

Praise for Clayberg and Rubel’s Eclipse Plug-ins, Third Edition
“Dan Rubel and Eric Clayberg are the authors of one of the most highly regarded books
in the history of Eclipse. Their Eclipse Plug-ins is generally considered the seminal book
on how to extend the Eclipse platform.”

— Mike Milinkovich
Executive Director, Eclipse Foundation

“I’m often asked, ‘What are the best books about Eclipse?’ Number one on my list, every
time, is Eclipse Plug-ins. I find it to be the clearest and most relevant book about Eclipse
for the real-world software developer. Other Eclipse books focus on the internal Eclipse
architecture or on repeating the Eclipse documentation, whereas this book is laser
focused on the issues and concepts that matter when you’re trying to build a product.”

— Bjorn Freeman-Benson
Former Director, Open Source Process, Eclipse Foundation

“As the title suggests, this massive tome is intended as a guide to best practices for
writing Eclipse plug-ins. I think in that respect it succeeds handily. Before you even think
about distributing a plug-in you’ve written, read this book.”

— Ernest Friedman-Hill
Marshall, JavaRanch.com

“If you’re looking for just one Eclipse plug-in development book that will be your guide,
this is the one. While there are other books available on Eclipse, few dive as deep as
Eclipse Plug-ins.”

— Simon Archer

“Eclipse Plug-ins was an invaluable training aid for all of our team members. In fact,
training our team without the use of this book as a base would have been virtually
impossible. It is now required reading for all our developers and helped us deliver a
brand-new, very complex product on time and on budget thanks to the great job this
book does of explaining the process of building plug-ins for Eclipse.”

— Bruce Gruenbaum

“The authors of this seminal book have decades of proven experience with the most
productive and robust software engineering technologies ever developed. Their
experiences have now been well applied to the use of Eclipse for more effective Java
development. A must-have for any serious software engineering professional!”

— Ed Klimas

“This is easily one of the most useful books I own. If you are new to developing Eclipse
plug-ins, it is a ‘must-have’ that will save you lots of time and effort. You will find lots of
good advice in here, especially things that will help add a whole layer of professionalism
and completeness to any plug-in. The book is very focused, well-structured, thorough,
clearly written, and doesn’t contain a single page of ‘waffly page filler.’ The diagrams
explaining the relationships between the different components and manifest sections are
excellent and aid in understanding how everything fits together. This book goes well
beyond Actions, Views, and Editors, and I think everyone will benefit from the authors’
experience. I certainly have.”

— Tony Saveski

“Just wanted to also let you know this is an excellent book! Thanks for putting forth the
effort to create a book that is easy to read and technical at the same time!”

— Brooke Hedrick

“The key to developing great plug-ins for Eclipse is understanding where and how to
extend the IDE, and that’s what this book gives you. It is a must for serious plug-in
developers, especially those building commercial applications. I wouldn’t be without it.”

— Brian Wilkerson

The Eclipse Graphical Editing
Framework (GEF)

Eclipse is a universal, multilanguage software development environment—

an open, extensible, integrated development environment (IDE)—that

can be used for anything. Eclipse represents one of the most exciting

initiatives to come from the world of application development, and it has

the support of leading companies and organizations in the technology

sector. Eclipse is gaining widespread acceptance in both commercial

and academic arenas.

The Eclipse Series is the definitive collection of publications dedicated

to the Eclipse platform. Books in this series bring you key technical

information, critical insight, and the practical advice you need to build tools

to support this revolutionary open-source platform.

Visit informit.com/series/eclipse for a complete list of available publications.

The Eclipse Series
Eric McAffer, Erich Gamma, John Wiegand, Series Editors

The Eclipse Graphical Editing
Framework (GEF)

Dan Rubel
Jaime Wren

Eric Clayberg

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Rubel, Dan.
 The Eclipse Graphical Editing Framework (GEF) / Dan Rubel, Jaime Wren, Eric Clayberg.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-71838-0 (pbk. : alk. paper)
 1. Graphical user interfaces (Computer systems) 2. Graphic methods—Computer programs. 3. Eclipse
 (Electronic resource) 4. Computer software—Development. I. Wren, Jaime. II. Clayberg, Eric. III. Title.

 QA76.9.U83R814 2012
 005.4'37--dc23 2011023246

Copyright © 2012 Dan Rubel, Jaime Wren, and Eric Clayberg

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake
Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-71838-9
ISBN-10: 0-321-71838-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing, August 2011

