stseller Since 1986 A
Completely Rewritten for the New C++11 Standard vy

Stanley B. Lippman
Josée Lajoie
Barbara Moo

FREE SAMPLE CHAPTER

¥ 9 8 @ @

SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321714114
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321714114
https://plusone.google.com/share?url=http://www.informit.com/title/9780321714114
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321714114
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321714114/Free-Sample-Chapter

C++ Primer
Fifth Edition

This page intentionally left blank

C++ Primer
Fifth Edition

Stanley B. Lippman
Josée Lajoie
Barbara E. Moo

vvAddison-Wesley

Upper Saddle River, NJ e Boston e Indianapolis e San Francisco
New York e Toronto ¢ Montreal @ London e Munich e Paris ¢ Madrid
Capetown e Sidney e Tokyo e Singapore Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to

your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Lippman, Stanley B.
C++ primer / Stanley B. Lippman, Josée Lajoie, Barbara E. Moo. - 5th ed.
.cm.
Includes index.
ISBN 0-321-71411-3 (pbk. : alk. paper) 1. C++ (Computer program language) I. Lajoie, Josée. II.
Moo, Barbara E. III. Title.

QA76.73.C153L57697 2013
005.13"3-dc23 2012020184

Copyright (© 2013 Objectwrite Inc., Josée Lajoie and Barbara E. Moo

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper
Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

C++ Primer, Fifth Edition, features an enhanced, layflat binding, which allows the book to stay open
more easily when placed on a flat surface. This special binding method—notable by a small space
inside the spine—also increases durability.

ISBN-13: 978-0-321-71411-4
ISBN-10: 0-321-71411-3
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

Sixth printing, May 2015

To Beth,
who makes this,
and all things,
possible.

To Daniel and Anna,
who contain
virtually
all possibilities.
—SBL

To Mark and Mom,
for their

unconditional love and support.
—JL

To Andy,
who taught me
to program

and so much more.
—BEM

This page intentionally left blank

Contents

Preface xxiii
Chapter1 GettingStarted. 1
1.1 Writing a Simple C++ Program 2
1.1.1 Compiling and Executing Our Program 3

1.2 A First Look at Input/Output 5

1.3 A WordaboutComments 9

1.4 FlowofControl 11
141 ThewhileStatement 11

142 The forStatement 13

143 Reading an Unknown Number of Inputs 14

144 TheifStatement 17

1.5 IntroducingClasses 19
1.5.1 The Sales itemClass 20

1.5.2 A First Look at Member Functions 23

1.6 The Bookstore Program 24
Chapter Summary 26
Defined Terms e 26
PartI The Basics 29
Chapter2 Variablesand BasicTypes 31
2.1 Primitive Built-in Types o Lo L. 32
211 ArithmeticTypes 32

212 TypeConversions. 35

213 Literals 38

2.2 Variables 41
2.2.1 Variable Definitions 41

2.2.2 Variable Declarations and Definitions 44

223 Identifiers 46

224 ScopeofaName 48

23 CompoundTypes 50
231 References e 50

232 Pointers e 52

vii

viii Contents
2.3.3 Understanding Compound Type Declarations 57

24 constQualifier 59
241 Referencestoconst 61

242 Pointersand const L 62

243 Top-Levelconst 63

244 constexpr and Constant Expressions 65

2.5 DealingwithTypes 67
251 TypeAliases 67

252 TheautoTypeSpecifier 68

253 Thedecltype TypeSpecifier. 70

2.6 Defining Our Own Data Structures 72
2.6.1 Defining the Sales_dataType 72

2.6.2 Usingthe Sales dataClass. 74

2.6.3 Writing Our Own HeaderFiles 76
ChapterSummary 78
Defined Terms 78
Chapter3 Strings, Vectors, and Arrays 81
3.1 Namespace using Declarations. 82
3.2 Library stringType 84
3.2.1 Defining and Initializing strings 84

3.22 Operationsonstrings 85

3.2.3 Dealing with the Charactersina string 90

3.3 LibraryvectorType 96
3.3.1 Defining and Initializing vectors 97

3.3.2 Adding Elementstoavector 100

3.3.3 Other vectorOperations 102

3.4 Introducing Iterators 106
3.4.1 Usinglterators 106

3.4.2 [Iterator Arithmetic 111

35 AITAYS 113
3.5.1 Defining and Initializing Built-in Arrays 113

3.5.2 Accessing the Elements of an Array 116

3.5.3 Pointersand Arrays 117

3.54 C(C-Style Character Strings 122

3.5.5 InterfacingtoOlderCode 124

3.6 Multidimensional Arrays 125
Chapter Summary 131
Defined Terms 131
Chapter4 Expressions. 133
41 Fundamentals 134
411 BasicConcepts 134

412 Precedence and Associativity L. 136

413 Orderof Evaluation 137

42 ArithmeticOperators 139
43 Logical and Relational Operators 141

Contents ix
44 AssignmentOperators 144
4.5 Increment and Decrement Operators 147
4.6 The Member Access Operators 150
4.7 The Conditional Operator 151
4.8 The Bitwise Operators 152
49 Thesizeof Operator 156
410 Comma Operator 157
411 TypeConversions 159

4.11.1 The Arithmetic Conversions 159
4.11.2 Other Implicit Conversions 161
4.11.3 Explicit Conversions 162
412 Operator Precedence Table 166
ChapterSummary 168
Defined Terms e 168

Chapter5 Statements 171
51 SimpleStatements. L L 172
52 StatementScope Lo 174
5.3 Conditional Statements 174

531 TheifStatement 175
532 TheswitchStatement. 178
5.4 TterativeStatements 183
5.4.1 ThewhileStatement 183
5.4.2 Traditional for Statement 185
543 Range forStatement 187
544 ThedowhileStatement 189
55 Jump Statements L Lo 190
5.5.1 ThebreakStatement 190
5.5.2 The continueStatement 191
55.3 ThegotoStatement 192
5.6 try Blocks and Exception Handling 193
56.1 AthrowExpression 193
562 ThetryBlock., 194
5.6.3 Standard Exceptions 197
ChapterSummary L 199
Defined Terms e 199
Chapter6 Functions 201
6.1 FunctionBasics 202
6.1.1 LocalObjects 204
6.1.2 Function Declarations 206
6.1.3 Separate Compilation 207
6.2 ArgumentPassing 208
6.2.1 Passing Argumentsby Value 209
6.2.2 Passing Arguments by Reference 210
6.2.3 const Parametersand Arguments 212

6.24 ArrayParameters 214

Contents

6.2.5 main: Handling Command-Line Options 218

6.2.6 Functions with Varying Parameters 220

6.3 Return Types and the return Statement 222
6.3.1 Functions with No Return Value 223

6.3.2 Functions That Returna Value 223

6.3.3 Returning a Pointer toan Array 228

6.4 Overloaded Functions 230
6.4.1 Overloadingand Scope 234

6.5 Features for Specialized Uses 236
6.5.1 Default Arguments 236

6.5.2 Inline and constexpr Functions 238

6.5.3 Aidsfor Debugging 240

6.6 Function Matching 242
6.6.1 Argument Type Conversions 245

6.7 PointerstoFunctions 247
Chapter Summary 251
Defined Terms 251
Chapter7 Classes 253
7.1 Defining Abstract Data Types 254
7.1.1 Designing the Sales dataClass 254

7.1.2 Defining the Revised Sales_dataClass 256

7.1.3 Defining Nonmember Class-Related Functions 260

714 Constructors.o o oo 262

715 Copy, Assignment, and Destruction 267

7.2 Access Control and Encapsulation 268
721 Friends 269

7.3 Additional Class Features 271
7.3.1 Class Members Revisited 271

7.3.2 Functions That Return xthis 275

733 ClassTypes 277

734 Friendship Revisited 279

74 ClassScope. e 282
74.1 Name Lookup and Class Scope 283

7.5 Constructors Revisited L. 288
7.5.1 Constructor Initializer List. 288

7.5.2 Delegating Constructors 291

7.5.3 The Role of the Default Constructor 293

7.54 Implicit Class-Type Conversions 294

755 AggregateClasses 298

75.6 LiteralClasses 299

7.6 staticClassMembers 300
ChapterSummary 305

Defined Terms e 305

Contents

PartII The C++ Library 307
Chapter8 ThelIOLibrary 309
81 ThelOClasses, 310
8.1.1 No Copy or Assign for IO Objects 311

8.1.2 ConditionStates 312

8.1.3 Managing the Output Buffer 314

8.2 FileInputand Output 316
8.2.1 Using File Stream Objects 317

822 FileModes 319

83 stringStreams. 321
83.1 Usinganistringstream 321

83.2 Usingostringstreams 323
ChapterSummary 324
Defined Terms 324
Chapter9 Sequential Containers 325
9.1 Overview of the Sequential Containers 326
9.2 Container Library Overview 328
921 Iterators 331

9.22 Container Type Members 332

9.23 beginandendMembers 333

9.24 Defining and Initializing a Container 334

925 Assignmentandswap 337
9.2.6 Container Size Operations 340
9.2.7 Relational Operators 340

9.3 Sequential Container Operations 341
9.3.1 Adding Elements to a Sequential Container 341

932 AccessingElements. 346

9.33 FErasingElements 348

9.3.4 Specialized forward list Operations. 350

9.35 ResizingaContainer 352

9.3.6 Container Operations May Invalidate Iterators 353

94 HowavectorGrows 355
9.5 Additional string Operations 360
9.5.1 Other Ways to Construct strings 360

9.5.2 Other Ways to Changea string 361

9.5.3 stringSearch Operations 364

954 The compareFunctions 366
9.5.5 NumericConversions 367

9.6 Container Adaptors 368
ChapterSummary 372

Defined Terms 372

xii Contents

Chapter 10 Generic Algorithms 375
10.1 Overview e 376
10.2 A First Look at the Algorithms 378

10.2.1 Read-Only Algorithms 379
10.2.2 Algorithms That Write Container Elements 380
10.2.3 Algorithms That Reorder Container Elements 383
10.3 Customizing Operations 385
10.3.1 Passing a Function to an Algorithm 386
10.3.2 Lambda Expressions 387
10.3.3 Lambda Capturesand Returns 392
10.3.4 Binding Arguments 397
10.4 Revisiting Iterators 401
10.4.1 InmsertIterators 401
10.4.2 iostreamlterators, 403
10.4.3 Reverselterators 407
10.5 Structure of Generic Algorithms 410
10.5.1 The Five Iterator Categories 410
10.5.2 Algorithm Parameter Patterns 412
10.5.3 Algorithm Naming Conventions 413
10.6 Container-Specific Algorithms 415
ChapterSummary 417
Defined Terms 417

Chapter 11 Associative Containers 419
11.1 Using an Associative Container 420
11.2 Overview of the Associative Containers 423

11.2.1 Defining an Associative Container 423
11.2.2 RequirementsonKey Type 424
1123 ThepairType 426
11.3 Operations on Associative Containers 428
11.3.1 Associative Container Iterators 429
11.3.2 AddingElements, 431
11.3.3 ErasingElements 434
11.3.4 Subscriptingamap L. 435
11.3.5 AccessingElements. 436
11.3.6 A Word TransformationMap 440
11.4 The Unordered Containers 443
ChapterSummary 447
Defined Terms 447

Chapter 12 DynamicMemory 449

12.1 Dynamic Memory and Smart Pointers 450
12.1.1 The shared ptrClass 450
12.1.2 Managing Memory Directly 458
12.1.3 Using shared ptrswithnew 464
12.1.4 Smart Pointers and Exceptions 467

12.1.5 unique ptr . ..o o 470

Contents xiii

1216 weak ptr 473

122 Dynamic Arrays 476
1221 newand Arrays 477
12.2.2 TheallocatorClass 481

12.3 Using the Library: A Text-Query Program 484
12.3.1 Design of the Query Program 485
12.3.2 Defining the Query Program Classes 487
ChapterSummary 491
Defined Terms e 491
Part III Tools for Class Authors 493
Chapter13 Copy Control, 495
13.1 Copy, Assign, and Destroy 496
13.1.1 The Copy Constructor 496
13.1.2 The Copy-Assignment Operator 500
13.1.3 The Destructor, 501
13.1.4 The Rule of Three/Five 503
1315 Using=default.. 506
13.1.6 Preventing Copies 507

13.2 Copy Control and Resource Management 510
13.2.1 Classes That Act Like Values 511
13.2.2 Defining Classes That Act Like Pointers 513

133 Swap 516
13.4 A Copy-Control Example 519
13.5 Classes That Manage Dynamic Memory 524
13.6 Moving Objects 531
13.6.1 Rvalue References 532
13.6.2 Move Constructor and Move Assignment 534
13.6.3 Rvalue References and Member Functions 544
ChapterSummary 549
Defined Terms e 549
Chapter 14 Overloaded Operations and Conversions. 551
141 BasicConcepts 552
14.2 Input and OutputOperators 556
14.2.1 Overloading the Output Operator << 557
14.2.2 Overloading the Input Operator >> 558

14.3 Arithmetic and Relational Operators 560
14.3.1 Equality Operators 561
14.3.2 Relational Operators 562

14.4 Assignment Operators 563
14.5 Subscript Operator 564
14.6 Increment and Decrement Operators 566
14.7 Member Access Operators 569

14.8 Function-Call Operator 571

xiv Contents
14.8.1 Lambdas Are Function Objects 572
14.8.2 Library-Defined Function Objects 574
14.8.3 Callable Objects and function 576

14.9 Overloading, Conversions, and Operators 579
14.9.1 Conversion Operators 580
14.9.2 Avoiding Ambiguous Conversions 583
14.9.3 Function Matching and Overloaded Operators 587

ChapterSummary 590

Defined Terms e 590

Chapter 15 Object-Oriented Programming. 591

15.1 OOP: AnOverview v i it e e e e 592

15.2 Defining Base and Derived Classes 594
15.2.1 DefiningaBaseClass. 594
15.2.2 Defining a Derived Class 596
15.2.3 Conversions and Inheritance 601

15.3 Virtual Functions 603

15.4 AbstractBaseClasses 608

15.5 Access Control and Inheritance 611

15.6 Class Scope under Inheritance 617

15.7 Constructors and Copy Control 622
15.7.1 Virtual Destructors 622
15.7.2 Synthesized Copy Control and Inheritance 623
15.7.3 Derived-Class Copy-Control Members 625
15.7.4 Inherited Constructors 628

15.8 Containers and Inheritance 630
15.8.1 WritingaBasketClass 631

15.9 Text Queries Revisited 634
159.1 An Object-Oriented Solution 636
159.2 The Query baseand QueryClasses 639
15.9.3 The Derived Classes 642
15.9.4 Theeval Functions 645

ChapterSummary 649

Defined Terms e 649

Chapter 16 Templates and Generic Programming 651

16.1 Defininga Template. 652
16.1.1 Function Templates 652
1612 ClassTemplates 658
16.1.3 Template Parameters 668
16.1.4 Member Templates 672
16.1.5 Controlling Instantiations 675
16.1.6 Efficiency and Flexibility 676

16.2 Template Argument Deduction 678
16.2.1 Conversions and Template Type Parameters 679
16.2.2 Function-Template Explicit Arguments 681

16.2.3 Trailing Return Types and Type Transformation 683

Contents

16.2.4 Function Pointers and Argument Deduction 686
16.2.5 Template Argument Deduction and References 687
16.2.6 Understanding std::move 690
16.2.7 Forwarding, 692

16.3 Overloading and Templates 694
16.4 Variadic Templates 699
16.4.1 Writing a Variadic Function Template 701
16.4.2 Pack Expansion 702
16.4.3 Forwarding Parameter Packs 704

16.5 Template Specializations 706
ChapterSummary 713
Defined Terms 713
Part IV Advanced Topics 715
Chapter 17 Specialized Library Facilities 717
171 ThetupleType o 718
17.1.1 Defining and Initializing tuples 718
17.1.2 Using a tuple to Return Multiple Values 721

17.2 Thebitset Type 723
17.2.1 Defining and Initializing bitsets 723
17.2.2 Operationsonbitsets 725

17.3 Regular Expressions 728
17.3.1 Using the Regular Expression Library 729
17.3.2 The Match and Regex Iterator Types 734
17.3.3 Using Subexpressions 738
1734 Using regex replace 741

174 Random Numbers 745
17.4.1 Random-Number Engines and Distribution. 745
17.4.2 Other Kinds of Distributions 749

17.5 The IO Library Revisited 752
17.5.1 Formatted Inputand Output 753
17.5.2 Unformatted Input/Output Operations 761
17.5.3 Random AccesstoaStream 763
ChapterSummary 769
Defined Terms 769
Chapter 18 Tools for Large Programs 771
18.1 Exception Handling 772
18.1.1 Throwing an Exception 772
18.1.2 Catching an Exception 775
18.1.3 Function try Blocks and Constructors 777
18.1.4 The noexcept Exception Specification 779
18.1.5 Exception Class Hierarchies 782

182 Namespaces 785

18.2.1 Namespace Definitions 785

xvi Contents
18.2.2 Using Namespace Members 792
18.2.3 Classes, Namespaces,and Scope 796
18.2.4 Overloading and Namespaces 800

18.3 Multiple and Virtual Inheritance 802
18.3.1 Multiple Inheritance 803
18.3.2 Conversions and Multiple Base Classes 805
18.3.3 Class Scope under Multiple Inheritance 807
18.3.4 Virtual Inheritance 810
18.3.5 Constructors and Virtual Inheritance 813

ChapterSummary 816

Defined Terms e 816

Chapter 19 Specialized Tools and Techniques 819

19.1 Controlling Memory Allocation 820
19.1.1 Overloading newand delete 820
19.1.2 Placement new Expressions 823

19.2 Run-Time Type Identification 825
19.2.1 The dynamic_cast Operator 825
19.2.2 The typeidOperator 826
1923 UsingRTTI 828
19.24 The type infoClass 831

19.3 Enumerations e 832

19.4 Pointer to ClassMember 835
19.4.1 Pointers to DataMembers 836
19.4.2 Pointers to Member Functions 838
19.4.3 Using Member Functions as Callable Objects 841

195 Nested Classes v v i i i i i e e e e e 843

19.6 union: A Space-SavingClass 847

19.7 Local Classes v v i i i e e e e e 852

19.8 Inherently Nonportable Features 854
19.8.1 Bitfields 854
19.8.2 volatileQualifier 856
19.8.3 Linkage Directives: extern "C" 857

ChapterSummary 862

Defined Terms e 862

Appendix A The Library 865

Al Library Namesand Headers 866

A.2 A Brief Tour of the Algorithms 870
A.2.1 Algorithms to Find anObject 871
A22 Other Read-Only Algorithms 872
A.2.3 Binary Search Algorithms 873
A.24 Algorithms That Write Container Elements 873
A2.5 Partitioning and Sorting Algorithms 875
A2.6 General Reordering Operations 877
A27 Permutation Algorithms 879

A28 Set Algorithms for Sorted Sequences 880

Contents xvii

A.29 Minimum and Maximum Values 880
A.2.10 Numeric Algorithms 881
A3 Random Numbers, 882
A.3.1 Random Number Distributions 883
A.32 Random Number Engines 884

Index 887

This page intentionally left blank

New Features in C++11

2.1.1
221
232
244
251
252
253
2.6.1
322
3.2.3
3.3

3.3.1
34.1
353
3.6

4.2

44

4.9

543
6.2.6
6.3.2
6.3.3
6.3.3
6.5.2
714
7.3.1
752
7.5.6
8.2.1
9.1

923
924
9.2.5
9.3.1
9.3.1

long longType
List Initialization
nullptrLiteral
constexpr Variables
Type Alias Declarations
The auto Type Specifier
The decltype Type Specifier
In-Class Initializers
Using auto or decltype for Type Abbreviation
Range for Statement
Defining a vectorof vectors
List Initialization for vectors
Container cbegin and cend Functions
Library begin and end Functions
Using auto or decltype to Simplify Declarations
Rounding Rules for Division
Assignment from a Braced List of Values
sizeof Applied toa Class Member
Range for Statement
Library initializer listClass
List Initializing a Return Value
Declaring a Trailing Return Type
Using decltype to Simplify Return Type Declarations
constexpr Functions
Using = default to Generate a Default Constructor
In-class Initializers for Members of Class Type
Delegating Constructors
constexpr Constructors
Using strings for FileNames
The array and forward list Containers
Container cbegin and cend Functions
List Initialization for Containers
Container Nonmember swap Functions
Return Type for Container insert Members
Container emplace Members

Xix

XX

New Features in C++11

94
9.5.5
10.3.2
10.3.3
10.3.4
11.2.1
11.2.3
11.3.2
114
12.1
12.1.1
12.1.2
12.1.2
12.1.5
12.1.6
12.2.1
12.2.1
12.2.1
12.2.2
13.1.5
13.1.6
13.5
13.6.1
13.6.1
13.6.2
13.6.2
13.6.2
13.6.3
14.8.3
14.9.1
15.2.2
15.2.2
15.3
15.7.2
15.7.4
16.1.2
16.1.2
16.1.3
16.1.5
16.2.3
16.2.5
16.2.6
16.2.7
16.4
16.4
16.4.3

shrink to fit 357
Numeric Conversion Functions for strings 367
Lambda Expressions 388
Trailing Return Type in Lambda Expressions 396
The Library bind Function 397
List Initialization of an Associative Container. 423
List Initializing pair Return Type 427
List Initializationof apair 431
The Unordered Containers 443
Smart Pointers o o 450
The shared ptrClass 450
List Initialization of Dynamically Allocated Objects 459
auto and Dynamic Allocation 459
Theunique ptrClass 470
Theweak ptrClass 473
Range for Doesn’t Apply to Dynamically Allocated Arrays . 477
List Initialization of Dynamically Allocated Arrays 478
auto Can’t Be Used to Allocate an Array 478
allocator: :construct Can Use any Constructor 482
Using = default for Copy-Control Members 506
Using = delete to Prevent Copying Class Objects 507
Moving Instead of Copying Class Objects 529
Rvalue References 532
The Library move Function 533
Move Constructor and Move Assignment 534
Move Constructors Usually Should Be noexcept 535
Move Iterators oL 543
Reference Qualified Member Functions 546
The functionClass Template 577
explicit Conversion Operators 582
override Specifier for Virtual Functions 596
Preventing Inheritance by Defining a Class as £inal 600
override and final Specifiers for Virtual Functions 606
Deleted Copy Control and Inheritance 624
Inherited Constructors 628
Declaring a Template Type Parameter as a Friend 666
Template Type Aliases 666
Default Template Arguments for Template Functions 670
Explicit Control of Instantiation. 675
Template Functions and Trailing Return Types 684
Reference Collapsing Rules 688
static_cast froman Lvalue toan Rvalue 691
The Library forward Function 694
Variadic Templates 699
The sizeof... Operator. 700

Variadic Templates and Forwarding 704

New Features in C++11

xxi

17.1
17.2.2
17.3
17.4
17.5.1
18.1.4
18.1.4
18.2.1
18.3.1
19.3
19.3
19.3
19.4.3
19.6

The Library Tuple Class Template 718
New bitset Operations 726
The Regular Expression Library 728
The Random Number Library 745
Floating-Point Format Control 757
The noexcept Exception Specifier 779
The noexcept Operator 780
Inline Namespaces 790
Inherited Constructors and Multiple Inheritance 804
Scopedenums L 832
Specifying the Type Used to Hold anenum 834
Forward Declarations forenums 834
The Library mem_fn Class Template 843

Union Members of Class Types 848

This page intentionally left blank

Preface

Countless prograniniers have learned C++ from previous editions of C++
Primer. During that time, C++ has matured greatly: Its focus, and that of its pro-
gramming community, has widened from looking mostly at machine efficiency to
devoting more attention to programmer efficiency.

In 2011, the C++ standards committee issued a major revision to the ISO C++
standard. This revised standard is latest step in C++’s evolution and continues the
emphasis on programmer efficiency. The primary goals of the new standard are to

e Make the language more uniform and easier to teach and to learn
o Make the standard libraries easier, safer, and more efficient to use
e Make it easier to write efficient abstractions and libraries

In this edition, we have completely revised the C++ Primer to use the latest
standard. You can get an idea of how extensively the new standard has affected
C++ by reviewing the New Features Table of Contents, which lists the sections that
cover new material and appears on page xxi.

Some additions in the new standard, such as auto for type inference, are perva-
sive. These facilities make the code in this edition easier to read and to understand.
Programs (and programmers!) can ignore type details, which makes it easier to
concentrate on what the program is intended to do. Other new features, such
as smart pointers and move-enabled containers, let us write more sophisticated
classes without having to contend with the intricacies of resource management.
As aresult, we can start to teach how to write your own classes much earlier in the
book than we did in the Fourth Edition. We—and you—no longer have to worry
about many of the details that stood in our way under the previous standard.

We’ve marked those parts of the text that cover features defined by the new
standard, with a marginal icon. We hope that readers who are already familiar
with the core of C++ will find these alerts useful in deciding where to focus their
attention. We also expect that these icons will help explain error messages from
compilers that might not yet support every new feature. Although nearly all of
the examples in this book have been compiled under the current release of the
GNU compiler, we realize some readers will not yet have access to completely
updated compilers. Even though numerous capabilities have been added by the
latest standard, the core language remains unchanged and forms the bulk of the
material that we cover. Readers can use these icons to note which capabilities may
not yet be available in their compiler.

XX1ii

1

xxiv

Preface

Why Read This Book?

Modern C++ can be thought of as comprising three parts:
o The low-level language, much of which is inherited from C

e More advanced language features that allow us to define our own types and
to organize large-scale programs and systems

e The standard library, which uses these advanced features to provide useful
data structures and algorithms

Most texts present C++ in the order in which it evolved. They teach the C subset
of C++ first, and present the more abstract features of C++ as advanced topics at
the end of the book. There are two problems with this approach: Readers can get
bogged down in the details inherent in low-level programming and give up in
frustration. Those who do press on learn bad habits that they must unlearn later.

We take the opposite approach: Right from the start, we use the features that let
programmers ignore the details inherent in low-level programming. For example,
we introduce and use the library string and vector types along with the built-
in arithmetic and array types. Programs that use these library types are easier to
write, easier to understand, and much less error-prone.

Too often, the library is taught as an “advanced” topic. Instead of using the
library, many books use low-level programming techniques based on pointers to
character arrays and dynamic memory management. Getting programs that use
these low-level techniques to work correctly is much harder than writing the cor-
responding C++ code using the library.

Throughout C++ Primer, we emphasize good style: We want to help you, the
reader, develop good habits immediately and avoid needing to unlearn bad habits
as you gain more sophisticated knowledge. We highlight particularly tricky mat-
ters and warn about common misconceptions and pitfalls.

We also explain the rationale behind the rules—explaining the why not just the
what. We believe that by understanding why things work as they do, readers can
more quickly cement their grasp of the language.

Although you do not need to know C in order to understand this book, we
assume you know enough about programming to write, compile, and run a pro-
gram in at least one modern block-structured language. In particular, we assume
you have used variables, written and called functions, and used a compiler.

Changes to the Fifth Edition

New to this edition of C++ Primer are icons in the margins to help guide the reader.
C++ is a large language that offers capabilities tailored to particular kinds of pro-
gramming problems. Some of these capabilities are of great import for large project
teams but might not be necessary for smaller efforts. As a result, not every pro-
grammer needs to know every detail of every feature. We’ve added these marginal
icons to help the reader know which parts can be learned later and which topics
are more essential.

We've marked sections that cover the fundamentals of the language with an
image of a person studying a book. The topics covered in sections marked this

Preface

XXV

way form the core part of the language. Everyone should read and understand
these sections.

We’ve also indicated those sections that cover advanced or special-purpose top-
ics. These sections can be skipped or skimmed on a first reading. We’ve marked
such sections with a stack of books to indicate that you can safely put down the
book at that point. It is probably a good idea to skim such sections so you know
that the capability exists. However, there is no reason to spend time studying these
topics until you actually need to use the feature in your own programs.

To help readers guide their attention further, we’ve noted particularly tricky
concepts with a magnifying-glass icon. We hope that readers will take the time
to understand thoroughly the material presented in the sections so marked. In at
least some of these sections, the import of the topic may not be readily apparent;
but we think you'll find that these sections cover topics that turn out to be essential
to understanding the language.

Another aid to reading this book, is our extensive use of cross-references. We
hope these references will make it easier for readers to dip into the middle of the
book, yet easily jump back to the earlier material on which later examples rely.

What remains unchanged is that C++ Primer is a clear, correct, and thorough
tutorial guide to C++. We teach the language by presenting a series of increasingly
sophisticated examples, which explain language features and show how to make
the best use of C++.

Structure of This Book

We start by covering the basics of the language and the library together in Parts I
and II. These parts cover enough material to let you, the reader, write significant
programs. Most C++ programmers need to know essentially everything covered
in this portion of the book.

In addition to teaching the basics of C++, the material in Parts [and I serves an-
other important purpose: By using the abstract facilities defined by the library, you
will become more comfortable with using high-level programming techniques.
The library facilities are themselves abstract data types that are usually written
in C++. The library can be defined using the same class-construction features that
are available to any C++ programmer. Our experience in teaching C++ is that by
first using well-designed abstract types, readers find it easier to understand how
to build their own types.

Only after a thorough grounding in using the library—and writing the kinds of
abstract programs that the library allows—do we move on to those C++ features
that will enable you to write your own abstractions. Parts III and IV focus on
writing abstractions in the form of classes. Part Il covers the fundamentals; Part IV
covers more specialized facilities.

