LEAN-AGILE ACCEPTANCE
TEST-DRIVEN DEVELOPMENT

Better Software Through Collaboration

-
Neyiectives KEN PUGH

Lean-Agile Series

Praise for Lean-Agile Acceptance Test-Driven
Development

“Lean-Agile Acceptance Test-Driven Development tells a tale about three fic-
tive project stakeholders as they use agile techniques to plan and execute their
project. The format works well for the book; this book is easy to read, easy to
understand, and easy to apply.”

—Johannes Brodwall, Chief Scientist, Steria Norway

“Agile development, some say, is all about pairing, and, yes, ’'m a believer in
the power of pairing. After reading this book, however, I became a fan of the
‘triad’—the customer or business analyst + the developer + the tester, who work
collaboratively on acceptance tests to drive software development. I’ve writ-
ten some patterns for customer interaction and some patterns for testing and I
like what Ken Pugh has chosen to share with his readers in this down-to-earth,
easy-to-read book. It’s a book full of stories, real case studies, and his own good
experience. Wisdom worth reading!”
—Linda Rising, Coauthor of Fearless Change:
Patterns for Introducing New Ideas

“The Agile Manifesto, Extreme Programming, User Stories, and Test-Driven
Development have enabled tremendous gains in software development; how-
ever, they’re not enough. The question now becomes ‘How can I ensure clear
requirements, correct implementation, complete test coverage, and more impor-
tantly, customer satisfaction and acceptance?’ The missing link is acceptance as
defined by the customer in their own domain language. Lean-Agile Acceptance
Test-Driven Development is the answer.”

—Bob Bogetti, Lead Systems Designer, Baxter Healthcare

“Ken Pugh’s Lean-Agile Acceptance Test-Driven Development shows you how
to integrate essential requirements thinking, user acceptance tests and sounds,
and lean-agile practices, so you can deliver product requirements correctly and
efficiently. Ken’s book shows you how table-driven specification, intertwined
with requirements modeling, drives out acceptance criteria. Lean-Agile Accept-
ance Test-Driven Development is an essential guide for lean-agile team mem-
bers to define clear, unambiguous requirements while also validating needs with
acceptance tests.”
—Ellen Gottesdiener, EBG Consulting, www.ebgconsulting.com,
Author of Requirements by Collaboration and
The Software Requirements Memory Jogger

www.ebgconsulting.com

“If you are serious about giving Agile Testing a chance and only have time to
read one book, read this one.”
—David Vydra, btip://testdriven.com

“This book provides clear, straightforward guidance on how to use business-
facing tests to drive software development. 'm excited about the excellent
information in this book. It’s a great combination of the author’s experiences,
references to other experts and research, and an example project that covers
many angles of ATDD. A wide range of readers will learn a lot that they can put
to use, whether they work on projects that call themselves lean or agile or simply
want to deliver the best possible software product.”

—Lisa Crispin, Agile Tester, ePlan Services, Inc., Author of Agile Testing

http://testdriven.com

Lean-Agile Acceptance
Test-Driven Development

This page intentionally left blank

Lean-Agile
Acceptance
Test-Driven

Development

Better Software Through
Collaboration

Ken Pugh

vvAddison-Wesley

Upper Saddle River, NJ ® Boston ® Indianapolis ® San Francisco
New York ® Toronto ® Montreal ® London ® Munich e Paris ® Madrid

Capetown ® Sydney ® Tokyo ® Singapore ® Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Pugh, Kenneth.

Lean-agile acceptance test driven development : better software through
collaboration / Ken Pugh.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-321-71408-4 (pbk. : alk. paper)

ISBN-10: 0-321-71408-3 (pbk. : alk. paper) 1. Agile software development.
2. Computer software--Testing. 3. Computer software—Quality control.
4. Cooperation. I Title.

QA76.76.D47P837 2011

005.1°4--dc22

2010042906

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

ISBN-13: 978-0-321-71408-4
ISBN-10: 0-321-71408-3

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.
First printing December 2010

Editor-in-Chief
Karen Gettman

Executive Editor
Chris Guzikowski

Senior Development Editor
Chris Zahn

Managing Editor

Kristy Hart

Project Editor

Jovana San Nicolas-Shirley
Copy Editor

Karen Gill

Indexer

Cheryl Lenser

Proofreader

Sheri Cain

Editorial Assistant

Raina Chrobak

Cover Designer
Alan Clements

Compositor
Nonie Ratcliff

I’d like to dedicate this book to three people.
My brother Bob inspired me to become an engineer.
[recall one time when he was home from college and presented me
with the N-body problem [WikiOl] and the four color map problem
[WikiO2]. My high school science teacher, Mr. Sanderson, spurred
me on to explore topics such as why there is air. My mechanical
engineering professor at Duke, Dr. George Pearsall, encouraged
exploration. In his strength of materials class, I discovered
why my guitar strings broke. To each of them, I give thanks.

This page intentionally left blank

Contents

INtroduction . .o v vttt ettt i e e et et et e 1

Part I: The Tale

Chapter 1: Prologuecovitiritniein it inereeeeannannenns 9
Ways to Develop Software.ty 9

One Way. ...t e e 9

Another Way.o e 9

The Difference.ot 10

The Importance of Acceptance Tests . ..o v v v inenevenenn. 10

System and Team Introduction i, 12

The Systemttt e e e e 12

The People. . oo v i e e e 13

SUMMArY . .ot e e 14
Chapter 2: Leanand Agileot innrneneannnnns 15
The Triad and Its Units oot et i e e e e e eeans 15
Post-Implementation Tests. vot vt v 17

Quick Feedback Better Than Slow Feedback.................. 18
Preimplementation Testsovuvtntn i 19

Lean and Agile Principles.o v i 20
SUMMArY . .o e e 21
Chapter 3: Testing Strategyo ovv v verrnrrnrsnnsnnsensensnnss 23
Types Of TeStS « v vttt ettt e et e et 23

Where Tests Runo e 25

Test Facets. . ..ot e e 26
Control and Observation Pointsc.co.... 27

New Test Is a New Requirement. 27

SUMMATY . .ottt e ettt 28

X

LEAN-AGILE ACCEPTANCE TEST-DRIVEN DEVELOPMENT

Chapter 4: An Introductory Acceptance Test......oovvvereerenrnnn. 29
A Sample Business Rule.o it 29
Implementing the Acceptance Testscvvvviineennenn.n. 31

Test Script. . oo v e e 32
Test User Interfaceovvvntnv i, 33
XUNIt Test. o vt e 34
Automated Acceptance Testcoviriiinnnnan... 35
An Overall Test. .o vvvv v e it e e 36
Testing Process. . .. ov vttt e e 37
SUMMATY . .ottt e ettt 37

Chapter 5: The Example Projectvvvvitinrnnnneeennnnn. 39

The Charter . oo v vttt e et et et et eaaa 39
ObJeCtiVES o v v vt ettt et e e 40
Project Acceptance Tests......... ..., 41

High-Level Requirements.vvvvtntnr i innnennnnns 43
Features. 43
Feature Acceptance Criteriacoviueenn... 45

SUMMArY . .ot e e e e 46

Chapter 6: The User Story Techniquecoiieiein... 47
SEOTIES .« ettt et e e e e 47

Features into Storiesttt 48
Roles. .o e 49
Role Attributes 49
Persona 50
Stories for Rolesovii it 51
Story Acceptance Criteriao v v v nneennneennn.. 52
Acceptance Tests Determine Size. 53
Customer Termsouuii it 54

INVEST Criteria .. ovvut vt ittt ieiieeeieeeaeenn 55

SUMMATY .« ottt ettt e ettt ettt e ie e 56

Chapter 7: Collaborating on Scenarios.c.oeeeeeeeeeeeenennss 57

Use Cases from User Stories. ovvv v nnnninennn. 57
Simple Use Case . ..ottt ee e 59
Exceptions and Alternativesccov... .. 60
Acceptance Tests. . .ot i ittt 63

Documentationcv ittt e 63

CONTENTS

Story Map . ..o e 63
Conceptual Flowo e 65
COMMUNICALION « + v ot v vttt et ettt e et eieeeeee e 66
SUMMArY . .o e e 68
Chapter 8: Test ANAtOMY. . ot vt vr v enenennrnenennensneneanensns 69
Triad Creates Tests .. v vttt ettt e et e et e eeann 69

Test CONEXE « v vt e ettt ettt e e et e et et eaeen 70

Test SErUCTUIE. + v v v vttt e e e ettt e e e 71
Calculation Table i 73

DataTableo i 74

ActionTable....... i i 75

Tests with Example Values 76
Requirements Revised i, 77

Acceptance Test Revised, 78

Test with Values in TeXto vttt 79

When and Where Tests Are Runooiiininn ... 80
SUMMArY . .ot e 81
Chapter 9: Scenario TestS. . oo vvereneneneenrnenennensneneenanens 83
Tests for Exception Scenarios.o vvvt v ininennenenenn.. 83

Tests for Business Rules.ot inin it 87
Cross-Story ISsuest 88

Don’t Automate Everything. 89
Multi-Level Tests . .o vuv vttt e en 90

User Interface Tests oot e e e eaan 93

Check the Objectives . . .o vt i i e e e 93
SUMMArY . .o e e 94
Chapter 10: User Story Breakupcouviiinnrnrneennnnns 95
Acceptance Tests Help Break Up Stories 95
Business Rule Testsvvt vttt ieeenn 96

