
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321712332
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321712332
https://plusone.google.com/share?url=http://www.informit.com/title/9780321712332
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321712332
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321712332/Free-Sample-Chapter

Computer Security

Second Edition

This page intentionally left blank

Computer Security
Art and Science

Second Edition

Matt Bishop
with contributions from

Elisabeth Sullivan and Michelle Ruppel

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018950017

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-71233-2
ISBN-10: 0-321-71233-1

1 18

http://www.informit.com/
http://www.pearsoned.com/permissions/

To my dear Holly; our children Heidi, Steven, David, and Caroline; our grandchildren
Skyler and Sage; and our friends Seaview, Tinker Belle, Stripe, Baby Windsor,
Scout, Fur, Puff, Mouse, Shadow, Fuzzy, Dusty, and the rest of the menagerie.

This page intentionally left blank

Contents

Preface . xxix

Acknowledgments . xlv

About the Author . xlix

PART I : INTRODUCTION 1

Chapter 1 An Overview of Computer Security . 3

1.1 The Basic Components . 3
1.1.1 Con�dentiality . 4
1.1.2 Integrity . 5
1.1.3 Availability . 6

1.2 Threats . 6
1.3 Policy and Mechanism . 9

1.3.1 Goals of Security . 10
1.4 Assumptions and Trust . 11
1.5 Assurance . 12

1.5.1 Speci�cation . 14
1.5.2 Design . 14
1.5.3 Implementation . 15

1.6 Operational Issues . 16
1.6.1 Cost-Bene�t Analysis . 16
1.6.2 Risk Analysis . 17
1.6.3 Laws and Customs . 19

1.7 Human Issues . 20
1.7.1 Organizational Problems . 20
1.7.2 People Problems . 21

1.8 Tying It All Together . 22
1.9 Summary . 24
1.10 Research Issues . 24
1.11 Further Reading . 25
1.12 Exercises . 25

vii

viii Contents

PART II : FOUNDATIONS 29

Chapter 2 Access Control Matrix . 31

2.1 Protection State . 31
2.2 Access Control Matrix Model . 32

2.2.1 Access Control by Boolean Expression Evaluation 35
2.2.2 Access Controlled by History . 36

2.3 Protection State Transitions . 37
2.3.1 Conditional Commands . 40

2.4 Copying, Owning, and the Attenuation of Privilege 42
2.4.1 Copy Right . 42
2.4.2 Own Right . 42
2.4.3 Principle of Attenuation of Privilege . 43

2.5 Summary . 44
2.6 Research Issues . 44
2.7 Further Reading . 44
2.8 Exercises . 45

Chapter 3 Foundational Results . 49

3.1 The General Question . 49
3.2 Basic Results . 51
3.3 The Take-Grant Protection Model . 56

3.3.1 Sharing of Rights . 57
3.3.2 Interpretation of the Model . 61
3.3.3 Theft in the Take-Grant Protection Model 62
3.3.4 Conspiracy . 66
3.3.5 Summary . 68

3.4 Closing the Gap: The Schematic Protection Model 68
3.4.1 Link Predicate . 69
3.4.2 Filter Function . 70
3.4.3 Putting It All Together . 71
3.4.4 Demand and Create Operations . 72
3.4.5 Safety Analysis . 75

3.5 Expressive Power and the Models . 81
3.5.1 Brief Comparison of HRU and SPM 82
3.5.2 Extending SPM . 83
3.5.3 Simulation and Expressiveness . 88
3.5.4 Typed Access Matrix Model . 92

3.6 Comparing Security Properties of Models . 94
3.6.1 Comparing Schemes and Security Properties 95
3.6.2 Augmented Typed Access Matrix Model 99

Contents ix

3.7 Summary . 101
3.8 Research Issues . 102
3.9 Further Reading . 102
3.10 Exercises . 103

PART III : POLICY 107

Chapter 4 Security Policies . 109

4.1 The Nature of Security Policies . 109
4.2 Types of Security Policies . 113
4.3 The Role of Trust . 115
4.4 Types of Access Control . 117
4.5 Policy Languages . 118

4.5.1 High-Level Policy Languages . 119
4.5.2 Low-Level Policy Languages . 125

4.6 Example: Academic Computer Security Policy 126
4.6.1 General University Electronic Communications

Policy . 127
4.6.2 Implementation at UC Davis . 130

4.7 Security and Precision . 131
4.8 Summary . 136
4.9 Research Issues . 136
4.10 Further Reading . 137
4.11 Exercises . 138

Chapter 5 Confidentiality Policies . 141

5.1 Goals of Con�dentiality Policies . 141
5.2 The Bell-LaPadula Model . 142

5.2.1 Informal Description . 142
5.2.2 Example: Trusted Solaris . 146
5.2.3 Formal Model . 151
5.2.4 Example Model Instantiation: Multics 158

5.3 Tranquility . 161
5.3.1 Declassi�cation Principles . 163

5.4 The Controversy over the Bell-LaPadula Model 164
5.4.1 McLean’s †-Property and the Basic Security Theorem 164
5.4.2 McLean’s System Z and More Questions 166

5.5 Summary . 169
5.6 Research Issues . 169
5.7 Further Reading . 170
5.8 Exercises . 171

x Contents

Chapter 6 Integrity Policies . 173

6.1 Goals . 173
6.2 The Biba Model . 175

6.2.1 Low-Water-Mark Policy . 176
6.2.2 Ring Policy . 177
6.2.3 Biba’s Model (Strict Integrity Policy) 177

6.3 Lipner’s Integrity Matrix Model . 178
6.3.1 Lipner’s Use of the Bell-LaPadula Model 178
6.3.2 Lipner’s Full Model . 181
6.3.3 Comparison with Biba . 182

6.4 Clark-Wilson Integrity Model . 183
6.4.1 The Model . 184
6.4.2 Comparison with the Requirements . 187
6.4.3 Comparison with Other Models . 188

6.5 Trust Models . 189
6.5.1 Policy-Based Trust Management . 191
6.5.2 Reputation-Based Trust Management 194

6.6 Summary . 196
6.7 Research Issues . 196
6.8 Further Reading . 197
6.9 Exercises . 198

Chapter 7 Availability Policies . 201

7.1 Goals of Availability Policies . 201
7.2 Deadlock . 202
7.3 Denial of Service Models . 203

7.3.1 Constraint-Based Model . 204
7.3.2 State-Based Modes . 210

7.4 Example: Availability and Network Flooding 215
7.4.1 Analysis . 216
7.4.2 Intermediate Systems . 216
7.4.3 TCP State and Memory Allocations 218
7.4.4 Other Flooding Attacks . 221

7.5 Summary . 222
7.6 Research Issues . 222
7.7 Further Reading . 223
7.8 Exercises . 224

Chapter 8 Hybrid Policies . 227

8.1 Chinese Wall Model . 227
8.1.1 Informal Description . 228
8.1.2 Formal Model . 230

Contents xi

8.1.3 Aggressive Chinese Wall Model . 233
8.1.4 Bell-LaPadula and Chinese Wall Models 234
8.1.5 Clark-Wilson and Chinese Wall Models 236

8.2 Clinical Information Systems Security Policy 236
8.2.1 Bell-LaPadula and Clark-Wilson Models 239

8.3 Originator Controlled Access Control . 239
8.3.1 Digital Rights Management . 241

8.4 Role-Based Access Control . 244
8.5 Break-the-Glass Policies . 249
8.6 Summary . 250
8.7 Research Issues . 250
8.8 Further Reading . 251
8.9 Exercises . 252

Chapter 9 Noninterference and Policy Composition 255

9.1 The Problem . 255
9.1.1 Composition of Bell-LaPadula Models 256

9.2 Deterministic Noninterference . 259
9.2.1 Unwinding Theorem . 263
9.2.2 Access Control Matrix Interpretation 266
9.2.3 Security Policies That Change over Time 268
9.2.4 Composition of Deterministic Noninterference-Secure

Systems . 270
9.3 Nondeducibility . 271

9.3.1 Composition of Deducibly Secure Systems 273
9.4 Generalized Noninterference . 274

9.4.1 Composition of Generalized Noninterference Systems 275
9.5 Restrictiveness . 277

9.5.1 State Machine Model . 277
9.5.2 Composition of Restrictive Systems 279

9.6 Side Channels and Deducibility . 280
9.7 Summary . 282
9.8 Research Issues . 283
9.9 Further Reading . 283
9.10 Exercises . 285

PART IV : IMPLEMENTATION I: CRYPTOGRAPHY 287

Chapter 10 Basic Cryptography . 289

10.1 Cryptography . 289
10.1.1 Overview of Cryptanalysis . 290

xii Contents

10.2 Symmetric Cryptosystems . 291
10.2.1 Transposition Ciphers . 291
10.2.2 Substitution Ciphers . 292
10.2.3 Data Encryption Standard . 299
10.2.4 Other Modern Symmetric Ciphers . 302
10.2.5 Advanced Encryption Standard . 303

10.3 Public Key Cryptography . 306
10.3.1 El Gamal . 307
10.3.2 RSA . 309
10.3.3 Elliptic Curve Ciphers . 312

10.4 Cryptographic Checksums . 315
10.4.1 HMAC . 317

10.5 Digital Signatures . 318
10.5.1 Symmetric Key Signatures . 319
10.5.2 Public Key Signatures . 319

10.6 Summary . 323
10.7 Research Issues . 324
10.8 Further Reading . 325
10.9 Exercises . 326

Chapter 11 Key Management . 331

11.1 Session and Interchange Keys . 332
11.2 Key Exchange . 332

11.2.1 Symmetric Cryptographic Key Exchange 333
11.2.2 Kerberos . 337
11.2.3 Public Key Cryptographic Key Exchange and

Authentication . 338
11.3 Key Generation . 341
11.4 Cryptographic Key Infrastructures . 343

11.4.1 Merkle’s Tree Authentication Scheme 344
11.4.2 Certi�cate Signature Chains . 346
11.4.3 Public Key Infrastructures . 350

11.5 Storing and Revoking Keys . 353
11.5.1 Key Storage . 353
11.5.2 Key Revocation . 358

11.6 Summary . 359
11.7 Research Issues . 360
11.8 Further Reading . 361
11.9 Exercises . 362

Contents xiii

Chapter 12 Cipher Techniques . 367

12.1 Problems . 367
12.1.1 Precomputing the Possible Messages 367
12.1.2 Misordered Blocks . 368
12.1.3 Statistical Regularities . 368
12.1.4 Type Flaw Attacks . 369
12.1.5 Summary . 370

12.2 Stream and Block Ciphers . 370
12.2.1 Stream Ciphers . 371
12.2.2 Block Ciphers . 374

12.3 Authenticated Encryption . 377
12.3.1 Counter with CBC-MAC Mode . 377
12.3.2 Galois Counter Mode . 379

12.4 Networks and Cryptography . 381
12.5 Example Protocols . 384

12.5.1 Secure Electronic Mail: PEM and
OpenPGP . 384

12.5.2 Instant Messaging . 389
12.5.3 Security at the Transport Layer: TLS and SSL 393
12.5.4 Security at the Network Layer: IPsec 402
12.5.5 Conclusion . 410

12.6 Summary . 410
12.7 Research Issues . 411
12.8 Further Reading . 411
12.9 Exercises . 413

Chapter 13 Authentication . 415

13.1 Authentication Basics . 415
13.2 Passwords . 416
13.3 Password Selection . 418

13.3.1 Random Selection of Passwords . 418
13.3.2 Pronounceable and Other Computer-Generated

Passwords . 420
13.3.3 User Selection of Passwords . 421
13.3.4 Graphical Passwords . 425

13.4 Attacking Passwords . 426
13.4.1 Off-Line Dictionary Attacks . 428
13.4.2 On-Line Dictionary Attacks . 430
13.4.3 Password Strength . 432

xiv Contents

13.5 Password Aging . 434
13.5.1 One-Time Passwords . 436

13.6 Challenge-Response . 438
13.6.1 Pass Algorithms . 438
13.6.2 Hardware-Supported Challenge-Response Procedures 439
13.6.3 Challenge-Response and Dictionary Attacks 439

13.7 Biometrics . 441
13.7.1 Fingerprints . 442
13.7.2 Voices . 443
13.7.3 Eyes . 443
13.7.4 Faces . 444
13.7.5 Keystrokes . 444
13.7.6 Combinations . 445

13.8 Location . 445
13.9 Multifactor Authentication . 446
13.10 Summary . 448
13.11 Research Issues . 449
13.12 Further Reading . 450
13.13 Exercises . 451

PART V : IMPLEMENTATION II: SYSTEMS 453

Chapter 14 Design Principles . 455

14.1 Underlying Ideas . 455
14.2 Principles of Secure Design . 457

14.2.1 Principle of Least Privilege . 457
14.2.2 Principle of Fail-Safe Defaults . 458
14.2.3 Principle of Economy of Mechanism 459
14.2.4 Principle of Complete Mediation . 460
14.2.5 Principle of Open Design . 461
14.2.6 Principle of Separation of Privilege . 463
14.2.7 Principle of Least Common Mechanism 463
14.2.8 Principle of Least Astonishment . 464

14.3 Summary . 466
14.4 Research Issues . 466
14.5 Further Reading . 467
14.6 Exercises . 468

Chapter 15 Representing Identity . 471

15.1 What Is Identity? . 471
15.2 Files and Objects . 472
15.3 Users . 473

Contents xv

15.4 Groups and Roles . 475
15.5 Naming and Certi�cates . 476

15.5.1 Con�icts . 479
15.5.2 The Meaning of the Identity . 481
15.5.3 Trust . 482

15.6 Identity on the Web . 484
15.6.1 Host Identity . 484
15.6.2 State and Cookies . 488

15.7 Anonymity on the Web . 490
15.7.1 Email Anonymizers . 491
15.7.2 Onion Routing . 495

15.8 Summary . 501
15.9 Research Issues . 502
15.10 Further Reading . 503
15.11 Exercises . 504

Chapter 16 Access Control Mechanisms . 507

16.1 Access Control Lists . 507
16.1.1 Abbreviations of Access Control Lists 508
16.1.2 Creation and Maintenance of Access Control Lists 511
16.1.3 Revocation of Rights . 514
16.1.4 Example: NTFS and Access Control Lists 515

16.2 Capabilities . 518
16.2.1 Implementation of Capabilities . 519
16.2.2 Copying and Amplifying Capabilities 520
16.2.3 Revocation of Rights . 522
16.2.4 Limits of Capabilities . 522
16.2.5 Comparison with Access Control Lists 523
16.2.6 Privileges . 524

16.3 Locks and Keys . 526
16.3.1 Type Checking . 528
16.3.2 Sharing Secrets . 529

16.4 Ring-Based Access Control . 531
16.5 Propagated Access Control Lists . 533
16.6 Summary . 535
16.7 Research Issues . 535
16.8 Further Reading . 536
16.9 Exercises . 536

Chapter 17 Information Flow . 539

17.1 Basics and Background . 539
17.1.1 Entropy-Based Analysis . 540
17.1.2 Information Flow Models and Mechanisms 541

xvi Contents

17.2 Nonlattice Information Flow Policies . 542
17.2.1 Con�nement Flow Model . 543
17.2.2 Transitive Nonlattice Information Flow Policies 544
17.2.3 Nontransitive Information Flow Policies 545

17.3 Static Mechanisms . 548
17.3.1 Declarations . 549
17.3.2 Program Statements . 550
17.3.3 Exceptions and In�nite Loops . 557
17.3.4 Concurrency . 558
17.3.5 Soundness . 561

17.4 Dynamic Mechanisms . 562
17.4.1 Fenton’s Data Mark Machine . 562
17.4.2 Variable Classes . 565

17.5 Integrity Mechanisms . 566
17.6 Example Information Flow Controls . 567

17.6.1 Privacy and Android Cell Phones . 568
17.6.2 Firewalls . 570

17.7 Summary . 574
17.8 Research Issues . 574
17.9 Further Reading . 575
17.10 Exercises . 576

Chapter 18 Confinement Problem . 579

18.1 The Con�nement Problem . 579
18.2 Isolation . 582

18.2.1 Controlled Environment . 582
18.2.2 Program Modi�cation . 590

18.3 Covert Channels . 594
18.3.1 Detection of Covert Channels . 596
18.3.2 Analysis of Covert Channels . 610
18.3.3 Mitigation of Covert Channels . 616

18.4 Summary . 619
18.5 Research Issues . 620
18.6 Further Reading . 620
18.7 Exercises . 622

PART VI : ASSURANCE 625
Contributed by Elisabeth Sullivan and Michelle Ruppel

Chapter 19 Introduction to Assurance . 627

19.1 Assurance and Trust . 627
19.1.1 The Need for Assurance . 629

Contents xvii

19.1.2 The Role of Requirements in Assurance 631
19.1.3 Assurance throughout the Life Cycle 632

19.2 Building Secure and Trusted Systems . 634
19.2.1 Life Cycle . 634
19.2.2 The Waterfall Life Cycle Model . 639
19.2.3 Agile Software Development . 641
19.2.4 Other Models of Software Development 644

19.3 Summary . 645
19.4 Research Issues . 645
19.5 Further Reading . 646
19.6 Exercises . 647

Chapter 20 Building Systems with Assurance . 649

20.1 Assurance in Requirements De�nition and Analysis 649
20.1.1 Threats and Security Objectives . 650
20.1.2 Architectural Considerations . 651
20.1.3 Policy De�nition and Requirements Speci�cation 657
20.1.4 Justifying Requirements . 660

20.2 Assurance during System and Software Design 662
20.2.1 Design Techniques That Support Assurance 662
20.2.2 Design Document Contents . 665
20.2.3 Building Documentation and Speci�cation 675
20.2.4 Justifying That Design Meets Requirements 677

20.3 Assurance in Implementation and Integration 685
20.3.1 Implementation Considerations That Support

Assurance . 685
20.3.2 Assurance through Implementation Management 686
20.3.3 Justifying That the Implementation Meets

the Design . 687
20.4 Assurance during Operation and Maintenance 695
20.5 Summary . 696
20.6 Research Issues . 696
20.7 Further Reading . 697
20.8 Exercises . 698

Chapter 21 Formal Methods . 699

21.1 Formal Veri�cation Techniques . 699
21.2 Formal Speci�cation . 702
21.3 Early Formal Veri�cation Techniques . 705

21.3.1 The Hierarchical Development Methodology 705
21.3.2 Enhanced HDM . 710
21.3.3 The Gypsy Veri�cation Environment 711

xviii Contents

21.4 Current Veri�cation Systems . 713
21.4.1 The Prototype Veri�cation System . 713
21.4.2 The Symbolic Model Veri�er . 716
21.4.3 The Naval Research Laboratory Protocol Analyzer 720

21.5 Functional Programming Languages . 721
21.6 Formally Veri�ed Products . 722
21.7 Summary . 723
21.8 Research Issues . 724
21.9 Further Reading . 725
21.10 Exercises . 725

Chapter 22 Evaluating Systems . 727

22.1 Goals of Formal Evaluation . 727
22.1.1 Deciding to Evaluate . 728
22.1.2 Historical Perspective of Evaluation Methodologies 729

22.2 TCSEC: 1983–1999 . 730
22.2.1 TCSEC Requirements . 731
22.2.2 The TCSEC Evaluation Classes . 733
22.2.3 The TCSEC Evaluation Process . 734
22.2.4 Impacts . 735

22.3 International Efforts and the ITSEC: 1991–2001 737
22.3.1 ITSEC Assurance Requirements . 739
22.3.2 The ITSEC Evaluation Levels . 740
22.3.3 The ITSEC Evaluation Process . 741
22.3.4 Impacts . 741

22.4 Commercial International Security Requirements: 1991 742
22.4.1 CISR Requirements . 743
22.4.2 Impacts . 743

22.5 Other Commercial Efforts: Early 1990s . 744
22.6 The Federal Criteria: 1992 . 744

22.6.1 FC Requirements . 745
22.6.2 Impacts . 745

22.7 FIPS 140: 1994–Present . 746
22.7.1 FIPS 140 Requirements . 746
22.7.2 FIPS 140-2 Security Levels . 747
22.7.3 Additional FIPS 140-2 Documentation 748
22.7.4 Impact . 748
22.7.5 Future . 749

22.8 The Common Criteria: 1998–Present . 749
22.8.1 Overview of the Methodology . 751
22.8.2 CC Requirements . 756
22.8.3 CC Security Functional Requirements 756

Contents xix

22.8.4 Assurance Requirements . 759
22.8.5 Evaluation Assurance Levels . 759
22.8.6 Evaluation Process . 761
22.8.7 Other International Organizations . 762
22.8.8 Impacts . 763
22.8.9 Future of the Common Criteria . 764

22.9 SSE-CMM: 1997–Present . 765
22.9.1 The SSE-CMM Model . 765
22.9.2 Using the SSE-CMM . 767

22.10 Summary . 768
22.11 Research Issues . 769
22.12 Further Reading . 769
22.13 Exercises . 770

PART VII : SPECIAL TOPICS 773

Chapter 23 Malware . 775

23.1 Introduction . 775
23.2 Trojan Horses . 776

23.2.1 Rootkits . 777
23.2.2 Propagating Trojan Horses . 779

23.3 Computer Viruses . 780
23.3.1 Infection Vectors . 782
23.3.2 Concealment . 785
23.3.3 Summary . 790

23.4 Computer Worms . 790
23.5 Bots and Botnets . 793
23.6 Other Malware . 796

23.6.1 Rabbits and Bacteria . 796
23.6.2 Logic Bombs . 797
23.6.3 Adware . 797
23.6.4 Spyware . 799
23.6.5 Ransomware . 800
23.6.6 Phishing . 802

23.7 Combinations . 803
23.8 Theory of Computer Viruses . 803
23.9 Defenses . 808

23.9.1 Scanning Defenses . 808
23.9.2 Data and Instructions . 811
23.9.3 Containment . 812
23.9.4 Speci�cations as Restrictions . 817

xx Contents

23.9.5 Limiting Sharing . 817
23.9.6 Statistical Analysis . 819
23.9.7 The Notion of Trust . 819

23.10 Summary . 820
23.11 Research Issues . 820
23.12 Further Reading . 821
23.13 Exercises . 822

Chapter 24 Vulnerability Analysis . 825

24.1 Introduction . 825
24.2 Penetration Studies . 827

24.2.1 Goals . 827
24.2.2 Layering of Tests . 828
24.2.3 Methodology at Each Layer . 829
24.2.4 Flaw Hypothesis Methodology . 830
24.2.5 Versions . 833
24.2.6 Example: Penetration of the Michigan Terminal

System . 837
24.2.7 Example: Compromise of a Burroughs System 839
24.2.8 Example: Penetration of a Corporate Computer System . . . 840
24.2.9 Example: Penetrating a UNIX System 841
24.2.10 Example: Penetrating a Windows System 843
24.2.11 Debate . 844
24.2.12 Conclusion . 845

24.3 Vulnerability Classi�cation . 845
24.3.1 Two Security Flaws . 846

24.4 Frameworks . 849
24.4.1 The RISOS Study . 849
24.4.2 Protection Analysis Model . 851
24.4.3 The NRL Taxonomy . 857
24.4.4 Aslam’s Model . 859
24.4.5 Comparison and Analysis . 860

24.5 Standards . 864
24.5.1 Common Vulnerabilities and Exposures (CVE) 864
24.5.2 Common Weaknesses and Exposures (CWE) 866

24.6 Gupta and Gligor’s Theory of Penetration Analysis 868
24.6.1 The Flow-Based Model of Penetration Analysis 869
24.6.2 The Automated Penetration Analysis Tool 872
24.6.3 Discussion . 873

24.7 Summary . 873
24.8 Research Issues . 874
24.9 Further Reading . 875
24.10 Exercises . 876

Contents xxi

Chapter 25 Auditing . 879

25.1 De�nition . 879
25.2 Anatomy of an Auditing System . 880

25.2.1 Logger . 881
25.2.2 Analyzer . 883
25.2.3 Noti�er . 883

25.3 Designing an Auditing System . 884
25.3.1 Implementation Considerations . 886
25.3.2 Syntactic Issues . 887
25.3.3 Log Sanitization . 888
25.3.4 Application and System Logging . 891

25.4 A Posteriori Design . 893
25.4.1 Auditing to Detect Violations of a Known Policy 893
25.4.2 Auditing to Detect Known Violations of a Policy 895

25.5 Auditing Mechanisms . 897
25.5.1 Secure Systems . 897
25.5.2 Nonsecure Systems . 899

25.6 Examples: Auditing File Systems . 900
25.6.1 Audit Analysis of the NFS Version 2 Protocol 900
25.6.2 The Logging and Auditing File System (LAFS) 905
25.6.3 Comparison . 907
25.6.4 Audit Browsing . 908

25.7 Summary . 910
25.8 Research Issues . 911
25.9 Further Reading . 912
25.10 Exercises . 913

Chapter 26 Intrusion Detection . 917

26.1 Principles . 917
26.2 Basic Intrusion Detection . 918
26.3 Models . 920

26.3.1 Anomaly Modeling . 920
26.3.2 Misuse Modeling . 932
26.3.3 Speci�cation Modeling . 938
26.3.4 Summary . 941

26.4 Architecture . 942
26.4.1 Agent . 943
26.4.2 Director . 945
26.4.3 Noti�er . 946

26.5 Organization of Intrusion Detection Systems 948
26.5.1 Monitoring Network Traf�c for Intrusions: NSM 948
26.5.2 Combining Host and Network Monitoring: DIDS 949
26.5.3 Autonomous Agents: AAFID . 952

xxii Contents

26.6 Summary . 954
26.7 Research Issues . 954
26.8 Further Reading . 955
26.9 Exercises . 956

Chapter 27 Attacks and Responses . 959

27.1 Attacks . 959
27.2 Representing Attacks . 960

27.2.1 Attack Trees . 961
27.2.2 The Requires/Provides Model . 965
27.2.3 Attack Graphs . 969

27.3 Intrusion Response . 971
27.3.1 Incident Prevention . 971
27.3.2 Intrusion Handling . 975

27.4 Digital Forensics . 987
27.4.1 Principles . 987
27.4.2 Practice . 990
27.4.3 Anti-Forensics . 994

27.5 Summary . 996
27.6 Research Issues . 997
27.7 Further Reading . 998
27.8 Exercises . 999

PART VIII : PRACTICUM 1003

Chapter 28 Network Security . 1005

28.1 Introduction . 1005
28.2 Policy Development . 1006

28.2.1 Data Classes . 1007
28.2.2 User Classes . 1008
28.2.3 Availability . 1010
28.2.4 Consistency Check . 1010

28.3 Network Organization . 1011
28.3.1 Analysis of the Network Infrastructure 1013
28.3.2 In the DMZ . 1017
28.3.3 In the Internal Network . 1021
28.3.4 General Comment on Assurance . 1025

28.4 Availability . 1026

Contents xxiii

28.5 Anticipating Attacks . 1027
28.6 Summary . 1028
28.7 Research Issues . 1028
28.8 Further Reading . 1029
28.9 Exercises . 1030

Chapter 29 System Security . 1035

29.1 Introduction . 1035
29.2 Policy . 1036

29.2.1 The WWW Server System in the DMZ 1036
29.2.2 The Development System . 1037
29.2.3 Comparison . 1041
29.2.4 Conclusion . 1041

29.3 Networks . 1042
29.3.1 The WWW Server System in the DMZ 1042
29.3.2 The Development System . 1045
29.3.3 Comparison . 1047

29.4 Users . 1048
29.4.1 The WWW Server System in the DMZ 1048
29.4.2 The Development System . 1050
29.4.3 Comparison . 1052

29.5 Authentication . 1053
29.5.1 The WWW Server System in the DMZ 1053
29.5.2 Development Network System . 1054
29.5.3 Comparison . 1055

29.6 Processes . 1055
29.6.1 The WWW Server System in the DMZ 1055
29.6.2 The Development System . 1059
29.6.3 Comparison . 1060

29.7 Files . 1061
29.7.1 The WWW Server System in the DMZ 1061
29.7.2 The Development System . 1063
29.7.3 Comparison . 1065

29.8 Retrospective . 1066
29.8.1 The WWW Server System in the DMZ 1066
29.8.2 The Development System . 1067

29.9 Summary . 1068
29.10 Research Issues . 1068
29.11 Further Reading . 1069
29.12 Exercises . 1070

xxiv Contents

Chapter 30 User Security . 1073

30.1 Policy . 1073
30.2 Access . 1074

30.2.1 Passwords . 1074
30.2.2 The Login Procedure . 1076
30.2.3 Leaving the System . 1079

30.3 Files and Devices . 1080
30.3.1 Files . 1080
30.3.2 Devices . 1084

30.4 Processes . 1087
30.4.1 Copying and Moving Files . 1087
30.4.2 Accidentally Overwriting Files . 1088
30.4.3 Encryption, Cryptographic Keys, and Passwords 1089
30.4.4 Startup Settings . 1090
30.4.5 Limiting Privileges . 1091
30.4.6 Malicious Logic . 1091

30.5 Electronic Communications . 1092
30.5.1 Automated Electronic Mail Processing 1092
30.5.2 Failure to Check Certi�cates . 1093
30.5.3 Sending Unexpected Content . 1094

