family

Name

American Typewriter

AmericanTypewriter, AmericanTypewriter-Bold

AppleGothic

AppleGothic

Arial

ArialMT, Arial-BoldMT, Arial-BoldItalicMT, Arial-ItalicMT

Arial Hebrew

ArialHebrew, ArialHebrew-Bold

Arial Rounded MT Bold

ArialRoundedMTBold

Arial Unicode MS

ArialUnicodeMS

Courier

Courier, Courier-BoldOblique, Courier-Oblique, Courier-Bold

Courier New

CourierNewPS-BoldMT, CourierNewPS-ItalicMT, CourierNewPS-BoldltalicMT,

CourierNewPSMT
DB LCD Temp DBLCDTempBlack
Geeza Pro GeezaPro-Bold, GeezaPro
Georgia Georgia-Bold, Georgia, Georgia-Boldltalic, Georgia-Italic

Hiragino Kaku Gothic ProN

HiraKakuProN-W6, HiraKakuProN-W3

Heiti J

STHeitiJ-Medium, STHeitiJ-Light

Heiti K STHeitiK-Medium, STHeitiK-Light

Heiti SC STHeitiSC-Medium, STHeitiSC-Light

Heiti TC STHeitiTC-Light, STHeitiTC-Medium

Helvetica Helvetica-Oblique, Helvetica-BoldOblique, Helvetica, Helvetica-Bold

Helvetica Neue

HelveticaNeue, HelveticaNeue-Bold

Marker Felt

MarkerFelt-Thin

Times New Roman

TimesNewRomanPSMT, TimesNewRomanPS-BoldMT,
TimesNewRomanPS-BoldltalicMT, TimesNewRomanPS-ItalicMT

Thonburi Thonburi-Bold, Thonburi

Trebuchet MS TrebuchetMS-ltalic, TrebuchetMS, TrebuchetMS-Boldltalic, TrebuchetMS-Bold
Verdana Verdana-Bold, Verdana-Boldltalic, Verdana, Verdana-ltalic

Zapfino Zapfino

iPhone User Interface Elements

137

The textAlignment property allows you to
align the label text to the left (the default),
center, or right.

The lineBreakMode property controls how
a label wraps text that is too wide to fit
within its frame. You can specify whether
you want the text to be word or character
wrapped, clipped, or truncated at the start,
end, or middle of the text.

To display multiple lines of text in a label,
use the numbexOfLines property and the
\n newline escape character:

myLabel.numberOfLines = 2;

myLabel.text = @"Hello World\nSecond
line";

The height of the label’s frame property

needs to be tall enough to accommodate

the number of lines of text you specify,

or the text will be wrapped using the value

defined in the 1ineBreakMode property

(Code Listing 4.14).

Setting the numberOfLines property
to 0 will make the label dynamically set the
line count.

Code Listing 4.14 Setting various properties of
a label.

- {voidviewDidlood {
CGRect lobelFrome = CoRectMake(1@,1@,200,44%;

UlLobel *mylabel = [[UILabel alloc] initWithFrome:
lobe |Fraome] ;

myLabel .backgroundColor = [UIColor clearColor];

mylabel .textColor = [UIColor redColor];

myLabel . font = [UIFont fontWithMame:@"Yerdana"
zize:ld.e];

myLabel .numberOfLines = 23

myLabel .text = @"Hello World! nSecond line";

nyLabel .shadowColor = [UIColor darkGrayColor];
niyLabe | shadowdffset = CG3izeMake(l.8,1.8);

[zelf .view addSubyview:mylobel];
[myLaobel releose];

138 Chapter4

.all Carrier = 2:06 PM

0 A progress view at 33 percent completion.

Progress and
Activity Indicators

When performing tasks that may take some
time, you often need to provide some kind
of visual feedback to your users. If you
know how long the task will take to com-
plete, you can use a progress indicator to
show the user how much of the task has
been performed and how much still has to
run. If you are unable to determine the dura-
tion of the task, use a “busy” indicator (such
as the beach ball or hourglass on OS X).

iOS provides classes for showing both
progress and activity.

Indicating progress

When you want to show the progress of a
task, use UIProgressView, a very simple
class, consisting of only two properties.

You create a progress view and set its style
using the initWithProgressViewStyle:
method:

UIProgressView *myProgressView =
[[UIProgressView alloc]
initWithProgressViewStyle:
UIProgressViewStyleDefault];

The indicator appears as a horizontal bar
that fills from left to right to show comple-
tion @). This is controlled by the progress
property, using a value between 0.0 (not
started) and 1.0 (completed):

[myProgressView setProgress:0.33];

Although you set the frame of the prog-
ress view, the maximum height of a
progress view is 9 pixels, so any larger
value will be ignored.

iPhone User Interface Elements 139

Code Listing 4.15 shows an example of
using UIProgressView with the progress
updated in a timer to simulate a long-
running task.

The other progress bar style,
UIProgress ViewStyleBar, also uses a
horizontal bar indicator but is more suitable
for using in a toolbar (explained in the follow-
ing section).

Showing activity

For tasks of an indeterminate duration, you
can use the UTActivityIndicatorView O An activity indicator view.
class, represented by an animated “spin-

ner” graphic @.

Code Listing 4.15 Updating the progress view.

NSTimer *timer;
@imp lementot ion UITestViewControl ler
- (voidjupdateProgress ((N3Timer *)sender
UIProgressYiew *progress = [sender userInfo];
Aihove we comp leted?
if {progress.progress == 1.8)
[timer imvalidate];
elze

progress.progress += A.605;

2
- (voidyviewDidload {|
[zuper viewDidLood];
UIProgressYiew *myProgressView = [[UIProgressView alloc] initWithProgressYiewSty le:UIProgressViewSty leDefoult];

CGRect progressFrame = CGRectMoke(1@,16@,308,25%;
[myProgressYiew setFrame:progressFrome];

[myProgressYiew setProgress:@.8];
[zelf.view addSubview:myProgressView];
[myProgressYiew release];

Jlcreate timer
timer = [[M5Timer scheduledTimerWithTimelnterval 8.1
target izelf
=g lector iése lector (updateProgress:)
user InfoimyProgressYiew
repeats:YES] retain];

140 Chapter 4

Code Listing 4.16 Creating an activity indicator view.

Similar to a progress view, you can
create an activity indicator using the
initWithActivityIndicatorStyle:
method:

UIActivityIndicatorView
*myActivityView =
[[UIActivityIndicatorView alloc]
initWithActivityIndicatoxrStyle:
UIActivityIndicatorViewStyleWhite];

The default size of an activity view is a
21-pixel square. If you use the UIActivity
IndicatorViewStyleWhitelLarge style, this
increases to a 36-pixel square.

Unlike the progress view, however, the frame
property controls both the height and the
width of the view. For activity views larger
than 36 pixels, it's best to use the larger style
so the image won’t become pixelated.

The activity view will initially be invis-
ible. Calling the startAnimating method
shows the activity view and causes the
spinner graphic to animate:

[myActivityView startAnimating];

Calling stopAnimating will stop the
spinner animation, but you need to
remember to set the hidesWhenStopped
property if you want the activity view to
hide (Code Listing 4.16).

- (voidyviewDidlood {
[zuper viewDidload];

[zelf.view setBackgroundColor:[UIColor blackColor]];

CiRect activityFrome = CGRectMake(136,106,58 50 ;
[mydctivityView setFrame:activityFrome];

[mydctivityView stortdnimating];
[zelf.view addSubyiew:mydctivityView];

[mydctivityView releaze];

UlActivityIndicatorView *myActivityYiew = [[UlActivityIndicatorView alloc]
initWithdct ivityIndicotorStyle:UlActivity IndicaotorViewSty leWhitelarge];

iPhone User Interface Elements 141

Alerts and Actions

Often in your applications you’ll want to
present a message to your users. Perhaps
you want to alert them about an error or
present them with options for a given
action. As an iPhone developer, you handle
these situations using alert views and
action sheets.

Alerting users

To display an alert message, use the
UIAlert View class. You define a title,
message, and delegate, and then you
configure buttons to be shown in the view.

To display an alert view:
1. First, create a simple alert view @):

UIAlertView *myAlert =
[[UIAlertView alloc] O A bare-bones alert view.
initWithTitle:@"title"

message:@"message"
delegate:nil
cancelButtonTitle:@"0K",
otherButtonTitles:nil]
[myAlert show];

2. Using the otherButtonTitles property,
you can create the same alert view with
up to four additional buttons 0O:

button1

UIAlertView *myAlert = —

[[UIAlertView alloc] L2

initWithTitle:@"title" buttan3

message:@ rtlessage r—
delegate:nil

cancelButtonTitle:@"0K" oK
otherButtonTitles:@"button1", '
@"button2", @"button3",
@"button4",nil];

o An alert view with several
buttons added.

142 Chapter4

Using the dismissWithClickedButton
Index:animated: method, you can program-
matically close an alert view without the user
having to tap a button. This might be useful in
a situation where you want to show an alert
for a short time and then hide it automatically.

Code Listing 4.17 Display an alert view.

If you have only two buttons in your
alert view, they will be displayed side
by side. Otherwise, buttons are added
from top to bottom, with the cancel
button always being at the very bottom.
If you don’t need the message or title
text, there is room for five buttons in
addition to the cancel button.

You can add buttons after creating your
alert view by using the addButtonWith
Title: method:

[myAlert addButtonWithTitle:
@"new button"];

To determine which button is tapped,
set the delegate, and implement the
alertView:clickedButtonAtIndex:
delegate method (Code Listing 4.17).

The buttonIndex parameter tells you
which button was tapped, starting with the
cancel button at index O. Alert views close
automatically when a button is tapped.

Another way to alert the user is by
making the iPhone vibrate by calling the
function AudioServicesPlayAlertSound
(kSystemSoundID_Vibrate). You'll need to
add the AudioToolbox framework to your
project for this to work.

}

}

- (voidiviewDidLood {

[zuper viewDidLoad];

UTAlertView *mydlert = [[UIAlertView alloc] initWithTitle:@"title"

message A" message”
delegate:zelf
cance |[ButtonTit les@"0k"
otherButtonTitlesinil];

[myé lert addButtonWithTitle:@"new button"];
[myd lert addButtonWithTitle:d@"onother button®];

[myd lert show];

[myélert release];

N3Log{@"you clicked button: ®i",buttonIndex);

- {voldialertView: (UIA lertView *lalertView clickedButtondt Indesx: (NSInteger douttonIndex {

iPhone User Interface Elements 143

Confirming an action

When presenting the user with a number of
options, you can use a UIActionSheet.

To create an action sheet:

1. An action sheet is created in a similar
way to an alert view @:

UIActionSheet *mySheet =
[[UIActionSheet alloc]
initWithTitle:@"Do you really
want to delete?" delegate:nil
cancelButtonTitle:@"No"
destructiveButtonTitle:@"Yes"
otherButtonTitles:nil];

[mySheet showInView:self.view];

2. Define titles for three types of button.

Do you really want to delete?

The cancel button is generally used to
dismiss the action sheet. Yes

The destructive button acts as the
confirmation of the action and is usually
shown in red to indicate its importance.

The other buttons are similar to the alert
view and allow you to add more buttons.

Setting any of these parameters to nil
prevents the button type from showing.

3. Set ’.[he delegate: and implement the OAn action sheet is “pinned” to the bottom of
actionSheet:clickedButtonAtIndex: the screen, and it contains only a title.

method, which is called when a but-
ton is tapped.

You can compare the buttonIndex
parameter to the action sheet’s
cancelButtonIndex and
destructiveButtonIndex properties
to determine which button was tapped.

Code Listing 418 shows the code
updated with some of these options.

144 Chapter 4

Code Listing 418 Adding more options to the action sheet.

- (voidyviewDidlood {
[zuper viewDidLood];
UlsctionSheet #*mySheet = [[UlActionSheet alloc] initWithTitle:@"Email Deletion Options"
delegate:zelf
conce lButtonTitled" Cance "

destructiveButtonTitle:@"Delete Everything”
otherButtonTit les:@"All Read Email", @"Spom Only",nil];:

mySheet .actionSheetSty le = UlActionSheetSty leB lackOpague;
[mySheet showInYiew:zelf wview];

[mySheet release];

}

- (voidjoctionShest: (UlActionSheet #jactionSheet clickedButtondtIndes:(NSInteger JbuttonIndes {

BOOL concelClicked = actionSheet .conce lButtonIndex == buttonIndex;
EOOL destructiveButtonClicked = actionSheet.destructiveButtonIndex == buttonIndex;

HSLog{@"button with index #i clicked {concel:¥i, destructive:®i)",buttonIndesx,concelClicked,destruct iveButtonC licked);

Action sheets vs. alert views
Action sheets are functionally similar to alert views, with a number of important differences:

m Action sheets are attached to a view. The code used in the previous exercise attaches the
action sheet to the controller’s main view.