A Story with a Business Rule. 100
SUMMATY . .ottt e e e ettt e e e 101
Chapter 11: System Boundaryc.oiiiiiiinnennnnnnnns 103
External Interfaces.oviiti i it 103

More Details . . oo oo i 107

Xii LEAN-AGILE ACCEPTANCE TEST-DRIVEN DEVELOPMENT

External Interface Tests ovvev it 108
Component Tests ..o vvu ettt ee e, 108

Test Doubles and Mocks.o ... 111
WhatIs Real?. o i i e e 112
Story Map of ACHVILIES .. v v vt e ettt e e 113
SUMMArY ..o e 114
Chapter 12: Development Review, 115
The Restof the Story.t 115
Usability Testing vvvitnie et 116
Separating State from Display. 116
Quality Attribute Tests vviiii it 118
Workflow Tests. . oo vvt ittt e e e 119
Deployment Plansttt 120
From Charter to Deliverable 120
SUMMATY . .ttt e e ettt 121

Part II: Details

Chapter 13: Simplification by Separation............... .. c.cuvu.. 125
Complex Business Rules., 125
Simplify by Separating. i 126

The Simplified Rule. 128

Rental History oo oot et e e 128
SUMMArY . .o et e 130
Chapter 14: Separate View from Model.......................... 131
Decouple the User Interface., 131
Decoupling Simplifies Testingcovienenennenenenen.. 136
SUMMArY . .. 136
Chapter 15: Events, Responses, and States.ccoveven.... 137
Eventsand an Event Table. 137

States and State Transitions.c.ouevuvnenennnnon.. 139
Internal State or External Response. 142
Transient or Persistent States.covvvinnnnn.. 144

A Zen QUESTION. « v v v vttt it e e e e 144

SUMMATY . .ottt ettt e e e 144

CONTENTS
Chapter 16: Developer Acceptance Tests vvvvenneenennennennn 145
Component Acceptance Testsc.uuteineennneennn. 145
Field Display Tests ... ovvvinni i 145
Tabular Display Testso viiii e 147
SUMMAry . ..o e e 151
Chapter 17: Decouple with Interfaces 153
Tests for a Service Provider i i 153
TheInterface.t 153
Quality Attribute Testso vvvii it 155
Comparing Implementations.ccovvn... 155
Separating User Interface from Service...................... 157
Separation of COncerns.ovvvvenrvenennenenn. 158
Reusable Business Rules. o L., 158
SUMMATY . .ot e e ettt e 159
Chapter 18: Entities and Relationships.coviiena.., 161
Relationshipso vo v e e e 161
Entities and Relationships.......................... 161
Multiple Relationships, 163
Alternative Representations.ovuvvrene.n.. 166
SUMMATY . .o e e ettt e e 166
Chapter 19: Triads for Large Systemsccoviiieinennennennn 167
Large Systems. . . .o viu ettt e e 167
When a Customer Test May Not Be Required. 169
Data Conversionvuu ittt eeennnnneeen.. 170
Database Conversions.cuvueeeenenenenen... 170
What If There Are No Tests?. ... oovvivinninnnnnenn.. 170
Legacy Systemsottt 172
SUMMArY ..ot e e 173

Part III: General Issues
Chapter 20: Business Capabilities, Rules, and Value 177
Business Capabilitiesovvtvt it 177
Scenario Handling i 178

Business Rules Exposed i, 179

xiil

Xiv LEAN-AGILE ACCEPTANCE TEST-DRIVEN DEVELOPMENT

A Different Business Value. 179
SUMMATY . .o e ettt 181
Chapter 21: Test Presentationccoueeueenennenneenennenns 183
Customer Understood Tables.o, 183
Table Versus Text .. .ovvt it 185
Specifying Multiple Actions, 185
Complex Data . oo vttt et e e e 187
Custom Table Formst 188
SUMMATY . .ot e e ettt e 189
Chapter 22: TestEvaluation.ccuiiuiininnnnennennenns 191
Test Facets . ..o vt n i e e e 191
Understandable to Customersc.covvne.... 191

Spell Checked 192
Idempotent ..o oot ve it e 192
NotFragile i 192

Test Sequence. . ..ottt e e e 193
Workflow Tests. . .o in ittt eeeen s 193

Test Conditions . .o vt ti ittt et ettt 194
Separation of Concerns.uveieeneennennn.. 194
TestFailure.o i 195

Test Redundancy. i, 196

No Implementation Issues vovvnt i, 197
Points to Remember. i 197
SUMMATY . .ot ettt e e 198
Chapter 23: Using Tests for Other Things..............ccovvue.n. 199
Uses of Acceptance Tests . v v v vt vvvetnneieineenenennnn. 199
Degree of Doneness.vvvvniininnnnnnan.. 199
Estimation Aidt 200
Breaking Down Storieso, 200
Developer Stories. . ..o vt ni i e 200
Testsasa Bug Report i 201
Root Cause Analysis.oviininnvivnennnnnn.. 201
Production Bugsot 202
Regression Testing.oiiiinnnnnee... 202

SUMMArY . .ot e e 202

CONTENTS

Chapter 24: Context and Domain Languagec..cvuvnn. 205
Ubiquitous Languageo vt vi et e i e 205

Two DOmainsuviinii ittt et e 207
SUMMATY . .o e e ettt e e 208
Chapter 25: Retrospective and Perspective.covvvvtenennennennn 209
Recap. ... 209

The Process . . .ov v i e 210

Testing Layers.ot 210

The Tests. o oot vttt e et e e e e 211
CommUNICAtION. « v v vttt ettt e e et e e e 212

What’sthe Block? 212

Monad e 212

Unavailable Customer. iiiino... 213

Change .. .ovvi i e e 213

RisSKkS . . e e 214

Benefits e 214
SUMMATY . .ttt e ettt e e 215

Chapter 26: Case Study: Retirement Contributions 219
COMNLEXE &« v vttt ettt et e e et et 219
The Main Course Test. ..o vtn ittt 220

SetUD .« e e e 220
Event. e 221
Expected oot e 221
Implementation Issues. 222
Separation of Concerns.ovvevuvenennnnen.. 222
Business Value Trackingo i, 223
One EXcCeptionttt e 223
Event. e 223
Expected . ..o ot e 224
Another Exception. ottt e e 225
Event. e 225

b.4%

xvi LEAN-AGILE ACCEPTANCE TEST-DRIVEN DEVELOPMENT

Two Simultaneous Exceptionsovivin ... 226

Event. ... e 226

Expected ..o oo 227

The Big Picture. . ..ot v it et e e e e 227

Event Table i e 228

State Transition Table, 228
SUMMArY . .o et e 230
Chapter 27: Case Study: Signal Processing.c.ovveevennennn 231
IPsTooLoud. . ..ottt e e 231

Sound Levels o 231
Developer Tests . v oot vttt ettt et 233
SUMMArY . . oo e 233
Chapter 28: Case Study: A Library Print Server.................... 235
The Context. . oo v vttt e e et 235

A Workflow Test. ..o vu ittt 236
SUMMArY ..ot e 241
Chapter 29: Case Study: Highly Available Platform................. 243
Context for Switching Servers 243

Test for Switching Serversttt 244

Test for Technical Rule 246
SUMMATY . .o e ettt 248

Part V: Technical Topics

Chapter 30: How Does What You Do Fit with ATDD? 251
Test Platformst 251
Internal Design from Tests.ouvenenin .. 252
Device Testing . .« v v vttt ettt ettt et e e 254
Starting with User Interfaces 255
Black Box TeSting ..o vvvvvnte et ieiee e eeieenenns 255
Unit Testing . o v oot e vttt ettt ettt et enees 256
SUMMATY . .ot e e e ettt 256

Chapter 31: TeSt SetUP. . v vt v v e ee e e enneeneeneeneenennenns 257
A Common Setup. « v v oottt e 257

Some Amelioration.t 259

CONTENTS
Test Order . ..o e 260
Persistent Storage Issues. 260
SUMMArY ..ot e e 261
Chapter 32: Case Study: E-Mail Addresses.ccvvevneennnn. 263
COMtEXE .« o vttt et e e 263
Breaking Down Tests. oottt ii i iii e 264
Local-Part Validation, 265
Domain Testsvtinin i 266
Disallowed Domain Testscoiieennenn ... 268
Test to Ensure Connectionc.coueinne... 269
Verification Testot 269
SUMMATY . .ttt e ettt e e 270

Part VI: Appendices
Appendix A: Other Issues. vvvtirnninnernenreneneneannns 273
COMNLEXE .« v vttt ettt e et e et e e e 273
Customer Examples.ttt 274
Fuzzy Acceptance Tests. ovnivnnnnnennn. 274
Acceptance Test Detail 275
Requirements and Acceptance Tests.vovvvvnevnennn . 275
Documenting Requirements and Tests 276
Decoupling Requirementscoviirenn ... 276
Separation of Issues.o ii it i 276
Testing Systems with Random Events 277
The Power of Three.ottt 277
SUMMArY . .o et e 278
Appendix B: Estimating Business Value cooviian.. 279
Business Valuettt 279
Developer Stories . .. vt n it e 281
SUMMArY . .. e e 282
Appendix C: Test Framework Examples ooo... 283
The Examples. . .. oot et 283
Fit Implementation.vtii it i 284
SetUD .« e 284

xvii

xviii LEAN-AGILE ACCEPTANCE TEST-DRIVEN DEVELOPMENT

Check-In . .. oo 286
Category-Based Rental Fees 287
Slim—Table Style.ot 288
Header i 288