In Part III, we cover issues of copy control, along with other techniques to make
classes that are as easy to use as the built-in types. Classes are the foundation for
object-oriented and generic programming, which we also cover in Part III. C++
Primer concludes with Part IV, which covers features that are of most use in struc-
turing large, complicated systems. We also summarize the library algorithms in
Appendix A.

XXVi

Preface

Aids to the Reader

Each chapter concludes with a summary, followed by a glossary of defined terms,
which together recap the chapter’s most important points. Readers should use
these sections as a personal checklist: If you do not understand a term, restudy the
corresponding part of the chapter.

We've also incorporated a number of other learning aids in the body of the text:

e Important terms are indicated in bold; important terms that we assume are
already familiar to the reader are indicated in bold italics. Each term appears
in the chapter’s Defined Terms section.

e Throughout the book, we highlight parts of the text to call attention to im-
portant aspects of the language, warn about common pitfalls, suggest good
programming practices, and provide general usage tips.

o To make it easier to follow the relationships among features and concepts,
we provide extensive forward and backward cross-references.

e We provide sidebar discussions on important concepts and for topics that
new C++ programmers often find most difficult.

e Learning any programming language requires writing programs. To that
end, the Primer provides extensive examples throughout the text. Source
code for the extended examples is available on the Web at the following URL:

http://www.informit.com/title/0321714113

A Note about Compilers

As of this writing (July, 2012), compiler vendors are hard at work updating their
compilers to match the latest ISO standard. The compiler we use most frequently
is the GNU compiler, version 4.7.0. There are only a few features used in this
book that this compiler does not yet implement: inheriting constructors, reference
qualifiers for member functions, and the regular-expression library.

Acknowledgments

In preparing this edition we are very grateful for the help of several current and
former members of the standardization committee: Dave Abrahams, Andy Koenig,
Stephan T. Lavavej, Jason Merrill, John Spicer, and Herb Sutter. They provided in-
valuable assistance to us in understanding some of the more subtle parts of the
new standard. We’d also like to thank the many folks who worked on updating
the GNU compiler making the standard a reality.

As in previous editions of C++ Primer, we’d like to extend our thanks to Bjarne
Stroustrup for his tireless work on C++ and for his friendship to the authors during
most of that time. We’d also like to thank Alex Stepanov for his original insights
that led to the containers and algorithms at the core of the standard library. Finally,
our thanks go to all the C++ Standards committee members for their hard work in
clarifying, refining, and improving C++ over many years.

http://www.informit.com/title/0321714113

Preface

xxvii

We extend our deep-felt thanks to our reviewers, whose helpful comments led
us to make improvements great and small throughout the book: Marshall Clow,
Jon Kalb, Nevin Liber, Dr. C. L. Tondo, Daveed Vandevoorde, and Steve Vinoski.

This book was typeset using IXTEX and the many packages that accompany the
TEX distribution. Our well-justified thanks go to the members of the IXTEX com-
munity, who have made available such powerful typesetting tools.

Finally, we thank the fine folks at Addison-Wesley who have shepherded this
edition through the publishing process: Peter Gordon, our editor, who provided
the impetus for us to revise C++ Primer once again; Kim Boedigheimer, who keeps
us all on schedule; Barbara Wood, who found lots of editing errors for us during
the copy-edit phase, and Elizabeth Ryan, who was again a delight to work with as
she guided us through the design and production process.

This page intentionally left blank

C H A P T E R ‘122

DYNAMIC MEMORY

CONTENTS
Section 12.1 Dynamic Memory and Smart Pointers . . . 450
Section 12.2 Dynamic Arrays. 476
Section 12.3 Using the Library: A Text-Query Program 484
Chapter Summary 491
DefinedTerms 491

The programs we’ve written so far have used objects that have well-
defined lifetimes. Global objects are allocated at program start-up
and destroyed when the program ends. Local, automatic objects are
created and destroyed when the block in which they are defined is
entered and exited. Local static objects are allocated before their
first use and are destroyed when the program ends.

In addition to supporting automatic and static objects, C++ lets
us allocate objects dynamically. Dynamically allocated objects have
a lifetime that is independent of where they are created; they exist
until they are explicitly freed.

Properly freeing dynamic objects turns out to be a surprisingly
rich source of bugs. To make using dynamic objects safer, the library
defines two smart pointer types that manage dynamically allocated
objects. Smart pointers ensure that the objects to which they point
are automatically freed when it is appropriate to do so.

449

450

Dynamic Memory

1

Our programis have used only static or stack memory. Static memory is used
for local static objects (§ 6.1.1, p. 205), for class static data members (§ 7.6,
p- 300), and for variables defined outside any function. Stack memory is used for
nonstatic objects defined inside functions. Objects allocated in static or stack
memory are automatically created and destroyed by the compiler. Stack objects
exist only while the block in which they are defined is executing; static objects
are allocated before they are used, and they are destroyed when the program ends.

In addition to static or stack memory, every program also has a pool of memory
that it can use. This memory is referred to as the free store or heap. Programs
use the heap for objects that they dynamically allocate—that is, for objects that
the program allocates at run time. The program controls the lifetime of dynamic
objects; our code must explicitly destroy such objects when they are no longer
needed.

Although necessary at times, dynamic memory is notoriously tricky to

WARNING anage correctly.

12.1 Dynamic Memory and Smart Pointers

In C++, dynamic memory is managed through a pair of operators: new, which
allocates, and optionally initializes, an object in dynamic memory and returns a
pointer to that object; and delete, which takes a pointer to a dynamic object,
destroys that object, and frees the associated memory.

Dynamic memory is problematic because it is surprisingly hard to ensure that
we free memory at the right time. Either we forget to free the memory—in which
case we have a memory leak—or we free the memory when there are still pointers
referring to that memory—in which case we have a pointer that refers to memory
that is no longer valid.

To make using dynamic memory easier (and safer), the new library provides
two smart pointer types that manage dynamic objects. A smart pointer acts like
a regular pointer with the important exception that it automatically deletes the
object to which it points. The new library defines two kinds of smart pointers that
differ in how they manage their underlying pointers: shared_ptr, which allows
multiple pointers to refer to the same object, and unique_ptr, which “owns”
the object to which it points. The library also defines a companion class named
weak ptr that is a weak reference to an object managed by a shared_ptr. All
three are defined in the memory header.

12.1.1 The shared ptr Class

Like vectors, smart pointers are templates (§ 3.3, p. 96). Therefore, when we
create a smart pointer, we must supply additional information—in this case, the
type to which the pointer can point. As with vector, we supply that type inside
angle brackets that follow the name of the kind of smart pointer we are defining:

shared ptr<string> pl; // shared ptrthat can point at a string

Section 12.1 Dynamic Memory and Smart Pointers

451

shared ptr<list<int>> p2; // shared ptrthat can pointata 1ist of ints

A default initialized smart pointer holds a null pointer (§ 2.3.2, p. 53). In § 12.1.3
(p. 464), we'll cover additional ways to initialize a smart pointer.

We use a smart pointer in ways that are similar to using a pointer. Dereferenc-
ing a smart pointer returns the object to which the pointer points. When we use a
smart pointer in a condition, the effect is to test whether the pointer is null:

// if p1is not null, check whether it’s the empty string
if (pl && pl->empty())
*pl = "hi"; // ifso, dereference p1 to assign a new value to that string

Table 12.1 (overleaf) lists operations common to shared ptr and unique ptr.
Those that are particular to shared ptr are listed in Table 12.2 (p. 453).

The make shared Function

The safest way to allocate and use dynamic memory is to call a library function
named make_shared. This function allocates and initializes an object in dynamic
memory and returns a shared_ptr that points to that object. Like the smart
pointers, make sharedis defined in the memory header.

When we call make shared, we must specify the type of object we want to
create. We do so in the same way as we use a template class, by following the
function name with a type enclosed in angle brackets:

// shared ptr that points to an int with value 42

shared ptr<int> p3 = make shared<int>(42);

// p4 points toa string with value 9999999999

shared ptr<string> p4 = make shared<string> (10, ’'9’);
// p5 points to an int that is value initialized (§ 3.3.1 (p. 98)) to 0
shared ptr<int> p5 = make shared<int>();

Like the sequential-container emplace members (§ 9.3.1, p. 345), make_shared
uses its arguments to construct an object of the given type. For example, a call to
make_shared<string> must pass argument(s) that match one of the string
constructors. Calls to make_shared<int> can pass any value we can use to ini-
tialize an int. And so on. If we do not pass any arguments, then the object is value
initialized (§ 3.3.1, p. 98).

Of course, ordinarily we use auto (§ 2.5.2, p. 68) to make it easier to define an
object to hold the result of make shared:

// pé6 points to a dynamically allocated, empty vector<string>
auto p6 = make shared<vector<string>>();

Copying and Assigning shared ptrs

When we copy or assign a shared_ptr, each shared_ptr keeps track of how
many other shared_ptrs point to the same object:

auto p = make_ shared<int>(42); // object to which p points has one user
auto qgl(p); // pand gpoint to the same object
// object to which p and g point has two users

452 Dynamic Memory
Table 12.1: Operations Common to shared ptr and unique ptr

shared ptr<T> sp Null smart pointer that can point to objects of type T.

unique ptr<T> up

P Use p as a condition; true if p points to an object.

*p Dereference p to get the object to which p points.

p->mem Synonym for (xp) .mem.

p.get () Returns the pointer in p. Use with caution; the object to which the
returned pointer points will disappear when the smart pointer
deletes it.

swap (p, q) Swaps the pointers in p and g.

p.swap (q)

We can think of a shared_ptrasif it has an associated counter, usually referred to
as a reference count. Whenever we copy a shared_ptr, the count is incremented.
For example, the counter associated with a shared_ptr is incremented when we
use it to initialize another shared_ptr, when we use it as the right-hand operand
of an assignment, or when we pass it to (§ 6.2.1, p. 209) or return it from a function
by value (§ 6.3.2, p. 224). The counter is decremented when we assign a new value
to the shared ptr and when the shared_ptr itself is destroyed, such as when
alocal shared_ptr goes out of scope (§ 6.1.1, p. 204).

Once a shared_ptr’s counter goes to zero, the shared_ptr automatically
frees the object that it manages:

auto r = make_ shared<int>(42); // int to which r points has one user
r = q; // assignto r, making it point to a different address
// increase the use count for the object to which g points
// reduce the use count of the object to which r had pointed
// the object r had pointed to has no users; that object is automatically freed

Here we allocate an int and store a pointer to that int in r. Next, we assign a
new value to r. In this case, r is the only shared ptr pointing to the one we
previously allocated. That int is automatically freed as part of assigning g to r.

It is up to the implementation whether to use a counter or another data
structure to keep track of how many pointers share state. The key point
is that the class keeps track of how many shared ptrs point to the

~ same object and automatically frees that object when appropriate.

shared ptrs Automatically Destroy Their Objects ...

When the last shared ptr pointing to an object is destroyed, the shared ptr
class automatically destroys the object to which that shared ptr points. It does
so through another special member function known as a destructor. Analogous to
its constructors, each class has a destructor. Just as a constructor controls initial-
ization, the destructor controls what happens when objects of that class type are
destroyed.

Section 12.1 Dynamic Memory and Smart Pointers 453
Table 12.2: Operations Specific to shared ptr
make_shared<T> (args) Returnsa shared ptr pointing to a dynamically allocated
object of type T. Uses args to initialize that object.
shared ptr<T>p(q) pis a copy of the shared_ ptr g; increments the count in g. The
pointer in g must be convertible to T* (§4.11.2, p. 161).
P =49 p and g are shared_ptrs holding pointers that can be converted

to one another. Decrements p’s reference count and increments
d’s count; deletes p’s existing memory if p’s count goes to 0.

p.unique () Returns true if p.use _count () is one; false otherwise.

p.use_count () Returns the number of objects sharing with p; may be a slow
operation, intended primarily for debugging purposes.

Destructors generally free the resources that an object has allocated. For ex-
ample, the string constructors (and other string members) allocate memory
to hold the characters that compose the string. The string destructor frees
that memory. Similarly, several vector operations allocate memory to hold the
elements in the vector. The destructor for vector destroys those elements and
frees the memory used for the elements.

The destructor for shared ptr decrements the reference count of the object
to which that shared_ptr points. If the count goes to zero, the shared_ptr de-
structor destroys the object to which the shared_ptr points and frees the memory
used by that object.

...and Automatically Free the Associated Memory

The fact that the shared_ptr class automatically frees dynamic objects when they
are no longer needed makes it fairly easy to use dynamic memory. For example,
we might have a function that returns a shared_ptr to a dynamically allocated
object of a type named Foo that can be initialized by an argument of type T:

// factoryreturnsa shared ptr pointing to a dynamically allocated object
shared ptr<Foo> factory(T arg)

{

// process arg as appropriate
// shared_ptr will take care of deleting this memory
return make shared<Foo> (arg) ;

}

Because factory returns a shared ptr, we can be sure that the object allocated
by factory will be freed when appropriate. For example, the following function
stores the shared_ptr returned by factory in a local variable:

void use_ factory (T arg)
{
shared ptr<Foo> p = factory(arg) ;

// usep
} // pgoes out of scope; the memory to which p points is automatically freed

454

Dynamic Memory

Because p is local to use factory, it is destroyed when use factory ends
(§ 6.1.1, p. 204). When p is destroyed, its reference count is decremented and
checked. In this case, p is the only object referring to the memory returned by
factory. Because p is about to go away, the object to which p points will be
destroyed and the memory in which that object resides will be freed.

The memory will not be freed if there is any other shared_ptr pointing to it:

shared ptr<Foo> use factory(T arg)

{

shared ptr<Foo> p = factory(arg) ;

// usep

return p; // reference count is incremented when we return p
} // pgoes out of scope; the memory to which p points is not freed

In this version, the return statement in use_factory returns a copy of p to
its caller (§ 6.3.2, p. 224). Copying a shared_ptr adds to the reference count of
that object. Now when p is destroyed, there will be another user for the memory
to which p points. The shared_ptr class ensures that so long as there are any
shared_ptrs attached to that memory, the memory itself will not be freed.

Because memory is not freed until the last shared ptr goes away, it can be
important to be sure that shared_ptrs don’t stay around after they are no longer
needed. The program will execute correctly but may waste memory if you ne-
glect to destroy shared ptrs that the program does not need. One way that
shared_ptrs might stay around after you need them is if you put shared_ptrs
in a container and subsequently reorder the container so that you don’t need all
the elements. You should be sure to erase shared_ptr elements once you no
longer need those elements.

If you put shared ptrsin a container, and you subsequently need to
use some, but not all, of the elements, remember to erase the elements
// you no longer need.

Classes with Resources That Have Dynamic Lifetime
Programs tend to use dynamic memory for one of three purposes:
1. They don’t know how many objects they’ll need
2. They don’t know the precise type of the objects they need

3. They want to share data between several objects

The container classes are an example of classes that use dynamic memory for the
first purpose and we’ll see examples of the second in Chapter 15. In this section,
we'll define a class that uses dynamic memory in order to let several objects share
the same underlying data.

So far, the classes we’ve used allocate resources that exist only as long as the
corresponding objects. For example, each vector “owns” its own elements. When
we copy a vector, the elements in the original vector and in the copy are sepa-
rate from one another:

Section 12.1 Dynamic Memory and Smart Pointers

455

vector<strings> vl; // empty vector
{ // new scope
vector<string> v2 = {"a", "an", "the"};

vl = v2; // copies the elements from v2 into v1
} // v2is destroyed, which destroys the elements in v2
// v1 has three elements, which are copies of the ones originally in v2

The elements allocated by a vector exist only while the vector itself exists.
When a vector is destroyed, the elements in the vector are also destroyed.

Some classes allocate resources with a lifetime that is independent of the origi-
nal object. As an example, assume we want to define a class named Blob that will
hold a collection of elements. Unlike the containers, we want B1ob objects that are
copies of one another to share the same elements. That is, when we copy a B1ob,
the original and the copy should refer to the same underlying elements.

In general, when two objects share the same underlying data, we can’t unilat-
erally destroy the data when an object of that type goes away:

Blob<string> bl; // empty Blob
{ // mnew scope
Blob<string> b2 = {"a", "an", "the"};

bl = b2; // bland b2 share the same elements
} // b2is destroyed, but the elements in b2 must not be destroyed
// b1 points to the elements originally created in b2

In this example, bl and b2 share the same elements. When b2 goes out of scope,
those elements must stay around, because b1 is still using them.

One common reason to use dynamic memory is to allow multiple ob-

jects to share the same state.
g

Defining the strBlob Class

Ultimately, we’ll implement our Blob class as a template, but we won't learn how
to do so until § 16.1.2 (p. 658). For now, we’ll define a version of our class that can
manage strings. As a result, we’ll name this version of our class StrBlob.

The easiest way to implement a new collection type is to use one of the library
containers to manage the elements. That way, we can let the library type manage
the storage for the elements themselves. In this case, we'll use a vector to hold
our elements.

However, we can’t store the vector directly in a Blob object. Members of an
object are destroyed when the object itself is destroyed. For example, assume that
bl and b2 are two Blobs that share the same vector. If that vector were stored
in one of those Blobs—say, b2—then that vector, and therefore its elements,
would no longer exist once b2 goes out of scope. To ensure that the elements
continue to exist, we'll store the vector in dynamic memory.

To implement the sharing we want, we'll give each StrBlob a shared ptr
to a dynamically allocated vector. That shared ptr member will keep track of
how many StrBlobs share the same vector and will delete the vector when
the last StrBlob using that vector is destroyed.

456

Dynamic Memory

We still need to decide what operations our class will provide. For now, we'll
implement a small subset of the vector operations. We'll also change the oper-
ations that access elements (e.g., front and back): In our class, these operations
will throw an exception if a user attempts to access an element that doesn’t exist.

Our class will have a default constructor and a constructor that has a parameter
of type initializer list<string>(§6.2.6,p.220). This constructor will take
a braced list of initializers.

class StrBlob {

public:
typedef std::vector<std::string>::size type size type;
StrBlob () ;
StrBlob(std::initializer list<std::string> il);
size type size() const { return data->size(); }
bool empty() const { return data-sempty(); }

// add and remove elements
void push back (const std::string &t) {data-s>push back(t);}
void pop_back() ;
// element access
std: :string& front () ;
std: :string& back() ;
private:
std::shared ptr<std::vector<std::string>> data;
// throws msgif data [1] isn't valid
void check(size type 1, const std::string &msg) const;

bi

Inside the class we implemented the size, empty, and push_back members.
These members forward their work through the data pointer to the underlying
vector. For example, size () ona StrBlob calls data->size (), and so on.

StrBlob Constructors

Each constructor uses its constructor initializer list (§ 7.1.4, p. 265) to initialize its
data member to point to a dynamically allocated vector. The default constructor
allocates an empty vector:

StrBlob::StrBlob () : data(make shared<vector<string>>()) { }

StrBlob::StrBlob(initializer list<string> il):
data (make shared<vector<string>>(il)) { }

The constructor that takesan initializer_ list passes its parameter to the cor-
responding vector constructor (§ 2.2.1, p. 43). That constructor initializes the
vector’s elements by copying the values in the list.

Element Access Members

The pop_back, front, and back operations access members in the vector.
These operations must check that an element exists before attempting to access
that element. Because several members need to do the same checking, we've given

Section 12.1 Dynamic Memory and Smart Pointers

457

our class a private utility function named check that verifies that a given index
is in range. In addition to an index, check takes a string argument that it will
pass to the exception handler. The st ring describes what went wrong:

void StrBlob::check(size type i, const string &msg) const

{
if (i >= data->size())
throw out of range (msg) ;

}

The pop_back and element access members first call check. If check suc-
ceeds, these members forward their work to the underlying vector operation:

string& StrBlob::front ()

{

// if the vector is empty, check will throw
check (0, "front on empty StrBlob");
return data->front () ;

}

string& StrBlob::back()

{
check (0, "back on empty StrBlob");
return data-sback() ;

}

void StrBlob: :pop back ()

{

check (0, "pop back on empty StrBlob") ;
data->pop back() ;

}

The front and back members should be overloaded on const (§7.3.2, p. 276).
Defining those versions is left as an exercise.

Copying, Assigning, and Destroying StrBlobs

Like our Sales_data class, StrBlob uses the default versions of the operations
that copy, assign, and destroy objects of its type (§ 7.1.5, p. 267). By default, these
operations copy, assign, and destroy the data members of the class. Our StrBlob
has only one data member, which is a shared ptr. Therefore, when we copy,
assign, or destroy a StrBlob, its shared_ptr member will be copied, assigned,
or destroyed.

As we've seen, copying a shared_ptr increments its reference count; assign-
ing one shared_ptr to another increments the count of the right-hand operand
and decrements the count in the left-hand operand; and destroying a shared_ptr
decrements the count. If the count in a shared ptr goes to zero, the object to
which that shared_ptr points is automatically destroyed. Thus, the vector al-
located by the StrBlob constructors will be automatically destroyed when the
last StrBlob pointing to that vector is destroyed.

458

Dynamic Memory

EXERCISES SECTION 12.1.1 I

Exercise 12.1: How many elements do b1l and b2 have at the end of this code?
StrBlob bl;

{
StrBlob b2 = {"a", "an", "the"};
bl = b2;
b2.push back ("about") ;

}

Exercise 12.2: Write your own version of the St rBlob class including the const ver-
sions of front and back.

Exercise 12.3: Does this class need const versions of push_back and pop_back? If
so, add them. If not, why aren’t they needed?

Exercise 12.4: In our check function we didn’t check whether i was greater than
zero. Why is it okay to omit that check?

Exercise 12.5: We did not make the constructor that takes an initializer list
explicit (§7.5.4, p.296). Discuss the pros and cons of this design choice.

12.1.2 Managing Memory Directly

The language itself defines two operators that allocate and free dynamic memory.
The new operator allocates memory, and delete frees memory allocated by new.
For reasons that will become clear as we describe how these operators work,
using these operators to manage memory is considerably more error-prone than
using a smart pointer. Moreover, classes that do manage their own memory—
unlike those that use smart pointers—cannot rely on the default definitions for the
members that copy, assign, and destroy class objects (§ 7.1.4, p. 264). As a result,
programs that use smart pointers are likely to be easier to write and debug.

Until you have read Chapter 13, your classes should allocate dynamic

WARNING emory only if they use smart pointers to manage that memory.

Using new to Dynamically Allocate and Initialize Objects

Objects allocated on the free store are unnamed, so new offers no way to name the
objects that it allocates. Instead, new returns a pointer to the object it allocates:

int xpi = new int; // pipoints to a dynamically allocated,
// unnamed, uninitialized int

This new expression constructs an object of type int on the free store and returns
a pointer to that object.

By default, dynamically allocated objects are default initialized (§ 2.2.1, p. 43),
which means that objects of built-in or compound type have undefined value; ob-
jects of class type are initialized by their default constructor:

Section 12.1 Dynamic Memory and Smart Pointers

459

string xps = new string; // initialized toempty string
int xpi = new int; // pi points to an uninitialized int

We can initialize a dynamically allocated object using direct initialization (§ 3.2.1,
p- 84). We can use traditional construction (using parentheses), and under the new
standard, we can also use list initialization (with curly braces):

int «pi = new int(1024); // object towhich pi points has value 1024
string *ps = new string (10, ’'9'); // #*psis "9999999999"
// vector with ten elements with values from 0 to 9

vector<int> *pv = new vector<int>{0,1,2,3,4,5,6,7,8,9};

We can also value initialize (§ 3.3.1, p. 98) a dynamically allocated object by
following the type name with a pair of empty parentheses:

string xpsl = new string; // default initialized to the empty string

string *ps = new string(); // wvalueinitialized to the empty string
int xpil = new int; // default initialized; *pi1 is undefined
int xpi2 = new int () ; // wvalue initialized to 0; xpiZ2is 0

For class types (such as st ring) that define their own constructors (§7.1.4, p. 262),
requesting value initialization is of no consequence; regardless of form, the object
is initialized by the default constructor. In the case of built-in types the difference
is significant; a value-initialized object of built-in type has a well-defined value but
a default-initialized object does not. Similarly, members of built-in type in classes
that rely on the synthesized default constructor will also be uninitialized if those
members are not initialized in the class body (§ 7.1.4, p. 263).

Best For the same reasons as we usually initialize variables, it is also a good
Practices . o 98 1|5 . c
idea to initialize dynamically allocated objects.

When we provide an initializer inside parentheses, we can use auto (§ 2.5.2,
p- 68) to deduce the type of the object we want to allocate from that initializer.
However, because the compiler uses the initializer’s type to deduce the type to
allocate, we can use auto only with a single initializer inside parentheses:

auto pl = new auto(obj); // ppointstoan object of the type of obj
// that object is initialized from obj
auto p2 = new autof{a,b,c}; // error: must use parentheses for the initializer

The type of p1 is a pointer to the auto-deduced type of obj. If obj is an int,
then plis int«;if obj isa string, then plis a stringx; and so on. The newly
allocated object is initialized from the value of obj.

Dynamically Allocated const Objects

It is legal to use new to allocate const objects:

// allocate and initialize n const int
const int xpci = new const int (1024);

// allocate a default-initialized const empty string
const string xpcs = new const string;

1

1

460

Dynamic Memory

Like any other const, a dynamically allocated const object must be initialized.
A const dynamic object of a class type that defines a default constructor (§ 7.1.4,
p- 263) may be initialized implicitly. Objects of other types must be explicitly ini-
tialized. Because the allocated object is const, the pointer returned by new is a
pointer to const (§2.4.2, p. 62).

Memory Exhaustion

Although modern machines tend to have huge memory capacity, it is always pos-
sible that the free store will be exhausted. Once a program has used all of its avail-
able memory, new expressions will fail. By default, if new is unable to allocate the
requested storage, it throws an exception of type bad_alloc (§ 5.6, p. 193). We
can prevent new from throwing an exception by using a different form of new:

// if allocation fails, new returns a null pointer
int «pl = new int; // ifallocation fails, newthrows std: :bad_alloc
int +p2 = new (nothrow) int; // ifallocation fails, new returns a null pointer

For reasons we’ll explain in § 19.1.2 (p. 824) this form of new is referred to as place-
ment new. A placement new expression lets us pass additional arguments to new.
In this case, we pass an object named nothrow that is defined by the library. When
we pass nothrow to new, we tell new that it must not throw an exception. If this
form of new is unable to allocate the requested storage, it will return a null pointer.
Both bad alloc and nothrow are defined in the new header.

Freeing Dynamic Memory

In order to prevent memory exhaustion, we must return dynamically allocated
memory to the system once we are finished using it. We return memory through
a delete expression. A delete expression takes a pointer to the object we want
to free:

delete p; // pmust point to a dynamically allocated object or be null

Like new, a delete expression performs two actions: It destroys the object to
which its given pointer points, and it frees the corresponding memory.

Pointer Values and delete

The pointer we pass to delete must either point to dynamically allocated mem-
ory or be a null pointer (§ 2.3.2, p. 53). Deleting a pointer to memory that was not
allocated by new, or deleting the same pointer value more than once, is undefined:

int i, *pil = &i, *pi2 = nullptr;

double *pd = new double(33), xpd2 = pd;

delete 1i; // error: iis nota pointer

delete pil; // undefined: pil refers toa local

delete pd; // ok

delete pd2; // undefined: the memory pointed to by pd2 was already freed
delete pi2; // ok:itisalways ok to delete a null pointer

Section 12.1 Dynamic Memory and Smart Pointers

461

The compiler will generate an error for the delete of i because it knows that i
is not a pointer. The errors associated with executing delete on pil and pd2 are
more insidious: In general, compilers cannot tell whether a pointer points to a stat-
ically or dynamically allocated object. Similarly, the compiler cannot tell whether
memory addressed by a pointer has already been freed. Most compilers will accept
these delete expressions, even though they are in error.

Although the value of a const object cannot be modified, the object itself can
be destroyed. As with any other dynamic object, a const dynamic object is freed
by executing delete on a pointer that points to that object:

const int xpci = new const int (1024);
delete pci; // ok:deletesa const object

Dynamically Allocated Objects Exist until They Are Freed

As we saw in § 12.1.1 (p. 452), memory that is managed through a shared ptr
is automatically deleted when the last shared_ptr is destroyed. The same is not
true for memory we manage using built-in pointers. A dynamic object managed
through a built-in pointer exists until it is explicitly deleted.

Functions that return pointers (rather than smart pointers) to dynamic memory
put a burden on their callers—the caller must remember to delete the memory:

// factory returns a pointer to a dynamically allocated object
Foox factory (T arg)

{

// process arg as appropriate
return new Foo(arg); // calleris responsible for deleting this memory

}

Like our earlier factory function (§ 12.1.1, p. 453), this version of factory al-
locates an object but does not delete it. Callers of factory are responsible for
freeing this memory when they no longer need the allocated object. Unfortunately,
all too often the caller forgets to do so:

void use factory (T arg)

{

Foo *p = factory(arg) ;
// use pbutdonot delete it
} // pgoes out of scope, but the memory to which p points is not freed!

Here, our use_factory function calls factory, which allocates a new object of
type Foo. When use_factory returns, the local variable p is destroyed. That
variable is a built-in pointer, not a smart pointer.

Unlike class types, nothing happens when objects of built-in type are destroyed.
In particular, when a pointer goes out of scope, nothing happens to the object to
which the pointer points. If that pointer points to dynamic memory, that memory
is not automatically freed.

Dynamic memory managed through built-in pointers (rather than smart
WARNING Pointers) exists until it is explicitly freed.