® You can optionally show the alert sheet from a tab bar or a toolbar using the showFromTabBaxr:
and showFromToolbar: methods.

m Action sheets do not have a message property; they have a single title property.

® You can change how the action sheet looks by using the actionSheetStyle property. In addi-
tion to the default style, you can give your action sheet a black transparent or opaque style.
Setting the style to UIActionSheetStyleAutomatic will give your action sheet the same
appearance as the bottom bar if one exists.

iPhone User Interface Elements 145

Picker Views

The UIPickerView class allows users to
“spin” a wheel-type control to select one
or more values. Each picker view consists
of one or more components consisting of
one or more rows. Each component can
be spun independently of the others. For

example, the picker view can be used to May 2112012
select a date value with three components

in the control, representing the month, day, vuiie § 22 § 2013
and year @.

The number of components and rows
in a picker view is determined by its
datasource, an object that adopts the
UIPickerViewDataSource protocol. The O A picker view being used to select a date.
display and selection of the picker view

content is handled by the delegate, which

adopts the UIPickerViewDelegate proto-

col (the datasource and the delegate can

be the same object).

July | 23 [2014

To create a simple picker view:

1. Add the protocol declarations to your
interface definition:

@interface UITestViewController :
UIViewController
<UIPickerViewDataSource,
UIPickerViewDelegate>

2. Create a picker view, and add it to the
main view (Code Listing 4.19):

CGRect pickerFrame =
CGRectMake(0,120,0,0);

UIPickerView *myPicker =
[[UIPickerView alloc]
initWithFrame:pickerFrame];

myPicker.dataSource = self;

myPicker.delegate = self;

[self.view addSubview:myPicker];

146 Chapter 4

Picker views are always 320 pixels by
216 pixels in size and cannot be resized.

3. The showsSelectionIndicator prop-
erty creates a translucent bar across
the control to indicate the selected row.

4. At a minimum, you need to implement
two data source methods.

numberOfComponentsInPickerView:
returns the number of segments or
components in the picker view. In this
example, you want a single component,
so return the value 1.

pickerView:numberOfRowsInComponent:
returns the number of rows for each
component. Again, ignore the compo-
nent parameter (since you have only

a single component), and return the
number of rows.

continues on next page

Code Listing 4.19 A bare-bones picker view implementation.

- {voidiviewDidlood {
[zuper viewDidLoad];
CGRect pickerFrome = CORectMoke(®,128,8,8);
UIPickerView *myPicker = [[UIPickerYiew alloc] initWithFrame:pickerFrame];
myPicker .dotoSource = self;
myPicker .delegate = ==lf;
myPicker .showsSe lect ionIndicator = YES;

Hself.view addSuby iew imyPicker];

[myPicker release];

}

- (N3Integer Jumber0f ComponentsInPickeryiew: (UIPickerYiew *)pickerView {

return 1;

¥

- (NSInteger jpickerYiew: (UIPickerVisw *)picker¥iew number0fRowsInComponent s (NSInteger)component {

return 18;

}

- (N3String *)pickerView:(UIPickertiew *)thePickerYiew titleForRow:(N5Integer jrow forComponent :(NSInteger jcomponent {

return [N3String stringWithFormot:@"Row #i",row];

iPhone User Interface Elements 147

5.

Implement the delegate pickerView:
titleForRow:forComponent: method,
returning an NSString representation of
the current row @:

return [NSString stringWithFormat:
@"Row %i",row];

The picker view can display much more
interesting data than this simple example.
Components can be of different widths
and, rather than just simple text, can actu-
ally have entire views embedded within
them @.

To enhance the picker view:

1.

After calling the initComp1 and
initComp2 methods to create

some sample data, update the
numberOfComponentsInPickerView:
method to return two components

(one for each of the sample arrays).
Also, update the pickerView:numbexrof
RowsInComponent: method to return
the size of each array:

if (component == 0)
return [compl count];
else
return [comp2 count];

The arrays here contain different
numbers of elements; in other words,
components do not need the same
number of rows.

. Define a new delegate method, picker

View:widthFormComponent:, and set
the widths of the components to differ-
ent values:

if (component == 0)
return 100.0;
else

return 200.0;

.all Carrier = 2:44 PM

0 The picker view shows the sample data.

O The updated picker view. Not only do the two
components display different content, but they
also have different widths and numbers of items.

148 Chapter 4

3. Implement the pickerView:viewForRow:
forComponent:reusingView: delegate,
returning either an image view or a
label. This method allows you to embed
almost any view subclass in a picker
view component.

4. Finally, in the pickerView:didSelectRow:
inComponent: delegate, log the
selected row and component to
the console.

When you spin the picker view, this
method isn’t fired until the scrolling ani-
mation ends. Code Listing 4.20 shows
the updated code.

Code Listing 4.20 The updated picker view.

}

NSMutabledrray *compl;
NSHutableArray *compZ;

@imp lementation UITestViewControl ler

—{voidinitCompl

—{void)initComp2

compl = [[MSMutobledrray alloc] init];
UIImagetiew *img¥iew;

imgtiew = [[UIImagetiew alloc] initWithImage:[UIInage imageNomed:@"ca.png”]];
[compl addObject rimgWiew];
[img¥iew release];

imgtiew = [[UIImagetiew alloc] initWithImage:[UIImage imageNamed:@"gb.prng"]];
[compl addObject :imgWiew];
[img¥iew release];

img¥iew = [[UIImagetiew alloc] initWithImage:[UIInage imageNamed :@"us.prg" 1]
[conpl addlbject rimgWiew];
[img¥iew release];

compZ = [[MSMutobledrray alloc] init];
UlLabel *lbl;

lbl = [[UILabel alloc] initWithFrome :CGRectMake(d, B, 108,44 3];
lbl.backgroundColor = [UIColor clearColor];

lbl.text = @"Red";

[conp2 addlbject:lbl];

[lbl releaze];

lbl = [[UILabel alloc] initWithFrome :CoRectMake(d,d,108,443];
lbl.backgroundColor = [UIColor clearColor];

lbl.text = @"Elue";

[conp2 addlbject:lbl];

[lbl releaze];

code continues on next page

iPhone User Interface Elements 149

Code Listing 4.20 continued

- {voidviewDidlood {
[zuper viewDidLoad];

Jicreate some sample data
[zelf initCompl];
[zelf initCompZ];

ChRect pickerFraome = CoRectMoke(®,128,8,6);

UIPickerView *myPicker = [[UIPickerYiew alloc] initWithFrame:pickerfFrame];
myPicker .dotaSource = =self;

myPicker .delegote = zelf;

myPicker .zhowsSe lectionIndicator = YES;

[zelfview addSubviewimyPicker];

[myPicker releaze];

- (NSInteger Jumber0f ComponentsInPickeryiew: (UIPickerYiew *)pickerView {

return 2;

- (NSInteger jpickerView: (UIPickerView *)pickerView number0fRowsInComponent : (NS Integer jcomponent {

if {component == @)
return [compl count];
elze
return [comp? count];

- (CGF loot dpickeryiew: (UIPickerYiew *)picker¥iew widthForComponent : (N3 Integer jcomponent

if {component == @)
return 166.8;
else
return 268.8;

- (UIView *picker¥iew:{UIPickerYiew *)pickeryiew
viewForRow: (NS Integer row
forConponent. : (M3 Integer hcomponent
reusingyiew:(UIView *)view {

if {component ==

return [conpl objectAtIndex:row];
elze

return [compZ objectatIndex:row];

- (vold)picker¥iew:(UIFickerYiew *)pickerview did3electRow:{NSInteger row inComponent : (N3Integer component J

N3Log{@"row: ¥i, component:%i",row,component s

150 Chapter 4

Picking dates and times

iOS also has a special version of a picker,
UIDatePicker, geared toward picking dates
as well as times. The datePickexMode prop-
erty determines the style of the picker @.

Since the date picker is localized, it will auto-
matically display dates and times in the format
of the device locale. You can, however, over-
ride these settings to display dates and times
for other locales.

You can set properties for start and end dates
(for the date-style pickers) and for minute and
countdown values (for the time-style pickers).

UIDatePicker is not actually a subclass of
UIPickerView. It is a UIControl subclass that
has a custom UIPickerView as a subview.
This means that you use the target-action
mechanism to manage the selection of values.
As with other controls, you set the action:

il Carrier =

SunJun 21

1ouay

Tue Jun 23

0 A date picker with the default style of
UlDatePickerModeDateAndTime lets you pick
both the date and the time.

[myPicker addTarget:self action:@selector(pickerChanged:) forControlEvents:

UIControlEventValueChanged];

The date picker creates a UIControlEventValueChanged event when a date or time is selected

(Code Listing 4.21).

Code Listing 4.21 Implementing a date picker.

-{voidipickerChanged :{id)sender

N3Log{@"value: %", [sender date]);
}

- (voidyviewDidlood {
CGRect pickerFrome = CGRectMoke(®,126,8,8);

UIDotePicker *myPicker = [[UIDatePicker alloc]
initWithFrame :pickerFrame] ;

[myPicker addTarget:self
actiohiése lector {pickerChanged:)
forControlEvents :UIContro lEventVa lueChanged] ;

[zelf.view addSubview:myPicker];
[myPicker releasze];

iPhone User Interface Elements 151

Toolbars

You can create toolbars in iPhone applica-
tions using the UIToolbar class. A toolbar
usually spans the entire width of the dis-
play and is aligned to either the top or the
bottom of the screen @.

To create a toolbar:

1. As with many other views, you can cre-
ate a toolbar with the initWithFrame: O Most of the controls sit on the toolbar in Safari.
method. Use the size of the main view
to calculate the y position of the toolbar.

This is important since you may not
know the orientation of the iPhone and
want the toolbar to sit at the bottom of
the screen.

CGSize viewSize =
self.view.frame.size;

float toolbarHeight = 44.0;

CGRect toolbarFrame = CGRectMake
(o,viewSize.height-toolbarHeight,
viewSize.width,toolbarHeight);

UIToolbar *myToolbar =
[[UIToolbar alloc] initWithFrame:
toolbarFrame];

2. Setthe autoresizingMask property of
the toolbar to ensure that it stays in the
same position (in this case, aligned to
the bottom of the screen) even if the
user rotates their iPhone.

myToolbar.autoresizingMask =
UIViewAutoresizingFlexible
Width | UIViewAutoresizing
FlexibleLeftMargin | UIView
AutoresizingFlexibleRight
Margin | UIViewAutoresizing
FlexibleTopMargin;

152 Chapter4

0 A toolbar showing the three toolbar item styles
for the initWithTitle:style:target:action:
method.

@ Some of the available system item styles.

3. You can change the color and translu-
cency of the toolbar using the tintColor
and translucent properties:

myToolbar.tintColor =
[UIColor redColor];

myToolbar.translucent = YES;

Toolbar items

Buttons you add to a toolbar are known as
toolbar items and are created using the
UIBarButtonItem class. Several types of
buttons are available, and you can create
them in several ways:

m The simplest way to create a button
with some title text is by using the
initWithTitle:style:target:action:
method @. Use the target and action
parameters to indicate which method to
call when the button is pressed.

= Similarly, the initWithImage:style:
target:action: method lets you create
a button with an image instead of text.
The button will automatically resize its
width to that of the image.

= You can create a button from your
own custom UIView subclass using
the initWithCustomView: method.
However, you must set the target and
action properties manually.

m The final way is to use the initWithBar
ButtonSystemItem:target:action:
method.

iOS offers a set of predefined buttons,
known as system items, to ensure your
application adheres to the iPhone interface
guidelines. Use them whenever possible.