30.6 Summary . 1094
30.7 Research Issues . 1095
30.8 Further Reading . 1095
30.9 Exercises . 1096

Chapter 31 Program Security . 1099

31.1 Problem . 1099
31.2 Requirements and Policy . 1100

31.2.1 Requirements . 1100
31.2.2 Threats . 1102

31.3 Design . 1104
31.3.1 Framework . 1104
31.3.2 Access to Roles and Commands . 1106

31.4 Re�nement and Implementation . 1111
31.4.1 First-Level Re�nement . 1111
31.4.2 Second-Level Re�nement . 1112
31.4.3 Functions . 1114
31.4.4 Summary . 1117

31.5 Common Security-Related Programming Problems 1117
31.5.1 Improper Choice of Initial Protection Domain 1118
31.5.2 Improper Isolation of Implementation Detail 1123

Contents xxv

31.5.3 Improper Change . 1125
31.5.4 Improper Naming . 1129
31.5.5 Improper Deallocation or Deletion 1131
31.5.6 Improper Validation . 1132
31.5.7 Improper Indivisibility . 1138
31.5.8 Improper Choice of Operand or Operation 1139
31.5.9 Summary . 1141

31.6 Testing, Maintenance, and Operation . 1141
31.6.1 Testing . 1142
31.6.2 Testing Composed Modules . 1145
31.6.3 Testing the Program . 1145

31.7 Distribution . 1146
31.8 Summary . 1147
31.9 Research Issues . 1147
31.10 Further Reading . 1148
31.11 Exercises . 1148

PART IX : APPENDICES 1151

Appendix A Lattices . 1153

A.1 Basics . 1153
A.2 Lattices . 1154
A.3 Exercises . 1155

Appendix B The Extended Euclidean Algorithm . 1157

B.1 The Euclidean Algorithm . 1157
B.2 The Extended Euclidean Algorithm . 1158
B.3 Solving ax mod n = 1 . 1160
B.4 Solving ax mod n = b . 1161
B.5 Exercises . 1161

Appendix C Entropy and Uncertainty . 1163

C.1 Conditional and Joint Probability . 1163
C.2 Entropy and Uncertainty . 1165
C.3 Joint and Conditional Entropy . 1166

C.3.1 Joint Entropy . 1166
C.3.2 Conditional Entropy . 1167
C.3.3 Perfect Secrecy . 1168

C.4 Exercises . 1169

xxvi Contents

Appendix D Virtual Machines . 1171

D.1 Virtual Machine Structure . 1171
D.2 Virtual Machine Monitor . 1171

D.2.1 Privilege and Virtual Machines . 1172
D.2.2 Physical Resources and Virtual Machines 1175
D.2.3 Paging and Virtual Machines . 1175

D.3 Exercises . 1176

Appendix E Symbolic Logic . 1179

E.1 Propositional Logic . 1179
E.1.1 Natural Deduction in Propositional Logic 1180
E.1.2 Rules . 1180
E.1.3 Derived Rules . 1181
E.1.4 Well-Formed Formulas . 1182
E.1.5 Truth Tables . 1182
E.1.6 Mathematical Induction . 1183

E.2 Predicate Logic . 1184
E.2.1 Natural Deduction in Predicate Logic 1185

E.3 Temporal Logic Systems . 1186
E.3.1 Syntax of CTL . 1186
E.3.2 Semantics of CTL . 1186

E.4 Exercises . 1188

Appendix F The Encryption Standards . 1191

F.1 Data Encryption Standard . 1191
F.1.1 Main DES Algorithm . 1191
F.1.2 Round Key Generation . 1195

F.2 Advanced Encryption Standard . 1196
F.2.1 Background . 1196
F.2.2 AES Encryption . 1197
F.2.3 Encryption . 1199
F.2.4 Round Key Generation . 1201
F.2.5 Equivalent Inverse Cipher Implementation 1203

F.3 Exercises . 1205

Appendix G Example Academic Security Policy . 1207

G.1 Acceptable Use Policy . 1207
G.1.1 Introduction . 1208
G.1.2 Rights and Responsibilities . 1208
G.1.3 Privacy . 1208

Contents xxvii

G.1.4 Enforcement of Laws and University Policies 1209
G.1.5 Unacceptable Conduct . 1209
G.1.6 Further Information . 1212

G.2 University of California Electronic Communications Policy 1212
G.2.1 Introduction . 1212
G.2.2 General Provisions . 1213
G.2.3 Allowable Use . 1216
G.2.4 Privacy and Con�dentiality . 1220
G.2.5 Security . 1225
G.2.6 Retention and Disposition . 1227
G.2.7 Appendix A: De�nitions . 1227
G.2.8 Appendix B: References . 1230
G.2.9 Appendix C: Policies Relating to Access Without

Consent . 1232
G.3 User Advisories . 1234

G.3.1 Introduction . 1234
G.3.2 User Responsibilities . 1234
G.3.3 Privacy Expectations . 1235
G.3.4 Privacy Protections . 1236
G.3.5 Privacy Limits . 1237
G.3.6 Security Considerations . 1239

G.4 Electronic Communications—Allowable Use 1241
G.4.1 Purpose . 1241
G.4.2 De�nitions . 1242
G.4.3 Policy . 1242
G.4.4 Allowable Users . 1242
G.4.5 Allowable Uses . 1243
G.4.6 Restrictions on Use . 1245
G.4.7 References and Related Policies . 1246

Appendix H Programming Rules . 1247

H.1 Implementation Rules . 1247
H.2 Management Rules . 1249

References . 1251

Index . 1341

This page intentionally left blank

Preface

HORTENSIO: Madam, before you touch the instrument
To learn the order of my �ngering,
I must begin with rudiments of art

To teach you gamouth in a briefer sort,
More pleasant, pithy and effectual,

Than hath been taught by any of my trade;
And there it is in writing, fairly drawn.

— The Taming of the Shrew, III, i, 62–68.

Preface to the Second Edition

Since the �rst edition of this book was published, the number of computer and
information security incidents has increased dramatically, as has their seriousness.
In 2010, a computer worm infected the software controlling a particular type
of centrifuge used in uranium-enrichment sites [1116, 1137]. In 2013, a security
breach at Target, a large chain of stores in the United States, compromised
40 million credit cards [1497, 1745, 2237]. Also in 2013, Yahoo reported that
an attack compromised more than 1 billion accounts [779]. In 2017, attackers
spread ransomware that crippled computers throughout the world, including
computers used in hospitals and telecommunications companies [1881]. Equifax
estimated that attackers also compromised the personal data of over 100,000,000
people [176].

These attacks exploit vulnerabilities that have their roots in vulnerabilities
of the 1980s, 1970s, and earlier. They seem more complex because systems have
become more complex, and thus the vulnerabilities are more obscure and require
more complex attacks to exploit. But the principles underlying the attacks, the
vulnerabilities, and the failures of the systems have not changed—only the arena
in which they are applied has.

Consistent with this philosophy, the second edition continues to focus on
the principles underlying the �eld of computer and information security. Many

xxix

xxx Preface

newer examples show how these principles are applied, or not applied, today; but
the principles themselves are as important today as they were in 2002, and earlier.
Some have been updated to re�ect a deeper understanding of people and systems.
Others have been applied in new and interesting ways. But they still ring true.

That said, the landscape of security has evolved greatly in the years since
this book was �rst published. The explosive growth of the World Wide Web, and
the consequent explosion in its use, has made security a problem at the forefront
of our society. No longer can vulnerabilities, both human and technological,
be relegated to the background of our daily lives. It is one of the elements at
the forefront, playing a role in everyone’s life as one browses the web, uses a
camera to take and send pictures, and turns on an oven remotely. We grant
access to our personal lives through social media such as Facebook, Twitter, and
Instagram, and to our homes through the Internet of Things and our connections
to the Internet. To ignore security issues, or consider them simply ancillary details
that “someone will �x somehow” or threats unlikely to be realized personally is
dangerous at best, and potentially disastrous at worst.

Ultimately, little has changed. The computing ecosystem of our day is badly
�awed. Among the manifestations of these technological �aws are that security
problems continue to exist, and continue to grow in magnitude of effect. An
interesting question to ponder is what might move the paradigm of security away
from the cycle of “patch and catch” and “let the buyer beware” to a stable and
safer ecosystem.

But we must continue to improve our understanding of, and implementa-
tion of, security. Security nihilism—simply giving up and asserting that we cannot
make things secure, so why try—means we accept these invasions of our privacy,
our society, and our world. Like everything else, security is imperfect, and always
will be—meaning we can improve the state of the art. This book is directed
towards that goal.

Updated Roadmap

The dependencies of the chapters are the same as in the �rst edition (see p. xl),
with two new chapters added.

Chapter 7, which includes a discussion of denial of service attack models,
contains material useful for Chapters 23, 24, 27, and 28. Similarly, Chapter 27
draws on material from the chapters in Part III as well as Chapters 23, 25, 26, and
all of Part VIII.

In addition to the suggestions in the preface to the �rst edition on p. xli
about topics for undergraduate classes, the material in Chapter 27 will introduce
undergraduates to how attacks occur, how they can be analyzed, and what their
effects are. Coupled with current examples drawn from the news, this chapter
should prove fascinating to undergraduates.

As for graduate classes, the new material in Chapter 7 will provide students
with some background on resilience, a topic increasing in importance. Otherwise,
the recommendations are the same as for the �rst edition (see p. xlii).

Preface xxxi

Changes to the First Edition

The second edition has extensively revised many examples to apply the concepts
to technologies, methodologies, and ideas that have emerged since the �rst edition
was published. Here, the focus is on new material in the chapters; changes to
examples are mentioned only when necessary to describe that material. In addition
to what is mentioned here, much of the text has been updated.

Chapter 1, “An Overview of Computer Security”: This chapter is largely un-
changed.

Chapter 2, “Access Control Matrix”: Section 2.2.2, “Access Controlled by History”
has been changed to use the problem of preventing downloaded programs from
accessing the system in unauthorized ways, instead of updating a database.
Section 2.4.3, “Principle of Attenuation of Privilege,” has been expanded slightly,
and exercises added to point out differing forms of the principle.

Chapter 3, “Foundational Results”: De�nition 3–1 has been updated to make
clear that “leaking” refers to a right being added to an element of the access
control matrix that did not contain it initially, and an exercise has been added to
demonstrate the difference between this de�nition and the one in the �rst edition.
Section 3.6 discusses comparing security properties of models.

Chapter 4, “Security Policies”: Section 4.5.1, “High-Level Policy Languages,” now
uses Ponder rather than a Java policy constraint language. Section 4.6, “Example:
Academic Computer Security Policy,” has been updated to re�ect changes in the
university policy.

Chapter 5, “Con�dentiality Policies”: Section 5.3.1 discusses principles for declas-
sifying information.

Chapter 6, “Integrity Policies”: Section 6.5 presents trust models.

Chapter 7, “Availability Policies”: This chapter is new.

Chapter 8, “Hybrid Policies”: Section 8.1.3 modi�es one of the assumptions of
the Chinese Wall model that is unrealistic. Section 8.3.1 expands the discussion
of ORCON to include DRM. Section 8.4 adds a discussion of several types of
RBAC models.

Chapter 9, “Noninterference and Policy Composition”: This chapter adds Section
9.6, which presents side channels in the context of deducibility.

Chapter 10, “Basic Cryptography”: This chapter has been extensively revised. The
discussion of the DES (Section 10.2.3) has been tightened and the algorithm

xxxii Preface

moved to Appendix F. Discussions of the AES (Section 10.2.5) and elliptic
curve cryptography (Section 10.3.3) have been added, and the section on digital
signatures moved from Chapter 11 to Section 10.5. Also, the number of digits in
the integers used in examples for public key cryptography has been increased from
2 to at least 4, and in many cases more.

Chapter 11, “Key Management”: Section 11.4.3 discusses public key infrastruc-
tures. Section 11.5.1.4, “Other Approaches,” now includes a brief discussion of
identity-based encryption.

Chapter 12, “Cipher Techniques”: Section 12.1, “Problems,” now includes a dis-
cussion of type �aw attacks. Section 12.3 discusses authenticated encryption with
associated data, and presents the CCM and GCM modes of block ciphers. A new
section, Section 12.5.2, discusses the Signal Protocol. Section 12.5.3, “Security
at the Transport Layer: TLS and SSL,” has been expanded and focuses on TLS
rather than SSL. It also discusses cryptographic weaknesses in SSL, such as the
POODLE attack, that have led to the use of SSL being strongly discouraged.

Chapter 13, “Authentication”: A discussion of graphical passwords has been added
as Section 13.3.4. Section 13.4.3 looks at quantifying password strength in terms
of entropy. The discussion of biometrics in Section 13.7 has been expanded to
re�ect their increasing use.

Chapter 14, “Design Principles”: The principle of least authority follows the prin-
ciple of least privilege in Section 14.2.1, and the principle of least astonishment
now supersedes the principle of psychological acceptability in Section 14.2.8.

Chapter 15, “Representing Identity”: Section 15.5, “Naming and Certi�cates,”now
includes a discussion of registration authorities (RAs). Section 15.6.1.3 adds a
discussion of the DNS security extensions (DNSSEC). Section 15.7.2 discusses
onion routing and Tor in the context of anonymity.

Chapter 16, “Access Control Mechanisms”: Section 16.2.6 discusses sets of privi-
leges in Linux and other UNIX-like systems.

Chapter 17, “Information Flow”: In contrast to the con�dentiality-based context
of information �ow in the main part of this chapter, Section 17.5 presents
information �ow in an integrity context. In Section 17.6, the SPI and SNSMG
examples of the �rst edition have been replaced by Android cell phones (Section
17.6.1) and �rewalls (Section 17.6.2).

Chapter 18, “Con�nement Problem”: Section 18.2 has been expanded to include
library operating systems (Section 18.2.1.2) and program modi�cation techniques
(Section 18.2.2).

Preface xxxiii

Chapter 19, “Introduction to Assurance”: Section 19.2.3, which covers agile soft-
ware development, has been added.

Chapter 20, “Building Systems with Assurance”: The example decomposition of
Windows 2000 into components has been updated to use Windows 10.

Chapter 21, “Formal Methods”: A new section, Section 21.5, discusses functional
programming languages, and another new section, 21.6, discusses formally veri-
�ed products.

Chapter 22, “Evaluating Systems”: Sections 22.7, on FIPS 140, and 22.8, on the
Common Criteria, have been extensively updated.

Chapter 23, “Malware”: Section 23.5 presents botnets, and Sections 23.6.3, 23.6.4,
23.6.5, and 23.6.6 discuss adware and spyware, ransomware, and phishing. While
not malware, phishing is a common vector for getting malware onto a system and
so it is discussed here.

Chapter 24, “Vulnerability Analysis”: Section 24.2.5 reviews several penetra-
tion testing frameworks used commercially and based on the Flaw Hypothesis
Methodology. Section 24.5 presents the widely used CVE and CWE standards.

Chapter 25, “Auditing”: Section 25.3.3, which discusses sanitization, has been
expanded.

Chapter 26, “Intrusion Detection”: Section 26.3.1 has been expanded to include
several widely used machine learning techniques for anomaly detection. Incident
response groups are discussed in Section 27.3.

Chapter 27, “Attacks and Responses”: This chapter is new.

Chapter 28, “Network Security”: The discussion of what �rewalls are has been
moved to Section 17.6.2, but the discussion of how the Drib con�gures and
uses them remains in this chapter. The Drib added wireless networks, which are
discussed in Section 28.3.3.1. Its analysis of using the cloud is in Section 28.3.3.2.
The rest of the chapter has been updated to refer to the new material in previous
chapters.

Chapter 29, “System Security”: This chapter has been updated to refer to the new
material in previous chapters.

Chapter 30, “User Security”: Section 30.2.2 describes the two-factor authentica-
tion procedure used by the Drib. The rest of the chapter has been updated to refer
to the new material in previous chapters.

xxxiv Preface

Chapter 31, “Program Security”: This chapter has been updated to refer to the
new material in previous chapters.

Two new appendices have been added. Appendix F presents the DES
and AES algorithms, and Appendix H collects the rules in Chapter 31 for easy
reference. In addition, Appendix D examines some hardware enhancements to
aid virtualization, and Appendix G contains the full academic security policy
discussed in Section 4.6.

Preface xxxv

Preface to the First Edition1

On September 11, 2001, terrorists seized control of four airplanes. Three were
�own into buildings, and a fourth crashed, with catastrophic loss of life. In the
aftermath, the security and reliability of many aspects of society drew renewed
scrutiny. One of these aspects was the widespread use of computers and their
interconnecting networks. The issue is not new. In 1988, approximately 5,000
computers throughout the Internet were rendered unusable within 4 hours by a
program called a worm [842].2 While the spread, and the effects, of this program
alarmed computer scientists, most people were not worried because the worm
did not affect their lives or their ability to do their jobs. In 1993, more users of
computer systems were alerted to such dangers when a set of programs called
sniffers were placed on many computers run by network service providers and
recorded login names and passwords [670].

After an attack on Tsutomu Shimomura’s computer system, and the fasci-
nating way Shimomura followed the attacker’s trail, which led to his arrest [1736],
the public’s interest and apprehension were �nally aroused. Computers were now
vulnerable. Their once reassuring protections were now viewed as �imsy.

Several �lms explored these concerns. Movies such as War Games and
Hackers provided images of people who can, at will, wander throughout comput-
ers and networks, maliciously or frivolously corrupting or destroying information
it may have taken millions of dollars to amass. (Reality intruded onHackerswhen
the World Wide Web page set up by MGM/United Artists was quickly altered to
present an irreverent commentary on the movie and to suggest that viewers seeThe
Net instead. Paramount Pictures denied doing this [869].) Another �lm, Sneakers,
presented a picture of those who test the security of computer (and other) systems
for their owners and for the government.

Goals

This book has three goals. The �rst is to show the importance of theory to
practice and of practice to theory. All too often, practitioners regard theory as
irrelevant and theoreticians think of practice as trivial. In reality, theory and
practice are symbiotic. For example, the theory of covert channels, in which the
goal is to limit the ability of processes to communicate through shared resources,
provides a mechanism for evaluating the effectiveness of mechanisms that con�ne
processes, such as sandboxes and �rewalls. Similarly, business practices in the
commercial world led to the development of several security policy models such as
the Clark-Wilson model and the Chinese Wall model. These models in turn help
the designers of security policies better understand and evaluate the mechanisms
and procedures needed to secure their sites.

1Chapter numbers have been updated to correspond to the chapters in the second edition.
2Section 23.4 discusses computer worms.

xxxvi Preface

The second goal is to emphasize that computer security and cryptography
are different. Although cryptography is an essential component of computer
security, it is by no means the only component. Cryptography provides a mech-
anism for performing speci�c functions, such as preventing unauthorized people
from reading and altering messages on a network. However, unless developers
understand the context in which they are using cryptography, and unless the
assumptions underlying the protocol and the cryptographic mechanisms apply
to the context, the cryptography may not add to the security of the system.
The canonical example is the use of cryptography to secure communications
between two low-security systems. If only trusted users can access the two systems,
cryptography protects messages in transit. But if untrusted users can access
either system (through authorized accounts or, more likely, by breaking in), the
cryptography is not suf�cient to protect the messages. The attackers can read the
messages at either endpoint.

The third goal is to demonstrate that computer security is not just a science
but also an art. It is an art because no system can be considered secure without
an examination of how it is to be used. The de�nition of a “secure computer”
necessitates a statement of requirements and an expression of those requirements
in the form of authorized actions and authorized users. (A computer engaged in
work at a university may be considered “secure” for the purposes of the work done
at the university. When moved to a military installation, that same system may not
provide suf�cient control to be deemed “secure” for the purposes of the work done
at that installation.) How will people, as well as other computers, interact with
the computer system? How clear and restrictive an interface can a designer create
without rendering the system unusable while trying to prevent unauthorized use
or access to the data or resources on the system?

Just as an artist paints his view of the world onto canvas, so does a designer
of security features articulate his view of the world of human/machine interaction
in the security policy and mechanisms of the system. Two designers may use
entirely different designs to achieve the same creation, just as two artists may use
different subjects to achieve the same concept.

Computer security is also a science. Its theory is based on mathematical
constructions, analyses, and proofs. Its systems are built in accordance with the
accepted practices of engineering. It uses inductive and deductive reasoning to
examine the security of systems from key axioms and to discover underlying prin-
ciples. These scienti�c principles can then be applied to untraditional situations
and new theories, policies, and mechanisms.

Philosophy

Key to understanding the problems that exist in computer security is a recognition
that the problems are not new. They are old problems, dating from the beginning
of computer security (and, in fact, arising from parallel problems in the non-
computer world). But the locus has changed as the �eld of computing has

Preface xxxvii

changed. Before the mid-1980s, mainframe and mid-level computers dominated
the market, and computer security problems and solutions were phrased in terms
of securing �les or processes on a single system. With the rise of networking and
the Internet, the arena has changed. Workstations and servers, and the networking
infrastructure that connects them, now dominate the market. Computer security
problems and solutions now focus on a networked environment. However, if the
workstations and servers, and the supporting network infrastructure, are viewed
as a single system, the models, theories, and problem statements developed for
systems before the mid-1980s apply equally well to current systems.

As an example, consider the issue of assurance. In the early period, assur-
ance arose in several ways: formal methods and proofs of correctness, validation
of policy to requirements, and acquisition of data and programs from trusted
sources, to name a few. Those providing assurance analyzed a single system,
the code on it, and the sources (vendors and users) from which the code could
be acquired to ensure that either the sources could be trusted or the programs
could be con�ned adequately to do minimal damage. In the later period, the
same basic principles and techniques apply, except that the scope of some has
been greatly expanded (from a single system and a small set of vendors to the
world-wide Internet). The work on proof-carrying code, an exciting development
in which the proof that a downloadable program module satis�es a stated policy
is incorporated into the program itself, is an example of this expansion.3 It
extends the notion of a proof of consistency with a stated policy. It advances the
technology of the earlier period into the later period. But in order to understand it
properly, one must understand the ideas underlying the concept of proof-carrying
code, and these ideas lie in the earlier period.

As another example, consider Saltzer and Schroeder’s principles of secure
design.4 Enunciated in 1975, they promote simplicity, con�nement, and under-
standing. When security mechanisms grow too complex, attackers can evade or
bypass them. Many programmers and vendors are learning this when attackers
break into their systems and servers. The argument that the principles are old,
and somehow outdated, rings hollow when the result of their violation is a non-
secure system.

The work from the earlier period is sometimes cast in terms of systems that
no longer exist and that differ in many ways from modern systems. This does not
vitiate the ideas and concepts, which also underlie the work done today. Once
these ideas and concepts are properly understood, applying them in a multiplicity
of environments becomes possible. Furthermore, the current mechanisms and
technologies will become obsolete and of historical interest themselves as new
forms of computing arise, but the underlying principles will live on, to underlie
the next generation—indeed the next era—of computing.

The philosophy of this book is that certain key concepts underlie all of
computer security, and that the study of all parts of computer security enriches

3Section 23.9.5.1 discusses proof-carrying code.
4Chapter 14 discusses these principles.

xxxviii Preface

the understanding of all parts. Moreover, critical to an understanding of the
applications of security-related technologies and methodologies is an under-
standing of the theory underlying those applications. Advances in the theory of
computer protection have illuminated the foundations of security systems. Issues
of abstract modeling, and modeling to meet speci�c environments, lead to systems
designed to achieve a speci�c and rewarding goal. Theorems about composability
of policies5 and the undecidability of the general security question6 have indicated
the limits of what can be done. Much work and effort are continuing to extend
the borders of those limits.

Application of these results has improved the quality of the security of the
systems being protected. However, the issue is how compatibly the assumptions of
the model (and theory) conform to the environment to which the theory is applied.
Although our knowledge of how to apply these abstractions is continually increas-
ing, we still have dif�culty correctly transposing the relevant information from a
realistic setting to one in which analyses can then proceed. Such abstraction often
eliminates vital information. The omitted data may pertain to security in non-
obvious ways. Without this information, the analysis is �awed.

The practitioner needs to know both the theoretical and practical aspects
of the art and science of computer security. The theory demonstrates what is
possible. The practical makes known what is feasible. The theoretician needs
to understand the constraints under which these theories are used, how their
results are translated into practical tools and methods, and how realistic are the
assumptions underlying the theories. Computer Security: Art and Science tries to
meet these needs.

Unfortunately, no single work can cover all aspects of computer security,
so this book focuses on those parts that are, in the author’s opinion, most
fundamental and most pervasive. The mechanisms exemplify the applications of
these principles.

Organization

The organization of this book re�ects its philosophy. It begins with mathematical
fundamentals and principles that provide boundaries within which security can
be modeled and analyzed effectively. The mathematics provides a framework for
expressing and analyzing the requirements of the security of a system. These
policies constrain what is allowed and what is not allowed. Mechanisms provide
the ability to implement these policies. The degree to which the mechanisms
correctly implement the policies, and indeed the degree to which the policies them-
selves meet the requirements of the organizations using the system, are questions
of assurance. Exploiting failures in policy, in implementation, and in assurance
comes next, as well as mechanisms for providing information on the attack.
The book concludes with the applications of both theory and policy focused

5See Chapter 9, “Noninterference and Policy Composition.”
6See Section 3.2, “Basic Results.”

Preface xxxix

on realistic situations. This natural progression emphasizes the development and
application of the principles existent in computer security.

Part I, “Introduction,” describes what computer security is all about and
explores the problems and challenges to be faced. It sets the context for the
remainder of the book.

Part II, “Foundations,” deals with basic questions such as how “security”
can be clearly and functionally de�ned, whether or not it is realistic, and whether
or not it is decidable. If it is decidable, under what conditions is it decidable, and
if not, how must the de�nition be bounded in order to make it decidable?

Part III, “Policy,” probes the relationship between policy and security. The
de�nition of “security” depends on policy. In Part III we examine several types
of policies, including the ever-present fundamental questions of trust, analysis of
policies, and the use of policies to constrain operations and transitions.

Part IV, “Implementation I: Cryptography,” discusses cryptography and
its role in security. It focuses on applications and discusses issues such as key
management and escrow, key distribution, and how cryptosystems are used in
networks. A quick study of authentication completes Part III.

Part V, “Implementation II: Systems,” considers how to implement the
requirements imposed by policies using system-oriented techniques. Certain de-
sign principles are fundamental to effective security mechanisms. Policies de�ne
who can act and how they can act, and so identity is a critical aspect of implemen-
tation. Mechanisms implementing access control and �ow control enforce various
aspects of policies.

Part VI, “Assurance,” presents methodologies and technologies for
ascertaining how well a system, or a product, meets its goals. After setting the
background, to explain exactly what “assurance” is, the art of building systems
to meet varying levels of assurance is discussed. Formal veri�cation methods
play a role. Part VI shows how the progression of standards has enhanced our
understanding of assurance techniques.

Part VII, “Special Topics,” discusses some miscellaneous aspects of com-
puter security. Malicious logic thwarts many mechanisms. Despite our best efforts
at high assurance, systems today are replete with vulnerabilities. Why? How can a
system be analyzed to detect vulnerabilities? What models might help us improve
the state of the art? Given these security holes, how can we detect attackers
who exploit them? A discussion of auditing �ows naturally into a discussion of
intrusion detection—a detection method for such attacks.

Part VIII, “Practicum,” presents examples of how to apply the principles
discussed throughout the book. It begins with networks and proceeds to systems,
users, and programs. Each chapter states a desired policy and shows how to
translate that policy into a set of mechanisms and procedures that support the
policy. Part VIII tries to demonstrate that the material covered elsewhere can be,
and should be, used in practice.

Each chapter in this book ends with a summary, descriptions of some
research issues, and some suggestions for further reading. The summary highlights
the important ideas in the chapter. The research issues are current “hot topics” or
are topics that may prove to be fertile ground for advancing the state of the art and

xl Preface

science of computer security. Interested readers who wish to pursue the topics in
any chapter in more depth can go to some of the suggested readings. They expand
on the material in the chapter or present other interesting avenues.

Roadmap

This book is both a reference book and a textbook. Its audience is undergraduate
and graduate students as well as practitioners. This section offers some sugges-
tions on approaching the book.

Dependencies
Chapter 1 is fundamental to the rest of the book and should be read �rst. After
that, however, the reader need not follow the chapters in order. Some of the
dependencies among chapters are as follows.

Chapter 3 depends on Chapter 2 and requires a fair degree of mathematical
maturity. Chapter 2, on the other hand, does not. The material in Chapter 3 is
for the most part not used elsewhere (although the existence of the �rst section’s
key result, the undecidability theorem, is mentioned repeatedly). It can be safely
skipped if the interests of the reader lie elsewhere.

The chapters in Part III build on one another. The formalisms in Chapter 5
are called on in Chapters 20 and 21, but nowhere else. Unless the reader intends to
delve into the sections on theorem proving and formal mappings, the formalisms
may be skipped. The material in Chapter 9 requires a degree of mathematical
maturity, and this material is used sparingly elsewhere. Like Chapter 3, Chapter 9
can be skipped by the reader whose interests lie elsewhere.