462 Dynamic Memory

In this example, p was the only pointer to the memory allocated by factory.
Once use_factory returns, the program has no way to free that memory. De-
pending on the logic of our overall program, we should fix this bug by remember-
ing to free the memory inside use_factory:

void use_ factory (T arg)

{

Foo xp = factory(arg) ;
// usep
delete p; // remember to free the memory now that we no longer need it

}

or, if other code in our system needs to use the object allocated by use_factory,
we should change that function to return a pointer to the memory it allocated:

Foox use factory (T arg)

{

Foo *p = factory(arg) ;
// wusep
return p; // caller must delete the memory

CAUTION: MANAGING DYNAMIC MEMORY IS ERROR-PRONE

There are three common problems with using new and delete to manage dynamic
memory:

1. Forgetting to delete memory. Neglecting to delete dynamic memory is known

as a “memory leak,” because the memory is never returned to the free store.

Testing for memory leaks is difficult because they usually cannot be detected
until the application is run for a long enough time to actually exhaust memory.

2. Using an object after it has been deleted. This error can sometimes be detected
by making the pointer null after the delete.

3. Deleting the same memory twice. This error can happen when two pointers
address the same dynamically allocated object. If delete is applied to one
of the pointers, then the object’s memory is returned to the free store. If we
subsequently delete the second pointer, then the free store may be corrupted.

These kinds of errors are considerably easier to make than they are to find and fix.
You can avoid all of these problems by using smart pointers exclusively.

Practices The smart pointer will take care of deleting the memory only when there
are no remaining smart pointers pointing to that memory.

Resetting the Value of a Pointer after a delete...

When we delete a pointer, that pointer becomes invalid. Although the pointer is
invalid, on many machines the pointer continues to hold the address of the (freed)
dynamic memory. After the delete, the pointer becomes what is referred to as a

Section 12.1 Dynamic Memory and Smart Pointers

463

dangling pointer. A dangling pointer is one that refers to memory that once held
an object but no longer does so.

Dangling pointers have all the problems of uninitialized pointers (§2.3.2, p. 54).
We can avoid the problems with dangling pointers by deleting the memory associ-
ated with a pointer just before the pointer itself goes out of scope. That way there is
no chance to use the pointer after the memory associated with the pointer is freed.
If we need to keep the pointer around, we can assign nullptr to the pointer after
we use delete. Doing so makes it clear that the pointer points to no object.

...Provides Only Limited Protection

A fundamental problem with dynamic memory is that there can be several point-
ers that point to the same memory. Resetting the pointer we use to delete that
memory lets us check that particular pointer but has no effect on any of the other
pointers that still point at the (freed) memory. For example:

int xp(new int(42)); // ppointstodynamic memory
auto g = p; // pand g point to the same memory
delete p; // invalidates both p and q

p = nullptr; // indicates that p is no longer bound to an object

Here both p and g point at the same dynamically allocated object. We delete that
memory and set p to nullptr, indicating that the pointer no longer points to an
object. However, resetting p has no effect on g, which became invalid when we
deleted the memory to which p (and g!) pointed. In real systems, finding all the
pointers that point to the same memory is surprisingly difficult.

EXERCISES SECTION 12.1.2 I

Exercise 12.6: Write a function that returns a dynamically allocated vector of ints.
Pass that vector to another function that reads the standard input to give values to
the elements. Pass the vector to another function to print the values that were read.
Remember to delete the vector at the appropriate time.

Exercise 12.7: Redo the previous exercise, this time using shared_ptr.

Exercise 12.8: Explain what if anything is wrong with the following function.
bool b() {
int* p = new int;
/]

return p;

}

Exercise 12.9: Explain what happens in the following code:

int *q = new int(42), *r = new int (100);
r = q;
auto g2 = make shared<int>(42), r2 = make shared<int>(100) ;

r2 = g2;

464

Dynamic Memory

12.1.3 Using shared ptrs with new

As we've seen, if we do not initialize a smart pointer, it is initialized as a null
pointer. As described in Table 12.3, we can also initialize a smart pointer from a
pointer returned by new:

shared ptr<double> pl; // shared ptrthat can point ata double
shared ptr<int> p2(new int (42)); // p2pointstoan int with value 42

The smart pointer constructors that take pointers are explicit (§ 7.5.4, p. 296).
Hence, we cannot implicitly convert a built-in pointer to a smart pointer; we must
use the direct form of initialization (§ 3.2.1, p. 84) to initialize a smart pointer:

shared ptr<int> pl = new int(1024); // error: must use direct initialization
shared ptr<int> p2(new int (1024)); // ok: usesdirect initialization

The initialization of p1 implicitly asks the compiler to create a shared_ptr from
the int « returned by new. Because we can’t implicitly convert a pointer to a smart
pointer, this initialization is an error. For the same reason, a function that returns a
shared_ptr cannot implicitly convert a plain pointer in its return statement:

shared ptr<ints> clone(int p) {
return new int(p); // error: implicit conversion to shared ptr<int>
}

We must explicitly bind a shared_ptr to the pointer we want to return:

shared ptr<ints> clone(int p) {
// ok:explicitly create a shared ptr<intsfrom intx
return shared ptr<int>(new int(p));

}

By default, a pointer used to initialize a smart pointer must point to dynamic
memory because, by default, smart pointers use delete to free the associated ob-
ject. We can bind smart pointers to pointers to other kinds of resources. However,
to do so, we must supply our own operation to use in place of delete. We'll see
how to supply our own deletion code in § 12.1.4 (p. 468).

Don’t Mix Ordinary Pointers and Smart Pointers ...

A shared ptr can coordinate destruction only with other shared ptrs that
are copies of itself. Indeed, this fact is one of the reasons we recommend using
make shared rather than new. That way, we bind a shared_ptr to the object at
the same time that we allocate it. There is no way to inadvertently bind the same
memory to more than one independently created shared_ptr.

Consider the following function that operates on a shared_ptr:

// ptris created and initialized when process is called
void process (shared ptr<ints> ptr)
{
// useptr
} // ptrgoes out of scope and is destroyed

Section 12.1 Dynamic Memory and Smart Pointers

465

Table 12.3: Other Ways to Define and Change shared ptrs

shared ptr<T> p(q) p manages the object to which the built-in pointer g points;
g must point to memory allocated by new and must be
convertible to Tx.

shared ptr<T> p(u) p assumes ownership from the unique ptr u; makes u null.

shared ptr<T> p(g, d) passumesownership for the object to which the built-in
pointer g points. g must be convertible to T+ (§ 4.11.2, p. 161).
p will use the callable object d (§ 10.3.2, p. 388) in place of
delete to free g.

shared ptr<T> p(p2, d) pisacopy of the shared ptr p2 as described in Table 12.2
except that p uses the callable object d in place of delete.

p.reset () If p is the only shared_ptr pointing at its object, reset frees
p.reset (q) p’s existing object. If the optional built-in pointer g is passed,
p.reset (g, d) makes p point to g, otherwise makes p null. If d is supplied,

will call d to free g otherwise uses delete to free g.

The parameter to process is passed by value, so the argument to process is

copied into ptr. Copying a shared_ptr increments its reference count. Thus,

inside process the count is at least 2. When process completes, the reference

count of ptr is decremented but cannot go to zero. Therefore, when the local

variable ptr is destroyed, the memory to which ptr points will not be deleted.
The right way to use this function is to pass it a shared ptr:

shared ptr<int> p(new int(42)); // reference countis1
process (p); // copying p increments its count; in process the reference count is 2
int 1 = xp; // ok: reference countis 1

Although we cannot pass a built-in pointer to process, we can pass process
a (temporary) shared_ptr that we explicitly construct from a built-in pointer.
However, doing so is likely to be an error:

int «x(new int(1024)); // dangerous: xis a plain pointer, not a smart pointer
process(x); // error:cannot convert int +to shared ptr<ints>

process (shared ptr<int>(x)); // legal, but the memory will be deleted!
int j = *x; // undefined: xis a dangling pointer!

In this call, we passed a temporary shared_ ptr to process. That temporary is
destroyed when the expression in which the call appears finishes. Destroying the
temporary decrements the reference count, which goes to zero. The memory to
which the temporary points is freed when the temporary is destroyed.

But x continues to point to that (freed) memory; x is now a dangling pointer.
Attempting to use the value of x is undefined.

When we bind a shared_ptr to a plain pointer, we give responsibility for
that memory to that shared ptr. Once we give shared_ ptr responsibility for a
pointer, we should no longer use a built-in pointer to access the memory to which
the shared_ptr now points.

466

Dynamic Memory

& It is dangerous to use a built-in pointer to access an object owned by a

wARNmG Smart pointer, because we may not know when that object is destroyed.

...and Don’t Use get to Initialize or Assign Another Smart Pointer

The smart pointer types define a function named get (described in Table 12.1
(p. 452)) that returns a built-in pointer to the object that the smart pointer is man-
aging. This function is intended for cases when we need to pass a built-in pointer
to code that can’t use a smart pointer. The code that uses the return from get must
not delete that pointer.
Although the compiler will not complain, it is an error to bind another smart
pointer to the pointer returned by get:
shared ptr<ints> p(new int (42)); // referencecountis1
int *q = p.get(); // ok: butdon’tuse qinany way that might delete its pointer
{ // new block
// undefined: two independent shared_ptrs point to the same memory
auto local = shared ptr<ints>(q);
} // block ends, local is destroyed; the memory to which p and g points is freed
int foo = *p; // wundefined; the memory to which p points was freed

Here, p, g, and local all point to the same memory. Because p and local were
created independently from one another, each has a reference count of 1. When
the inner block ends, local is destroyed. Because local’s reference count is 1,
the memory to which it points will be freed. That makes p and g into a dangling
pointers; what happens when we attempt to use p or g is undefined. Moreover,
when p is destroyed, the pointer to that memory will be deleted a second time.

Use get only to pass access to the pointer to code that you know will not
delete the pointer. In particular, never use get to initialize or assign
WARNING to another smart pointer.

Other shared ptr Operations

The shared_ptr class gives us a few other operations, which are listed in Ta-
ble 12.2 (p. 453) and Table 12.3 (on the previous page). We can use reset to assign
a new pointer to a shared_ptr:

p = new int(1024); // error: cannot assign a pointer to a shared_ptr
p.reset (new int (1024)); // ok: ppoints toa new object

Like assignment, reset updates the reference counts and, if appropriate, deletes
the object to which p points. The reset member is often used together with
unigque to control changes to the object shared among several shared_ptrs. Be-
fore changing the underlying object, we check whether we’re the only user. If not,
we make a new copy before making the change:

if (!p.unique())

p.reset (new string(*p)); // wearen’talone; allocate a new copy
*p += newVal; // now that we know we’re the only pointer, okay to change this object

Section 12.1 Dynamic Memory and Smart Pointers

467

EXERCISES SECTION 12.1.3 I

Exercise 12.10: Explain whether the following call to the process function defined
on page 464 is correct. If not, how would you correct the call?

shared ptr<int> p(new int (42));
process (shared ptr<ints>(p));

Exercise 12.11: What would happen if we called process as follows?

process (shared ptr<int>(p.get()));

Exercise 12.12: Using the declarations of p and sp explain each of the following calls
to process. If the call is legal, explain what it does. If the call is illegal, explain why:

auto p = new int () ;

auto sp = make shared<ints> () ;
(a) process(sp) ;

(b) process (new int()) ;

(c) process (p) ;

(d) process(shared ptr<ints>(p));

Exercise 12.13: What happens if we execute the following code?

auto sp = make shared<ints>();
auto p = sp.get();
delete p;

12.1.4 Smart Pointers and Exceptions

In § 5.6.2 (p. 196) we noted that programs that use exception handling to continue
processing after an exception occurs need to ensure that resources are properly
freed if an exception occurs. One easy way to make sure resources are freed is to
use smart pointers.

When we use a smart pointer, the smart pointer class ensures that memory is
freed when it is no longer needed even if the block is exited prematurely:

void £ ()

{

shared ptr<int> sp(new int (42)); // allocatea new object
// code that throws an exception that is not caught inside £
} // shared ptr freed automatically when the function ends

When a function is exited, whether through normal processing or due to an ex-
ception, all the local objects are destroyed. In this case, sp is a shared_ptr, so
destroying sp checks its reference count. Here, sp is the only pointer to the mem-
ory it manages; that memory will be freed as part of destroying sp.

In contrast, memory that we manage directly is not automatically freed when
an exception occurs. If we use built-in pointers to manage memory and an excep-
tion occurs after a new but before the corresponding delete, then that memory
won't be freed:

468

Dynamic Memory

void f()

{
int xip = new int (42); // dynamically allocate a new object
// code that throws an exception that is not caught inside £

delete ip; // free the memory before exiting

}

If an exception happens between the new and the delete, and is not caught inside
£, then this memory can never be freed. There is no pointer to this memory outside
the function £. Thus, there is no way to free this memory.

Smart Pointers and Dumb Classes

Many C++ classes, including all the library classes, define destructors (§ 12.1.1,
p- 452) that take care of cleaning up the resources used by that object. However, not
all classes are so well behaved. In particular, classes that are designed to be used
by both C and C++ generally require the user to specifically free any resources that
are used.

Classes that allocate resources—and that do not define destructors to free those
resources—can be subject to the same kind of errors that arise when we use dy-
namic memory. It is easy to forget to release the resource. Similarly, if an exception
happens between when the resource is allocated and when it is freed, the program
will leak that resource.

We can often use the same kinds of techniques we use to manage dynamic
memory to manage classes that do not have well-behaved destructors. For ex-
ample, imagine we're using a network library that is used by both C and C++.
Programs that use this library might contain code such as

struct destination; // representswhat we are connecting to
struct connection; // information needed to use the connection
connection connect (destinationx); // open the connection
void disconnect (connection) ; // close the given connection
void f (destination &d /« other parameters «/)

{

// geta connection; must remember to close it when done

connection ¢ = connect (&d) ;

// use the connection

// if we forget to call disconnect before exiting £, there will be no way to close ¢

If connection had a destructor, that destructor would automatically close the
connection when £ completes. However, connect ion does not have a destructor.
This problem is nearly identical to our previous program that used a shared_ptr
to avoid memory leaks. It turns out that we can also use a shared_ptr to ensure
that the connectionis properly closed.

Using Our Own Deletion Code

By default, shared_ptrs assume that they point to dynamic memory. Hence, by
default, when a shared_ptr is destroyed, it executes delete on the pointer it

Section 12.1 Dynamic Memory and Smart Pointers

469

holds. To use a shared ptr to manage a connection, we must first define a
function to use in place of delete. It must be possible to call this deleter function
with the pointer stored inside the shared_ptr. In this case, our deleter must take
a single argument of type connectionx:

void end connection (connection xp) { disconnect (xp); }

When we create a shared_ptr, we can pass an optional argument that points to
a deleter function (§ 6.7, p. 247):

void f (destination &d /« other parameters «/)

{

connection ¢ = connect (&d) ;

shared ptr<connection> p(&c, end connection) ;

// use the connection

// when £ exits, even if by an exception, the connection will be properly closed

}

When p is destroyed, it won’t execute delete on its stored pointer. Instead, p
will call end connection on that pointer. In turn, end connection will call
disconnect, thus ensuring that the connection is closed. If £ exits normally, then
p will be destroyed as part of the return. Moreover, p will also be destroyed, and
the connection will be closed, if an exception occurs.

CAUTION: SMART POINTER PITFALLS

Smart pointers can provide safety and convenience for handling dynamically allo-
cated memory only when they are used properly. To use smart pointers correctly, we
must adhere to a set of conventions:

e Don’t use the same built-in pointer value to initialize (or reset) more than one
smart pointer.

e Don’t delete the pointer returned from get ().
e Don’t use get () to initialize or reset another smart pointer.

o If you use a pointer returned by get (), remember that the pointer will become
invalid when the last corresponding smart pointer goes away.

e If you use a smart pointer to manage a resource other than memory allocated by
new, remember to pass a deleter (§ 12.1.4, p. 468, and § 12.1.5, p. 471).

EXERCISES SECTION 12.1.4 I

Exercise 12.14: Write your own version of a function that uses a shared_ptr to man-
age a connection.

Exercise 12.15: Rewrite the first exercise to use a lambda (§ 10.3.2, p. 388) in place of
the end connection function.

470 Dynamic Memory

12.1.5 wunique ptr

A unique ptr “owns” the object to which it points. Unlike shared ptr, only

one unique_ptr at a time can point to a given object. The object to which a
unique_ ptr points is destroyed when the unique_ptr is destroyed. Table 12.4
lists the operations specific to unique_ptrs. The operations common to both
were covered in Table 12.1 (p. 452).

Unlike shared ptr, there is no library function comparable to make shared
that returns a unique ptr. Instead, when we define a unique ptr, we bind it
to a pointer returned by new. As with shared_ptrs, we must use the direct form
of initialization:

unique ptr<double> pl; // unique ptrthat can point ata double
unique ptr<int> p2(new int(42)); // p2pointsto int with value 42

Because a unique_ptxr owns the object to which it points, unique_ptr does
not support ordinary copy or assignment:

unique ptr<string> pl(new string("Stegosaurus")) ;

unique ptr<string> p2(pl); // error:nocopy for unique ptr
unique ptr<string> p3;
p3 = p2; // error: no assign for unique ptr

Table 12.4: unique_ptr Operations (See Also Table 12.1 (p. 452))

unigue ptr<Ts>ul Null unique_ptrs that can point to objects of type T. ul will

unique_ ptr<T, D>u2 use delete to free its pointer; u2 will use a callable object of
type D to free its pointer.

unique_ptr<T, D>u(d) Nullunique_ ptr that point to objects of type T that uses d,
which must be an object of type D in place of delete.

u = nullptr Deletes the object to which u points; makes u null.

u.release () Relinquishes control of the pointer u had held; returns the
pointer u had held and makes u null.

u.reset () Deletes the object to which u points;

u.reset (q) If the built-in pointer g is supplied, makes u point to that object.

u.reset (nullptr) Otherwise makes u null.

Although we can’t copy or assign a unique ptr, we can transfer ownership from
one (nonconst) unique ptr to another by calling release or reset:

// transfers ownership from p1 (which points to the string Stegosaurus) to p2
unique ptr<string> p2(pl.release()); // releasemakes plnull
unique ptr<string> p3(new string("Trex")) ;

// transfers ownership from p3 to p2

p2.reset (p3.release()); // reset deletes the memory to which p2 had pointed

The release member returns the pointer currently stored in the unique ptr
and makes that unique ptr null. Thus, p2 is initialized from the pointer value
that had been stored in p1 and p1 becomes null.

Section 12.1 Dynamic Memory and Smart Pointers

471

The reset member takes an optional pointer and repositions the unique ptr
to point to the given pointer. If the unique ptr is not null, then the object to
which the unique ptr had pointed is deleted. The call to reset on p2, therefore,
frees the memory used by the st ringinitialized from "Stegosaurus", transfers
p3’s pointer to p2, and makes p3 null.

Calling release breaks the connection between a unique_ptr and the object
it had been managing. Often the pointer returned by release is used to initial-
ize or assign another smart pointer. In that case, responsibility for managing the
memory is simply transferred from one smart pointer to another. However, if we
do not use another smart pointer to hold the pointer returned from release, our
program takes over responsibility for freeing that resource:

p2.release(); // WRONG: p2won't free the memory and we've lost the pointer
auto p = p2.release(); // ok, but we must rememberto delete (p)

Passing and Returning unique ptrs

There is one exception to the rule that we cannot copy a unique ptr: We can
copy or assign a unique_ ptr that is about to be destroyed. The most common
example is when we return a unique ptr from a function:

unique ptr<ints> clone(int p) {
// ok:explicitly create a unique ptr<intsfrom intx
return unique ptr<ints(new int(p));

}
Alternatively, we can also return a copy of a local object:

unique ptr<ints> clone (int p) {
unique ptr<ints> ret(new int (p));

//

return ret;

}

In both cases, the compiler knows that the object being returned is about to be
destroyed. In such cases, the compiler does a special kind of “copy” which we’ll
discuss in § 13.6.2 (p. 534).

BACKWARD COMPATIBILITY: AUTO PTR

Earlier versions of the library included a class named auto_ptr that had some, but
not all, of the properties of unique ptr. In particular, it was not possible to store an
auto ptr in a container, nor could we return one from a function.

Although auto ptr is still part of the standard library, programs should use
unique ptr instead.

Passing a Deleter to unique ptr

Like shared ptr, by default, unique_ptr uses delete to free the object to
which a unique ptr points. As with shared ptr, we can override the default

472

Dynamic Memory

deleter in a unique ptr (§ 12.1.4, p. 468). However, for reasons we’ll describe in
§16.1.6 (p. 676), the way unique ptr manages its deleter is differs from the way
shared ptr does.

Overridding the deleter ina unique_ptr affects the unique_ptr type as well
as how we construct (or reset) objects of that type. Similar to overriding the
comparison operation of an associative container (§ 11.2.2, p. 425), we must sup-
ply the deleter type inside the angle brackets along with the type to which the
unique_ ptr can point. We supply a callable object of the specified type when we
create or reset an object of this type:

// p points to an object of type obj T and uses an object of type delT to free that object
// it will call an object named fcn of type delT
unique ptr<objT, delT> p (new objT, fcn);

As a somewhat more concrete example, we'll rewrite our connection program to
use aunique ptr in place of a shared ptr as follows:

void f (destination &d /«x other needed parameters x/)
{
connection ¢ = connect(&d); // open the connection
// when pis destroyed, the connection will be closed
unique ptr<connection, decltype(end connection) x>
p(&c, end connection) ;
// use the connection
// when £ exits, even if by an exception, the connection will be properly closed

}

Here we use decltype (§2.5.3, p. 70) to specify the function pointer type. Because
decltype (end connection) returns a function type, we must remember to
add a « to indicate that we're using a pointer to that type (§ 6.7, p. 250).

EXERCISES SECTION 12.1.5 I

Exercise 12.16: Compilers don’t always give easy-to-understand error messages if we
attempt to copy or assign a unique ptr. Write a program that contains these errors
to see how your compiler diagnoses them.

Exercise 12.17: Which of the following unique ptr declarations are illegal or likely
to result in subsequent program error? Explain what the problem is with each one.
int ix = 1024, *pi = &ix, *pi2 = new int (2048);
typedef unique ptr<int> IntP;

(a) IntP po(ix) ; (b) IntP pl(pi);
(¢c) IntP p2(pi2); (d) IntP p3(&ix);
(¢) IntP p4 (new int (2048)) ; (f) IntP p5(p2.get());

Exercise 12.18: Why doesn’t shared_ptr have a release member?

Section 12.1 Dynamic Memory and Smart Pointers

473

12.1.6 weak ptr =

A weak_ptr (Table 12.5) is a smart pointer that does not control the lifetime of the

object to which it points. Instead, a weak_ptr points to an object that is managed

by a shared_ptr. Binding a weak_ptr to a shared_ptr does not change the
reference count of that shared_ptr. Once the last shared_ptr pointing to the
object goes away, the object itself will be deleted. That object will be deleted even
if there are weak_ptrs pointing to it—hence the name weak_ptr, which captures
the idea that a weak_ptr shares its object “weakly.”

When we create a weak_ptr, we initialize it from a shared ptr:

auto p = make shared<int>(42);
weak ptr<ints> wp(p); // wp weakly shares with p;use count in p is unchanged

Here both wp and p point to the same object. Because the sharing is weak, creating
wp doesn’t change the reference count of p; it is possible that the object to which
wp points might be deleted.

Because the object might no longer exist, we cannot use a weak_ptr to access
its object directly. To access that object, we must call lock. The lock function
checks whether the object to which the weak ptr points still exists. If so, lock re-
turns a shared_ptr to the shared object. As with any other shared_ptr, we are
guaranteed that the underlying object to which that shared_ptr points continues
to exist at least as long as that shared_ptr exists. For example:

if (shared ptr<int> np = wp.lock()) { // trueif npisnotnull
// inside the 1f, np shares its object with p
1

Here we enter the body of the if only if the call to 1ock succeeds. Inside the if,
it is safe to use np to access that object.

Table 12.5: weak ptrs

weak ptr<T> w Null weak_ptr that can point at objects of type T.

weak ptr<T> w(sp) weak ptr that points to the same object as the shared ptr sp.
T must be convertible to the type to which sp points.

w=7p p can be a shared_ptr or a weak ptr. After the assignment w
shares ownership with p.

w.reset () Makes w null.

w.use_count () The number of shared_ptrs that share ownership with w.

w.expired () Returns true if w.use_count () is zero, false otherwise.

w.lock () If expiredis true, returns a null shared_ptr; otherwise returns
a shared_ptr to the object to which w points.

Checked Pointer Class

As an illustration of when a weak_ptr is useful, we’ll define a companion pointer
class for our StrBlob class. Our pointer class, which we’ll name StrBlobPtr,

474

Dynamic Memory

will store a weak ptr to the data member of the StrBlob from which it was
initialized. By using a weak_ptr, we don't affect the lifetime of the vector to
which a given StrBlob points. However, we can prevent the user from attempt-
ing to access a vector that no longer exists.

StrBlobPtr will have two data members: wptr, which is either null or points
to a vector in a StrBlob; and curr, which is the index of the element that this
object currently denotes. Like its companion StrBlob class, our pointer class has
a check member to verify that it is safe to dereference the StrBlobPtr:

// StrBlobPtr throws an exception on attempts to access a nonexistent element
class StrBlobPtr {
public:
StrBlobPtr () : curr(0) { }
StrBlobPtr (StrBlob &a, size t sz = 0):
wptr(a.data), curr(sz) { }

std::string& deref () const;
StrBlobPtr& incr () ; // prefix version
private:

// checkreturnsa shared ptrto the vector if the check succeeds
std::shared ptr<std::vector<std::string>>

check (std::size t, const std::string&) const;
// storea weak ptr, which means the underlying vector might be destroyed
std::weak ptr<std::vector<std::string>> wptr;
std::size_t curr; // current position within the array

}i

The default constructor generates a null StrBlobPtr. Its constructor initial-
izer list (§ 7.1.4, p. 265) explicitly initializes curr to zero and implicitly initializes
wptr as a null weak ptr. The second constructor takes a reference to StrBlob
and an optional index value. This constructor initializes wptr to point to the
vector in the shared ptr of the given StrBlob object and initializes curr to
the value of sz. We use a default argument (§ 6.5.1, p. 236) to initialize curr to
denote the first element by default. As we’ll see, the sz parameter will be used by
the end member of StrBlob.

It is worth noting that we cannot bind a StrBlobPtr to a const StrBlob
object. This restriction follows from the fact that the constructor takes a reference
to a nonconst object of type StrBlob.

The check member of StrBlobPtr differs from the one in StrBlob because
it must check whether the vector to which it points is still around:

std::shared ptr<std::vector<std::string>>
StrBlobPtr::check(std::size t i, const std::string &msg) const
{
auto ret = wptr.lock() ; // s the vector still around?
if (!ret)
throw std::runtime error ("unbound StrBlobPtr") ;
if (i >= ret->size())
throw std::out of range(msg) ;
return ret; // otherwise, returna shared ptrtothe vector

Section 12.1 Dynamic Memory and Smart Pointers

475

Because a weak_ptr does not participate in the reference count of its correspond-
ing shared_ptr, the vector to which this StrBlobPtr points might have been
deleted. If the vector is gone, lock will return a null pointer. In this case, any
reference to the vector will fail, so we throw an exception. Otherwise, check
verifies its given index. If that value is okay, check returns the shared ptr it
obtained from lock.

Pointer Operations

We’ll learn how to define our own operators in Chapter 14. For now, we’ve defined
functions named deref and incr to dereference and increment the St rBlobPtr,
respectively. The deref member calls check to verify that it is safe to use the
vector and that curr is in range:

std::string& StrBlobPtr::deref () const
{
auto p = check(curr, "dereference past end");
return (xp) [currl; // (xp) isthe vector to which this object points

}

If check succeeds, p is a shared ptr to the vector to which this StrBlobPtr

points. The expression (+p) [curr] dereferences that shared ptr to get the

vector and uses the subscript operator to fetch and return the element at curr.
The incr member also calls check:

// prefix: return a reference to the incremented object

StrBlobPtr& StrBlobPtr::incr ()

{
// if curr already points past the end of the container, can’t increment it
check (curr, "increment past end of StrBlobPtr") ;
+4+CUrr; // advance the current state
return xthis;

}

We'll also give our StrBlob class begin and end operations. These members
will return StrBlobPtrs pointing to the first or one past the last element in the
StrBlob itself. In addition, because StrBlobPtr accesses the data member of
StrBlob, we must also make StrBlobPtra friendof StrBlob (§7.3.4, p. 279):

class StrBlob {
friend class StrBlobPtr;
// other members as in § 12.1.1 (p. 456)
StrBlobPtr begin(); // return StrBlobPtr to the first element
StrBlobPtr end() ; // and one past the last element
}i
// these members can’t be defined until St rStrBlob and StrStrBlobPtr are defined
StrBlobPtr StrBlob::begin() { return StrBlobPtr («this); }
StrBlobPtr StrBlob::end()
{ return StrBlobPtr (xthis, data->size()); }

476

Dynamic Memory

EXERCISES SECTION 12.1.6 I

Exercise 12.19: Define your own version of StrBlobPtr and update your StrBlob
class with the appropriate friend declaration and begin and end members.

Exercise 12.20: Write a program that reads an input file a line at a time into a StrBlob
and uses a StrBlobPtr to print each element in that StrBlob.

Exercise 12.21: We could have written StrBlobPtr’s deref member as follows:

std::string& deref () const
{ return (xcheck (curr, "dereference past end")) [curr]; }

Which version do you think is better and why?
Exercise 12.22: What changes would need to be made to StrBlobPtr to create a class

that can be used with a const StrBlob? Define a class named ConstStrBlobPtr
that can point to a const StrBlob.