There are system items for play, pause,
and stop buttons, as well as for search,
trash, and camera @. For a complete list
of system items available, refer to the
UIBarButtonSystemItem type in the devel-
oper documentation.

iPhone User Interface Elements 153

You will often use two particular system item
types: UIBarButtonSystemItemFlexibleSpace
and UIBarButtonSystemItemFixedSpace.
Both are not visible and represent spaces
on a toolbar. The flexible-space item lets
you force a button to the other side of the
toolbar, while the fixed-space item simply
lets you add a space between buttons. You
can set the width property of a fixed-space
item to determine how wide you want the
space to be.

Once you've created these buttons, add
them to an NSArray and then use the
setItems: method of the UIToolbar to
add them to the toolbar itself. The optional
animated: parameter allows you to have
buttons fade in as they are added to

the toolbar.

Code Listing 4.22 shows the updated
code, with buttons of various types and

a flexible-space item being used to push a
button to the right side of the toolbar. If
you try rotating the phone, you will notice
that the toolbar and buttons correctly align
themselves regardless of orientation @.

.ail Carrier =

0 The toolbar has correctly sized itself with the iPhone in landscape mode. The trash toolbar
item is aligned to the right.

154 Chapter 4

Code Listing 4.22 Creating several different types of toolbar items.

- {voidjbuttonClick: {id)sender {

N3Log{@"you clicked button: %@", [sender title]);

- (voidyviewDidlood {
[zuper viewDidLoad];

CGSize viewSize = zelf .view.frame.zize;
float toolborHeight = 44.A8;
CGRect toolbarFrame = CGRectMoke(d,viewSize.height-toolbarHeight ,viewSize.width,toolbarHeight);

UIToolbar *myToolbor = [[UIToolbar alloc] initWithFrame:toolbarFrome];

niyToolbar .autoresizingMask = UIViewsutoresizingF lexibleWidth
|
UIViewbutoresizingF lexiblelef tMargin
|
UIYiewhutoresizingF lexibleRightMargin
|

UIYiewhutoresizingF lexibleTopMarging

UIBarButtonItem *buttonl = [[UIBarButtonltem alloc] initWithTitle:@"button 1"
sty leillBarButtonltemSty lePlain torget izelf
actiondse lector (buttonClick:)] ;

UIBarButtonItem *button2 = [[UIBarButtonltem alloc] initWithTitle:@"button 2"
style:lIBarButtonltemSty leBordered
targetiself
actionidse lector (buttonClick:)] ;

UIBorButtonItem *button3 = [[UIBarButtonItem alloc] initWithImoge: [UIInoge imogeNamed:@"opple_icon.png"]
sty le:UIBarButtonltemSty leBordered
targetizelf
actionidse lector (buttonClick:)] ;

UIBorButtonItem *f lexButton = [[UIBorButtonItem alloc] initWithBarButtonSystenItem :UIBarButtonSystenItenF lexibleSpace
target:nil
action:nil];

UIBarButtonItem *trashButton = [[UIBarButtonItem alloc] initWithBarButtonSystemItem:UIBarButtondystemltenTrash
targetiself
actiondse lector (buttonClick:)] ;

NSArroy #buttons = [[MSArray alloc] initWithObjects:buttond,buttonZ,buttond, flexButton,trashButton,nil];
Ao leanup

[buttonl release];

[buttonz release];

[button3 release];

[f lexButton release];

[trashButton release];

[myToolbar setltems:buttons animated:NO];

[buttons release];

[zelf.view addSubview:myToolbar];

[myToolbar release];

iPhone User Interface Elements

155

Text

For entering text into your applications,
iOS provides two classes, ULText Field
and UITextView. Both allow the user to
enter and edit text using an onscreen
keyboard and support features such as
cut/copy and paste, spell check, and more,
but the two classes function differently.

To create a text field:

1. You can use the UITextField class
to enter small amounts of text, such
as user names, passwords, or search
terms. This field is limited to a single
line of text.

2. As with most other views, you use the
initWithFrame: method to create them:

CGRect textRect = CGRectMake
(20,120,300, 20);

UITextField *myTextField =
[[UITextField alloc]
initWithFrame:textRect];

myTextField.backgroundColor =
[UIColor whiteColor];

This also sets the background color of

the text field; otherwise, it’s transparent
by default. Text fields also don’t have a

border by default.

3. Use the borderStyle property to
choose from four different styles @.

The UITextBorderStyleRoundedRect
style has a white background and will
ignore the backgroundColox property.
If you set a custom UIImage as the
background, the borderStyle property
will be ignored.

4. You can set the text font, color, and align-
ment to apply to the entire text field.

Text fields do not support the styling of
individual text elements.

.all Carrier = 11:09 AM

UlTextBorderStyleNone

UlTextBorderStyleLine

UlTextBorderStyleBezel

UlTextBorderStyleRoundedRect

0 Border styles available for text fields.

156 Chapter 4

Clicking the clear button removes 5. You can set your text field to automati-
any text In the text field. cally resize the font to accommodate
— larger text:

myTextField.font =
[UIFont systemFontOfSize:22.0];

myTextField.adjustsFontSizeTo
FitWidth = YES;

all Carrier = 3:19 PM

. n myTextField.minimumFontSize = 2.0;
testing. |

This example sets the initial font size as
@ Press the clear button to remove any text in the 22 Efmd then .te”S the text fleld Fo.auto-
text field. matically shrink the font to a minimum
size of 2 if the text is wider than the text
field’s bounds.

6. Setting the clearsOnBeginEditing
property to YES will clear any existing
text when you first touch the control:

myTextField.clearsOnBeginEditing =
YES;

myTextField.clearButtonMode =
UITextFieldViewModeWhileEditing;

The clearButtonMode property adds a
small button to the end of the text field,
letting you clear the text at any time @.
You can determine when this button

is shown, such as only when editing
the text.

u B E a m E To use keyboards:
] === 1. Tap in the text field to open a keyboard
Nz|xc|v[lnmil

from the bottom of the screen.
2. You can choose from a number of
2123 m Done keyboard styles @, each designed for
particular situations such as entering

numbers or using a web browser.

3. Set the style with the keyboardType
property.
By default, the keyboard will automati-

G Two of the keyboards available by setting the
keyboardType property of a text field. cally suggest words as you type.

continues on next page

iPhone User Interface Elements 157

To disable this function, set the
autocorrectionType property to
UITextAutocorrectTypeNo.

. Setthe autocaptializationType

property to determine whether the key-
board capitalizes your typing by word,
sentence, or even all characters.

. You can change the text on the Return

key via the returnKeyType property.

Use the enablesReturnKeyAutomatically
property to determine whether the
Return key is enabled even if you haven't
entered any text into the text field.

In Code Listing 4.23, the secureTextEntry
property is set to YES, which is useful for
text fields that contain passwords or other
sensitive information. As you enter text,
you will see only the last letter typed.

You may have noticed that the keyboard
doesn’t disappear when you press the
Return key. To hide the text field, you
must implement the textFieldShould
Return: delegate and tell the text field
to resign its first responder status:

[textField resignFirstResponder];

return YES;

Code Listing 4.23 Creating a secure text field.

- (voidiviewDidLood {

CGRect textRect = CORectMoke(18,16,36@,31);

UITextField *myField = [[UITextField alloc]
initWithFraome:textRect];

myField.borderStyle = UITextBorderSty leRoundedRect ;

myField.font = [UIFont systemFontOfSize:Z2.87];
myField.odjustsFontSizeToF itWidth = YES;
myField.minimumFontSize = 2.8,

myField.clearButtonMode = UITextFieldYiewModeWhi leEditing;
nyField.kevboardType = UlKevboardTypebefault
myField.autocorrectionType = UlTextAutocorrect ionTypelo;
myField.outocapitalizationType = UlTextiutocopitalizationTypeNone;
myField.returnkeyType = UIReturnkeyDone;

nyField.zecureTextEntry = YES;

[zelf.view oddSubview:myField];
[myField release];

158 Chapter 4

9. Similarly, you can make the keyboard
appear automatically when the view is
loaded by setting the first responder
status in the viewDidLoad: method:

[myTextField
becomeFirstResponder];

10. To prevent the keyboard from showing
at all, which is useful if you are imple-
menting your own custom keyboard,
return NO from the textFieldShould
BeginEditing: delegate method.

For a complete list of keyboard options,
refer to the “UlTextIinputTraits Protocol” sec-
tion of the developer documentation.

Restricting content

You can also use the delegate methods
to control the text being entered into the
text field. The textField:shouldChange
CharactersInRange:replacementString:
delegate is called whenever the text is
changed. You could, for example, use this
method to restrict the number of charac-
ters entered. Code Listing 4.24 shows a
text field that allows a maximum of ten
characters.

Code Listing 4.24 Limiting the contents of a text field to ten characters.

{

- (BOOL ytextField: (UITextField *)textField
shou ldChangeCharacters InRange : (NSRange Jrange
replacenentString: (N35tring *)string

Aélimit text field to 18 chars
int MAX_CHARS = 18;
H3MutableString *newText = [NSMutableString
stringWithString:textField.text];
[newText reploceCharactersInkange irange
withitring:string];
return {[hewText length] <= MAX_CHARS);

iPhone User Interface Elements 159

You should check the length of the replace-
ment rather than just looking at the length
of the text in the text field, since the text
field’s contents can be altered via copy and
paste as well as by using the keyboard.

For the same reason, simply changing the
keyboard type to numeric does not guaran-
tee that a user will enter only numeric val-
ues (since a user could paste non-numeric
values into the field). Code Listing 4.25
shows the same delegate method, this time
restricting the text field to allow numeric
values only.

Text views

The UITextView class allows for multiline
editable text. Although similar to text fields,
text views feature a number of important
differences.

Text views don’t have any support for
automatically reducing the font size like
text fields have. Also, they don’t have any
support for clearing the text other than
through programmatically setting the text
property. There is also no support for
secure text entry.

As with text fields, text views also apply
the same text style to the entire text. Apple
recommends using a UIWebView (see the
“Web Views” section) if you require mul-
tiple styles in your text.

Code Listing 4.25 Restricting the contents of a
text field to numeric values.

— (BOOLytextField:{UITextField *)textField
shou LdChangeCharactersInRange : (NSRonge Jrange
replacementString: (N3String *)string
{
Adlimit text field to numeric wvalues only
NiCharacterSet *numberSet = [MSCharacterSet
decimalDigitCharacterSet];
for {NSUInteger i=8; i=[string length]; i++)
i
unichar ch = [string characterdtIndex:i];
if {! [numberSet characterIsMember:ch])
return MO;

+
return YES;

160 Chapter 4

.all Carrier = 5:24 PM

this is a link:
http://google.com

0 A text view with an active data detector.

Data detectors

Text views can analyze their contents and
convert any links or phone numbers into
tappable links by using a capability known as
data detectors. Tapping the link will either
launch the browser or call the phone number.

Two data detector types are available:

UIData DetectoxrTypePhoneNumber for phone
numbers and UIDataDetectoxTypeLink

for Web http: links. To enable both, set
the data DetectorTypes property:

myTextView.dataDetectorTypes =
UIDataDetectorTypeAll;

There’s one caveat with data detectors:
The default behavior of text views is to
show the keyboard when tapped, so you
can’t tap the link of a data detector. For
data detectors to work, you must set the
editable property of the text view to NO.
In @, the URL is underlined just as it would
be in a web browser. Tapping it will launch
the Safari application.

Hiding the keyboard

A text view’s keyboard behaves the same
as a text field, with one important differ-
ence: Since a text view supports multiline
editing, pressing the Return button on

the keyboard will insert a carriage return
instead of calling a delegate method. Just
as with the text field, resign the text view’s
first responder status to hide the keyboard
when you have finished editing the text.
This is often done as an action within
another control.

iPhone User Interface Elements 161

Scrolling the interface

You may have noticed that since the
iPhone’s keyboards are very large, they
take up a lot of the screen and can overlap
other controls when shown. It would be
handy if your interface moved up when the
keyboard appeared and then moved back
down once it disappeared.

You can make that happen by placing the
controls inside a UIScrollView. When
the keyboard appears, you simply scroll
everything up, scrolling back down when
the keyboard hides.

To scroll the interface in
response to the keyboard:

1. Create and add a scroll view, making it
the full size of the main view:

CGRect viewRect =
[self.view bounds];

myScrollView = [[UIScrollView
alloc] initWithFrame:viewRect];

myScrollView.contentSize =
viewRect.size;

[self.view
addSubview:myScrollView];

2. Add the controls to the scroll view
instead of the main view (since you
want them to scroll).

3. Implement the textViewDidBeginEditing:
delegate method, which is called when
the keyboard is shown.

Here you need to calculate both the
bottom of the text view and the top of
the keyboard and then tell the scroll
view to scroll the difference. You must
also look at the orientation property
of the iPhone because the keyboard
will have a different height in portrait
mode than in landscape mode.