SetUD . o e e 288
Check-Out CD .. .vtt e 288
Check-In . .. oo 290
Category-Based Rental Fees 291
Slim—Cucumber Style 291
SetUp . e 291
Check-Out CD ..ot 292
Check-In CD .ottt e 292
Scenario Library 292
Category-Based Rental Fees 294
RODOt. oot 295
SetUp .« e 295
Check-Out CD ..ot 295
Check-In CD .o vttt 296
Category-Based Rental Fees 296
Cucumber e 296
Check-Out CD ..ottt e 297
Check-In CD . ..o e 297
Category-Based Rental Fees 297

Test Frameworkso i 298
SUMMArY . .. e e 298
Appendix D: Tables Everywherec0iiiiiiienenennn.. 299
User Interface Tests with Tables 299
Requirement Tables..........o i i i i, 301
Another Table. i 302
Quality Attribute Requirements.ououu... 303
DataTablesot e 304

SUMMArY . .. e e 304

CONTENTS

Appendix E: Money with ATDD iiiiiiiniiiiieiiiinennnn 305
The COoMtEXt. v vt vt e ettt et ettt 305

The Original Tests . .o v vttt it it e e 306

The Acceptance Test Approach 307
SUMMAry . ..o e e 310
Appendix F: EXEICiSes . vvvvvvntenennennenneeneeneeneenennenns 311
Calculator ... oot e e 311

Create Some Tests. . oo vt e it e i 313

More EXercises. . .. cvv v e e 313
Sam’sCDRental...........0 ... 314

Triangle.o 314

File Copying Exerciseovvivninnnnn.. 314

References. . oo vt i ettt it it ettt tearaearananeneannns 315
Epilogue . v vttt i i i i e e e i e e 323

Xix

Acknowledgments

Over my two-fifths of a century in software, I’ve have the opportunity to inter-
act with a wide range of people. Many of the ideas expressed in this book have
come from them—from their books, their talks, and personal conversations.
Albert Einstein said, “Creativity is knowing how to hide your sources.” I would
like not to hide these people. The only problem is I can’t always remember what
I got from whom. The list includes in no particular order: Cem Kaner, Jerry
Weinberg, James Bach, Michael Bolton, Brian Marick, Ellen Gottesdiener, Karl
Wiegers, Ward Cunningham, Jim Shore, Rick Mugridge, Lisa Crispin, Janet
Gregory, Kent Beck, Gerard Meszaros, Alistair Cockburn, Andy Hunt, Bob
Martin, Dale Emery, III, Michael Feathers, Mike Cohn, Jim Highsmith, Linda
Rising, Ron Jeffries, Mary Poppendieck, Jim Coplien, Norm Kerth, Scott Ambler,
Jared Richardson, Dave Thomas, Martin Fowler, Bill Wake, Tim Lister, Eric
Evans, Bret Pettichord, Brian Lawrence, Jeff Patton, David Hussman, Rebecca
Wirfs-Brock, Joshua Kerievsky, Laurie Williams, Don Gause, James Grenning,
Tom DeMarco, Danny Faught, Jeff Sutherland, David Astels, Lee Copeland,
Elisabeth Hendrickson, Bob Galen, Gary Evans, George Dinwiddie, Jutta
Eckstein, Bob Hartman, David Chelimsky, Dan North, Lasse Koskela, Cedric
Beust, and Larry Constantine.

I"d like to thank Rob Walsh of EnvisionWare for the case study of a library
print server, Robert Martin for the Cucumber style example in Slim, Markus
Gaertner for the Slim example, Dale Emery for the Robot example, and John
Goodsen for the Cucumber example. I appreciate Gerard Meszaros for permis-
sion to use his testing matrix graphic. Thanks to Dawn Cannan, Gabriel Le Van,
Stephen Cresswell, Jared Richardson, Ian Cooper, Greg McNelly, and Gary
Marcos for their ATDD stories in the Epilogue. I’d like to acknowledge the Net
Objectives gang: Alan Shalloway, Jim Trott, Scott Bain, Amir Kolsky, Cory Foy,
and Alan Chedalawada. Also thanks to Omie and Tammi for keeping me sane.

In helping make this book a reality, I thank the people at Addison-Wesley,
Pearson Technology Group: Chris Guzikowski, Chris Zahn, Raina Chrobak,
Kristy Hart, Jovana San Nicolas-Shirley, Karen Gill, Nonie Ratcliff, Cheryl
Lenser, and Sheri Cain. And to reviewers Andrew Binstock, Graham Oakes,
Lisa Crispin, Linda Rising, Bill Wake, Robert Bogetti, Johannes Brodwall, Peter
Kurpis, SGuy Ge, Tom Wessel, Kody Shepler, Jinny Batterson, Julian Harty,
and III.

XX

ACKNOWLEDGMENTS xXi

Last but not least, I thank Leslie Killeen, my wife. She is a weaver. Software
is not her field. She reviewed my drafts, gave helpful hints, and supported me
through the creation process.

About the Author

Kenneth Pugh has over two-fifths of a century of software experience. Previously
a principal at Pugh-Killeen Associates, he is now a fellow consultant for Net
Objectives. He has developed software applications ranging from radar tracking
to financial analysis. Responsibilities have included everything from gathering
requirements to testing. After the start of the new millennium, he has worked
with teams to create software more effectively with lean and agile processes. He
has spoken at numerous national conferences; consulted and taught all over the
world; and testified on technology topics. This is his seventh book. In 2006, his
book Prefactoring won the Jolt Award [DrDobbs01]. In his spare time, he snow-
boards, windsurfs, and backpacks. Between 1997 and 2003, he completed the
Appalachian Trail. The cover photograph of Mount Katahdin, the northern end
of the trail, was taken by the author from Abol Bridge in Maine.

xxii

Introduction

“Context is all.”
Margaret Atwood, The Handmaid’s Tale

The context for the tale is introduced. A brief background of acceptance test—
driven development (ATDD) is presented.

Testable Requirements

Developing software with testable requirements is the theme of this book. A
testable requirement is one with an acceptance test. Acceptance tests drive the
development of the software. As many development groups have experienced,
creating acceptance tests prior to implementing requirements decreases defects
and improves productivity. (See the Epilogue for examples.) A triad—the cus-
tomer/business analyst, developer, and tester—collaborates on producing these
tests to clarify what is to be done. In creating a high-quality product, ATDD is
as much about this clarification as it is about the actual testing.

As an example, do you have criteria in mind as to whether this book will meet
your needs? If you finish this book, how will you know whether it has met those
criteria? This book represents an implementation of something that should meet
your needs. Because you are reading this book after its completion, you don’t
have an opportunity to influence the acceptance criteria. But let me list the crite-
ria here and see if this is what you are after.

In English classes, the teacher emphasized that a story should contain a who,
what, when, where, why, and how. So I’'ve made that the goal of this book. It
explains

INTRODUCTION

e Who creates acceptance tests

® What acceptance tests are

e When the acceptance tests should be created

e Where the acceptance tests are used

¢ Why acceptance test-driven development is beneficial

¢ How the acceptance tests are created

By the end of this book, the expectation is that you should understand how
testable requirements can make the software development process more enjoy-
able (or at least less painful) and help in producing higher-quality products.,
Let’s begin with a brief discussion on the why, what, where, and who issues.

Why ATDD Is Beneficial

Let’s start with the answer to the why question. Jeff Sutherland, the cocreator
of Scrum, has metrics on software productivity [Sutherland01]. He has found
that adding a quality assurance person to the team and creating acceptance tests
prior to implementation doubles the team’s productivity. Your actual results
may vary, but teams adopting ATDD have experienced productivity and quality
increases. Mary Poppendieck says that creating tests before writing code is one
of the two most effective and efficient process changes for producing quality
code. (The other is frequent feedback.) [PoppendieckO1] Customer-developer-
tester collaboration reduces unnecessary loops in the development process. As
Jerry Weinberg and Don Gause wrote, “Surprising, to some people, one of the
most effective ways of testing requirements is with test cases very much like
those for testing the completed system” [Weinberg01].

If you are going to test something and document those tests, it costs no more
to document the tests up front than it does to document them at the end. But
these are more than just tests. As stated in Chapter 3, “Testing Strategy,” “The
tests clarify and amplify the requirements.” An acceptance test is “an authorita-
tive and reliable source of what the software should do functionally” [Adzic01].

What Are Acceptance Tests?

Acceptance tests, as used in this book, are defined by the customer in collabora-
tion with the developer and tested and created prior to implementation. They are
not the traditional user acceptance tests [Cimperman01], which are performed

TESTABLE REQUIREMENTS

after implementation “by the end user to determine if the system is working
according to the specification in the contract.” [Answers01] They are also not
system tests which are usually independently written by testers by reading the
requirements to ensure that the system meets those requirements. [Answers02]
All three are related in that they are all black box tests—that is, they are inde-

pendent of the implementation. It is the time and manner of creation in which
they differ.

Where Are Acceptance Tests Used?

The concept of an acceptance test is defined by the intent of the test, not its
implementation. You can apply an acceptance test at the unit, integration, or
user interface level. You can use it as a validation test, which allows input to or
produces outputs from an application installed in the customer’s environment.
Further, you can use it as a design verification test that ensures a unit or com-
ponent meets it intended responsibility. In either case, the test makes certain the
application is acceptable to the customer.