= 12.2 Dynamic Arrays

The new and delete operators allocate objects one at a time. Some applications,
need the ability to allocate storage for many objects at once. For example, vectors
and strings store their elements in contiguous memory and must allocate several
elements at once whenever the container has to be reallocated (§ 9.4, p. 355).

To support such usage, the language and library provide two ways to allocate
an array of objects at once. The language defines a second kind of new expression
that allocates and initializes an array of objects. The library includes a template
class named allocator that lets us separate allocation from initialization. For
reasons we'll explain in § 12.2.2 (p. 481), using an allocator generally provides
better performance and more flexible memory management.

Many, perhaps even most, applications have no direct need for dynamic arrays.
When an application needs a varying number of objects, it is almost always easier,
faster, and safer to do as we did with StrBlob: use a vector (or other library
container). For reasons we’ll explain in § 13.6 (p. 531), the advantages of using a li-
brary container are even more pronounced under the new standard. Libraries that
support the new standard tend to be dramatically faster than previous releases.

4 Most applications should use a library container rather than dynami-
Proctices cally allocated arrays. Using a container is easier, less likely to contain
memory-management bugs, and is likely to give better performance.

Aswe’ve seen, classes that use the containers can use the default versions of the
operations for copy, assignment, and destruction (§ 7.1.5, p. 267). Classes that allo-
cate dynamic arrays must define their own versions of these operations to manage
the associated memory when objects are copied, assigned, and destroyed.

Do not allocate dynamic arrays in code inside classes until you have read

warnme Chapter 13.

Section 12.2 Dynamic Arrays

477

12.2.1 new and Arrays

We ask new to allocate an array of objects by specifying the number of objects to
allocate in a pair of square brackets after a type name. In this case, new allocates
the requested number of objects and (assuming the allocation succeeds) returns a
pointer to the first one:

// call get_size to determine how many ints to allocate
int «pia = new int[get size()]; // piapoints to the first of these ints

The size inside the brackets must have integral type but need not be a constant.
We can also allocate an array by using a type alias (§ 2.5.1, p. 67) to represent
an array type. In this case, we omit the brackets:

typedef int arrT[42]; // arrTnames thetypearrayof 42 ints
int p = new arrT; // allocates an array of 42 ints; p points to the first one

Here, new allocates an array of ints and returns a pointer to the first one. Even
though there are no brackets in our code, the compiler executes this expression
using new []. That is, the compiler executes this expression as if we had written

int *p = new int[42];

Allocating an Array Yields a Pointer to the Element Type

Although it is common to refer to memory allocated by new T[] as a “dynamic
array,” this usage is somewhat misleading. When we use new to allocate an array,
we do not get an object with an array type. Instead, we get a pointer to the element
type of the array. Even if we use a type alias to define an array type, new does
not allocate an object of array type. In this case, the fact that we’re allocating an
array is not even visible; there is no [num]. Even so, new returns a pointer to the
element type.

Because the allocated memory does not have an array type, we cannot call
begin or end (§ 3.5.3, p. 118) on a dynamic array. These functions use the ar-
ray dimension (which is part of an array’s type) to return pointers to the first and
one past the last elements, respectively. For the same reasons, we also cannot use
arange for to process the elements in a (so-called) dynamic array.

A It is important to remember that what we call a dynamic array does not

WARNING havean array type.

Initializing an Array of Dynamically Allocated Objects

By default, objects allocated by new—whether allocated as a single object or in an
array—are default initialized. We can value initialize (§ 3.3.1, p. 98) the elements
in an array by following the size with an empty pair of parentheses.

int xpia = new int[10]; // block of ten uninitialized ints
int xpia2 = new int[10] () ; // block of ten ints value initialized to 0
string xpsa = new string[10]; // block of ten empty strings

string *psa2 = new string[10] (); // blockof ten empty strings

1

478

Dynamic Memory

Under the new standard, we can also provide a braced list of element initializers:

1

// block of ten ints each initialized from the corresponding initializer

int #pia3 = new int[10]{0,1,2,3,4,5,6,7,8,9};

// block of ten strings; the first four are initialized from the given initializers

// remaining elements are value initialized

string spsa3 = new string[10]{"a", "an", "the", string(3,’'x’)};

As when we list initialize an object of built-in array type (§ 3.5.1, p. 114), the initial-
izers are used to initialize the first elements in the array. If there are fewer initial-
izers than elements, the remaining elements are value initialized. If there are more
initializers than the given size, then the new expression fails and no storage is al-
located. In this case, new throws an exception of type bad_array new_ length.
Like bad_alloc, this type is defined in the new header.

Although we can use empty parentheses to value initialize the elements of an
array, we cannot supply an element initializer inside the parentheses. The fact that
we cannot supply an initial value inside the parentheses means that we cannot use
auto to allocate an array (§ 12.1.2, p. 459).

It Is Legal to Dynamically Allocate an Empty Array

We can use an arbitrary expression to determine the number of objects to allocate:

size t n = get_size(); // get_ size returnsthe number of elements needed
int* p = new int[n]; // allocate an array to hold the elements
for (int* g = p; g != p + n; ++q)

/* process the array «*/ ;

An interesting question arises: What happens if get _size returns 0? The answer
is that our code works fine. Calling new [n] with n equal to 0 is legal even though
we cannot create an array variable of size 0:

char arr[0]; // error: cannot define a zero-length array
char +«cp = new char[0]; // ok:but cpcan't be dereferenced

When we use new to allocate an array of size zero, new returns a valid, nonzero
pointer. That pointer is guaranteed to be distinct from any other pointer returned
by new. This pointer acts as the off-the-end pointer (§ 3.5.3, p. 119) for a zero-
element array. We can use this pointer in ways that we use an off-the-end iterator.
The pointer can be compared as in the loop above. We can add zero to (or subtract
zero from) such a pointer and can subtract the pointer from itself, yielding zero.
The pointer cannot be dereferenced—after all, it points to no element.

In our hypothetical loop, if get_size returns 0, then n is also 0. The call to
new will allocate zero objects. The condition in the for will fail (p is equal to g +
n because n is 0). Thus, the loop body is not executed.

Freeing Dynamic Arrays

To free a dynamic array, we use a special form of delete that includes an empty
pair of square brackets:

Section 12.2 Dynamic Arrays

479

delete p; // pmust point to a dynamically allocated object or be null
delete [] pa; // pamustpointtoa dynamically allocated array or be null

The second statement destroys the elements in the array to which pa points and
frees the corresponding memory. Elements in an array are destroyed in reverse
order. That is, the last element is destroyed first, then the second to last, and so on.

When we delete a pointer to an array, the empty bracket pair is essential: It
indicates to the compiler that the pointer addresses the first element of an array of
objects. If we omit the brackets when we delete a pointer to an array (or provide
them when we delete a pointer to an object), the behavior is undefined.

Recall that when we use a type alias that defines an array type, we can allocate
an array without using [1 with new. Even so, we must use brackets when we
delete a pointer to that array:

typedef int arrT[42]; // arrTnames thetypearrayof 42 ints
int «p = new arrT; // allocates an array of 42 ints; p points to the first one
delete [] p; // brackets are necessary because we allocated an array

Despite appearances, p points to the first element of an array of objects, not to a
single object of type arrT. Thus, we must use [] when we delete p.

delete a pointer to an array or if we use them when we delete a
pointer to an object. Instead, our program is apt to misbehave without
warning during execution.

i The compiler is unlikely to warn us if we forget the brackets when we

WARNING

Smart Pointers and Dynamic Arrays

The library provides a version of unique ptr that can manage arrays allocated
by new. To use a unique_ptr to manage a dynamic array, we must include a pair
of empty brackets after the object type:

// up points to an array of ten uninitialized ints
unique ptr<int[]> up(new int[10]);
up.reset () ; // automatically uses delete [] to destroy its pointer

The brackets in the type specifier (<int []>) say that up points not to an int but
to an array of ints. Because up points to an array, when up destroys the pointer it
manages, it will automatically use delete [].

ungiue_ptrs that point to arrays provide slightly different operations than
those we used in § 12.1.5 (p. 470). These operations are described in Table 12.6
(overleaf). When a unique ptr points to an array, we cannot use the dot and
arrow member access operators. After all, the ungiue ptr points to an array, not
an object so these operators would be meaningless. On the other hand, when a
ungiue_ptr points to an array, we can use the subscript operator to access the
elements in the array:

for (size t i = 0; i != 10; ++1)
up[i] = 1i; // assigna new value to each of the elements

480

Dynamic Memory

Table 12.6: unique ptrs to Arrays

uli]

Member access operators (dot and arrow) are not supported for unique ptrs to arrays.

unique ptr<T[]> u u can point to a dynamically allocated array of type T.
unique ptr<T[]> u(p) u pointsto the dynamically allocated array to which the built-in

Other unique ptr operations unchanged.

pointer p points. p must be convertible to T« (§4.11.2, p. 161).

Returns the object at position 1 in the array that u owns.
u must point to an array.

Unlike unique ptr, shared ptrs provide no direct support for managing a
dynamic array. If we want to use a shared_ptr to manage a dynamic array, we
must provide our own deleter:

// tousea shared ptrwe mustsupply a deleter
shared ptr<int> sp(new int[10], [] (int =*p) { delete[] p; });
sp.reset (); // usesthelambda we supplied that uses delete [] to free the array

Here we pass a lambda (§ 10.3.2, p. 388) that uses delete [] as the deleter.

Had we neglected to supply a deleter, this code would be undefined. By de-
fault, shared ptr uses delete to destroy the object to which it points. If that
object is a dynamic array, using delete has the same kinds of problems that arise
if we forget to use [] when we delete a pointer to a dynamic array (§ 12.2.1, p. 479).

The fact that shared_ptr does not directly support managing arrays affects
how we access the elements in the array:

// shared_ptrsdon't have subscript operator and don’t support pointer arithmetic
for (size t i = 0; i != 10; ++1)
x(sp.get () + 1) = 1; // wuseget togeta built-in pointer

There is no subscript operator for shared_ptrs, and the smart pointer types do
not support pointer arithmetic. As a result, to access the elements in the array, we
must use get to obtain a built-in pointer, which we can then use in normal ways.

EXERCISES SECTION 12.2.1 I

Exercise 12.23: Write a program to concatenate two string literals, putting the result
in a dynamically allocated array of char. Write a program to concatenate two library
strings that have the same value as the literals used in the first program.

Exercise 12.24: Write a program that reads a string from the standard input into a
dynamically allocated character array. Describe how your program handles varying
size inputs. Test your program by giving it a string of data that is longer than the array
size you've allocated.

Exercise 12.25: Given the following new expression, how would you delete pa?

int *pa = new int[10];

Section 12.2 Dynamic Arrays

481

12.2.2 The allocator Class

An aspect of new that limits its flexibility is that new combines allocating memory
with constructing object(s) in that memory. Similarly, delete combines destruc-
tion with deallocation. Combining initialization with allocation is usually what we
want when we allocate a single object. In that case, we almost certainly know the
value the object should have.

When we allocate a block of memory, we often plan to construct objects in that
memory as needed. In this case, we’d like to decouple memory allocation from
object construction. Decoupling construction from allocation means that we can
allocate memory in large chunks and pay the overhead of constructing the objects
only when we actually need to create them.

In general, coupling allocation and construction can be wasteful. For example:

string xconst p = new stringlnl; // construct nempty strings

string s;
string xq = p; // qgpoints to the first string
while (cin >> s && g != p + n)
*g++ = S; // assign a new value to *q
const size t size = g - p; // remember how many strings we read

// use the array
deletel] p; // p points to an array; must remember to use delete []

This new expression allocates and initializes n strings. However, we might not
need n strings; a smaller number might suffice. As a result, we may have created
objects that are never used. Moreover, for those objects we do use, we immediately
assign new values over the previously initialized strings. The elements that are
used are written twice: first when the elements are default initialized, and subse-
quently when we assign to them.

More importantly, classes that do not have default constructors cannot be dy-
namically allocated as an array.

The allocator Class

The library allocator class, which is defined in the memory header, lets us sepa-
rate allocation from construction. It provides type-aware allocation of raw, uncon-
structed, memory. Table 12.7 (overleaf) outlines the operations that allocator
supports. In this section, we’ll describe the allocator operations. In § 13.5
(p.- 524), we'll see an example of how this class is typically used.

Like vector, allocator is a template (§ 3.3, p. 96). To define an allocator
we must specify the type of objects that a particular allocator can allocate.
When an allocator object allocates memory, it allocates memory that is appro-
priately sized and aligned to hold objects of the given type:

allocator<string> alloc; // object that can allocate st rings
auto const p = alloc.allocate(n); // allocate nunconstructed strings

This call to allocate allocates memory for n strings.

482 Dynamic Memory
Table 12.7: Standard allocator Class and Customized Algorithms
allocator<T> a Defines an allocator object named a that can allocate memory
for objects of type T.
a.allocate(n) Allocates raw, unconstructed memory to hold n objects of type T.

a.deallocate(p, n) Deallocates memory that held n objects of type T starting at the

a.construct (p, args) p mustbe a pointer to type T that points to raw memory; args are

a.destroy (p) Runs the destructor (§ 12.1.1, p. 452) on the object pointed to by

address in the T« pointer p; p must be a pointer previously
returned by allocate, and n must be the size requested when p
was created. The user must run destroy on any objects that
were constructed in this memory before calling deallocate.

passed to a constructor for type T, which is used to construct an
object in the memory pointed to by p.

the T« pointer p.

1

allocators Allocate Unconstructed Memory

The memory an allocator allocates is unconstructed. We use this memory by
constructing objects in that memory. In the new library the construct member
takes a pointer and zero or more additional arguments; it constructs an element
at the given location. The additional arguments are used to initialize the object
being constructed. Like the arguments to make shared (§ 12.1.1, p. 451), these
additional arguments must be valid initializers for an object of the type being con-
structed. In particular, if the , object is a class type, these arguments must match a
constructor for that class:

auto g = p; // quwill point to one past the last constructed element

alloc.construct (g++) ; // *qis the empty string
alloc.construct (g++, 10, ’c’); // =qisccccccececece
alloc.construct (g++, "hi"); // =#qgishi!

In earlier versions of the library, construct took only two arguments: the pointer
at which to construct an object and a value of the element type. As a result, we
could only copy an element into unconstructed space, we could not use any other
constructor for the element type.

It is an error to use raw memory in which an object has not been constructed:

cout << xp << endl; // ok: usesthe stringoutput operator
cout << xq << endl; // disaster: g points to unconstructed memory!

We must construct objects in order to use memory returned by

warninG 21locate. Using unconstructed memory in other ways is undefined.

When we’re finished using the objects, we must destroy the elements we con-
structed, which we do by calling destroy on each constructed element. The
destroy function takes a pointer and runs the destructor (§ 12.1.1, p. 452) on the
pointed-to object:

Section 12.2 Dynamic Arrays

483

while (g != p)
alloc.destroy(--q) ; // freethe strings we actually allocated

At the beginning of our loop, g points one past the last constructed element. We
decrement g before calling destroy. Thus, on the first call to destroy, g points
to the last constructed element. We destroy the first element in the last iteration,
after which g will equal p and the loop ends.

A We may destroy only elements that are actually constructed.
WARNING
Once the elements have been destroyed, we can either reuse the memory to
hold other strings or return the memory to the system. We free the memory by
calling deallocate:

alloc.deallocate (p, n);

The pointer we pass to deallocate cannot be null; it must point to memory allo-
cated by allocate. Moreover, the size argument passed to deallocate must be
the same size as used in the call to allocate that obtained the memory to which
the pointer points.

Algorithms to Copy and Fill Uninitialized Memory

As a companion to the allocator class, the library also defines two algorithms
that can construct objects in uninitialized memory. These functions, described in
Table 12.8, are defined in the memory header.

Table 12.8: allocator Algorithms

These functions construct elements in the destination, rather than assigning to them.

uninitialized copy (b, e, b2)
Copies elements from the input range denoted by iterators b and e into
unconstructed, raw memory denoted by the iterator b2. The memory denoted by
b2 must be large enough to hold a copy of the elements in the input range.

uninitialized copy n(b, n, b2)
Copies n elements starting from the one denoted by the iterator b into raw
memory starting at b2.

uninitialized £ill(b, e, t)
Constructs objects in the range of raw memory denoted by iterators b and e as a
copy of t.

uninitialized £ill n(b, n, t)
Constructs an unsigned number n objects starting at b. b must denote
unconstructed, raw memory large enough to hold the given number of objects.

As an example, assume we have a vector of ints that we want to copy into
dynamic memory. We’ll allocate memory for twice as many ints as are in the
vector. We'll construct the first half of the newly allocated memory by copying
elements from the original vector. We'll construct elements in the second half by
filling them with a given value:

484 Dynamic Memory
// allocate twice as many elements as vi holds
auto p = alloc.allocate(vi.size() * 2);
// construct elements starting at p as copies of elements in vi
auto g = uninitialized copy(vi.begin(), vi.end(), p);

// initialize the remaining elements to 42
uninitialized fill n(qg, vi.size(), 42);

Like the copy algorithm (§ 10.2.2, p. 382), uninitialized_copy takes three
iterators. The first two denote an input sequence and the third denotes the desti-
nation into which those elements will be copied. The destination iterator passed
to uninitialized copy must denote unconstructed memory. Unlike copy,
uninitialized copy constructs elements in its destination.

Like copy, uninitialized copy returns its (incremented) destination iter-
ator. Thus, a call to uninitialized copy returns a pointer positioned one ele-
ment past the last constructed element. In this example, we store that pointer in g,
which we passtouninitialized f£ill n. This function, like £i11 n(§10.2.2,
p- 380), takes a pointer to a destination, a count, and a value. It will construct
the given number of objects from the given value at locations starting at the given
destination.

EXERCISES SECTION 12.2.2

Exercise 12.26: Rewrite the program on page 481 using an allocator.

12.3 Using the Library: A Text-Query Program

To conclude our discussion of the library, we’ll implement a simple text-query pro-
gram. Our program will let a user search a given file for words that might occur
in it. The result of a query will be the number of times the word occurs and a
list of lines on which that word appears. If a word occurs more than once on the
same line, we’'ll display that line only once. Lines will be displayed in ascending
order—that is, line 7 should be displayed before line 9, and so on.

For example, we might read the file that contains the input for this chapter and
look for the word element. The first few lines of the output would be

element occurs 112 times
(line 36) A set element contains only a key;
(line 158) operator creates a new element
(line 160) Regardless of whether the element
(line 168) When we fetch an element from a map, we
(line 214) If the element is not found, find returns

followed by the remaining 100 or so lines in which the word element occurs.

Section 12.3 Using the Library: A Text-Query Program

485

12.3.1 Design of the Query Program

A good way to start the design of a program is to list the program’s operations.
Knowing what operations we need can help us see what data structures we’ll need.
Starting from requirements, the tasks our program must do include the following;:

e When it reads the input, the program must remember the line(s) in which
each word appears. Hence, the program will need to read the input a line at
a time and break up the lines from the input file into its separate words

e When it generates output,

— The program must be able to fetch the line numbers associated with a
given word

— The line numbers must appear in ascending order with no duplicates

— The program must be able to print the text appearing in the input file at
a given line number.

These requirements can be met quite neatly by using various library facilities:

o We'll use a vector<strings> to store a copy of the entire input file. Each
line in the input file will be an element in this vector. When we want to
print a line, we can fetch the line using its line number as the index.

e We'll use an istringstream (§ 8.3, p. 321) to break each line into words.

o We'll use a set to hold the line numbers on which each word in the input
appears. Using a set guarantees that each line will appear only once and
that the line numbers will be stored in ascending order.

e We'll use a map to associate each word with the set of line numbers on which
the word appears. Using a map will let us fetch the set for any given word.

For reasons we’ll explain shortly, our solution will also use shared_ptrs.

Data Structures

Although we could write our program using vector, set, and map directly, it
will be more useful if we define a more abstract solution. We'll start by designing
a class to hold the input file in a way that makes querying the file easy. This class,
which we’ll name TextQuery, will hold a vector and a map. The vector will
hold the text of the input file; the map will associate each word in that file to the
set of line numbers on which that word appears. This class will have a constructor
that reads a given input file and an operation to perform the queries.

The work of the query operation is pretty simple: It will look inside its map to
see whether the given word is present. The hard part in designing this function
is deciding what the query function should return. Once we know that a word
was found, we need to know how often it occurred, the line numbers on which it
occurred, and the corresponding text for each of those line numbers.

The easiest way to return all those data is to define a second class, which we’ll
name QueryResult, to hold the results of a query. This class will have a print
function to print the results in a QueryResult.

o

486

Dynamic Memory

Sharing Data between Classes

Our QueryResult class is intended to represent the results of a query. Those
results include the set of line numbers associated with the given word and the
corresponding lines of text from the input file. These data are stored in objects of
type TextQuery.

Because the data that a QueryResult needs are stored in a TextQuery object,
we have to decide how to access them. We could copy the set of line numbers,
but that might be an expensive operation. Moreover, we certainly wouldn’t want
to copy the vector, because that would entail copying the entire file in order to
print (what will usually be) a small subset of the file.

We could avoid making copies by returning iterators (or pointers) into the
TextQuery object. However, this approach opens up a pitfall: What happens
if the TextQuery object is destroyed before a corresponding QueryResult? In
that case, the QueryResult would refer to data in an object that no longer exists.

This last observation about synchronizing the lifetime of a QueryResult with
the TextQuery object whose results it represents suggests a solution to our de-
sign problem. Given that these two classes conceptually “share” data, we’ll use
shared_ptrs (§12.1.1, p. 450) to reflect that sharing in our data structures.

Using the TextQuery Class

When we design a class, it can be helpful to write programs using the class before
actually implementing the members. That way, we can see whether the class has
the operations we need. For example, the following program uses our proposed
TextQuery and QueryResult classes. This function takes an ifstream that
points to the file we want to process, and interacts with a user, printing the results
for the given words:

void runQueries (ifstream &infile)
{
// infileisan ifstreamthat is the file we want to query
TextQuery tqg(infile); // store the file and build the query map
// iterate with the user: prompt for a word to find and print results
while (true) {
cout << "enter word to look for, or g to quit: ";

string s;
// stop if we hit end-of-file on the input or ifa * g’ is entered
if (! (cin >> s) || s == "g") break;

// run the query and print the results
print (cout, tg.query(s)) << endl;

}

We start by initializing a TextQuery object named tq from a given ifstream.
The TextQuery constructor reads that file into its vector and builds the map
that associates the words in the input with the line numbers on which they appear.

The while loop iterates (indefinitely) with the user asking for a word to query
and printing the related results. The loop condition tests the literal true (§2.1.3,
p- 41), so it always succeeds. We exit the loop through the break (§ 5.5.1, p. 190)

Section 12.3 Using the Library: A Text-Query Program

487

after the first 1£. That if checks that the read succeeded. If so, it also checks
whether the user entered a g to quit. Once we have a word to look for, we ask tg
to find that word and then call print to print the results of the search.

EXERCISES SECTION 12.3.1 I

Exercise 12.27: The TextQuery and QueryResult classes use only capabilities that
we have already covered. Without looking ahead, write your own versions of these
classes.

Exercise 12.28: Write a program to implement text queries without defining classes to
manage the data. Your program should take a file and interact with a user to query for
words in that file. Use vector, map, and set containers to hold the data for the file
and to generate the results for the queries.

Exercise 12.29: We could have written the loop to manage the interaction with the
user as a do while (§ 5.4.4, p. 189) loop. Rewrite the loop to use a do while. Explain
which version you prefer and why.

12.3.2 Defining the Query Program Classes

We'll start by defining our TextQuery class. The user will create objects of this
class by supplying an istream from which to read the input file. This class also
provides the query operation that will take a st ring and return a QueryResult
representing the lines on which that st ring appears.

The data members of the class have to take into account the intended sharing
with QueryResult objects. The QueryResult class will share the vector repre-
senting the input file and the sets that hold the line numbers associated with each
word in the input. Hence, our class has two data members: a shared ptrtoa
dynamically allocated vector that holds the input file, and a map from string to
shared ptr<set>. The map associates each word in the file with a dynamically
allocated set that holds the line numbers on which that word appears.

To make our code a bit easier to read, we’ll also define a type member (§ 7.3.1,
p- 271) to refer to line numbers, which are indices into a vector of strings:

class QueryResult; // declaration needed for return type in the query function
class TextQuery
public:
using line no = std::vector<std::string>::size type;
TextQuery (std::ifstream&) ;
QueryResult query (const std::string&) const;
private:
std::shared ptr<std::vector<std::strings>> file; // inputfile
// map of each word to the set of the lines in which that word appears
std: :map<std::string,
std::shared ptr<std::set<line_no>>> wm;

488

Dynamic Memory

The hardest part about this class is untangling the class names. As usual, for code
that will go in a header file, we use std:: when we use a library name (§ 3.1,
p- 83). In this case, the repeated use of std: : makes the code a bit hard to read at
first. For example,

std::map<std::string, std::shared ptr<std::set<line no>>> wm;
is easier to understand when rewritten as

map<string, shared ptr<set<line_no>>> wm;

The TextQuery Constructor
The TextQuery constructor takes an ifstream, which it reads a line at a time:

// read the input file and build the map of lines to line numbers
TextQuery: :TextQuery (ifstream &is): file(new vector<strings)

{

string text;

while (getline(is, text)) { // for each line in the file
file->push back (text) ; // remember this line of text
int n = file->size() - 1; // the current line number
istringstream line (text) ; // separate the line into words
string word;
while (line >> word) ({ // for each word in that line

// if wordisn't already in wm, subscripting adds a new entry

auto &lines = wm[word]; // linesisashared ptr

if (!lines) // that pointer is null the first time we see word
lines.reset (new set<line nos); // allocatea new set

lines->insert (n) ; // insert this line number

}

The constructor initializer allocates a new vector to hold the text from the input
file. We use getline to read the file a line at a time and push each line onto the
vector. Because file is a shared ptr, we use the -> operator to dereference
file to fetch the push back member of the vector to which £ile points.

Next we use an istringstream (§ 8.3, p. 321) to process each word in the
line we just read. The inner while uses the istringstream input operator to
read each word from the current line into word. Inside the while, we use the map
subscript operator to fetch the shared ptr<sets> associated with word and bind
lines to that pointer. Note that 1ines is a reference, so changes made to 1ines
will be made to the element in wm.

If word wasn't in the map, the subscript operator adds word to wm (§ 11.3.4,
p. 435). The element associated with word is value initialized, which means that
lines will be a null pointer if the subscript operator added word to wm. If 1ines
is null, we allocate a new set and call reset to update the shared_ptr to which
lines refers to point to this newly allocated set.

Regardless of whether we created a new set, we call insert to add the cur-
rent line number. Because 1ines is a reference, the call to insert adds an element

Section 12.3 Using the Library: A Text-Query Program

489

to the set in wm. If a given word occurs more than once in the same line, the call
to insert does nothing.

The QueryResult Class

The QueryResult class has three data members: a st ring thatis the word whose
results it represents; a shared_ptr to the vector containing the input file; and
a shared_ptr to the set of line numbers on which this word appears. Its only
member function is a constructor that initializes these three members:

class QueryResult ({
friend std::ostream& print (std::ostream&, const QueryResulté) ;
public:
QueryResult (std::string s,
std::shared ptr<std::set<line no>> p,
std::shared ptr<std::vector<std::string>> f):
sought (s), lines(p), file(f) { }
private:
std::string sought; // word this query represents
std::shared ptr<std::set<line no>> lines; // linesit’son
std::shared ptr<std::vector<std::strings>> file; // inputfile

}i

The constructor’s only job is to store its arguments in the corresponding data mem-
bers, which it does in the constructor initializer list (§ 7.1.4, p. 265).

The query Function

The query function takes a st ring, which it uses to locate the corresponding set
of line numbers in the map. If the string is found, the query function constructs
a QueryResult from the given string, the TextQuery £ile member, and the
set that was fetched from wm.

The only question is: What should we return if the given string is not found?
In this case, there is no set to return. We'll solve this problem by defining a local
static object thatis a shared ptr to an empty set of line numbers. When the
word is not found, we'll return a copy of this shared_ptr:

QueryResult
TextQuery: :query (const string &sought) const
{
// we'll return a pointer to this set if we don't find sought
static shared ptr<set<line no>> nodata(new set<line no>) ;
// use f£indand not a subscript to avoid adding words to wm!
auto loc = wm.find (sought) ;
if (loc == wm.end())
return QueryResult (sought, nodata, file); // not found
else
return QueryResult (sought, loc->second, file);

490 Dynamic Memory

Printing the Results
The print function prints its given QueryResult object on its given stream:

ostream &print (ostream & os, const QueryResult &gr)

{

// if the word was found, print the count and all occurrences
0os << gr.sought << " occurs " << gr.lines->size() << " "
<< make plural (gr.lines->size(), "time", "s") << endl;
// print each line in which the word appeared
for (auto num : *qgr.lines) // forevery element in the set
// don’t confound the user with text lines starting at 0
os << "\t(line " << num + 1 << ") "
<< x(gr.file->begin() + num) << endl;
return os;

}

We use the size of the set to which the gr.1lines points to report how many
matches were found. Because that set is in a shared ptr, we have to remember
to dereference 1ines. We call make plural (§ 6.3.2, p. 224) to print time or
times, depending on whether that size is equal to 1.