Chapters 10, 11, and 12 also build on one another in order. A reader who
has encountered basic cryptography will have an easier time with the material
than one who has not, but the chapters do not demand the level of mathematical
experience that Chapters 3 and 9 require. Chapter 13 does not require material
from Chapter 11 or Chapter 12, but it does require material from Chapter 10.

Chapter 14 is required for all of Part V. A reader who has studied oper-
ating systems at the undergraduate level will have no trouble with Chapter 16.
Chapter 15 uses the material in Chapters 10 and 11; Chapter 17 builds on material
in Chapters 5, 14, and 16; and Chapter 18 uses material in Chapters 4, 14, and 17.

Chapter 19 relies on information in Chapter 4. Chapter 20 builds on
Chapters 5, 14, 16, and 19. Chapter 21 presents highly mathematical concepts
and uses material from Chapters 19 and 20. Chapter 22 is based on material
in Chapters 5, 19, and 20; it does not require Chapter 21. For all of Part VI, a
knowledge of software engineering is very helpful.

Chapter 23 draws on ideas and information in Chapters 5, 6, 10, 14, 16, and
18 (and for Section 23.8, the reader should read Section 3.1). Chapter 24 is self-
contained, although it implicitly uses many ideas from assurance. It also assumes
a good working knowledge of compilers, operating systems, and in some cases
networks. Many of the �aws are drawn from versions of the UNIX operating

Preface xli

system, or from Windows systems, and so a working knowledge of either or both
systems will make some of the material easier to understand. Chapter 25 uses
information from Chapter 4, and Chapter 26 uses material from Chapter 25.

The practicum chapters are self-contained and do not require any material
beyond Chapter 1. However, they point out relevant material in other sections
that augments the information and (we hope) the reader’s understanding of that
information.

Background
The material in this book is at the advanced undergraduate level. Throughout,
we assume that the reader is familiar with the basics of compilers and computer
architecture (such as the use of the program stack) and operating systems. The
reader should also be comfortable with modular arithmetic (for the material on
cryptography). Some material, such as that on formal methods (Chapter 21)
and the mathematical theory of computer security (Chapter 3 and the formal
presentation of policy models), requires considerable mathematical maturity.
Other speci�c recommended background is presented in the preceding section.
Part IX, the appendices, contains material that will be helpful to readers with
backgrounds that lack some of the recommended material.

Examples are drawn from many systems. Many come from the UNIX
operating system or variations of it (such as Linux). Others come from the
Windows family of systems. Familiarity with these systems will help the reader
understand many examples easily and quickly.

Undergraduate Level
An undergraduate class typically focuses on applications of theory and how
students can use the material. The speci�c arrangement and selection of material
depends on the focus of the class, but all classes should cover some basic
material—notably that in Chapters 1, 10, and 14, as well as the notion of an access
control matrix, which is discussed in Sections 2.1 and 2.2.

Presentation of real problems and solutions often engages undergraduate
students more effectively than presentation of abstractions. The special topics
and the practicum provide a wealth of practical problems and ways to deal with
them. This leads naturally to the deeper issues of policy, cryptography, non-
cryptographic mechanisms, and assurance. The following are sections appropriate
for non-mathematical undergraduate courses in these topics.

• Policy: Sections 4.1 through 4.4 describe the notion of policy. The
instructor should select one or two examples from Sections 5.1, 5.2.1,
6.2, 6.4, 8.1.1, and 8.2, which describe several policy models informally.
Section 8.4 discusses role-based access control.

• Cryptography: Key distribution is discussed in Sections 11.1 and 11.2,
and a common form of public key infrastructures (called PKIs) is
discussed in Section 11.4.2. Section 12.1 points out common errors

xlii Preface

in using cryptography. Section 12.4 shows how cryptography is used
in networks, and the instructor should use one of the protocols in
Section 12.5 as an example. Chapter 13 offers a look at various forms
of authentication, including non-cryptographic methods.

• Non-cryptographic mechanisms: Identity is the basis for many access
control mechanisms. Sections 15.1 through 15.4 discuss identity on a
system, and Section 15.6 discusses identity and anonymity on the Web.
Sections 16.1 and 16.2 explore two mechanisms for controlling access to
�les, and Section 16.4 discusses the ring-based mechanism underlying
the notion of multiple levels of privilege. If desired, the instructor can
cover sandboxes by using Sections 18.1 and 18.2, but because Section
18.2 uses material from Section 4.5, the instructor will need to go over
those sections as well.

• Assurance: Chapter 19 provides a basic introduction to the often over-
looked topic of assurance.

Graduate Level
A typical introductory graduate class can focus more deeply on the subject than
can an undergraduate class. Like an undergraduate class, a graduate class should
cover Chapters 1, 10, and 14. Also important are the undecidability results in
Sections 3.1 and 3.2, which require that Chapter 2 be covered. Beyond that, the
instructor can choose from a variety of topics and present them to whatever depth
is appropriate. The following are sections suitable for graduate study.

• Policy models: Part III covers many common policy models both infor-
mally and formally. The formal description is much easier to understand
once the informal description is understood, so in all cases both should
be covered. The controversy in Section 5.4 is particularly illuminating
to students who have not considered the role of policy and the nature
of a policy. Chapter 9 is a highly formal discussion of the foundations
of policy and is appropriate for students with experience in formal
mathematics. Students without such a background will �nd it quite
dif�cult.

• Cryptography: Part IV focuses on the applications of cryptography, not
on cryptography’s mathematical underpinnings.7 It discusses areas of
interest critical to the use of cryptography, such as key management and
some basic cryptographic protocols used in networking.

• Non-cryptographic mechanisms: Issues of identity and certi�cation are
complex and generally poorly understood. Section 15.5 covers these
problems. Combining this with the discussion of identity on the Web

7The interested reader will �nd a number of books covering aspects of this subject [440, 787, 788,
914, 1092, 1093, 1318, 1826].

Preface xliii

(Section 15.6) raises issues of trust and naming. Chapters 17 and 18
explore issues of information �ow and con�ning that �ow.

• Assurance: Traditionally, assurance is taught as formal methods, and
Chapter 21 serves this purpose. In practice, however, assurance is more
often accomplished by using structured processes and techniques and
informal but rigorous arguments of justi�cation, mappings, and analy-
sis. Chapter 20 emphasizes these topics. Chapter 22 discusses evaluation
standards and relies heavily on the material in Chapters 19 and 20 and
some of the ideas in Chapter 21.

• Miscellaneous Topics: Section 23.8 presents a proof that the generic
problem of determining if a generic program is a computer virus is in
fact undecidable. The theory of penetration studies in Section 24.2, and
the more formal approach in Section 24.6, illuminate the analysis of
systems for vulnerabilities. If the instructor chooses to cover intrusion
detection (Chapter 26) in depth, it should be understood that this
discussion draws heavily on the material on auditing (Chapter 25).

• Practicum: The practicum (Part VIII) ties the material in the earlier part
of the book to real-world examples and emphasizes the applications of
the theory and methodologies discussed earlier.

Practitioners

Practitioners in the �eld of computer security will �nd much to interest them.
The table of contents and the index will help them locate speci�c topics. A
more general approach is to start with Chapter 1 and then proceed to Part VIII,
the practicum. Each chapter has references to other sections of the text that
explain the underpinnings of the material. This will lead the reader to a deeper
understanding of the reasons for the policies, settings, con�gurations, and advice
in the practicum. This approach also allows readers to focus on those topics that
are of most interest to them.

This page intentionally left blank

Acknowledgments

It is not possible to separate those who contributed to the second edition from
those who contributed to the �rst edition, because everything done for the �rst
edition, especially after the �rst printing, has contributed to the second. So these
acknowledgments apply to both editions. That said . . .

Special Acknowledgments

Elisabeth Sullivan and Michelle Ruppel contributed the assurance part of this
book.

For the �rst edition, Liz wrote several drafts, all of which re�ect her
extensive knowledge and experience in that aspect of computer security. I am
particularly grateful to her for contributing her real-world knowledge of how
assurance is managed. Too often, books recount the mathematics of assurance
without recognizing that other aspects are equally important and more widely
used. These other aspects shine through in the assurance section, thanks to Liz.
As if that were not enough, she made several suggestions that improved the policy
part of this book. I will always be grateful for her contribution, her humor, and
especially her friendship.

For the second edition, Michelle stepped in to update that part based on her
extensive experience and real-world knowledge as a practitioner. She was careful
to maintain the tone and style of Liz’s writing, and her contributions strengthened
the assurance part. I am grateful to her for agreeing to step in, for the exceptional
effort she put forth, and the high quality that resulted.

In summary, I am very grateful for their contributions.

Acknowledgments

Many people offered comments, suggestions, and ideas for the second edition.
Thanks to Marvin Schaefer, Sean Peisert, Prof. Christian Probst, Carrie Gates,
and Richard Ford for their reviews of the various chapters. I appreciate Prof. Ken

xlv

xlvi Acknowledgments

Rosen and Prof. Alfred Menezes for their help with Chapter 10, Steven Templeton
and Kara Nance for their suggestions on Chapter 27, Karl Levitt for his comments
on Chapter 26, and Richard Ford for his many suggestions on Chapter 23. Their
advice and suggestions were invaluable in preparing this edition. Of course, any
errors in the text are my responsibility, and usually occurred because I did not
always follow their advice.

Thanks also to Pasquale Noce, who sent me a thorough analysis of many
of the theorems, proving them constructively as opposed to how they were done
in the book. He made many other helpful comments and caught some errors.

The students in Peter Reiher’s COM SCI 236-80, Computer Security, class
at UCLA in the Spring Quarter 2018, and the students in my ECS 153, Computer
Security, classes over the past few years at UC Davis used parts of this edition
in various stages of preparation. I thank them for their feedback, which also
improved the book.

Many others contributed to this book in various ways. Special thanks to
Steven Alexander, Amin Alipour, Jim Alves-Foss, Bill Arbaugh, Andrew Arcilla,
Alex Aris, Rebecca Bace, Belinda Bashore, Vladimir Berman, Rafael Bhatti, Ziad
El Bizri, David Bover, Logan Browne, Terry Brugger, Gordon Burns, Serdar
Cabuk, Raymond Centeno, Yang Chen, Yi Chen, HakSoo Choi, Lisa Clark,
Michael Clifford, Christopher Clifton, Dan Coming, Kay Connelly, Crispin
Cowan, Shayne Czyzewski, Tom Daniels, Dimitri DeFigueiredo, Joseph-Patrick
Dib, Till Dörges, Felix Fan, Robert Fourney, Guillermo Francia III, Jeremy
Frank, Conny Francke, Martin Gagne, Nina Gholami, Ron Gove, James Hinde,
James Hook, Xuxian Jiang, Jesper Johansson, Mark Jones, Calvin Ko, Mark-Neil
Ledesma, Ken Levine, Karl Levitt, Luc Longpre, Yunhua Lu, Gary McGraw,
Alexander Meau, Nasir Memon, Katherine Moore, Mark Morrissey, Ather
Nawaz, Iulian Neamtiu, Dan Nerenburg, Kimberly Nico, Stephen Northcutt,
Rafael Obelheiro, Josko Orsulic, Holly Pang, Sean Peisert, Ryan Poling, Sung
Park, Ashwini Raina, Jorge Ramos, Brennen Reynolds, Peter Rozental, Christoph
Schuba, night SH, David Shambroom, Jonathan Shapiro, Clay Shields, Sriram
Srinivasan, Mahesh V. Tripunitara, Vinay Vittal, Tom Walcott, James Walden,
Dan Watson, Guido Wedig, Chris Wee, Han Weili, Patrick Wheeler, Paul
Williams, Bonnie Xu, Charles Yang, Xiaoduan Ye, Xiaohui Ye, Lara Whelan,
John Zachary, Linfeng Zhang, Aleksandr Zingorenko, and to everyone in my and
others’ computer security classes, who (knowingly or unknowingly) helped me
develop and test this material.

The Pearson folks, in particular my editors Laura Lewin and Malobika
Chakraborty, and Sheri Replin, were incredibly helpful and patient. Their patience
and enthusiasm ensured this second edition was completed, although a bit later
than expected. The production people, especially Julie Nahil, Ramya Gangadha-
ran, and Charles Roumeliotis, moved the book smoothly into print, and I thank
them for making it as painless as possible. I owe them many thanks. Similarly, for
the �rst edition, the Addison-Wesley folks, Kathleen Billus, Susannah Buzard,
Bernie Gaffney, Amy Fleischer, Helen Goldstein, Tom Stone, Asdis Thorsteins-
son, and most especially my editor, Peter Gordon, were incredibly patient and

Acknowledgments xlvii

helpful, despite fears that this book would never materialize. The fact that it
did so is in great measure attributable to their hard work and encouragement.
I also thank the production people at Argosy, especially Beatriz Valdés and Craig
Kirkpatrick, for their wonderful work.

Dorothy Denning, my advisor in graduate school, guided me through the
maze of computer security when I was just beginning. Peter Denning, Barry
Leiner, Karl Levitt, Peter Neumann, Marvin Schaefer, Larry Snyder, and several
others in�uenced my approach to the subject. I hope this work re�ects in some
small way what they gave to me and passes a modicum of it along to my readers.

I also thank my parents, Leonard Bishop and Linda Allen. My father, a
writer, gave me some useful tips on writing, which I tried to follow. My mother, a
literary agent, helped me understand the process of getting the book published,
and supported me throughout.

Finally, I would like to thank my family for their support throughout the
writing. My wife Holly, our children Heidi, Steven, David, and Caroline, and
grandchildren Skyler and Sage were very patient and understanding and made
sure I had time to work on the book. They also provided delightful distractions.
To them all, my love and gratitude.

This page intentionally left blank

About the Author

Matt Bishop is a professor in the Department of Com-
puter Science at the University of California at Davis.
He received his Ph.D. in computer science from Purdue
University, where he specialized in computer security, in
1984. He was a systems programmer at Megatest Cor-
poration, a research scientist at the Research Institute of
Advanced Computer Science and was on the faculty at
Dartmouth College.

His main research area is the analysis of vulner-
abilities in computer systems, including modeling them,
building tools to detect vulnerabilities, and ameliorating
or eliminating them. This includes detecting and han-
dling all types of malicious logic. He works in the areas

of network security, the study of denial of service attacks and defenses, policy
modeling, software assurance testing, resilience, and formal modeling of access
control. He has worked extensively in electronic voting, was one of the members
of the RABA study for Maryland, and was one of the two principle investigators
of the California Top-to-Bottom Review, which performed a technical review of
all electronic voting systems certi�ed in the State of California.

He is active in information assurance education. He was co-chair of the
Joint Task Force that developed the Cybersecurity Curricula 2017: Curriculum
Guidelines for Post-Secondary Degree Programs in Cybersecurity, released in
December 2017. He teaches introductory programming, software engineering,
operating systems, and (of course) computer security.

xlix

This page intentionally left blank

Chapter 31
Program Security

CLOWN: What is he that builds stronger than either
the mason, the shipwright, or the carpenter?

OTHER CLOWN: The gallows-maker; for that frame outlives
a thousand tenants.

— Hamlet, V, i, 42–45.

The software on systems implements many mechanisms that support security.
Some of these mechanisms reside in the operating system, whereas others
reside in application and system programs. This chapter discusses the design and
implementation of a program to grant users increased privileges. It also presents
common programming errors that create security problems, and offers suggestions
for avoiding those problems. Finally, testing and distribution are discussed.

This chapter shows the development of the program from requirements to
implementation, testing, and distribution.

31.1 Problem

The purpose of this chapter is to provide a glimpse of techniques that provide
better than ordinary assurance that a program’s design and implementation
satisfy its requirements. This chapter is not a manual on applying high-assurance
techniques. In terms of the techniques discussed in Part VI, “Assurance,” this
chapter describes low-assurance techniques.

However, given the current state of programming and software develop-
ment, these low-assurance techniques enable programmers to produce signi�-
cantly better, more robust, and more usable code than they could produce without
these techniques. So, using a methodology similar to the one outlined in this
chapter will reduce vulnerabilities and improve both the quality and the security
of code.

A speci�c problem will illustrate the methods in this chapter. On the Drib’s
development network infrastructure systems, numerous system administrators

1099

1100 Chapter 31 Program Security

must assume certain roles, such as bin (the installers of software), mail (the
manager of electronic mail), and root (the system administrator). Each of these
roles is implemented as a separate account, called a role account. Unfortunately,
this raises the problem of password management. To avoid this problem, as well as
to control when access is allowed, the Drib will implement a program that veri�es
a user’s identity, determines if the requested change of account is allowed, and, if
so, places the user in the desired role.

31.2 Requirements and Policy

The problem of sharing a password arises when a system implements administra-
tive roles as separate user accounts.

EXAMPLE: Linux systems implement the administrator role as the account root
(and several other accounts that have more limited functionality).1 All individuals
who share access to the account know the account’s password. If the password is
changed, all must be noti�ed. All these individuals must remember to notify the
other individuals should they change the password.

An alternative to using passwords is to constrain access on the basis of
identity and other attributes. With this scheme, a user would execute a special
program that would check the user’s identity and any ancillary conditions. If all
these conditions were satis�ed, the user would be given access to the role account.

31.2.1 Requirements

The �rst requirement comes directly from the description of the alternative
scheme above. The system administrators choose to constrain access through
known paths (locations) and at times of day when the user is expected to access
the role account.

Requirement 31.1. Access to a role account is based on user, location, and
time of request.

Users often tailor their environments to �t their needs. This is also true
of role accounts. For example, a role account may use special programs kept in
a subdirectory of the role account’s home directory. This new directory must be
on the role account’s search path, and would typically be set in the startup �le

1See Section 14.2.1, “Principle of Least Privilege,” for an explanation of how the existence of the
root account violates the principle of least privilege.

31.2 Requirements and Policy 1101

executed when the user logged in. A question is whether the user’s environment
should be discarded and replaced by the role account’s environment, or whether
the two environments should be merged. The requirement chosen for this program
is as follows.

Requirement 31.2. The settings of the role account’s environment shall replace
the corresponding settings of the user’s environment, but the remainder of the
user’s environment shall be preserved.

The set of role accounts chosen for access using this scheme is critical. If
unrestricted access is given (essentially, a full command interpreter), then any
user in the role that maintains the access control information can change that
information and acquire unrestricted access to the system. Presumably, if the
access control information is kept accessible only to root, then the users who can
alter the information—all of whom have access to root—are trusted. Thus:

Requirement 31.3. Only root can alter the access control information for
access to a role account.

In most cases, a user assuming a particular role will perform speci�c
actions while in that role. For example, someone who enters the role of oper may
perform backups but may not use other commands. This restricts the danger of
commands interacting with the system to produce undesirable effects (such as
security violations) and follows from the principle of least privilege.2 This form
of access is called “restricted access.”

Requirement 31.4. The mechanism shall allow both restricted access and
unrestricted access to a role account. For unrestricted access, the user shall
have access to a standard command interpreter. For restricted access, the user
shall be able to execute only a speci�ed set of commands.

Requirement 31.4 implicitly requires that access to the role account be
granted to authorized users meeting the conditions in Requirement 31.1. Finally,
the role account itself must be protected from unauthorized changes.

Requirement 31.5. Access to the �les, directories, and objects owned by any
account administered by use of this mechanism shall be restricted to those
authorized to use the role account, to users trusted to install system programs,
and to root.

We next check that these requirements are complete with respect to the
threats of concern.

2See Section 14.2.1, “Principle of Least Privilege.”

1102 Chapter 31 Program Security

31.2.2 Threats

The threats against this mechanism fall into distinct classes. We enumerate the
classes and discuss the requirements that handle each threat.

31.2.2.1 Group 1: Unauthorized Users Accessing Role Accounts
There are four threats that involve attackers trying to acquire access to role
accounts using this mechanism.

Threat 31.1. An unauthorized user may obtain access to a role account as
though she were an authorized user.

Threat 31.2. An authorized user may use a nonsecure channel to obtain
access to a role account, thereby revealing her authentication information to
unauthorized individuals.

Threat 31.3. An unauthorized user may alter the access control information
to grant access to the role account.

Threat 31.4. An authorized user may execute a Trojan horse (or other form
of malicious logic),3 giving an unauthorized user access to the role account.

Requirements 31.1 and 31.5 handle Threat 31.1 by restricting the set of
users who can access a role account and protecting the access control data.
Requirement 31.1 also handles Threat 31.2 by restricting the locations from which
the user can request access. For example, if the set of locations contains only
those on trusted or con�dential networks, a passive wiretapper cannot discover
the authorized user’s password or hijack a session begun by an authorized user.
Similarly, if an authorized user connects from an untrusted system, Requirement
31.1 allows the system administrator to con�gure the mechanism so that the user’s
request is rejected.

The access control information that Requirement 31.1 speci�es can be
changed. Requirement 31.3 acknowledges this but restricts changes to trusted
users (de�ned as those with access to the root account). This answers Threat 31.3.

Threat 31.4 is more complex. This threat arises from an untrusted user,
without authorization, planting a Trojan horse at some location at which an
authorized user might execute it. If the attacker can write into a directory in the
role account’s search path, this attack is feasible. Requirement 31.2 states that the
role account’s search path may be selected from two other search paths: the default
search path for the role account, and the user’s search path altered to include
those components of the role account’s search path that are not present. This
leads to Requirement 31.5 which states that, regardless of how the search path is

3See Chapter 23, “Malware.”

31.2 Requirements and Policy 1103

derived, the �nal search path may contain only directories (and may access only
programs) that trusted users or the role account itself can manipulate. In this case,
the attacker cannot place a Trojan horse where someone using the role account
may execute it.

Finally, if a user is authorized to use the role account but is a novice
and may change the search path, Requirement 31.4 allows the administrators to
restrict the set of commands that the user may execute in that role.

31.2.2.2 Group 2: Authorized Users Accessing Role Accounts
Because access is allowed here, the threats relate to an authorized user changing
access permissions or executing unauthorized commands.

Threat 31.5. An authorized user may obtain access to a role account and
perform unauthorized commands.

Threat 31.6. An authorized user may execute a command that performs
functions that the user is not authorized to perform.

Threat 31.7. An authorized user may change the restrictions on the user’s
ability to obtain access to the account.

The difference between Threats 31.5 and 31.6 is subtle but important. In
the former, the user deliberately executes commands that violate the site security
policy. In the latter, the user executes authorized commands that perform covert,
unauthorized actions as well as overt, authorized actions—the classic Trojan
horse. Threat 31.6 differs from Threat 31.4 because the action may not give access
to authorized users; it may simply damage or destroy the system.

Requirement 31.4 handles Threat 31.5. If the user accessing the role
account should execute only a speci�c set of commands, then the access controls
must be con�gured to restrict the user’s access to executing only those commands.

Requirements 31.2 and 31.5 handle Threat 31.6 by preventing the introduc-
tion of a Trojan horse, as discussed in the preceding section.

Requirement 31.3 answers Threat 31.7. Because all users who have access
to root are trusted by de�nition, the only way for an authorized user to change the
restrictions on obtaining access to the role account is to implant a backdoor
(which is equivalent to a Trojan horse) or to modify the access control infor-
mation. But the requirement holds that only trusted users can do that, so the
authorized user cannot change the information unless he is trusted—in which
case, by de�nition, the threat is handled.

31.2.2.3 Summary
Because the requirements handle the threats, and because all requirements are
used, the set of requirements is both necessary and suf�cient. We now proceed
with the design.

1104 Chapter 31 Program Security

31.3 Design

To create this program, we build modules that �t together to supply security
services that satisfy the requirements. First, we create a general framework to
guide the development of each interface. Then we examine each requirement
separately, and design a component for each requirement.

31.3.1 Framework

The framework begins with the user interface and then breaks down the internals
of the program into modules that implement the various requirements.

31.3.1.1 User Interface
The user can run the program in two ways. The �rst is to request unrestricted
access to the account. The second is to request that a speci�c program be run
from the role account. Any interface must be able to handle both.

The simplest interface is a command line. Other interfaces, such as graphi-
cal user interfaces, are possible and may make the program easier to use. However,
these GUIs will be built in such a way that they construct and execute a command-
line version of the program.

The interface chosen is

role role account [command]

where role account is the name of the role account and command is the (optional)
command to execute under that account. If the user wants unrestricted access to
the role account, he omits command. Otherwise, the user is given restricted access
and command is executed with the privileges of the role account.

The user need not specify the time of day using the interface, because the
program can obtain such information from the system. It can also obtain the
location from which the user requests access, although the method used presents
potential problems (see Section 31.4.3.1). The individual modules handle the
remainder of the issues.

31.3.1.2 High-Level Design
The basic algorithm is as follows.

1. Obtain the role account, command, user, location, and time of day. If
the command is omitted, the user is requesting unrestricted access to the
role account.

31.3 Design 1105

2. Check that the user is allowed to access the role account

a. at the speci�ed location;
b. at the speci�ed time; and
c. for the speci�ed command (or without restriction).

If the user is not, log the attempt and quit.
3. Obtain the user and group information for the role account. Change the

privileges of the process to those of the role account.
4. If the user has requested that a speci�c command be run, overlay the child

process with a command interpreter that spawns the named command.
5. If the user has requested unrestricted access, overlay the child process

with a command interpreter.

This algorithm points out an important ambiguity in the requirements.
Requirements 31.1 and 31.4 do not indicate whether the ability of the user to
execute a command in the given role account requires that the user work from a
particular location or access the account at a particular time. This design uses
the interpretation that a user’s ability to run a command in a role account is
conditioned on location and time.

The alternative interpretation, that access only is controlled by location and
time, and that commands are restricted by role and user, is equally valid. But
sometimes the ability to run commands may require that users work at particular
times. For example, an operator may create the daily backups at 1 a.m. The
operator is not to do backups at other times because of the load on the system.
The interpretation of the design allows this. The alternative interpretation requires
the backup program, or some other mechanism, to enforce this restriction.
Furthermore, the design interpretation includes the alternative interpretation,
because any control expressed in the alternative interpretation can be expressed
in the design interpretation.

Requirement 31.4 can now be clari�ed. The addition is in boldface.

Requirement 31.6. The mechanism shall allow both restricted access and
unrestricted access to a role account. For unrestricted access, the user shall
have access to a standard command interpreter. For restricted access, the user
shall be able to execute only a speci�ed set of commands. The level of access
(restricted or unrestricted) shall depend on the user, the role, the time, and the
location.

Thus, the design phase feeds back into the requirements phase, here clar-
ifying the meaning of the requirements. It is left as an exercise for the reader to
verify that the new form of this requirement counters the appropriate threats (see
Exercise 2).

1106 Chapter 31 Program Security

31.3.2 Access to Roles and Commands

The user attempting access, the location (host or terminal), the time of day, and
the type of access (restricted or unrestricted) control access to the role account.
The access checking module returns a value indicating success (meaning that
access is allowed) or failure (meaning that access is not allowed). By the principle
of fail-safe defaults, an error causes a denial of access.

We consider two aspects of the design of this module. The interface controls
how information is passed to the module from its caller, and how the module
returns success or failure. The internal structure of the module includes how it
handles errors. This leads to a discussion of how the access control data is stored.
We consider these issues separately to emphasize that the interface provides an
entry point into the module, and that the entry point will remain �xed even if
the internal design of the module is completely changed. The internal design and
structures are hidden from the caller.

31.3.2.1 Interface
Following the practice of hiding information among modules,4 we minimize the
amount of information to be passed to the access checking module. The module
requires the user requesting access, the role to which access is requested, the
location, the time, and the command (if any). The return value must indicate
success or failure. The question is how this information is to be obtained.

The command (or request for unrestricted access) must come from the
caller, because the caller provides the interface for the processing of that com-
mand. The command is supplied externally, so the principles of layering require
it to pass through the program to the module.

The caller could also pass the other information to the module. This
would allow the module to provide an access control result without obtaining
the information directly. The advantage is that a different program could use this
module to determine whether or not access had been or would be granted at some
past or future point in time, or from some other location. The disadvantage is a
lack of portability, because the interface is tied to a particular representation of
the data. Also, if the caller of the module is untrusted but the module is trusted,
the module might make trusted decisions based on untrusted data, violating a
principle of integrity.5 So we choose to have the module determine all of the data.

This suggests the following interface:

boolean accessok(role rname, command cmd);

where rname is the name of the requested role and cmd is the command to be
executed (or is empty if unrestricted access is desired). The routine returns true if
access is to be granted, and false otherwise.

4This is one aspect of the principle of least common mechanism (see Section 14.2.7).
5This follows from Biba’s low-water-mark policy (see Section 6.2.1).

31.3 Design 1107

31.3.2.2 Internals
This module has three parts. The �rst part gathers the data on which access is to
be based. The second part retrieves the access control information. The third part
determines whether the data and the access control information require access to
be granted.

The module queries the operating system to determine the needed data. The
real user identi�cation data is obtained through a system call, as is the current
time of day. The location consists of two components: the entry point (terminal
or network connection) and the remote host from which the user is accessing the
local system. The latter component may indicate that the entry point is directly
connected to the system, rather than using a remote host.