Who Creates the Acceptance Tests?

This book refers to a triad: the customer, developer, and tester. The power of
three people working together [Crispin01] can create the bests acceptance tests.

If the triad writes the tests together, the distinction between user acceptance
tests and system tests is practically eliminated. As will be shown, the three roles
of customer, developer, and tester may be played by different individuals or by
the same individual with different focuses.

What Types of Software Are Covered?

The acceptance tests covered in this book revolve mainly around requirements
that have determinable results. These results are typical in business situations.
You place an order, and the order total is determinable. On the other hand, you
have a requirement to find the shortest possible path that goes through a number
of points. For example, you want to determine the shortest driving trip that
travels over every road in the United States. For a small number of roads (such
as the interstate highways), the result is determinable by brute force. However,
for a large number of roads, the answer is not determinable. You can have a test
that checks the output of one way of solving the problem against the output of
another way. But that does not guarantee that the shortest solution has been
found.

INTRODUCTION

How Will We Get to ATDD?

The answers to how and when the acceptance tests should be created are shown
by a continuous example throughout this book. Each step in their creation and
use is covered. Some books are devoted entirely to a single step and go into
much greater detail than does this book. In particular, the references offer links
for tools to automate the acceptance tests, to the agile process itself, to require-
ment elicitation, and to testing the other qualities of a software system (usabil-
ity, performance, and so on).

The continuous example for Sam’s CD Rental Store follows Sam’s story in
Prefactoring—Extreme Abstraction, Extreme Separation, Extreme Readability.
That book used the tale as the context for examples of good design. Prefactoring
covered some of the aspects of developer-customer interaction, because a good
design requires understanding the customer’s needs. Prefactoring’s focus was on
the internal software quality. This book’s focus is on externally visible quality.
The two books complement each other.

Organization

The material is presented in six parts. The first part documents the tale of the
triad members—customer, developer, tester—as they create a software system.
It shows how acceptance testing permeates the entire process, from the project
charter to individual stories. The second part covers details in acceptance test-
ing, as simplification by separation. The third part explores general subjects,
such as test presentation and valuation. The fourth part includes case studies
from real-life situations. In some instances, the studies have been simplified to
show only the relevant parts. The fifth part involves more technical issues, as
how to handle test setup. The sixth part offers the appendices, which give ad-
ditional information on topics as business value and test automation. For those
who want to get the quick summary of ATDD and its benefits, read Chapter 235,
“Retrospective and Perspective.” Those who want to read the experiences of
others, see the Epilogue.

Example Tables

The book presents tests with examples in tables rather than in narrative form.
These tables follow the concepts of David Parnas, who states, “The tables con-
stitute a precise requirements document” [Parnas01]. Some people prefer free
text over tables. Those who prefer the narrative can easily convert tables to this
form. The reverse is usually more difficult. Tables are familiar to spreadsheet
users. Many business rules have conditions that are more easily tested with a

ATDD LINEAGE

table. From an analysis point of view, you can often find missing conditions by
examining the values in a table’s columns.

Automation After Communication

I emphasize acceptance tests as customer-developer-tester communication. If
you don’t have an acceptance test, you have nothing to automate. I do not advo-
cate a particular test automation framework. When you automate an acceptance
test that includes its accompanying requirement, you get what many term an
executable specification [Melnik02], [Melnik03].

Acceptance tests can be manual. But if they are automated, you can use them
as regression tests to ensure that future changes to the system do not affect
previously implemented requirements. So the most effective use of the tests is as
an executable specification. Appendix C, “Test Framework Examples,” shows
examples of test automation using several frameworks. The code for the exam-
ples is available online at http://atdd.biz.

ATDD Lineage

A Chinese proverb says, “There are many paths to the top of the mountain, but
the view is always the same.” And many of the paths share the same trail for
portions of the journey. Although acceptance testing has been around for a long
time, it was reinvigorated by extreme programming [JefferiesO1]. Its manifes-
tations include ATDD as described in this book, example-driven development
(EDD) by Brian Marick [Marick01], behavior-driven development (BDD) by
Dan North [Chelimsky01], story test-driven development (SDD) by Joshua Ker-
ievsky of Industrial Logic [Kerievsky01], domain-driven design (DDD) by Eric
Evans [Evans01], and executable acceptance test-driven development (EATDD)
[EATDDO1]. All these share the common goal of producing high-quality soft-
ware. They aid developers and testers in understanding the customer’s needs
prior to implementation and customers being able to converse in their own do-
main language.

Many aspects are shared among the different approaches. ATDD in this
book encompasses aspects of these other approaches. ve documented the parts
that come specifically from the other driven developments (DDs), including
Brian Marick’s examples, Eric Evan’s ubiquitous language, and Dan North’s
given-when-then template. The most visible differences are that the tests here
are presented in table format rather than in a more textual format, such as
BDD’s Cucumber language, and they concentrate on functionality instead of the
user interface. This book’s version of ATDD matches closely that described by

http://atdd.biz

INTRODUCTION

Lasse Koskela [Koskela01] and Gojko Adzic [Adzic01] and follows the testing
recommendations of Jim Coplien [Coplien01].

One of the most well-known DDs is test-driven development (TDD) by Kent
Beck [BeckO1]. TDD encompasses the developer’s domain and tests the units
or modules that comprise a system. TDD has the same quality goal as ATDD.
The two interrelate because the acceptance tests can form a context in which to
derive the tests for the units. TDD helps creates the best design for an applica-
tion. A TDD design issue would be assigning responsibilities to particular mod-
ules or classes to pass all or part of an acceptance test.

Acceptance test driven development:
The answer is 42. Now implement it.

Summary

e Testable requirements have acceptance tests associated with them.
e ATDD involves developing requirement tests prior to implementation.
¢ ATDD can improve productivity.

e Acceptance tests are developed collaboratively between the customer,
developer, and tester.

Chapter 4

An Introductory
Acceptance Test

“If you don’t know where you’re going, you will wind up somewbhere
else.”
Yogi Berra

An example of an acceptance test is presented, along with four ways that you
can execute an acceptance test.

A Sample Business Rule

Here is an example from a previous project where Debbie and Tom created tests
in collaboration with the customer. The business representative, Betty, presented
the two of them with a business rule for giving discounts that she had obtained
from one of the stakeholders. The stakeholder wanted to give discounts to the
firm’s customers based on what type of customer they were. Debbie had already
completed implementing a previous requirement that determined the customer
type. Here’s the rule that Betty gave them:

If Customer Type is Good and Item Total is less than or equal to $10.00,
Then do not give a discount,
Otherwise, give a 1% discount.

If Customer Type is Excellent,
Then give a discount of 1% for any order.

If Item Total is greater than $50.00,
Then give a discount of 5%.

29

30

CHAPTER 4 AN INTRODUCTORY ACCEPTANCE TEST

This rule may seem clear. It uses consistent terms, such as Customer Type
and Item Total. Debbie and Tom had previously gotten from Betty the defini-
tions of those terms [Evans01]. For example, Item Total did not include taxes or
shipping. But even with that consistency, there was an issue. Tom and Debbie
looked at the rule and tried to figure out what the discount percentage should
be if a customer who is good had an order total greater than $50.00. So Betty,
Debbie, and Tom made up a table of examples.!

Discount Calculation

Item Total | Customer Rating | Discount Percentage?
$10.00 Good 0%

$10.01 Good 1%

$50.01 Good 1% ?2?

$.01 Excellent 1%

$50.00 Excellent 1%

$50.01 Excellent 5%

The answers in this table of examples are going to be used to test the imple-
mentation. The first two rows show that the limit between giving a good cus-
tomer no discount or a 1% discount is $10.00. The “less than or equal to” in
the business rule is pretty clear. The tests just ensure that the implementation
produced that result. The ?? was put after the 1 in the third example because it
was unclear to the triad whether that was the right value. To what type of cus-
tomer did the last statement in the rule apply?

The fourth row indicates that the discount for an excellent customer starts at
the smallest possible Item Total. The fifth and sixth entries show that the dis-
count increases just after the $50.00 point.?

Betty took this table back to the stakeholder. He looked it over and said that
the interpretation was correct. He did not want to give a 5% discount to good
customers. So ?? from that result was removed from that cell. There was now a
set of tests that could be applied to the system. The correct discount amount test
is not just a single case but includes cases for all possible combinations.

Tom suggested other possibilities. For example, what if Item Total was less
than $0.00? Tom asked Betty whether this would ever happen. She said it might

1. See Appendix D, “Tables Everywhere,” for an example of putting the rule into a
table.

2. There could be even more interpretations of this business rule, as reviewers pointed
out. For example, if Customer Rating is any other type than Good or Excellent,
what should the discount be?

IMPLEMENTING THE ACCEPTANCE TESTS

be possible, because Item Total could include a rebate coupon that was greater
than the total of the items. So Tom added the following possibilities.

Discount Calculation

Item Total | Customer Rating | Discount Percentage?
$-.01 Good 0%
$-.01 Excellent 1% 2?

Tom explained that it didn’t seem right to apply a discount percentage that
would actually increase the amount that the customer owed. Based on this
example, Betty went back to the stakeholder and confirmed that the percentage
should be 0% if Item Total is less than 0 for any customer. So the table became
as follows.