In the for we iterate through the set to which lines points. The body of
the for prints the line number, adjusted to use human-friendly counting. The
numbers in the set are indices of elements in the vector, which are numbered
from zero. However, most users think of the first line as line number 1, so we
systematically add 1 to the line numbers to convert to this more common notation.

We use the line number to fetch a line from the vector to which £ile points.
Recall that when we add a number to an iterator, we get the element that many
elements further into the vector (§ 3.4.2, p. 111). Thus, file->begin () + num
is the numth element after the start of the vector to which f£ile points.

Note that this function correctly handles the case that the word is not found. In
this case, the set will be empty. The first output statement will note that the word
occurred 0 times. Because *res . lines is empty. the for loop won't be executed.

EXERCISES SECTION 12.3.2 I

Exercise 12.30: Define your own versions of the TextQuery and QueryResult
classes and execute the runQueries function from § 12.3.1 (p. 486).

Exercise 12.31: What difference(s) would it make if we used a vector instead of a
set to hold the line numbers? Which approach is better? Why?

Exercise 12.32: Rewrite the TextQuery and QueryResult classes to use a StrBlob
instead of a vector<strings> to hold the input file.

Exercise 12.33: In Chapter 15 we’ll extend our query system and will need some addi-
tional members in the QueryResult class. Add members named begin and end that
return iterators into the set of line numbers returned by a given query, and a member
named get file that returns a shared_ptr to the file in the QueryResult object.

Defined Terms

491

CHAPTER SUMMARY

In C++, memory is allocated through new expressions and freed through delete
expressions. The library also defines an allocator class for allocating blocks of
dynamic memory.

Programs that allocate dynamic memory are responsible for freeing the mem-
ory they allocate. Properly freeing dynamic memory is a rich source of bugs: Either
the memory is never freed, or it is freed while there are still pointers referring to the
memory. The new library defines smart pointers—shared ptr, unique ptr,
and weak ptr—that make managing dynamic memory much safer. A smart
pointer automatically frees the memory once there are no other users of that mem-

ory. When possible, modern C++ programs ought to use smart pointers.

DEFINED TERMS

allocator Library class that allocates un-
constructed memory.

dangling pointer A pointer that refers to
memory that once had an object but no
longer does. Program errors due to dan-
gling pointers are notoriously difficult to
debug.

delete Frees memory allocated by new.
delete p frees the object and delete [] p
frees the array to which p points. p may be
null or point to memory allocated by new.

deleter Function passed to a smart pointer
to use in place of delete when destroying
the object to which the pointer is bound.

destructor Special member function that
cleans up an object when the object goes out
of scope or is deleted.

dynamically allocated Object that is allo-
cated on the free store. Objects allocated on
the free store exist until they are explicitly
deleted or the program terminates.

free store Memory pool available to a pro-
gram to hold dynamically allocated objects.

heap Synonym for free store.

new Allocates memory from the free store.
new T allocates and constructs an object of
type T and returns a pointer to that object;
if T is an array type, new returns a pointer
to the first element in the array. Similarly,

new [n] T allocates n objects of type T and
returns a pointer to the first element in the
array. By default, the allocated object is de-
fault initialized. We may also provide op-
tional initializers.

placement new Form of new that takes
additional arguments passed in parenthe-
ses following the keyword new; for exam-
ple, new (nothrow) int tells new that it
should not throw an exception.

reference count Counter that tracks how
many users share a common object. Used
by smart pointers to know when it is safe to
delete memory to which the pointers point.

shared_ptr Smart pointer that provides
shared ownership: The object is deleted
when the last shared_ptr pointing to that
object is destroyed.

smart pointer Library type that acts like a
pointer but can be checked to see whether it
is safe to use. The type takes care of deleting
memory when appropriate.

unique_ptr Smart pointer that provides
single ownership: The object is deleted
when the unique ptr pointing to that ob-
ject is destroyed. unique ptrs cannot be
directly copied or assigned.

weak_ptr Smart pointer that points to an
object managed by a shared ptr. The
shared ptr does not count weak ptrs
when deciding whether to delete its object.

This page intentionally left blank

This page intentionally left blank

Index

Bold face numbers refer to the page on which the term was first defined.

Numbers in italic refer to the “Defined Terms” section in which the term is defined.

What’s new in C++11

= default, 265, 506
= delete, 507

allocator, construct forwards to any

constructor, 482
array container, 327
auto, 68
for type abbreviation, 88, 129
not with dynamic array, 478
with dynamic object, 459
begin function, 118
bind function, 397
bitset enhancements, 726
constexpr
constructor, 299
function, 239
variable, 66
container
cbegin and cend, 109, 334
emplace members, 345
insert return type, 344
nonmember swap, 339
of container, 97, 329
shrink to fit,357
decltype, 70
function return type, 250
delegating constructor, 291
deleted copy-control, 624
division rounding, 141
end function, 118
enumeration
controlling representation, 834
forward declaration, 834
scoped, 832
explicit conversion operator, 582
explicit instantiation, 675
final class, 600

887

format control for floating-point, 757
forward function, 694
forward_list container, 327

functioninterface to callable objects, 577

in-class initializer, 73, 274
inherited constructor, 628, 804
initializer list,220
inline namespace, 790
lambda expression, 388
list initialization
= (assignment), 145
container, 336, 423
dynamic array, 478
dynamic object, 459
pair, 431
return value, 226, 427
variable, 43
vector, 98
long long, 33
mem_f£n function, 843
move function, 533
move avoids copies, 529
move constructor, 534
move iterator, 543
move-enabled this pointer, 546
noexcept
exception specification, 535, 779
operator, 780
nullptr, 54
random-number library, 745
range for statement, 91, 187
not with dynamic array, 477
regular expression-library, 728
rvalue reference, 532
cast from lvalue, 691
reference collapsing, 688
sizeof data member, 157
sizeof. .. operator, 700

888

Index

smart pointer, 450
shared_ptr, 450
unique ptr, 470
weak_ptr, 473
string
numeric conversions, 367
parameter with IO types, 317
template
function template default template
argument, 670
type alias, 666
type parameter as friend, 666
variadic, 699
varidadics and forwarding, 704
trailing return type, 229
in function template, 684
in lambda expression, 396
tuple, 718
type alias declaration, 68
union member of class type, 848
unordered containers, 443
virtual function
final, 606
override, 596, 606

Symbols

. . . (ellipsis parameter), 222

/* «/ (block comment), 9, 26

// (single-line comment), 9, 26

= default, 265, 306
copy-control members, 506
default constructor, 265

= delete, 507
copy control, 507-508
default constructor, 507
function matching, 508
move operations, 538

_ _DATE__,242
_ _FILE 242
_ LINE 242
_ TIME__,242
__cplusplus, 860

\ 0 (null character), 39
\Xnnn (hexadecimal escape sequence), 39
\n (newline character), 39
\ 't (tab character), 39
\nnn (octal escape sequence), 39
{} (curly brace), 2, 26
#include, 6, 28
standard header, 6

user-defined header, 21

#define, 77, 80

#endif, 77, 80

#ifdef, 77, 80

#ifndef, 77, 80

~classname, see destructor

; (semicolon), 3
class definition, 73
null statement, 172

++ (increment), 12, 28, 147-149, 170
iterator, 107, 132
overloaded operator, 566-568
pointer, 118
precedence and associativity, 148
reverse iterator, 407
StrBlobPtr, 566

- - (decrement), 13, 28, 147-149, 170
iterator, 107
overloaded operator, 566-568
pointer, 118
precedence and associativity, 148
reverse iterator, 407, 408
StrBlobPtr, 566

x (dereference), 53, 80, 448
iterator, 107
map iterators, 429
overloaded operator, 569
pointer, 53
precedence and associativity, 148
smart pointer, 451
StrBlobPtr, 569

& (address-of), 52, 80
overloaded operator, 554

-> (arrow operator), 110, 132, 150
overloaded operator, 569
StrBlobPtr, 569

. (dot), 23, 28, 150

->x (pointer to member arrow), 837

. * (pointer to member dot), 837

[1 (subscript), 93
array, 116, 132
array, 347
bitset, 727
deque, 347
does not add elements, 104
map, and unordered_map, 435, 448

adds element, 435

multidimensional array, 127
out-of-range index, 93
overloaded operator, 564
pointer, 121

Index

889

string, 93, 132, 347
StrVec, 565
subscript range, 95
vector, 103, 132, 347

() (call operator), 23, 28, 202, 252
absInt, 571
const member function, 573
execution flow, 203
overloaded operator, 571
PrintString, 571
ShorterString, 573
SizeComp, 573

: : (scope operator), 8, 28, 82
base-class member, 607
class type member, 88, 282
container, type members, 333
global namespace, 789, 818
member function, definition, 259
overrides name lookup, 286

= (assignment), 12, 28, 144-147
see also copy assignment
see also move assignment
associativity, 145
base from derived, 603
container, 89, 103, 337
conversion, 145, 159
derived class, 626
in condition, 146
initializer list, 563
list initialization, 145
low precedence, 146
multiple inheritance, 805
overloaded operator, 500, 563
pointer, 55
to signed, 35
to unsigned, 35
vs. == (equality), 146
vs. initialization, 42

+= (compound assignment), 12, 28, 147
bitwise operators, 155
iterator, 111
overloaded operator, 555, 560
Sales data, 564

exception version, 784

string, 89

+ (addition), 6, 140
iterator, 111
pointer, 119
Sales_data, 560

exception version, 784

Sales_item,22

SmallInt, 588
string, 89
- (subtraction), 140
iterator, 111
pointer, 119
* (multiplication), 140
/ (division), 140
rounding, 141
% (modulus), 141
grading program, 176
== (equality), 18, 28
arithmetic conversion, 144
container, 88, 102, 340, 341
iterator, 106, 107
overloaded operator, 561, 562
pointer, 55, 120
Sales data, 561
string, 88
tuple, 720
unordered container key type, 443
used in algorithms, 377, 385, 413
vs. = (assignment), 146
! = (inequality), 28
arithmetic conversion, 144
container, 88, 102, 340, 341
iterator, 106, 107
overloaded operator, 562
pointer, 55, 120
Sales data, 561
string, 88
tuple, 720
< (less-than), 28, 143
container, 88, 340
ordered container key type, 425
overloaded operator, 562
strict weak ordering, 562
string, 88
tuple, 720
used in algorithms, 378, 385, 413
<= (less-than-or-equal), 12, 28, 143
container, 88, 340
string, 88
> (greater-than), 28, 143
container, 88, 340
string, 88
>= (greater-than-or-equal), 28, 143
container, 88, 340
string, 88
>> (input operator), 8, 28
as condition, 15, 86, 312
chained-input, 8

890

Index

istream, 8
istream iterator, 403
overloaded operator, 558-559
precedence and associativity, 155
Sales_data, 558
Sales_item,21
string, 85,132

<< (output operator), 7, 28
bitset, 727
chained output, 7
ostream, 7
ostream iterator, 405
overloaded operator, 557-558
precedence and associativity, 155
Query, 641
Sales data, 557
Sales item,21
string, 85,132

>> (right-shift), 153, 170

<< (left-shift), 153, 170

&& (logical AND), 94, 132, 142, 169
order of evaluation, 138
overloaded operator, 554
short-circuit evaluation, 142

| | (logical OR), 142
order of evaluation, 138
overloaded operator, 554
short-circuit evaluation, 142

& (bitwise AND), 154, 169
Query, 638, 644

! (logical NOT), 87, 132, 143, 170

| | (logical OR), 132,170

| (bitwise OR), 154, 170
Query, 638, 644

* (bitwise XOR), 154, 170

~ (bitwise NOT), 154, 170
Query, 638, 643

, (comma operator), 157, 169
order of evaluation, 138
overloaded operator, 554

? : (conditional operator), 151, 169
order of evaluation, 138
precdence and associativity, 151

+ (unary plus), 140

- (unary minus), 140

L’c’ (wchar_t literal), 38

ddd.dddL, or ddd.ddd1l (long double lit-

eral), 41
numEnum or numenum (double literal),
39
num¥ or numf (float literal), 41

numL or numl (Long literal), 41

numLL or numll (Long long literal), 41

numU or numu (unsigned literal), 41

class member : constant expression, see bit-
field

A

absInt, 571
() (call operator), 571
abstract base class, 610, 649
BinaryQuery, 643
Disc_quote, 610
Query base, 636
abstract data type, 254, 305
access control, 611-616
class derivation list, 596
default inheritance access, 616
default member access, 268
derived class, 613
derived-to-base conversion, 613
design, 614
inherited members, 612
local class, 853
nested class, 844
private, 268
protected, 595, 611
public, 268
using declaration, 615
access specifier, 268, 305
accessible, 611, 649
derived-to-base conversion, 613
Account, 301
accumulate, 379, 882
bookstore program, 406
Action, 839
adaptor, 372
back_inserter, 402
container, 368, 368-371
front_inserter, 402
inserter, 402
make move_ iterator, 543
add, Sales_data, 261
add_item, Basket, 633
add_to_ Folder, Message, 522
address, 33, 78
adjacent difference, 882
adjacent find, 871
advice
always initialize a pointer, 54
avoid casts, 165

Index

891

avoid undefined behavior, 36
choosing a built-in type, 34
define small utility functions, 277
define variables near first use, 48
don’t create unnecessary regex ob-
jects, 733
forwarding parameter pattern, 706
keep lambda captures simple, 394
managing iterators, 331, 354
prefix vs. postfix operators, 148
rule of five, 541
use move sparingly, 544
use constructor initializer lists, 289
when to use overloading, 233
writing compound expressions, 139
aggregate class, 298, 305
initialization, 298
algorithmheader, 376
algorithms, 376, 418
see also Appendix A
architecture
_copy versions, 383, 414
_if versions, 414
naming convention, 413414
operate on iterators not contain-
ers, 378
overloading pattern, 414
parameter pattern, 412413
read-only, 379-380
reorder elements, 383-385, 414
write elements, 380-383
associative container and, 430
bind as argument, 397
can’t change container size, 385
element type requirements, 377
function object arguments, 572
istream iterator, 404
iterator category, 410412
iterator range, 376
lambda as argument, 391, 396
library function object, 575
ostream iterator, 404
sort comparison, requires strict weak
ordering, 425
supplying comparison operation, 386,
413
function, 386
lambda, 389, 390
two input ranges, 413
type independence, 377
use element’s == (equality), 385, 413

use element’s < (less-than), 385, 413
accumulate, 379
bookstore program, 406
copy, 382
count, 378
equal_ range, 722
equal, 380
£i11 n, 381
£111, 380
find if, 388, 397,414
find, 376
for each,391
replace_copy, 383
replace, 383
set_intersection, 647
sort, 384
stable_ sort, 387
transform, 396
unique, 384
alias declaration
namespace, 792, 817
template type, 666
type, 68
all of, 871
alloc_n copy, StrVec, 527
allocate,allocator, 481
allocator, 481, 481-483, 491, 524-531
allocate, 481, 527
compared to operator new, 823
construct, 482
forwards to constructor, 527
deallocate, 483,528
compared to operator delete,
823
destroy, 482, 528
alternative operator name, 46
alternative_ sum, program, 682
ambiguous
conversion, 583-589
multiple inheritance, 806
function call, 234, 245, 251
multiple inheritance, 808
overloaded operator, 588
AndQuery, 637
class definition, 644
eval function, 646
anonymous union, 848, 8§62
any, bitset, 726
any of, 871
app (file mode), 319
append, string, 362

892

Index

argc, 219
argument, 23, 26, 202, 251
array, 214-219
buffer overflow, 215
to pointer conversion, 214
C-style string, 216
conversion, function matching, 234
default, 236
forwarding, 704
initializes parameter, 203
iterator, 216
low-level const, 213
main function, 218
multidimensional array, 218
nonreference parameter, 209
pass by reference, 210, 252
pass by value, 209, 252
uses copy constructor, 498
uses move constructor, 539, 541
passing, 208-212
pointer, 214
reference parameter, 210, 214
reference to const, 211
top-level const, 212
argument list, 202
argument-dependent lookup, 797
move and forward, 798
argv, 219
arithmetic
conversion, 35, 159, 168
in equality and relational opera-
tors, 144
integral promotion, 160, 169
signed to unsigned, 34
to bool, 162
operators, 139
compound assignment (e.g.,+=), 147
function object, 574
overloaded, 560
type, 32, 78
machine-dependent, 32
arithmetic (addition and subtraction)
iterators, 111, 131
pointers, 119, 132
array, 113-130
[1 (subscript), 116, 132
argument and parameter, 214-219
argument conversion, 214
auto returns pointer, 117
begin function, 118
compound type, 113

conversion to pointer, 117, 161
function arguments, 214
template argument deduction, 679

decltype returns array type, 118

definition, 113

dimension, constant expression, 113

dynamically allocated, 476, 476484
allocator, 481
can’t use begin and end, 477
can’t userange for statement, 477
delete[],478
empty array, 478
new (1,477
shared ptr, 480
unique ptr, 479

elements and destructor, 502

end function, 118

initialization, 114

initializer of vector, 125

multidimensional, 125-130

no copy or assign, 114

of char initialization, 114

parameter
buffer overflow, 215
converted to pointer, 215
function template, 654
pointer to, 218
reference to, 217

return type, 204
trailing, 229
type alias, 229
decltype, 230

sizeof, 157

subscript range, 116

subscript type, 116

understanding complicated declara-

tions, 115

array

see also container

see also sequential container
[1 (subscript), 347

= (assignment), 337
assign, 338

copy initialization, 337
default initialization, 336
definition, 336

header, 329

initialization, 334-337

list initialization, 337
overview, 327
random-access iterator, 412

Index

893

swap, 339
assert preprocessor macro, 241, 251
assign
array, 338
invalidates iterator, 338
sequential container, 338
string, 362
assignment, vs. initialization, 42, 288
assignment operators, 144147
associative array, see map
associative container, 420, 447
and library algorithms, 430
initialization, 423, 424
key type requirements, 425, 445
members
begin, 430
count, 437, 438
emplace, 432
end, 430
equal_ range, 439
erase, 434
find, 437, 438
insert, 432
key type, 428, 447
mapped_type, 428, 448
value type, 428, 448
override default comparison, 425
override default hash, 446
overview, 423
associativity, 134, 136-137, 168
= (assignment), 145
? : (conditional operator), 151
dot and dereference, 150
increment and dereference, 148
10 operator, 155
overloaded operator, 553
at
deque, 348
map, 435
string, 348
unordered_map, 435
vector, 348
ate (file mode), 319
auto, 68, 78
cbegin, 109, 379
cend, 109, 379
for type abbreviation, 88, 129
of array, 117
of reference, 69
pointer to function, 249
with new, 459

auto_ptr deprecated, 471
automatic object, 205, 251

see also local variable

see also parameter

and destructor, 502
avg_price, Sales_data, 259

B

back
queue, 371
sequential container, 346
StrBlob, 457
back inserter, 382,402, 417
requires push_back, 382, 402
bad, 313
bad _alloc, 197, 460
bad cast, 197, 826
bad_typeid, 828
badbit, 312
base, reverse iterator, 409
base class, 592, 649
see also virtual function
abstract, 610, 649
base-to-derived conversion, not au-
tomatic, 602
can be a derived class, 600
definition, 594
derived-to-base conversion, 597
accessibility, 613
key concepts, 604
multiple inheritance, 805
final, 600
friendship not inherited, 614
initialized or assigned from derived,
603
member hidden by derived, 619
member new and delete, 822
multiple, see multiple inheritance
must be complete type, 600
protected member, 611
scope, 617
inheritance, 617-621
multiple inheritance, 807
virtual function, 620
static members, 599
user of, 614
virtual, see virtual base class
virtual destructor, 622
Basket, 631
add_item, 633

894

Index

total, 632
Bear, 803
virtual base class, 812
before begin, forward list, 351
begin
associative container, 430
container, 106, 131, 333, 372
function, 118, 131
not with dynamic array, 477
multidimensional array, 129
StrBlob, 475
StrVec, 526
bernoulli distribution,752
best match, 234, 251
see also function matching
bidirectional iterator, 412, 417
biggies program, 391
binary (file mode), 319
binary operators, 134, 168
overloaded operator, 552
binary predicate, 386, 417
binary function deprecated, 579
binary search, 873
BinaryQuery, 637
abstract base class, 643
bind, 397, 417
check_size, 398
generates callable object, 397
from pointer to member, 843
placeholders, 399
reference parameter, 400
bindlst deprecated, 401
bind2nd deprecated, 401
binops desk calculator, 577
bit-field, 854, 862
access to, 855
constant expression, 854
bitset, 723, 723-728, 769
[1 (subscript), 727
<< (output operator), 727
any, 726
count, 727
flip, 727
grading program, 728
header, 723
initialization, 723-725
from string, 724
from unsigned, 723
none, 726
reset, 727
set, 727

test, 727
to_ulong, 727
bitwise, bitset, operators, 725
bitwise operators, 152-156
+= (compound assignment), 155
compound assignment (e.g.,+=), 147
grading program, 154
operand requirements, 152
Blob
class template, 659
constructor, 662
initializer list, 662
iterator parameters, 673
instantiation, 660
member functions, 661-662
block, 2, 12, 26,173, 199
function, 204
scope, 48, 80, 173
try, 193, 194, 200, 818
block (/* /), comment, 9, 26
book from author program, 438-440
bookstore program
Sales data, 255
using algorithms, 406
Sales item, 24
bool, 32
conversion, 35
literal, 41
in condition, 143
boolalpha, manipulator, 754
brace, curly, 2, 26
braced list, see list initialization
break statement, 190, 199
in switch, 179-181
bucket management, unordered container,
444
buffer, 7, 26
flushing, 314
buffer overflow, 105, 116, 131
array parameter, 215
C-style string, 123
buildMap program, 442
built-in type, 2, 26, 32-34
default initialization, 43
Bulk gquote
class definition, 596
constructor, 598, 610
derived from Disc_quote, 610
design, 592
synthesized copy control, 623
byte, 33, 78

Index

895

C

.Cfile, 4
.cc file, 4
.cpp file, 4
.cp file, 4
C library header, 91
C-style cast, 164
C-style string, 114, 122, 122-123, 131
buffer overflow, 123
initialization, 122
parameter, 216
string, 124
c_str,124
call by reference, 208, 210, 251
call by value, 209, 251
uses copy constructor, 498
uses move constructor, 539
call signature, 576, 590
callable object, 388, 417, 571-572
absInt, 571
bind, 397
call signature, 576
function and function pointers, 388
function objects, 572
pointer to member
and bind, 843
and function, 842
and mem_fn, 843
not callable, 842
PrintString, 571
ShorterString, 573
SizeComp, 573
with function, 576-579
with algorithms, 390
candidate function, 243, 251
see also function matching
function template, 695
namespace, 800
overloaded operator, 587
capacity
string, 356
StrVec, 526
vector, 356
capture list, see lambda expression
case label, 179, 179-182, 199
default, 181
constant expression, 179
case sensitive, string, 365
cassert header, 241
cast, see also named cast, 168

checked, see dynamic_cast

old-style, 164

to rvalue reference, 691
catch, 193, 195, 199, 775, 816

catch(...),777, 816
exception declaration, 195, 200, 775,
816

exception object, 775
matching, 776
ordering of, 776
runtime_error, 195
catch all (catch(...)), 777,816
caution
ambiguous conversion operator, 581
conversions to unsigned, 37
dynamic memory pitfalls, 462
exception safety, 196
10 buffers, 315
overflow, 140
overloaded operator misuse, 555
overloaded operators and conversion
operators, 586
smart pointer, pitfalls, 469
uninitialized variables, 45
using directives cause pollution, 795
cbegin
auto, 109, 379
decltype, 109, 379
container, 109, 333, 334, 372
cctype
functions, 91-93
header, 91
cend
auto, 109, 379
decltype, 109, 379
container, 109, 333, 334, 372
cerr, 6, 26
chained input, 8
chained output, 7
char, 32
signed, 34
unsigned, 34
array initialization, 114
literal, 39
representation, 34
charlé_t,33
char32_t,33
character
newline (\n), 39
nonprintable, 39, 79
null (\0), 39

896

Index

tab (\t), 39
character string literal, see string literal
check
StrBlob, 457
StrBlobPtr, 474
check_size, 398
bind, 398
checked cast, see dynamic_cast
children’s story program, 383-391
chk_n _alloc, StrVec, 526
cin, 6,26
tied to cout, 315
cl,5
class, 19, 26, 72, 305
see also constructor
see also destructor
see also member function
see also static member
access specifier, 268
default, 268
private, 268, 306
public, 268, 306
aggregate, 298, 305
assignment operator
see copy assignment
see move assignment
base, see base class, 649
data member, 73, 78
const vs. mutable, 274
const, initialization, 289
in-class initializer, 274
initialization, 263, 274
must be complete type, 279
mutable, 274, 306
order of destruction, 502
order of initialization, 289
pointer, not deleted, 503
reference, initialization, 289
sizeof, 157
declaration, 278, 305
default inheritance specifier, 616
definition, 72, 256267
ends with semicolon, 73
derived, see derived class, 649
exception, 193, 200
final specifier, 600
forward declaration, 279, 306
friend, 269, 280
class, 280
function, 269
member function, 280

overloaded function, 281
scope, 270, 281
template class or function, 664
implementation, 254
interface, 254
literal, 299
local, see local class
member, 73, 78
member access, 282
member new and delete, 822
member : constant expression, see bit-
field
multiple base classes, see multiple in-
heritance
name lookup, 284
nested, see nested class
pointer to member, see pointer to mem-
ber
preventing copies, 507
scope, 73, 282, 282-287, 305
synthesized, copy control, 267, 497,
500, 503, 537
template member, see member tem-
plate
type member, 271
: : (scope operator), 282
user of, 255
valuelike, 512
without move constructor, 540

class

compared to typename, 654
default access specifier, 268
default inheritance specifier, 616
template parameter, 654

class derivation list, 596

access control, 612

default access specifier, 616
direct base class, 600
indirect base class, 600
multiple inheritance, 803
virtual base class, 812

class template, 96, 131, 658, 659, 658-667,

713
see also template parameter
see also instantiation
Blob, 659
declaration, 669
default template argument, 671
definition, 659
error detection, 657
explicit instantiation, 675, 675-676

Index

897

explicit template argument, 660
friend, 664
all instantiations, 665
declaration dependencies, 665
same instantiation, 664
specific instantiation, 665
instantiation, 660
member function
defined outside class body, 661
instantiation, 663
member template, see member tem-
plate
specialization, 707, 709-712, 714
hash<key types, 709, 788
member, 711
namespace, 788
partial, 711, 714
static member, 667
accessed through an instantiation,
667
definition, 667
template argument, 660
template parameter, used in defini-
tion, 660
type parameter as friend, 666
type-dependent code, 658
class type, 19, 26
conversion, 162, 305, 590
ambiguities, 587
conversion operator, 579
converting constructor, 294
impact on function matching, 584
overloaded function, 586
with standard conversion, 581
default initialization, 44
initialization, 73, 84, 262
union member of, 848
variable vs. function declaration, 294
clear
sequential container, 350
stream, 313
clog, 6, 26
close, file stream, 318
cmatch, 733
cmath header, 751, 757
collapsing rule, reference, 688
combine, Sales_data, 259
comma (,) operator, 157
comment, 9, 26
block (/+ x/),9,26
single-line (//), 9, 26

compare
default template argument, 670
function template, 652
default template argument, 670
explicit template argument, 683
specialization, 706
string literal version, 654
template argument deduction, 680
string, 366
comparelsbn
and associative container, 426
Sales_data, 387
compilation
common errors, 16
compiler options, 207
conditional, 240
declaration vs. definition, 44
mixing C and C++, 860
needed when class changes, 270
templates, 656
error detection, 657
explicit instantiation, 675-676
compiler
extension, 114, 131
GNU, 5
Microsoft, 5
options for separate compilation, 207
composition vs. inheritance, 637
compound assignment (e.g.,+=)
arithmetic operators, 147
bitwise operators, 147
compound expression, see expression
compound statement, 173, 199
compound type, 50, 50-58, 78
array, 113
declaration style, 57
understanding complicated declara-
tions, 115
concatenation
string, 89
string literal, 39
condition, 12, 26
= (assignment) in, 146
conversion, 159
do while statement, 189
for statement, 13, 185
if statement, 18, 175
in IO expression, 156
logical operators, 141
smart pointer as, 451
stream type as, 15, 162, 312

898

Index

while statement, 12, 183
condition state, 1O classes, 312, 324
conditional compilation, 240
conditional operator (? :), 151
connection, 468
console window, 6
const, 59, 78

and typedef, 68

conversion, 162

template argument deduction, 679
dynamically allocated
destruction, 461
initialization, 460
initialization, 59
class type object, 262
low-level const, 64
argument and parameter, 213
conversion from, 163
conversion to, 162
overloaded function, 232
template argument deduction, 693
member function, 258, 305
() (call operator), 573
not constructors, 262
overloaded function, 276
reference return, 276
parameter, 212
function matching, 246
overloaded function, 232
pointer, 63, 78
pointer to, 62, 79
conversion from nonconst, 162
initialization from nonconst, 62
overloaded parameter, 232
reference, see reference to const

top-level const, 64

and auto, 69

argument and parameter, 212

decltype, 71

parameter, 232

template argument deduction, 679

variable, 59

declared in header files, 76

extern, 60

local to file, 60
const_cast, 163, 163
const_iterator, container, 108, 332
const_reference, container, 333
const_reverse iterator, container,