To the women we love,

Kathy, Helene, and Karen

ix

Contents

Foreword by Mike Milinkovich xix

Preface xxi

Chapter 1 What Is GEF? 1

1.1 GEF Overview 1

1.2 GEF Example Applications 2

1.2.1 Shapes Example 2

1.2.2 Flow Example 3

1.2.3 Logic Example 4

1.2.4 Text Example 4

1.2.5 XMind 5

1.2.6 WindowBuilder 5

1.3 Summary 6

Chapter 2 A Simple Draw2D Example 7

2.1 Draw2D Installation 7

2.2 Draw2D Project 8

2.3 Draw2D Application 9

x Contents

2.4 Draw2D View 15

2.5 Draw2D Events 17

2.6 Book Samples 20

2.7 Summary 20

Chapter 3 Draw2D Infrastructure 21

3.1 Architecture 21

3.2 Drawing 23

3.3 Processing Events 24

3.4 Summary 25

Chapter 4 Figures 27

4.1 IFigure 27

4.2 Common Figures 29

4.3 Custom Figures 33

4.3.1 Extending Existing Figures 33

4.3.2 Adding Nested Figures 35

4.4 Painting 37

4.4.1 Bounds and Client Area 37

4.4.2 Paint Methods 38

4.4.3 Graphics 39

4.4.4 Z-Order 40

4.4.5 Clipping 40

4.4.6 Custom Painting 41

4.5 Borders 42

4.5.1 Common Borders 43

4.5.2 Custom Borders 45

4.6 Summary 53

Contents xi

Chapter 5 Layout Managers 55

5.1 List Constraints 55

5.2 Minimum, Maximum, and Preferred Size 56

5.3 Common Layout Managers 57

5.3.1 BorderLayout 57

5.3.2 DelegatingLayout 58

5.3.3 FlowLayout 59

5.3.4 GridLayout 60

5.3.5 StackLayout 61

5.3.6 ToolbarLayout 62

5.3.7 XYLayout 63

5.4 Using Layout Managers 63

5.5 Summary 67

Chapter 6 Connections 69

6.1 Common Anchors 70

6.1.1 ChopboxAnchor 70

6.1.2 EllipseAnchor 71

6.1.3 LabelAnchor 71

6.1.4 XYAnchor 71

6.2 Custom Anchors 72

6.2.1 CenterAnchor 72

6.2.2 MarriageAnchor 73

6.3 Decorations 76

6.3.1 Default Decorations 77

6.3.2 Custom Decorations 78

xii Contents

6.4 Routing Connections 80

6.4.1 BendpointConnectionRouter 81

6.4.2 FanRouter 84

6.4.3 ManhattanConnectionRouter 85

6.4.4 NullConnectionRouter 85

6.4.5 ShortestPathConnectionRouter 85

6.5 Connection Labels 86

6.5.1 BendpointLocator 87

6.5.2 ConnectionEndpointLocator 88

6.5.3 ConnectionLocator 88

6.5.4 MidpointLocator 89

6.6 Summary 90

Chapter 7 Layers and Viewports 91

7.1 Layers 91

7.1.1 LayeredPane 92

7.1.2 ConnectionLayer 93

7.1.3 Hit Testing 95

7.2 Scrolling 96

7.2.1 FigureCanvas 97

7.2.2 Viewport 98

7.2.3 FreeformFigure 98

7.2.4 FreeformLayer 99

7.2.5 FreeformLayeredPane 100

7.2.6 FreeformViewport 100

7.3 Coordinates 101

Contents xiii

7.4 Scaling 104

7.4.1 ScalableFigure 104

7.4.2 ScalableFreeformLayeredPane 104

7.4.3 Zoom Menu 105

7.4.4 Scaling Dimensions 107

7.4.5 PrecisionPoint and PrecisionDimension 109

7.5 Summary 112

Chapter 8 GEF Models 113

8.1 Genealogy Model 113

8.1.1 Domain Information versus Presentation Information 115

8.1.2 Listeners 115

8.2 Populating the Diagram 116

8.2.1 Reading the Model 116

8.2.2 Hooking Model to Diagram 118

8.2.3 Hooking Diagram to Model 124

8.2.4 Reading from a File 125

8.3 Storing the Diagram 126

8.3.1 Serializing Model Information 126

8.3.2 Writing to a File 127

8.4 Summary 128

Chapter 9 Zest 129

9.1 Setup 129

9.1.1 Installation 129

9.1.2 Plug-in Dependencies 130

9.1.3 Creating GenealogyZestView 130

9.2 GraphViewer 131

xiv Contents

9.3 Content Provider 132

9.3.1 IGraphEntityContentProvider 132

9.3.2 IGraphEntityRelationshipContentProvider 134

9.3.3 IGraphContentProvider 135

9.3.4 INestedContentProvider 136

9.4 Presentation 137

9.4.1 Label Provider 138

9.4.2 Node Size 140

9.4.3 Color 141

9.4.4 Custom Figures 144

9.4.5 Styling and Anchors 146

9.4.6 Node Highlight, Tooltips, and Styling 147

9.4.7 Connection Highlight, Tooltips, and Styling 153

9.5 Nested Content 156

9.5.1 INestedContentProvider 156

9.5.2 Label Provider Modifications 156

9.6 Filters 157

9.7 Layout Algorithms 160

9.7.1 Provided Layout Algorithms 161

9.7.2 Custom Layout Algorithms 167

9.8 Summary 173

Chapter 10 GEF Plug-in Overview 175

10.1 MVC Architecture 176

10.1.1 Model 176

10.1.2 View—Figures 177

10.1.3 Controller—EditParts 177

Contents xv

10.2 EditPartViewer 178

10.2.1 EditPartFactory 179

10.2.2 RootEditPart 179

10.2.3 EditPartViewer setContents 180

10.2.4 EditDomain 180

10.3 Tools, Actions, Policies, Requests, and Commands 180

10.3.1 Tools 181

10.3.2 Actions 182

10.3.3 Requests 182

10.3.4 EditPolicy 182

10.3.5 Commands 183

10.4 Summary 183

Chapter 11 GEF View 185

11.1 Setup 185

11.1.1 Installation 185

11.1.2 Plug-in Dependencies 185

11.2 GEF Viewer 186

11.2.1 Standalone GEF View 187

11.2.2 Viewer setContents 187

11.3 EditPartFactory 188

11.3.1 GenealogyGraphEditPart 188

11.3.2 PersonEditPart 189

11.4 Connections 193

11.5 Summary 200

xvi Contents

Chapter 12 GEF Editor 201

12.1 Setup 201

12.2 GenealogyGraphEditor 201

12.2.1 Reading and Displaying the Model 203

12.2.2 Saving the Model 205

12.3 Selection 207

12.3.1 Making the Selection Visible 207

12.3.2 Selection EditPolicy 209

12.3.3 SelectionChangeListener 212

12.3.4 SelectionManager 214

12.3.5 Synchronizing the Selection in Multiple Editors 217

12.3.6 Accessibility 217

12.4 Summary 218

Chapter 13 Commands and Tools 219

13.1 Listening for Model Changes 219

13.1.1 Adding and Removing EditParts 220

13.1.2 Updating Figures 221

13.1.3 Updating Connections 223

13.1.4 Adding and Removing Nested EditParts 226

13.2 Commands 226

13.2.1 Create Command 227

13.2.2 Move and Resize Command 228

13.2.3 Reorder Command 229

13.2.4 Reparent Command 230

13.2.5 Delete Command 231

13.2.6 Composite Commands 232

Contents xvii

13.3 EditPolicies 233

13.3.1 Creating Components 233

13.3.2 Moving and Resizing Components 235

13.3.3 Reordering Components 236

13.3.4 Reparenting Components 238

13.3.5 Deleting Components 240

13.3.6 Creating Connections 240

13.3.7 Modifying Connections 244

13.3.8 Deleting Connections 247

13.3.9 Deleting the Graph 248

13.4 Global Edit Menu Actions 248

13.5 Palette and Tools 249

13.5.1 Palette Creation 250

13.5.2 Selection Tools 250

13.5.3 Component Creation Tools 251

13.5.4 Connection Creation Tools 252

13.5.5 Creation Drag and Drop 252

13.6 Summary 253

Index 255

xix

Foreword

The Eclipse Graphical Editor Framework (GEF) project supports the creation
of rich graphical editors and views for Eclipse-based tools and Rich Client
Platform (RCP) applications. GEF’s three frameworks—Draw2D, Zest, and
GEF—are amongst the most widely used within the Eclipse community and
ecosystem.

“Mighty oaks from little acorns grow” is the story of the GEF project. In
the context of the Eclipse community, GEF is a relatively small project. But the
tools, applications, and products that have been enabled by GEF form a very
long list indeed. Everything from mission planning for the Mars Rovers to
most of the world’s commercial modeling tools make use of GEF. GEF is also
widely re-used within the Eclipse community itself, and is leveraged by Eclipse
projects such as GMF, Graphiti, AMP, Sphinx and Papyrus. It is a testament
to the idea that a small, powerful, and open source framework can make an
enormous impact on the industry.

A big part of the success of the GEF project and its three frameworks has
been its long-term focus on being a platform. Although there has been a steady
flow of innovative new features, the quality, stability, and backwards compat-
ibility of the GEF project APIs have been a big part of its success. That level
of commitment to the “platformness” (to coin a phrase) of a framework is the
hallmark of a great project at Eclipse. It requires a great deal of commitment
and discipline by the project team to accomplish.

Eclipse projects are powered by people, so I would like to recognize the
contributions of the present GEF project leader Anthony Hunter, and the past
leaders Randy Hudson and Steven Shaw, all of IBM. I would also like to rec-
ognize the many contributions of the projects committers past and present:
Nick Boldt, Alex Boyko, Ian Bull, Marc Gobeil, Alexander Nyssen, Cherie

xx Foreword

Revells, Pratik Shah, and Fabian Steeg. I would also like to recognize the con-
tributions and investments of IBM, itemis AG, EclipseSource, and Tasktop in
supporting the team working on GEF.

Dan Rubel and Eric Clayberg are the authors of one of the most highly
regarded books in the history of Eclipse. Their Eclipse Plug-ins is generally
considered the seminal book on how to extend the Eclipse platform. Dan and
Eric, this time joined by their colleague Jaime Wren, have brought their clear
prose, deep knowledge, and focus on the issues that matter to developers using
the Eclipse GEF framework to this new book. I know that you will find it a
useful addition to your Eclipse library.

—Mike Milinkovich
Executive Director

Eclipse Foundation, Inc.

xxi

Preface

When we were first exposed to Eclipse back in late 1999, we were struck by
the magnitude of the problem IBM was trying to solve. IBM wanted to unify
all its development environments on a single code base. At the time, the com-
pany was using a mix of technology composed of a hodgepodge of C/C++,
Java, and Smalltalk.

Many of IBM’s most important tools, including the award-winning Visual-
Age for Java IDE, were actually written in Smalltalk—a wonderful language
for building sophisticated tools, but one that was rapidly losing market share
to languages like Java. While IBM had one of the world’s largest collections of
Smalltalk developers, there wasn’t a great deal of industry support for it out-
side of IBM, and very few independent software vendors (ISVs) were qualified
to create Smalltalk-based add-ons.

Meanwhile, Java was winning the hearts and minds of developers world-
wide with its promise of easy portability across a wide range of platforms,
while providing the rich application programming interface (API) needed to
build the latest generation of Web-based business applications. More impor-
tant, Java was an object-oriented (OO) language, which meant that IBM
could leverage the large body of highly skilled object-oriented developers it
had built up over the years of creating Smalltalk-based tools. In fact, IBM
took its premier Object Technology International (OTI) group, which had
been responsible for creating IBM’s VisualAge Smalltalk and VisualAge Java
environments (VisualAge Smalltalk was the first of the VisualAge brand fam-
ily, and VisualAge Java was built using it), and tasked the group with creating

xxii Preface

a highly extensible integrated development environment (IDE) construction
set based in Java. Eclipse was the happy result.

OTI was able to apply its highly evolved OO skills to produce an IDE
unmatched in power, flexibility, and extensibility. The group was able to rep-
licate most of the features that had made Smalltalk-based IDEs so popular the
decade before, while simultaneously pushing the state of the art in IDE devel-
opment ahead by an order of magnitude.

The Java world had never seen anything as powerful or as compelling as
Eclipse, and it now stands, with Microsoft’s .NET, as one of the world’s pre-
mier development environments. That alone makes Eclipse a perfect platform
for developers wishing to get their tools out to as wide an audience as possible.
The fact that Eclipse is completely free and open source is icing on the cake.
An open, extensible IDE base that is available for free to anyone with a com-
puter is a powerful motivator to the prospective tool developer.

It certainly was to us. At Instantiations and earlier at ObjectShare, we had
spent the better part of a decade as entrepreneurs focused on building add-on
tools for various IDEs. We had started with building add-ons for Digitalk’s
Smalltalk/V, migrated to developing tools for IBM’s VisualAge Smalltalk, and
eventually ended up creating tools for IBM’s VisualAge Java (including our
award-winning VA Assist product and our jFactor product, one of the world’s
first Java refactoring tools). Every one of these environments provided a
means to extend the IDE, but they were generally not well documented and
certainly not standardized in any way. Small market shares (relative to tools
such as VisualBasic) and an eclectic user base also afflicted these environments
and, by extension, us.

As an Advanced IBM Business Partner, we were fortunate to have built a
long and trusting relationship with the folks at IBM responsible for the cre-
ation of Eclipse. That relationship meant that we were in a unique position to
be briefed on the technology and to start using it on a daily basis nearly a year-
and-a-half before the rest of the world even heard about it. When IBM finally
announced Eclipse to the world in mid-2001, our team at Instantiations had
built some of the first demo applications IBM had to show. Later that year,
when IBM released its first Eclipse-based commercial tool, WebSphere Studio
Application Developer v4.0 (v4.0 so that it synchronized with its then-current
VisualAge for Java v4.0), our CodePro product became the very first commer-
cial add-on available for it (and for Eclipse in general) on the same day. Two
years later, we introduced our first GEF-based tool, WindowBuilder Pro, a
powerful graphical user interface (GUI) development tool.

Developing WindowBuilder over the last several years has provided us
with an opportunity to learn the details of Eclipse GEF development at a level
matched by very few others. WindowBuilder has also served as a testbed for

Preface xxiii

many of the ideas and techniques presented in this book, providing us with a
unique perspective from which to write.

WindowBuilder’s product suite (especially GWT Designer) caught the
attention of Google, which acquired Instantiations in August of 2010. Since
the acquisition Google has donated the WindowBuilder architecture and the
two projects, SWT Designer and Swing Designer, to the Eclipse Foundation.
The GWT Designer product has been folded into the Google Plug-in for
Eclipse (GPE).

Goals of the Book

This book provides an in-depth description of the process involved in building
Eclipse GEF-based tools and editors. This book has several complementary
goals:

• To provide a quick introduction to GEF for new users

• To provide a reference for experienced Eclipse GEF users wishing to
expand their knowledge and improve the quality of their GEF-based
products

• To provide a detailed tutorial on creating sophisticated GEF tools suit-
able for new and experienced users

The first chapter introduces GEF, Draw2D, and Zest and includes exam-
ples of what has been built using GEF. The next two chapters outline the pro-
cess of building a simple Draw2D example. The intention of these chapters is
to help developers new to GEF quickly understand and pull together an exam-
ple they can use to experiment with.

The next five chapters progressively introduce the reader to more and
more of the Draw2D framework that forms the foundation of GEF. The
fourth chapter introduces figures, which are the building blocks for the rest of
the book. Chapters 5 through 8 bring the user through the complete Draw2D
Genealogy example, introducing concepts such as layout managers, connec-
tions, layers, and viewports.

The ninth chapter presents Zest, a graph visualization project part of GEF.
The remaining chapters present the non-Draw2D portions of the GEF

project, including EditParts, EditPolicies, tools, commands, and actions.
These chapters walk the user through the development of a GEF Editor for a
genealogy model.

Each chapter focuses on a different aspect of the topic and includes an
overview, a detailed description, a discussion of challenges and solutions, dia-
grams, screenshots, cookbook-style code examples, relevant API listings, and
a summary.

xxiv Preface

Sometimes a developer needs a quick solution, while at other times that
same developer needs to gain in-depth knowledge about a particular aspect of
development. The intent is to provide several different ways for the reader to
absorb and use the information so that both needs can be addressed. Relevant
APIs are included in several of the chapters so that the book can be used as a
standalone reference during development without requiring the reader to look
up those APIs in the IDE. Most API descriptions are copied or paraphrased
from the Eclipse platform Javadoc.