162 Chapter4

4. Implement the textViewDidEndEditing:
delegate so that when the keyboard is
hidden, you scroll the text view to its origi-
nal position. Code Listing 4.26 shows the
completed code.

Code Listing 4.26 Scrolling an interface in response to a keyboard.

}

}

UIScroll¥iew #*myScroll¥iew;
UITextVYiew *myTextVYiew;

@imp lementation UITestViewControl ler

—{voidibuttonC lick :{ id)sender

- {voidyviewDidlood {

- {voiditextViewDidBeginEditing: (UITextView *itextView {

- (voiditext¥iewDidEndEditing: {UITextView *itextView {

[myTextView resignFirstResponder];

CGRect viewRect = [zelf.view boundz];

mySerolView = [[UIScrol lVMiew alloc] initWithFromeviewRect];
nyScrol lView.contentSize = viewRect.zize;

[zelf.view addSubview:myScroll¥iew];

CGRect buttorFrame = CORectMaoke(18,18,68,32);

UIButton #keyboardToggle = [UIButton buttonWithType:UIButtonTypeRoundedrect] ;

[kevboordToggle setTitle:d"hide" forStote:UIControlStateNornal]s

[kevboardToggle oddTarget:self oction:dselector{buttonClick:) forControlEvents :UIControlEventTouchUpInside];
kevboordTogg le .frome = buttonFrame;

[myScrol Yiew addSubview:keyboardToggle];

CGRect textRect = CORectMake(18,66,388,268);
myTexttiew = [[UITextView alloc] initWithFrome:textRect];

myTexttiew.font = [UIFont systemFontOfSize:22.8];
my TextYiew . keyboardType = UlKeyboordTypeDefault;
myTextYiew.returnkeyType = UIReturnkeyGo;
nyTextYiew.delegate = self;

[myScrol Yiew addSubyiewmyTextYiew];

[myTextWiew release];
[myScrol IYiew release];

float keyboardHeight ;

if {[UIDevice currentDevice].orientation == UIDeviceOrientationPortrait | UIDeviceOr ientationPortraitUps idebown)
kevboardHeight = 216.8;

elze
keyboordHeight = 162.A8;

CGRect textViewRect = textView.frome;

float textViewBottom = textViewRect.origin.y + textViewRect.zize.height;
CGRect viewRect = [myScrol [Yiew bounds];

float kevboardTop = wiewRect.size.height-kevboordHeight;

floot scrollOffset = fobs{textViewBottom - kevboordTop);

[myScrol IView setContentOffset :0GPointMake (8, scroll0ffset) animated:¥ES];

[myScrol Yiew setfontentdffzet :CGPointHake(d, &) oninoted:YES];

iPhone User Interface Elements 163

Web Views

Just as with iPhone’s native Safari applica-
tion, you can display web-based content
in your own applications by using the
UIWebView class. (In fact, Safari on the
iPhone uses a UIWebView for display.)

Web views provide touch-based control for
zooming in and out of pages, panning, and
scrolling. Tapping links can load pages,
and tapping in text controls will open a
keyboard for data entry.

To display a web page in
your application:

1. Just as with other views, you can add
web views to your interface in the usual
way:

CGRect webRect = CGRectMake
(10,10,300,400);

UIWebView *myWebView =
[[UIWebView alloc]
initWithFrame:webRect];

myWebView.scalesPageToFit = YES;

The scalesPageToFit property ensures
that larger pages are zoomed out or

in enough to fit correctly in the current
frame as well as letting you zoom in and
out in response to pinch gestures.

164 Chapter 4

2. Use the loadRequest: method to load
content into the web view, which takes
an NSURLRequest object as its only
parameter:

NSURL *url = [NSURL URLWithString:
@"http://www.google.com"];

.all Carrier = 5:35 PM

Web Images Local News more v

Google

NSURLRequest *request =
[NSURLRequest
requestWithURL:url];

[myWebView loadRequest:request];

P — [self.view addSubview:myWebView];
| Google Search |
’ This would load the Google homepage @.

Sian in - Preferences - Help 3. If your page is taking a long time or

you want to cancel loading, use the
stopLoading method. You can also
check the loading property to make

O A web view displaying the Google homepage. sure the page is actually in the process
of loading.

View Google in: Mobile | Classic

Go to Google.com

What's the status?

Web views provide four optional delegate methods that will notify you about changes in the status
of loading a web page:

webView:shouldStartLoadWithRequest:navigationType: is sent before the web view begins
to load the content and is a handy place to handle navigation within your web views (see the
“Loading local content and handling hyperlinks” section).

webViewDidStartLoad: is sent when your web page starts loading and is a good place to show a
progress indicator.

webViewDidFinishLoad: is sent when the web view finishes loading a page and is a good place
for you to stop a progress indicator. This will not be sent if the page fails to load for any reason.

webView:didFaillLoadWithExxox: is sentif an error occurs in loading the web page.

iPhone User Interface Elements 165

If you are building a web browser—type
interface with Forward and Backward but-
tons, you can use the canGoForward and
canGoBackward properties to determine
whether your buttons should be enabled,
and you can use the goForward and
goBackward methods to navigate through
the web view’s page history.

Although there is no direct access to the
page history, you can easily maintain his-
tory via the delegate methods mentioned
in the “What's the status?” sidebar. Code
Listing 4.27 shows the code updated to
include an activity indicator when the page
is loading.

Code Listing 4.27 Implementing a web view.

UlActivityIndicotorView *activity;

@imp lementot ion UITestViewControl ler

- (voidyviewDidLood {
[zuper viewDidlLoad];
[zelf.view setBackgroundColor:[UIColor blackColor]];
CGRect webRect = CGRectMake(18,18,308,3536);
UTWebYiew *myWebMiew = [[UIWebYiew alloc] initWithFrome webRect];
nyWebYiew.scalesPogeToFit = YES;
nyWebYiew.delegate = =elf;
N3URL #url = [NSURL URLWithString:@"http:/ e .google.com”];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
[myWebYiew loodRequest irequest] ;|
[zelf.view oddSubyiew:myWebYiew];
activity = [[UIActivityIndicatorview alloc] initWithdctivityIndicaotorSty le:UTActivityIndicatorViewSty leWhitelorge];
[octivity zetCenter:CGPointMake(168,4283];

[zelf.view oddSubview:octivity];

[myWebYiew releaze];

- {voidiwebViewDidStartLoad: {UIWebM iew *jwebView

[octivity startdnimating];

}

- (voidwebViewDidFinishLoad s {UIWebY iew *webl iew

[octivity stopdnimoting];

[web¥iew stringByEvaluatinglavadcr iptFromString @ alert 'Finished Looding! '3;"];
2

- (voldiwebView: (UIWebView *webView didFailloodWithError:(NSError #)error

[activity stopdnimating];
N3Log{@"Error: ®@" ,errar);

166 Chapter 4

Running JavaScript

You can execute JavaScript in a web view by
using the stringByEvaluatingJavaScript
FromString: method. For example, if you
wanted to open an alert dialog box in your
web view, write the following:

[webView stringByEvaluating
JavaScript FromString:@"alert
("Hello World!);"];

This lets you manipulate your web page’s
style sheet or DOM or even call existing
JavaScript functions defined within the
page itself. For example, to change the
background color of your web page, you
could write the following:

[webView stringByEvaluating
JavaScript FromString:
@"document.bgColox= \"#000000\";"];

To call the JavaScript function myFunction
defined in the web page, you could use this:

[webView stringByEvaluating
JavaScript FromString:
@"myFunction();"];

For performance reasons, any JavaScript
you call must execute fully within ten sec-
onds and must be less than 10MB in size.

iPhone User Interface Elements 167

Loading local content and
handling hyperlinks

You can also use web views to display
local content, such as an .html file that
ships in your application bundle. This
makes web views handy for displaying
content that mixes graphics with text or
requires multiple text styles. (Remem-

ber that UILabels and UITextViews are
restricted to only a single style per control.)

To load content from a local file:

1. Use the loadHTMLString:baseURL:
method to load content contained
in the resources folder of the
application bundle:

myWebView.scalesPageToFit = NO;

NSString *htmlPath =
[[NSBundle mainBundle]
pathForResource:@"myPage"
ofType:@"html"];

NSString *htmlContent =
[NSString stringWithContents
OfFile:htmlPath encoding:
NSUTF8StringEncoding error:nil];

[myWebView loadHTMLString:
htmlContent baseURL:nil];

This time, scalePageToFit has been
set to NO because you don’t want the
user to be able to zoom in and out
of the web view as if it were a web
page ©.

2. To prevent a user from tapping any
hyperlinks in the document, you can set
userInteractionEnabled to NO for the
web view. This also disables the ability
to scroll content that may be longer than
the control can fit on the screen at once.

or

.all Carrier = 5:39 PM

This page contains some test
content displaying different
styles such as bold and italic
text.

It also contains a link to
google.

o A web view displaying some local content,
including a hyperlink to another page.

168 Chapter 4

To disable links entirely, return NO from
the webView:shouldStartLoadWith
Request:navigationType: delegate
method.

3. To open a link in the native Safari applica-
tion, you could write the following in the
webView:shouldStartLoadWithRequest:
navigationType: delegate method
(Code Listing 4.28):

NSURL *pageURL = [request URL];

if (([[pageURL scheme]
isEqualToString: @"http"]) &&
(navigationType == UIWebView
NavigationTypelLinkClicked))

[[UIApplication sharedApplication]
When implementing this type of func-

ey TS openURL:pageURL];

tionality, it’s common to warn the user they

are navigating away from your application return NO;

and have them confirm the action. You can do . .
this with the UIAlertView described in the Here you are trapping only http: links.
exercise, “To display an alert view,” earlier in Other link types, such as https:, would
this chapter. have no effect.

Code Listing 4.28 Capturing clicks on a web view.

- {voidiviewDidlood {
[zuper wiewDidLoad];

CiRect webRect = CGRectMake(16,18,3068,406);
UTWebiew *myWebMiew = [[UIWebYiew alloc] initWithFramewebRect];

myWebView.de legate = self;

nyWebYiew.scalesPageToFit = NOj

NiGtring #htmlPath = [[NSBundle mainBundle] pathForResource:@"myPoge” of Type:d@“html"];

NSString *htmlContent = [N5String stringWithContentz0fFile:himPath encoding :NSUTFEStringEncoding error:inil];
[myiebYiew loadHTHLStr ing:htmlContent basellRL:nil];

[zelf.view odd3ubyiewimyWebYiew];

[myiebYiew release];

b

— (BOOL ywebYiew: {UTWebicw * uebiew

shou LdStartLoadt i thRequest 1 (NSURLRequest *Jrequest
niav igat ionType : (UIWebY iewhovigat ionType Jnavigat ionType {
NSURL *pagelRL = [request URL];

if { {[[pogelRL scheme] isEqualToString: @'http"]) 88 (novigationType == UIWebYiewNovigotionTypelinkClicked)
[[UI4pplication sharedApplication] openURL :pogelRL];

return NO;

}

return YES;

iPhone User Interface Elements 169

Controls NSObject

Almost all the drawing functionality you’ve \L
learned about so far also applies to con-

trols. Most controls inherit their class from UlResponder
UIControl, and UIControl is a subclass of

UIView Q; this is how controls know how .L

to draw themselves.
UlView

You'll never actually create instances of
UIControl directly the way you do with L
UIView. UIControl is simply used to define
a common set of functionality and behavior
for its subclasses.

UlControl Q The UIControl
class hierarchy.

As mentioned at the beginning of this
chapter, controls use the target-action
mechanism to respond to touch events.
Since the iPhone is a Multi-Touch device,
many different events can occur, such

as tapping, multitapping, dragging, and
releasing. Luckily, each control has been
designed to respond to only those events Hounded regt
appropriate for its usage, and each does
so in an intuitive and consistent manner.

.all Carrier = 5:50 PM

You’ll now take a closer look at the controls ? Detail disclosure
available to iPhone developers.