Part I : Obtain user ID, time of day, entry point, and remote host.
Next, the module must access the access control information. The access

control information resides in a �le. The �le contains a sequence of records of the
following form:

role account
user names
locations from which the role account can be accessed
times when the role account can be accessed
command and arguments

If the “command and arguments” line is omitted, the user is granted unrestricted
access. Multiple command lines may be listed in a single record.

Part II : Obtain a handle (or descriptor) to the access control information. The
programmer will use this handle to read the access control records from the access
control information.

Finally, the program iterates through the access control information. If the
role in the current record does not match the requested role, it is ignored.
Otherwise, the user name, location, time, and command are compared with the
appropriate �elds of the record. If they all match, the module releases the handle
and returns success.6 If any of them does not match, the module continues on to
the next record. If the module reaches the end of the access control information,
the handle is released and the module returns failure. Note that records never deny
access, but only grant it. The default action is to deny. Granting access requires
an explicit record.7

If any record is invalid (for example, if there is a syntax error in one of the
�elds or if the user �eld contains a nonexistent user name), the module logs the
error and ignores the record. This again follows the principle of fail-safe defaults,
in which the system falls into a secure state when there is an error.

6If the time interval during which access is allowed expires after the access control check but before
the access is granted, Requirement 31.1 is met (as it refers to the time of request). This eliminates a
possible race condition.
7See Section 14.2.2, “Principle of Fail-Safe Defaults.”

1108 Chapter 31 Program Security

Part III : Iterate through the records until one matches the data or there are
no more records. In the �rst case, return success; in the second case, return
failure.

31.3.2.3 Storage of the Access Control Data
The system administrators of the local system control access to privileged
accounts. To keep maintenance of this information simple, the administrators
store the access control information in a �le. Then they need only edit the �le
to change a user’s ability to access the privileged account. The �le consists of a set
of records, each containing the components listed above. This raises the issue of
expression. How should each part of the record be written?

For example, must each entry point be listed, or are wildcards acceptable?
Strictly speaking, the principle of fail-safe defaults8 says that we should list
explicitly those locations from which access may be obtained. In practice, this
is too cumbersome. Suppose a particular user was trusted to assume a role from
any system on the Internet. Requiring the administrators to list all hosts would
be time-consuming as well as infeasible. Worse, if the user were not allowed to
access the role account from one system, the administrators would need to check
the list to see which system was missing. This would violate the principle of least
astonishment.9 Given the dynamic nature of the Internet, this requirement would
be absurd. Instead, we allow the following special host names, both of which are
illegal [1365]:

any (a wildcard matching any system)
local (matches the local host name)

In BNF form, the language used to express location is

location ::= ‘(’ location ‘)’ | ‘not’ location | location ‘or’ location | basic
basic ::= ‘*any*’ | ‘*local*’ | ‘.’ domain | host

where domain and host are domain names and host names, respectively. The strings
in single quotation marks are literals. The parentheses are grouping operators,
the “not” complements the associated locations, and the “or” allows either
location.

EXAMPLE: A user is allowed to assume a role only when logged into the
local system, the system “control.�xit.com”, and the domain “watchu.edu”. The
appropriate entry would be

local | control.fixit.com | .watchu.edu

8See Section 14.2.2.
9See Section 14.2.8.

31.3 Design 1109

A similar question arises for times. Ignoring how times are expressed, how
do we indicate when users may access the role account? Considerations similar to
those above lead us to the following language, in which the keyword

any

allows access at any time. In BNF form, the language used to express time is

time ::= ‘(’ time ‘)’ | ‘not’ time | time ‘or’ time | time time | time ‘–’ time | basic
basic ::= day of year day of week time of day | ‘*any*’
day of year ::= month [day] [‘,’year] | nmonth ‘/’ [day ‘/’] year | empty
day of week ::= ‘Sunday’ | . . . | ‘Saturday’ | ‘Weekend’ | ‘Weekday’ | empty
time of day ::= hour [‘:’ min] [‘:’ sec] [‘AM’ | ‘PM’] | special | empty
special ::= ‘noon’ | ‘midnight’ | ‘morning’ | ‘afternoon’ | ‘evening’
empty ::= ‘’

where month is a string naming the month, nmonth is an integer naming the month,
day is an integer naming the day of the month, and year is an integer specifying
the year. Similarly, hour, min, and sec are integers specifying the hour, minute, and
second. If basic is empty, it is treated as not allowing access.10

EXAMPLE: A user is allowed to assume a role between the hours of 9 o’clock
in the morning and 5 o’clock in the evening on Monday through Thursday. An
appropriate entry would be

Monday-Thursday 9a.m.-5p.m.

This is different than saying

Monday 9a.m.-Thursday 5p.m.

because the latter allows access on Monday at 10 p.m., whereas the former
does not.

Finally, the users �eld of the record has a similar structure:

any

In BNF form, the language used to express the set of users who may access a
role is

userlist ::= ‘(’ userlist ‘)’ | ‘not’ userlist | userlist ‘,’ userlist | user

where user is the name of a user on the system.

10By the principle of fail-safe defaults (see Section 14.2.2).

1110 Chapter 31 Program Security

These “little languages” are straightforward and simple (but incomplete;
see Exercise 5). Various implementation details, such as allowing abbreviations for
day and month names, can be added, as can an option to change the American
expression of days of the year to an international one. These points must be
considered in light of where the program is to be used. Whatever changes are
made, the administrators must be able to con�gure times and places quickly and
easily, and in a manner that a reader of the access control �le can understand
quickly.11

The listing of commands requires some thought about how to represent
arguments. If no arguments are listed, is the command to be run without argu-
ments, or should it allow any set of arguments? Conversely, if arguments are listed,
should the command be run only with those arguments? Our approach is to force
the administrator to indicate how arguments are to be treated.

Each command line contains a command followed by zero or more argu-
ments. If the �rst word after the command is an asterisk (“ * ”), then the command
may be run with any arguments. Otherwise, the command must be run with the
exact arguments provided.

EXAMPLE: Charles is allowed to run the install command when he accesses the
bin role. He may supply any arguments. The line in the access control �le is

/bin/install *

He may also copy the �le log from the current working directory to the
directory /var/install. The line for this is

/bin/cp log /var/install/log

Finally, he may run the id command to ensure that he is working as bin.
He may not supply other arguments to the command, however. This would be
expressed by

/usr/bin/id

The user must type the command as given in the access control �le. The
full path names are present to prevent the user from accidentally executing the
command id with bin privileges when id is a command in the local directory, rather
than the system id command.12

11See Section 14.2.8, “Principle of Least Astonishment.”
12See Chapter 23, “Malware.”

31.4 Refinement and Implementation 1111

31.4 Refinement and Implementation

This section focuses on the access control module of the program. We re�ne the
high-level design presented in the preceding section until we produce a routine in
a programming language.

31.4.1 First-Level Refinement

Rather than use any particular programming language, we �rst implement the
module in pseudocode. This requires two decisions. First, the implementation
language will be block-structured, like C or Java, rather than functional, like
Scheme or ML. Second, the environment in which the program will function will
be a UNIX-like system such as FreeBSD or Linux.

The basic structure of the security module is

boolean accessok(role rname, command cmd);
status ← false
user ← obtain user ID
timeday ← obtain time of day
entry ← obtain entry point (terminal line, remote host)
open access control file
repeat

currecord ← obtain next record from file; EOF if none
if currecord 6= EOF then

status ← match(currecord, rname, cmd, user,
timeday, entry)

until currecord = EOF or status = true
close access control file
return status

We now verify that this sketch matches the design. Clearly, the interface
is unchanged. The variable status will contain the status of the access control �le
check, becoming true when a match is found. Initially, it is set to false (deny access)
because of the principle of fail-safe defaults. If status were not set, and the access
control �le were empty, status would never be set and the returned value would be
unde�ned.

The next three lines obtain the user ID, the current time of day, and the
system entry point. The following line opens the access control �le.

The routine then iterates through the records of that �le. The iteration
has two requirements—that if any record allows access, the routine is to return
true, and that if no record grants access, the routine is to return false. From the

1112 Chapter 31 Program Security

structure of the �le, one cannot create a record to deny access. By default, access
is denied. Entries explicitly grant access. So, iterating over the records of the �le
either produces a record that grants access (in which case the match routine returns
true, terminating the loop and causing accessok to return with a value of true) or
produces no such record. In that case, status is false, and currecord is set to EOF
when the records in the access control �le are exhausted. The loop then terminates,
and the routine returns the value of status, which is false. Hence, this pseudocode
matches the design and, transitively, the requirements.

31.4.2 Second-Level Refinement

Now we will focus on mapping the pseudocode above to a particular language
and system. The C programming language is widely available and provides a
convenient interface to UNIX-like systems. Given that our target system is a
UNIX-like system, C is a reasonable choice. As for the operating system, there are
many variants of the UNIX operating system. However, they all have fundamental
similarities. The Linux operating system will provide the interfaces discussed
below, and they work on a wide variety of UNIX systems.

On these systems, roles are represented as normal user accounts. The
root account is really a role account,13 for example. Each user account has two
distinct representations of identity:14 an internal user type uid t,15 and a string
(name). When a user speci�es a role, either representation may be used. For our
purposes, we will assume that the caller of the accessok routine provides the
uid t representation of the role identity. Two reasons make this representation
preferable. First, the target systems are unable to address privilege in terms of
names, because, within the kernel, process identity is always represented by a uid t.
So the routines will need to do the conversion anyway. The second reason is more
complex. Roles in the access control �le can be represented by numbers or names.
The routine for reading the access control �le records will convert the roles to
uid ts to ensure consistency of representation. This also allows the input routine
to check the records for consistency with the system environment. Speci�cally, if
the role name refers to a nonexistent account, the routine can ignore the record.
So any comparisons would require the role from the interface to be converted to
a uid t.

This leads to a design decision: represent all user and role IDs as integers
internally. Fortunately, none of the design decisions discussed so far depend on
the representation of identity, so we need not review or change our design.

Next, consider the command. On the target system, a command consists of
a program name followed by a sequence of words, which are the command-line
arguments to the command. The command representation is an array of strings, in

13See Section 15.4, “Groups and Roles.”
14See Section 15.3, “Users.”
15On Linux systems, and on most UNIX-like systems, this is an integer.

31.4 Refinement and Implementation 1113

which the �rst string is the program name and the other strings are the command-
line arguments.

Putting this all together, the resulting interface is

int accessok(uid_t rname, char *cmd[])

Next comes obtaining the user ID. Processes in the target system have
several identities, but the key ones are the real UID (which identi�es the user
running the process) and the effective UID (which identi�es the privileges with
which the process runs).16 The effective UID of this program must have root
privileges (see Exercise 4) regardless of who runs the process. Hence, it is useless
for this purpose. Only the real UID identi�es the user running the program. So,
to obtain the user ID of the user running the program, we use

userid = getuid();

The time of day is obtained from the system and expressed in internal
format. The internal representation can be given in seconds since a speci�c
date and time (the epoch)17 or in microseconds since that time. It is unlikely that
times will need to be speci�ed in microseconds in the access control �le. For both
simplicity of code and simplicity of the access control data,18 the internal format
of seconds will be used. So, to obtain the current time, we use

timeday = time(NULL);

Finally, we need to obtain the location. There is no simple method for
obtaining this information, so we defer it until later by encapsulating it in a
function. This also localizes any changes should we move this program to a
different system (for example, the methods used on a Linux system may differ
from those used on a FreeBSD system).

entry = getlocation();

Opening the access control �le for reading is straightforward:

if ((fp = fopen(acfile, "r")) == NULL){
logerror(errno, acfile);
return(0);

}

16See Section 15.3, “Users.”
17On Linux and most other UNIX-like systems, the epoch is midnight on January 1, 1970 (UTC).
18See Section 14.2.3, “Principle of Economy of Mechanism,”and Section 14.2.8, “Principle of Least
Astonishment.”

1114 Chapter 31 Program Security

Notice �rst the error checking, and the logging of information on an error.
The variable errno is set to a code indicating the nature of the error. The variable
acfile points to the access control �le name. The processing of the access control
records follows:

do {
acrec = getnextacrec(fp);
if (acrec != NULL)

status = match(acrec, rname, cmd, user, timeday,
entry);

} while (acrec == NULL || status == 1);

Here, we read in the record—assuming that any records remain—and check
the record to see if it allows permission. This looping continues until either some
record indicates that permission is to be given or all records are checked. The exact
internal record format is not yet speci�ed; hence, the use of functions. The routine
concludes by closing the access control �le and returning status:

(void) fclose(fp);
return(status);

31.4.3 Functions

Three functions remain: the function for obtaining location, the function for
getting an access control record, and the function for checking the access control
record against the information of the current process. Each raises security issues.

31.4.3.1 Obtaining Location
UNIX and Linux systems write the user’s account name, the name of the terminal
on which the login takes place, the time of login, and the name of the remote host
(if any) to the utmp �le. Any process may read this �le. As each new process runs,
it may have an associated terminal. To determine the utmp record associated with
the process, a routine may obtain the associated terminal name, open the utmp
�le, and scan through the record to �nd the one with the corresponding terminal
name. That record contains the name of the host from which the user is working.

This approach, although clumsy, works on most UNIX and Linux systems.
It suffers from two problems related to security.

1. If any process can alter the utmp �le, its contents cannot be trusted.
Several security holes have occurred because any process could alter the
utmp �le [2254].

2. A process may have no associated terminal. Such a detached process must
be mapped into the corresponding utmp record through other means.

31.4 Refinement and Implementation 1115

However, if the utmp record contains only the information described
above, this is not possible because the user may be logged into multiple
terminals. The issue does not arise if the process has an associated
terminal, because only one user at a time may be logged into a terminal.

In the �rst case, we make a design decision that if the data in the utmp �le
cannot be trusted because any process can alter that �le, we return a meaningless
location. Then, unless the location speci�er of the record allows access from any
location, the record will not match the current process information and will not
grant access. A similar approach works if the process does not have an associated
terminal.

The outline of this routine is

hostname getlocation()
status ← false
myterm ← name of terminal
obtain access control list for utmp
if any user other than root can alter it then

return "*nowhere*"
open utmp
repeat

term ← obtain next entry from utmp; otherwise EOF
if term 6= EOF and myterm = term then

status ← true
until term = EOF or status = true
if host field of utmp entry = empty

host = "localhost"
else

host = host field of utmp entry
close utmp
return host

We omit the implementation due to space limitations.

31.4.3.2 The Access Control Record
The format of the records in the access control �le affects both the reading of the
�le and the comparison with the process information, so we design it here.

Our approach is to consider the match routine �rst. Four items must be
checked: the user name, the location, the time, and the command. Consider these
items separately.

The user name is represented as an integer. Thus, the internal format of the
user �eld of the access control record must contain either integers or names that
the match routine can convert to integers. If a match occurs before all user names
have been checked, then the program needs to convert no more names to integers.
So, we adopt the strategy of representing the user �eld as a string read directly

1116 Chapter 31 Program Security

from the �le. The match routine will parse the line and will use lazy evaluation to
check whether or not the user ID is listed.

A similar strategy can be applied to the location and the set of commands
in the record.

The time is somewhat different, because in the previous two cases, the
process user ID and the location had to match one of the record entries exactly.
However, the time does not have to do so. Time in the access control record is
(almost always) a range. For example, the entry “May 30” means any time on the
date of May 30. The day begins at midnight and ends at midnight, 24 hours later.
So, the range would be from May 30 at midnight to May 31 at midnight, or in
internal time (for example) between 1527638400 and 1527724800. In those rare
cases in which a user may assume a role only at a precise second, the range can be
treated as having the same beginning and ending points. Given this view of time
as ranges, checking that the current time falls into an acceptable range suggests
having the match routine parse the times and checking whether or not the internal
system time falls in each range as it is constructed.

This means that the routine for reading the record may simply load the
record as a sequence of strings and let the match routine do the interpretation.
This yields the following structure:

record
role rname
string userlist
string location
string timeofday
string commands[]
integer numcommands

end record;

The commands �eld is an array of strings, each command and argument
being one string, and numcommands containing the number of commands.

Given this information, the function used to read the access control records,
and the function used to match them with the current process information, are not
hard to write, but error handling does deserve some mention.

31.4.3.3 Error Handling in the Reading and Matching Routines
Assume that there is a syntax error in the access control �le. Perhaps a record
speci�es a time incorrectly (for example, “Thurxday”), or a record divider is
garbled. How should the routines handle this?

The �rst observation is that they cannot ignore the error. To do so violates
basic principles of security (speci�cally, the principle of least astonishment19).
It also defeats the purpose of the program, because access will be denied to users

19See Section 14.2.8, “Principle of Least Astonishment.”

31.5 Common Security-Related Programming Problems 1117

who need it.20 So, the program must produce an indication of error. If it is printed,
then the user will see it and should notify the system administrator maintaining
the access control �le. Should the user forget, the administrator will not know of
the error. Hence, the error must be logged. Whether or not the user should be told
why the error has occurred is another question. One school of thought holds that
the more information users have, the more helpful they will be. Another school
holds that information should be denied unless the user needs to know it, and in
the case of an error in the access control �le, the user only needs to know that
access will be denied.

Hence, the routines must log information about errors. The logged infor-
mation must enable the system administrator to locate the error in the �le. The
error message should include the access control �le name and line or record
number. This suggests that both routines need access to that information. Hence,
the record counts, line numbers, and �le name must be shared. For reasons of
modularity, this implies that these two routines should be in a submodule of the
access checking routine. If they are placed in their own module, no other parts
of the routine can access the line or record numbers (and none need to, given the
design described here). If the module is placed under the access control routine,
no external functions can read records from the access control �le or check data
against that �le’s contents.

31.4.4 Summary

This section has examined the development of a program for performing a
security-critical function. Beginning with a requirements analysis, the design and
parts of the implementation demonstrate the need for repeated analysis to ensure
that the design meets the requirements and that design decisions are documented.
From the point at which the derivation stopped, the implementation is simple.

We will now discuss some common security-related programming prob-
lems. Then we will discuss testing, installation, and maintenance.

31.5 Common Security-Related Programming
Problems

Unfortunately, programmers are not perfect. They make mistakes. These er-
rors can have disastrous consequences in programs that change the protection
domains. Attackers who exploit these errors may acquire extra privileges (e.g.,
access to a system account such as root or Administrator). They may disrupt the
normal functioning of the system by deleting or altering services over which they

20Note that a record with a syntax error will never grant access (see Exercise 6).

1118 Chapter 31 Program Security

should have no control. They may simply be able to read �les to which they should
have no access.21 So the problem of avoiding these errors, or security holes, is a
necessary issue to ensure that the programs and system function as required.

We present both management rules (installation, con�guration, and main-
tenance) and programming rules together. Although there is some bene�t in
separating them, doing so creates an arti�cial distinction by implying that they
can be considered separately. In fact, the limits on installation, con�guration, and
maintenance affect the implementation, just as the limits of implementation affect
the installation, con�guration, and maintenance procedures.

Researchers have developed several models for analyzing systems for
these security holes.22 These models provide a framework for characterizing the
problems. The goal of the characterization guides the selection of the model.
Because we are interested in technical modeling and not in the reason or time
of introduction, many of the categories of the NRL model23 are inappropriate
for our needs. We also wish to analyze the multiple components of vulnerabilities
rather than force each vulnerability into a particular point of view, as Aslam’s
model24 does. So either the PA model25 or the RISOS model26 is appropriate. We
have chosen the PA model for our analysis.

We examine each of the categories and subcategories separately. We con-
sider �rst the general rules that we can draw from the vulnerability class, and then
we focus on applying those rules to the program under discussion.

31.5.1 Improper Choice of Initial Protection Domain

Flaws involving improper choice of initial protection domain arise from incorrect
setting of permissions or privileges. There are three objects for which permissions
need to be set properly: the �le containing the program, the access control �le, and
the memory space of the process. We will consider them separately.

31.5.1.1 Process Privileges
The principle of least privilege27 dictates that no process have more privileges
than it needs to complete its task, but the process must have enough privileges to
complete its task successfully.

Ideally, one set of privileges should meet both criteria. In practice, different
portions of the process will need different sets of privileges. For example, a process
may need special privileges to access a resource (such as a log �le) at the beginning

21See Chapter 24, “Vulnerability Analysis.”
22See Section 24.4, “Frameworks.”
23See Section 24.4.3, “The NRL Taxonomy.”
24See Section 24.4.4, “Aslam’s Model.”
25See Section 24.4.2, “Protection Analysis Model.”
26See Section 24.4.1, “The RISOS Study.”
27See Section 14.2.1, “Principle of Least Privilege.”

31.5 Common Security-Related Programming Problems 1119

and end of its task, but may not need those privileges at other times. The process
structure and initial protection domain should re�ect this.

Implementation Rule 31.1. Structure the process so that all sections requiring
extra privileges are modules. The modules should be as small as possible and
should perform only those tasks that require those privileges.

The basis for this rule lies in the reference monitor.28 The reference monitor
is veri�able, complete (it is always invoked to access the resource it protects), and
tamperproof (it cannot be compromised). Here, the modules are kept small and
simple (veri�able), access to the privileged resource requires the process to invoke
these modules (complete), and the use of separate modules with well-de�ned
interfaces minimizes the chances of other parts of the program corrupting the
module (tamperproof).

Management Rule 31.1. Check that the process privileges are set properly.

Insuf�cient privileges could cause a denial of service. Excessive privileges
could enable an attacker to exploit vulnerabilities in the program. To avoid these
problems, the privileges of the process, and the times at which the process has
these privileges, must be chosen and managed carefully.

One of the requirements of this program is availability (Requirements 31.1
and 31.4). On Linux and UNIX systems, the program must change the effective
identity of the user from the user’s account to the role account. This requires
special (setuid) privileges of either the role account or the superuser.29 The
principle of least privilege30 says that the former is better than the latter, but if
one of the role accounts is root, then having multiple copies of the program with
limited privileges is irrelevant, because the program with privileges to access the
root role account is the logical target of attack. After all, if one can compromise a
less privileged account through this program, the same attack will probably work
against the root account. Because the Drib plans to control access to root in some
cases, the program requires setuid to root privileges.

If the program does not have root privileges initially, the UNIX protection
model does not allow the process to acquire them; the permissions on the program
�le corresponding to the program must be changed. The process must log enough
information for the system administrator to identify the problem,31 and should
notify users of the problem so that the users can notify the system administrator.
An alternative is to develop a server that will periodically check the permissions
on the program �le and reset them if needed, or a server that the program can
notify should it have insuf�cient privileges. The designers felt that the bene�ts of

28See Section 20.1.2.2, “Building Security In or Adding Security Later.” Programs implemented
following this rule are not reference monitors.
29See Section 15.3, “Users.”
30See Section 14.2.1, “Principle of Least Privilege.”
31See Section 25.3, “Designing an Auditing System.”

1120 Chapter 31 Program Security

these servers were not suf�cient to warrant their development. In particular, they
were concerned that the system administrators investigate any unexpected change
in �le permissions, and an automated server that changed the permissions back
would provide insuf�cient incentive for an analysis of the problem.

As a result, the developers required that the program acquire root per-
mission at start-up. The access control module is executed. Within that module,
the privileges are reset to the user’s once the log �le and access control �le have
been opened.32 Superuser privileges are needed only once more—to change the
privileges to those of the role account should access be granted. This routine,
also in a separate module, supplies the granularity required to provide the needed
functionality while minimizing the time spent executing with root privileges.

31.5.1.2 Access Control File Permissions
Biba’s models33 emphasize that the integrity of the process relies on both the
integrity of the program and the integrity of the access control �le. The former
requires that the program be properly protected so that only authorized personnel
can alter it. The system managers must determine who the “authorized personnel”
are. Among the considerations here are the principle of separation of duty34 and
the principle of least privilege.35

Verifying the integrity of the access control �le is critical, because that �le
controls the access to role accounts. Some external mechanism, such as a �le
integrity checking tool, can provide some degree of assurance that the �le has not
changed. However, these checks are usually periodic, and the �le might change
after the check. So the program itself should check the integrity of the �le when
the program is run.

Management Rule 31.2. The program that is executed to create the process,
and all associated control �les, must be protected from unauthorized use and
modi�cation. Any such modi�cation must be detected.

In many cases, the process will rely on the settings of other �les or on
some other external resources. Whenever possible, the program should check these
dependencies to ensure that they are valid. The dependencies must be documented
so that installers and maintainers will understand what else must be maintained
in order to ensure that the program works correctly.

Implementation Rule 31.2. Ensure that any assumptions in the program
are validated. If this is not possible, document them for the installers and
maintainers, so they know the assumptions that attackers will try to invalidate.

32Section 14.2.3, “Principle of Complete Mediation,” provides detail on why this works.
33See Section 6.2, “The Biba Model.”
34See Section 6.1, “Goals.”
35See Section 14.2.1, “Principle of Least Privilege.”

31.5 Common Security-Related Programming Problems 1121

The permissions of the program, and its containing directory, are to be
set so only root can alter or move the program. According to Requirement 31.2,
only root can alter the access control �le. Hence, the �le must be owned by root,
and only root can write to it. The program should check the ownership and
permissions of this �le, and the containing directories, to validate that only root
can alter it.

EXAMPLE: The naive way to check that only root can write to the �le is to check
that the owner is root and that the �le permissions allow only the owner to write
to it. But consider the group permissions. If root is the only member of the group,
then the group permissions may allow members of the group to write to the �le.
The problem is that checking group membership is more complicated than looking
up the members of the group. A user may belong to a group without being listed
as a member, because the GID of the user is assigned from the password �le, and
group membership lists are contained in a different �le.36 Either the password
�le and the group membership list must both be checked, or the program should
simply report an error if anyone other than the user can write to the �le. For
simplicity,37 the designers chose the second approach.

31.5.1.3 Memory Protection
As the program runs, it depends on the values of variables and other objects in
memory. This includes the executable instructions themselves. Thus, protecting
memory against unauthorized or unexpected alteration is critical.

Consider sharing memory. If two subjects can alter the contents of memory,
then one could change data on which the second relies. Unless such sharing
is required (for example, by concurrent processes), it poses a security problem
because the modifying process can alter variables that control the action of the
other process. Thus, each process should have a protected, unshared memory
space.

If the memory is represented by an object that processes can alter, it should
be protected so that only trusted processes can access it. Access here includes not
only modi�cation but also reading, because passwords reside in memory after they
are types. Multiple abstractions are discussed in more detail in the next section.

Implementation Rule 31.3. Ensure that the program does not share objects in
memory with any other program, and that other programs cannot access the
memory of a privileged process.

36Speci�cally, if the group �eld of the password �le entry for matt is 30, and the group �le lists the
members of group 30 as root, the user matt is still in group 30, but a query to the group �le (the
standard way to determine group membership) will show that only root is a member.
37See Section 14.2.3, “Principle of Economy of Mechanism.”

1122 Chapter 31 Program Security

Interaction with other processes cannot be eliminated. If the running
process obtains input or data from other processes, then that interface provides a
point through which other processes can reach the memory. The most common
version of this attack is the buffer over�ow.

Buffer over�ows involve either altering of data or injecting of instructions
that can be executed later. There are a wide variety of techniques for this [32,
706].38 Several remedies exist. For example, if buffers reside in sections of memory
that are not executable, injecting instructions will not work. Similarly, if some data
is to remain unaltered, the data can be stored in read-only memory.

Management Rule 31.3. Con�gure memory to enforce the principle of least
privilege. If a section of memory is not to contain executable instructions,
turn execute permission off for that section of memory. If the contents of a
section of memory are not to be altered, make that section read-only.

These rules appear in three ways in our program. First, the implementers
use the language constructs to �ag unchanging data as constant (in the C
programming language, this is the keyword const). This will cause compile-time
errors if the variables are assigned to, or runtime errors if instructions try to alter
those constants.

The other two ways involve program loading. The system’s loader places
data in three areas: the data (initialized data) segment, the stack (used for function
calls and variables local to the functions), and the heap (used for dynamically allo-
cated storage). A common attack is to trick a program into executing instructions
injected into three areas. The vector of injection can be a buffer over�ow,39 for
example. The characteristic under discussion does not stop such alteration, but it
should prevent the data from being executed by making the segments or pages of
all three areas nonexecutable. This suf�ces for the data and stack segments and
follows Management Rule 31.3.

If the program uses dynamic loading to load functions at runtime, the
functions that are loaded may change over the lifetime of the program. This
means that the assumptions the programmers make may no longer be valid.40

One solution to this problem is to compile the program in such a way that it
does not use dynamic loading. This also also prevents the program from trying
to load a module at runtime that may be missing. This could occur if a second
process deleted the appropriate library. So disabling of dynamic loading also
follows Implementation Rule 31.3.41

Finally, some UNIX-like systems (including the one on which this program
is being developed) allow execution permission to be turned off for the stack. The
boot �le sets the kernel �ag to enforce this.

38However, alternative techniques involving corrupting data, causing the �ow of control to change
improperly, do work. See Section 31.5.6, “Improper Validation.”
39Buffer over�ows can also alter data. See Section 31.5.3.1, “Memory,” for an example.
40See Section 31.5.3.2, “Changes in File Contents.”
41Other considerations contributed. See Section 31.5.4, “Improper Naming.”