332, 407

constant expression, 65, 78

array dimension, 113
bit-field, 854
case label, 179
enumerator, 833
integral, 65
nontype template parameter, 655
sizeof, 156
static data member, 303
constexpr, 66, 78
constructor, 299
declared in header files, 76
function, 239, 251
nonconstant return value, 239
function template, 655
pointer, 67
variable, 66
construct
allocator, 482
forwards to constructor, 527
constructor, 262, 264, 262-266, 305
see also default constructor
see also copy constructor
see also move constructor
calls to virtual function, 627
constexpr, 299
converting, 294, 305
function matching, 585
Sales data, 295
with standard conversion, 580
default argument, 290
delegating, 291, 306
derived class, 598
initializes direct base class, 610
initializes virtual base, 813
explicit, 296, 306
function try block, 778, 817
inherited, 628
initializer list, 265, 288-292, 305
class member initialization, 274
compared to assignment, 288
derived class, 598
function try block, 778, 817
sometimes required, 288
virtual base class, 814
initializer list parameter, 662
not const, 262
order of initialization, 289
derived class object, 598, 623
multiple inheritance, 804
virtual base classes, 814
overloaded, 262

Index 899

StrBlob, 456 size, 88,102, 132, 340
StrBlobPtr, 474 size type, 88,102, 132, 332
TextQuery, 488 swap, 339

Blob, 662 move operations, 529

initializer list, 662

iterator parmeters, 673
Bulk quote, 598, 610
Disc_quote, 609
Sales_data, 264-266

container, 96, 131, 326, 372 sequential, 326, 373

see also sequential container type members, : : (scope operator),
see also associative container 333
adaptor, 368, 368-371 continue statement, 191, 199

equality and relational operators, control, flow of, 11, 172, 200

370 conversion, 78,159, 168

moved-from object is valid but un-
specified, 537
nonmember swap, 339
of container, 97, 329
overview, 328

initialization, 369

requirements on container, 369
and inheritance, 630
as element type, 97, 329
associative, 420, 447
copy initialization, 334
element type constraints, 329, 341
elements and destructor, 502
elements are copies, 342
initialization from iterator range, 335
list initialization, 336
members

see also iterator

= (assignment), 337

== (equality), 341

! = (inequality), 341

begin, 106, 333, 372

cbegin, 109, 333, 334, 372

cend, 109, 333, 334, 372

const_iterator, 108, 332

const_reference, 333

const_reverse iterator, 332,

407

crbegin, 333

crend, 333

difference_ type, 131, 332

empty, 87,102, 131, 340

end, 106, 131, 333, 373

equality and relational operators,

88, 102, 340

iterator, 108, 332

rbegin, 333, 407

reference, 333

relational operators, 341

rend, 333, 407

reverse_ iterator, 332, 407

= (assignment), 145, 159
ambiguous, 583-589
argument, 203
arithmetic, 35, 159, 168
array to pointer, 117
argument, 214
exception object, 774
multidimensional array, 128
template argument deduction, 679
base-to-derived, not automatic, 602
bool, 35
class type, 162, 294, 305, 590
ambiguities, 587
conversion operator, 579
function matching, 584, 586
with standard conversion, 581
condition, 159
derived-to-base, 597, 649
accessibility, 613
key concepts, 604
shared ptr, 630
floating-point, 35
function to pointer, 248
exception object, 774
template argument deduction, 679
integral promotion, 160, 169
istream, 162
multiple inheritance, 805
ambiguous, 806
narrowing, 43
operand, 159
pointer to bool, 162
rank, 245
return value, 223
Sales data, 295
signed type, 160

900

Index

signed to unsigned, 34
to const, 162
from pointer to nonconst, 62
from reference to nonconst, 61
template argument deduction, 679
unscoped enumeration to integer, 834
unsigned, 36
virtual base class, 812
conversion operator, 580, 580-587, 590
design, 581
explicit, 582, 590
bool, 583
function matching, 585, 586
SmallInt, 580
used implicitly, 580
with standard conversion, 580
converting constructor, 294, 305
function matching, 585
with standard conversion, 580
_copy algorithms, 383, 414
copy, 382, 874
copy and swap assignment, 518
move assignment, 540
self-assignment, 519
copy assignment, 500-501, 549
= default, 506
= delete, 507
base from derived, 603
copy and swap, 518, 549
derived class, 626
HasPtr
reference counted, 516
valuelike, 512
memberwise, 500
Message, 523
preventing copies, 507
private, 509
reference count, 514
rule of three/five, 505
virtual destructor exception, 622
self-assignment, 512
StrVec, 528
synthesized, 500, 550
deleted function, 508, 624
derived class, 623
multiple inheritance, 805
union with class type member, 852
valuelike class, 512
copy constructor, 496, 496—499, 549
default, 506
delete, 507

base from derived, 603
derived class, 626
HasPtr
reference counted, 515
valuelike, 512
memberwise, 497
Message, 522
parameter, 496
preventing copies, 507
private, 509
reference count, 514
rule of three/five, 505
virtual destructor exception, 622
Strvec, 528
synthesized, 497, 550
deleted function, 508, 624
derived class, 623
multiple inheritance, 805
union with class type member, 851
used for copy-initialization, 498
copy control, 267, 496, 549
= delete, 507-508
inheritance, 623-629
memberwise, 267, 550
copy assignment, 500
copy constructor, 497
move assignment, 538
move constructor, 538
multiple inheritance, 805
synthesized, 267
as deleted function, 508
as deleted in derived class, 624
move operations as deleted func-
tion, 538
unions, 849
virtual base class, synthesized, 815
copy initialization, 84, 131, 497, 497-499,
549
array, 337
container, 334
container elements, 342
explicit constructor, 498
invalid for arrays, 114
move vs. copy, 539
parameter and return value, 498
uses copy constructor, 497
uses move constructor, 541
copy_backward, 875
copy if, 874
copy_n, 874
copyUnion, Token, 851

Index 901
count template specializations, 708

algorithm, 378, 871 variadic templates, 702

associative container, 437, 438 derived class, 600

bitset, 727 explicit instantiation, 675
count_calls, program, 206 friend, 269

count_if, 871
cout, 6, 26
tied to cin, 315
cplusplus_primer, namespace, 787
crbegin, container, 333
cref, binds reference parameter, 400, 417
cregex_iterator, 733, 769
crend, container, 333
cstddef header, 116, 120
cstdio header, 762
cstdlib header, 54, 227, 778, 823
cstring
functions, 122-123
header, 122
csub_match, 733, 769
ctime header, 749
curly brace, 2, 26

D

dangling else, 177, 199
dangling pointer, 225, 463, 491
undefined behavior, 463
data abstraction, 254, 306
data hiding, 270
data member, see class data member
data structure, 19, 26
deallocate, allocator, 483, 528
debug_rep program
additional nontemplate versions, 698
general template version, 695
nontemplate version, 697
pointer template version, 696
DebugDelete, member template, 673
dec, manipulator, 754
decimal, literal, 38
declaration, 45, 78
class, 278, 305
class template, 669
class type, variable, 294
compound type, 57
dependencies
member function as friend, 281
overloaded templates, 698
template friends, 665
template instantiation, 657

function template, 669
instantiation, 713
member template, 673
template, 669
template specialization, 708
type alias, 68
using, 82,132
access control, 615
overloaded inherited functions, 621
variable, 45
const, 60
declarator, 50, 79
decltype, 70, 79
array return type, 230
cbegin, 109, 379
cend, 109, 379
depends on form, 71
for type abbreviation, 88, 106, 129
of array, 118
of function, 250
pointer to function, 249
top-level const, 71
yields Ivalue, 71, 135
decrement operators, 147-149
default argument, 236, 251
adding default arguments, 237
and header file, 238
constructor, 290
default constructor, 291
function call, 236
function matching, 243
initializer, 238
static member, 304
virtual function, 607
default case label, 181, 199
default constructor, 263, 306
= default, 265
= delete, 507
default argument, 291
Sales_data, 262
StrVec, 526
synthesized, 263, 306
deleted function, 508, 624
derived class, 623
Token, 850
used implicitly

902

Index

default initialization, 293
value initialization, 293
default initialization, 43
array, 336
built-in type, 43
class type, 44
string, 44, 84
uses default constructor, 293
vector, 97
default template argument, 670
class template, 671
compare, 670
function template, 670
templatex<s>, 671
default random engine, 745, 769
defaultfloat manipulator, 757
definition, 79
array, 113
associative container, 423
base class, 594
class, 72, 256267
class template, 659
member function, 661
static member, 667
class template partial specialization,
711
derived class, 596
dynamically allocated object, 459
explicit instantiation, 675
function, 577
in if condition, 175
in while condition, 183
instantiation, 713
member function, 256260
multidimensional array, 126
namespace, 785
can be discontiguous, 786
member, 788
overloaded operator, 500, 552
pair, 426
pointer, 52
pointer to function, 247
pointer to member, 836
reference, 51
sequential container, 334
shared ptr, 450
static member, 302
string, 84
template specialization, 706-712
unique ptr, 470,472
variable, 41, 45

const, 60
variable after case label, 182
vector, 97
weak_ptr, 473
delegating constructor, 291, 306
delete, 460, 460—463, 491
const object, 461
execution flow, 820
memory leak, 462
null pointer, 461
pointer, 460
runs destructor, 502
delete[], dynamically allocated array,
478
deleted function, 507, 549
deleter, 469, 491
shared ptr, 469, 480, 491
unique ptr, 472,491
deprecated, 401
auto_ptr, 471
binary function, 579
bindilst, 401
bind2nd, 401
generalized exception specification,
780
ptr_fun, 401
unary function, 579
deque, 372
see also container, container member
see also sequential container
[1 (subscript), 347
at, 348
header, 329
initialization, 334-337
list initialization, 336
overview, 327
push_back, invalidates iterator, 354
push_front,invalidates iterator, 354
random-access iterator, 412
value initialization, 336
deref, StrBlobPtr, 475
derived class, 592, 649
see also virtual function
: : (scope operator) to access base-
class member, 607
= (assignment), 626
access control, 613
as base class, 600
assgined or copied to base object, 603
base-to-derived conversion, not au-
tomatic, 602

Index

903

constructor, 598
initializer list, 598
initializes direct base class, 610
initializes virtual base, 813
copy assignment, 626
copy constructor, 626
declaration, 600
default derivation specifier, 616
definition, 596
derivation list, 596, 649
access control, 612
derived object
contains base part, 597
multiple inheritance, 803
derived-to-base conversion, 597
accessibility, 613
key concepts, 604
multiple inheritance, 805
destructor, 627
direct base class, 600, 649
final, 600
friendship not inherited, 615
indirect base class, 600, 650
is user of base class, 614
member new and delete, 822
move assignment, 626
move constructor, 626
multiple inheritance, 803
name lookup, 617
order of destruction, 627
multiple inheritance, 805
order of initialization, 598, 623
multiple inheritance, 804
virtual base classes, 814
scope, 617
hidden base members, 619
inheritance, 617-621
multiple inheritance, 807
name lookup, 618
virtual function, 620
static members, 599
synthesized
copy control members, 623
deleted copy control members, 624
using declaration
access control, 615
overloaded inherited functions, 621
virtual function, 596
derived-to-base conversion, 597, 649
accessible, 613
key concepts, 604

multiple inheritance, 805
not base-to-derived, 602
shared ptr, 630

design

access control, 614

Bulk gquote, 592
conversion operator, 581
Disc_quote, 608

equality and relational operators, 562
generic programs, 655
inheritance, 637

Message class, 520
namespace, 786

overloaded operator, 554-556
Query classes, 636—-639
Quote, 592

reference count, 514

StrVec, 525

destination sequence, 381, 413
destroy,allocator, 482, 528
destructor, 452, 491, 501, 501-503, 549

= default, 506
called during exception handling, 773
calls to virtual function, 627
container elements, 502
derived class, 627
doesn’t delete pointer mambers, 503
explicit call to, 824
HasPtr
reference counted, 515
valuelike, 512
local variables, 502
Message, 522
not deleted function, 508
not private, 509
order of destruction, 502
derived class, 627
multiple inheritance, 805
virtual base classes, 815
reference count, 514
rule of three/five, 505
virtual destructor, exception, 622
run by delete, 502
shared ptr, 453
should not throw exception, 774
Strvec, 528
synthesized, 503, 550
deleted function, 508, 624
derived class, 623
multiple inheritance, 805
Token, 850

Index

valuelike class, 512
virtual function, 622
virtual in base class, 622
development environment, integrated, 3
difference type, 112
vector, 112
container, 131, 332
string, 112
direct base class, 600
direct initialization, 84, 131
emplace members use, 345
Disc_quote
abstract base class, 610
class definition, 609
constructor, 609
design, 608
discriminant, 849, 862
Token, 850
distribution types
bernoulli distribution,752
default template argument, 750
normal distribution,751
random-number library, 745
uniform_int distribution,746
uniform real distribution,750
divides<Ts>, 575
division rounding, 141
do while statement, 189, 200
domain error, 197
double, 33
literal (numEnum or numenum), 38
output format, 755
output notation, 757
dynamic binding, 593, 650
requirements for, 603
static vs. dynamic type, 605
dynamic type, 601, 650
dynamic_cast, 163, 825, 825, §62
bad_cast, 826
to pointer, 825
to reference, 826
dynamically allocated, 450, 491
array, 476, 476484
allocator, 481
can’t use begin and end, 477
can’t use range for statement, 477
delete[],478
empty array, 478
new[]1,477
returns pointer to an element, 477
shared_ptr, 480

unique ptr, 479
delete runs destructor, 502
lifetime, 450
new runs constructor, 458
object, 458-463

const object, 460

delete, 460

factory program, 461

initialization, 459

make shared, 451

new, 458

shared objects, 455, 486

shared ptr, 464

unique ptr, 470

E

echo command, 4
ECMAScript, 730, 739
regular expression library, 730
edit-compile-debug, 16, 26
errors at link time, 657
element type constraints, container, 329,
341
elimDups program, 383-391
ellipsis, parameter, 222
else, see if statement
emplace
associative container, 432
priority gqueue, 371
queue, 371
sequential container, 345
stack, 371
emplace back
sequential container, 345
StrVvec, 704
emplace_ front,sequential container, 345
empty
container, 87, 102, 131, 340
priority queue, 371
queue, 371
stack, 371
encapsulation, 254, 306
benefits of, 270
end
associative container, 430
container, 106, 131, 333, 373
function, 118, 131
multidimensional array, 129
StrBlob, 475
StrVec, 526

Index

905

end-of-file, 15, 26, 762
character, 15
Endangered, 803
endl, 7
manipulator, 314
ends, manipulator, 315
engine, random-number library, 745, 770
default_random engine, 745
max, min,747
retain state, 747
seed, 748, 770
enum, unscoped enumeration, 832
enum class, scoped enumeration, 832
enumeration, 832, 863
as union discriminant, 850
function matching, 835
scoped, 832, 864
unscoped, 832, 864
conversion to integer, 834
unnamed, 832
enumerator, 832, 8§63
constant expression, 833
conversion to integer, 834
eof, 313
eofbit, 312
equal, 380, 872
equal virtual function, 829
equal range
algorithm, 722, 873
associative container, 439
equal to<T>,575
equality operators, 141
arithmetic conversion, 144
container adaptor, 370
container member, 340
iterator, 106
overloaded operator, 561
pointer, 120
Sales_data, 561
string, 88
vector, 102
erase
associative container, 434
changes container size, 385
invalidates iterator, 349
sequential container, 349
string, 362
error, standard, 6
error_ type, 732
error_msg program, 221
ERRORLEVEL, 4

escape sequence, 39, 79
hexadecimal (\xnnn), 39
octal (\nnn), 39
eval function
AndQuery, 646
NotQuery, 647
OrQuery, 645
exception
class, 193, 200
class hierarchy, 783
deriving from, 782
Sales_data, 783
header, 197
initialization, 197
what, 195, 782
exception handling, 193-198, 772, 817
see also throw
see also catch
exception declaration, 195, 775, 816
and inheritance, 775
must be complete type, 775
exception in destructor, 773
exception object, 774, 817
finding a catch, 776
function try block, 778, 817
handler, see catch
local variables destroyed, 773
noexcept specification, 535, 779, 817
nonthrowing function, 779, 818
safe resource allocation, 467
stack unwinding, 773, 818
terminate function, 196, 200
try block, 194, 773
uncaught exception, 773
unhandled exception, 196
exception object, 774, 817
catch, 775
conversion to pointer, 774
initializes catch parameter, 775
pointer to local object, 774
rethrow, 777
exception safety, 196, 200
smart pointers, 467
exception specification
argument, 780
generalized, deprecated, 780
noexcept, 779
nonthrowing, 779
pointer to function, 779, 781
throw (), 780
violation, 779

906

Index

virtual function, 781
executable file, 5, 251
execution flow
() (call operator), 203
delete, 820
for statement, 186
new, 820
switch statement, 180
throw, 196, 773
EXIT FAILURE, 227
EXIT SUCCESS,227
expansion
forward, 705
parameter pack, 702, 702-704, 714
function parameter pack, 703
template parameter pack, 703
pattern, 702
explicit
constructor, 296, 306
copy initialization, 498
conversion operator, 582, 590
conversion to bool, 583
explicit call to
destructor, 824
overloaded operator, 553
postfix operators, 568
explicit instantiation, 675, 713
explicit template argument, 660, 713
class template, 660
forward, 694
function template, 682
function pointer, 686
template argument deduction, 682
exporting C++ to C, 860
expression, 7, 27,134, 168
callable, see callable object
constant, 65, 78
lambda, see lambda expression
operand conversion, 159
order of evaluation, 137
parenthesized, 136
precedence and associativity, 136-137
regular, see regular expression
expression statement, 172, 200
extension, compiler, 114, 131
extern
and const variables, 60
explicit instantiation, 675
variable declaration, 45
extern ’C’,seelinkage directive

F

fact program, 202
factorial program, 227
factory program
new, 461
shared ptr, 453
fail, 313
failbit, 312
failure, new, 460
file, source, 4
file extension, program, 730
version 2, 738
file marker, stream, 765
file mode, 319, 324
file redirection, 22
file static, 792, 817
file stream, see fstream
£111, 380, 874
fill n, 381,874
final specifier, 600
class, 600
virtual function, 607
find
algorithm, 376, 871
associative container, 437, 438
string, 364
find last word program, 408
find_ char program, 211
find first of,872
find first not of, string, 365
find first of,872
string, 365
find if, 388,397,414, 871
find if not, 871
find if not of,871
find last not of, string, 366
find last of, string, 366
findBook, program, 721
fixed manipulator, 757
flip
bitset, 727
program, 694
flipl, program, 692
flip2, program, 693
float, 33
literal (num¥ or numt), 41
floating-point, 32
conversion, 35
literal, 38
output format, 755

Index

907

output notation, 757
flow of control, 11, 172, 200
flush, manipulator, 315
Folder, see Message
for statement, 13, 27, 185, 185-187, 200
condition, 13
execution flow, 186
for header, 185
range, 91, 187, 187-189, 200
can’t add elements, 101, 188
multidimensional array, 128
for_ each, 391, 872
format state, stream, 753
formatted IO, 761, 769
forward, 694
argument-dependent lookup, 798
explicit template argument, 694
pack expansion, 705
passes argument type unchanged, 694,
705
usage pattern, 706
forward declaration, class, 279, 306
forward iterator, 411, 417
forward list
see also container
see also sequential container
before begin, 351
forward iterator, 411
header, 329
initialization, 334-337
list initialization, 336
merge, 415
overview, 327
remove, 415
remove 1if,415
reverse, 415
splice after, 416
unique, 415
value initialization, 336
forwarding, 692-694
passes argument type unchanged, 694
preserving type information, 692
rvalue reference parameters, 693, 705
typical implementation, 706
variadic template, 704
free, Strvec, 528
free library function, 823, 863
free store, 450, 491
friend, 269, 306
class, 280
class template type parameter, 666

declaration, 269
declaration dependencies
member function as friend, 281
template friends, 665
function, 269
inheritance, 614
member function, 280, 281
overloaded function, 281
scope, 270, 281
namespace, 799
template as, 664
front
queue, 371
sequential container, 346
StrBlob, 457
front inserter, 402, 417
compared to inserter, 402
requires push_front, 402
fstream, 316-320
close, 318
file marker, 765
file mode, 319
header, 310, 316
initialization, 317
off type, 766
open, 318
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763-768
function, 2, 27, 202, 251
see alsoreturn type
see also return value
block, 204
body, 2, 27, 202, 251
callable object, 388
candidate, 251
candidate function, 243
constexpr, 239, 251
nonconstant return value, 239
declaration, 206
declaration and header file, 207
decltype returns function type, 250
default argument, 236, 251
adding default arguments, 237
and header file, 238
initializer, 238
deleted, 507, 549
function matching, 508
exception specification
noexcept, 779

908

Index

throw (), 780
friend, 269
function to pointer conversion, 248
inline, 238, 252
and header, 240
linkage directive, 859
member, see member function
name, 2, 27
nonthrowing, 779, 818
overloaded
compared to redeclaration, 231
friend declaration, 281
scope, 234
parameter, see parameter
parameter list, 2, 27, 202, 204
prototype, 207, 251
recursive, 227
variadic template, 701
scope, 204
viable, 252
viable function, 243
virtual, see virtual function

function, 577, 576-579, 590

and pointer to member, 842
definition, 577
desk calculator, 577

function call

ambiguous, 234, 245, 251

default argument, 236

execution flow, 203

overhead, 238

through pointer to function, 248
through pointer to member, 839

to overloaded operator, 553

to overloaded postfix operator, 568

function matching, 233, 251

= delete, 508
argument, conversion, 234
candidate function, 243
overloaded operator, 587
const arguments, 246
conversion, class type, 583-587
conversion operator, 585, 586
conversion rank, 245
class type conversions, 586
default argument, 243
enumeration, 835
function template, 694-699
specialization, 708
integral promotions, 246
member function, 273

multiple parameters, 244

namespace, 800

overloaded operator, 587-589

prefers more specialized function, 695
rvalue reference, 539

variadic template, 702

viable function, 243

function object, 571, 590

argument to algorithms, 572
arithmetic operators, 574
is callable object, 571

function parameter, see parameter
function parameter pack, 700

expansion, 703
pattern, 704

function pointer, 247-250

callable object, 388
definition, 247
exception specification, 779, 781
function template instantiation, 686
overloaded function, 248
parameter, 249
return type, 204, 249

using decltype, 250
template argument deduction, 686
type alias declaration, 249
typedef, 249

function table, 577, 577, 590, 840
function template, 652, 713

see also template parameter
see also template argument deduction
see also instantiation
argument conversion, 680
array function parameters, 654
candidate function, 695
compare, 652
string literal version, 654
constexpr, 655
declaration, 669
default template argument, 670
error detection, 657
explicit instantiation, 675, 675-676
explicit template argument, 682
compare, 683
function matching, 694-699
inline function, 655
nontype parameter, 654
overloaded function, 694-699
parameter pack, 713
specialization, 707, 714
compare, 706

Index

909

function matching, 708
is an instantiation, 708
namespace, 788
scope, 708
trailing return type, 684
type-dependent code, 658
function try block, 778, 817
functional header, 397, 399, 400, 575,
577,843

G

g++,b5
gcount, istream, 763
generate, 874
generate_n, 874
generic algorithms, see algorithms
generic programming, 108
type-independent code, 655
get
istream, 761
multi-byte version, istream, 762
returns int, istream, 762, 764
get<n>, 719, 770
getline, 87,131
istream, 762
istringstream, 321
TextQuery constructor, 488
global function
operator delete, 863
operator new, 863
global namespace, 789, 817
: : (scope operator), 789, 818
global scope, 48, 80
global variable, lifetime, 204
GNU compiler, 5
good, 313
goto statement, 192, 200
grade clusters program, 103
greater<T>, 575
greater equal<Ts,575

H

.h file header, 19
handler, see catch
has-a relationship, 637
hash<key types, 445,447
override, 446
specialization, 709, 788
compatible with == (equality), 710

hash function, 443, 447
HasPtr
reference counted, 514-516
copy assignment, 516
destructor, 515
valuelike, 512
copy assignment, 512
move assignment, 540
move constructor, 540
swap, 516
header, 6, 27
iostream, 27
C library, 91
const and constexpr, 76
default argument, 238
function declaration, 207
.hfile, 19
#include, 6, 21
inline function, 240
inline member function definition,
273
namespace members, 786
standard, 6
table of library names, 866
template definition, 656
template specialization, 708
user-defined, 21, 76-77, 207, 240
using declaration, 83
Sales data.h,76
Sales_item.h, 19
algorithm, 376
array, 329
bitset, 723
cassert, 241
cctype, 91
cmath, 751, 757
cstddef, 116, 120
cstdio, 762
cstdlib, 54, 227,778, 823
cstring, 122
ctime, 749
deque, 329
exception, 197
forward list, 329
fstream, 310, 316
functional, 397, 399, 400, 575,577,
843
initializer list,220
iomanip, 756
iostream, 6, 310
iterator, 119, 382, 401

910

Index

list, 329
map, 420
memory, 450, 451, 481, 483
new, 197, 460, 478, 821
numeric, 376, 881
queue, 371
random, 745
regex, 728
set, 420
sstream, 310, 321
stack, 370
stdexcept, 194, 197
string, 74,76, 84
tuple, 718
type info, 197
type traits, 684
typeinfo, 826, 827, 831
unordered_map, 420
unordered_set, 420
utility, 426, 530, 533, 694
vector, 96, 329
header guard, 77, 79
preprocessor, 77
heap, 450, 491
hex, manipulator, 754
hexadecimal
escape sequence (\Xnnn), 39
literal (0Xnum or 0xnum), 38
hexfloat manipulator, 757
high-order bits, 723, 770

I

i before e, program, 729
version 2, 734

1DE, 3

identifier, 46, 79
reserved, 46

_if algorithms, 414

if statement, 17, 27, 175, 175-178, 200

compared to switch, 178

condition, 18, 175

dangling else, 177

else branch, 18, 175, 200
ifstream, 311, 316-320, 324

see also istream

close, 318

file marker, 765

file mode, 319

initialization, 317

off type, 766

open, 318
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763-768
ignore, istream, 763
implementation, 254, 254, 306
in (file mode), 319
in scope, 49, 79
in-class initializer, 73, 73, 79, 263, 265, 274
#include
standard header, 6, 21
user-defined header, 21
includes, 880
incomplete type, 279, 306
can’t be base class, 600
not in exception declaration, 775
restrictions on use, 279
incr, StrBlobPtr, 475
increment operators, 147-149
indentation, 19, 177
index, 94, 131
seealso [] (subscript)
indirect base class, 600, 650
inferred return type, lambda expression,
396
inheritance, 650
and container, 630
conversions, 604
copy control, 623-629
friend, 614
hierarchy, 592, 600
interface class, 637
10 classes, 311, 324
name collisions, 618
private, 612, 650
protected, 612, 650
public, 612, 650
vs. composition, 637
inherited, constructor, 628
initialization
aggregate class, 298
array, 114
associative container, 423, 424
bitset, 723-725
C-style string, 122
class type objects, 73, 262
const
static data member, 302
class type object, 262
data member, 289

Index 911

object, 59 multiple key container, 433
copy, 84, 131, 497, 497499, 549 sequential container, 343
default, 43, 293 string, 362
direct, 84, 131 insert iterator, 382, 401, 402, 418
dynamically allocated object, 459 back_inserter, 402
exception, 197 front inserter, 402
istream iterator, 405 inserter, 402
list, see list initialization inserter, 402, 418
Ivalue reference, 532 compared to front_inserter, 402
multidimensional array, 126 instantiation, 96, 131, 653, 656, 713
new([], 477 Blob, 660
ostream iterator, 405 class template, 660
pair, 426 member function, 663
parameter, 203, 208 declaration, 713
pointer, 52-54 definition, 713
to const, 62 error detection, 657
queue, 369 explicit, 675676
reference, 51 function template from function pointer,
data member, 289 686
to const, 61 member template, 674
return value, 224 static member, 667
rvalue reference, 532 int, 33
sequential container, 334-337 literal, 38
shared ptr, 464 integral
stack, 369 constant expression, 65
string, 84-85, 360-361 promotion, 134, 160, 169
string streams, 321 function matching, 246
tuple, 718 type, 32, 79
unique ptr, 470 integrated development environment, 3
value, 98, 132, 293 interface, 254, 306
variable, 42, 43, 79 internal, manipulator, 759
vector, 97-101 interval, left-inclusive, 373
vs. assignment, 42, 288 invalid pointer, 52
weak_ptr, 473 invalid_argument, 197
initializer list,220,220-222, 252 invalidated iterator
= (assignment), 563 and container operations, 354
constructor, 662 undefined behavior, 353
header, 220 invalidates iterator
inline function, 238, 252 assign, 338
and header, 240 erase, 349
function template, 655 resize, 352
member function, 257, 273 10
and header, 273 formatted, 761, 769
inline namespace, 790, 817 unformatted, 761, 770
inner scope, 48, 79 IO classes
inner product, 882 condition state, 312, 324
inplace_merge, 875 inheritance, 324
input, standard, 6 10 stream, see stream
input iterator, 411, 418 iomanip header, 756
insert iostate, 312

associative container, 432 machine-dependent, 313

Index

iostream, 5
file marker, 765
header, 6, 27, 310
off type, 766
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763-768
virtual base class, 810

iota, 882

is-a relationship, 637

is partitioned, 876

is permutation, 879

is sorted, 877

is_sorted until, 877

isalnum, 92

isalpha, 92

isbn
Sales_data, 257
Sales_item,23

ISBN, 2

isbn mismatch, 783

iscntrl, 92

isdigit, 92

isgraph, 92

islower, 92

isprint, 92

ispunct, 92

isShorter program, 211

isspace, 92

istream, 5, 27,311
see also manipulator
>> (input operator), 8

precedence and associativity, 155

as condition, 15
chained input, 8
condition state, 312
conversion, 162

explicit conversion to bool, 583

file marker, 765
flushing input buffer, 314
format state, 753
gcount, 763
get, 761
multi-byte version, 762
returns int, 762, 764
getline, 87,321,762
ignore, 763
no copy or assign, 311
off type, 766
peek, 761

pos_type, 766
put, 761
putback, 761
random access, 765
random IO program, 766
read, 763
seek and tell, 763-768
unformatted 10, 761
multi-byte, 763
single-byte, 761
unget, 761
istream iterator, 403,418
>> (input operator), 403
algorithms, 404
initialization, 405
off-the-end iterator, 403
operations, 404
type requirements, 406
istringstream, 311, 321, 321-323
see also i stream
word per line processing, 442
file marker, 765
getline, 321
initialization, 321
off type, 766
phone number program, 321
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763-768
TextQuery constructor, 488
isupper, 92
isxdigit, 92
iter_ swap, 875
iterator, 106, 106-112, 131
++ (increment), 107, 132
- - (decrement), 107
* (dereference), 107
+= (compound assignment), 111
+ (addition), 111
- (subtraction), 111
== (equality), 106, 107
! = (inequality), 106, 107
algorithm type independence, 377
arithmetic, 111, 131
compared to reverse iterator, 409
destination, 413
insert, 401, 418
move, 401, 418, 543
uninitialized copy, 543
off-the-beginning