The examples provided in the chapters describe building various aspects
of a concrete Eclipse GEF-based plug-in that will evolve over the course of the
book. When you use the book as a reference rather than read it cover to cover,
you will typically start to look in one chapter for issues that are covered in
another. To facilitate this type of searching, every chapter contains numerous
cross-references to related material that appears in other chapters.

Intended Audience

The audience for this book includes Java tool developers wishing to build
graphical editing products that integrate with Eclipse and other Eclipse-based
products, relatively advanced Eclipse users wishing to build their own graph-
ical tools, or anyone who is curious about what makes Eclipse GEF tick. You
should be a moderately experienced Eclipse developer to take full advantage
of this book. If you are new to Eclipse or Eclipse plug-in development, we rec-
ommend starting with our companion book, Eclipse Plug-ins. We also antici-
pate that the reader is a fairly seasoned developer with a good grasp of Java
and at least a cursory knowledge of extensible markup language (XML).

Conventions Used in This Book

The following formatting conventions are used throughout the book.

Bold—the names of UI elements such as menus, buttons, field labels,
tabs, and window titles

Italic—emphasize new terms

Courier—code examples, references to class and method names, and
filenames

Courier Bold—emphasize code fragments

“Quoted text”—indicates words to be entered by the user

Preface xxv

Acknowledgments
The authors would like to thank all those who have had a hand in putting this
book together or who gave us their support and encouragement throughout
the many months it took to create.

To our comrades at Instantiations and Google, who gave us the time and
encouragement to work on this book: Rick Abbott, Brad Abrams, Brent
Caldwell, Devon Carew, David Carlson, David Chandler, Jim Christensen,
Taylor Corey, Rajeev Dayal, Dianne Engles, Marta George, Nick Gilman,
Seth Hollyman, Alex Humesky, Bruce Johnson, Mark Johnson, Ed Klimas,
Tina Kvavle, Florin Malita, Warren Martin, Miguel Méndez, Steve Messick,
Alexander Mitin, Gina Nebling, John O’Keefe, Keerti Parthasarathy, Phil
Quitslund, Chris Ramsdale, Mark Russell, Rob Ryan, Andrey Sablin, Kon-
stantin Scheglov, Chuck Shawan, Bryan Shepherd, Julie Taylor, Mike Taylor,
Solveig Viste, Andrew Wegley, and Brian Wilkerson.

To our editor, Greg Doench, our production editor, Elizabeth Ryan, our
copy editor, Barbara Wood, our editorial assistant, Michelle Housley, our mar-
keting manager, Stephane Nakib, and the staff at Pearson, for their encourage-
ment and tremendous efforts in preparing this book for production.

To the series editors, Erich Gamma, Lee Nackman, and John Wiegand, for
their thoughtful comments and for their ongoing efforts to make Eclipse the
best development environment in the world.

We would also like to thank our wives, Kathy, Helene, and Karen, for
their endless patience, and our children, Beth, Lauren, Lee, and David, for
their endless inspiration.

About the Authors

Dan Rubel is Senior Software Engineer for Google. He is an
entrepreneur and an expert in the design and application of
OO technologies with more than 17 years of commercial
software development experience, including 15 years of
experience with Java and 11 years with Eclipse. He is the
architect and product manager for several successful com-
mercial products, including RCP Developer, Window-
Tester, jFactor, and jKit, and has played key design and
leadership roles in other commercial products such as VA

Assist, and CodePro. He has a B.S. from Bucknell and was a cofounder of
Instantiations.

xxvi Preface

Jaime Wren is Software Engineer for Google. He has
worked with object-oriented technologies for the last nine
years, and Eclipse tools for the past six years, gaining
extensive expertise in developing commercial Eclipse-based
tools. At Instantiations, Jaime made significant contribu-
tions as a developer on the CodePro and WindowBuilder
product lines. After the acquisition of Instantiations by
Google, he continues to work on the WindowBuilder prod-
uct on the Google Web Toolkit (GWT) team. Jaime holds a

double B.S. in Mathematics and Computer Science from the University of
Oregon.

Eric Clayberg is Software Engineering Manager for
Google. Eric is a seasoned software technologist, product
developer, entrepreneur, and manager with more than 19
years of commercial software development experience,
including 14 years of experience with Java and 11 years
with Eclipse. He is the primary author and architect of
more than a dozen commercial Java and Smalltalk add-on
products, including the popular WindowBuilder, CodePro,
and the award-winning VA Assist product lines. He has a

B.S. from MIT, and an M.B.A. from Harvard, and has cofounded two success-
ful software companies—ObjectShare and Instantiations.

Google is a multinational public corporation invested in Internet search,
cloud computing, and advertising technologies. Google hosts and develops a
number of Internet-based services and products, and its mission statement
from the beguinning has been “to organize the world’s information and make
it universally accessible and useful.”

How to Contact Us

While we have made every effort to make sure that the material in this book
is timely and accurate, Eclipse is a rapidly moving target, and it is quite pos-
sible that you may encounter differences between what we present here and
what you experience using Eclipse. The Eclipse UI has evolved considerably
over the years, and the latest 3.7 release is no exception. While we have tar-
geted it at Eclipse 3.7 and used it for all of our examples, this book was com-
pleted after Eclipse 3.6 was finished and during the final phases of
development of Eclipse 3.7. If you are using an older or newer version of
Eclipse, this means that you may encounter various views, dialogs, and wiz-
ards that are subtly different from the screenshots herein.

Preface xxvii

• Questions about the book’s technical content should be addressed to
info@qualityeclipse.com

• Sales questions should be addressed to Addison-Wesley at
www.informit.com/store/sales.aspx

• Source code for the projects presented can be found at
www.qualityeclipse.com/projects

• Errata can be found at
www.qualityeclipse.com/errata

• Tools used and described can be found at
www.qualityeclipse.com/tools

www.informit.com/store/sales.aspx
www.qualityeclipse.com/projects
www.qualityeclipse.com/errata
www.qualityeclipse.com/tools

7

CHAPTER 2

A Simple Draw2D Example

Before covering the Draw2D infrastructure (see Chapter 3 on page 21) and
each area of building a Draw2D diagram in depth, it is useful to create a sim-
ple example on which discussion can be based. This chapter takes a step-by-
step approach to creating a simple Draw2D diagram representing the relation-
ship between two people and their offspring. To start, we take an unsophisti-
cated “brute force” approach, which we will refactor and refine in later
chapters as we introduce more concepts. This process provides valuable first-
hand experience using the Draw2D API.

2.1 Draw2D Installation

Select the Help > Install New Software... menu to install the GEF framework
into Eclipse. When the Install wizard opens, select the Eclipse release update
site (e.g., Indigo - http://download.eclipse.org/releases/indigo). Once the wiz-
ard refreshes, expand the Modeling category and select Graphical Editing
Framework GEF SDK (see Figure 2–1). Alternatively, if you would like to
install a different version of GEF, enter the GEF specific update site
(http://download.eclipse.org/tools/gef/updates/releases) in the Install wizard
and select the GEF features you wish to install. After you click Finish and
restart Eclipse, the GEF framework installation is complete.

http://download.eclipse.org/releases/indigo
http://download.eclipse.org/tools/gef/updates/releases

8 CHAPTER 2 • A Simple Draw2D Example

Figure 2–1 Install wizard.

2.2 Draw2D Project

The full Eclipse RCP framework is not needed to use the Draw2D framework,
so if you are creating a simple Java application, you can create a simple Java
project in Eclipse and modify its build path to include the following Eclipse
JAR files:

• ECLIPSE_HOME/plugins/

org.eclipse.swt_3.7.X.vXXXX.jar

• ECLIPSE_HOME/plugins/

org.eclipse.swt.win32.win32.x86_3.7.X.vXXXX.jar

• ECLIPSE_HOME/plugins/

org.eclipse.draw2d_3.7.X.vXXXX.jar

2.3 Draw2D Application 9

Alternatively, if you are creating a diagram as part of a larger Eclipse RCP
application, then create a Plug-in project with the following plug-in dependen-
cies (see Chapter 2 in the Eclipse Plug-ins book for more about Plug-in proj-
ects):

• org.eclipse.ui

• org.eclipse.core.runtime

• org.eclipse.draw2d

Since the second half of this book describes techniques that require the Eclipse
RCP framework, we use a Plug-in project rather than a simple Java project for
all of the samples in this book.

2.3 Draw2D Application

Since the full Eclipse RCP framework is not needed to use the Draw2D frame-
work, we create a simple Java class containing a main(…) method.

package com.qualityeclipse.genealogy.view;

import org.eclipse.draw2d.*;

import org.eclipse.draw2d.geometry.*;

import org.eclipse.swt.SWT;

import org.eclipse.swt.layout.GridData;

import org.eclipse.swt.layout.GridLayout;

import org.eclipse.swt.widgets.Canvas;

import org.eclipse.swt.widgets.Composite;

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Shell;

public class GenealogyView

{

 public static void main(String[] args) {

 new GenealogyView().run();

 }

}

The main(…) method calls a run() method to initialize the shell, create
the diagram, and show the shell. The run() method is not interesting with
respect to Draw2D and is included here only for completeness. For more
information on SWT and shells, please see the Eclipse Plug-ins book.

Tip: All of this source can be downloaded from www.qualityeclipse.com.

www.qualityeclipse.com

10 CHAPTER 2 • A Simple Draw2D Example

private void run() {
 Shell shell = new Shell(new Display());
 shell.setSize(365, 280);
 shell.setText("Genealogy");
 shell.setLayout(new GridLayout());

 Canvas canvas = createDiagram(shell);
 canvas.setLayoutData(new GridData(GridData.FILL_BOTH));

 Display display = shell.getDisplay();
 shell.open();
 while (!shell.isDisposed()) {
 while (!display.readAndDispatch()) {
 display.sleep();
 }
 }
}

The run() method calls the createDiagram(…) method to create and
populate the diagram. This method creates a root figure to contain all of the
other figures in the diagram (see Chapter 4 on page 27 for more about fig-
ures). A simple layout manager (see Chapter 5 on page 55 for more about lay-
out managers) is used to statically lay out the figures that are added later in
this section. Finally, the last bit of code creates a Canvas on which the diagram
is displayed and a LightweightSystem used to display the diagram (see Sec-
tion 3.1 on page 21 for more about LightweightSystem).

private Canvas createDiagram(Composite parent) {

 // Create a root figure and simple layout to contain
 // all other figures
 Figure root = new Figure();
 root.setFont(parent.getFont());
 XYLayout layout = new XYLayout();
 root.setLayoutManager(layout);

 // Create a canvas to display the root figure
 Canvas canvas = new Canvas(parent, SWT.DOUBLE_BUFFERED);
 canvas.setBackground(ColorConstants.white);
 LightweightSystem lws = new LightweightSystem(canvas);
 lws.setContents(root);
 return canvas;
}

Tip: Always set the font for the root figure

root.setFont(parent.getFont());

so that each Label’s preferred size will be correctly calculated.