31.5 Common Security-Related Programming Problems 1123

31.5.1.4 Trust in the System
This analysis overlooks several system components. For example, the program
relies on the system authentication mechanisms to authenticate the user, and on
the user information database to map users and roles into their corresponding
UIDs (and, therefore, privileges). It also relies on the inability of ordinary
users to alter the system clock. If any of this supporting infrastructure can be
compromised, the program will not work correctly. The best that can be done is
to identify these points of trust in the installation and operation documentation
so that the system administrators are aware of the dependencies of the program
on the system.

Management Rule 31.4. Identify all system components on which the pro-
gram depends. Check for errors whenever possible, and identify those com-
ponents for which error checking will not work.

For this program, the implementers should identify the system databases
and information on which the program depends, and should prepare a list of these
dependencies. They should discuss these dependencies with system managers to
determine if the program can check for errors. When this is not possible, or when
the program cannot identify all errors, they should describe the possible conse-
quences of the errors. This document should be distributed with the program so
that system administrators can check their systems before installing the program.

31.5.2 Improper Isolation of Implementation Detail

The problem of improper isolation of implementation detail arises when an
abstraction is improperly mapped into an implementation detail. Consider how
abstractions are mapped into implementations. Typically, some function (such as a
database query) occurs, or the abstraction corresponds to an object in the system.
What happens if the function produces an error or fails in some other way, or if
the object can be manipulated without reference to the abstraction?

The �rst rule is to catch errors and failures of the mappings. This requires
an analysis of the functions and a knowledge of their implementation. The
action to take on failure also requires thought. In general, if the cause cannot be
determined, the program should fail by returning the relevant parts of the system
to the states they were in when the program began.42

ImplementationRule 31.4. The error status of every function must be checked.
Do not try to recover unless the cause of the error, and its effects, do not
affect any security considerations. The program should restore the state of
the system to the state before the process began, and then terminate.

42See Section 14.2.2, “Principle of Fail-Safe Defaults.”

1124 Chapter 31 Program Security

The abstractions in this program are the notion of a user and a role, the
access control information, and the creation of a process with the rights of the
role. We will examine these abstractions separately.

31.5.2.1 Resource Exhaustion and User Identifiers
The notion of a user and a role is an abstraction because the program can work
with role names and the operating system uses integers (UIDs). The question is
how those user and role names are mapped to UIDs. Typically, this is done with a
user information database that contains the requisite mapping, but the program
must detect any failures of the query and respond appropriately.

EXAMPLE: A mail server allowed users to forward mail by creating a forwarding
�le [2225]. The forwarding �le could specify �les to which the mail should be
appended. In this case, the mail server would deliver the letter with the privileges
of the owner of the forwarding �le (represented on the system as an integer UID).
In some cases, the mail server would queue the message for later delivery. When it
did so, it would write the name (not the UID) of the user into a control �le. The
system queried a database, supplying the UID, and obtaining the corresponding
name. If the query failed, the mail server used a default name speci�ed by the
system administrator.

Attackers discovered how to make the queries fail. As a result, the user was
set to a default user, usually a system-level user (such as daemon). This enabled
the attackers to have the mail server append mail to any �le to which the default
user could write. They used this to implant Trojan horses into system programs.
These Trojan horses gave them extra privileges, compromising the system.

The designers and implementers decided to have the program fail if, for any
reason, the query failed. This application of the principle of fail-safe defaults43

ensured that in case of error, the users would not get access to the role account.

31.5.2.2 Validating the Access Control Entries
The access control information implements the access control policy (an abstrac-
tion). The expression of the access control information is therefore the result of
mapping an abstraction to an implementation. The question is whether or not
the given access control information correctly implements the policy. Answering
this question requires someone to examine the implementation expression of the
policy.

The programmers developed a second program that used the same routines
as the role-assuming program to analyze the access control entries. This program
prints the access control information in an easily readable format. It allows the
system managers to check that the access control information is correct. A speci�c
procedure requires that this information be checked periodically, and always after
the �le or the program is altered.

43See Section 14.2.2, “Principle of Fail-Safe Defaults.”

31.5 Common Security-Related Programming Problems 1125

31.5.2.3 Restricting the Protection Domain of the Role Process
Creating a role process is the third abstraction. There are two approaches. Under
UNIX-like systems, the program can spawn a second, child, process. It can also
simply start up a second program in such a way that the parent process is replaced
by the new process. This technique, called overlaying, is intrinsically simpler than
creating a child process and exiting. It allows the process to replace its own
protection domain with the (possibly) more limited one corresponding to the
role. The programmers elected to use this method. The new process inherits the
protection domain of the original one. Before the overlaying, the original process
must reset its protection domain to that of the role. The programmers do so by
closing all �les that the original process opened, and changing its privileges to
those of the role.

EXAMPLE: The effective UIDs and GIDs44 control privileges. Hence, the pro-
grammers reset the effective GID �rst, and then the effective UID (if resetting
were done in the opposite order, the change to GIDs would fail because such
changes require root privileges). However, if the UNIX-like system supports saved
UIDs, an authorized user may be able to acquire root privileges even if the role
account is not root. The problem is that resetting the effective UID sets the saved
UID to the previous UID—namely, root. A process may then reacquire the rights
of its saved UID. To avoid this problem, the programmers used the setuid system
call to reset all of the real, effective, and saved UIDs to the UID of the role.
Thus, all traces of the root UID are eliminated and the user cannot reacquire
those privileges.

Similarly, UNIX-like systems check access permissions only when the �le
is opened. If a root process opens a privileged �le and then the process drops root
privileges, it can still read from (or write to) the �le.

The components of the protection domain that the process must reset
before the overlay are the open �les (except for standard input, output, and error),
which must be closed, the signal handlers, which must be reset to their default
values, and any user-speci�c information, which must be cleared.

31.5.3 Improper Change

This category describes data and instructions that change over time. The danger is
that the changed values may be inconsistent with the previous values. The previous
values dictate the �ow of control of the process. The changed values cause the
program to take incorrect or nonsecure actions on that path of control.

The data and instructions can reside in shared memory, in nonshared
memory, or on disk. The last includes �le attribute information such as ownership
and access control list.

44See Section 15.3, “Users.”

1126 Chapter 31 Program Security

31.5.3.1 Memory
First comes the data in shared memory. Any process that can access shared
memory can manipulate data in that memory. Unless all processes that can access
the shared memory implement a concurrent protocol for managing changes, one
process can change data on which a second process relies. As stated above, this
could cause the second process to violate the security policy.

EXAMPLE: Two processes share memory. One process reads authentication data
and writes it into the shared memory space. The second process performs the
authentication, and writes a boolean true back into the shared memory space
if the authentication succeeds, and false if it fails. Unless the two processes use
concurrent constructs to synchronize their reading and writing, the �rst process
may read the result before the second process has completed the computation for
the current data. This could allow access when it should be denied, or vice versa.

Implementation Rule 31.5. If a process interacts with other processes, the
interactions should be synchronized. In particular, all possible sequences of
interactions must be known and, for all such interactions, the process must
enforce the required security policy.

A variant of this situation is the asynchronous exception handler. If the
handler alters variables and then returns to the previous point in the program,
the changes in the variables could cause problems similar to the problem of
concurrent processes. For this reason, if the exception handler alters any variables
on which other portions of the code depend, the programmer must understand
the possible effects of such changes. This is just like the earlier situation in which
a concurrent process changes another’s variables in a shared memory space.

Implementation Rule 31.6. Asynchronous exception handlers should not alter
any variables except those that are local to the exception handling module. An
exception handler should block all other exceptions when begun, and should
not release the block until the handler completes execution, unless the handler
has been designed to handle exceptions within itself (or calls an uninvoked
exception handler).

A second approach applies whether the memory is shared or not. A user
feeds bogus information to the program, and the program accepts it. The bogus
data over�ows its buffer, changing other data, or inserting instructions that can
be executed later.

EXAMPLE: The buffer over�ow attack on �ngerd described in Section 24.4.5.2
illustrates this approach. The return address is pushed onto the stack when
the input routine is called. That address is not expected to change between its
being pushed onto the stack and its being popped from the stack, but the buffer

31.5 Common Security-Related Programming Problems 1127

over�ow changes it. When the input function returns, the address popped from the
stack is that of the input buffer. Execution resumes at that point, and the input
instructions are used.

This suggests one way to detect such transformations (the stack guard
approach) [469]. Immediately after the return address is pushed onto the stack,
push a random number onto the stack (the canary). Assume that the input
over�ows the buffer on the stack and alters the return address on the stack. If
the canary is n bits long and has been chosen randomly, the probability of the
attacker not changing that cookie is 2−n. When the input procedure returns, the
canary is popped and compared with the value that was pushed onto the stack. If
the two differ, there has been an over�ow.45

In terms of trust, the return address (a trusted datum) can be affected by
untrusted data (from the input). This lowers the trustworthiness of the return
address to that of input data. One need not supply instructions to breach security.

EXAMPLE: One (possibly apocryphal) version of a UNIX login program allo-
cated two adjacent arrays. The �rst held the user’s cleartext password and was 80
characters long, and the second held the password hash46 and was 13 characters
long. The program’s logic loaded the password hash into the second array as soon
as the user’s name was determined. It then read the user’s cleartext password
and stored it in the �rst array. If the contents of the �rst array hashed to the
contents of the second array, the user was authenticated. An attacker simply
selected a random password (for example, “password”) and generated a valid
hash for it (here, “12CsGd8FRcMSM”). The attacker then identi�ed herself as
root. When asked for a password, the attacker entered “password”, typed 72
spaces, and then typed “12CsGd8FRcMSM”. The system hashed “password”,
got “12CsGd8FRcMSM”, and logged the user in as root.

A technique in which canaries protect data, not only the return address,
would work, but raises many implementation problems (see Exercise 7).

Implementation Rule 31.7. Whenever possible, data that the process trusts and
data that it receives from untrusted sources (such as input) should be kept in
separate areas of memory. If data from a trusted source is overwritten with
data from an untrusted source, a memory error will occur.

In more formal terms, the principle of least common mechanism47 indi-
cates that memory should not be shared in this way.

45If the goal is to alter data on the stack other than the return address, the canary will not be altered.
This technique will not detect the change. (See Exercise 7.)
46See Section 13.2, “Passwords.”
47See Section 14.2.7, “Principle of Least Common Mechanism.”

1128 Chapter 31 Program Security

These rules apply to our program in several ways. First, the program does
not interact with any other program except through exception handling.48 So
Implementation Rule 31.5 does not apply. Exception handling consists of calling
a procedure that disables further exception handling, logs the exception, and
immediately terminates the program.

Illicit alteration of data in memory is the second potential problem. If
the user-supplied data is read into memory that overlaps with other program
data, it could erase or alter that data. To satisfy Implementation Rule 31.7, the
programmers did not reuse variables into which users could input data. They also
ensured that each access to a buffer did not overlap with other buffers.

The problem of buffer over�ow is solved by checking all array and pointer
references within the code. Any reference that is out of bounds causes the program
to fail after logging an error message to help the programmers track down the
error.

31.5.3.2 Changes in File Contents
File contents may change improperly. In most cases, this means that the �le
permissions are set incorrectly or that multiple processes are accessing the �le,
which is similar to the problem of concurrent processes accessing shared memory.
Management Rule 31.2 and Implementation Rule 31.5 cover these two cases.

A nonobvious corollary is to be careful of dynamic loading. Dynamic load
libraries are not part of this program’s executable. They are loaded, as needed,
when the program runs. Suppose one of the libraries is changed, and the change
causes a side effect. The program may cease to function or, even worse, work
incorrectly.

If the dynamic load modules cannot be altered, then this concern is mini-
mal, but if they can be upgraded or otherwise altered, it is important. Because one
of the reasons for using dynamic load libraries is to allow upgrades without having
to recompile programs that depend on the library, security-related programs using
dynamic load libraries are at risk.

Implementation Rule 31.8. Do not use components that may change between
the time the program is created and the time it is run.

This is another reason that the developers decided not to use dynamic
loading.

31.5.3.3 Race Conditions in File Accesses
A race condition in this context is the time-of-check-to-time-of-use problem. As
with memory accesses, the �le being used is changed after validation but before

48If the access control information or the authentication information came from servers, then there
would be interaction with other programs (the servers). The method of communication would need
to be considered, as discussed above.

31.5 Common Security-Related Programming Problems 1129

access.49 To thwart it, either the �le must be protected so that no untrusted user
can alter it, or the process must validate the �le and use it indivisibly. The former
requires appropriate settings of permission, so Management Rule 31.2 applies.
Section 31.5.7, “Improper Indivisibility,” discusses the latter.

This program validates that the owner and access control permissions for
the access control �le are correct (the check). It then opens the �le (the use). If an
attacker can change the �le after the validation but before the opening, so that the
�le checked is not the �le opened, then the attacker can have the program obtain
access control information from a �le other than the legitimate access control �le.
Presumably, the attacker would supply a set of access control entries allowing
unauthorized accesses.

EXAMPLE: The UNIX operating system allows programs to refer to �les in two
ways: by name and by �le descriptor.50 Once a �le descriptor is bound to a �le, the
referent of the descriptor does not change. Each access through the �le descriptor
always refers to the bound �le (until the descriptor is closed). However, the kernel
reprocesses the �le name at each reference, so two references to the same �le name
may refer to two different �les. An attacker who is able to alter the �le system in
such a way that this occurs is exploiting a race condition. So any checks made
to the �le corresponding to the �rst use of the name may not apply to the �le
corresponding to the second use of the name. This can result in a process making
unwarranted assumptions about the trustworthiness of the �le and the data it
contains.

In the xterm example51 the program can be �xed by opening the �le and
then using the �le descriptor (handle) to obtain the owner and access permis-
sions.52 Those permissions belong to the opened �le, because they were obtained
using the �le descriptor. The validation is now ensured to be that of the access
control �le.

The program does exactly this. It opens the access control �le and uses the
�le descriptor, which references the �le attribute information directly to obtain the
owner, group, and access control permissions. Those permissions are checked. If
they are correct, the program uses the �le descriptor to read the �le. Otherwise,
the �le is closed and the program reports a failure.

31.5.4 Improper Naming

Improper naming refers to an ambiguity in identifying an object. Most commonly,
two different objects have the same name. The programmer intends the name to
refer to one of the objects, but an attacker manipulates the environment and the

49Section 24.3.1, “Two Security Flaws,” discusses this problem in detail.
50See Section 15.2, “Files and Objects.”
51See Section 24.3.1, “Two Security Flaws.”
52The system call used would be fstat.

1130 Chapter 31 Program Security

process so that the name refers to a different object. Avoiding this �aw requires
that every object be unambiguously identi�ed. This is both a management concern
and an implementation concern.

Objects must be uniquely identi�able or completely interchangeable. Man-
aging these objects means identifying those that are interchangeable and those
that are not. The former objects need a controller (or set of controllers) that, when
given a name, selects one of the objects. The latter objects need unique names. The
managers of the objects must supply those names.

Management Rule 31.5. Unique objects require unique names. Interchange-
able objects may share a name.

A name is interpreted within a context. At the implementation level, the
process must force its own context into the interpretation, to ensure that the object
referred to is the intended object. The context includes information about the
character sets, process and �le hierarchies, network domains, and any accessible
variables such as the search path.

EXAMPLE: Stage 3 in Section 24.2.9 discussed an attack in which a privileged
program called loadmodule executed a second program named ld.so. The attack
exploited loadmodule’s failure to specify the context in which ld.so was named.
Loadmodule used the context of the user invoking the program. Normally, this
caused the correct ld.so to be invoked. In the example, the attacker changed the
context so that another version of ld.so was executed. This version had a Trojan
horse that would grant privileged access. When the attacker executed loadmodule,
the Trojan horse was triggered and maximum privileges were acquired.

Implementation Rule 31.9. The process must ensure that the context in which
an object is named identi�es the correct object.

This program uses names for external objects in four places: the name of
the access control �le, the names of the users and roles, the names of the hosts,
and the name of the command interpreter (the shell) that the program uses to
execute commands in the role account.

The two �le names (access control �le and command interpreter) must
identify speci�c �les. Absolute path names specify the location of the object with
respect to a distinguished directory called / or the “root directory.” However, a
privileged process can rede�ne / to be any directory.53 This program does not do
so. Furthermore, if the root directory is anything other than the root directory of
the system, a trusted process has executed it. No untrusted user could have done
so. Thus, as long as absolute path names are speci�ed, the �les are unambiguously
named.

53Speci�cally, the system call chroot resets / to mean the named directory. All absolute path names
are interpreted with respect to that directory. Only the superuser, root, may execute this system call.

31.5 Common Security-Related Programming Problems 1131

The name provided may be interpreted in light of other aspects of the
environment. For example, differences in the encoding of characters can trans-
form �le names. Whether characters are made up of 16 bits, 8 bits, or 7 bits can
change the interpretation, and therefore the referent, of a �le name. Other envi-
ronment variables can change the interpretation of the path name. This program
simply creates a new, known, safe environment for execution of the commands.54

This has two advantages over sanitization of the existing context. First, it
avoids having the program analyze the environment in detail. The meaning of each
aspect of the environment need not be analyzed and examined. The environment is
simply replaced. Second, it allows the system to evolve without compromising the
security of the program. For example, if a new environment variable is assigned a
meaning that affects how programs are executed, the variable will not affect how
this program executes its commands because that variable will not appear in the
command’s environment. So this program closes all �le descriptors, resets signal
handlers, and passes a new set of environment variables for the command.

These actions satisfy Implementation Rule 31.9.
The developers assumed that the system was properly maintained, so that

the names of the users and roles would map into the correct UIDs. (Section
31.5.2.1 discusses this.) This applies to Management Rule 31.5.

The host names are the �nal set of names. These may be speci�ed by names
or IP addresses. If the former, they must be fully quali�ed domain names to avoid
ambiguity. To see this, suppose an access control entry allows user matt to access
the role wheel when logging in from the system amelia. Does this mean the system
named amelia in the local domain, or any system named amelia from any domain?
Either interpretation is valid. The former is more reasonable,55 and applying this
interpretation resolves the ambiguity. (The program implicitly maps names to fully
quali�ed domain names using the former interpretation. Thus, amelia in the access
control entry would match a host named amelia in the local domain, and not a
host named amelia in another domain.) This implements Implementation Rule
31.9.56

As a side note, if the local network is mismanaged or compromised, the
name amelia may refer to a system other than the one intended. For example, the
real host amelia may crash or go of�ine. An attacker can then reset the address of
his host to correspond to amelia. This program will not detect the impersonation.

31.5.5 Improper Deallocation or Deletion

Failing to delete sensitive information raises the possibility of another process
seeing that data at a later time. In particular, cryptographic keywords, passwords,

54The principle of fail-safe defaults (see Section 14.2.2) supports this approach.
55According to the principle of least privilege (see Section 14.2.1).
56As discussed in Section 15.6.1, “Host Identity,” host names can be spoofed. For reasons discussed
in the preceding chapters, the Drib management and security of�cers are not concerned with this
threat on the Drib’s internal network.

1132 Chapter 31 Program Security

and other authentication information should be discarded once they have been
used. Similarly, once a process has �nished with a resource, that resource should
be deallocated. This allows other processes to use that resource, inhibiting denial
of service attacks.

A consequence of not deleting sensitive information is that dumps of
memory, which may occur if the program receives an exception or crashes for
some other reason, contain the sensitive data. If the process fails to release
sensitive resources before spawning unprivileged subprocesses, those unprivileged
subprocesses may have access to the resource.

Implementation Rule 31.10. When the process �nishes using a sensitive object
(one that contains con�dential information or one that should not be altered),
the object should be erased, then deallocated or deleted. Any resources not
needed should also be released.

Our program uses three pieces of sensitive information. The �rst is the
cleartext password, which authenticates the user. The password is hashed, and the
hash is compared with the stored hash. Once the hash of the entered password has
been computed, the process must delete the cleartext password. So it overwrites
the array holding the password with random bytes.

The second piece of sensitive information is the access control information.
Suppose an attacker wanted to gain access to a role account. The access control
entries would tell the attacker which users could access that account using this
program. To prevent the attacker from gaining this information, the developers
decided to keep the contents of the access control �le con�dential. The program
accesses this �le using a �le descriptor. File descriptors remain open when a
new program overlays a process. Hence, the program closes the �le descriptor
corresponding to the access control �le once the request has been validated (or
has failed to be validated).

The third piece of sensitive information is the log �le. The program alters
this �le. If an unprivileged program such as one run by this program were to inherit
the �le descriptor, it could �ood the log. Were the log to �ll up, the program could
no longer log failures. So the program also closes the log �le before spawning the
role’s command.

31.5.6 Improper Validation

The problem of improper validation arises when data is not checked for con-
sistency and correctness. Ideally, a process would validate the data against the
more abstract policies to ensure correctness. In practice, the process can check
correctness only by looking for error codes (indicating failure of functions and
procedures) or by looking for patently incorrect values (such as negative numbers
when positive ones are required).

As the program is designed, the developers should determine what con-
ditions must hold at each interface and each block of code. They should then
validate that these conditions hold.

31.5 Common Security-Related Programming Problems 1133

What follows is a set of validations that are commonly overlooked. Each
program requires its own analysis, and other types of validation may be critical to
the correct, secure functioning of the program, so this list is by no means complete.

31.5.6.1 Bounds Checking
Errors of validation often occur when data is supposed to lie within bounds. For
example, a buffer may contain entries numbered from 0 to 99. If the index used
to access the buffer elements takes on a value less than 0 or greater than 99, it is
an invalid operand because it accesses a nonexistent entry. The variable used to
access the element may not be an integer (for example, it may be a set element or
pointer), but in any case it must reference an existing element.

Implementation Rule 31.11. Ensure that all array references access existing
elements of the array. If a function that manipulates arrays cannot ensure
that only valid elements are referenced, do not use that function. Find one
that does, write a new version, or create a wrapper.

In this example program, all loops involving arrays compare the value of
the variable referencing the array against the indexes (or addresses) of both the
�rst and last elements of the array. The loop terminates if the variable’s value is
outside those two values. This covers all loops within the program, but it does not
cover the loops in the library functions.

For loops in the library functions, bounds checking requires an analysis
of the functions used to manipulate arrays. The most common type of array for
which library functions are used is the character string, which is a sequence of
characters (bytes) terminating with a 0 byte. Because the length of the string is
not encoded as part of the string, functions cannot determine the size of the array
containing the string. They simply operate on all bytes until a 0 byte is found.

EXAMPLE: The program sometimes must copy character strings (de�ned in
C as arrays of character data terminating with a byte containing 0). The
canonical function for copying strings does no bounds checking. This function,
strcpy(x, y), copies the string from the array y to the array x, even if the
string is too long for x. A different function, strncpy(x, y, n), copies at most
n characters from array y to array x. However, unlike strcpy, strncpy may not
copy the terminating 0 byte.57 The program must take two actions when strncpy
is called. First, it must insert a 0 byte at the end of the x array. This ensures that
the contents of x meet the de�nition of a string in C. Second, the process must
check that both x and y are arrays of characters, and that n is a positive integer.

The programmers use only those functions that bound the sizes of arrays.
In particular, the function fgets is used to read input, because it allows the

57If the string in y is longer than n characters, strncpy will not add a 0 byte to the characters copied
into x.

1134 Chapter 31 Program Security

programmer to specify the maximum number of characters to be read. (This
solves the problem that plagued �ngerd.58)

31.5.6.2 Type Checking
Failure to check types is another common validation problem. If a function
parameter is an integer, but the actual argument passed is a �oating point number,
the function will interpret the bit pattern of the �oating point number as an integer
and will produce an incorrect result.

Implementation Rule 31.12. Check the types of functions and parameters.

A good compiler and well-written code will handle this particular prob-
lem. All functions should be declared before they are used. Most programming
languages allow the programmer to specify the number and types of arguments,
as well as the type of the return value (if any). The compiler can then check the
types of the declarations against the types of the actual arguments and return
values.

Implementation Rule 31.13. When compiling programs, ensure that the com-
piler reports inconsistencies in types. Investigate all such warnings and either
�x the problem or document the warning and why it is spurious.

31.5.6.3 Error Checking
A third common problem involving improper validation is failure to check
return values of functions. For example, suppose a program needs to determine
ownership of a �le. It calls a system function that returns a record containing
information from the �le attribute table. The program obtains the owner of the
�le from the appropriate �eld of the record. If the function fails, the information
in the record is meaningless. So, if the function’s return status is not checked, the
program may act erroneously.

Implementation Rule 31.14. Check all function and procedure executions for
errors.

This program makes extensive use of system and library functions, as well
as its own internal functions (such as the access control module). Every function
returns a value, and the value is checked for an error before the results of the
function are used. For example, the function that obtains the ownership and
access permissions of the access control �le would return meaningless information
should the function fail. So the function’s return value is checked �rst for an error;
if no error has occurred, then the �le attribute information is used.

58See Section 24.4.5.2, “The �ngerd Buffer Over�ow.”

31.5 Common Security-Related Programming Problems 1135

As another example, the program opens a log �le. If the open fails, and the
program tries to write to the (invalid) �le descriptor obtained from the function
that failed, the program will terminate as a result of an exception. Hence, the
program checks the result of opening the log �le.

31.5.6.4 Checking for Valid, Not Invalid, Data
Validation should apply the principle of fail-safe defaults.59 This principle
requires that valid values be known, and that all other values be rejected.
Unfortunately, programmers often check for invalid data and assume that the rest
is valid.

EXAMPLE: A metacharacter is a character that is interpreted as something other
than itself. For example, to the UNIX shells, the character “?” is a metacharacter
that represents all single character �les. A vendor upgraded its version of the
command interpreter for its UNIX system. The new command interpreter (shell)
treated the character “ `” (back quote) as a delimiter for a command (and hence
a metacharacter). The old shell treated the back quote as an ordinary character.
Included in the distribution was a program for executing commands on remote
systems. The set of allowed commands was restricted. This program carefully
checked that the command was allowed, and that it contained no metacharacters,
before sending it to a shell on the remote system. Unfortunately, the program
checked a list of metacharacters to be rejected, rather than checking a list of
characters that were allowed in the commands. As a result, one could embed
a disallowed command within a valid command request, because the list of
metacharacters was not updated to include the back quote.

Implementation Rule 31.15. Check that a variable’s values are valid.

This program checks that the command to be executed matches one of the
authorized commands. It does not have a set of commands that are to be denied.
The program will detect an invalid command as one that is not listed in the set
of authorized commands for that user accessing that role at the time and place
allowed.

As discussed in Section 31.3.2.3, it is possible to allow all users except some
speci�c users access to a role by an appropriate access control entry (using the
keyword not). The developers debated whether having this ability was appropriate
because its use could lead to violations of the principle of fail-safe defaults. On one
key system, however, the only authorized users were system administrators and
one or two trainees. The administrators wanted the ability to shut the trainees out
of certain roles. So the developers added the keyword and recommended against
its use except in that single speci�c situation.

59See Section 14.2.2, “Principle of Fail-Safe Defaults.”

1136 Chapter 31 Program Security

Implementation Rule 31.16. If a trade-off between security and other factors
results in a mechanism or procedure that can weaken security, document the
reasons for the decision, the possible effects, and the situations in which the
compromise method should be used. This informs others of the trade-off and
the attendant risks.

31.5.6.5 Checking Input
All data from untrusted sources must be checked. Users are untrusted sources.
The checking done depends on the way the data is received: into an input buffer
(bounds checking) or read in as an integer (checking the magnitude and sign of
the input).

Implementation Rule 31.17. Check all user input for both form and content.
In particular, check integers for values that are too big or too small, and check
character data for length and valid characters.

The program determines what to do on the basis of at least two pieces
of data that the user provides: the role name and the command (which, if
omitted, means unrestricted access).60 Users must also authenticate themselves
appropriately. The program must �rst validate that the supplied password is
correct. It then checks the access control information to determine whether the
user is allowed access to the role at that time and from that location.

The length of the input password must be no longer than the buffer in which
it is placed. Similarly, the lines of the access control �le must not over�ow the
buffer allocated for it. The contents of the lines of the access control �le must
make up a valid access control entry. This is most easily done by constraining the
format of the contents of the �le, as discussed in the next section.

An excellent example of the need to constrain user input comes from
formatted print statements in C.

EXAMPLE: The printf function’s �rst parameter is a character string that indicates
how printf is to format output data. The following parameters contain the data.
For example,

printf("%d %d\n", i, j);

prints the values of i and j. Some versions of this library function allow the user
to store the number of characters printed at any point in the string. For example,
if i contains 2, j contains 21, and m and n are integer variables,

printf("%d %d%n %d\n%n", i, j, &m, i, &n);

prints

2 21 2

60See Section 14.2.6, “Principle of Separation of Privilege.”

31.5 Common Security-Related Programming Problems 1137

and stores 4 in m and 7 in n, because four characters are printed before the �rst
“%n” and seven before the second “%n” (the sequence “\n” is interpreted as a
single character, the newline). Now, suppose the user is asked for a �le name. This
input is stored in the array str. The program then prints the �le name with

printf(str);

If the user enters the �le name “log%n”, the function will overwrite some memory
location with the integer 3. The exact location depends on the contents of the
program stack, and with some experimentation it is possible to cause the program
to change the return address stored on the stack. This leads to the buffer over�ow
attack described earlier.