Index

913

before begin, 351
forward list,351
off-the-end, 106, 132, 373
istream iterator, 403
parameter, 216
regex, 734
relational operators, 111
reverse, 401, 407-409, 418
stream, 401, 403-406, 418
used as destination, 382

iterator

compared to reverse iterator,
408

container, 108, 332

header, 119, 382, 401

set iterators are const, 429

iterator category, 410, 410412, 418

bidirectional iterator, 412, 417
forward iterator, 411, 417

input iterator, 411, 418

output iterator, 411, 418
random-access iterator, 412, 418

iterator range, 331, 331-332, 373

algorithms, 376

as initializer of container, 335
container erase member, 349
container insert member, 344
left-inclusive, 331

off-the-end, 331

K

key concept

algorithms

and containers, 378

iterator arguments, 381
class user, 255
classes define behavior, 20
defining an assignment operator, 512
dynamic binding in C++, 605
elements are copies, 342
encapsulation, 270
headers for template code, 657
indentation, 19
inheritance and conversions, 604
isA and hasA relationships, 637
name lookup and inheritance, 619
protected members, 614
refactoring, 611
respecting base class interface, 599
specialization declarations, 708

type checking, 46
types define behavior, 3
use concise expressions, 149
key type
associative container, 428, 447
requirements
ordered container, 425
unordered container, 445
keyword table, 47
Koenig lookup, 797

L

L’c’ (wchar_t literal), 38
label
case, 179, 199
statement, 192
labeled statement, 192, 200
lambda expression, 388, 418
arguments, 389
biggies program, 391
reference capture, 393
capture list, 388, 417
capture by reference, 393
capture by value, 390, 392
implicit capture, 394
inferred return type, 389, 396
mutable, 395
parameters, 389
passed to find_if, 390
passed to stable sort, 389
synthesized class type, 572-574
trailing return type, 396
left, manipulator, 758
left-inclusive interval, 331, 373
length error, 197
less<T>,575
less _equal<T>,575
letter grade, program, 175
lexicographical compare, 881
library function objects, 574
as arguments to algorithms, 575
library names to header table, 866
library type, 5, 27, 82
lifetime, 204, 252
compared to scope, 204

dynamically allocated objects, 450, 461

global variable, 204

local variable, 204

parameter, 205
linkage directive, 858, 863

914 Index

C++ to C, 860 string, 7, 28, 39
compound, 858 unsigned (numU or numu), 41
overloaded function, 860 wchar_t, 40
parameter or return type, 859 literal type, 66
pointer to function, 859 class type, 299
return type, 859 local class, 852, 863
single, 858 access control, 853

linker, 208, 252 name lookup, 853

template errors at link time, 657
list, 373
see also container
see also sequential container
bidirectional iterator, 412
header, 329
initialization, 334-337
list initialization, 336
merge, 415
overview, 327
remove, 415
remove 1if,415
reverse, 415
splice, 416
unique, 415
value initialization, 336
list initialization, 43, 79
= (assignment), 145
array, 337
associative container, 423
container, 336
dynamically allocated, object, 459
pair, 427,431, 527
preferred, 99
prevents narrowing, 43
return value, 226, 427, 527
sequential container, 336
vector, 98
literal, 38, 3841, 79
bool, 41
in condition, 143
char, 39
decimal, 38
double (numEnum or numenum), 38
float (numF or numg), 41
floating-point, 38
hexadecimal (0Xnum or Oxnum), 38
int, 38
long (numL or numl), 38
long double (ddd.dddL or ddd.dddl),
41
long long (numLL or numll), 38
octal (0num), 38

nested class in, 854
restrictions, 852
local scope, see block scope
local static object, 205, 252
local variable, 204, 252
destroyed during exception handling,
467,773
destructor, 502
lifetime, 204
pointer, return value, 225
reference, return value, 225
return statement, 224
lock, weak ptr, 473
logic_error, 197
logical operators, 141, 142
condition, 141
function object, 574
logical_and<T>,575
logical not<Ts>,575
logical_ or<T>,575
long, 33
literal (numL or num1), 38
long double, 33
literal (ddd.dddL or ddd.ddd1), 41
long long, 33
literal (numLL or numll), 38
lookup, name, see name lookup
low-level const, 64, 79
argument and parameter, 213
conversion from, 163
conversion to, 162
overloaded function, 232
template argument deduction, 693
low-order bits, 723, 770
lower_ bound
algorithm, 873
ordered container, 438
lround, 751
lvalue, 135, 169
cast to rvalue reference, 691
copy initialization, uses copy construc-
tor, 539
decltype, 135

Index 915

reference collapsing rule, 688 make pair, 428
result make_plural program, 224
-> (arrow operator), 150 make_shared, 451
++ (increment) prefix, 148 make tuple, 718
- - (decrement) prefix, 148 malloc library function, 823, 863
x (dereference), 135 manipulator, 7, 27, 753, 770
[1 (subscript), 135 boolalpha, 754
= (assignment), 145 change format state, 753
, (comma operator), 158 dec, 754
? : (conditional operator), 151 defaultfloat, 757
cast, 163 endl, 314
decltype, 71 ends, 315
function reference return type, 226 fixed, 757
variable, 533 flush, 315
Ivalue reference, see also reference, 532, 549 hex, 754
collapsing rule, 688 hexfloat, 757
compared to rvalue reference, 533 internal, 759
function matching, 539 left, 758

initialization, 532

member function, 546
overloaded, 547

move, 533

template argument deduction, 687

noboolalpha, 754
noshowbase, 755
noshowpoint, 758
noskipws, 760
nouppercase, 755
oct, 754

M right, 758
scientific, 757
setfill, 759
setprecision, 756
setw, 758
showbase, 755
showpoint, 758

machine-dependent
bit-field layout, 854
char representation, 34
end-of-file character, 15
enum representation, 835
iostate, 313 .
linkage directive language, 861 sk}pws, 760
nonzero return from main, 227 unitbuf, 315
random IO, 763 uppercase, 755
reinterpret cast, 164 map, 420, 447
return from exception what, 198 see also ordered container
signed out-of-range value, 35 * (dereference), 429

signed types and bitwise operators, [1 (subscript), 435, 448
153 adds element, 435

size of arithmetic types, 32 at, 435

terminate function, 196 definition, 423

type_info members, 831 header, 420

vector, memory management, 355 insert, 431

volatile implementation, 856 key_type requirements, 425
main, 2, 27 list initialization, 423

not recursive, 228 lower bound, 438

parameters, 218 map, initialization, 424

return type, 2 TextQuery class, 485

return value, 2-4, 227 upper_ bound, 438

make move_ iterator, 543 word_count program, 421

916

Index

mapped_type, associative container, 428,
448
match
best, 251
no, 252
match flag type,regex constants,
743
max, 881
max_element, 881
mem_fn, 843, 863
generates callable, 843
member, see class data member
member access operators, 150
member function, 23, 27, 306
as friend, 281
base member hidden by derived, 619
class template
defined outside class body, 661
instantiation, 663
const, 258, 305
() (call operator), 573
reference return, 276
declared but not defined, 509
defined outside class, 259
definition, 256260
: : (scope operator), 259
name lookup, 285
parameter list, 282
return type, 283
explicitly inline, 273
function matching, 273
implicit this parameter, 257
implicitly inline, 257
inline and header, 273
move-enabled, 545
name lookup, 287
overloaded, 273
on const, 276
on lvalue or rvalue reference, 547
overloaded operator, 500, 552
reference qualified, 546, 550
returning xthis, 260, 275
rvalue reference parameters, 544
scope, 282
template, see member template

member template, 672, 714

Blob, iterator constructor, 673
DebugDelete, 673
declaration, 673

defined outside class body, 674
instantiation, 674

template parameters, 673, 674
memberwise
copy assignment, 500
copy constructor, 497
copy control, 267, 550
destruction is implicit, 503
move assignment, 538
move constructor, 538
memory
see also dynamically allocated
exhaustion, 460
leak, 462
memory header, 450, 451, 481, 483
merge, 874
list and forward list, 415
Message, 519-524
add_to Folder, 522
class definition, 521
copy assignment, 523
copy constructor, 522
design, 520
destructor, 522
move assignment, 542
move constructor, 542
move_Folders, 542
remove_from Folders,523
method, see member function
Microsoft compiler, 5
min, 881
min_element, 881
minmax, 881
minus<T>, 575
mismatch, 872
mode, file, 324
modulus<Ts, 575
move, 530, 533, 874
argument-dependent lookup, 798
binds rvalue reference to lvalue, 533
explained, 690-692
inherently dangerous, 544
Message, move operations, 541
moved from object has unspecified
value, 533
reference collapsing rule, 691
StrVec reallocate, 530
remove_ reference, 691
move assignment, 536, 550
copy and swap, 540
derived class, 626
HasPtr, valuelike, 540
memberwise, 538

Index

917

Message, 542
moved-from object destructible, 537
noexcept, 535
rule of three/five, virtual destructor
exception, 622
self-assignment, 537
StrVec, 536
synthesized
deleted function, 538, 624
derived class, 623
multiple inheritance, 805
sometimes omitted, 538
move constructor, 529, 534, 534-536, 550
and copy initialization, 541
derived class, 626
HasPtr, valuelike, 540
memberwise, 538
Message, 542
moved-from object destructible, 534,
537
noexcept, 535
rule of three/five, virtual destructor
exception, 622
string, 529
StrVec, 535
synthesized
deleted function, 624
derived class, 623
multiple inheritance, 805
sometimes omitted, 538
move iterator, 401, 418, 543, 550
make _move_iterator, 543
StrVec, reallocate, 543
uninitialized copy, 543
move operations, 531-548
function matching, 539
move, 533
noexcept, 535
rvalue references, 532
valid but unspecified, 537
move backward, 875
move_ Folders, Message, 542
multidimensional array, 125-130
[1 (subscript), 127
argument and parameter, 218
begin, 129
conversion to pointer, 128
definition, 126
end, 129
initialization, 126
pointer, 128

range for statement and, 128

multimap, 448

see also ordered container

x (dereference), 429
definition, 423

has no subscript operator, 435
insert, 431, 433

key_type requirements, 425
list initialization, 423

lower bound, 438

map, initialization, 424

upper_ bound, 438

multiple inheritance, 802, 817

see also virtual base class
= (assignment), 805
ambiguous conversion, 806
ambiguous names, 808
avoiding ambiguities, 809
class derivation list, 803
conversion, 805

copy control, 805

name lookup, 807

object composition, 803
order of initialization, 804
scope, 807

virtual function, 807

multiplies<Ts>, 575
multiset, 448

see also ordered container
insert, 433
iterator, 429
key_type requirements, 425
list initialization, 423
lower_ bound, 438
override comparison
Basket class, 631
using compareIsbn, 426
upper_ bound, 438
used in Basket, 632

mutable

data member, 274
lambda expression, 395

N

\n (newline character), 39
name lookup, 283, 306

: : (scope operator), overrides, 286
argument-dependent lookup, 797
before type checking, 619

multiple inheritance, 809

918

Index

block scope, 48
class, 284
class member
declaration, 284
definition, 285, 287
function, 284
depends on static type, 617, 619
multiple inheritance, 806
derived class, 617
name collisions, 618
local class, 853
multiple inheritance, 807
ambiguous names, 808
namespace, 796
nested class, 846
overloaded virtual functions, 621
templates, 657
type checking, 235
virtual base class, 812
named cast, 162
const_cast, 163,163
dynamic_ cast, 163, 825
reinterpret cast, 163, 164
static_cast, 163,163
namespace, 7, 27, 785, §17
alias, 792, 817
argument-dependent lookup, 797
candidate function, 800
cplusplus_primer, 787
definition, 785
design, 786
discontiguous definition, 786
friend declaration scope, 799
function matching, 800
global, 789, 817
inline, 790, 817
member, 786
member definition, 788
outside namespace, 788
name lookup, 796
nested, 789
overloaded function, 800
placeholders, 399
scope, 785-790
std, 7
template specialization, 709, 788
unnamed, 791, 818
local to file, 791
replace file static, 792
namespace pollution, 785, 817
narrowing conversion, 43

NDEBUG, 241
negate<T>,575
nested class, 843, 863
access control, 844
class defined outside enclosing class,
845
constructor, QueryResult, 845
in local class, 854
member defined outside class body,
845
name lookup, 846
QueryResult, 844
relationship to enclosing class, 844,
846
scope, 844
static member, 845
nested namespace, 789
nested type, see nested class
new, 458, 458-460, 491
execution flow, 820
failure, 460
header, 197, 460, 478, 821
initialization, 458
placement, 460, 491, 824, 863
union with class type member, 851
shared ptr, 464
unique ptr, 470
with auto, 459
new [],477,477-478
initialization, 477
returns pointer to an element, 477
value initialization, 478
newline (\n), character, 39
next permutation, 879
no match, 234, 252
see also function matching
noboolalpha, manipulator, 754
NoDefault, 293
noexcept
exception specification, 779, 817
argument, 779-781
violation, 779
move operations, 535
operator, 780, 817
nonconst reference, see reference
none, bitset, 726
none_of, 871
nonportable, 36, 863
nonprintable character, 39, 79
nonthrowing function, 779, 818
nontype parameter, 654, 714

Index

919

compare, 654
must be constant expression, 655
type requirements, 655
normal distribution,751
noshowbase, manipulator, 755
noshowpoint, manipulator, 758
noskipws, manipulator, 760
not_equal_to<T>,575
NotQuery, 637
class definition, 642
eval function, 647
nouppercase, manipulator, 755
nth element, 877
NULL, 54
null (\0), character, 39
null pointer, 53, 79
delete of, 461
null statement, 172, 200
null-terminated character string, see C-style
string
nullptr, 54,79
numeric header, 376, 881
numeric conversion, to and from string,
367
numeric literal
float (numF or numt), 41
long (numL or numl), 41
long double (ddd.dddL or ddd.dddl),
41
long long(numLL or numl1l), 41
unsigned (numu or numu), 41

O
object, 42, 79
automatic, 205, 251
dynamically allocated, 458463
const object, 460
delete, 460
factory program, 461
initialization, 459
lifetime, 450
new, 458
lifetime, 204, 252
local static, 205, 252
order of destruction
class type object, 502
derived class object, 627
multiple inheritance, 805
virtual base classes, 815
order of initialization

class type object, 289
derived class object, 598, 623
multiple inheritance, 804
virtual base classes, 814
object code, 252
object file, 208, 252
object-oriented programming, 650
oct, manipulator, 754
octal, literal (0num), 38
octal escape sequence (\nnn), 39
off-the-beginning iterator, 351, 373
before begin, 351
forward list, 351
off-the-end
iterator, 106, 132, 373
iterator range, 331
pointer, 118
ofstream, 311, 316-320, 324
see also ostream
close, 318
file marker, 765
file mode, 319
initialization, 317
off type, 766
open, 318
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763-768
old-style, cast, 164
open, file stream, 318
operand, 134, 169
conversion, 159
operator, 134, 169
operator alternative name, 46
operator delete
class member, 822
global function, 820, 863
operator delete[]
class member, 822
compared to deallocate, 823
global function, 820
operator new
class member, 822
global function, 820, 863
operator new/]
class member, 822
compared to allocate, 823
global function, 820
operator overloading, see overloaded op-
erator

Index

operators
arithmetic, 139
assignment, 12, 144-147
binary, 134, 168
bitwise, 152-156
bitset, 725
comma (,), 157
compound assignment, 12
conditional (?:), 151
decrement, 147-149
equality, 18, 141
increment, 12, 147-149
input, 8
iterator
addition and subtraction, 111
arrow, 110
dereference, 107
equality, 106, 108
increment and decrement, 107
relational, 111
logical, 141
member access, 150
noexcept, 780
output, 7
overloaded, arithmetic, 560
pointer
addition and subtraction, 119
equality, 120
increment and decrement, 118
relational, 120, 123
subscript, 121
relational, 12, 141, 143
Sales data
+= (compound assignment), 564
+ (addition), 560
== (equality), 561
! = (inequality), 561
>> (input operator), 558
<< (output operator), 557
Sales item,20
scope, 82
sizeof, 156
sizeof...,700
string
addition, 89
equality and relational, 88
10, 85
subscript, 93-95
subscript, 116
typeid, 826, 864
unary, 134, 169

vector
equality and relational, 102
subscript, 103-105
options to main, 218
order of destruction
class type object, 502
derived class object, 627
multiple inheritance, 805
virtual base classes, 815
order of evaluation, 134, 169
&& (logical AND), 138
| | (logical OR), 138
, (comma operator), 138
? : (conditional operator), 138
expression, 137
pitfalls, 149
order of initialization
class type object, 289
derived class object, 598
multiple base classes, 816
multiple inheritance, 804
virtual base classes, 814
ordered container
see also container
see also associative container
key type requirements, 425
lower bound, 438
override default comparison, 425
upper bound, 438
ordering, strict weak, 425, 448
OrQuery, 637
class definition, 644
eval function, 645
ostream, 5,27, 311
see also manipulator
<< (output operator), 7
precedence and associativity, 155
chained output, 7
condition state, 312
explicit conversion to bool, 583
file marker, 765
floating-point notation, 757
flushing output buffer, 314
format state, 753
no copy or assign, 311
not flushed if program crashes, 315
off type, 766
output format, floating-point, 755
pos_type, 766
precision member, 756
random access, 765

Index

921

random IO program, 766
seek and tell, 763-768
tie member, 315
virtual base class, 810
write, 763
ostream iterator, 403, 418
<< (output operator), 405
algorithms, 404
initialization, 405
operations, 405
type requirements, 406
ostringstream, 311, 321, 321-323
see also ostream
file marker, 765
initialization, 321
off type, 766
phone number program, 323
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763-768
str, 323
out (file mode), 319
out-of-range value, signed, 35
out of range, 197
at function, 348
out_of stock,783
outer scope, 48, 79
output, standard, 6
output iterator, 411, 418
overflow, 140
overflow error, 197
overhead, function call, 238
overload resolution, see function match-
ing
overloaded function, 230, 230-235, 252
see also function matching
as friend, 281
compared to redeclaration, 231
compared to template specialization,
708
const parameters, 232
constructor, 262
function template, 694—699
linkage directive, 860
member function, 273
const, 276
move-enabled, 545
reference qualified, 547
virtual, 621
move-enabled, 545

namespace, 800
pointer to, 248
scope, 234
derived hides base, 619
using declaration, 800
in derived class, 621
using directive, 801

overloaded operator, 135, 169, 500, 550,

552, 590
++ (increment), 566-568
- - (decrement), 566-568
x (dereference), 569
StrBlobPtr, 569
& (address-of), 554
-> (arrow operator), 569
StrBlobPtr, 569
[1 (subscript), 564
StrVec, 565
() (call operator), 571
absInt, 571
PrintString, 571
= (assignment), 500, 563
StrVecinitializer 1list,563
+= (compound assignment), 555, 560
Sales data, 564
+ (addition), Sales_data, 560
== (equality), 561
Sales data, 561
! = (inequality), 562
Sales_data, 561
< (less-than), strict weak ordering,
562
>> (input operator), 558-559
Sales data, 558
<< (output operator), 557-558
Sales_data, 557
&& (logical AND), 554
| | (logical OR), 554
& (bitwise AND), Query, 644
| (bitwise OR), Query, 644
~ (bitwise NOT), Query, 643
, (comma operator), 554
ambiguous, 588
arithmetic operators, 560
associativity, 553
binary operators, 552
candidate function, 587
consistency between relational and
equality operators, 562
definition, 500, 552
design, 554-556

922

Index

equality operators, 561
explicit call to, 553

postfix operators, 568
function matching, 587-589
member function, 500, 552
member vs. nonmember function,

552, 555

precedence, 553
relational operators, 562
requires class-type parameter, 552
short-circuit evaluation lost, 553
unary operators, 552

override, virtual function, 595, 650

override specifier, 593, 596, 606

P

pair, 426, 448

default initialization, 427
definition, 426

initialization, 426

list initialization, 427, 431, 527
make pair, 428

map, x (dereference), 429
operations, 427

public data members, 427
return value, 527

Panda, 803
parameter, 202, 208, 252

array, 214-219

buffer overflow, 215

to pointer conversion, 214
C-style string, 216
const, 212
copy constructor, 496
ellipsis, 222
forwarding, 693
function pointer, linkage directive, 859
implicit this, 257
initialization, 203, 208
iterator, 216
lifetime, 205
low-level const, 213
main function, 218
multidimensional array, 218
nonreference, 209

uses copy constructor, 498

uses move constructor, 539
pass by reference, 210, 252
pass by value, 209, 252
passing, 208-212

pointer, 209, 214
pointer to const, 246
pointer to array, 218
pointer to function, 249
linkage directive, 859
reference, 210-214
to const, 213, 246
to array, 217
reference to const, 211
template, see template parameter
top-level const, 212
parameter list
function, 2, 27, 202
template, 653, 714
parameter pack, 714
expansion, 702, 702-704, 714
function template, 713
sizeof...,700
variadic template, 699
parentheses, override precedence, 136
partial_sort, 877
partial sort_ copy, 877
partial sum, 882
partition, 876
partition copy, 876
partition point, 876
pass by reference, 208, 210, 252
pass by value, 209, 252
uses copy constructor, 498
uses move constructor, 539
pattern, 702, 714
function parameter pack, 704
regular expression, phone number,
739
template parameter pack, 703
peek, istream, 761
PersonInfo, 321
phone number, regular expression
program, 738
reformat program, 742
valid, 740
pitfalls
dynamic memory, 462
order of evaluation, 149
self-assignment, 512
smart pointer, 469
using directive, 795
placeholders, 399
placement new, 460, 491, 824, 863
union, class type member, 851
plus<T>, 575

Index

923

pointer, 52, 52-58, 79
++ (increment), 118
- - (decrement), 118
« (dereference), 53
[1 (subscript), 121
= (assignment), 55
+ (addition), 119
- (subtraction), 119
== (equality), 55, 120
! = (inequality), 55, 120
and array, 117
arithmetic, 119, 132
const, 63,78
const pointer to const, 63
constexpr, 67
conversion
from array, 161
to bool, 162
to const, 62, 162
to voidx, 161
dangling, 463, 491
declaration style, 57
definition, 52
delete, 460
derived-to-base conversion, 597
under multiple inheritance, 805
dynamic_cast, 825
implicit this, 257, 306
initialization, 52-54
invalid, 52
multidimensional array, 128
null, 53, 79
off-the-end, 118
parameter, 209, 214
relational operators, 123
return type, 204
return value, local variable, 225
smart, 450, 491
to const, 62
and typedef, 68
to array
parameter, 218
return type, 204
return type declaration, 229
to const, 79
overloaded parameter, 232, 246
to pointer, 58
typeid operator, 828
valid, 52
volatile, 856
pointer to function, 247-250

auto, 249
callable object, 388
decltype, 249
exception specification, 779, 781
explicit template argument, 686
function template instantiation, 686
linkage directive, 859
overloaded function, 248
parameter, 249
return type, 204, 249
using decltype, 250
template argument deduction, 686
trailing return type, 250
type alias, 249
typedef, 249
pointer to member, 835, 863
arrow (->x), 837
definition, 836
dot (. %), 837
function, 838
and bind, 843
and function, 842
and mem_fn, 843
not callable object, 842
function call, 839
function table, 840
precedence, 838
polymorphism, 605, 650
pop
priority queue, 371
queue, 371
stack, 371
pop_back
sequential container, 348
StrBlob, 457
pop_front, sequential container, 348
portable, 854
precedence, 134, 136-137, 169
= (assignment), 146
? : (conditional operator), 151
assignment and relational operators,
146
dot and dereference, 150
increment and dereference, 148
of IO operator, 156
overloaded operator, 553
parentheses overrides, 136
pointer to member and call operator,
838
precedence table, 166
precision member, ostream, 756

924

Index

predicate, 386, 418
binary, 386, 417
unary, 386, 418
prefix, smatch, 736
preprocessor, 76, 79
#include, 7
assert macro, 241, 251
header guard, 77
variable, 54, 79
prev_permutation, 879
print, Sales data, 261
print program
array parameter, 215
array reference parameter, 217
pointer and size parameters, 217
pointer parameter, 216
two pointer parameters, 216
variadic template, 701
print total
explained, 604
program, 593
PrintString, 571
() (call operator), 571
priority queue, 371, 373
emplace, 371
empty, 371
equality and relational operators, 370
initialization, 369
pop, 371
push, 371
sequential container, 371
size, 371
swap, 371
top, 371
private
access specifier, 268, 306
copy constructor and assignment, 509
inheritance, 612, 650
program
addition
Sales data, 74
Sales_item, 21,23
alternative_sum, 682
biggies, 391
binops desk calculator, 577
book from author version 1, 438
book from author version 2, 439
book from author version 3, 440
bookstore
Sales data, 255
Sales_data usingalgorithms, 406

Sales item,24
buildMap, 442
children’s story, 383-391
compare, 652
count calls, 206
debug rep
additional nontemplate versions,
698
general template version, 695
nontemplate version, 697
pointer template version, 696
elimDups, 383-391
error_msg, 221
fact, 202
factorial, 227
factory
new, 461
shared_ptr, 453
file extension, 730
version 2, 738
find last word, 408
find char, 211
findBook, 721
flip, 694
flip1, 692
flip2,693
grade clusters, 103
grading
bitset, 728
bitwise operators, 154
i before e, 729
version 2, 734
isShorter, 211
letter grade, 175
make plural, 224
message handling, 519
phone number
istringstream, 321
ostringstream, 323
reformat, 742
regular expression version, 738
valid, 740
print
array parameter, 215
array reference parameter, 217
pointer and size parameters, 217
pointer parameter, 216
two pointer parameters, 216
variadic template, 701
print_ total, 593
Query, 635

Index

925

class design, 636-639
random 10O, 766
reset
pointer parameters, 209
reference parameters, 210
restricted word_count, 422
sum, 682
swap, 223
TextQuery, 486
design, 485
transform, 442
valid, 740
vector capacity, 357
vowel counting, 179
word count
map, 421
unordered_map, 444
word_transform, 441
ZooAnimal, 802
promotion, see integral promotion
protected
access specifier, 595, 611, 650
inheritance, 612, 650
member, 611
ptr_fun deprecated, 401
ptrdiff t, 120,132
public
access specifier, 268, 306
inheritance, 612, 650
pure virtual function, 609, 650
Disc_quote, 609
Query base, 636
push
priority gqueue, 371
queue, 371
stack, 371
push_back
back inserter, 382, 402
sequential container, 100, 132, 342
move-enabled, 545
Strvec, 527
move-enabled, 545
push_front
front_inserter, 402
sequential container, 342
put, istream, 761
putback, istream, 761

Q

Query, 638

<< (output operator), 641
& (bitwise AND), 638
definition, 644
| (bitwise OR), 638
definition, 644
~ (bitwise NOT), 638
definition, 643
classes, 636-639
definition, 640
interface class, 637
operations, 635
program, 635
recap, 640
Query base, 636
abstract base class, 636
definition, 639
member function, 636
QueryResult, 485
class definition, 489
nested class, 844
constructor, 845
print, 490
queue, 371, 373
back, 371
emplace, 371
empty, 371

equality and relational operators, 370

front, 371
header, 371
initialization, 369
pop, 371
push, 371
sequential container, 371
size, 371
swap, 371

Quote
class definition, 594
design, 592

R

Raccoon, virtual base class, 812
raise exception, see throw
rand function, drawbacks, 745
random header, 745
random IO, 765
machine-dependent, 763
program, 766
random-access iterator, 412, 418
random-number library, 745
compared to rand function, 745