Buttons ; Info light

When adding buttons to your applica-
tion, you'll use the UIButton class @.
The default initializer for buttons is the Info dark
buttonWithType: method:

UIButton *myButton =
[[UIButton buttonWithType:
UIButtonTypeRoundedRect];

0 The default button types for UIButton.

170 Chapter 4

To be notified when a button changes
state, add a target and action:

[myButton addTarget:self action:
@selector(buttonClick:)
forControlEvents:UIControlEvent
TouchUpInside];

The UIControlEventTouchUpInside event
is most commonly used for handling regu-
lar button presses.

The UIButtonTypeCustom type lets you
create buttons with images or even draw
them yourself using your own custom
drawing code (as discussed earlier in the
“Views” section).

To create a button with an image:

1. Specify an image for the but-
ton’s default state using
NSControlStateNormal:

UIImage *buttonImage =
[UIImage imageNamed:
@"myButtonImage.png"];

[myButton setImage:buttonImage
forState:UIControlStateNormal];

UIButton will automatically apply high-
light effects to indicate that the button
is pressed or disabled.

2. You can also set multiple appearance
properties for each of these states,
including the title text, font, and color.

You can use different images for the
four different states: the default (as
shown in step 1), highlighted, selected,
and disabled. This enables you to cre-
ate buttons to represent other controls.

iPhone User Interface Elements 171

To create a checkbox button:

1. Assign images for both of the buttons’
states:

[checkbox setImage:[UIImage
imageNamed:@"checkbox_off.png"]
forState:UIControlStateNormal];

[checkbox setImage:[UIImage
imageNamed:@"checkbox_on.png"]
forState:UIControlStateSelected

I;

2. Set the target method to call when the
button is tapped:

[checkbox addTarget:self action:
@selector(checkboxClick:)
forControlEvents:UIControlEvent
TouchUpInside];

3. Inthe checkboxClick: method, simply
flip the button’s selected property:

btn.selected = Ibtn.selected;

Since you’ve previously defined images
for the two different states, the button
automatically updates to display the
correct image. Code Listing 4.29 shows
the updated code.

If you specify an image or title for any
button type other than UIButtonTypeRounded
Rect, the button effectively becomes a button
of UIButtonTypeCustom.

Switches

Switches, represented by the UISwitch
class, let you create an on/off control @.

To create a switch:
1. Use the initWithFrame: method:

CGRect switchRect = CGRectMake
(220,50,0,0);

UISwitch *mySwitch = [[UISwitch
alloc] initWithFrame:switchRect];

Code Listing 4.29 Creating a check box.

- {voidjcheckboxC lick {UIButton *jsender {

sender .zelected = | =ender.zelected;

¥
- {woidjviewDidload {

UIButton *checkbox = [UIButton buttonWithType:
UIButtonTypeCustom] 3

CGRect checkboxRect = CGRectMoke(135,150,36,36%;
[checkbox zetFrame:checkboxRect];

[checkbox et Image: [UIInage
imageNomed 3" checkbox_off .png"]
forStote:UIContro lStateNornal];
[checkbox setImage: [UIInage
imagehamed 12" checkbox_on.png"]
fordtate:UIControlitatede lected];

[checkboy addTarget izelf
action:ése lector (checkboxC lick:)

forControlEvents :UIControlEventTouchUpInside];

[self .view addSubviewicheckbox];

172 Chapter 4

lOPTUS & 12:42 PM ==

Settings | Sounds

]
« S 4:)) |
Ringtone Old Phone »
New Text Message Horn »
New Vaicemail ml
New Mail OFF

Sent Mail

Calendar Alerts

Lock Sounds

o]

Keyboard Clicks

G Switches are used extensively in
the Settings application of the iPhone.

‘ UlSwitchSlider ‘ :

Ullmage | | Ullmage . Ullmage | !
‘ Viers H View HU’V’eWH Vier ‘

UlLabel i
(“ON”) ;
UlLabel :
(“OFF) |

Q The control hierarchy that makes up a UISwitch.

Since switches are always the same
size, the width and height properties
are ignored.

2. When you change a switch’s value, it gen-
erates a UIControlEventValueChanged
event:

[mySwitch addTarget:self action:
@selector(switchAction:)
forControlEvents:UIControlEvent
ValueChanged];

3. To turn a switch on/off, call the
setOn:Animated: method:

[mySwitch setOn:YES animated:YES];

Switches don’t have any properties for
modifying the default visual appearance,
but with a little digging, you can control a
couple of elements.

Within the control hierarcy of a UISwitch,
the “on” and “off” elements are UILabels
©. You can manipulate the text, font, color,
and more.

To alter the appearance of a switch:

1. To retrieve the two UILabels within the
switch that hold the switch’s text , you
can use this:

UIView *mainView = [[[[mySwitch
subviews] objectAtIndex:0]
subviews] objectAtIndex:2];

UILabel *onLabel = [[mainView
subviews] objectAtIndex:0];

UILabel *offLabel = [[mainView
subviews] objectAtIndex:1];

continues on next page

iPhone User Interface Elements 173

2.

Now you can change the text and color
of these labels. The choice of text val-
ues is quite limited since the labels are
small in size and are clipped by their
containing view:

onLabel.text = @"YES";
offLabel.text = @"NO";

onLabel.textColor =
[UIColor yellow Color];

offLabel.textColor =
[UIColoxr green Color];

When setting the text values, you
should localize your replacement text
wherever possible. Code Listing 4.30
shows the updated code.

Code Listing 4.30 Customizing the switch control.

—{voidiswitchAct ion: {id)sender

N3Log{@"switch changed");

- (voidyviewDidLood {

[zuper viewDidLoad];

CGRect switchRect = CGRectMake(126,58,8,8);
UlGwitch #mySwitch = [[UISwitch alloc] initWithFrome:switchRect];
[mySwitch addTarget:self actionidselector{switchiction:) forControlEvents:UIContro lEventYalueChanged];

Adcustomize the appearance

UlView #*mainView = [[[[mySwitch subviewz] objectitIndex:B] subviews] objectAtIndex:Z];
UlLabel *onLobel = [[mainYiew subviews] objectAtIndex:@];

UlLobel #offlabel = [[mainYiew subviews] objectatIndex:l];

Adchange the text
onLabe . text
of fLabel .text

A"YES";
a"Ng";

Aéchange the text color
onLobe . textColor = [UIColor yellowColor];
of fLaobel .textColor = [UIColor greenColor];

[zelf.view addSubview:mySwitch];

[mySwitch releaze];

174 Chapter 4

G The brightness slider control indicates the
change in value with graphics at both ends of
the control.

o A custom slider control.

Sliders

Although switches have only two possible
states, sliders let you select from a range
of values on a horizontal bar, or track, with
a thumb indicator that can be moved from
side to side to select values @.

Unlike the UISwitch, there’s quite a lot you
can do to customize the visual appearance
of sliders, such as putting images to repre-
sent the values at either end of the track.
You can also customize the thumb image
and the graphics that appear on the track
on both sides of the thumb as the values
change @.

Just as with the UISwitch, sliders create

a UIControlEventValueChanged event
when their value is changed. By setting the
continuous property, you can choose to
have these events fired either as the slider
is changed or at the end of a change. Code
Listing 4.31 demonstrates this with a cus-
tom UISlider, with minimum, maximum,
and thumb images. In the sliderAction:
method, you are forcing a “step” behavior,
making the slider jump to the next value

in increments of ten. A label added to the
view displays the current slider value.

Although not specified in the developer
documentation, setting the thumb image of

a UISlider also hides the tracking image.
You must also set the minimum and maximum
track images.

The stretchableImageWithLeft
CapWidth:topCapHeight: method lets you
create an image that can stretch in the center
but does not stretch on either side, as shown
in the rounded edges of the track images.

iPhone User Interface Elements 175

Code Listing 4.31 Implementing a custom slider.

UILobel *lbl5liderValue;
@implementation UITestVYiewContraol ler
-{voidizliderdction:(id)sender
int stepdmount = 1A;
float stepValue = {abs{[(UISlider *}sender value]) / stepimount) * stephnount;
[sender setValue:stephalue];
IblSlidertalus.text = [MN3String stringWithFormat:@"%d", (int)stepvalue];
}
- {voidwiewDidload {
[super viewDidload];
CGRect sliderRect = CGRectMoke(Z28,58,288,48);
UISlider *mySlider = [[UISLlider alloc] initWithFrame:sliderRect];
mySlider.minimunialue = B3
mySlider .maximuntalue = 168;
mySlider.continuous = YES;
Adimoges
UlImage *leftTrackImage = [[UIImage imogeMomed:@" left_slider.png"] stretchablelmogeWithleftCopWidthi5.6 topCapHeioht :8.8];
Ullmage *rightTrackImage = [[UlImage imogeMamed:3"right_slider.png"] stretchablelmageWithleftCopWidth:5.8 topCapHeight:@.8];
UIImage *thumbInage = [Ullmage imageMamed:3"apple_thumb.png"];
UlImoge *minSliderImage = [UIImage imogeMNomed:d"apple_min.png"]s
Ullmage #*maxSliderImage = [UlImage imageMamed:@"apple_max.png"];
[mySlider setThumbImage :thumbImage forState:UIControlStateormal];
[mySlider setMininumTrockImoge: leftTrackInage forStote:UIControlStateNornal];
[mySlider setMaximumTrackImage:rightTrackImage forStote:UIControlStateMormal]s;
[mySlider setMinimumyaluelmage:minSliderInage];
[mySlider setMoximumioluelmoge maxSlider Inoge] ;
[mySlider setValue:bo.Bf];
Afhandle value change events
[mySlider addTarget:self action:@selector(sliderdction:) forControlEvents:UIControlEventyalusChanged]
Aflabel to show current walue
CGRect LblRect = CORectMaoke(145,160,168,26%;
Ibl5lider¥aolue = [[UILabel alloc] initWithFraome:lblRect];
lblSliderValue.backgroundColor = [UIColor clearColor];
Ibl5liderYolus.text = [NSString stringWithFormat:@ %d", {int mySlider.value];
Aéadd slider to main view
[zelf.view addSubview:mySlider];
[zelf.view addSubview: [blSlidervalue];
[lblSlidervalue release];
[mySlider release];
¥

176 Chapter 4

6:09 PM

il Carrier =

@ A segment control.

Code Listing 4.32 Creating a segment control.

Segmented controls

The UISegmentedControl consists of a
horizontal control divided into segments
@. Segmented controls are useful for
allowing users to pick from a group or
set of values.

Each segment functions as its own but-
ton. By default, selecting a segment will
deselect the others in the control (much as
a radio button does in HTML). You can alter
this behavior by setting the momentary

property.

To create a segmented control:

1. Create an array of UIImages or
NSStrings, and then call the default
initializer initWithItems: (Code Listing
4.32).

2. Set the frame, and the control will
automatically resize to accommodate
its segments.

Each segment will initially be the
same size.

continues on next page

b

- {voidiviewDidlood {

N3Arroy *arrSegments = [[MSArray alloc] initWithObjects:
[M35tring stringWith3tring:a“a"],
[M35tring stringWithstring:a"1"],
[M55tring stringWithString:@"2"],
nil];

UlSegmentedContral *mySegment = [[UISegnentedControl alloc]
initWithItems iarrSegments];

CGRect segmentRect = CGRectMake(18,56,388,48);
[mySegment setFrame:segmentRect];

[zelf.view odd3ubyiewimySeanent] ;
[arrSegments release];
[mySeament release];

iPhone User Interface Elements 177

3. Set the width of individual segments
using the setWidth:forSegmentIndex:
method.

This will automatically resize any other
segments that have not had their widths
explicitly set to fit within the control.

4. Select segments using the setSelected
SegmentIndex: method.

5. Disable individual segments using the
setEnabled:forSegementAtIndex:
method.

6. Add more segments using
insertSegments WithImage:atIndex:
animated:

or

insertSegmentsWithTitle:atIndex:
animated:.

7. Setthe animated property to YES so
your segments will “slide in” as they
are added.

8. To remove segments, use the remove
SegmentsAtIndex:animated: method.

9. Use removeAllSegments to clear the
entire control.

178 Chapter 4

Segment control styles

Segment controls have three different styles, which can

be set using the segmentedControlStyle property (.

Set the style to UISegmentedControlStyleBar to change
the color of the control via the tintColox property, but
depending on the color you use, you may not be able to
see the difference between selected and unselected.

Code Listing 4.33 shows an example of how to use some of

the properties of a segmented control. F ! 1 2]

Use the UISegmentControl to create a “glass” alternative
to a UIButton. Use the tintColoxr property to change the o
color of the button.