31.5.6.6 Designing for Validation
Sometimes data cannot be validated completely. For example, in the C program-
ming language, a programmer can test for a NULL pointer (meaning that the
pointer does not hold the address of any object), but if the pointer is not NULL,
checking the validity of the pointer may be very dif�cult (or impossible). Using a
language with strong type checking is another example.

The consequence of the need for validation requires that data structures
and functions be designed and implemented in such a way that they can be
validated. For example, because C pointers cannot be properly validated, pro-
grammers should not pass pointers or use them in situations in which they
must be validated. Methods of data hiding, type checking, and object-oriented
programming often provide mechanisms for doing this.

Implementation Rule 31.18. Create data structures and functions in such a
way that they can be validated.

An example will show the level of detail necessary for validation. The
entries in the access control �le are designed to allow the program to detect
obvious errors. Each access control entry consists of a block of information in
the following format:

role name
user comma-separated list of users
location comma-separated list of locations
time comma-separated list of times
command program and arguments
. . .
command program and arguments

endrole

This de�nes each component of the entry. (The lines need not be in any
particular order.) The syntax is well-de�ned, and the access control module in the

1138 Chapter 31 Program Security

program checks for syntax errors. The module also performs other checks, such
as searching for invalid user names in the user �eld and requiring that the full path
names of all commands be speci�ed. Finally, note that the module computes the
number of commands for the module’s internal record. This eliminates a possible
source of error—namely, that the user may miscount the number of commands.

In case of any error, the process logs the error, if possible, and terminates.
It does not allow the user to access the role.

31.5.7 Improper Indivisibility

Improper indivisibility61 arises when an operation is considered as one unit
(indivisible) in the abstract but is implemented as two units (divisible). The race
conditions discussed in Section 31.5.3.3 provide one example. The checking of
the access control �le attributes and the opening of that �le are to be executed
as one operation. Unfortunately, they may be implemented as two separate
operations, and an attacker who can alter the �le after the �rst but before the
second operation can obtain access illicitly. Another example arises in exception
handling. Often, program statements and system calls are considered as single
units or operations when the implementation uses many operations. An exception
divides those operations into two sets: the set before the exception, and the set
after the exception. If the system calls or statements rely on data not changing
during their execution, exception handlers must not alter the data.

Section 31.5.3 discusses handling of these situations when the operations
cannot be made indivisible. Approaches to making them indivisible include
disabling interrupts and having the kernel perform operations. The latter assumes
that the operation is indivisible when performed by the kernel, which may be an
incorrect assumption.

Implementation Rule 31.19. If two operations must be performed sequentially
without an intervening operation, use a mechanism to ensure that the two
cannot be divided.

In UNIX systems, the problem of divisibility arises with root processes
such as the program under consideration. UNIX-like systems do not enforce the
principle of complete mediation.62 For root, access permissions are not checked.
Recall the xterm example in Section 24.3.1. A user needed to log information from
the execution of xterm, and speci�ed a log �le. Before appending to that �le, xterm
needed to ensure that the real UID could write to the log �le. This required an extra
system call. As a result, operations that should have been indivisible (the access
check followed by the opening of the �le) were actually divisible. One way to make
these operations indivisible on UNIX-like systems is to drop privileges to those
of the real UID, then open the �le. The access checking is done in the kernel as
part of the open.

61This is often called “atomicity.”
62See Section 14.2.4, “Principle of Complete Mediation.”

31.5 Common Security-Related Programming Problems 1139

Improper indivisibility arises in our program when the access control mod-
ule validates and then opens the access control �le. This should be a single
operation, but because of the semantics of UNIX-like systems, it must be per-
formed as two distinct operations. It is not possible to ensure the indivisibility of the
two operations. However, it is possible to ensure that the target of the operations
does not change, as discussed in Section 31.5.3, and this suf�ces for our purposes.

31.5.7.1 Improper Sequencing
Improper sequencing means that operations are performed in an incorrect order.
For example, a process may create a lock �le and then write to a log �le. A second
process may also write to the log �le, and then check to see if the lock �le exists.
The �rst program uses the correct sequence of calls; the second does not (because
that sequence allows multiple writers to access the log �le simultaneously).

Implementation Rule 31.20. Describe the legal sequences of operations on
a resource or object. Check that all possible sequences of the program(s)
involved match one (or more) legal sequences.

In our program, the sequence of operations in the design shown in Section
31.3.1.2 follows a proper order. The user is �rst authenticated. Then the program
uses the access control information to determine if the requested access is valid.
If it is, the appropriate command is executed using a new, safe environment.

A second sequence of operations occurs when privileges to the role are
dropped. First, group privileges are changed to those of the role. Then all user
identi�cation numbers are changed to those of the role. A common error is to
switch the user identi�cation numbers �rst, followed by the change in group
privileges. Because changing group privileges requires root privileges, the change
will fail. Hence, the programmers used the stated ordering.

31.5.8 Improper Choice of Operand or Operation

Preventing errors of choosing the wrong operand or operation requires that the
algorithms be thought through carefully (to ensure that they are appropriate). At
the implementation level, this requires that operands be of an appropriate type
and value, and that operations be selected to perform the desired functions. The
difference between this type of error and improper validation lies in the program.
Improper implementation refers to a validation failure. The operands may be
appropriate, but no checking is done. In this category, even though the operands
may have been checked, they may still be inappropriate.

EXAMPLE: The UNIX program su allows a user to substitute another user’s
identity, obtaining the second user’s privileges. According to an apocryphal story,
one version of this program granted the user root privileges if the user information
database did not exist (see Exercise 10 in Chapter 14). If the program could not

1140 Chapter 31 Program Security

open the user information database �le, it assumed that the database did not exist.
This was an inappropriate choice of operation because one could block access to
the �le even when the database existed.

Assurance techniques63 help detect these problems. The programmer docu-
ments the purpose of each function and then checks (or, preferably, others check)
that the algorithms in the function work properly and that the code correctly
implements the algorithms.

Management Rule 31.6. Use software engineering and assurance techniques
(such as documentation, design reviews, and code reviews) to ensure that
operations and operands are appropriate.

Within our program, many operands and operations control the granting
(and denying) of access, the changing to the role, and the execution of the
command. We �rst focus on the access part of the program, and afterwards we
consider two other issues.

First, a user is granted access only when an access control entry matches
all characteristics of the current session. The relevant characteristics are the role
name, the user’s UID, the role’s name (or UID), the location, the time, and the
command. We begin by checking that if the characteristics match, the access
control module returns true (allowing access). We also check that the caller grants
access when the module returns true and denies access when the module returns
false.

Next, we consider the user’s UID. That object is of type uid t. If the
interface to the system database returns an object of a different type, conversion
becomes an issue. Speci�cally, many interfaces treat the UID as an integer. The
difference between the types int and uid t may cause problems. On the systems
involved, uid t is an unsigned integer. Since we are comparing signed and unsigned
integers, C simply converts the signed integers to unsigned integers, and the
comparison succeeds. Hence, the choice of operation (comparison here) is proper.

Checking location requires the program to derive the user’s location, as
discussed above, and pass it to the validator. The validator takes a string and
determines whether it matches the pattern in the location �eld of the access control
entry. If the string matches, the module should continue; otherwise, it should
terminate and return false.

Unlike the location, a variable of type time t contains the current time.
The time checking portion of the module processes the string representing the
allowed times and determines if the current time falls in the range of allowed
times. Checking time is different than checking location because legal times are
ranges, except in one speci�c situation: when an allowed time is speci�ed to the
exact second. A speci�cation of an exact time is useless, because the program may
not obtain the time at the exact second required. This would lead to a denial of
service, violating Requirement 31.4. Also, allowing exact times leads to ambiguity.

63See Chapter 20, “Building Systems with Assurance.”

31.6 Testing, Maintenance, and Operation 1141

EXAMPLE: The system administrator speci�es that user matt is allowed access to
the role mail at 9 a.m. on Tuesdays. Should this be interpreted as exactly 9 a.m.
(that is, 9:00:00 a.m.) or as sometime during the 9 a.m. hour (that is, from 9:00:00
to 9:59:59 a.m.)? The latter interprets the speci�cation as a range rather than an
exact time, so the access control module uses that interpretation.

The use of signal handlers provides a second situation in which an improper
choice of operation could occur. A signal indicates either an error in the program
or a request from the user to terminate, so a signal should cause the program to
terminate. If the program continues to run, and then grants the user access to the
role account, either the program has continued in the face of an error or it has
overridden the user’s attempt to terminate the program.

31.5.9 Summary

This type of top-down analysis differs from the more usual approach of taking a
checklist of common vulnerabilities and using it to examine code. There is a place
for each of these approaches. The top-down approach presented here is a design
approach, and should be applied at each level of design and implementation.
It emphasizes documentation, analysis, and understanding of the program, its
interfaces, and the environment in which it executes. A security analysis document
should describe the analysis and the reasons for each security-related decision.
This document will help other analysts examine the program and, more impor-
tantly, will provide future developers and maintainers of the program with insight
into potential problems they may encounter in porting the program to a different
environment, adding new features, or changing existing features.

Once the appropriate phase of the program has been completed, the
developers should use a checklist to validate that the design or implementation has
no common errors. Given the complexity of security design and implementation,
such checklists provide valuable con�rmation that the developers have taken
common security problems into account.

Appendix H lists the implementation and management rules in a convenient
form.

31.6 Testing, Maintenance, and Operation

Testing provides an informal validation of the design and implementation of
the program. The goal of testing is to show that the program meets the stated
requirements. When design and implementation are driven by the requirements,
as in the method used to create the program under discussion, testing is likely to
uncover only minor problems, but if the developers do not have well-articulated
requirements, or if the requirements are changed during development, testing

1142 Chapter 31 Program Security

may uncover major problems, requiring changes up to a complete redesign and
reimplementation of a program. The worst mistake managers and developers can
make is to take a program that does not meet the security requirements and add
features to it to meet those requirements. The problem is that the basic design does
not meet the security requirements. Adding security features will not ameliorate
this fundamental �aw.

Once the program has been written and tested, it must be installed. The
installation procedure must ensure that when a user starts the process, the envi-
ronment in which the process is created matches the assumptions embodied in the
design. This constrains the con�guration of the program parameters as well as
the manner in which the system is con�gured to protect the program. Finally, the
installers must enable trusted users to modify and upgrade the program and the
con�guration �les and parameters.

31.6.1 Testing

The results of testing a program are most useful if the tests are conducted in the
environment in which the program will be used (the production environment). So,
the �rst step in testing a program is to construct an environment that matches
the production environment. This requires the testers to know the intended
production environment. If there are a range of environments, the testers must
test the programs in all of them. Often there is overlap between the environments,
so this task is not so daunting as it might appear.

The production environment should correspond to the environment for
which the program was developed. A symptom of discrepancies between the
two environments is repeated failures resulting from erroneous assumptions. This
indicates that the developers have implicitly embedded information from the
development environment that is inconsistent with the testing environment. This
discrepancy must be reconciled.

The testing process begins with the requirements. Are they appropriate?
Do they solve the problem? This analysis may be moot (if the task is to write
a program meeting the given requirements), but if the task is phrased in terms
of a problem to be solved, the problem drives the requirements. Because the
requirements drive the design of the program, the requirements must be validated
before designing begins.

As many of the software life cycle models indicate, this step may be
revisited many times during the development of the program. Requirements may
prove to be impossible to meet, or may produce problems that cannot be solved
without changing the requirements. If the requirements are changed, they must
be reanalyzed and veri�ed to solve the problem.

Then comes the design. Section 31.4 discusses the stepwise re�nement of
the program. The decomposition of the program into modules allows us to test the
program as it is being implemented. Then, once it has been completed, the testing
of the entire program should demonstrate that the program meets its requirements
in the given environment.

31.6 Testing, Maintenance, and Operation 1143

The general philosophy of testing is to execute all possible paths of control
and compare the results with the expected results. In practice, the paths of control
are too numerous to test exhaustively. Instead, the paths are analyzed and ordered.
Test data is generated for each path, and the testers compare the results obtained
from the actual data with the expected results. This continues until as many paths
as possible have been tested.

For security testing, the testers must test not only the most commonly used
paths but also the least commonly used paths.64 The latter often create security
problems that attackers can exploit. Because they are relatively unused, traditional
testing places them at a lower priority than that of other paths. Hence, they are
not as well scrutinized, and vulnerabilities are missed.

The ordering of the paths relies on the requirements. Those paths that
perform multiple security checks are more critical than those that perform single
(or no) security checks because they introduce interfaces that affect security
requirements. The other paths affect security, of course, but there are no interfaces.

First, we examine a module that calls no other module. Then we examine
the program as a composition of modules. We conclude by testing the installation,
con�guration, and use instructions.

31.6.1.1 Testing the Module
The module may invoke one or more functions. The functions return results to
the caller, either directly (through return values or parameter lists) or indirectly
(by manipulation of the environment). The goal of this testing is to ensure that
the module exhibits correct behavior regardless of what the functions returns.

The �rst step is to de�ne “correct behavior.” During the design of the
program, the re�nement process led to the speci�cation of the module and the
module’s interface. This speci�cation de�nes “correct behavior,” and testing will
require us to check that the speci�cation holds.

We begin by listing all interfaces to the module. We will then use this list to
execute four different types of tests. The types of test are as follows:

1. Normal data tests. These tests provide unexceptional data. The data
should be chosen to exercise as many paths of control through the
module as possible.

2. Boundary data tests. These tests provide data that tests any limits to the
interfaces. For example, if the module expects a string of up to 256
characters to be passed in, these tests invoke the module and pass in
arrays of 255, 256, and 257 characters. Longer strings should also be
used in an effort to over�ow internal buffers. The testers can examine the
source code to determine what to try. Limits here do not apply simply
to arrays or strings. In the program under discussion, the lowest allowed
UID is 0, for root. A good test would be to try a UID of −1 to see what
happens. The module should report an error.

64See Section 20.3.3.1, “Security Testing.”

1144 Chapter 31 Program Security

EXAMPLE: One UNIX system had UIDs of 16 bits. The system used a �le server
that would not allow a client’s root user to access any �les. Instead, it remapped
root’s UID to the public UID of −2. Because that UID was not assigned to any
user, the remapped root could access only those �les that were available to all
users. The limit problem arose because one user, named Mike, had the UID 65534.
Because 65534 = −2 in two’s complement 16-bit arithmetic, the remote root user
could access all of Mike’s �les—even those that were not publicly available.

3. Exception tests. These tests determine how the program handles inter-
rupts and traps. For example, many systems allow the user to send a
signal that causes the program to trap to a signal handler, or to take a
default action such as dumping the contents of memory to a core �le.
These tests determine if the module leaves the system in a nonsecure
state—for example, by leaving sensitive information in the memory
dump. They also analyze what the process does if ordinary actions (such
as writing to a �le) fail.

EXAMPLE: An FTP server ran on a system that kept its authentication informa-
tion con�dential. An attacker found that she could cause the system to crash
by sending an unexpected sequence of commands, causing multiple signals to
be generated before the �rst signal could be handled. The crash resulted in a
core dump. Because the server would be restarted automatically, the attacker
simply connected again and downloaded the core dump. From that dump, she
extracted the authentication information and used a dictionary attack65 to obtain
the passwords of several users.

4. Random data tests. These tests supply inputs generated at random and
observe how the module reacts. They should not corrupt the state of the
system. If the module fails, it should restore the system to a safe state.66

EXAMPLE: In a study of UNIX utilities [1345], approximately 30% crashed when
given random inputs. In one case, an unprivileged program caused the system to
crash. In 1995, a retest showed some improvement, but still “signi�cant rates of
failure” [1346, p. 1]. Other tested systems fared little better [705, 1344].

Throughout the testing, the testers should keep track of the paths taken.
This allows them to determine how complete the testing is. Because these tests are
highly informal, the assurance they provide is not as convincing as the techniques
discussed in Chapter 20. However, it is more than random tests, or no tests, would
provide.

65See Section 13.4, “Attacking Passwords.”
66See Section 14.2.2, “Principle of Fail-Safe Defaults.”

31.6 Testing, Maintenance, and Operation 1145

31.6.2 Testing Composed Modules

Now consider a module that calls other modules. Each of the invoked modules
has a speci�cation describing its actions. So, in addition to the tests discussed in
the preceding section, one other type of test should be performed.

5. Error handling tests. These tests assume that the called modules violate
their speci�cations in some way. The goal of these tests is to determine
how robust the caller is. If it fails gracefully, and restores the system to
a safe state, then the module passes the test. Otherwise, it fails and must
be rewritten.

EXAMPLE: Assume that a security-related program, running with root privileges,
logs all network connections to a UNIX system. It also sends mail to the network
administrator with the name of the connecting host on the subject line. To do this,
it executes a command such as

mail -s hostname netadmin

where hostname is the name of the connecting host. This module obtains hostname
from a different module that is passed the connecting host’s IP address and
uses the Domain Name Service to �nd the corresponding host name. A serious
problem arose because the DNS did not verify that hostname was composed of
legal characters. The effects were discovered when one attacker changed the name
of his host to

hi nobody; rm -rf *; true

causing the security-related program to delete critical �les. Had the calling module
expected failure, and checked for it, the error would have been caught before any
damage was done.

31.6.3 Testing the Program

Once the testers have assembled the program and its documentation, the �nal
phase of testing begins. The testers have someone follow the installation and
con�guration instructions. This person should not be a member of the testing
team, because the testing team has been working with the program and is
familiar with it. The goal of this test is to determine if the installation and
con�guration instructions are correct and easy to understand. The principle of
least astonishment67 requires that the tool be as easy to install and use as possible.
Because most installers and users will not have experience with the program, the

67See Section 14.2.8, “Principle of Least Astonishment.”

1146 Chapter 31 Program Security

testers need to evaluate how they will understand the documentation and whether
or not they can install the program correctly by following the instructions. An
incorrectly installed security tool does not provide security; it may well detract
from it. Worse, it gives people a false sense of security.

31.7 Distribution

Once the program has been completed, it must be distributed. Distribution
involves placing the program in a repository where it cannot be altered except
by authorized people, and from which it can be retrieved and sent to the intended
recipients. This requires a policy for distribution. Speci�c factors to be considered
are as follows.

1. Who can use the program? If the program is licensed to a speci�c
organization, or to a speci�c host, then each copy of the program that
is distributed must be tied to that organization or host so it cannot be
redistributed or pirated. This is an originator controlled policy.68 One
approach is to provide the licensee with a secret key and encipher the
software with the same key. This prevents redistribution without the
licensee’s consent, unless the attacker breaks the cryptosystem or steals
the licensee’s key.69

2. How can the integrity of the master copy be protected? If an attacker can
alter the master copy, from which distribution copies are made, then the
attacker can compromise all who use the program.

EXAMPLE: The program tcp wrappers provides host-level access control for net-
work servers. It is one of the most widely used programs in the UNIX commu-
nity. In 1996, attackers broke into the site from which that program could be
obtained [2238]. They altered the program to allow all connections to succeed.
More than 50 groups obtained the program before the break-in was detected.

Part of the problem is credibility. If an attacker can pose as the vendor,
then all who obtain the program from the attacker will be vulnerable
to attack. This tactic undermines trust in the program and can be
surprisingly hard to counter. It is analogous to generating a crypto-
graphic checksum for a program infected with a computer virus.70 When
an uninfected program is obtained, the integrity checker complains
because the checksum is wrong. In our example, when the real vendor

68See Section 8.3, “Originator Controlled Access Control.”
69See Section 14.2.5, “Principle of Open Design.”
70See Section 23.9.1, “Scanning Defenses.”

31.9 Research Issues 1147

contacts the duped customer, the customer usually reacts with disbelief,
or is unwilling to concede that his system has been compromised.

3. How can the availability of the program be ensured? If the program is
sent through a physical medium, such as a read-only DVD, availability is
equivalent to the availability of mail or messenger services between the
vendor and the buyer. If the program is distributed through electronic
means, however, the distributor must take precautions to ensure that
the distribution site is available. Denial of service attacks such as SYN
�ooding may hamper the availability.

Like a program, the distribution is controlled by a policy. All considerations
that affect a security policy affect the distribution policy as well.

31.8 Summary

This chapter discussed informal techniques for writing programs that enforce
security policies. The process began with a requirements analysis and continued
with a threat analysis to show that the requirements countered the threats. The
design process came next, and it fed back into the requirements to clarify an
ambiguity. Once the high-level design was accepted, we used a stepwise re�nement
process to break the design down into modules and a caller. The categories of
�aws in the program analysis vulnerability helped �nd potential implementation
problems. Finally, issues of testing and distribution ensured that the program did
what was required.

31.9 Research Issues

The �rst research issue has to do with analysis of code. How can one analyze
programs to discover security �aws? This differs from the sort of analysis that is
performed in the development of high-assurance systems, because the program
and system are already in place. The goal is to determine what, and where, the
problems are. Some researchers are developing analysis tools for speci�c problems
such as buffer over�ows and race conditions. Others are using �ow analysis tools
to study the program for a wide variety of vulnerabilities.

Related to this issue is the development of languages that are safer with
respect to security. For example, some languages automatically create an exception
if a reference is made beyond the bounds of an array. How much overhead does
this add? Can the language use special-purpose hardware to minimize the impact
of checking the references? What else should a language constrain, and how
should it do so?

1148 Chapter 31 Program Security

31.10 Further Reading

Robust programming—the art of writing programs that work correctly and
handle errors gracefully—is a topic of great interest, often in the guise of “secure
programming.” Kernighan and Plauger’s book [1039] describes the principles and
ideas underlying good programming style. Kernighan and Pike [1040] also discuss
style and other elements of good programming. Stavely’s book [1819] combines
formalisms with informal steps. Maguire’s book [1234] is much more informal,
and is a collection of tips on how to write robust programs. Martin [1257] focuses
on robust practices for agile programming, while McConnell [1277] discusses
robust programming in the general context of software construction.

Howard and LeBlanc [926] discuss secure coding, emphasizing the
Windows and .NET environment. Howard, LeBlanc, and Viega’s book [927]
describes 24 serious but common software �aws and how programmers can avoid
them.

Much focus is on the C and C++ programming languages, because of their
wide use, lack of type-safe features, and ability to manipulate memory directly.
Seacord [1704] and Viega and Messier [1935] discuss ways to make programs in
these languages more robust and secure. Sutter and Alexandrescu [1843] present
a set of coding standards for C++. Similarly, developing robust, secure web
applications is critical, and several books [119, 1241, 1393, 1734] discuss how to
do so.

Graff and van Wyk [804] provide a general overview of principles and
practice, and much sound advice. Viega and McGraw’s book [1932] is also general,
with many examples focusing on UNIX and Linux systems. Its design principles
give good advice. McGraw [1287] expands on these in a later book. Gar�nkel,
Schwartz, and Spafford [747] has a wonderful chapter on trust, which is must
reading for anyone interested in security-related programming. Wheeler [2000]
also provides valuable information and insight.

31.11 Exercises

1. Consider the two interpretations of a time �eld that speci�es “1 a.m.” One
interpretation says that this means exactly 1:00 a.m. and no other time. The
other says that this means any time during the 1 a.m. hour.

a. How would you express the time of “exactly 1 a.m.” in the second
interpretation?

b. How would you express “any time during the 1 a.m. hour” in the �rst
interpretation?

c. Which is more powerful? If they are equally powerful, which do you
think is least astonishing? Why?

31.11 Exercises 1149

2. Verify that the modi�ed version of Requirement 31.4 shown as Requirement
31.6 on page 1105 counters the appropriate threats.

3. Assume the alternative interpretation of Requirement 31.4 given in Section
31.3.1.2, so that access only is controlled by location and time, and that com-
mands are restricted by role and user. This means that if a user is authorized
to run a command, she can run it from any location he is authorized to use.
How would you change the way information is stored in the access control �le
described in Section 31.3.2.2?

4. Currently, the program described in this chapter is to have setuid-to-root
privileges. Someone observed that it could be equally well-implemented as
a server, in which case the program would authenticate the user, connect to
the server, send the command and role, and then let the server execute the
command.

a. What are the advantages of using the server approach rather than the
single program approach?

b. If the server responds only to clients on the local machine, using
interprocess communication mechanisms on the local system, which
approach would you use? Why?

c. If the server were listening for commands from the network, would that
change your answer to the previous question? Why or why not?

d. If the client sent the password to the server, and the server authenticated,
would your answers to any of the three previous parts change? Why or
why not?

5. The little languages presented in Section 31.3.2.3 have ambiguous semantics.
For example, in the location language, does “not host1 or host2” mean
“neither at host1 nor at host2” or “at host2 or not at host1”?

a. Rewrite the BNF of the location language to make the semantics re�ect
the second meaning (i.e., the precedence of “not” is lower than that of
“or”). Are the semantics unambiguous now? Why or why not?

b. Rewrite the BNF of the time language to make the semantics re�ect
the second meaning (i.e., the precedence of “not” is higher than that
of “or”). Are the semantics unambiguous now? Why or why not?

6. Suppose an access control record is malformed (for example, it has a syntax
error). Show that the access control module would deny access.

7. The canary for StackGuard simply detects over�ow that might change the
return address. This exercise asks you to extend the notion of a canary to
detection of buffer over�ow.

a. Assume that the canary is placed directly after the array, and that after
every array, access is checked to see if it has changed. Would this detect
a buffer over�ow? If so, why do you think this is not suitable for use in

1150 Chapter 31 Program Security

practice? If not, describe an attack that could change a number beyond
the buffer without affecting the canary.

b. Now suppose that the canary was placed directly after the buffer but—
like the canary for StackGuard—was only checked just before a function
return. How effective do you think this method would be?