2.3 Draw2D Application 11

If you run the main(…) method, an empty window will appear (see
Figure 2–2).

Figure 2–2 Empty Genealogy window.

Next, we want to add figures to the diagram representing a man, a
woman, and their one child. Add the following to the createDiagram(…)

method so that these figures are created and displayed.

private Canvas createDiagram(Composite parent) {
 ... existing code here ...

 // Add the father "Andy"
 IFigure andy = createPersonFigure("Andy");
 root.add(andy);
 layout.setConstraint(andy,
 new Rectangle(new Point(10, 10), andy.getPreferredSize()));

 // Add the mother "Betty"
 IFigure betty = createPersonFigure("Betty");
 root.add(betty);
 layout.setConstraint(betty,
 new Rectangle(new Point(230, 10), betty.getPreferredSize()));

 // Add the son "Carl"
 IFigure carl = createPersonFigure("Carl");
 root.add(carl);
 layout.setConstraint(carl,
 new Rectangle(new Point(120, 120), carl.getPreferredSize()));

 ... existing code here ...
}

12 CHAPTER 2 • A Simple Draw2D Example

The createDiagram(…) method now calls a new create-

PersonFigure(…) method to do the work of instantiating and initializing
the figure representing a person. This person figure contains a nested Label
figure to display the person’s name (see Section 4.3.2 on page 35 for more on
nested figures).

private IFigure createPersonFigure(String name) {

 RectangleFigure rectangleFigure = new RectangleFigure();

 rectangleFigure.setBackgroundColor(ColorConstants.lightGray);

 rectangleFigure.setLayoutManager(new ToolbarLayout());

 rectangleFigure.setPreferredSize(100, 100);

 rectangleFigure.add(new Label(name));

 return rectangleFigure;

}

Tip: Rather than adding the figure and then separately setting the layout
constraint:

root.add(andy);
layout.setConstraint(andy,
 new Rectangle(new Point(10, 10),
 andy.getPreferredSize()));

combine this into a single statement using the IFigure.add(child,
constraint) method:

root.add(andy,
 new Rectangle(new Point(10, 10),
 andy.getPreferredSize()));

Refactor the createDiagram(…) method above to use this more
compact form, and inline the layout as we do not need to refer to it.

root.setLayoutManager(new XYLayout());

2.3 Draw2D Application 13

Now, when the main(…) method is run, the following window appears
(see Figure 2–3).

Figure 2–3 Genealogy window with three people.

Next, add more code to the createDiagram(…) method to create a
“marriage” figure representing the relationship among the three people. This
additional code calls a new createMarriageFigure(…) method to instanti-
ate and initialize the marriage figure. This marriage figure is displayed using
a PolygonShape (see Section 4.2 on page 29 for more about shapes) in the
form of a diamond.

private Canvas createDiagram(Composite parent) {

 ... existing figure creation for people here ...

 IFigure marriage = createMarriageFigure();

 root.add(marriage,

 new Rectangle(new Point(145, 35),

 marriage.getPreferredSize()));

 ... prior code here ...

}

14 CHAPTER 2 • A Simple Draw2D Example

private IFigure createMarriageFigure() {

 Rectangle r = new Rectangle(0, 0, 50, 50);

 PolygonShape polygonShape = new PolygonShape();

 polygonShape.setStart(r.getTop());

 polygonShape.addPoint(r.getTop());

 polygonShape.addPoint(r.getLeft());

 polygonShape.addPoint(r.getBottom());

 polygonShape.addPoint(r.getRight());

 polygonShape.addPoint(r.getTop());

 polygonShape.setEnd(r.getTop());

 polygonShape.setFill(true);

 polygonShape.setBackgroundColor(ColorConstants.lightGray);

 polygonShape.setPreferredSize(r.getSize());

 return polygonShape;

}

Now the marriage figure is displayed when the main(…) method is run
(see Figure 2–4).

Figure 2–4 Genealogy window showing marriage figure.

Finally, connect each of the people to the marriage (see Figure 2–5), show-
ing their relationship to one another by modifying the createDiagram(…)

method again. This is accomplished by calling a connect(…) method to cre-
ate the line connecting the center of one figure to the center of another (see
Chapter 6 on page 69 for more about connections).

2.4 Draw2D View 15

private Canvas createDiagram(Composite parent) {

 ... existing figure creation for marriage here ...

 root.add(connect(andy, marriage));

 root.add(connect(betty, marriage));

 root.add(connect(carl, marriage));

 ... prior code here ...

}

private Connection connect(IFigure figure1, IFigure figure2) {

 PolylineConnection connection = new PolylineConnection();

 connection.setSourceAnchor(new ChopboxAnchor(figure1));

 connection.setTargetAnchor(new ChopboxAnchor(figure2));

 return connection;

}

Figure 2–5 Genealogy window showing connections.

2.4 Draw2D View

The above example diagram can also be displayed in a view that is part of an
Eclipse RCP application (see Chapter 7 in the Eclipse Plug-ins book for more
about views). Start by adding the following extension to the plugin.xml:

16 CHAPTER 2 • A Simple Draw2D Example

<extension point="org.eclipse.ui.views">
 <category
 id="com.qualityeclipse.gef"
 name="GEF Book">
 </category>
 <view
 category="com.qualityeclipse.gef"
 class="com.qualityeclipse.genealogy.view.GenealogyView"
 id="com.qualityeclipse.genealogy.view"
 name="Genealogy"
 restorable="true">
 </view>
</extension>

Now modify the GenealogyView class to be a subclass of
org.eclipse.ui.part.ViewPart, and add the following methods:

package com.qualityeclipse.genealogy.view;

... existing imports ...
import org.eclipse.ui.part.ViewPart;

public class GenealogyView extends ViewPart
{
 public void createPartControl(Composite parent) {
 createDiagram(parent);
 }
 public void setFocus() {
 }

 ... existing methods ...
}

When you launch the runtime workbench and open the Genealogy view, you’ll
see something like this (see Figure 2–6).

Figure 2–6 The Genealogy view.

2.5 Draw2D Events 17

2.5 Draw2D Events

We would like the user to be able to drag the figures around the diagram. To
accomplish this, we create a new Draw2D event listener to process mouse
events, move figures, and update the diagram. Start by creating a new
FigureMover class that implements the Draw2D MouseListener and
MouseMotionListener interfaces. Add a constructor that hooks the listener
to the specified figure and a concrete method that does nothing for each
method specified in the interfaces.

package com.qualityeclipse.genealogy.listener;

import org.eclipse.draw2d.*;

import org.eclipse.draw2d.geometry.*;

public class FigureMover

 implements MouseListener, MouseMotionListener

{

 private final IFigure figure;

 public FigureMover(IFigure figure) {

 this.figure = figure;

 figure.addMouseListener(this);

 figure.addMouseMotionListener(this);

 }

 ... stub methods here ...

}

When the user presses the mouse button, we need to record the location
where the mouse down occurred by adding a field and implementing the
mousePressed(…) method. In addition, this method must mark the event as
“consumed” so that the Draw2D event dispatcher will send all mouse events
to this listener’s figure until the mouse button is released.

Tip: When developing a Draw2D view with figures that don’t have
dependencies on the Eclipse RCP framework, add a main(...) method to
your ViewPart as shown in Section 2.3 on page 9 so that you can
quickly test your diagram in a shell rather than launching the entire
Eclipse RCP application.

18 CHAPTER 2 • A Simple Draw2D Example

private Point location;

public void mousePressed(MouseEvent event) {

 location = event.getLocation();

 event.consume();

}

As the user moves the mouse around with the mouse button held down,
we need to move the figure in the same direction and distance. The
mouseDragged(…) method calculates the distance moved, moves the figure,
and marks the event as consumed. To move the figure, we must update both
the figure’s bounding box and the layout information. Both the figure’s
original location and new location must be marked as “dirty” so that the
update manager will redraw the diagram appropriately. The getBounds()
method returns the actual rectangle object used by the figure to remember its
bounds, so we cannot modify that object. Instead, we call getCopy() before
calling translate(…) to prevent any undesired side effects.

public void mouseDragged(MouseEvent event) {

 if (location == null)

 return;

 Point newLocation = event.getLocation();

 if (newLocation == null)

 return;

 Dimension offset = newLocation.getDifference(location);

 if (offset.width == 0 && offset.height == 0)

 return;

 location = newLocation;

 UpdateManager updateMgr = figure.getUpdateManager();

 LayoutManager layoutMgr = figure.getParent().getLayoutManager();

 Rectangle bounds = figure.getBounds();

 updateMgr.addDirtyRegion(figure.getParent(), bounds);

 bounds = bounds.getCopy().translate(offset.width, offset.height);

 layoutMgr.setConstraint(figure, bounds);

 figure.translate(offset.width, offset.height);

 updateMgr.addDirtyRegion(figure.getParent(), bounds);

 event.consume();

}

When the mouse button is released, we clear the cached location and mark
the event as consumed.

Tip: To prevent undesired side effects, call getCopy(), then modify the
copy rather than modifying the original rectangle.

2.5 Draw2D Events 19

public void mouseReleased(MouseEvent event) {
 if (location == null)
 return;
 location = null;
 event.consume();
}

Finally, modify the GenealogyView class to import the FigureMover
class and hook the listeners to each person figure and the marriage figure by
modifying the createPerson(…) and createMarriage() methods. Once
these steps are complete, the figures can be dragged around the window (see
Figure 2–7). For more information on how the framework determines where
figures are for the mouse events, see Chapter 7 on page 91.

private RectangleFigure createPersonFigure(String name) {

 ... existing code here ...

 new FigureMover(rectangleFigure);
 return rectangleFigure;
}

private PolygonShape createMarriageFigure() {

 ... existing code here ...

 new FigureMover(polygonShape);
 return polygonShape;
}

Figure 2–7 Genealogy view showing dragging of figures.