0 The three styles available for
segmented controls.

Code Listing 4.33 Setting some of the segment control properties.

- (voidjzegnentC lick :{id)sender {
HSLog{@"clicked: %d",[sender selectedSegmentIndex]);

H
- (voidviewDidLood {

NSArray *arrSegments = [[NSArray alloc] initWithObjects:
[M35tring stringWithString:a"e"],
[M35tring stringWithString:a"1"],
[M35tring stringWith3tring:a“z"],
nil]s:

UISegmentedControl *mySegment = [[UISegmentedControl allec]
initWithItems :arrSegments];

CoRect segmentRect = CORectMake(18,58,388,48%;
[mySegment. setFrome:segmentRect];

[mySegment addTarget :self
actiondse lector (segmentClick:)
forControlEvents sUIControlEventialueChanged] ;

[mySegment. setSegnentedControlSty le:UISegnentedControlSty leBar];
[mySegment. setTintColor: [UIColor darkGrayColor]];

Aizelect first item
[mySegment setdelectedSegment Index:8];

Adchange o segment size
[mySegment. setWidth:128.6 forSegmentdtIndex:i];

Aéadd o new segnent
[mySegment insertiegmentWithTitle:@"new" atlndex:Z animated:¥ES];

[zelf.view oddSubyiew:mySegnent];
[arrSegments release];
[mySegment release];

iPhone User Interface Elements 179

This page intentionally left blank

Index

Symbols

: (colon), using with methods, 7

{} (braces), using in header (.h) file, 3

+ (plus) sign, prefixing class methods with, 7
[1(square brackets), using with methods, 5

A

ABGroup type, using with Address Book, 406
ABPerson type, using with Address Book, 406
accelerometer

creating tilt-sensitive applications, 307-310

detecting shakes, 298-299

determining orientation, 299, 301-302

redrawing for orientation changes, 303

responding to, 307

updating for autorotation, 304-306
accelerometer data, smoothing out, 307
accessibility

enabling via VoiceOver, 98-99

overview of, 98
accessibility attributes

Frame, 101

Hint, 101

Label, 101

Traits, 101

Value, 101

Accessibility inspector, using with IB (Interface
Builder), 102

accessible applications, creating, 99-100
action sheets

versus alert views, 145

changing appearance of, 145

creating, 144-145

actions
confirming, 144-145
creating in IB (Interface Builder)
ma manually, 72-75
activity indicator view, creating, 140-141
Address Book
creating contacts, 413-417
creating multivalue properties, 414—-415
getting reference to, 407
group records, 410
group records stored in, 406
kABPerson* properties, 411
logging records to console, 407, 409
person records, 411-412
person records stored in, 406
record ID of records, 408
retrieving contact records in, 406—408
retrieving multivalue properties, 412
retrieving records from, 406—-409
setting values for addresses, 415
setting values for phone numbers, 414
Address Book Ul framework
adding contacts, 424
adding labels for contact names, 423
adding to projects, 419
displaying contact information, 424
editing people, 421-427
people picker, 418—420
tapping contact images, 424
AddressBookExampleViewController.h file, 406
addresses, displaying in map annotations, 339
alarms, setting in calendar, 432
alert messages, displaying, 142-143
alert views versus action sheets, 145

Index 469

alloc method

calling, 13

using to create objects, 10
annotation callouts, altering, 337
annotation class, creating for maps, 334
annotations, displaying addresses in, 339
<app>Info.plist file

contents of, 44—-45

settings, 87-88
Apple Developer Connection Web site, 41, 307
application delegate, using, 84—-86
application icons

key for, 88

removing “gloss effect” from, 88
application name, displaying, 88
application settings

adding controls, 92-93

application preferences, 90

creating settings pages, 91

user preferences, 87-90

application setup, setting unique identifier for,
88

applications. See also interapp communication;

projects; settings page
adding classes to, 57
adding strings file to, 95-96
adding views to, 113
building in Xcode IDE, 58
creating settings page for, 91
with custom URL scheme, 104-105
force-quitting, 90
launching from other applications, 103
localizing, 95-97
making accessible, 99-100
peer-to-peer, 271-273
peer-to-peer chat, 273-278
running in Xcode IDE, 58
setting preferences for, 90
setting version numbers for, 88
sharing information between, 105, 109-110
shipping with default settings files, 239-243
terminating in background, 88
updating in IB (Interface Builder), 70-72
view-based, 312

arrays
accessing objects in, 25
creating, 24
creating for parsed data, 256
getting lengths of, 24
looping back through values of, 25
mutable, 26
sorting for strings, 25
using @selector keyword with, 25
using with drill-down details application, 220
using with table views, 204-205
verifying objects in, 25

articles array, using with parsed RSS feed,

255

asynchronous connections
updating applications for, 251-253
using, 251

audio. See also background audio
controlling from background, 361-365
creating Play button for, 368
playing, 398
playing from iPod library, 399
playing in background, 358-360
recording, 366-370

audio controls, accessing, 362

audio events, responding to, 356

audio player application
adding controls to, 352-356
checking playing status of, 352
completing, 354-355
creating, 350-351
creating user interface, 352
implementing delegate methods, 357
implementing play: method, 352
implementing scrub: method, 354
implementing stop method, 352
preloading buffers, 352
resetting audio controls, 357
responding to events, 356-357
setting volume for, 352-353
setting volume property, 354

audio recorders
passing nil to settings parameter, 368, 370
settings for, 368

470 Index

audio session, setting up, 359
audio settings, configuring, 368

AudioPlayerExampleViewController.h file, 350,
352, 356, 358

AudioRecorderExample.h file, 366

autorelease pools, using in memory
management, 11-13

autoresizingMask values, described, 118
autorotation

defined, 303

using, 304-306
AVAudioPlayer class

behavior of, 351

explained, 350
AVAudioPlayerDelegate protocol

adopting, 356

implementing, 396

implementing methods for, 357

background audio, controlling volume of, 362.
See also audio

background audio service, 461
background color
changing for orientation, 302
setting for movies, 389
background location service, 459—-461. See
also location manager
background mode, entering and exiting,
457-458
battery power, preserving for location manager,
315, 319
birthdays, creating events for, 431-433
bookmarks, using in Xcode IDE, 53
border styles, using with text fields, 156
bounds, using with views, 113114
braces ({ }), using in header (.h) file, 3
breakpoints
adding in Xcode IDE, 52
removing in Xcode IDE, 52
brightness slider, 175

Build Results window, displaying in Xcode IDE,
58

buttons
adding for alert views, 142-143
adding to applications, 170-171
adding to main view, 184
adding to toolbars, 153-156
checkbox, 172
creating for custom cells, 227
creating for taking photos and videos, 377
predefined, 153
specifying images for, 171
using target-action pattern with, 37

C

calendar event store, querying, 429
calendar events
editing, 438-442
viewing, 434-437
calendars, using with dates, 22. See also
iPhone calendar

calendars property, passing nil in, 429
camel case notation, variation of, 5
camera application, 378-379
camera mode, launching image picker in, 378
camera support, checking for, 376
capitalization, setting for keyboards, 158
categories, using as alternative to subclassing,
37-38

cells, customizing in table views, 224-232
CGRect

converting to NSString, 114

creating for frame of view, 113

creating for subview, 117

uses of, 286
checkbox buttons, creating, 172
class files, adding in Xcode IDE, 57
class methods

autoreleased objects returned by, 6

defining, 6

prefixing with plus (+) sign, 6

using, 6
classes. See also subclassing

adding to applications, 57

arrays, 24-26

class methods provided by, 6

Index 471

classes (continued)
dates and times, 20-23
dictionaries, 27-29
header (.h) file, 3
implementation (.m) file, 4
methods, 5-7
with methods for handling files, 234-235
notifications, 30—-31
saving in Xcode IDE, 57
strings, 14-20
timers, 32-34
clicks, capturing in web views, 169
CLLocation events
generating, 312
properties of, 318

CLLocationManager class, delegate methods,
314

CLPreviewController object, using, 244
Cocoa, defined, 1
Cocoa Touch Class, adding, 57
Cocoa Touch framework group, described, 2
code
collapsed in Xcode IDE, 52
commenting in Xcode IDE, 53
displaying in functional groups, 52
hiding in Xcode IDE, 52
uncommenting in Xcode IDE, 53
code completion, using in Xcode IDE, 53
code-signing identities, resource for, 79
colon (:), using with methods, 7
Command key. See keyboard shortcuts

compass, accessing in Core Location
framework, 323-324

contact information

displaying, 424

editing in Address Book, 425
contact names, adding labels for, 423

contact records, retrieving in Address Book,
406-408

ContactExampleViewController.h file, 413
contacts
adding to Address Book, 424
creating for Address Book, 413-417
grouping in Address Book, 410

Contacts application
displaying people picker in, 418
viewing contacts in, 416
Control key. See keyboard shortcuts
controls
buttons, 170-171
defined, 111
segmented, 177-179
sliders, 175-176
switches, 172-173
using UIControl class with, 170
copy method, calling, 13
Core Location framework. See also location
manager
accessing compass, 323-324
adding logging of data to screen, 316-317
adding timeouts, 318-323
adding to projects, 327
CLLocation events, 312
CLLocationManager class, 312
decreasing desiredAccuracy level, 323
handling location updates, 314-315
increasing accuracy, 317-318
power used by, 315
testing outside simulator, 315-316
Core OS framework group, described, 2
Core Services framework group, described, 2

CorelLocationExampleViewController.h file, 312,
316, 318

D

data detectors, using with text views, 161
date and time intervals, calculating, 20-21
date objects, creating for calendar, 428
date picker, creating, 151
dates
calculating seconds between, 20-21
comparing, 2021
creating, 20
getting day, month, and year from, 21
localizing, 94
setting styles for, 23

472 Index

Debugger Console

displaying location information in, 314

logging tap counts to, 286

logging touch locations to, 294
defaults system, reading and writing to, 88
Delegate design pattern, using, 36
delegate methods

for CLLocationManager class, 314

defining for picker view, 148

implementing for alert view, 143, 162-163

implementing for page control, 133

implementing for zooming, 131

for multitasking, 458

using to manage heading updates, 324

for web pages, 165
design patterns

categories, 37-38

Delegate, 36

MVC (Model View Controller), 35

singletons, 39

Target-Action, 37
DetailViewController.h file, 218
developer, registering with Apple as, 41
dictionaries

accessing objects in, 28

creating, 27

mutable, 29

populating from files, 28

verifying number of elements in, 28
directories

Documents, 237

Library, 238

tmp, 237
documentation viewer, launching for iOS, 78
documents, previewing, 244
Documents directory, explained, 237
double-tap support, adding, 287

drill-down details application, main header file
for, 219

E

editor pane in Xcode IDE, using, 50-51
EKEventViewController, using, 436—437
e-mail

attaching files to, 447

composing and sending, 443—-449

showing compose interface for, 447
e-mail libraries, using, 444
EmailExampleViewController.h file, 444
event store

adding events to, 432

creating for birthdays, 431-433

F

file sharing, enabling, 238
file system, overview of, 236
files

adding to projects, 51

attaching to e-mail, 447

classes related to, 234

copying, 236

creating in Xcode IDE, 57

editing in Xcode Organizer, 79

finding quickly in projects, 51

opening from keyboard, 51

reading in application bundles, 238
FilesExampleViewController.h file, 240
“flip” animation, using with modal views,