Discount Calculation

Item Total | Customer Rating | Discount Percentage?
$-.01 Good 0%
$-.01 Excellent 0%

These examples were the acceptance tests for the system. If Debbie imple-
mented these correctly, Betty would be satisfied. Now it was a matter of how
Debbie and Tom were going to use these tests to test the system.

Implementing the Acceptance Tests

Tom and Debbie needed to apply these tests to the implementation they were
developing. There were at least four possible ways to do this. First, Tom could
create a test script that operates manually at the user interface level. Second,
Debbie could create a test user interface that allows her or Tom to check the
appropriate discount percentages. Third, Debbie could perform the tests using
a unit testing framework. Fourth, Tom and Debbie could implement the tests
with an acceptance test framework. Following are examples of how they could
use each of these possibilities.

Test Script

In this case, the program has a user interface that allows a customer to enter an
order. The user interface flow is much like Amazon or other order sites. The user
enters an order and a summary screen appears, such as the one in Figure 4.1.

31

32

CHAPTER 4 AN INTRODUCTORY ACCEPTANCE TEST

Order Summary

Count ltem Item Price
10 Little Widget $.10
1 Big Widget $9.00

Item Total
Discount
Taxes
Shipping
Order Total

Total
$1.00
$9.00
$10.00
$0.00
$.55
$2.00
$12.55

Place Order |

Cancel |

Figure 4.1 Order Interface

What Tom would have to do is to create a script that either he or Debbie
would follow to test each of the six cases in the Discount Calculation table. He
might start by computing what the actual discount amount should be for each
case. Unless the Order Summary screen shows this percentage, this value is the
only output Tom can check to ensure the calculation is correct. Here is an addi-
tion to the table that shows the amounts he needs to look for.

Discount Calculation

Customer Discount Discount
Item Total | Rating Percentage? | Amount? | Notes
$10.00 Good 0% $0.00
$10.01 Good 1% $0.10 Discount rounded down
$50.01 Good 1% $0.50 Discount rounded down
$.01 Excellent 1% $0.00 Discount rounded down
$50.00 Excellent 1% $0.50
$50.01 Excellent 5% $2.50 Discount rounded down

IMPLEMENTING THE ACCEPTANCE TESTS

The script would go something like this:

1. Log on as a customer who has the rating listed in the table.

2. Start an order, and put items in it until the total is the specified amount in
the Item Total column on the test.

3. Check that the discount on the Order Summary screen matches Discount
Amount in the table.

Then the test would be repeated five more times to cover all six cases. Either
Tom or Debbie would do this once the discount feature and order features are
implemented. This test should be run for all possible combinations. That would
have been more difficult if there were more discount percentages for more cus-
tomer types. There’s another possible way to run these tests.

Test User Interface

To simplify executing the tests, Debbie could set up a user interface that con-
nects to the discount calculation module in her code. This interface would be
used only during testing. But having it would cut down on the work involved in
showing that the percentage was correctly determined. The interface might be a

command-line interface (CLI) or a graphical user interface (GUI). For example,
a CLI might be this:

RunDiscountCalculatorTest <item total> <customer_ type>
And when it is run for each case, such as
RunDiscountCalculatorTest 10,00 Good

It would output the result

0

A GUI, such as what’s shown in Figure 4.2, might be connected to the CLIL

Regardless of whether it is a GUI or CLI, the user interface has penetrated
into the system. It exposes a test point within the system that allows easier test-
ing. Here’s an analogy showing the differences between this method and Tom’s
original test script. Suppose you want to build a car that accelerates quickly.
You know you need an engine that can increase its speed rapidly. If you could
only check the engine operation as part of the car, you would need to put the
engine in the car and then take the car on a test drive. If you had a test point
for the engine speed inside the car, you could check how fast the engine sped up
without driving the car. You could measure it in the garage. You’d save a lot of

33

34

CHAPTER 4 AN INTRODUCTORY ACCEPTANCE TEST

ESDiscount Percentage Test 1M =]

Customer Type Good

Iltem Total 10.01

i

Percentage 1%

Figure 4.2 User Interface for Testing

time in on-the-road testing if the engine wasn’t working properly. That doesn’t
mean you don’t need to test the engine on the road. But if the engine isn’t work-
ing by itself, you don’t run the road test until the engine passes its own tests.

If you’re not into cars, Figure 4.3 shows a context diagram. The Order Sum-
mary screen connects to the system through the standard user interface layer.
The Discount Percentage user interface connects to some module inside the sys-
tem. Let’s call that module the Discount Calculator. By having a connection to
the inside, a tester can check whether the internal behavior by itself is correct.

Order

Summary
Screen \

User Interface

Interior of
Application,
Discount
Calculator

Discount Percentage
User Interface

Figure 4.3 Context Diagram

xUnit Test

The next way to perform the testing is to write the tests for the Discount Cal-
culator in a unit testing framework. The framework used is usually in the lan-
guage that the program is written in. There is a generic framework called xUnit

IMPLEMENTING THE ACCEPTANCE TESTS

that has versions for many programming languages. Here’s a sample of what
these tests look like in Java using Junit [BeckO1]. The test would look similar in
TestNG [Beust01], but the order of the parameters would be reversed:

class DiscountCalculatorTest {
@Test
public void shouldCalculateDiscountPercentageForCustomer () {
DiscountCalculator dc = new DiscountCalculator() ;
assertEquals (0, dc.computeDiscountPercentage(10.0,
Customer.Good)) ;
assertEquals (1, dc.computeDiscountPercentage (10.01,
Customer.Good)) ;
assertEquals (1, dc.computeDiscountPercentage (50.01,
Customer.Good)) ;
assertEquals (1, dc.computeDiscountPercentage(.01,
Customer.Excellent)) ;
assertEquals (1, dc.computeDiscountPercentage (50.0,
Customer.Excellent)) ;
assertEquals (5, dc.computeDiscountPercentage (50.01,
Customer.Excellent)) ;

}

Any time there is a change in the examples that Betty and the stakeholder
use to explain the business rule, Debbie may want these tests to conform to the
changed examples. That’s a bit of waste. The next testing framework can elimi-
nate that waste.

Automated Acceptance Test

Betty, Debbie, and Tom agreed that the examples in the table accurately re-
flected the requirements and there would be less waste if the table did not have
to be converted into another form for testing. Several available acceptance test
frameworks use tables. Some examples are in Appendix C, “Test Framework
Examples.” With these frameworks, you describe the tests with a table similar
to the one for the example.

The following test table works in table-based frameworks, such as the Fit-
Nesse and Fit frameworks. A similar style table can be used in narrative-form
frameworks, such as Cucumber.? The table looks practically like the one that
Betty presented to the stakeholder.

3. Fit is the Framework for Integrated Tests, developed by Ward Cunningham [Cun-
ningham01], [Cunningham02]. Fit was incorporated into FitNesse by Bob Martin
[Martin01]. Cucumber can be found in [Chelimsky01].

35

36

CHAPTER 4 AN INTRODUCTORY ACCEPTANCE TEST

Discount Calculation

Item Total | Customer Rating | Discount Percentage()
$10.00 Good 0%

$10.01 Good 1%

$50.01 Good 1%

$.01 Excellent 1%

$50.00 Excellent 1%

$50.01 Excellent 5%

Now when the table is used as a test, the Fit/FitNesse framework executes
code that connects to the Discount Calculator. It gives the Discount Calculator
the values in Item Total and Customer Rating. The Discount Calculator returns
the Discount Percentage. The framework compares the returned value to the
value in the table. If it agrees, the column shows up in green. If it does not, it
shows up in red. The colors cannot be seen in this black-and-white book. So
light gray represents green and dark gray represents red. The first time the test
was run, the following table was output.

Discount Calculation

Item Total Customer Rating | Discount Percentage()
$10.00 Good 0%

$10.01 Good 1%

$50.01 Good Expected 1% Actual 5%
$.01 Excellent 1%

$50.00 Excellent 1%

$50.01 Excellent 5%

With the results shown in the table, it was apparent there was an error in the
Discount Calculator. Once it was fixed, Betty saw the passing tests as confirma-
tion that the calculation was working as desired.

An Overall Test

If the discount test is applied using one of the last three forms, there still needs
to be a test using the order interface. This ensures that processing an order is
correctly connected to the Discount Calculator. The script for an order would be
run for a couple of instances. But unless there was a large risk factor involved,
the script might just be executed for a few cases, such as the following.

SUMMARY
Discount Calculation
Item Total Customer Rating Discount Percentage? Discount Amount?
$10.01 Good 1% $0.10
$50.01 Excellent 5% $2.50

Testing Process

The acceptance test is the original table that Betty, Tom, and Debbie developed
to clarify the business rule. This acceptance test can be used at four different
levels, as described earlier in this chapter. Because the acceptance test was cus-
tomer supplied, all four levels are considered acceptance tests in this book. The
last two forms are automated by their nature. The second form—an interface to
the Discount Calculator—can be automated. The test for an order could also be
automated with a little more effort. However, you should still check it manually
as well.

Passing the acceptance tests is necessary but insufficient to ensure that the
system meets the customer needs. Other tests, such as those for quality attributes
and usability (described in Chapter 3, “Testing Strategy”), also need to be
passed. See [Meszaros02] for more information.

Summary

¢ Examples of requirements clarify the requirements.