20 CHAPTER 2 • A Simple Draw2D Example

Implementing listeners such as these is useful when providing user inter-
action with pure Draw2D diagrams, but much of this functionality, such as
dragging figures around a diagram, is already provided by the higher-level
GEF framework.

2.6 Book Samples
Source code for each chapter can be downloaded and compiled into Eclipse
for the reader to review, run, and modify. Go to www.qualityeclipse.com and
click Book Samples, or go directly to the Quality Eclipse update site
www.qualityeclipse.com/update to download the QualityEclipse Book
Samples view into Eclipse. Once the samples are installed, open the view by
selecting Eclipse > QualityEclipse Book Samples.

The view can be used to download the content for each chapter and com-
pare the workspace content to the content in each chapter.

2.7 Summary

This chapter quickly brought the reader through a simple Draw2D example
which includes a few figures that can be dragged and dropped on the canvas.
The following chapters will walk through Draw2D content in more detail. All
source code covered in this book can be downloaded from www.quality-
eclipse.com.

References

Chapter source (see Section 2.6 on page 20).

Clayberg, Eric, and Dan Rubel, Eclipse Plug-ins, Third Edition. Addison-Wes-
ley, Boston, 2009.

GEF and Draw2D Plug-in Developer Guide, Eclipse Documentation (see
http://help.eclipse.org/).

Lee, Daniel, Display a UML Diagram using Draw2D, August 2005 (see
www.eclipse.org/articles).

www.qualityeclipse.com
www.qualityeclipse.com/update
www.qualityeclipse.com
www.qualityeclipse.com
www.eclipse.org/articles
http://help.eclipse.org/

255

INDEX
A
AbsoluteBendpoint 81–82
Absolute coordinates 102
AbstractBorder 46
AbstractConnectionAnchor 72–73, 75
AbstractConnectionEditPart 194
AbstractGraphicalEditPart 189–191
AbstractLayoutAlgorithm 167, 169–170
Accessibility 217
Action 182, 248
ActionBarContributor 202
ActionFactory 248
Actions 180, 182
add() 11–12, 15, 28, 30, 33, 36, 43–44, 47, 51, 55–

56, 66, 70–72, 76, 86–88, 93–94, 99, 120–122,
192

addAncestorListener() 28
addChild() 75–76, 79, 94, 122, 220, 226
addCoordinateListener() 28
addDirtyRegion() 18, 23
addDisposeListener() 32
addDragSourceListener() 252
addDropTargetListener() 253
addFigureListener() 28, 124
addFocusListener() 27
addGenealogyGraphListener() 219
addKeyListener() 27
addLayoutListener() 28
addMouseListener() 17, 27
addMouseMotionListener() 17, 27
addNote() 229–231
addNotify() 222–223
addOffspring() 114
addParent() 75–76, 79, 94, 122
addPerson() 227, 232
addPersonListener() 119, 222
addPoint() 14, 31, 34, 78–80
addPrimaryFigure() 125
addRetargetAction() 248
addSelectionChangedListener() 212
addSelectionListener() 106, 125, 127, 151, 159
addSmallPolygonArrowheads() 77
addSmallPolylineArrowhead() 77
addSourceConnection() 224
addTargetConnection() 224
AlignmentAction 182
AncestorListener 28
anchor point 23
Anchors

Common 70
Custom 72

appendSelection() 215
applyLayout() 157, 159
applyLayoutInternal() 167–168, 171
ARROW 211
ArrowButton 32
ARROWHEAD 79, 195, 198, 243
Arrow Keys 217

B
BAR 105, 158
BasicAnchors 70
BasicBorders 43
BasicDecorations 77
BasicFigures 30
BasicRouters 80
Bendpoint 81

Absolute 82
Interface 82
Relative 82

Bendpoint 81
BendpointConnectionRouter 81–82
BendpointLocator 86–88
birthYearChanged() 116, 120, 222
Border 28
BorderLayout 57
Borders 37, 42
bounding box 22
bounds 37
Bucknell xxv
buildActions() 202, 248
Button 32
ByteArrayInputStream 206

C
Canvas 10, 13, 15, 23, 34–35, 51, 65, 76, 93–94, 97
CASCADE 105, 125, 158
category 16
CenterAnchor 72
chain() 232, 245–246
chained 232
ChangeBoundsRequest 235, 238
Checkbox 32
ChopboxAnchor 15, 23, 69–70, 72–73, 75, 79, 195,

242, 246–247
Click 250
Clickable 29
Clickables 29, 32
client area 37, 40
Clipping 40
CodePro xxv–xxvi
Color 28, 142–143, 152

256 Index

ColorConstants 10, 12, 14, 30–34, 41, 47–49, 78–
79, 97, 100, 141–142, 148, 154, 186, 195, 198,
208, 243

CombinedTemplateCreationEntry 249, 251
com.ibm.icu.text 186–187
Command

Composite 232
Create 227
Delete 231
Move and Resize 228
Reorder 229
Reparent 230
Stack 226

Command 227–232, 234–235, 237, 239–242, 245–
246, 248

Commands 180, 183, 219, 226
commandStackChanged() 227
COMPONENT_ROLE 240, 248
ComponentEditPolicy 240, 247
Components

Creating 233
Creation Tools 251
Deleting 240
Moving and Resizing 235
Reordering 236
Reparenting 238

composed figures 22
Composite 10–11, 34–35, 51, 65, 76, 93–94, 97, 99–

100, 105, 122, 132, 150, 169, 172, 186
CompositeCommand 232
Composite Commands 232
CompositeLayoutAlgorithm 160–163, 167, 169, 172
CompoundBorder 43–44, 47, 50, 208
com.qualityeclipse.genealogy.editor 201
com.qualityeclipse.genealogy.parts 188–189
com.qualityeclipse.genealogy.view 186
configureGraphicalViewer() 203, 212, 214, 217
configurePaletteViewer() 252
connect 23
connect() 14–15, 76
Connection 15, 69–72, 121–122, 135–136, 146,

155, 243
ConnectionAnchor 84, 103, 196, 199, 242, 246–247
ConnectionCreationToolEntry 249, 252
ConnectionDragCreationTool 182, 244
ConnectionEditPart 198–199, 224–225, 242
ConnectionEditPolicy 247–248
ConnectionEndpointEditPolicy 210
ConnectionEndpointLocator 86, 88
ConnectionLayer 92–94, 100
ConnectionLocator 86, 88
ConnectionRouter 84–85

Connections 29, 69, 193–200
Anchors 70
Creating 240
Creation Tools 252
Decorations 76
Default Color 154
Default Width 154
Deleting 247
Fan Router 84
Labels 86
Manhattan Router 85
Modifying 244
Null Router 85
Routing 80
Shortest Path Router 85
Toolips 154
Undirected 153
Updating 223

CONNECTIONS_DASH 154
CONNECTIONS_DIRECTED 154
Constraints 55
consume() 18–19
Containers 29
containsAncestor() 216
containsPoint() 28, 86, 95–96
contributeToToolBar() 248
Control 131–132, 150, 169, 172
Controller 177
CoordinateListener 28
Coordinates 101
createAddCommand() 234, 238–239
createChangeConstraintCommand() 223, 233–235
createChild() 220
createChildEditPolicy() 236
Create Command 227
CreateConnectionCommand 225, 228, 241–242, 245–

247
createConnectionCommand() 241
CreateConnectionRequest 241–242
createControl() 186
createDeleteCommand() 240
createDiagram() 10–15, 34–36, 51, 64–65, 76, 93–

94, 97, 99–100, 105, 122, 124, 130–133, 138, 143,
150, 169, 172, 186

createDummyConnection() 243
createEditPart() 195
createEditPolicies() 188–189, 194, 209–210,

233–240, 247–248
createElementsDrawer() 250–251
createFigure() 189–190, 195, 197–198, 243
createFilterMenuItem() 158
createFixedZoomMenuItem() 105
createHandle() 211
createMarriage() 19

Index 257

CreateMarriageCommand() 234
createMarriageFigure() 13–14, 19, 34
createMenuBar() 105, 118, 125, 127, 131, 158, 187
createMoveChildCommand() 235–237
CreateNoteCommand 234
CreateNoteCommand() 234
createOpenFileMenuItem() 125, 127, 187
createOrFindConnection() 224–225
createPalette() 250
createPaletteViewerProvider() 252
createPartControl() 124, 130, 186–188
createPerson() 19
CreatePersonCommand 221, 227
CreatePersonCommand() 234
createPersonFigure() 11–12, 19, 33
CreateRequest 234
createRotatedImageOfString() 29, 32
createSaveFileMenuItem() 127, 187
createScaleToFitMenuItem() 105–106
createSelectionHandles() 211, 236, 244
CreateSpouseConnectionCommand 245
CreateSpouseConnectionCommand() 241
createToolsGroup() 250–251
createView() 104
Creating Components 233
Creating Connections 240
Creation Drag and Drop 252
CreationRequest 233
CreationTool 181
CreationToolEntry 249
Creation tools 251
crop() 46
CustomFigureHighlightAdapter 150–151
Custom Figures 33

D
Dan Rubel xxv
deathYearChanged() 116, 120, 222
declareGlobalActionKeys() 202
Decorations 76

Custom 78
Default 77
Rotatable 77

DefaultEditDomain 180, 203
DefaultHandler 117
DelegatingLayout 58, 86–88
DeleteAction 182
Delete Command 231
DeleteGenealogyConnectionCommand 245–246, 248
DeletePersonCommand 231–232, 240
DeleteRetargetAction 248
Deleting Components 240
Dimension 18, 51–52, 81, 83, 108–109

DirectedGraphLayoutAlgorithm 161–163, 167,
169–170, 172

DirectedGraphLayoutAlgorithm() 161
Display 10, 32, 41, 65, 126, 128, 131
dispose() 120, 130, 133–136, 142
DisposeEvent 32
Domain information 115
doSave() 203, 205–207
doSaveAs() 207
DOUBLE_BUFFERED 23, 97, 100, 122
DragEditPartsTracker 181, 236
DragTracker 211, 236
Draw2D xxiii, 1–2, 7, 118, 175, 177, 195

Application 9
Architecture 21
Basic figures 30
Diagrams 20
Drawing 23
Events 17
Example 7
Figures 53
Graphics 39
Infrastructure 21
Installation 7
Painting 37
Processing Events 24
Project 8
View 15

drawImage() 39
drawLine() 39, 45–47
drawPolygon() 39
drawRectangle() 39
drawRoundRectangle() 39
drawText() 39
DROP_DOWN 105, 125, 158