189-192

FlipModalExampleViewController.h file, 189
focus ribbon in Xcode IDE, explained, 52
font size, specifying for labels, 136
fonts, list of, 137
force-quitting applications, 90
Frame accessibility attribute, 101
frames, representing views as, 112
frameworks

adding to projects, 2

defined, 2

referencing in code, 2
French localization, displaying, 97

French strings file, adding to application,
95-96

Index 473

G

Game Kit API, using for peer-to-peer
applications, 271-273

Get Info in Xcode IDE, keyboard shortcut,
46-47

getter methods, generating, 9
GetWebContentViewController.h file, 248, 251
graphics

adding for load screen, 79

adding to tabs, 196

using in image views, 126
groups in Xcode

creating, 45

static, 44
gutter in Xcode IDE, explained, 52

header (.h) file

@end directive, 3

#import directive, 3

@interface line, 3

use of braces ({ }) in, 3
heading updates, checking support for, 324
helloWorld target in Xcode, features of, 46—47
helloWorldViewController.h file, 72
helloWorldViewController.xib file

construction of, 7677

opening in IB, 65
Hint accessibility attribute, setting, 100101
home directory, contents of, 237
HTTP authentication, responding to, 266
hyperlinks

handling in web views, 168-169

opening in Safari application, 169

IB (Interface Builder)
Accessibility inspector, 102
actions, 64
configuring slider in, 74
creating actions manually, 72—-75
creating interfaces, 69-70
creating outlets manually, 72-75
displaying class’s actions, 70

displaying class’s outlets, 70

document window, 65-66

features of, 64-65

File’s Owner object, 65

First Responder object, 66

increasing width of time label, 73

inspector window, 67-69

laying out applications, 69

Library window, 67

outlets, 64

updating applications, 70-72

using to set styles for table views, 207

View object, 66

XIB files, 65
image picker

closing, 374

creating application with, 372-375

hiding, 374

launching in camera mode, 378

setting sourceType property of, 371-372
image views. See also views

controlling scrolling behavior of, 127

creating, 126

resizing, 126

using with scroll views, 129-130
ImagePickerExample.h file, 372
images

animating, 127

animating over, 128

choosing from photo library, 371

displaying as annotations, 336—-337

getting paths of, 238

panning around, 130

specifying for buttons, 171

using scroll view with, 129-130

zooming in and out of, 130
implementation (.m) file

@end directive, 4

@implementation line, 4

#import directive, 4

@synthesize directive, 4

interapp communication, using openURL:
method in, 103. See also applications

interface, redrawing when rotating, 303

474 Index

Interface Builder (IB)
Accessibility inspector, 102
actions, 64
configuring slider in, 74
creating actions manually, 72-75
creating interfaces, 69-70
creating outlets manually, 72-75
displaying class’s actions, 70
displaying class’s outlets, 70
document window, 65-66
features of, 64-65
File’s Owner object, 65
First Responder object, 66
increasing width of time label, 73
inspector window, 67-69
laying out applications, 69
Library window, 67
outlets, 64
updating applications, 70-72
using to set styles for table views, 207
View object, 66
XIB files, 65
Internet connections, testing for, 252
iOS SDK (software development kit)
documentation, 78
downloading, 41
frameworks, 2
iPhone, displaying logging information on, 317
iPhone calendar. See also calendars
accessing database for, 428
adding events, 430
alarms event, 430
calendar event, 430
creating date objects, 428
creating events for birthdays, 431-433
editing events, 438-442
Event Kit Ul classes, 434
eventIdentifier event, 430
location event, 430
notes event, 430
recurrenceRule event, 430
retrieving events from, 428-429
setting alarms, 432
startDate/endDate event, 430

title event, 430

viewing calendar events, 434—-437
viewing details of events, 436-437
viewing event details, 434

IPhone screen, adding logging location data to,

316-317

iPhone Simulator

adding photos to, 63

backing up data on, 63

features of, 61-63

limitations of, 61-62

removing applications from, 63

resetting, 63
iPhone vs. iPhone Simulator, building for, 58
iPhones, identifying via UDID, 79
iPod library

accessing media items, 392

playing audio from, 399

selecting songs from, 397
iPodLibraryExample.h file, 396, 399-400
iPods, identifying via UDID, 79
iTunes file sharing, support for, 88

J

JavaScript, executing in web views, 167

K

keyboard shortcuts
bookmarks in Xcode IDE, 53
building applications in Xcode IDE, 58
code management in Xcode IDE, 52
documentation viewer, 78
finding text in Xcode IDE, 53
force-quitting applications, 90
Get Info in Xcode IDE, 46-47
help in Xcode IDE, 53
jump-to-definition in Xcode IDE, 53
opening files in windows (Xcode), 51
Project Find window in Xcode IDE, 53
Redo in Xcode IDE, 60
Single File Find in Xcode IDE, 53
Undo in Xcode IDE, 60
Xcode IDE, 60

Index 475

keyboards
hiding, 161
scrolling interface in response to, 162—-163
setting capitalization for, 158
using, 157-159
keyboardType property
disabling, 158
setting, 157

L

Label accessibility attribute, 101
label text
adding shadows to, 136
aligning, 138
displaying lines of, 138
labels
controlling wrapping of, 138
creating and setting properties of, 136, 138
setting line counts for, 138
specifying font sizes for, 136

landscape versus portrait orientation, 186, 303,
305-306. See also orientation

language codes, resource for, 97
launch image, specifying name of, 88
launchOptions values, displaying, 107

layoutSubviews method, using with table
views, 225

Library directory, explained, 238
links

handling in web views, 168-169

opening in Safari application, 169
load screen, adding graphic for, 79
load time, speeding perception of, 79
loadView method, explained, 183
local notifications. See also notifications

creating application for, 462—-465

responding to, 466—-468

service, 461
localization

dates, 94

numbers, 94

overview of, 94-95

support for, 88

localized applications, creating, 95-97
location aware applications, creating, 312—-313
location events

checking ages of, 320

filtering, 317-318

location manager. See also background
location service; Core Location framework

adding timeouts to, 318—-323
generating, 319
heading Available class method, 324
location search, results of, 323
location updates, handling, 314-315
locations
setting and showing on maps, 328
showing in maps, 328
logging information, displaying on iPhone, 317
long-touch support, adding, 288-291

low-memory conditions, handling, 193. See
also memory management

.m (implementation) file
@end directive, 4
@implementation line, 4
#import directive, 4
@synthesize directive, 4

Mail application, launching, 103, 443

MainWindow.xib, objects for, 76—77

map center coordinate, creating variable for,
328

Map Kit framework, adding to projects, 325
map overlays, creating, 329-330
mapping application
adding helper methods, 344
adding instance variables to, 342
completing, 345-348
creating CGRect for address view, 343
header file for, 342
implementing delegates for, 344
MappingExampleViewController.h file, 325,
330, 338, 341
maps
adding annotations to, 333-337
adding reverse geocoding to, 338-340

476 Index

adding to applications, 325-327

defining regions on, 330

displaying, 329

displaying addresses in annotations, 339

drawing routes on, 330—-332

drawing shapes on, 329-330

removing annotations from, 337

showing locations on, 327-328

zooming into, 328
Maps application, launching and searching, 104
mapType property, using to display maps, 329
media collections, accessing, 394-395
Media framework group, described, 2
media items

accessing in iPod library, 392-393

metadata properties for, 394

playing, 398
media picker

adding, 396-397

closing, 397
media player, creating, 400-404
media query, console output of, 393-394
MediaPlayer framework, adding, 382

memory management. See also low-memory
conditions

autorelease pools, 11-13
referencing counting, 10
MessageUI framework, using, 443—-444
messaging methods, 5
method calls
nesting, 7
performing steps in, 8
methods
calling, 5-6
initializer, 8
passing values into, 5
phrases used with, 5
syntax for, 6
use of square brackets ([]) with, 5
using colon (:) with, 7
writing, 7
MKCircle class, using with maps, 330
MKMapView, example of, 326
MKPolygon class, using with maps, 330

modal views, displaying, 189-193
Model View Controller (MVC) design pattern, 35
motion* methods, using to detect shakes, 298
movement detection. See accelerometer
movie playback, controlling, 386
movie player, customizing, 387-390
movie player video controller
completed code, 385
header file for, 382
using, 384
movie recording, time limitation of, 375
MoviePlayerExampleViewController.h file,
382,387
movies. See also videos
loading from network locations, 390-391
setting background color of, 389
showing activity indicator for, 390
MPMediaItem class, explained, 392
MPMediaPickerController view controller
class, 396
MPMoviePlayerController:, using, 387-391
MPMusicPlayerController class, 398
multitasking
delegate methods, 458
overview of, 456
preventing, 457
verifying capability for, 457
multitasking services
background audio, 461
background location, 459-461
local notifications, 461
task completion, 459
VolIP (Voice over IP), 461
multi-touch gestures. See also touch-based
applications
pinch, 292-294
rotate, 292-294
supporting, 292-294
zoom, 292-294
MultiTouchExampleViewController.h file,
292,295
music players, types of, 398
MVC (Model View Controller) design pattern, 35
MyCustomCell.h file, 224

Index 477

Name property, using with settings page, 93
navigation bar in Xcode IDE, using, 55-56

navigation controllers, using with table views,
217

network locations, loading movies from,
390-391

networking
creating peer-to-peer applications, 271-273

creating peer-to-peer chat applications,
273-278

parsing RSS feeds, 255-261

parsing XML, 254

responding to HTTP authentication, 266
retrieving content from web pages, 248

retrieving stock quotes from web pages,
248-251

searching Wikipedia, 262-265
sending data to web pages, 262
updating status on Twitter, 266—-271
using asynchronous connections, 251-253
NIB (NeXT Interface Builder), 65
NIB Name property, using with
MainWindow.xib, 76
notifications. See also local notifications
described, 30
registering objects as observers for, 30
using, 30-31
NSCalendar class, using, 21
NSData class, using with files, 234
NSDate class, using, 20
NSDate objects, creating, 21
NSDateFormatter class, using, 22-23, 94
NSDictionary
loading and saving as file, 239-243
using, 27
using with files, 234
NSFileManager class, explained, 236
NSHomeDirectory() function, using, 237
NSLog() statements

using with asynchronous connections,
252-253

using with stock quotes, 250
NSMutableArray class, using, 26

NSMutableDictionary class, using, 29
NSNotification object, using, 30
NSNumbexrFormatter class, using, 94
NSString class

containing numbers, 15

converting CGRect to, 114

creating, 14

file functions, 18

format specifiers, 14

immutable quality of, 14

initializer methods in, 8

stringWithContentsOfURL: method, 248

using to read and write to URL, 18

using with files, 234
NSTimer class, using, 32
NSURLConnection class, using, 251-252
NSUserDefaults class, using, 87, 90
NSXMLParser class, using, 254, 256
numbers, localizing, 94

0
Objective-C
classes, 3—4
creating objects, 7-8
defined, 1
methods, 5-7
properties, 8—9
objects
calling release method for, 10-11
creating, 7-8
on/off controls, creating, 172-173
openURL: method, using with UIApplication
class, 103
Option key. See keyboard shortcuts

orientation. See also landscape mode versus
portrait orientation; view controllers

autorotating, 303
detecting, 299, 301-302
determining for shakes, 299-301
Portrait versus Landscape, 186
responding to changes in, 184-188
specifying for applications, 88
tracking changes in, 187
orientation changes, redrawing interface for, 303

478 Index

OrientationExampleViewController.h file, 304

outlets, creating in IB (Interface Builder)
manually, 72-75

Overview toolbar, using in Xcode IDE, 59

P

P2PExampleViewController.h file, 274
page control, creating for scroll view, 132-135
parser delegate methods, implementing, 256
parser variable, using with RSS feed, 255
passwords, saving in settings file, 239-242
pasteboard, using, 109-110
paths
getting array of filenames for, 236
retrieving for applications, 237
patterns. See design patterns
PDF viewer, creating, 244-247
peer picker controller, 272

peer picker delegate method, implementing,
275

peer-to-peer applications, creating, 271-273

peer-to-peer chat application, creating,
273-278

people picker
adding to Address Book, 418—420
editing in Address Book, 421-427
updates for editing contacts, 426—427
PeoplePickerExampleViewController.h, 419, 421
phone numbers
dialing, 104
setting values in Address Book, 414
photo library
choosing images from, 371
determining empty status of, 375
photos
adding to iPhone Simulator, 63
taking, 375-380
picker views. See also views
creating, 146-148
enhancing, 148-150
pictures. See images; photos
pinch gestures, adding, 295-297
Play button, creating for audio, 368
playback queue, using with audio, 398

playlists, retrieving, 395
plus (+) sign, prefixing class methods with, 6

portrait versus landscape orientation, 186, 303,
305-306. See also orientation

PostTweetViewController.h file, 266
PostWebContentController. h file, 262
predicate, creating for search text, 214
preferences

application, 90

user, 87, 89-90
PreferenceSpecifiers key, using, 91
progress views, creating, 139-140
Project Find history, accessing in Xcode IDE, 53
projects. See also applications

adding files to, 51

adding frameworks to, 2

creating in Xcode IDE, 43
properties

defining, 9

using getter methods with, 8

using setter methods with, 8
property list files, selecting in Xcode IDE, 50
provisioning profiles, use of, 79, 82