Index

Symbols
|-* symbol, Take-Grant Protection Model, 33
|- symbol, Take-Grant Protection Model, 33
†-property, Basic Security Theorem controversy, 164–166
*-property, Bell-LaPadula

Basic Security Theorem and, 143, 145, 152–155
Basic Security Theorem controversy, 164–166, 167
and Chinese Wall Models, 235
instantiation, 147
limits of capabilities, 522–523
Lipner’s integrity matrix model, 180
Multics system, 159–161
rules of transformation, 155–157

Numbers
2-Step Veri�cation protocol, Google, 446–447
64-bits. See Data Encryption Standard (DES)
128-bits. See Advanced Encryption Standard (AES)

A
A posteriori design

auditing to detect known violations of policy, 895–897
auditing to detect violations of known policy, 893–895
a priori design vs., 900

A posteriori testing
penetration testing as form of, 773, 844
techniques in, 16

AAFID. See Autonomous Agents for Intrusion Detection
(AAFID)

Absolute path names, improper naming, 1130
Abstract data type managers, capability systems, 522
Abstract machines, HDM, 705–707
Abstraction

application log advantages, 891–893
improper isolation of implementation detail, 1123–1124
level of weakness, CWE, 868
library OSs and, 586
representing attacks, 960–964

Academic computer security policy example
electronic communications policy, 127–129
full description of. See Electronic communications

policy, UCD
implementation at UC Davis, 130–131
overview of, 126–127
user advisories, 129–130

Acceptable use policy, UCD
incorporating into allowable use policy,

1241–1246
overview of, 130–131, 1207–1212

Acceptable vs. legal practices, 19–20

Access control
affecting function of server, 579–582
break-the-glass policies overriding, 249–250
Clinical Information Systems security policy on, 237–238
DMZ WWW server vs. development system, 1047
electronic communications policy at UCD, 1218
�le permissions, 1120–1121
improper choice of operand/operation and, 1140
improper deallocation/deletion of information and, 1132
obtaining record of, 1115–1116
preserving con�dentiality via, 4
schemes, 95–97
shared password problem in, 1100–1101
types of, 117–118
unauthorized access to role accounts, 1102
using identity for, 472
validating entries, 1124
via capabilities. See Capabilities
wrappers, 977, 1046

Access control lists (ACLs)
abbreviations of, 508–511
capabilities vs., 519, 523–524
Cisco dynamic, 527–528
creating/maintaining, 511–514
on DMZ WWW server, 1056
NTFS and, 515–517
outer �rewall con�guration, 1014–1015
overview of, 507–508
PACL vs., 532
revocation of rights and, 514–515

Access control matrix
architectural security, 651–657
copy right and, 42
determining system safety, 52–56
formal model of Bell-LaPadula Model, 151, 153
model. See Access control matrix model
own right and, 42–43
Principle of Attenuation of Privilege, 43–44
protection state, 31–32
protection state transitions, 37–41
review, 44–47
security policies changing, 268–270
unwinding theorem, 266–268

Access control matrix model
ATAM vs. TAM, 99–101
Boolean expression evaluation in, 35–36
comparing HRU, SPM and, 82
history and, 36–37
malleability of, 61
as protection system, 32–34
TAM model as expansion of, 92–94

1341

1342 Index

Access control mechanisms
ACLs. See access control lists (ACLs)
capabilities, 518–526
locks and keys, 526–531
overview of, 507
Propagated Access Control List (PACL), 533–534
review, 535–537
ring-based access control, 531–533

Access control module
de�ned, 1104
design, framework, 1104–1105
design, roles and commands, 1106–1110
�rst-level re�nement, 1111–1112
functions, 1114–1117
review, 1117
second-level re�nement, 1112–1114

Access points, wireless networks, 1023
Access Restriction Facility (ARF) program, 35–36
Access, user security

leaving system unattended, 1079
login procedure, 1076–1079
passwords, 1074–1076

Access without consent, electronic communications policy,
129, 1221–1222, 1232–1233

Accessibility
electronic communications policy at UCD f, 1219
password wallet disadvantages, 425
using cloud remotely for, 1024

Accountability
auditing for, 174, 472
identities for, 472

Accuracy (classi�cation rate), intrusion detection methods,
925

ACK packet
availability, and SYN �ooding, 215
in pulsing DoS attack, 221–222
SYN �ooding countermeasures, 217

ACLs. See Access control lists (ACLs)
Actions

considering effects of, 989
DIDS, 950–951

Activation transition, resource allocation system, 211–212
Active side channel attacks, 280
Active wiretapping, 7
Acyclic attenuating schemes, 77–81, 87–88
Acyclic creates rule, 73–74
Adaptive directors, altering rules, 946
Adaptive intrusion detection models, 920
Adaptive timeouts, availability in �ooding attacks, 220
Address space layout randomization (ASLR), 974–975
AddRoundKey transformation, AES, 304, 1199, 1203–1205
Adjacent pairs of speci�cation, 677–680
Adleman, Len, 781
Administrative accounts

shared password problem, 1100–1103
user con�guration for development system, 1050–1053

Administrative assurance, de�ned, 634
Adore-ng rootkit, 778
Adorned names, listing all SLDs in MLD, 148–149
Advanced Encryption Standard (AES)

analysis of, 304–305
background, 1196–1197
basic transformations, 1197–1199
as block cipher, 370

ciphers that were �nalists to, 303
decryption, 1200–1201
encryption, 1199
equivalent inverse cipher, 1203–1205
modes, 305
overview of, 303, 1196
replacing DES, 302
review, 1205
round key generation, 1201–1203
strong mixing function of, 342
structure, 303–304

Adware, 797–799
AEAD. See Authenticated encryption with associated data

(AEAD)
Aegis kernel, isolation via library OS, 585
AES. See Advanced Encryption Standard (AES)
Agents

AAFID autonomous, 952–953
intrusion detection architecture, 942–945
NSM network, 950

Aggregation principle, 238
Aggressive Chinese Wall Model, 233–234
Agile software development, 641–644
Aging, password, 434–438
AH. See authentication header (AH)
AI. See arti�cial intelligence (AI)
Aldus FreeHand, MacMag Peace virus and, 782
Alert protocol, TLS, 399
Algorithms

determining system safety, 51–56
generating random numbers, 341–342
main DES, 1191–1194
system security questions, 49–51

Allowable use, electronic communications policy
overview of, 127–128, 1216–1220
updated version, 1241–1246
user advisories, 1235

Alteration, and threats, 7
AM security level. See Audit Manager (AM) security level
Ampli�cation

attacks, 221–222
as increasing privileges, 521

Anagramming, attacking transposition cipher, 292
Analysis engine

DIDS centralized, 950
intrusion detection, 945–946

Analysis phase, digital forensics, 993–994
Analysis procedure, Protection Analysis (PA) model, 854–856
Analyzer, auditing system, 883
And-access, cryptographic locks and keys, 527
And, joining conditions with, 41
Anderson’s Formula, attacking passwords, 426–427
Android cell phones

Geinimi Trojan horse and, 776–777
loading libraries for process con�nement, 593–594
privacy information �ow issue, 568–570

Animal game, 779, 984
Annotated programs, formally veri�ed products, 722–723
Anomaly detection

clustering, 926–928
de�ned, 920
distance to neighbor, 930–931
incident prevention via, 972
intrusion detection, 972

Index 1343

machine learning, 924–925
Markov models, 922–924
misuse detection vs., 941–942
neural nets, 928–929
other methods, 932
overview of, 920–921
self-organizing maps, 928–930
statistical methods, 921–922
support vector machine (SVM), 931–932
threshold metrics, 921

Anon.penet.�, Swedish anonymizer, 491
Anonymity

electronic communications policy, 1218
erosion of privacy/need for, 482
on web. See Web, anonymity on

Anonymizers
email, 491–494
hiding origins of connections, 490–491

Anonymizing sanitizers, auditing, 889–891
Anonymous Dif�e-Hellman, 394
Anonymous (persona) certi�cates, 482
Anti-forensics, 994–996
Anti-replay

AH protocol, 408
IPsec architecture, 405

Antivirus scanners, 808–809
APA tool. See Automated penetration analysis (APA) tool
AppAudit, 570
Append right, access control matrix, 33
Appendices in this book

academic security policy. See Academic computer
security policy example

electronic communications policy at UCD, 1227–1233
encryption standards. See Encryption standards
entropy and uncertainty, 1163–1169
Extended Euclidean Algorithm, 1157–1161
lattices, 1153–1155
logic. See Symbolic logic
overview, 1151
virtual machines, 1171–1177

Apple iPhones, Pegasus spyware for, 799–800
Appleseed trust model, 198
Application data protocol, TLS, 400
Application level �rewalls. See Proxy (or application level)

�rewalls
Application logs, auditing design, 891–893
Arc attacks, 848, 974–975
Architecture

building systems with assurance, 651–657
of capabilities vs. ACLs, 519
intrusion detection, 942–948
IPsec, 404–407
TCSEC, 733
waterfall life cycle model, 640

ARF, See Access Restriction Facility (ARF) program
ARHIVEUS-A ransomware, 801
Arrays, bounds checking and, 1133–1134
Arti�cial intelligence (AI), exploratory programming model,

644
ASCII characters

cryptographic checksums and, 315–316
PEM design and, 387–388
UNIX passwords and, 417

Aslam’s model, 859–860, 862–864

ASLR, See Address space layout randomization (ASLR)
Assertions, policy-based trust models, 192
Assignment statements, information �ow, 551
Assumptions

conception stage of life cycle, 636
logging in forensics not controlled by, 988–989
trust and, 11–12, 115–117

Assurance. See also Systems, building with assurance
design and, 14–15
evaluation of evidence for. See Evaluation of systems
example of, 22–24
formal evaluation methodology for, 728
formal methods. See Formal methods
implementation. See Implementation assurance
improper choice of operand/operation and, 1140
low-assurance programs. See Program security practicum
network organization and, 1025–1026
security policies and, 110
speci�cations and, 14
and trust, 12–13

Assurance, introduction to
Agile software development, 641–644
life cycle, 634–639
need for, 629–631
other models of software development, 644–645
review, 645–648
role of requirements in, 631–632
throughout life cycle, 632–634
and trust, 627–629
waterfall life cycle model, 639–641

Assurance requirements
CISR, 743
Common Criteria, 752, 759
Federal Criteria, 745
ITSEC, 739
TCSEC, 732–733

Astonishment. See Principle of least astonishment
ATAM. See Augmented Typed Access Matrix Model

(ATAM)
Attack and response

anti-forensics, 994–996
attack de�nitions, 959–960
attack graphs, 969–971
attack trees, 961–964
digital forensics. See Digital forensics
intrusion response. See Intrusion response
representing attacks, 960–961
requires/provides model, 965–969
review, 996–1001

Attack graphs, 969–971
Attack phase, GISTA, 836
Attack trees

developing, 961–964
requires/provides model, 965–969
as subset of attack graphs, 969–971

Attacker, remote shell (rsh) attack, 966–967
Attacks

anticipating, 1027–1028
on cryptosystem, 290–291
de�ned, 987
on DNS, 487
further reading, 25
password, 426–434
protecting system after. See Intrusion response

1344 Index

risk analysis of probability of, 17–18
on systems failing to meet principles, 917–918
threats vs., 7
transposition cipher, 292
Vigenére cipher, 294–299

Attenuating create-rule, 74
Attenuation of privilege. See Principle of attenuation of

privilege
Audit browsing, 908–910
Audit logger, LAFS, 906
Audit logs, IDIOT monitoring, 934
Audit Manager (AM) security level, Lipner, 178–180, 182
Audit UID, 474
Auditing

commercial requirements, 174
de�nition of, 879–880
electronic communications policy, 1227
�le systems, 900–907
�rewalls for, 573
intrusion detection as automated, 942
mechanisms for, 897–900
review, 910–915
security violations, 879
TCSEC functional requirements, 732

Auditing, designing system
anatomy of, 881–884
application/system logging, 891–893
implementation/, 886–887
log sanitization, 888–891
overview of, 884–886
a posteriori design, 893–897
syntactic issues, 887–888

Augmented Typed Access Matrix Model (ATAM), 98–99
Aurasium, constraints for Android apps, 593–594
Authenticated encryption with associated data (AEAD),

377–381, 392
Authentication

accessing to attack passwords, 426–434
basics of, 415–416
biometrics as, 441–445
challenge-response, 438–441
de�ned, 415
dynamic vs. static naming and, 486–487
in electronic communications policy, 1226, 1240
graphical passwords, 425–426
improper deallocation or deletion of information,

1131–1132
Kerberos protocol, 337–338
location and, 445–446
multifactor, 446–448
one-time passwords, 436–438
origin integrity as, 5
password aging, 434–438
password selection, 418–425
passwords, 416–418
review, 448–452
symmetric key exchange and, 333–336
system security practicum, 1053–1055
using cookies for, 490

Authentication header (AH), IPsec, 403–408
Authentication path, Merkle’s tree authentication, 345
Authentication policy, CA, 477
Authenticity of digital image, anti-forensics hindering,

994–996

Authority
to change, electronic communications policy, 1233–1234
key identi�er extension, PKI certi�cates, 351
principle of least, 458

Authorization
electronic communications policy, 1226
integrity policies and, 111
policy speci�cations in Ponder, 119–121

Authorization scheme, TAM, 93
Authorized (secure) states, security policy, 109–113
Authorized transfer of rights, system safety, 50
Authorizing (certi�cate producing) participants, SOG-IS, 762
Autokey cipher, 373–374
Automated penetration analysis (APA) tool, Gupta and

Gligor, 872–873
Automation

classifying veri�cation technologies via, 700
intrusion detection process, 918
legacy of Protection Analysis, 856
polymorphic viruses for instruction, 788
of security test suites, 689
sophisticated system attacks, 918
speci�cation languages, 703

Autonomous Agents for Intrusion Detection (AAFID),
952–953

Availability
as basic to computer security, 6
con�gurations for system security, 1044–1045
countering threats with, 7
DoS attacks attempting to block, 6
ensuring program, 1147
nature of security policies, 111
policy development practicum, 1010

Availability policies
denial of service models, 203–204
denial of service models, constraint-based,

204–210
denial of service models, state-based, 210–215
goals of, 201–202
handling deadlock, 202–203
network �ooding example, 215–221
other �ooding attacks, 221–222
review, 222–225

Avoidance, deadlock, 203

B
BABEL. See Mixmaster remailer
Backdoor.IRC.Aladinz bot, 794
Backoff techniques, on-line dictionary attacks, 430–431
Backups

to cloud, 1025
development system users, 1051–1052
electronic communications policy for, 1227,

1240–1241
Bacterium, 796, 803
Bandwidth

as property of covert channels, 595–596
SYN �ooding consuming, 216, 1026

Banker’s Algorithm, deadlock avoidance, 203
Banners, adware installation via, 798
Basic blocks, 554–556
Basic constraints extension, X.509 PKI certi�cates,

351–352

Index 1345

Basic Security Module (BSM)
nonsecure systems and, 899–900
using grammar, 888
Visual Audit Browser tool kit, 909–910

Basic Security Theorem
formal Bell-LaPadula Model, 152–155
McLean’s †-property, 164–166
McLean’s System Z, 166–168
preliminary version, 143, 145

Bayes signatures, worm detection, 810
Behavior, reputation-based trust models, 194–196
Behavioral analysis, malware detection, 810–811
Belief types, trust in technological world, 190–191
Bell-LaPadula Model

Android two-level security model, 568
Biba’s strict integrity model, 177–178
composition of two models, 256–258
con�guring outer �rewall, 1014–1015
controversy over, 164–168
declassi�cation principles, 163–164
designing auditing for, 884–885
emulating Chinese Wall Model, 234–236
formal model, 151–158
formal speci�cations, 702–705
in�uencing TCSEC approach, 730
informal description of, 142–146
lattice-based information policy, 539–540
limits of capabilities, 522–523
Lipner’s use of, 178–180
military-style classi�cations of, 141
MLS implementing SRI model of, 707
nonlattice information �ow, 542–543
restricting �ow of information, 183
review, 169–172
role of tranquility in, 164
separating policy from mechanism, 256
as subset of Clinical Information Systems Security

Policy, 239
Trusted Solaris example, 146–151

Bell V22 Osprey helicopter crashes, 631
Bellare-Rogaway protocol, symmetric key exchange, 336
Berkeley packet �lter (BPF), malware defense,

818–819
Bernstein conditions, 34
Best matching unit (BMU), self-organizing maps,

929–930
Biba model

Clark-Wilson model vs., 188–189
lattice-based information policy in, 539
Lipner’s integrity matrix model vs., 182–183
overview of, 175–178
scanning as malware defense, 808

Biconditional commands, protection state transitions, 41
Biconditional monotonic protection systems, 55–56
Biometrics

authentication and, 441–442
combinations, 445
eyes, 443–444
faces, 444
�ngerprints, 442–443
generating cryptographic keys, 342–343
keystroke dynamics, 444–445
voices, 443

Bionic libc, Aurasium, 594

Bit-oriented ciphers
AES. See Advanced Encryption Standard (AES)
DES, 300–302
one-time pad, 371

Bitcoins, CryptoLocker ransomware, 801
Black box (functional) testing, 688–689
Bledsoe theorem prover, Gypsy, 712–713
Block ciphers

CCM mode using AEAD for, 377–379
multiple encryption, 375–377
overview of, 374–375
stream ciphers vs., 370

Blocks
misordered ciphtertext message and, 368
TLS record protocol, 396

Blow�sh, modern symmetric cipher, 303
BMU. See best matching unit (BMU)
Boolean expressions, access control by evaluating, 35–36
BOOLEAN type, SPECIAL speci�cation, 703
Boot sector infectors, 782–783, 786
Botmaster, 793
Bots and botnets, 793–796
Boundary controller, IDIP, 978
Boundary data tests, 1143–1144
Bounding set of privileges, processes, 524
Bounds checking, improper validation, 1133–1134
Boyer-Moore theorem prover, 707, 709–710
BPF. See Berkeley packet �lter (BPF)
Brain (or Pakistani) virus, IBM PC, 782, 783
Branch instruction, Data Mark Machine, 564
Branching time logic systems, 1186
Breach, security, 110, 112
Break-the-glass policies, 249–250
Bridge relays, Tor, 499
Bridges, Take-Grant Protection Model, 60–61
Bro, misuse intrusion detection, 937–938
Browser plug-ins, allowing adware, 798
Browsing, audit, 908–910
BSM. See Basic Security Module (BSM)
Buffer over�ow attacks

memory protection and, 1122
restricting access via type checking, 528, 847–848

Bugs, maintenance releases/hot �xes for, 695–696
Burroughs B5700 system, penetration study, 839–40
Businesses, key escrow system for, 354–355
“By law” or “by right” (de jure) rules, 57–61

C
C (CONFIDENTIAL) security clearance, Bell-LaPadula

Model, 142–146
C-List. See capability list (C-List)
CA certi�cate, X.509 PKI, 350–351
Cache Kernel, isolation via library OS, 585–586
Cache poisoning attacks, 487, 488
Caching of information, restricting, 460–461
Caesar (shift) cipher, 289–291, 294
Call bracket, ring-based access control, 531–532
Can-create function, SPM, 73–74, 82–85
Canadian Trusted Computer Product Evaluation Criteria

(CTCPEC), 737–738
Capabilities

access control lists vs., 523–524
copying and amplifying, 520–521

1346 Index

in JIGSAW language, 967–969
limits of, 522–523
mechanisms protecting, 519–520
overview of, 518–519
privileges, 524–526
requires/provides model, 965–966
revocation of rights, 522

Capability list (C-List), 518, 522–523
Capability Maturity Levels, SSE-CMM, 767
Capability mode, Capsicum, 589
Capacitative technique, �ngerprint biometrics, 442
Capacity, covert channel, 611–616
Capsicum

�le descriptor capabilities in, 526
sandboxing single application via, 589–590

CAPSL. See Common Authentication Protocol Speci�cation
Language (CAPSL)

CAPTCHAs, thwarting on-line dictionary attacks, 431
CAs, See Certi�cate authorities (CAs)
Categories

commercial vs. military environments, 174
easy to guess passwords, 421–422
Lipner’s integrity matrix model, 179–182

Categories, Bell La-Padula Model
adding to security classi�cation, 143–146
Chinese Wall Models and, 234–236
formal model of, 151–158
principle of tranquility, 161–163
Trusted Solaris, 146–151

Category entry, CWE, 867
CAVP. See Cryptographic Algorithm Validation Program

(CAVP)
CBC mode. See Cipher block chaining (CBC) mode
CC. See Common Criteria (CC)
CC Evaluation Methodology (CEM), 750–751, 761,

764–765
CCDB. See Common Criteria Development Board (CCDB)
CCEVS. See Common Criteria Evaluation and Validation

Scheme (CCEVS)
CCM. See Counter with CBC-MAC (CCM) mode
CCMB. See Common Criteria Management Board (CCMB)
CCRA. See Common Criteria Recognition Arrangement

(CCRA)
CCUF. See Common Criteria Users Forum (CCUF)
CCured program, compiling, 592
CDIs. See Constrained data items (CDIs)
CDs. See Company datasets
Cells, Tor onion router, 497–499
CEM, See CC Evaluation Methodology (CEM)
Centralized botnets, 793
Centralized security enforcement, architecture, 651–652
Cert chain, TLS handshake protocol, 397–398
Certi�cate authorities (CAs)

assurance of trust, 481–484
authentication policy, 477
certi�cate con�icts, 479–481
controlling issuing of certi�cates, 476–478
cross-certi�ed, 347–348
de�ned, 347
extensions supported by, 350–351
issuance policy, 477
meaning of identity, 481–484
X.509 certi�cate signature chains, 347–348
X.509 PKI certi�cates, 351

Certi�cate policy extension, X.509 PKI, 351–352
Certi�cate producing (authorizing) participants, SOG-IS, 762
Certi�cate revocation list, X.509 PKI, 359
Certi�cate signature chains, 346–350
Certi�cates

binding cryptographic keys to identi�ers, 476
binding identity to cryptographic key, 344
con�icts, 479–481
expired vs. revoked, 358–359
Merkle’s tree authentication scheme, 344–345
naming and. See Naming and certi�cates
PKI, 350–353
policy-based trust models, 191
TLS handshake protocol, 398

Certi�cation
Clark-Wilson integrity model rules, 184–186
ITSEC, 738

Certi�ed licensed evaluation facilities (CLEFs), ITSEC, 741
Cert type, TLS handshake protocol, 398
CFB. See Cipher feedback (CFB) mode
Chain entry, CWE, 867
Chain key, instant messaging, 390–392
Challenge-response authentication, 438–441
Challenger space shuttle disaster, 1986, 630
Change authorization, 686–687
Change cipher spec protocol, TLS, 399
Change, improper program, 1125–1129
Channels, OSSTMM, 834, 835
Character frequencies, table of, 293
Characters, and monitors, 1086
Checking input, improper validation, 1136–1137
Checksums

cryptographic, 315–318
key escrow system, and Clipper chip, 356
malware defense using, 817
Merkle’s tree authentication scheme, 344–345
TLS setup phase, 394

Chinese Wall Model
aggressive, 233–234
auditing design for, 885–886
Bell-LaPadula and, 234–236
Clark-Wilson and, 236
formal model, 230–233
informal description, 228–230
overview of, 227

CHMK instruction, privilege/virtual machines,
1172–1173

Chosen plaintext attack, 291
Chroot system, UNIX, 1056–1057
CIAC. See Computer Incident Advisory Capability (CIAC)
CIF. See Common Internal Form (CIF)
Cipher block chaining (CBC) mode, 302, 375
Cipher feedback (CFB) mode, 302, 374
Cipher techniques

authenticated encryption, 377–381
block ciphers, 370, 374–377
example protocols, 384
instant messaging, 389–393
network layer security (IPsec), 402–410
networks and cryptography, 381–384
overview of, 367
problems, 367–370
review, 410–414
secure electronic mail, 384–389

Index 1347

stream ciphers, 370–374
transport layer security. See Transport layer (TLS and

SSL) security
Cipher list, TLS handshake protocol, 397
Ciphertext

perfect secrecy and, 1168–1169
security problems with messages, 367–370
self-synchronous stream ciphers, 373–374
substitution ciphers, 292–294
transposition ciphers, 291

Ciphertext only attack, 290
Circular wait, deadlocks from, 202
Cisco routers, dynamic access control lists, 527–528
CISR. See Commercial International Security Requirements

(CISR)
Clark-Wilson integrity model

Chinese Wall Models and, 236
Clinical Information Systems Security Policy, 239
comparing to other models, 188
comparing to requirements, 187–188
implementing under UNIX, 186–187
the model, 184–186
overview of, 183–184

Classes
CC assurance requirements, 759
CC security functional requirements, 756–759
OSSTMM, 834–835
policy development with data, 1007–1008
policy development with user, 1008–1010
TCSEC evaluation, 733–734, 736
of threats, 7

Classi�cation
Aslam’s model, 859–860
con�dentiality, 142–146
�aws in Protection Analysis model, 849–851
�aws in RISOS study, 849–851
Gupta and Gligor’s penetration analysis theory,

868–873
Lipner’s integrity, 181–182
NRL taxonomy for vulnerabilities, 857–859
principle of tranquility, 161–163
Trusted Solaris, 146–151
veri�cation technologies, 700
vulnerability frameworks for, 845–848

Classi�cation rate (accuracy), intrusion detection methods,
925

Clearance, Trusted Solaris, 146–151
CLEFs. See certi�ed licensed evaluation facilities (CLEFs)
Client, con�nement problem, 579–582
Clinical Information Systems security policy, 236–239
Clipper Chip, and key escrow system, 355–357
Clock synchronization, Kerberos, 338
Cloud

de�ned, 1024
network security practicum for, 1024–1025

Clustering, anomaly detection and, 926–928
CMVP. See Cryptographic Module Validation Program

(CMVP)
CNSS. See Committee on National Security Systems (CNSS)
Cocks, Clifford, 309
Code Red I computer worm, 791
Code Red II computer worm, 792
Code review (walkthroughs), implementation, 687–688
Code standards, implementation, 686

Codebook mode, statistical regularities, 369
The Codebreakers (Kahn), 325
Coding faults, Aslam’s model, 859
Cohen, Fred, 781
COI classes. See Con�ict of interest (COI) classes
Collaboration mission, CSIRT, 986
Collaborative Protection Pro�les (cPP), 751
Collisions, off-line dictionary attacks, 429
Colored Petri Automaton (CPA), IDIOT system, 933–934
Combinations

of biometrics, 445
of malware, 803

Combining sources of information, agents, 943–944
Command and control (C&C) servers/motherships, 793–795
Command line, program security design, 1104–1105
Commands

comparing HRU and SPM, 82
designing access to roles and, 1106–1110
protection state transitions, 38–41
re�nement to access control module, 1112–1114
Tor, 497–499

Comment resolution, in review process, 684
Commercial integrity policies, 173–174
Commercial International Security Requirements (CISR),

742–744
Commercial off-the-shelf (COTS) components, 696–697, 730
Commercial security policies, 114
Committee on National Security Systems (CNSS), 729–730
Common Authentication Protocol Speci�cation Language

(CAPSL), 720–721
Common Criteria (CC)

assurance requirements, 759
de�ned, 727
evaluation assurance levels, 759–761
evaluation process, 761–762
functional requirements, 756–759
future of, 764–765
impacts, 763–764
informal arguments, 680–681
methodology, 751–756
overview of, 749–751
requirements, 756
SOG-IS, 762–763
standards replaced by, 629

Common Criteria Development Board (CCDB), 764–765
Common Criteria Evaluation and Validation Scheme

(CCEVS), 750
Common Criteria Management Board (CCMB), 764–765
Common Criteria Recognition Arrangement (CCRA),

749–751, 764–765
Common Criteria Users Forum (CCUF), 763
Common Internal Form (CIF), HDM, 706–707
Common Vulnerabilities and Exposures (CVE) database,

864–866
Common Weaknesses and Exposures (CWE) database,

866–868
Communications path, TCSEC, 732
Company datasets (CDs)

Aggressive Chinese Wall Model, 233–234
Bell-LaPadula and Chinese Wall Models, 234–236
Chinese Wall Model audit design, 885–886
Chinese Wall Model formal model, 230–233
Chinese Wall Model informal description, 228–230

Compartmented Mode Workstation, auditing, 898

1348 Index

Compatibility, PEM design principles, 386
Compiling, process con�nement via, 592–593
Complete mediation. See Principle of complete mediation
Completion, review process, 685
Complexity of programs, implementation phase, 15
Components

auditing system, 881–884
de�ned, 663
example, 663–664
Extended Components De�nition, CC, 752
external functional speci�cation, 666
internal design description, 669–672

Composed modules, testing, 1145
Composition

deducibly secure systems, 273–274
deterministic noninterference-secure systems, 270–271
generalized noninterference systems, 275–277
policy. See Noninterference, and policy composition
of restrictive systems, 279

Compositional security analysis instance, 96–97
Compound element composite entry, CWE, 867
Compound sentences, composing, 1179
Compound statements, information �ow, 551–553, 559–560
Compression list, TLS handshake protocol, 397
Compromise Remote Users/Sites, ISSAF, 833–834
Computer forensics. See Digital forensics
Computer Incident Advisory Capability (CIAC),

ransomware and, 800–801
Computer security incident response team (CSIRT),

985–987
Computer security, overview

assumptions and trust, 11–12
assurance, 12–16
basic components, 3–6
example, 22–24
human issues, 20–22
operational issues, 16–20
policy and mechanism, 9–11
review, 24–28
threats, 6–9

Computer-supported collaborative working con�dentiality
policies, 170

Computer viruses
concealment, 785–790
de�ned, 780
infection vectors, 782–785
overview of, 780–782
summary, 790
theory of, 803–807

COMSEC class, OSSTMM, 834
Concealment, of computer viruses, 785–790
Conception stage, life cycle process, 635–636
Concurrency, 209–210, 558–561
Condition set consistency prover, automated penetration

analysis, 873
Condition validation errors, Aslam’s model, 859
Conditional and joint probability, 1163–1165
Conditional commands, TAM, 93
Conditional entropy, 1167–1168
Conditional instruction, Data Mark Machine, 563
Conditional statements, information �ow, 552–553
Conditional transitivity of trust, 189–190
Con�cker botnet, neutralizing, 570–571
Con�dence, security assurance as, 628

CONFIDENTIAL (C) security clearance, Bell-LaPadula
Model, 142–146

Con�dentiality
as basic to computer security, 4–5
Chinese Wall Model and, 227
Clinical Information Systems policy, 236–239
consistency check, policy development, 1010–1011
constraints to control �ow of information, 566–567
countering threats, 7
data moving from internal network to Internet,

1011–1012
electronic communications policy, 128, 1220–1225
military security policy, 113–114
nature of security policies, 110–111
security threats as breaches of, 650
TCSEC emphasis on, 730–731

Con�dentiality policies
Bell-LaPadula Model. See Bell-LaPadula Model
Bell-LaPadula Model, controversy, 164–168
de�ned, 111, 115
developing via mapping, 658–660
goals of, 141–142
impact on logs, 888–889
information �ow policy within, 539–540
Multics system example, 158–161
principle of tranquility, 161–164
review, 169–172
security/precision in, 131–134
trust and, 114

Con�guration assistant, LAFS, 906
Con�guration errors, Aslam’s model, 859
Con�guration management, 686–687, 732
Con�guration of system, deployment stage of life cycle, 638
Con�nement

analyzing suspected malware, 810
�ow model, 543–544
internal address issues, 1014
problem of, 579–582
review, 619–623
via covert channels. See Covert channels
via isolation. See Isolation

Con�nement principle, 238, 239
Con�ict of interest (COI) classes

Aggressive Chinese Wall Model, 233–234
Bell-LaPadula and Chinese Wall Models, 235–236
Chinese Wall Model audit design, 885–886
Chinese Wall Model formal model, 230–233
Chinese Wall Model informal description, 228–230

Con�ict resolution, review process, 684
Con�icts, certi�cate, 479–481
Conformance claims, 751–752
Conjunction, propositional logic, 1179–1180
Conjunction signatures, worm detection, 810
Connection ID, Network Security Monitor, 948–949
Connections

anonymizers hiding origins of, 490
TLS, 393–394, 397

Connectives
compound sentences, 1179
natural deduction in propositional logic,

1180–1181
Conservativity principle, declassi�cation policy, 163
Consistency check, policy development, 1010–1011
Consistent state (or consistent), integrity of system data, 183

Index 1349

Consistent static analysis, state-based audits, 894
Conspiracy, Take-Grant Protection Model, 66–68
Constrained data items (CDIs), Wilson integrity model,