E
EAST 211
EclipseCon 5–6
Eclipse Foundation xxiii, 6
Eclipse Modeling Framework, see EMF
Eclipse Plug-ins book xxiv, 9, 15
Edit > Delete menu 231, 240, 248
Edit > Redo menu 248
Edit > Undo menu 248
EditDomain 178, 180–181
EditFactory 195
Edit menu 246
EditPart 118, 125, 177, 179–180, 182, 188–191,

193–195, 198, 207–208, 210, 212–216, 219–221,
223, 226, 233–241, 244–247

Adding and Removing 220
Nested 226

EditPartFactory 178–179, 188, 203

258 Index

EditPartViewer 178–181
EditPolicy 182–183, 188, 207, 209–210, 219, 221,

227, 233–240, 248, 253
Ellipse 30, 84, 86
EllipseAnchor 70–71
EMF 113, 176
EntityConnectionData 138–140
equals() 193
eraseSourceConnectionFeedback() 247
eraseTargetConnectionFeedback() 243, 247
eRCP 5
Eric Clayberg xxvi
ERROR 206
ErrorDialog 206
Event 24
EventDispatcher 22, 24–25
EventManager 22
EventObject 227
execute() 227–229, 231–232
expand() 34
extension 16

F
FanRouter 84
Figure 10, 33, 42, 57, 66, 86, 93, 95–96, 121, 189,

192, 207, 209, 211
FigureCanvas 97–100, 105, 122, 125, 127, 186
FigureListener 28, 124
figureMoved() 124
FigureMover 17, 19, 33–34, 36, 50, 64, 66, 95–96,

125
Figures 27, 177

Borders 42
Bounds 37
Child 28
Clickables 29
Client Area 37
Clipping 40
Common 29
Common Borders 43
Complex 27
Connections 29, 69
Containers 29
Custom 33
Custom Borders 45
Custom Painting 41
Extending Existing 33
Graphics 39
Layered 29
Layout Managers 55
Maximum 56
Minimum 56
Nested 27, 35
Painting 37

Paint Methods 38
Preferred Size 56
Sample Code 30
Shapes 29
Z-Order 27, 40

File 128
File > Save As menu 207
File > Save menu 205
FileDialog 126, 128
FileEditorInput 207
FileInputStream 126
File menu 125
FILL_BOTH 61
FILL_HORIZONTAL 61, 66
FILL_VERTICAL 61
fillPolygon() 39, 47
fillRectangle() 39, 41, 49
fillRoundRectangle() 39
fillText() 39
Filter menu 158–159
Filters 157
findConnection() 224–225
findFigureAt() 28, 95
firePropertyChange() 207, 227
fireSelectionChanged() 208
fish-eye effect 149
fisheyeNode() 148–149
Flow 3
FlowLayout 59–60, 62
FocusListener 25, 27
Font 28, 32
FrameBorder 43
FreeformFigure 98–100
FreeformFigures 179
FreeformGraphicalRootEditPart 179
FreeformLayer 99–100, 189
FreeformLayeredPane 100, 104
FreeformLayout 189
FreeformViewport 100, 107, 179

G
GC 39
GEF xxiii, 1–2, 7, 128, 183

Adding and Removing EditParts 220
Commands and Tools 219
Editor 201, 219
Examples 2

Flow 3
Logic 4
Shapes 2
Text 4
WindowBuilder 5
XMind 5

Index 259

Listening for Model Changes 219
Models 113
Model-View separation 113
Overview 1
plug-in 185
Plug-in Overview 175
Standalone View 187
View 185
Viewer 186

Gender 158
genealogy 118
GenealogyConnection 193–198, 225, 232
GenealogyConnection() 225
GenealogyConnectionEditPart 194–195, 197–198,

210, 243, 245–247
GenealogyEditPartFactory 188, 195, 203
GenealogyElement 114–115, 124, 135, 189–190,

228, 235
GenealogyElementAdapter 119, 121, 124
GenealogyElementEditPart 190, 222, 225
GenealogyElementListener 116, 124, 222
genealogyElementRemoved() 220
genealogy.gg 205
GenealogyGraph 114–117, 119, 123, 127, 132–137,

187–189, 203, 219, 227, 231–232, 234, 240, 249,
251, 253

GenealogyGraphAdapter 119, 123, 125
GenealogyGraphEditor 201–203, 205, 207, 210,

217, 219, 226, 231, 233, 248, 252
GenealogyGraphEditorActionBarContributor 202,

248
GenealogyGraphEditorPaletteFactory 250
GenealogyGraphEditPart 188–190, 219–220, 233,

235–236, 238, 248
GenealogyGraphListener 119, 219, 221
GenealogyGraphReader 116–118, 126, 204
GenealogyGraphWriter 126–128, 206
Genealogy Model 113
GenealogyView 9, 16, 19, 33–36, 41, 48, 50–51, 63–

66, 75–76, 79–80, 85, 93, 95, 97, 100, 102, 104–
105, 107, 113, 116–118, 123–125, 131, 187

Genealogy view 16
GenealogyViewGEF 186
genealogy.xml 118, 123–124, 130–131, 187
GenealogyZestContentProvider1 133–134, 137,

156
GenealogyZestContentProvider2 134
GenealogyZestContentProvider3 135
GenealogyZestFilter 158–159
GenealogyZestLabelProvider 138, 141, 143–144,

146, 154, 156
GenealogyZestView 129–131, 137, 139, 145, 150,

159, 162, 169, 172–173
getAction() 248

getActiveShell() 126, 128
getBackground() 141, 143, 148
getBackgroundColor() 28, 39, 148, 152
getBackgroundColour() 148
getBirthYear() 138, 190, 222
getBorder() 28
getBorderColor() 148
getBorderHighlightColor() 148
getBorderWidth() 148
getBottom() 14, 34
getBounds() 18, 28, 45, 72, 75, 103, 110, 124, 238
getCenter() 72, 75, 103, 110
getCenterX() 172
getCenterY() 172
getChildren() 28, 237–238
getClientArea() 28, 107
getColor() 154
getCommand() 233, 240
getCommandStack() 206
getConnectedTo() 133–134
getConnectionCompleteCommand() 241
getConnectionCreateCommand() 241
getConnectionEditPart() 245–247
getConnectionFigure() 146, 155
getConnectionLayer() 122
getConnectionName() 228, 245
getConnectionStyle() 154
getConstraintFor() 234
getContentPane() 191
getContents() 180, 215
getControl() 132, 150, 186, 213
getCopy() 18
getCreateCommand() 221, 233–235
getCurrentLayoutStep() 169
getCurrentX() 167–168
getCurrentY() 167–168
getDeathYear() 120, 138, 190, 222
getDefault() 126, 128
getDeleteCommand() 240, 248
getDestination() 136, 146, 155, 171
getDifference() 18
getDisplay() 10, 213
getEditDomain() 252
getEditorInput() 206–207
getEditPartRegistry() 220, 225–226
getElementName() 228
getElements() 133–135
getFigure() 119–120, 122, 144, 190–191, 196,

199, 208, 222, 238, 242, 246
getFile() 204, 206–207
getFont() 10, 28, 51, 93, 100, 105
getForegoundColor() 39
getForeground() 141, 148
getForegroundColor() 28, 148

260 Index

getFreeformExtent() 107
getGender() 119, 139, 158, 190
getGraphAdapter() 122
getGraphControl() 143, 151
getGraphicalViewer() 203, 253
getHeight() 124, 229, 231
getHighlightColor() 152, 154
getHost() 236
getHusband() 194
getImage() 119, 139
getInsertionReference() 235, 237–238
getInsets() 45
getLayoutEntity() 172
getLayoutManager() 18
getLeft() 14, 34
getLineStyle() 39
getLineWidth() 39
getLocation() 18, 72–75, 103, 108, 110–111, 238
getMarriage() 134, 136, 232
getMarriages() 133, 189
getMaximumSize() 56
getMinimumSize() 56
getModel() 180, 189–190, 198, 222, 224, 234, 237–

240, 242–243, 245–248
getModelChildren() 189–190
getModelSourceConnections() 193–194, 198
getModelTargetConnections() 193–194, 198
getName() 190, 207
getNewObject() 234, 251
getNewObjectType() 234
getNodeFigure() 146, 155
getNodeHighlightColor() 148
getNotes() 148, 156, 189–190, 229–231
getNotesContainer() 191–192
getOffspring() 134, 197–198
getOwner() 72, 75, 103, 108, 110–111
getPaletteRoot() 203, 250
getPaletteViewer() 252
getParent() 18, 28, 86, 107, 122, 190, 213, 238–

240
getParentsMarriage() 136, 198, 232
getPeople() 133, 136, 189
getPersonFigure() 122, 222
getPreferredSize() 11–13, 30–31, 51–52, 56, 144
getReconnectSourceCommand() 244–245
getReconnectTargetCommand() 245–246
getRelationships() 134
getResourceAsStream() 65, 118, 124, 130–131
getRight() 14, 34
getRoot() 207
getRootEditPart() 213
getSelected() 208

getSelection() 151, 213, 215
getSelectionSynchronizer() 217
getShell() 206–207
getSite() 206–207
getSize() 34
getSource() 136, 146, 155, 171
getSourceAnchor() 84
getSourceConnectionAnchor() 198–199, 242, 246–

247
getStart() 31
getStartCommand() 241–242
getTarget() 196
getTargetAnchor() 84
getTargetConnectionAnchor() 196, 198–199, 242–

243, 247
getText() 138, 156
getToolTip() 28
getTooltip() 148–149, 154
getTop() 14, 34
getTopRight() 72
getTotalNumberOfLayoutSteps() 169
getUpdateManager() 18
getViewer() 220, 225–226
getWidth() 124, 229, 231
getWidthInLayout() 172
getWife() 194
getWorkspace() 207
getX() 229, 231
getY() 229, 231
getYearMarried() 138, 144
Global Edit Menu Actions 248
Google xxiii, xxv–xxvi, 6
Google Plug-in for Eclipse, seeGPE
Google Web Toolkit, seeGWT 5
GPE xxiii
gradient 41
Graph 143, 150–151
GraphConnection 146, 155
GRAPHICAL_NODE_ROLE 240
Graphical Editing Framework GEF SDK 7
Graphical Editing Framework, seeGEF
Graphical Editing Framework Zest Visualization