926 Index

distribution types, 745, 770 limitations, 214
engine, 745, 770 template argument deduction, 687-
default random_ engine, 745 689
max, min,747 remove_ reference, 684
retain state, 747 return type, 224
seed, 748, 770 assignment operator, 500
generator, 746, 770 is lvalue, 226
range, 747 return value, local variable, 225
random_shuffle, 878 to array parameter, 217
range for statement, 91, 132, 187, 187- reference, container, 333
189, 200 reference count, 452, 491, 514, 550
can’t add elements, 101, 188 copy assignment, 514
multidimensional array, 128 copy constructor, 514
not with dynamic array, 477 design, 514
range_error, 197 destructor, 514
rbegin, container, 333, 407 HasPtr class, 514-516
rdstate, stream, 313 reference to const, 61, 80

read
istream, 763
Sales data, 261

argument, 211
initialization, 61

parameter, 211, 213
real locat.:e, StrVe c,.530 overloaded, 232, 246
move iterator version, 543
return type, 226

recursion loop, 228, 252, 608
recursive function, 227, 252
variadic template, 701
ref, binds reference parameter, 400, 418
refactoring, 611, 650
reference, 50, 79
see also lvalue reference
see also rvalue reference
auto deduces referred to type, 69
collapsing rule, 688
forward, 694
Ivalue arguments, 688
move, 691
rvalue reference parameters, 693
const, see reference to const

regex, 728, 770

error_type, 732

header, 728

regex_error, 732,770

syntax_option_ type, 730
regex constants, 743

match flag type, 743
regex_error, 732,770
regex_match, 729, 770
regex_replace, 742,770

format flags, 744

format string, 742
regex_search, 729, 730, 770
regular expression library, 728, 770

case sensitive, 730

conversion

not from const, 61 compiled at run time, 732

to reference to const, 162 ECMAScript, 730
data member, initialization, 289 file extension program, 730
declaration style, 57 i before e program, 729
decltype yields reference type, 71 version 2, 734
definition, 51 match data, 735-737
derived-to-base conversion, 597 pattern, 729

under multiple inheritance, 805 phone number, valid, 740
dynamic_cast operator, 826 phone number pattern, 739
initialization, 51 phone number program, 738
member function, 546 phone number reformat, program, 742
parameter, 210-214 regex iterators, 734

bind, 400 search functions, 729

Index

927

smatch, provides context for a match,

735
subexpression, 738
file extension program version 2,
738
types, 733
valid, program, 740
reinterpret cast, 163, 164
machine-dependent, 164
relational operators, 141, 143
arithmetic conversion, 144
container adaptor, 370
container member, 340
function object, 574
iterator, 111
overloaded operator, 562
pointer, 120, 123
Sales_data, 563
string, 88
tuple, 720
vector, 102
release,unique ptr, 470
remove, 878
list and forward list, 415
remove_copy, 878
remove copy if, 878
remove_from Folders,Message, 523
remove 1if, 878
list and forward list,415
remove pointer, 685
remove_reference, 684
move, 691
rend, container, 333, 407
replace, 383, 875
string, 362
replace copy, 383, 874
replace copy if, 874
replace 1if, 875
reserve
string, 356
vector, 356
reserved identifiers, 46
reset
bitset, 727
shared_ptr, 466
unique ptr, 470
reset program
pointer parameters, 209
reference parameters, 210
resize
invalidates iterator, 352

sequential container, 352
value initialization, 352
restricted word_count program, 422
result, 134, 169
x (dereference), lvalue, 135
[1 (subscript), lvalue, 135
, (comma operator), Ivalue, 158
? : (conditional operator), Ivalue, 151
cast, lvalue, 163
rethrow, 776
exception object, 777
throw, 776, 818
return statement, 222, 222-228
from main, 227
implicit return from main, 223
local variable, 224, 225
return type, 2, 27, 202, 204, 252
array, 204
array using decltype, 230
function, 204
function pointer, 249
using decltype, 250
linkage directive, 859
main, 2
member function, 283
nonreference, 224
copy initialized, 498
pointer, 204
pointer to function, 204
reference, 224
reference to const, 226
reference yields lvalue, 226
trailing, 229, 252, 396, 684
virtual function, 606
void, 223
return value
conversion, 223
copy initialized, 498
initialization, 224
list initialization, 226, 427, 527
local variable, pointer, 225
main, 2-4, 227
pair, 427,527
reference, local variable, 225
xthis, 260, 275
tuple, 721
type checking, 223
unique ptr, 471
reverse, 878
list and forward list, 415
reverse iterator, 401, 407409, 418

Index

++ (increment), 407
- - (decrement), 407, 408
base, 409
compared to iterator, 409
reverse copy, 414, 878
reverse copy if,414
reverse iterator
compared to iterator, 408
container, 332, 407
rfind, string, 366
right, manipulator, 758
rotate, 878
rotate_ copy, 878
rule of three/five, 505, 541
virtual destructor exception, 622
run-time type identification, 825-831, 864
compared to virtual functions, 829
dynamic_cast, 825, 825
bad cast, 826
to poiner, 825
to reference, 826
type-sensitive equality, 829
typeid, 826, 827
returns type info, 827
runtime binding, 594, 650
runtime error, 194, 197
initialization from string, 196
rvalue, 135, 169
copy initialization, uses move con-
structor, 539
result
++ (increment) postfix, 148
- - (decrement) postfix, 148
function nonreference return type,
224
rvalue reference, 532, 550
cast from lvalue, 691
collapsing rule, 688
compared to lvalue reference, 533
function matching, 539
initialization, 532
member function, 546
overloaded, 547
move, 533
parameter
forwarding, 693, 705
member function, 544
preserves argument type information,
693
template argument deduction, 687
variable, 533

S

Sales data
compareIsbn, 387
+= (compound assignment), 564
+ (addition), 560
== (equality), 561
! = (inequality), 561
>> (input operator), 558
<< (output operator), 557
add, 261
addition program, 74
avg price, 259
bookstore program, 255
using algorithms, 406
class definition, 72, 268
combine, 259
comparelsbn, 425
with associative container, 426
constructors, 264-266
converting constructor, 295
default constructor, 262
exception classes, 783
exception version
+= (compound assignment), 784
+ (addition), 784
explicit constructor, 296
isbn, 257
operations, 254
print, 261
read, 261
relational operators, 563
Sales data.hheader, 76
Sales_item, 20
+ (addition), 22
>> (input operator), 21
<< (output operator), 21
addition program, 21, 23
bookstore program, 24
isbn, 23
operations, 20
Sales_item.hheader, 19
scientific manipulator, 757
scope, 48, 80
base class, 617
block, 48, 80, 173
class, 73, 282, 282-287, 305
static member, 302
compared to object lifetime, 204
derived class, 617
friend, 270, 281

Index

929

function, 204

global, 48, 80
inheritance, 617-621
member function, 282

parameters and return type, 283

multiple inheritance, 807

name collisions, using directive, 795

namespace, 785-790
nested class, 844
overloaded function, 234
statement, 174
template parameter, 668
template specialization, 708
using directive, 794
virtual function, 620
scoped enumeration, 832, 864
enum class, 832
Screen, 271
pos member, 272
concatenating operations, 275
do_display, 276
friends, 279
get, 273,282
get_cursor, 283
Menu function table, 840
move, 841
move members, 275
set, 275
search, 872
search n, 871
seed, random-number engine, 748
seekp, seekg, 763-768
self-assignment

array, 326
deque, 326
forward list, 326
initialization, 334-337
list, 326
list initialization, 336
members
assign, 338
back, 346
clear, 350
emplace, 345
emplace back, 345
emplace_front, 345
erase, 349
front, 346
insert, 343
pop_back, 348
pop_front, 348
push back, 132
push back, 100, 342, 545
push_front, 342
resize, 352
value type, 333
performance characteristics, 327
priority queue, 371
queue, 371
stack, 370
value initialization, 336
vector, 326

set, 420, 448

see also ordered container
bitset, 727
header, 420

copy and swap assignment, 519

copy assignment, 512

explicit check, 542

HasPtr
reference counted, 515
valuelike, 512

Message, 523

move assignment, 537

pitfalls, 512

StrVec, 528

semicolon (;), 3

class definition, 73
null statement, 172

separate compilation, 44, 80, 252

compiler options, 207
declaration vs. definition, 44
templates, 656

sequential container, 326, 373

insert, 431
iterator, 429
key_type requirements, 425
list initialization, 423
lower_ bound, 438
TextQuery class, 485
upper bound, 438
word_count program, 422
set_difference, 880
set_intersection, 647, 880
set_symmetric difference, 880
set_union, 880
setfill, manipulator, 759
setprecision, manipulator, 756
setstate, stream, 313
setw, manipulator, 758
shared ptr, 450, 450-457, 464469, 491
* (dereference), 451

930

Index

copy and assignment, 451
definition, 450
deleter, 469, 491
bound at run time, 677
derived-to-base conversion, 630
destructor, 453
dynamically allocated array, 480
exception safety, 467
factory program, 453
initialization, 464
make shared, 451
pitfalls, 469
reset, 466
StrBlob, 455
TextQuery class, 485
with new, 464
short, 33
short-circuit evaluation, 142, 169
&& (logical AND), 142
| | (logical OR), 142
not in overloaded operator, 553
ShorterString, 573
() (call operator), 573
shorterString, 224
showbase, manipulator, 755
showpoint, manipulator, 758
shrink to fit
deque, 357
string, 357
vector, 357
shuffle, 878
signed, 34, 80
char, 34
conversion to unsigned, 34, 160
out-of-range value, 35
signed type, 34
single-line (/ /), comment, 9, 26
size
container, 88, 102, 132, 340
priority queue, 371
queue, 371
returns unsigned, 88
stack, 371
StrVvec, 526
size t, 116,132,727
array subscript, 116
size type, container, 88, 102, 132, 332
SizeComp, 573
() (call operator), 573
sizeof, 156, 169
array, 157

data member, 157
sizeof. .., parameter pack, 700
skipws, manipulator, 760
sliced, 603, 650
SmallInt
+ (addition), 588
conversion operator, 580
smart pointer, 450, 491
exception safety, 467
pitfalls, 469
smatch, 729, 733, 769, 770
prefix, 736
provide context for a match, 735
suffix, 736
sort, 384, 876
source file, 4, 27
specialization, see template specialization
splice, list, 416
splice after, forward list,416
sregex_iterator, 733,770
i before e program, 734
sstream
file marker, 765
header, 310, 321
off type, 766
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763-768
ssub_match, 733, 736, 770
example, 740
stable partition, 876
stable sort, 387,876
stack, 370, 373
emplace, 371
empty, 371
equality and relational operators, 370
header, 370
initialization, 369
pop, 371
push, 371
sequential container, 370
size, 371
swap, 371
top, 371
stack unwinding, exception handling, 773,
818
standard error, 6, 27
standard header, #include, 6, 21
standard input, 6, 27
standard library, 5, 27

Index

931

standard output, 6, 27
statement, 2, 27
block, see block
break, 190, 199
compound, 173, 199
continue, 191, 199
do while, 189, 200
expression, 172, 200
for, 13, 27,185, 185-187, 200
goto, 192, 200
if,17,27,175,175-178, 200
labeled, 192, 200
null, 172, 200
range for, 91, 187, 187-189, 200
return, 222, 222-228
scope, 174
switch, 178, 178-182, 200
while, 11, 28, 183, 183-185, 200
statement label, 192
static (file static), 792, 817
static member
Account, 301
class template, 667
accessed through an instantiation,
667
definition, 667
const data member, initialization,
302
data member, 300
definition, 302
default argument, 304
definition, 302
inheritance, 599
instantiation, 667
member function, 301
nested class, 845
scope, 302
static object, local, 205, 252
static type, 601, 650
determines name lookup, 617, 619
multiple inheritance, 806
static type checking, 46
static_cast, 163, 163
Ivalue to rvalue, 691
std, 7, 28
std: :forward, see forward
std: :move, see move
stdexcept header, 194, 197
stod, 368
stof, 368
stoi, 368

stol, 368
stold, 368
stoll, 368
store, free, 450, 491
stoul, 368
stoull, 368
str, string streams, 323
StrBlob, 456
back, 457
begin, 475
check, 457
constructor, 456
end, 475
front, 457
pop_back, 457
shared ptr, 455
StrBlobPtr, 474
++ (increment), 566
- - (decrement), 566
x (dereference), 569
-> (arrow operator), 569
check, 474
constructor, 474
deref, 475
incr, 475
weak ptr, 474
strcat, 123
strcmp, 123
strcpy, 123
stream
as condition, 15, 162, 312
clear, 313
explicit conversion to bool, 583
file marker, 765
flushing buffer, 314
format state, 753
istream iterator, 403
iterator, 401, 403406, 418
type requirements, 406
not flushed if program crashes, 315
ostream iterator, 403
random IO, 765
rdstate, 313
setstate, 313
strict weak ordering, 425, 448
string, 80, 84-93, 132
see also container
see also sequential container
see also iterator
[1 (subscript), 93,132, 347
+= (compound assignment), 89

932

Index

+ (addition), 89
>> (input operator), 85, 132
>> (input operator) as condition, 86
<< (output operator), 85, 132
and string literal, 89-90
append, 362
assign, 362
at, 348
C-style string, 124
c_str,124
capacity, 356
case sensitive, 365
compare, 366
concatenation, 89
default initialization, 44
difference type, 112
equality and relational operators, 88
erase, 362
find, 364
find first not_ of, 365
find last not_of, 366
find last_ of, 366
getline, 87,321
header, 74, 76, 84
initialization, 84-85, 360-361
initialization from string literal, 84
insert, 362
move constructor, 529
numeric conversions, 367
random-access iterator, 412
replace, 362
reserve, 356
rfind, 366
subscript range, 95
substr, 361
TextQuery class, 485
string literal, 7, 28, 39
see also C-style string
and string, 89-90
concatenation, 39
stringstream, 321, 321-323, 324
initialization, 321
strlen, 122
struct
see also class
default access specifier, 268
default inheritance specifier, 616
StrvVec, 525
[1 (subscript), 565

= (assignment), initializer list,

563

alloc_n_copy, 527
begin, 526
capacity, 526
chk n alloc, 526
copy assignment, 528
copy constructor, 528
default constructor, 526
design, 525
destructor, 528
emplace back, 704
end, 526
free, 528
memory allocation strategy, 525
move assignment, 536
move constructor, 535
push_back, 527
move-enabled, 545
reallocate, 530
move iterator version, 543
size, 526
subexpression, 770
subscript range, 93
array, 116
string, 95
validating, 104
vector, 105
substr, string, 361
suffix, smatch, 736
sum, program, 682
swap, 516
array, 339
container, 339
container nonmember version, 339
copy and swap assignment operator,
518
priority queue, 371
queue, 371
stack, 371
typical implementation, 517-518
swap program, 223
swap_ranges, 875
switch statement, 178, 178-182, 200
default case label, 181
break, 179-181, 190
compared to 1f, 178
execution flow, 180
variable definition, 182
syntax option type, regex, 730
synthesized
copy assignment, 500, 550
copy constructor, 497, 550

Index

933

copy control, 267
as deleted function, 508
as deleted in derived class, 624
Bulk_guote, 623
multiple inheritance, 805
virtual base class, 815
virtual base classes, 815
volatile, 857
default constructor, 263, 306
derived class, 623
members of built-in type, 263
destructor, 503, 550
move operations
deleted function, 538
not always defined, 538

T

\ 't (tab character), 39
tellp, tellg,763-768
template
see also class template
see also function template
see also instantiation
declaration, 669
link time errors, 657
overview, 652
parameter, see template parameter
parameter list, 714
template argument, 653, 714
explicit, 660, 713
template member, see member tem-
plate
type alias, 666
type transformation templates, 684,
714
type-dependencies, 658
variadic, see variadic template
template argument deduction, 678, 714
compare, 680
explicit template argument, 682
function pointer, 686
limited conversions, 679
low-level const, 693
Ivalue reference parameter, 687
multiple function parameters, 680

parameter with nontemplate type, 680

reference parameters, 687689
rvalue reference parameter, 687
top-level const, 679

template class, see class template

template function, see function template
template parameter, 653, 714
default template argument, 670
class template, 671
function template, 671
name, 668
restrictions on use, 669
nontype parameter, 654, 714
must be constant expression, 655
type requirements, 655
scope, 668
template argument deduction, 680
type parameter, 654, 654, 714
as friend, 666
used in template class, 660
template parameter pack, 699, 714
expansion, 703
pattern, 703
template specialization, 707, 706-712, 714
class template, 709-712
class template member, 711
compare function template, 706
compared to overloading, 708
declaration dependencies, 708
function template, 707
hash<key_ types>, 709, 788
headers, 708
of namespace member, 709, 788
partial, class template, 711, 714
scope, 708
template<s, 707
template<>
default template argument, 671
template specialization, 707
temporary, 62, 80
terminate function, 773, 818
exception handling, 196, 200
machine-dependent, 196
terminology
const reference, 61
iterator, 109
object, 42
overloaded new and delete, 822
test, bitset, 727
TextQuery, 485
class definition, 487
constructor, 488
main program, 486
program design, 485
query, 489
revisited, 635

934

Index

this pointer, 257, 306
static members, 301
as argument, 266
in return, 260
overloaded
on const, 276
on lvalue or rvalue reference, 546
throw, 193, 193, 200, 772, 818
execution flow, 196, 773
pointer to local object, 774
rethrow, 776, 818
runtime_error, 194
throw (), exception specification, 780
tie member, ostream, 315
to_string, 368
Token, 849
assignment operators, 850
copy control, 851
copyUnion, 851
default constructor, 850
discriminant, 850
tolower, 92
top
priority queue, 371
stack, 371
top-level const, 64, 80
and auto, 69
argument and parameter, 212
decltype, 71
parameter, 232
template argument deduction, 679
toupper, 92
ToyAnimal, virtual base class, 815
trailing return type, 229, 252
function template, 684
lambda expression, 396
pointer to array, 229
pointer to function, 250
transform
algorithm, 396, 874
program, 442
translation unit, 4
trunc (file mode), 319
try block, 193, 194, 200, 773, 818
tuple, 718, 770
findBook, program, 721
equality and relational operators, 720
header, 718
initialization, 718
make tuple, 718
return value, 721

value initialization, 718
type
alias, 67, 80
template, 666
alias declaration, 68
arithmetic, 32, 78
built-in, 2, 26, 32-34
checking, 46, 80
argument and parameter, 203
array reference parameter, 217
function return value, 223
name lookup, 235
class, 19, 26
compound, 50, 50-58, 78
conversion, see conversion
dynamic, 601, 650
incomplete, 279, 306
integral, 32, 79
literal, 66
class type, 299
specifier, 41, 80
static, 601, 650
type alias declaration, 68, 78, 80
pointer, to array, 229
pointer to function, 249
pointer to member, 839
template type, 666
type independence, algorithms, 377
type member, class, 271
type parameter, see template parameter
type transformation templates, 684, 714
type_ traits, 685
type info, 864
header, 197
name, 831
no copy or assign, 831
operations, 831
returned from typeid, 827
type traits
header, 684
remove pointer, 685
remove_reference, 684
and move, 691
type transformation templates, 685
typedef, 67, 80
const, 68
and pointer, to const, 68
pointer, to array, 229
pointer to function, 249
typeid operator, 826, 827, 864
returns type info, 827

Index

typeinfo header, 826, 827, 831
typename
compared to class, 654
required for type member, 670
template parameter, 654

U

unary operators, 134, 169
overloaded operator, 552
unary predicate, 386, 418
unary_ function deprecated, 579
uncaught exception, 773
undefined behavior, 35, 80
base class destructor not virtual, 622
bitwise operators and signed values,
153
caching end () iterator, 355
cstring functions, 122
dangling pointer, 463
default initialized members of built-
in type, 263
delete of invalid pointer, 460
destination sequence too small, 382
element access empty container, 346
invalidated iterator, 107, 353
missing return statement, 224
misuse of smart pointer get, 466
omitting [] when deleting array, 479
operand order of evaluation, 138, 149
out-of-range subscript, 93
out-of-range value assigned to signed
type, 35
overflow and underflow, 140
pointer casts, 163
pointer comparisons, 123
return reference or pointer to local
variable, 225
stringinvalid initializer, 361
uninitialized
dynamic object, 458
local variable, 205
pointer, 54
variable, 45
using unconstructed memory, 482
using unmatched match object, 737
writing to a const object, 163
wrong deleter with smart pointer, 480
underflow error, 197
unformatted 10, 761, 770
istream, 761

multi-byte, istream, 763
single-byte, istream, 761
unget, istream, 761
uniform int distribution,746
uniform real distribution,750
uninitialized, 8, 28, 44, 80
pointer, undefined behavior, 54
variable, undefined behavior, 45
uninitialized copy, 483
move iterator, 543
uninitialized £ill,483
union, 847, 864
anonymous, 848, 862
class type member, 848
assignment operators, 850
copy control, 851
default constructor, 850
deleted copy control, 849
placement new, 851
definition, 848
discriminant, 850
restrictions, 847
unique, 384, 878
list and forward list,415
unique copy, 403, 878
unique ptr, 450, 470472, 491
x (dereference), 451
copy and assignment, 470
definition, 470, 472
deleter, 472, 491
bound at compile time, 678
dynamically allocated array, 479
initialization, 470
pitfalls, 469
release, 470
reset, 470
return value, 471
transfer ownership, 470
with new, 470
unitbuf, manipulator, 315
unnamed namespace, 791, 8§18
local to file, 791
replace file static, 792
unordered container, 443, 448
see also container
see also associative container
bucket management, 444
hash<key types> specialization, 709,
788
compatible with == (equality), 710
key_type requirements, 445

936

Index

override default hash, 446
unordered map, 448

see also unordered container

* (dereference), 429

[1 (subscript), 435, 448

adds element, 435

at, 435

definition, 423

header, 420

list initialization, 423

word_count program, 444
unordered multimap, 448

see also unordered container

* (dereference), 429

definition, 423

has no subscript operator, 435

insert, 433

list initialization, 423
unordered multiset, 448

see also unordered container

insert, 433

iterator, 429

list initialization, 423

override default hash, 446
unordered_set, 448

see also unordered container

header, 420

iterator, 429

list initialization, 423
unscoped enumeration, 832, §64

as union discriminant, 850

conversion to integer, 834

enum, 832
unsigned, 34, 80

char, 34

conversion, 36

conversion from signed, 34

conversion to signed, 160

literal (numU or numu), 41

size return type, 88
unsigned type, 34
unwinding, stack, 773, 8§18
upper_bound

algorithm, 873

ordered container, 438

used in Basket, 632
uppercase, manipulator, 755
use count, see reference count

user-defined conversion, see class type con-

version
user-defined header, 76-77

const and constexpr, 76
default argument, 238
function declaration, 207
#include, 21
inline function, 240
inline member function definition,
273
template definition, 656
template specialization, 708
using =, see type alias declaration
using declaration, 82, 132, 793, 818
access control, 615
not in header files, 83
overloaded function, 800
overloaded inherited functions, 621
scope, 793
using directive, 793, 818
overloaded function, 801
pitfalls, 795
scope, 793, 794
name collisions, 795
utility header, 426, 530, 533, 694

\%

valid, program, 740
valid but unspecified, 537
valid pointer, 52
value initialization, 98, 132
dynamically allocated, object, 459
map subscript operator, 435
new[], 478
resize, 352
sequential container, 336
tuple, 718
uses default constructor, 293
vector, 98
value type
associative container, 428, 448
sequential container, 333
valuelike class, copy control, 512
varargs, 222
variable, 8, 28, 41, 4149, 80
const, 59
constexpr, 66
declaration, 45
class type, 294
define before use, 46
defined after label, 182, 192
definition, 41, 45
extern, 45

Index

937

extern and const, 60
initialization, 42, 43, 79
is lvalue, 533
lifetime, 204
local, 204, 252
preprocessor, 79
variadic template, 699, 714
declaration dependencies, 702
forwarding, 704
usage pattern, 706
function matching, 702
pack expansion, 702-704
parameter pack, 699
print program, 701
recursive function, 701
sizeof...,700
vector, 96-105, 132, 373
see also container
see also sequential container
see also iterator
[1 (subscript), 103, 132, 347
= (assignment), list initialization, 145
at, 348
capacity, 356
capacity program, 357
definition, 97
difference type, 112
erase, changes container size, 385
header, 96, 329
initialization, 97-101, 334-337
initialization from array, 125
list initialization, 98, 336
memory management, 355
overview, 326
push_back, invalidates iterator, 354
random-access iterator, 412
reserve, 356
subscript range, 105
TextQuery class, 485
value initialization, 98, 336
viable function, 243, 252
see also function matching
virtual base class, 811, 818
ambiguities, 812
Bear, 812
class derivation list, 812
conversion, 812
derived class constructor, 813
iostream, 810
name lookup, 812
order of destruction, 815

order of initialization, 814
ostream, 810
Raccoon, 812
ToyAnimal, 815
ZooAnimal, 811
virtual function, 592, 595, 603-610, 650
compared to run-time type identifi-
cation, 829
default argument, 607
derived class, 596
destructor, 622
exception specification, 781
final specifier, 607
in constructor, destructor, 627
multiple inheritance, 807
overloaded function, 621
override, 595, 650
override specifier, 593, 596, 606
overriding run-time binding, 607
overview, 595
pure, 609
resolved at run time, 604, 605
return type, 606
scope, 620
type-sensitive equality, 829
virtual inheritance, see virtual base class
Visual Studio, 5
void, 32, 80
return type, 223
voidx, 56, 80
conversion from pointer, 161
volatile, 856, 864
pointer, 856
synthesized copy-control members,
857
vowel counting, program, 179

W

wcerr, 311

wchar t,33
literal, 40

wchar t streams, 311

wcin, 311

wcout, 311

weak ordering, strict, 448

weak ptr, 450, 473475, 491
definition, 473
initialization, 473
lock, 473
StrBlobPtr, 474

938 Index

wfstream, 311
what, exception, 195, 782
while statement, 11, 28, 183, 183185, 200
condition, 12, 183
wide character streams, 311
wifstream, 311
window, console, 6
Window mgr, 279
wiostream, 311
wistream, 311
wistringstream, 311
wofstream, 311
word, 33, 80
word_count program
map, 421
set, 422
unordered map, 444
word_transformprogram, 441
WordQuery, 637, 642
wostream, 311
wostringstream, 311
wregex, 733
write, ostream, 763
wstringstream, 311

X

\Xnnn (hexadecimal escape sequence), 39

zZ

ZooAnimal
program, 802
virtual base class, 811

This page intentionally left blank

Take the Next Step to Mastering C++

R S (e Templates STL Tutoral and |)|.UL,I:.:“5|::“g
deference Guide, Language
S Ldilion™ LESLAL L
C++ Programs with the
Sta ate Libeary

iriel R e e
M

FProgramming
g LEd

Bjarne Stroustrup
The Creator of (e

978-0-321-54372-1 978-0-321-62321-8

978-0-321-70212-8 978-0-201-70073-2

livelessons® Cot+ for Programmers Standard Library C?Efnd the
- o o Standard Library
C++ A Ietrodisttian to Boost
Fundamentals > X
land Il > " STANDARD
*;q. LAY
¢ 4 EXTENSIONS
g I S T —
Video Nicolai M. Josuttis FETE BEGCKER

978-0-13-704483-2 978-0-13-700130-9 978-0-201-37926-6 978-0-321-41299-7

Effective (+ More Effective (++ Fiffective STL
Third Filit jom 35 New Ways e 50 Specific War wlmwo; Cis
Ghes COMMON

Seo Meyeny

-

978-0-321-33487-9 978-0-201-63371-9

KNOWLEDGE

Exceptional C++ StyIL Exceptional(++

Herb Sutter

978-0-201-76042-2 978-0-201-61562-3 978-0-201-70434-1 978-0-201-70431-0 978-0-201-70353-5

vAy -84 informiT Fpr. more in.formation on these titles
Addison ©® visit informit.com

PRENTICE

Wesley ~HaLL Safa ri

Books Online

A
\A 4
Addison
Wesley

[REGISTER

THIS PRODUCT

Register the Addison-Wesley, Exam Registering your products can unlock
Cram, Prentice Hall, Que, and the following benefits:

Sams products you own to unlock ® Access to supplemental content,
great benefits. including bonus chapters,

source code, or project files.
* A coupon to be used on your
next purchase.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter Registration benefits vary by product.
the 10- or 13-digit ISBN that appears Benefits will be listed on your Account
on the back cover of your product. page under Registered Products.

/ N\

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

informit.com

THE TRUSTED TECHNOLOGY LEARNING SOURCE

SAFARI BOOKS ONLINE

In'nrm -com THE TRUSTED TECHNOLOGY LEARNING SOURCE

InformIT is a brand of Pearson and the online presence
e for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from
the tech community.

#Addison-Wesley Cisco Press ExaM/CRAM IBM e 33 PRENTICE g4MS | Safari®

Press.

LearniT at InformIT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

e |earn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

e Access FREE podcasts from experts at informit.com/podcasts.

e Read the latest author articles and sample chapters at
informit.com/articles.

e Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

e Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

—
1ou
.

In'nrmIT-com THE TRUSTED TECHNOLOGY LEARNING SOURCE

vAddison-Wesley Cisco Press ExAMCRAM 1BM gue 3 FRENTICE §AMS | Safari®

Press. —+ ¢e HALL &S T T e

Try Safari Books Online FREE for 15 days

Get online access to Thousands of Books and Videos

W livelessons®

C# 2010

Fundamentals
I, I, and Il

C
Video Mentor '

Paul 1, Deitel

JABON MoT. BMITH
e o vty Bt

video

**> FREE 15-DAY TRIAL + 15% OFF

Safari

e informit.com/safaritrial

Feed your brain

Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE'S MORE!

Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project

Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for first
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

	Contents
	Preface
	Chapter 12 Dynamic Memory
	12.1 Dynamic Memory and Smart Pointers
	12.2 Dynamic Arrays
	12.3 Using the Library: A Text-Query Program
	Chapter Summary
	Defined Terms

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