¢ The examples can be used as tests for the implementation of the require-
ments.

e Tests for business rules can be executed in at least these four ways:

e Creation through the user interface of a transaction that invokes the
business rule

¢ Development of a user interface that directly invokes the business rule
¢ A unit test implemented in a language’s unit testing framework

e An automated test that communicates with the business rule module

37

This page intentionally left blank

Index

A

acceptance criteria
defined, 12
explained, 95
feature acceptance criteria, 45-46
story acceptance criteria, 52
acceptance tests
acceptance criteria. See acceptance
criteria
agile principles, 20-21
anti-missile acceptance test, 276
automated acceptance tests, 35-36,
89-90
Bad Customer ID test, 90
benefits, 2, 214-215
blocks
change issues, 213
explained, 212
monads, 212
risks, 214
unavailable customers, 213
breaking up stories with, 95-96
as bug reports, 201-202
production bugs, 202
regression testing, 202
root cause analysis, 201-202
business capabilities, 172-178
business rules. See business rules
Card Processor Charges Matches
Rental Charges test, 105
case studies. See case studies
CD Already Rented test, 84
CD Limit Reached and Late Rental
test, 88
CD Limit Reached test, 85-86
Charge Submitted During Check-In
test, 108
Charges Agree with Transfer test, 104

333

Check-In CD test
business rules, 100
creating, 101
Cucumber framework, 297
Fit framework, 286-287
relationships, 165
Robot framework, 295-296
Slim—Cucumber Style
framework, 291
Slim—Table Style framework,
288-290
story map of activities, 113-114
Check-Out CD test
Cucumber framework, 296-297
Fit framework, 284-285
Robot framework, 295
Slim—Cucumber Style
framework, 291
Slim—Table Style framework,
288-289
communication, 66-68, 212
context. See context
control and observation points, 27
creating, 69-70
Current Late Rental When Renting
test, 86
customer examples
acceptance test detail, 275
explained, 274
fuzzy acceptance tests, 274
data conversion projects, 170
database conversion projects, 170
decoupling user interface
explained, 131-133
separating user interface from
service, 157-158
simplifying testing by, 136
defined, 2-3, 12

334

INDEX

developer acceptance tests
field display tests, 145-147
tabular display tests, 147-151
development review, 115-116
from charter to deliverable, 120-121
deployment plans, 120
quality attribute tests, 117-119
separating state from display,
116-117
usability testing, 116
workflow tests, 119-120
device testing, 254-255
events, 137-139
explained, 3, 211-212
external interfaces
component tests, 107-111
creating acceptance tests for, 107
explained, 100-108
system context, 112-113
test doubles and mocks, 111-112
feedback, 18
importance of, 10-11
internal design from tests, 252-254
Invalid Card Response Is Charge
Declined test, 110
lack of, 170-173
large systems, triads for, 167-169
lean principles, 20-21
legacy systems, 172
manual testing, 172
multi-level tests, 90-93
objectives, checking, 93-94
origin and development, 5-6
positive and negative testing, 26-27
post-implementation tests, 17-18
power of three, 277
preimplementation tests, 19-20
process, 210
project charters, 39-42
relationships
alternative representations, 167
entities and, 161-163
explained, 161
multiple relationships, 163-165
requirements
constraints, 275
decoupling, 276

defined, 275
documenting, 275-276
explained, 27-28
high-level requirements, 42-46
separation of issues, 276-277
user interfaces as part of
requirements process, 255
risks, 214
role in overall development process,
209-212
running, 25-26, 78-80
scenarios, 57
conceptual flow, 65
scenario handling, 178-179
story maps, 63-64
separation of issues. See separation
of issues
service provider tests
comparing implementations, 155-156
explained, 151
interface, 151-154
quality attribute tests, 155
states
internal states, 142-144
state tables, 139-142
state transitions, 139-142
transient or persistent states, 144
stories
acceptance criteria, 52
breaking down features into
stories, 48
cross-story issues, 88
customer terms, 54
developing, 51
explained, 47-48
INVEST criteria, 55-56
persona, 50-51
role attributes, 49-50
roles, 49
size of, 53-54
story estimates, 52
story maps, 63-64, 113-114
use cases, 57-63
success stories, 324-332
tables with, 298-300
test evaluation
confirming environment, 193

fragility, 192-194
idempotence, 192
implementation issues, 197
points to remember, 197-198
separation of concerns, 194-195
spell checking, 192
test failure, 195
test redundancy, 196-197
test sequence, 193-194
understandability to customers,
191-192

test exercises
calculator test exercise, 310-313
Sam’s CD Rental exercise, 314
triangle exercise, 314

test frameworks
Cucumber, 296
explained, 283
Fit, 284
Robot, 295
Slim—Cucumber Style framework,
291
Slim—Table Style, 286-284
websites, 298

test platforms, 251-252

test presentation
complex data, 187
custom table forms, 188
customer understood tables, 183-185
specifying multiple actions, 185-187
tables versus text, 185

test scripts, 31-33

test setup
ameliorating potential problems,
259-260
common setup, 257-259
persistent storage issues, 260-261
test order, 260

test structure
action tables, 75-76
calculation tables, 73-74
data tables, 74-75
explained, 71-73

testing layers, 210-211

testing matrix, 23-24

testing process, 37

testing systems with random
events, 277

INDEX

types of tests, 23-25
tests for business rules, 86
tests for exception scenarios, 83-87
tests with example values, 76-78
tests with values in text, 78
user interface tests, 33-34, 93
uses of
breaking down stories, 200
degree of doneness, 199
developer stories, 200
estimation aid, 200
workflows, improving, 178-181
xUnit tests, 34-35
action tables, 75-76
activities, story map of, 113-114
Acuminous Ltd., 326
Adzic, Gojko, 6
“The Agile Manifesto,” 20
agile principles, 20-21
agileartisans.com, 327
airline industry
conversion to SHARES reservation
system, 252
ubiquitous language, 207
Allowed to Reserve business rule, 126
separation of issues, 126-127
simplified rule, 128
allowedToReserve() method, 253-254
ameliorating potential problems, 259-260
Angelou, Maya, 83
anti-missile acceptance test, 276
applications, determining applications to
run on server, 244-248
assigning business value, 280-281
Atwood, Margaret, 1
auto mileage displays, 18
automated acceptance tests, 35-36, 89-90

B

Bad Customer ID test, 90

Bain, Scott, 27

BDD (behavior-driven development), §
Beck, Kent, 6, 305

behavior-driven development (BDD), 5
benefits to acceptance testing, 2, 214-215
Berra, Yogi, 29

big picture test, 227-228

335

336

INDEX

black box testing, 255-256
blocks to acceptance testing
change issues, 213
explained, 212
monads, 212
risks, 214
unavailable customers, 213
boundary value analysis, 255
breaking down tests, 264-269
disallowed domain tests, 268-269
domain breakdown tests, 266-268
local-part validation, 265-266
tests to ensure connection, 269
verification tests, 269
breaking up stories with acceptance tests,
95-96, 200
Browning, Elizabeth Barrett, 23
Buffett, Warren, 172
bug reports
acceptance tests as, 201-202
production bugs, 202
regression testing, 202
root cause analysis, 201-202
Burger King, off-menu ordering, 178-179
business capabilities, 172-178
business rules
business rule tests, 96-100
Check-In CD test, 100
example of, 29-31
exposing, 178
reusable business rules, 158-159
separation of issues, 125-128
tests for, 86
business value
business value charts, 281
developer stories, 281-282
estimating, 280-281
explained, 279-280
sources of, 279
tracking, 223

C

calculation tables, 73-74

calculator test exercise, 310-313
Cann, Richard, 229

Cannan, Dawn, 324
Card Processor Charges Matches Rental
Charges test, 105
Carroll, Lewis, 6
case studies
e-mail addresses case study, 263-264
breaking down tests, 264-269
disallowed domain tests, 268-269
domain tests, 266-268
local-part validation, 265-266
tests to ensure connection, 269
verification tests, 269
highly available platform
context for switching servers, 243
test for switching servers, 244
test for technical rule, 246-248
library print server case study
context, 235-236
workflow test, 236-241
retirement contributions case study
big picture test, 227-228
business value tracking, 223
context, 219-220
event table, 228
exception: discrepancies less than a
dollar, 223-224
exception: missing participant, 225
main course test, 220-222
state transitions, 228-230
two simultaneous exceptions,
225-227
signal processing case study
context, 229
developer tests, 233
sound levels, 229-232
case tests, 255
category-based rental fees
Cucumber framework, 296-297
Fit framework, 287
Robot framework, 295-296
Slim—Cucumber Style framework, 291
Slim—Table Style framework, 287-291
CD Already Rented test, 84
CD Limit Reached and Late Rental
test, 88
CD Limit Reached test, 85-86

CD rental example
action tables, 75-76
Allowed to Reserve business rule, 126
separation of issues, 126-127
simplified rule, 128
allowedToReserve() method, 253-254
Bad Customer ID test, 90
calculation tables, 73-74
Card Processor Charges Matches
Rental Charges test, 105
CD Already Rented test, 84
CD Limit Reached and Late Rental
test, 88
CD Limit Reached test, 85-86
CD rental limit reached, 185-187
Charge Submitted During Check-In
test, 108
Charges Agree with Transfer test, 104
Check-In CD test
business rules, 100
creating, 101
Cucumber framework, 297
Fit framework, 286-287
relationships, 165
Robot framework, 295-296
Slim—Cucumber Style
framework, 291
story map of activities, 113-114
Check-Out CD test
creating, 76-78
Cucumber framework, 296-297
Fit framework, 284-285
Robot framework, 295
Slim—Cucumber Style
framework, 291
Slim—Table Style framework,
288-289
Check-Out screen, 93
Current Late Rental When Renting
test, 86
customer terms, 54
customer understood tables, 183-185
data tables, 74-75
development review, 115-116
from charter to deliverable, 120-121
deployment plans, 120
quality attribute tests, 117-119