Toolkit SDK feature 129
GraphicalEditor 202, 217
GraphicalEditorWithFlyoutPalette 202–203, 250
GraphicalEditorWithPalette 202, 250, 252
GraphicalEditPart 190, 211
GraphicalNodeEditPolicy 225, 241, 243–245, 247
GraphicalViewer 203, 207, 213–214
GraphicalViewerImpl 179
GraphicalViewerKeyHandler 217

Index 261

Graphics
Drawing 39
Property access 39
Saving state 39

Graphics 38–39, 41, 44–46, 49, 53
GraphLabel 150
GraphNode 152, 172
GraphViewer 131–132, 137–138, 143, 151, 157–158
GridData 10, 60–61, 105, 131
GridLayout 10, 60–61, 66, 131
GridLayoutAlgorithm 162
GroupBoxBorder 43–44
GroupRequest 240, 248
GWT xxvi, 5
GWT Designer xxiii

H
Handle 211, 236
handleException() 206
hasChildren() 136, 156
hasFocus() 28
hashCode() 193
heavyweight 22
Highlight 151–152
highlight() 152
Hit Testing 95
HorizontalLayoutAlgorithm 164
HorizontalShift 160–163, 167, 169–170, 172
HorizontalTreeLayoutAlgorithm 164
husbandChanged() 121, 224

I
IColorProvider 137, 141, 143, 146, 148
IConnectionStyleProvider 137, 153–154
IEditorInput 204
IEditorPart 180, 227
IEntityConnectionStyleProvider 137, 153–154
IEntityStyleProvider 137, 148–149
IFigure 11–15, 17, 27–29, 33–36, 38, 46, 51, 56,

58, 64–66, 75, 77, 79, 86, 101, 104, 124, 144, 146,
148, 152, 155, 189–192, 195, 198, 243

IFigureProvider 137, 144
IFile 204, 206–207
IFileEditorInput 204, 206–207
IGraphContentProvider 132, 135
IGraphEntityContentProvider 132–134
IGraphEntityRelationshipContentProvider 132,

134
ILabelProvider 137
Image 32, 65, 119, 121, 139
ImageFigure 29, 32, 66
ImageUtilities 29, 32
indexOf() 229–231, 237
Indigo 7

INestedContentProvider 132, 136, 156
initializeGraphicalViewer() 203, 252
initializePaletteViewer() 252
inputChanged() 133–135
InputStream 131
Insets 45–46
installEditPolicy() 210, 234–240, 248
Install New Software menu 185
Instantiations xxii–xxiii, xxvi
InternalNode 167–168, 171–172
InternalRelationship 167–168, 171–172
InvalidLayoutConfiguration 168
INVERTED_TRIANGLE_TIP 77
IPath 207
IProgressMonitor 206
isAncestor() 216
isCoordinateSystem() 28
isDisposed() 10
ISelection 214
ISelectionChangedListener 213
ISelfStyle 146
ISelfStyleProvider 137, 146
isOffspringConnection() 197–198, 243, 245
isOpaque() 28
isSaveAsAllowed() 206
IStructuredContentProvider 132
IStructuredSelection 213–215
isValidConfiguration() 168
isValidSource() 228, 245–246
isValidTarget() 228, 242, 246–247
isVisible() 28
IToolBarManager 248

J
Jaime Wren xxvi
JFace 131–132, 157, 179, 182

K
Keyboard 217
KeyListener 25, 27

L
Label 10, 12, 22, 29, 32–33, 36, 43–45, 47–48, 50,

56–57, 61, 64, 71, 87–88, 96, 121, 155
LabelAnchor 71
LabelProvider 138
LabelRetargetAction 248
Layer 29, 92–93, 95, 99
Layered 29
LayeredPane 29, 93, 98, 100, 104
Layers 91–95
LAYOUT_ROLE 233–239
LayoutAlgorithm 163, 167, 169, 172

262 Index

Layout Algorithms 160
Composite 161
Custom 167
Directed Graph 162
Graph 162
Horizontal 164
Horizontal Shift 163
Horizontal Tree 164
Radial 164
Spring 165
Tree 166
Vertical 166

LayoutEntity 172
LayoutListener 28
LayoutManager 18, 55
Layout Managers 10, 55

Common 57
Constraints 55
Using 63

LayoutStyles 140, 161–165, 169, 172
lightweight 22
Lightweight Drawing System 22
LightweightSystem 10, 22–24
LINE_DASH 44
LINE_DOT 47
LineBorder 32, 44–45, 47, 50, 66, 208
Listener 24
Listeners 115
Listening for Model Changes 219
locationChanged() 116, 222–223
Locator 58
Logic 4

M
main() 9, 11, 13–14, 17, 131, 137, 187
ManhattanConnectionRouter 85
MANIFEST.MF 185–186
MarginBorder 43–44, 47, 50, 66, 189, 208
markSaveLocation() 206
MarqueeToolEntry 249, 251
Marriage 114–116, 119–120, 133–134, 138, 144,

172, 188, 193–194, 198, 220–221, 224–225, 227–
228, 232–234, 240–241, 244, 249, 252

MarriageAdapter 119–121, 124
marriageAdded() 220
MarriageAnchor 74–75, 79, 103, 107–109, 111–112,

146, 155, 195–196, 199
marriageChanged() 116, 120, 223–224
MarriageEditPart 188, 190–191, 194, 196, 198,

209–211, 222, 225, 235–236, 240–243, 247
MarriageFigure 33–35, 63–64, 69, 74–76, 79, 91,

95–96, 102–104, 107, 109–110, 112, 125, 144,
146, 155, 195, 209, 211

MarriageFigure’ 108

MarriageFigures 121
MarriageGraphicalNodeEditPolicy 241, 243–245
MarriageLayoutAlgorithm 170, 172
MarriageListener 119, 121, 221–222, 224
marriageRemoved() 220
Math 75, 107, 110
Menu 105–106, 125, 127, 158
MenuItem 105–106, 125, 127, 158
MessageDialog 128
MidpointLocator 86
Models

Dsiplaying 203
GEF 113
Hooking Diagram to Model 124
Hooking model to a diagram 118
Listeners and Adapters 119
POJO 113
Populating the Diagram 116
Reading 116
Reading from a File 125
Saving 205
Serializing model information 126
State Changes 177
Storing the Diagram 126
Types 176
Writing to a File 127

Model-View-Controller, see MVC
ModifiedSelectionManager 214
mouse button 18
mouseDragged() 18
MouseEvent 18–19
MouseListener 17, 25, 27
mouse listener 25
MouseMotionListener 17, 25, 27
mousePressed() 17–18
mouseReleased() 19
Move and Resize Command 228
MoveAndResizeGenealogyElementCommand 223, 228
MoveAndResizeGenealogyElementCommand() 235
MoveHandle 211
moveHandle() 211
Moving and Resizing Components 235
MVC 113, 176
MyCreateCommand 232
MyDeleteCommand 232
MyOtherCommand 232

N
nameChanged() 116, 120, 222
Nested Content 156
nested figures 22, 35
newConnection() 84, 86
newFigure() 84, 86
newFigureAndConnection() 77, 79, 81, 85, 88

Index 263

newSAXParser() 117
NO_LAYOUT_NODE_RESIZING 140, 161–165, 169, 172
NodeEditPart 198, 242
NONE 132
NonResizableEditPolicy 210–211
NonResizableMarriageEditPolicy 210–211, 236,

244
NORMAL 32
NORTH 211
Note 114–115, 119–120, 148, 156, 188, 220–221,

226–230, 232–236, 238–239
NoteAdapter 119–121, 124
noteAdded() 116, 120, 220, 226
NoteBorder 46–49
NoteContainer 114–115, 229–231, 238–239
NoteContainerListener 116
NoteEditPart 188, 190–191, 209–210, 216, 222,

226, 235, 238, 240
NoteFigure 48–52, 148, 209, 212, 237
NoteListener 119, 221–222
noteRemoved() 116, 120, 220, 226
Notes 114
NULL 106, 125, 127
NullConnectionRouter 85

O
ObjectShare xxvi
Object Technology International xxi
offspringAdded() 122
offspringRemoved() 122
OPEN 126
open() 10, 126
openError() 206
openFile() 125–126, 187
Open menu 125
openQuestion() 128
OrderedLayoutEditPolicy 234, 236–239
OrderedLayoutEditPolicy() 239
org.eclipse.core.resources 201
org.eclipse.core.runtime 9
org.eclipse.draw2d 9
org.eclipse.gef 175, 185
org.eclipse.ui 9
org.eclipse.ui.editors 202
org.eclipse.ui.ide 201
org.eclipse.zest.core 130
org.eclipse.zest.layouts 130
OTI xxi–xxii

P
paint() 37–38, 46
paintBorder() 38, 45
paintChildren() 38
paintClientArea() 38

paintFigure() 38, 41–42, 49
Palette 221, 225, 249
Palette Creation 250
PaletteDrawer 251
PaletteDrawers 249
PaletteEntry 251
PaletteRoot 203, 250–251
PaletteToolbar 250–251
PaletteToolbars 249
PaletteViewer 252
PaletteViewerProvider 252
Panel 29
PanningSelectionToolEntry 249–251
parentChanged() 122
parentsMarriageChanged() 116, 223–224
Pattern 41
PeopleFigures 121
Person 114–115, 119–122, 133–134, 138–139, 148,

156, 158, 188–190, 193–194, 198, 220–236, 238–
241, 251–252

PersonAdapter 119, 121, 124
personAdded() 220–221
PersonEditPart 188–191, 194, 198, 210, 221–226,

234–236, 239–240, 242–243, 246–247
PersonFigure 33–36, 41–42, 44–48, 50–51, 63–66,

69, 73, 91, 94, 102, 119–121, 125, 139, 190–192,
208, 212, 222, 237

PersonGraphicalNodeEditPolicy 240–241, 243–
245

PersonListener 116, 119, 221–224
personRemoved() 220
Plain Old Java Objects, see POJO
Plugin-in Dependencies 185
plugin.xml 15, 186
Point 11–13, 18, 28, 30–31, 52, 70–72, 75–76, 103,

108–111, 124
Point() 222
PointList 78–80
POJO 113, 176
Polygon 29, 31
PolygonDecoration 77–78, 198, 243
PolygonShape 13–14, 19, 34
Polyline 29, 31
PolylineConnection 15, 23, 29, 69–72, 75–79, 81,

84–86, 88, 122, 195, 198, 243
PolylineDecoration 77–79
popState() 39
PositionConstants 32, 87–88
postLayoutAlgorithm() 168
PrecisionDimension 109–111
PrecisionPoint 109–111
preLayoutAlgorithm() 167, 170
Presentation information 115
PrintAction 182