Q

QuartzCore framework, adding to long-touch
project, 289
Quick Look framework
adding, 244
resource for, 246

Record button, creating for audio, 368
recording settings, controlling, 370
rectangles. See CGRect

referencing counting, using in memory
management, 10

release method, calling for objects, 1011
responder objects, defined, 280
retain method, calling, 13
Return key
changing text on, 158
hiding text field for, 158
reverse geocoding, adding to maps, 338-340

Index 479

RootViewController.h file, 201, 204, 210, 218,
225,434

rotate gestures, adding, 295-297
rotating
iPhones, 303
views, 296-297
rotation transforms, applying to views, 124-125
roundedCornerView class, creating, 120122
routes, drawing on maps, 330—-332
rows
grouping into sections and styles, 204
indicating for custom cells, 230
RSS feeds
format of XML records for, 254
parsing, 255-261

S

Safari application, opening links in, 169
sandbox, defined, 233

saveClick: method, implementing, 241-242
scale transforms, using with views, 123-125
scope highlighting effect, using in Xcode IDE, 52

screen, adding logging location data to,
316-317

scroll views

adding zoom to, 131

paging content of, 131

using to zoom in and out of images, 130

using with images, 129-130
search text, creating predicate for, 214
segmented controls

creating, 177-178

properties, 179

removing, 178

styles, 179
setter methods, generating, 9
Settings example, header for, 240
settings file

saving password in, 239-242

saving username in, 239-242
settings page

adding controls to, 92-93

creating for applications, 91

setting Name property for, 93

setting Title property for, 93
setView: method, using with table views, 224
ShakeExampleViewController.m file, 299
shakes

detecting, 298

determining orientation for, 299-301

supporting, 299
Shift key. See keyboard shortcuts
simulator. See iPhone Simulator
single-tap support, adding, 287
singletons, using, 39
skpsmtpmessage class, availability of, 444
slider, configuring in IB (Interface Builder), 74
sliders

features of, 175

implementing, 175-176
smart groups, creating in Xcode IDE, 48
SMS (Short Message Service)

composing and sending, 450-454

creating body of, 452
SMS application, launching, 103, 450
SMSExampleViewController.h file, 451
songs, selecting from iPod library, 397
splash screens, adding to applications, 86
square brackets ([]), using with methods, 5

startWiggle: method, using with long-touch
support, 289

status bar
choosing display styles for, 88
launching applications without, 88
leaving visible, 88
stock quotes, retrieving from web pages,
248-251

stopWiggle: method, using with long-touch
support, 289
string methods, common uses of, 19
strings
combining, 17
comparing, 15
converting case of, 15
creating arrays with substrings, 17
creating substrings, 16
getting lengths of, 15
NSString class, 14-19

480 Index

performing case-sensitive comparisons, 15
replacing substrings in, 17
searching for substrings in, 17
trimming characters from, 16
verifying substrings in, 17
strings file, adding to applications, 95-96
stringWithContentsOfURL: method, using, 248

subclassing, alternative to, 37-38. See also
classes

substrings. See strings
switches
altering appearance of, 173-174
creating, 172-173
creating for custom cells, 227
synchronous connection, explained, 250
system items
availability of, 153
types of, 154

T

tab bar items
hiding, 217
updating applications for use of, 196-199

tab view controllers, implementation files for,
198-199

tab views, using 194—-199. See also views
table views. See also views
cells in, 200
creating applications with, 201-203
creating arrays for sections of, 204-205
creating predicate for search text, 214
creating with drill-down behavior, 218—-222
customizing cells in, 224-232
drilling down in, 217
editable for searching, 210-216
editing, 210
elements of, 200
grouped, 204-209
grouping rows in, 204
implementing data sources for, 200
implementing delegates for, 200
searching, 210
setting styles in IB (Interface Builder), 207
styles for cells, 223

suppressing delete button, 214
UITableView class, 200
UITableViewCell class, 200
using, 200
using navigation controllers with, 217
using sections with, 204-209
tabs
adding graphics to, 196
adding titles to, 196
creating applications with, 194-195
disabling, 197
limiting number of, 195
selecting in code, 195
tap counts,logging to Debugger Console, 286
tap delay, setting, 288-289
tapCount property, using with touch objects,
285

tappable links, converting data into, 161
tapping support

adding, 285-286

single and double, 287-288
target-action pattern

defined, 111

using, 37
targets in Xcode IDE

cleaning, 58

helloWorld, 46—-47

using, 46-47
task completion service, 459
templates, choosing in Xcode IDE, 42—-43
text fields

border styles for, 156

creating, 156—-158

hiding for Return key, 158

removing text from, 157

resizing automatically, 157

restricting content entered into, 159-160
text views

using, 160

using data detectors with, 161
thumb image, setting for UISlider, 175
TiltingExampleViewController.h file, 307
tilt-sensitive applications, creating, 307-310

Index 481

time. See date and time intervals; World Clock
application
time picker, creating, 151
timers
creating, 32, 34
stopping, 33
Title property, using with settings page, 93
titles, adding to tabs, 196
tmp directory, explained, 237
toolbar items, creating, 154-155
toolbars
adding buttons to, 153-156
autoresizingMask property of, 152
creating, 152-153
sizing, 154
updating in Xcode IDE, 49

touch locations, logging to Debugger Console,
294

touch-based applications. See also multi-touch
gestures
adding long-touch support, 288-291
creating, 281-283
header file of, 281
updated header file, 283
updating, 283-285
touch-based events, methods for, 280
TouchExampleViewController.h file, 281, 283,
287,289
Traits accessibility attribute, 101
tweetClick: method, implementing, 267
Twitter, updating status on, 266-271

U

UDID (unique device identifier), 79

UIApplication class, using openURL: method
with, 103

UIApplicationDelegate class, using, 84

UIBarButtonItem class, using, 153-156

UIButton class, using, 170171

UIControl class, using, 170

UIDatePicker class, using, 151

UIDevice class, using, 86

UIDevice singleton, using with shakes, 299

UIImage class, using with files, 234

UIImagePickerController class, using, 371
UIImageView class, using, 126-127
UILabel class

instances of, 136

retrieving for switches, 173-174
UIPageControl, using with scroll views, 131
UISegmentedControl class, described, 177
UISlider, setting thumb image of, 175
UISwitch class, using, 172-173
UITabBarController class, using, 194
UITableView class, explained, 200
UITextField class, using, 156
UITextView class

using, 160

using with stock quotes, 249
UIToolbar class, using, 152-153
UITouch object, explained, 280
UIView class

creating subclasses for, 118

using, 112
UIViewController class, described, 182
Unicode Consortium homepage Web site, 97
unique device identifier (UDID), 79
URL identifiers, support for, 88
URL scheme

responding to being launched via, 106-108

using in interapp communication, 103—-105
user preferences

setting, 87, 89

storage of, 87
username, saving in settings file, 239-242

'}

Value accessibility attribute, 101
version number, setting for applications, 88
vibrate feature, adding, 143
video button, availability of, 380
videos. See also movies
playing, 381-385
taking, 375-380
view controllers. See also orientation
displaying modal views, 189-192
main views, 182
responsibilities of, 182

482 |ndex

UIViewController class, 182
view-based applications, creating, 312
viewDidAppear method, explained, 183
viewDidDisappear method, explained, 184
viewDidLoad method

explained, 183-184

implementing, 241
viewDidUnload method, explained, 183

views. See also image views; picker views; tab
views; table views; web views

activity indicator, 140-141

adding subviews to, 113, 117-118

adding to applications, 113

alert, 142143, 145

animating, 289

animating properties of, 115-117

applying rotation transform to, 124-125

applying scale transform to, 124-125

autosizing, 117-119

bounds, 113-114

creating custom rounded-corner, 120-122

custom drawing, 118

defined, 1M1

locating origins of, 112

nesting, 112

overview of, 112

presenting, 183-184

presenting modally, 191

replacing with custom classes, 122

representing as frames, 112

resizing for animations, 116

resizing via scale transform, 123

rotating, 296-297

rounded-corner, 120-123

specifying origins and sizes of, 112

text, 160
viewWillAppear method, explained, 183
viewWillDisappear method, explained, 184
VoiceOver

enabling over iPhone, 98-99

improving descriptions used by, 100-101
VolIP (Voice over IP) service, 461
volume, controlling for background audio, 362

W
Web pages
delegate methods for, 165
displaying in applications, 164—166
retrieving, 251
retrieving content from, 248
retrieving stock quotes from, 248-251
sending data to, 262
using Backward buttons in, 166
using Forward buttons in, 166
Web sites
Apple Developer Connection, 41, 307
code-signing identities, 79
documentation for iOS, 78
iOS SDK, 41
language codes, 97
registering as Apple developer, 41
skpsmtpmessage class, 444
Unicode Consortium homepage, 97
web views. See also views
capturing clicks in, 169
executing JavaScript in, 167
handling hyperlinks, 168—169
implementing, 166
loading local content, 168—-169
Wi-Fi, setting property for, 88
Wikipedia, searching, 262-265
World Clock application, 194

X

Xcode IDE
Action toolbar feature, 48
adding classes to applications, 57
<app>-Info.plist properties, 44—45
bookmarks, 53
Bookmarks pop-up menu, 56
Bookmarks smart group, 45
Breakpoints pop-up menu, 56
Build and Go toolbar feature, 48
building and running applications, 58
building for iPhone vs. Iphone Simulator, 58
choosing project templates in, 42-43
Class hierarchy pop-up menu, 56

Index 483

Xcode IDE (continued)

cleaning targets, 59

code completion, 53
collapsed code in, 52
commenting code, 53
Counterpart pop-up menu, 56
creating files, 57

creating groups in, 45
creating projects in, 43
creating smart groups, 48
Debug configuration, 47
default smart groups in, 45
details pane, 49-50
displaying breakpoints in, 52
displaying errors in, 52
displaying line numbers in, 52
displaying warnings in, 52
editor pane, 50-51

Errors and Warnings smart group, 45
Executables smart group, 45
Find Results smart group, 45
find-and-replace operations, 53
Groups & Files pane, 44-45, 47
gutter and focus ribbon, 52
help feature, 53

hiding code in, 52

Included files pop-up menu, 56
Info toolbar feature, 48
jump-to-definition, 53
keyboard shortcuts, 60

Lock pop-up menu, 56
navigation bar, 55-56
opening files in windows, 51
overview of, 41-42

Overview toolbar, 59
Overview toolbar feature, 48
Project Find history, 53
Project Find window, 53

Redo keyboard shortcut, 60
Release configuration, 47
saving classes, 57

saving projects in, 43

SCM (source-code management) smart
group, 45

scope highlighting effect, 52

Search toolbar feature, 48

selecting property list files, 50

Single File Find dialog box, 53

static groups, 44

targets, 46-47

Targets smart group, 45

Tasks toolbar feature, 48

toolbar features, 48

uncommenting code, 53

Undo keyboard shortcut, 60

updating toolbar in, 49

Xcode Organizer

Archived Applications feature, 81
Developer Profile feature, 82
Device Logs feature, 82

Devices section, 80

editing files in, 80

iPhone development area, 81-82
Provisioning Profiles feature, 82
Screenshots feature, 82

Share Application feature, 81
Sharing section, 81

Software Images feature, 82
Submit to iTunesConnect feature, 82
Validate Application feature, 81

XIB files

changing view mode of, 66
displaying two of, 76—-77
using with IB (Interface Builder), 65

XML, parsing, 254
XMLExampleViewController.h file, 255

zoom gestures, adding, 295-297
zooming

adding to scroll view, 131
enabling, 131

into maps, 328

in and out of images, 130

484 [ndex

	Table of Contents
	Introduction
	Chapter 4 iPhone User Interface Elements
	Views
	Frames
	Bounds
	Animation
	Autosizing
	Custom drawing
	Transforms

	Image Views
	Animating images

	Scrolling
	Zoom
	Paging

	Labels
	Progress and Activity Indicators
	Indicating progress
	Showing activity

	Alerts and Actions
	Alerting users
	Confirming an action

	Picker Views
	Toolbars
	Toolbar items

	Text
	To use keyboards
	Restricting content
	Text views
	Data detectors
	Hiding the keyboard
	Scrolling the interface

	Web Views
	Running JavaScript
	Loading local content and handling hyperlinks

	Controls
	Buttons
	Switches
	Sliders
	Segmented controls

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