INDEX

separating state from display,
116-117
usability testing, 116
discount calculation
automated acceptance tests, 35-36
content diagram, 34
explained, 29-31
overall test, 36-37
test script, 35-36
xUnit test, 34-35
display for reservation allowed,
132-134
events, 137-139
exercises, 314
feature acceptance criteria, 45
features list, 44
field display tests, 145-147
Invalid Card Response Is Charge
Declined test, 110
people, 13
persona, 51
post-implementation tests, 17-18
preimplementation tests, 19-20
relationships
alternative representations, 167
entities and, 161-163
explained, 161
multiple relationships, 163-165
rental counts, computing, 130
rental fees. See rental fees
rental history, 128-130
rental sequence, 113
role attributes, 50
roles, 49
service provider tests
comparing implementations, 155-156
explained, 153
interface, 153-154
quality attribute tests, 155
states
internal states, 142-144
state tables, 139-142
state transitions, 139-142
transient or persistent states, 144
stories, 51
story acceptance criteria, 52
Submit Charge story, 100-108

337

338

INDEX

system, 11-13
tabular display tests, 147-151
use cases from user stories, 57-63
ZIP code lookup, 151-156
change issues, 213
Charge Rentals story, 95
Charge Submitted During Check-In
test, 108
Charges Agree with Transfer test, 104
charters, 39-42
charts, business value charts, 281
Check-In CD test
business rules, 100
creating, 101
Cucumber framework, 297
Fit framework, 286-287
relationships, 165
Robot framework, 295-296
Slim—Cucumber Style framework, 291
Slim—Table Style framework, 288-290
story map of activities, 113-114
checking
objectives, 93-94
spelling, 192
Check-Out CD test
creating, 76-78
Cucumber framework, 296-297
Fit framework, 284-285
Robot framework, 295
Slim—Cucumber Style framework, 291
Slim—Table Style framework, 288-289
Check-Out screen, 93
Cicero, 131
Codebetter.com, 330
Cohen, Leonard, 183
Cohn, Mike, 200
common test setup, 257-259
communication, 66-68, 212
comparing implementations, 155-156
complex data, 187
component tests
explained, 25, 211
for external interfaces, 107-111
conceptual flow, 65
confirming environment, 193
connections, tests to ensure
connection, 269

Constantine, Larry, 276
constraints, 263, 275
context
context diagrams, 70
e-mail addresses case study, 263-264
explained, 70, 273-274
highly available platform, 243
library print server case study, 235-236
retirement contributions case study,
219-220
signal processing case study, 229
system context, 112-113
continuity, 207
control points, 27
conversion projects
currency conversion example
acceptance test approach, 307-310
test-driven approach, 306-307
unit tests, 306-307
data conversion, 170
database conversion, 170
Cooper, lan, 330
Coplien, Jim, 6
copying files, 314
Cresswell, Stephen, 326
cross-story issues, 88
Cucumber framework, 296
currency conversion example
context, 305
test-driven approach, 306-307
unit tests, 306-307
Current Late Rental When Renting
test, 86
custom table forms, 188
customers
customer examples
acceptance test detail, 275
explained, 274
fuzzy acceptance tests, 274
customer terms, 54
customer understood tables, 183-185
customer understood tests,
191-192, 211
customer unit, 16
data tables, 187
unavailable customers, 213

D

data conversion projects, 170
data tables, 74-75, 304
database conversion projects, 170
DDD (domain-driven design), 5
overlapping domains, 207
ubiquitous language, 205-207
decision table testing, 256
decoupling user interface
decoupling requirements, 276
explained, 131
separating user interface from service,
157-158
simplifying testing by, 136
degree of doneness, 199
delta, 260
deployment plans, 120
determining applications to run on server,
244-248
developer acceptance tests
field display tests, 145-147
signal processing case study, 233
tabular display tests, 147-151
developer stories, 200, 281-282
developer unit, 16
development of acceptance testing, 5-6
development process
explained, 9-10
role of acceptance tests in, 209-212
development review, 115-116
from charter to deliverable, 120-121
deployment plans, 120
quality attribute tests, 117-119
separating state from display, 116-117
usability testing, 116
workflow tests, 119-120
device testing, 254-255
Dijkstra, Edsger, 191
disallowed domain tests, 268-269
discount business rules, 299-301
discount calculation
automated acceptance tests, 35-36
content diagram, 34
explained, 29-31
overall test, 36-37
test script, 31-33
xUnit test, 34-35

INDEX

discrepancies, handling in retirement
contributions case study, 223-224
documenting
bugs with acceptance tests, 201-202
requirements, 275-276
with use cases, 63
documents, printing to print queue
(workflow), 237-238
domain tests
disallowed domain tests, 268-269
domain breakdown tests, 266-268
domain-driven design. See DDD
(domain-driven design)
domains, overlapping, 207
doneness, degree of, 199
DRY (Don’t Repeat Yourself)
principle, 259
Dyer, Wayne, 100

E

EATDD (executable acceptance
test-driven development), 5
EDD (example-driven development), 5
e-mail addresses case study
breaking down tests, 264-269
context, 263-264
disallowed domain tests, 268-269
domain tests, 266-268
local-part validation, 265-266
tests to ensure connection, 269
verification tests, 269
embedded technical projects, 283
ensuring connections, 269
entities and relationships, 161-163
environment, confirming, 193
EnvisionWare, 235
equivalence partitioning, 255
estimates (story), 52, 55
estimating business value, 280-281
estimation aid, 200
evaluating tests. See test evaluation
Evans, Eric, 5
events
explained, 137-139
retirement contributions case study,
220,228
example-driven development (EDD), 5

339

INDEX

example values, tests with, 76-78
exceptions
retirement contributions case study
discrepancies less than a dollar,
223-224
missing participant, 225
two simultaneous exceptions,
225-227
scenario handling, 178-179
tests for exception scenarios, 83-87
executable acceptance test-driven
development (EATDD), 5
exercises
calculator test exercise, 311-313
file copying exercise, 314
Sam’s CD Rental exercise, 314
triangle exercise, 314
expected output, 220
exploratory tests, 24
exposing business rules for testing, 178
external constraints, 275
external interfaces, 100-108
component tests, 108-111
creating acceptance tests for, 107
system context, 112-113
test doubles and mocks, 111-112

F

failure of tests, 195
Feather, Michael, 172
feature acceptance criteria, 45-46
features list
breaking down into stories, 48
explained, 42-44
feedback, 18
field display tests, 145-147
file copying exercise, 314
Fit framework
category-based rental fees, 287
Check-In CD, 286-287
Check-Out CD, 284-285
explained, 284
setup, 284
FitNesse, 276
forms, custom table forms, 188
fragility of tests, 192-194
frameworks. See test frameworks
fuzzy acceptance tests, 274

G-H
Gaye, Marvin, 299
Grozier Technical Systems, 229

headers for Slim—Table Style
framework, 288
high-level requirements
explained, 42-46
feature acceptance criteria, 45-46
features list, 42-44
highly available platform
context for switching servers, 243
test for switching servers, 244
send alert to administrator, 245-246
server goes down, 245
test for technical rule, 244-248
Hofstadter, Douglas, 167,273
Honda Insight charter objectives, 41
Hunter, Ivy, 299

I

idempotence, 192
identity, 206
implementation issues
comparing implementations, 155-156
retirement contributions case
study, 222
and test evaluation, 197
importance of acceptance testing, 10-11
improving workflows, 178-181
independence of stories, 55
internal constraints, 275
internal design from tests, 252-254
internal states, 142-144
Invalid Card Response Is Charge
Declined test, 110
INVEST criteria, 55-56
issues, separation of, 194-195, 276-277

JK

Johnson, Samuel, 95

Kennedy, Robert, 209
Kerievsky, Joshua, §
King, Carole, 243
Knuth, Donald, 263

Kolsky, Amir, 27, 194
Koskela, Lasse, 6

L

lack of acceptance tests, 170-173
language, ubiquitous, 205-207
large systems, triads for, 167-169
Le Van, Gabriel, 325
lean principles, 20-21
legacy systems, 172
Leq (equivalent continuous sound level),
229-232
library print server case study
context, 235-236
workflow test, 236-241
workflow for printing jobs from print
queue, 239-241
workflow of printing two documents
to print queue, 237-238
local-part validation, 265-266
Lovasik, Lawrence G., 199

M

main course test (retirement contributions
case study)
events, 220
expected output, 220
implementation issues, 222
separation of concerns, 222
setup, 220-221
manifestations, 275
manual testing, 172
Marcos, Gary, 332
Marick, Brian, 5
Martin, Micah, 276
Martin, Robert, 276
Marx, Groucho, 67, 305
Maslow, Abraham, 299
McDonald’s, off-menu ordering, 179
McNelly, Greg, 331
measurability of objectives, 43
Meszaros, Gerard, 23, 259
methods, allowedToReserve(), 253-254
mileage displays in autos, 18
missing participants, handling in
retirement contributions case
study, 225