264 Index

println() 127
PrintWriter 126–128, 206
PROP_DIRTY 206, 227
PROP_INPUT 207
pushState() 39

Q
QualityEclipse Book Samples view 20

R
RadialLayoutAlgorithm 164–165
RADIUS 108, 110–111
RCP 9, 17
RCP Developer xxv
readAndClose() 117–118, 124, 126, 130–131, 187,

203–204
readAndDispatch() 10
ReconnectRequest 245–247
recreateCommand() 245–247
Rectangle 11–14, 18, 28, 30–32, 34, 41, 44–46, 49,

51–52, 55–56, 58, 63, 76, 107, 124, 227–231,
234–235

RectangleFigure 12, 19, 22, 31, 33–34, 42
REDO 248
RedoRetargetAction 248
refreshVisuals() 190
Relationships, see Connections
RelativeBendpoint 81–83
Relative coordinates 102
relocate() 58
remove() 120
removeChild() 220
removeNote() 231
removeNote() 229–231
removeNotify() 222–223
removePerson() 227, 232
removePersonListener() 120, 222
removeSourceConnection() 224
removeTargetConnection() 224
Reorder Command 229
reordered 236
Reordering Components 236
ReorderNoteCommand 229, 237
Reparent Command 230
reparented 230
Reparenting Components 238
ReparentNoteCommand 230, 238–239
Request 199, 235, 238, 242–243, 246–247
Requests 180, 182
ResizeHandle 211
resolveRelationships() 117
ResourcesPlugin 207
restoreState() 39
RootComponentEditPolicy 248

RootEditPart 178–179, 203
root figure 10
RotatableDecoration 76–77
RoundedRectangle 31
run() 9–10, 105, 107, 117–118, 131, 187

S
Sample Code

Book 20
Borders 43
Clickables 32
Shapes 30

SAVE 128
SaveAsDialog 207
saveFile() 127–128, 187
Save menu 127
SAX Parser 116
SAXParserFactory 117
ScalableFigure 104
ScalableFreeformLayeredPane 104–105
ScalableFreeformRootEditPart 179, 186, 203
scaleToFit() 106–107
Scaling 104

Dimensions 107
Figures 104
Zoom menu 105

Scrolling 96
ScrollingGraphicalViewer 179, 186
ScrollPane 29
SELECT_ALL 248
SelectAllAction 182
SELECTED 208
SELECTED_NONE 208
SELECTED_PRIMARY 208
SelectEditPartTracker 211, 236
Selection 207

Accessibility 217
Change Listener 212
Edit Policy 209
Keyboard Actions 217
Making Visible 207
Manager 214
Multiple Editors 217
Synchronizing 217
Tools 250

SELECTION_FEEDBACK_ROLE 209–210, 235
selectionChanged() 213
SelectionChangedEvent 213
SelectionChangedListener 214
SelectionChangeListener 212
SelectionEvent 106, 125, 127, 151, 159
SelectionListener 106, 125, 127, 151, 159
SelectionManager 214
SelectionModificationChangeListener 212–213

Index 265

SelectionSynchronizer 217
SelectionTool 181
SelectionToolEntry 249
selfStyleConnection() 146, 154–155
selfStyleNode() 146
setAfterNote() 229–230, 237, 239
setBackground() 97, 100
setBackgroundColor() 12, 14, 28, 30–31, 33–34,

42, 47–49, 78–79, 152, 195, 198, 243
setBackgroundPattern() 41
setBirthAndDeathYear() 120–121, 222
setBirthYear() 251
setBorder() 28, 43–44, 48, 50, 66, 189, 208, 211
setBounds() 28, 58, 230, 238
setColor() 208
setConnectionRouter() 81, 84–86, 94
setConstraint() 11–12, 18, 55, 57–58, 63, 81
setContentProvider() 133–135
setContents(() 100
setContents() 10, 93, 97, 178, 180, 187–188, 203
setCornerDimensions() 31
setCursor() 211
setDefaultEntry() 251
setDragAllowed() 210
setDragTracker() 211
setEditDomain() 203
setEditPartFactory() 203
setEnd() 14, 34
setFill() 14, 31, 34
setFilters() 157, 159
setFocus() 130
setFont() 10, 28, 51–52, 93, 100, 105
setForegroundColor() 28
setGap() 88
setHorizontalSpacing() 57
setInput() 132, 204
setKeyHandler() 217
setLabel() 246
setLabelProvider() 138
setLayout() 10, 131
setLayoutAlgorithm() 161–165, 169, 172
setLayoutArea() 169
setLayoutConstraint() 190
setLayoutData 131
setLayoutData() 10
setLayoutManager() 10, 12, 33, 44, 50, 55–57, 59–

64, 66, 87–88, 93, 99, 189, 192, 208
setLineStyle() 47
setLineWidth() 46
setLocation() 124, 222, 227, 229, 231
setMajorAlignment() 60
setMajorSpacing() 60
setMarriage() 232

setMaximumSize() 56
setMenu() 125, 158
setMenuBar() 105, 158
setMinimumSize() 56
setMinorAlignment() 60
setMinorSpacing() 60
setModel() 117, 122–124, 130–132, 187, 189–190,

194, 219
setName() 120–121, 222, 251
setNextRouter() 84
setOldContainer() 230, 238–239
setOpaque 28
setOpaque() 48–49
setOriginalFile() 207
setParentsMarriage() 114
setPartName() 204, 207
setPreferredSize() 12, 14, 30, 33–34, 44, 50, 56,

66, 208
setRelativeDimensions() 81, 83
setRelativePosition() 87–88
setRootEditPart() 186, 203
setScale() 106–107
setSelected() 207–208
setSelection() 214
setSize() 10, 124, 131, 222, 227, 229, 231
setSource() 228, 245
setSourceAnchor() 15, 70–72, 75, 79, 146, 155
setSourceDecoration() 77
setSpacing() 50, 63, 66, 192, 208
setStart() 14, 34
setStartCommand() 241
setTarget() 228, 242, 245–246
setTargetAnchor() 15, 70–72, 75, 79
setTargetDecoration() 77–79, 195, 198, 243
setTemplate() 77–79, 195, 198, 243
setText() 10, 105–106, 121, 125–128, 131, 158
setToolTip() 155
setUDistance() 88
setVDistance() 88
setVerticalSpacing() 57
setViewport() 100
setWeight() 81, 83
setWidth() 208
Shape 29
Shapes 2, 29–30
Shell 10, 105, 125–128, 131, 158
ShiftDiagramLayoutAlgorithm 167, 169, 172
ShortestPathConnectionRouter 85–86, 91–93
showSourceConnectionFeedback() 247
showTargetConnectionFeedback() 243, 247
SimpleEtchedBorder 44
SimpleFactory 251

266 Index

SimpleLoweredBorder 44
SimpleRaisedBorder 44
SimpleRootEditPart 179
sizeChanged() 116, 222
sleep() 10
Smalltalk xxi
source 224, 240, 252
SOUTH 211, 244
SpringLayoutAlgorithm 165, 169
StackLayout 61, 64, 179
Standard Widget Toolkit, seeSWT
Status 206
StringBuilder 138, 148, 156
StructuredSelection 213–214
Swing 5
Swing Designer xxiii
SWT 1, 5, 9, 21
SWT.BAR 105, 158
SWT.CASCADE 105, 125, 158
SWT Designer xxiii
SWT.DOUBLE_BUFFERED 23, 97, 100, 122
SWT.DROP_DOWN 105, 125, 158
SWTEventDispatcher 24
SWT.LINE_DOT 47
SWT.NONE 132
SWT.NORMAL 32
SWT.NULL 106, 125, 127
SWT.OPEN 126
SWT.SAVE 128

T
target 224, 240, 252
TemplateTransferDragSourceListener 252
TemplateTransferDropTargetListener 253
Text 4
TitleBarBorder 44
ToolbarLayout 12, 23, 33, 44, 50, 56, 62–63, 66,

192, 208
ToolEntry 251–252
Tools 180–181, 219, 249

Component Creation 251
Connection Creation 252

toString() 138
translate() 18
translateFromParent() 101
translateToAbsolute() 101, 103, 108, 110–111
translateToParent() 101
translateToRelative() 101
TreeLayoutAlgorithm 140, 160, 163–164, 166
TreeViewer 179
Triangle 31

U
uDistance 88
UNDO 248
undo() 227, 229–232
UndoAction 182
UndoRetargetAction 248
unhighlight() 151–152
union() 107
University of Oregon xxvi
UpdateManager 18, 22–23
update site 7
Updating Connections 223
Updating Figures 221
useLocalCoordinates() 28

V
VA Assist xxii, xxv–xxvi
vDistance 88
VerticalLayoutAlgorithm 166
view 16
Viewer 133, 158
ViewerFilter 158–159
View Figures 177
ViewPart 16–17, 130, 186
Viewport 98, 100
Viewports 91, 106
VisualAge for Java xxi
VisualAge Smalltalk xxi
vsetGap() 87

W
WEST 211
widgetDefaultSelected() 106, 125, 127, 151, 159
widgetDisposed() 32
widgetSelected() 106, 125, 127, 151, 159
wifeChanged() 122, 224
WindowBuilder xxiii, xxvi, 5–6
WindowTester xxv
writeMarriages() 127
writeNotes() 127
writePeople() 127
www.qualityeclipse.com 20

X
XMind 5
XML 116, 118, 126, 185, 201
XYAnchor 70–72
XYLayout 10, 12, 23, 55–56, 63, 93
XYLayoutEditPolicy 233–236, 238–239

www.qualityeclipse.com

Index 267

Z
Zest xxiii, 1–2, 118, 128–129, 136, 142, 145–146,

148, 173, 175
Color 141
Connection Highlight 153
Content Provider 132
Custom Figures 144
Filters 157
Installation 129
Label Provider 138
Layout Algorithms 160
Model-View separation 113
Nested Content 156

Node Size 140
Plug-in Dependencies 130
Presentation 137
Setup 129
Styling 153
Styling and Anchors 146
Subinterfaces 132
Tooltips 153

ZestContentProvider3 135
ZestStyles 154
Zooming, seeScaling
Zoom menu 105
Z-Order 40

	Contents
	Foreword
	Preface
	Chapter 2 A Simple Draw2D Example
	2.1 Draw2D Installation
	2.2 Draw2D Project
	2.3 Draw2D Application
	2.4 Draw2D View
	2.5 Draw2D Events
	2.6 Book Samples
	2.7 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