INDEX

mocks, 111-112
Model-View-Controller pattern, 253
module tests, 211
monads, 212
money
currency conversion example
acceptance test approach, 307-310
context, 305
test-driven approach, 306-307
problems with, 305
multi-level tests, 90-93
multiple actions, specifying, 185-187
multiple relationships, 163-165
Murray, Bill, 14

N

negative testing, 26-27
negotiability of stories, 55
Newbury, Mickey, 137
North, Dan, 5

O

objectives

checking, 93-94

of project charters, 40-42
observation points, 27
Once and Only Once Principle, 259
order of tests, 260
overlapping domains, 207

P

partitions, equivalence partitioning, 255
passionatetester.com, 324

Patanjali, 39

patterns, Model-View-Controller, 253
persistent states, 144

persistent storage issues, 260-261
persona, 50-51

platforms (test), 251-252
Poppendieck, Mary, 20

Poppendieck, Tom, 20

positive testing, 26-27
post-implementation tests, 17-18
preimplementation tests, 19-20

341

342

INDEX

print queue
printing jobs from (workflow),
239-241
printing multiple documents to
(workflow), 237-238
process, 210
production bugs, 202
Progressive Insurance, 330-331
project charters, 39-42

Q-R
quality attribute requirements, 303-304
quality attribute tests, 117-119, 155

random events, testing systems with, 277
redundancy of tests, 196-197
regression testing, 202
Reinertsen, Don, 11
relationships
alternative representations, 167
entities and, 161-163
explained, 161
multiple relationships, 163-165
relative results, 260
relative story placement, 280
relative story values, 280
rental counts, computing, 129-130
rental fees
business rule tests, 96-100
category-based. See category-based
rental fees
rental rates table, 304
table of, 97-99
tables versus text, 185
rental history, 128-130
rental sequence, 113
requirements
constraints, 275
decoupling, 276
defined, 275
documenting, 275-276
explained, 27-28
high-level requirements, 42-46
feature acceptance criteria, 45-46
features list, 42-44
quality attribute requirements, 303-304
requirements tables, 300-303

separation of issues, 276-277
user interfaces as part of requirements
process, 255
results, relative, 260
retirement contributions case study
big picture test, 227-228
business value tracking, 223
context, 219-220
event table, 228
exception: discrepancies less than a
dollar, 223-224
exception: missing participant, 225
main course test
events, 220
expected output, 220
implementation issues, 222
separation of concerns, 222
setup, 220-221
state transitions, 228-230
two simultaneous exceptions, 225-227
reusable business rules, 158-159
Richardson, Jared, 327
risks, 214
Robot framework, 295
category-based rental fees, 296
Check-In CD test, 296
Check-Out CD test, 295
setup, 295
roles
explained, 49
role attributes, 49-50
root cause analysis, 201-202
rules. See business rules
running tests, 25-26, 78

S

Sabre reservation system, 252
Sam’s CD Rental. See CD rental example
Sandburg, Carl, 125, 310
Satir, Virginia, 213
scenarios, 57
conceptual flow, 65
Slim—Cucumber Style framework
scenario library, 291-294
story maps, 63-64
tests for exception scenarios, 83-87
use cases from user stories, 57-63

SDD (story test-driven development), 5
separation of issues, 194-195, 276-277
Allowed to Reserve business rule
example, 125-128
rental history example, 128-130
retirement contributions case
study, 222
separating user interface from service,
157-158
sequence of tests, 193-194
servers, switching
context, 243
determining applications to run on
server, 244-248
test for, 244
send alert to administrator, 246-244
server goes down, 245
service provider tests
comparing implementations, 155-156
explained, 151
interface, 151-154
quality attribute tests, 155
services, separating user interface from,
157-158
setup
Fit framework, 284
retirement contributions case study,
220-221
Robot framework, 295
Slim—Cucumber Style framework,
291-292
Slim—Table Style framework, 287-291
Shalloway’s Law, 259
SHARES reservation system, 252
Shaw, George Bernard, 205
Shore, Jim, 42
signal processing case study
context, 229
developer tests, 233
sound levels, 229-232
simultaneous exceptions, 225-227
size of stories, 53-56
Slim—Cucumber Style framework, 291
category-based rental fees, 291
Check-In CD test, 291
Check-Out CD test, 291

INDEX

scenario library, 291-294
setup, 291
Slim—Table Style framework, 287-291
category-based rental fees, 291
Check-In CD test, 288-290
Check-Out CD test, 288-289
header, 288
setup, 288
SMART, 40
software development, 9-10
sound levels, signal processing case study,
229-232
specifying multiple actions, 185-187
speed of feedback, 18
spell checking, 192
states
internal states, 142-144
separating state from display, 116-117
state tables, 139-142
state transitions, 139-142
retirement contributions case study,
228-230
state transition testing, 255
transient or persistent states, 144
Stevenson, William, 299
stories
acceptance criteria, 52
breaking down features into stories, 48
breaking up with acceptance tests,
95-96, 200
business rules. See business rules
business value. See business value
cross-story issues, 88
customer terms, 54
developer stories, 200, 281-282
developing, 51
explained, 47-48
INVEST criteria, 55-56
persona, 50-51
relative story placement, 280
relative story values, 280
roles
explained, 49
role attributes, 49-50
size of, 53-54
story estimates, 52

343

344

INDEX

story maps, 63-64, 113-114
use cases, 57-63
story maps, 63-64, 113-114
story test-driven development (SDD), 5
Submit Charge story, 100-108
success stories, 324-332
switching servers
context, 243
determining applications to run on
server, 244-248
test for, 244
send alert to administrator, 245-246
server goes down, 245

T

tables
action tables, 75-76
calculation tables, 73-74
customer understood tables, 183-185
data tables, 74-75, 304
event tables, 137-139
quality attribute requirements, 303-304
requirements tables, 300-303
state tables, 139-142
tabular display tests, 147-151
versus text, 78, 185
user interface tests with, 299-300
tabular display tests, 147-151
TDD (test-driven development), 6
technical projects, 283
technical rules, test for, 244-248
test doubles, 111-112
test-driven approach, 306-307
Test-Driven Development by Example
(Beck), 305
test-driven development (TDD), 6
test evaluation
confirming environment, 193
fragility, 192-194
idempotence, 192
implementation issues, 197
points to remember, 197-198
separation of concerns, 194-195
spell checking, 192
test failure, 195
test redundancy, 196-197

test sequence, 193-194
understandability to customers,
191-192
test failure, 195
test frameworks
Cucumber, 296
explained, 283
Fit, 284
category-based rental fees, 287
Check-In CD, 286-287
Check-Out CD, 284-285
setup, 284
Robot, 295
category-based rental fees, 296
Check-In CD test, 296
Check-Out CD test, 295
setup, 295
Slim—Cucumber Style framework, 291
category-based rental fees, 291
Check-In CD test, 291
Check-Out CD test, 291
scenario library, 291-294
setup, 291
Slim—Table Style, 287-291
Check-In CD test, 288-290
Check-Out CD test, 288-289
header, 288
setup, 288
Slim—Table Style framework, 287-291
websites, 298
test platforms, 248-252
test presentation
complex data, 187
custom table forms, 188
customer understood tables, 183-185
specifying multiple actions, 185-187
tables versus text, 185
test redundancy, 196-197
test scripts, 31-33
test sequence, 193-194
test setup
ameliorating potential problems,
259-260
common setup, 257-259
persistent storage issues, 260-261
test order, 260
testability of stories, 57

testing layers, 210-211
testing matrix, 23-24
testing systems with random events, 277
testing unit, 16
tests
acceptance tests. See acceptance tests
black box testing, 255-256
component tests, 25, 211
manual testing, 172
modules tests, 211
post-implementation tests, 17-18
preimplementation tests, 19-20
quality attribute tests, 117-119
regression testing, 202
unit tests
explained, 25, 211, 256
limitations, 88
workflow tests, 119-120
xUnit tests, 34-35
text, versus tables, 78, 185
time periods, calculating, 99
tracking business value, 223
transient states, 144
triads
explained, 15-16
triads for large systems, 167-169
triangle exercise, 314
types of tests, 23-25

U

ubiquitous language, 205-207
unavailable customers, 213
unit tests
explained, 25, 211, 256
limitations, 88
usability testing, 24, 116
use cases from user stories, 57-63
user interfaces
decoupling. See decoupling user
interface
external interfaces
creating acceptance tests for, 107
explained, 100-108
system context, 112-113
as part of requirements process, 255
user interface tests, 33-34, 93

INDEX

uses of acceptance tests
breaking down stories, 200
degree of doneness, 199
developer stories, 200
estimation aid, 200

A%

validation, local-part, 265-266

value of stories, 55

verification tests, 269

Visual Hospital Touchscreen
Solution, 325

W-X-Y-Z
Wake, Bill, 55
Walsh, Rob, 235
websites, test framework websites, 298
Weinberg, Jerry, 277
West, Mae, 257
Wilde, Oscar, 161
workflows
improving, 178-181
workflow tests, 119-120
library print server case study,
236-241
test sequence, 193-194

xUnit tests, 34-35

ZIP code lookup, 151-156

345

	Contents
	Introduction
	Chapter 4: An Introductory Acceptance Test
	A Sample Business Rule
	Implementing the Acceptance Tests
	Testing Process
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