184–188
Constraint-based denial of service model

�nite waiting time policy, 207–208
overview of, 204–205
service speci�cation, 208–210
user agreement, 205–207

Constraints
affecting penetration study, 827–828
audit analysis of NFSv2, 902, 904–905
designing auditing system, 884–885
dynamic analysis for information �ow, 568–570
information �ow integrity, 566–567
low-level policy languages as, 125–126
policies begin as, 127
RBAC2, 247–248

Consuming participants, SOG-IS agreement, 762
Containers, providing isolation via, 584–585
Containment, as malware defense

information �ow metrics, 812–813
reducing rights, 813–816
sandboxing, 816–817

Containment phase, intrusion handling, 975–977
Content delivery servers, 794–795
Content, digital rights management, 242
Content Scrambling System (CSS), DVDs, 461–462
Context, for meaning in forensics, 989–990
Contradiction, in propositional logic, 1180
Control, architectural security and, 651–657
Control rights (RC), SPM, 69, 71–72
Control Tree Logic (CTL), 716–720, 1186–1188
Controlled access protection, TCSEC, 733
Controlled environment, process isolation

library operating systems, 585–586
overview of, 582–583
sandboxes, 586–590
virtual machines, 583–585

Controversy, Bell-LaPadula Model, 164–168
Cookies

right to privacy and, 501
and state, 488–490

Copy �ags
access control matrix, 4
associated with capabilities, 520
Schematic Protection Model tickets, 69

Copy right, 42–43
Copyable tickets, SPM, 70–71
Copying of capabilities, 520–523
Copying strings, 1133
Copyright, 241–244, 1209
Corporate computer system, penetration of, 840–841
Corporate data (CpD) class, policy development, 1007–1009,

1011
Corporation executives class, policy development,

1008–1010
Correctness-preserving transformations, 644–645
Correspondence between schemes, simulation in models,

89–90
Cost-bene�t analysis, operations, 16–17
COTS components. See commercial off-the-shelf (COTS)

components
Counter, amplifying capabilities, 521

Counter (CTR) mode, AES, 305
Counter method

cipher feedback mode, 374
synchronous stream ciphers, 373

Counter with CBC-MAC (CCM) mode, AEAD, 377–379
Counterattacking, forms/consequences of, 983–984
Countermeasures, SYN �ooding, 216
Courtesy, electronic communications policy, 1235
Covert channels

adware installed via, 797–799
analysis of noisy capacity, 614–616
capacity/noninterference and, 611–613
con�nement problem and, 594–596
de�ned, 580
in�nite loops and, 558
measuring capacity, 613
mitigation of, 616–619
review, 619–623
side channels vs., 581
spyware installed via, 799–800
types of, 581–582
virtual machines for, 584

Covert channels, detecting
via covert �ow trees, 602–610
via information �ow analysis, 601–602
via noninteference, 596–598
via shared resource matrix, 598–600

Covert �ow trees
completed, 607, 609
constructing two lists, 607, 610
nodes of, 603
overview of, 602
stages of building, 605–608
using at any point in SDLC, 610

Covert purposes, of Trojan horses, 776, 781
Covert storage channels

analyzing, 598–599
for covert �ow trees, 605–606
de�ned, 594

Covert timing channels
analyzing, 600
mitigating covert channels, 617–618
overview of, 594

CP commands, IBM VM/370, 1175–1176
CPA. See Colored Petri Automaton (CPA)
CpD class. See corporate data (CpD) class
CPP. See Collaborative Protection Pro�les (CPP)
Create-rule, SPM, 73–74
Create rule, Take-Grant Protection Model, 57, 65
Create rules, ESPM, 83–88
Credentials, policy-based trust models, 191–194
Credit card company alerts, 947
Crimea virus, 789
Criteria creep, 736, 764
Cross-certi�cate, X.509 PKI, 351
Cross-certi�ed CAs, 347–348
Cross-realm operation, Kerberosv5, 338
Cryptanalysis

de�ned, 289
differential, 301
linear, 301
overview of, 290–291

Cryptographic Algorithm Validation Program (CAVP), 749
Cryptographic checksums, 315–318

1350 Index

Cryptographic keys. See also Key management
de�ned, 4
encrypted viruses do not encrypt, 786–787
improper deallocation or deletion of, 1131–1132

Cryptographic Module Validation Program (CMVP), 748,
749

Cryptographic modules, FIPS 140-2, 746–749
Cryptography

cipher techniques. See Cipher techniques
formal methods for analyzing protocols, 702
key management. See Key management
locks and keys, 527
NPA protocol veri�cation, 720–721
offensively used in ransomware, 801
preserving con�dentiality via, 4
protecting capabilities via, 519–520
as secret writing, 289

Cryptography, basics
checksums, 315–318
cryptanalysis, 290–291
digital signatures, 318–323
overview of, 289–290
public key. See Public key cryptography
review, 324–329
symmetric cryptosystems. See Symmetric cryptosystems

CryptoLocker ransomware, 801
Cryptosystems

cryptanalysis as analysis of, 290–291
de�ned, 289
perfect secrecy and, 1168–1169
principle of open design and, 461
symmetric. See Symmetric cryptosystems
timing attacks on, 280–282
transformations, 290

CSIRT. See computer security incident response team
(CSIRT)

CSS. See Content Scrambling System (CSS)
CTCPEC. See Canadian Trusted Computer Product

Evaluation Criteria (CTCPEC)
CTL. See Control Tree Logic (CTL)
CTR mode. See Counter (CTR) mode
CuD class. See customer data (CuD) class
Cued-recall systems, graphical passwords, 426
Current rights, access control by history, 36–37
Customer data (CuD) class, 1007–1009, 1011
Customer service, �elded product life stage, 638
Customs, operational controls and, 19–20
CVE database. See Common Vulnerabilities and Exposures

(CVE) database
CWE database. See Common Weaknesses and Exposures

(CVE) database
Cyber-physical systems, information �ow in, 575
Cypherpunk remailers, 492–493

D
D (Development) category, Lipner, 179–180
D-WARD, defense against DoDS attacks, 217–218
DAC. See Discretionary access control (DAC)
Dalvik executables (DEX) bytecode, Android, 568–569
DARPA off-line intrusion detection evaluations, 925
Data

checking for valid, 1135–1136
checking input from untrusted sources, 1136–1137

computer viruses infecting, 782, 786
creating structures that can be validated, 1137–1138
improper change over time, 1125–1129
macro viruses infecting �le, 785
malware defenses, 811–812

Data classes
con�guring internal network, 1021–1022
consistency check, 1010–1011
policy development practicum, 1007–1008

Data descriptions, external functional speci�cation, 666
Data encipherment key (DEK), PEM, 386–387
Data Encryption Standard (DES)

AES replacing, 302
analysis of, 301–302
EDE mode, 376
main algorithm, 1191–1194
and modes, 302
overview of, 299–300, 1191
retirement of, 302
review exercises, 1205
round key generation, 1195
structure, 300
three-key Triple DES mode, 377
two-key Triple DES mode, 376

Data integrity. See also Integrity; Integrity policies
cryptography for, 290
de�ned, 5
DNSSEC providing, 488
nature of security policies, 110–111

Data Mark Machine, Fenton’s, 562–566
Data networks class, OSSTMM, 834
Data recovery component, key escrow systems, 355
Data segments, ring-based access control, 531–532
Database security, access control matrix model, 44
DDEP class. See development data for existing products

(DDEP) class
DDFP class. See development data for future products

(DDFP) class
DDoS. See distributed denial of service attack (DDoS)
De jure (“by law” or “by right”) rules, 57–61
Deactivation transition, resource allocation system, 211–212
Deadlock, availability and, 202–203
Deallocation, improper deletion of, 1131–1132
Deception, as class of threat, 7–8
Deception Tool Kit (DTK), 976
Declarations

information �ow and, 549–550
PVS language and, 714
SMV program, 717–718

Declassi�cation, 162–164
Decoy servers, honeypots as, 976
Decryption, AES transformations, 1200–1201, 1203–1205
Decryption key, encrypted viruses do not encrypt,

786–787
Defender’s dilemma, intrusion detection using, 973
Defenses, malware. See Malware defenses
De�nitions, electronic communications policy

allowable use, 1242
general provisions, 1214–1215
overview of, 1227–1230
summary of, 129

DEK. See Data encipherment key (DEK)
Delay, as form of usurpation, 8–9
Delegation, 7–8, 119–120

Index 1351

Deletion
�le, 1082–1084
HRU model allowing, 82
improper deallocation or, 1131–1132

Demand operations, SPM, 72–75
Demilitarized zone (DMZ)

anticipating attacks within, 1027
con�guring inner �rewall, 1016–1017
con�guring internal network, 1022–1023
con�guring outer �rewall, 1014–1015
de�ned, 1011
�rewalls between internal network and, 573
�rewalls between Internet and, 573
network organization, servers in, 1017
science, 946

Demonstrable conformance, CC methodology, 752
Denial of receipt, as deception, 8
Denial of service (DoS)

attempting to block availability, 6
de�nition of, 204
disallowing deadlocks, 202–203
as form of usurpation, 8–9
protection base, 213–215
resources/services unavailable in, 201–202
security threats asf, 650–651
when resource or service is not available, 201–202

Denial of service models
availability policies and, 203–204
constraint-based, 204–210
further reading on inhibiting attacks, 223–224
state-based, 210–215

Denial of service protection base (DPB), resource allocation,
213–215

Deployment stage, life cycle process, 637–638
Derivable state, safety analysis of SPM, 75–77, 79
Derived rules, natural deduction, 1181–1182
Derived Test Requirements (DTR) for FIPS PUB 140–2, 748
Derived Test Requirements for FIPS PUB 140–2, 748
Descriptor (handle), access control information, 1107
Design

access to roles/commands, 1106–1110
auditing system. See Auditing, designing system
implementation and, 15–16
implementation in HDM, 707
privacy-enhanced electronic mail, 386
program security framework, 1104–1105
testing, 1142–1143
for validation, 1137–1138

Design assurance, system/software
design documents contents, 665
design principles, 662–664
external interfaces, 666–673
internal design, 673–675
need for, 630
overview of, 14–15
security functions, 665–666
TCSEC requirements, 733
techniques for, 662–664
throughout life cycle, 633–634

Design principles
principle of complete mediation, 460–461
principle of economy of mechanism, 459–460
principle of fail-safe defaults, 458–459
principle of least astonishment, 464–465

principle of least authority, 458
principle of least common mechanism, 463–464
principle of least privilege, 457–458
principle of open design, 461–462
principle of separation of privilege, 463
psychological acceptability, 465–466
review, 466–469
supporting assurance, 664
underlying ideas, 455–457

DESIGNATOR type, SPECIAL speci�cation, 703
Destroy object rule, HRU model, 82
Destroy subject rule, HRU model, 82
Detection mechanisms

deadlock, 203
as goal of security, 10
and integrity, 5

Detection (true positive) rate, intrusion detection, 925
Deterministic noninterference

access control matrix, 266–268
composition of secure systems, 270–271
overview of, 259–263
security policies changing over time, 268–270
unwinding theorem, 263–265

Deterministic packet selection, IP header marking, 981
Developers class, policy development, 1008–1010
Development (D) category, Lipner, 179–180
Development data for existing products (DDEP) class,

1007–1009, 1011
Development data for future products (DDFP) class,

1007–1009, 1011
Development (ID) entities category, Lipner,

181–182
Development system

attacking to test security, 1047
authentication, 1054–1055
�le con�guration, 1063–1066
network con�guration, 1045–1047
policies, 1037–1041
process con�guration, 1054–1055
retrospective on system security, 1067–1068
user con�guration, 1052–1053

Device, digital rights management, 242
Devices, user security

monitors and characters, 1086
monitors and Windows systems, 1086–1087
smart terminals, 1085–1086
writable devices, 1084–1085

DEX bytecode. See Dalvik executables (DEX) bytecode
Dictionaries, PACL for, 532
Dictionary attacks

challenge response and, 439–440
on-line, 430–432
password guessing in, 427
salting to thwart, 429–430
withstanding off-line, 428–430

DIDS. See Distributed Intrusion Detection System (DIDS)
Differential cryptanalysis, 301, 305
Dif�e-Hellman ciphers

instant messaging with ECDH, 390–392
public key exchange, 339–341
as TLS interchange ciphers, 394

Diffusion, in cryptosystems, 290
Digital Equipment Corporation, virtual machines,

583–584

1352 Index

Digital forensics
anti-forensics, 994–996
de�ned, 987
overview of, 987
practice of, 990–994
principles, 987–990
review, 996–1001

Digital rights management (DRM), 241–244, 778–779
Digital signatures

de�ned, 318
El Gamal, 321–323
overview of, 318–319
public key signatures, 319–323
RSA, 319–321
secret key signatures, 319

Dijkstra’s Banker’s Algorithm, deadlock avoidance, 203
Direct recognition goal, covert �ow tree, 605–606
Direct trust, 190, 195
Director

AAFID, 953
DIDS, 950
intrusion detection system, 942
intrusion detection system architecture, 945–946

Directories, in Trusted Solaris, 148–151
Disabling, thwarting on-line dictionary attacks, 431
Disclosure

as class of threat, 7
commercial vs. military integrity policies, 174
con�dentiality policies prevent unauthorized, 141
military security policy constraints on, 114

Disconnection, thwarting on-line dictionary attacks, 431
Discovery phase, GISTA, 836
Discrete logarithm problem, Dif�e-Hellman, 339–341
Discrete logarithm problem, El Gamal, 307–309
Discretionary access control (DAC)

Bell-LaPadula Model using, 142, 153
built-in security vs. adding later in UNIX, 656–657
security policy, 117–118
security policy changing over time, 268–270
TCSEC functional requirements, 731
Trusted Solaris, 147–148

Discretionary protection, TCSEC, 733
Disjunction, propositional logic, 1179
Disposition, electronic communications policy, 1227, 1241
Disruption, as class of threat, 7
Distance to neighbor, anomaly detection, 930–931
Distinguished Names, 476, 479–480, 481–482
Distinguished rights, 33, 56
Distributed denial of service attack (DDoS), 215, 796
Distributed Intrusion Detection System (DIDS),

949–952
Distributed security enforcement, 651–652
Distribution

deployment stage of life cycle process, 637
of program, 1146–1147

Diversity, intrusion detection using, 972–973
Divisibility, improper indivisibility, 1138–1139
DMZ. See Demilitarized zone (DMZ)
DMZ DNS server

network con�gurations, 1044–1045
network infrastructure, 1013
network organization practicum, 1020

DMZ log server, 1020–1021, 1027
DMZ mail server, 1013, 1015–1018

DMZ WWW server
basic security policy of, 1036–1037
con�guring outer �rewall, 1015
devnet developer security policy vs., 1041
�le con�guration, 1061–1063, 1065–1066
network con�guration, 1042–1045, 1047
network infrastructure, 1014, 1018–1019
policy con�guration, 1036–1037
process con�guration, 1053–1105
retrospective on system security, 1066–1067
system security and, 1035–1036
system security authentication, 1053–1105
user con�guration, 1048–1050, 1052–1053

DNS. See Domain Name Service (DNS)
DNSKEY RR. See public key resource record (DNSKEY

RR)
DNSSEC DNS. See Domain Name System Security

Extensions (DNSSEC DNS)
Docker, isolation features of, 585
Documentation

additional FIPS 140-2, 748
penetration testing usefulness from, 829
security trade-offs/attendant risks, 1136
and speci�cation, 675–677
TCSEC assurance for product, 733

Documentation, design contents
design document speci�cation, 673–675
external functional speci�cation, 666–668
internal design description, 668–673
overview of, 664
security functions summary speci�cation, 665–666

Documented or known (overt) purpose, Trojan horses, 776,
781

Domain �ux botnet, 795–796
Domain Name Service (DNS)

ampli�cation attack, 221
associating host names with IP addresses, 485–487
security extensions for integrity, 487–488
security issues, 487

Domain Name System Security Extensions (DNSSEC
DNS), 487–488

Domain-type enforcement language (DTEL), 121–125, 529
Domain value, cookies, 489
Domains

DIDS, 950–951
DTEL associating subjects with, 122–125
in Schematic Protection Model, 69

DoS. See Denial of service (DoS)
Double �ux botnet, 795
Downgraded directory, Trusted Solaris, 147
DPB. See denial of service protection base (DPB)
Drawbridge library OS, process isolation, 586
Drive-by download, de�ned, 798
DRM. See digital rights management (DRM)
DroidDisintegrator, 569–570
Ds-property, Bell-LaPadula

Basic Security Theorem, 153, 155, 165–167
Multics system, 159–161
rules of transformation, 155, 157

DT. See direct trust (DT)
DTE, con�guring sandboxes via, 587
DTEL. See domain-type enforcement language (DTEL)
DTK. See Deception Tool Kit (DTK)
DTR. See Derived Test Requirements (DTR)

Index 1353

Dual mapping, nontransitive information �ow,
546–547

Duff, Tom, 782
Dynamic access control lists, Cisco routers, 527–528
Dynamic debuggers, sandboxes via, 587
Dynamic identi�ers, 485–487
Dynamic information �ow analysis tool, TaintDroid,

568–570
Dynamic loading, 1122, 1128
Dynamic mechanisms, information �ow, 562–566
Dynamic-Typed Access Matrix Model, 102

E
EALs. See Evaluation Assurance Levels (EALs)
Earlybird worm detector, 809–810
Eavesdropping (snooping), 7
ECB. See Electronic codebook (ECB) mode
ECDH. See elliptic curve Dif�e-Hellman (ECDH)
Economy of mechanism. See Principle of economy of

mechanism
Economy of mechanism principle, 459–460
EDE mode. See Encrypt-Decrypt-Encrypt (EDE) mode
Edge adding operations, in models, 88–89
EES. See Escrowed Encryption Standard (EES)
Effective set (ES) of privileges, Trusted Solaris, 525
Effective set of privileges, processes, 524–525
Effective UID, 474
Ef�ciency, thwarting off-line dictionary attacks, 428–429
EFTA. See European Free Trade Association (EFTA)
EHDM. See Enhanced Hierarchical Development

Methodology (EHDM)
EKE. See encrypted key exchange (EKE)
El Gamal cryptosystem, 307–309, 315
El Gamal digital signatures, 321–323
Electronic codebook (ECB) mode, 302, 369
Electronic communications

automated electronic mail processing, 1092–1093
failure to check certi�cates, 1093–1094
sending unexpected content, 1094
user security and, 1092

Electronic communications policy, UCD
acceptable use policy. See Acceptable use policy, UCD
allowable use, 1216–1220, 1241–1246
Appendix A, De�nitions, 1227–1230
Appendix B, References, 1230–1232
Appendix C, Access Without Consent,

1232–1233
general provisions, 1213–1215
introduction, 1212–1213
overview of? 127–129
posting and authority to change, 1233–1234
privacy and con�dentiality, 1220–1225
retention and disposition, 1227
security, 1225–1227
user advisories, 1234–1241

Electronic mail
basic design, 386–387
design principles, 385–386
instant messaging and, 389–393
other considerations, 387–388
PEM and OpenPGP, 388–389
protocols (PEM and OpenPGP), 385
state of typical network service, 384–385

Electronic mail anonymizers
Cypherpunk remailers, 492–493
Mixmaster remailers, 493–494
pseudo-anonymous remailers, 491–494

Electronic voting systems, physical isolation of, 583
Electronmagnetic radiation emissions, side channel attacks,

282
Elimination rules, natural deduction, 1180–1181
Elliptic curve ciphers

El Gamal digital signature using, 322–323
instant messaging with ECDH, 390–392
public key cryptography, 312–315
TLS interchange cipher in Dif�e-Hellman, 394

Elliptic curve Dif�e-Hellman (ECDH), instant messaging,
390–392

Ellis, James, 306
Emergent faults, Aslam’s model, 859
Employees class, policy development, 1008–1010
Encapsulating security payload (ESP), IPsec

architecture, 405–407
message security, 403–404
overview of, 408–410

Encoding of characters, improper naming and, 1131
Encrypt-Decrypt-Encrypt (EDE) mode, 302, 376
Encrypted key exchange (EKE), defeating off-line dictionary

attacks, 440–441
Encrypted viruses, 786–787
Encryption

AES transformations for, 1199–1201
authenticated cipher, 377–381
block ciphers using multiple, 375–377
electronic communications policy at UCD, 1226–1227
networks and cryptographic protocols, 382–384
order of AES transformations for, 1203–1205

Encryption standards
AES, 1196–1205
DES, 1191–1195
review, 1205

End entity certi�cate, X.509 PKI, 350
End-to-end protocols, networks/cryptography, 381–384
Endorsements, electronic communications policy, 1218
Enforcement

of acceptable use policy, 1209
Clinical Information Systems Security Policy, 238
rules, Clark-Wilson integrity model, 184–186

Engineering, manufacturing stage of life cycle, 637
Enhanced Hierarchical Development Methodology

(EHDM), 705, 710–711, 713
Entity name, tickets in Schematic Protection Model, 69
Entropy

password strength and, 432–433
as uncertainty, 540–541, 1163

Entropy and uncertainty
conditional and joint probability, 1163–1165
conditional entropy, 1167–1168
joint entropy, 1166–1167
overview of, 1165–1166
perfect secrecy, 1168–1169

Entropy-based analysis, information �ow, 540–541
Enumerating Further, ISSAF, 833–834
Environment

CAPSL speci�cation for, 721
emergent faults in Aslam’s model, 859
risk analysis as function of, 18

1354 Index

Ephemeral Dif�e-Hellman, 394
Equifax breach of 2017, 638–639
Equivalent Inverse Cipher, AES, 304, 1203–1205
Eradication phase, intrusion handling, 977–980
EROS. See Extremely Reliable Operating System (EROS)
Error handling

Data Mark Machine and, 565
improper validation, 1134–1135
in reading/matching routines, 1116–1117
in second-level re�nement to access control module, 1114
testing composed modules, 1145

ES privileges. See effective set (ES) privileges
Escrowed Encryption Standard (EES), and Clipper Chip,

355–357
ESP. See Encapsulating security payload (ESP)
ESPM. See Extended Schematic Protection Model (ESPM)
EU. See European Union (EU)
European Free Trade Association (EFTA), SOG-IS

agreement, 762–764
Evaluation Assurance Levels (EALs), CC, 750–751,

759–763
Evaluation classes, TCSEC, 730, 733–734, 735–737
Evaluation levels, ITSEC, 738, 740–741
Evaluation of systems

CISR 1991, 742–744
Common Criteria (CC), 749–765
Federal Criteria (FC), 744–745
FIPS 140, 746–748
goals of formal evaluation, 727–730
international efforts and ITSEC, 737–742
other commercial efforts, 744
overview of, 727
review, 768–771
SOG-IS agreement, 762–763
SSE-CMM model, 765–768
TCSEC, 730–737

Evaluation process
CC, 761–762
ITSEC, 741
TCSEC, 734–737

Event engine, Bro, 937
Exact conformance, CC, 752
Exception handling, improper indivisibility in, 1138
Exceptions

causing information �ow problems, 557–558
electronic communications policy, 128
testing module, 1145

Exchange. See Key exchange
Executable �les, macro viruses can infect, 785
Executable infectors

computer viruses as, 783–784
multipartite viruses as, 783–784
stealth virus as, 786
TSR viruses as, 786
Zmist computer virus, 789

Execute right, access control matrix, 33
Execution phase, computer viruses, 781, 817
Execution phase, computer worms, 791
Execution trace of subject, 939
Existence

of data, preserving con�dentiality, 4
as property of covert channels, 595–596

Existential security analysis instance, 96–98
Exokernel, isolation via library OS, 585–586

Expansion table, main DES algorithm, 1193
Expansive packet marking, IP header, 981
Expert system, 932–938, 950–952
Expires �eld, cookies, 489
Explicit �ows of information

checking �ow requirements, 562
entropy-based analysis and, 540–541
goto statements and, 554–555
in�nite loops and, 558

Exploitable logic error class of �aw, RISOS study, 851
Exploitable vulnerabilities, de�ned, 825–826
Exploratory programming model, software, 644
Exponential backoff, thwarting on-line dictionary attacks,

430–431
Expressions, functional programming via mathematical, 721
Expressiveness

ATAM vs. TAM, 101
ESPM vs. SPM, 90–92
state-matching reductions and, 98–99

Extended components de�nition
CC protection pro�les, 753
ST, 752

Extended Euclidean Algorithm, 1157–1161
Extended Schematic Protection Model (ESPM)

multiple parenting, 83–88
security properties of HRU vs., 94–101
simulation/expressiveness, 88–92
Typed Access Matrix Model similar to, 92–94

Extended scheme, salting, 429–430
Extensible markup language (XML), security policies,

137–138
Extension list, TLS handshake protocol, 397
Extensions, certi�cate, 347, 351–352
External events, triggering logic bombs, 797
External functions

design document speci�cation, 666–668
design documentation, 665
requirements tracing/informal correspondence,

677–680
Extreme Programming (XP), Agile, 643
Extremely Reliable Operating System (EROS), 519, 536
Eyes, biometric authentication, 443–444

F
Face recognition, biometric authentication, 444
Fail-safe defaults. See Principle of fail-safe defaults
Failed attacks, dealing with, 1027–1028
Failure symbol node, covert �ow trees, 603
Fairness constraints, SMV program, 717–718
Fairness policy, 207–208, 216
FairPlay digital rights management, Apple iTunes store,

242–243
False alarm rate (false positive rate), intrusion detection, 925
False identity, 1211, 1218
Fast �ux botnet, 795
Father Christmas worm, 791, 803
Fault trees, covert �ow trees, 602–610
FC. See Federal Criteria (FC)
FEAL, modern symmetric cipher, 302
Feature descriptor, biometrics, 343
Federal Criteria (FC), 743–745
Federal Information Processing Standard (FIPS) Publication

140-2, 727, 746–749

Index 1355

Feedback
in Kanban, 643
noninterference-secure systems and, 276–277

Fenton’s Data Mark Machine, 562–565
FER. See �nal evaluation report (FER)
Fielded product life stage, life cycle process, 638–639
Fielding the system, waterfall life cycle model, 641
File descriptors, Capsicum, 589
File system, auditing

comparing NFSv2 and LAFS, 907
LAFS, 905–907
NFSv2, 900–905
overview of, 900

File Transfer Protocol (FTP)
access control matrix model and, 33–34
Class FTP, CC security requirements, 758
network con�guration for development system, 1046
on systems other than development systems,

1045–1046
Files

improper changes in contents of, 1128
improper naming of, 1129–1131
permissions for access control, 1120–1121
race conditions in, 1128–1129

Files, user security
deletion, 1082–1084
group access, 1081–1082
identifying by assigning names, 472–473
improper change in contents of, 1128
overview of, 1080–1084
permissions on creation, 1081
system security practicum, 1061–1066

Filter function
�rewalls, 570–573
speci�cation-based intrusion detection, 939
SPM, 69–72, 86–87

Filters, AAFID, 953
Final evaluation report (FER), TCSEC evaluation process,

735
Finger protocol, UNIX security �aw, 847–848
Finger veins, biometrics authentication, 443
Fingerd �aw

buffer over�ow, 862–864
comparison and analysis, 860
as condition validation error in Aslam’s model, 859
UNIX, 847–848

Fingerprints, biometric authentication, 442–443
Finite-state machine, security policies, 109–113
Finite waiting time policy

constraint-based denial of service model, 207–208
SYN �ooding analysis and, 216

FIPS Publication 140-2. See Federal Information Processing
Standard (FIPS) Publication 140-2

Firewalls
anticipating attacks, 1027
blocking attacks via, 979
con�guring inner, 1016–1017
con�guring internal network, 1021
con�guring outer, 1014–1015
as information �ow controls, 570–573
network con�gurations for systems, 1042–1045
network organization and, 1012–1014

First-level re�nement, access control module, 1111–1112
Flame worm, 795

Flaw classes
Aslam’s model, 859–860
NRL taxonomy, 857–859
Protection Analysis (PA), 852–854
RISOS study, 849–851

Flaw detection module, automated penetration analysis tool,
873

Flaw elimination, Flaw Hypothesis Methodology, 830,
832–833

Flaw generalization, Flaw Hypothesis Methodology, 830,
832, 843–844

Flaw hypothesis, Flaw Hypothesis Methodology
Burroughs B5700, 839–840
corporate computer system, 840–841
ISSAF version, 833
Michigan Terminal System, 838–839
OSSTMM version, 835
overview of, 830
in PTES, 837
UNIX system, 842
using, 830–831
Windows system, 844

Flaw Hypothesis Methodology
�aw elimination, 832–833
�aw generalization, 832
�aw testing, 831–832
goal of vulnerability analysis, 845–846
information gathering and �aw hypothesis, 830–831
penetration testing methodology springs from, 829
problems with, 845
steps of, 830

Flaw Hypothesis Methodology versions
GISTA, 835–836
ISSAF, 833–834
OSSTMM, 834–835
PTES, 836–837

Flaw testing, Flaw Hypothesis Methodology
Burroughs B5700, 840
corporate computer system, 840–841
ISSAF version, 833
Michigan Terminal System, 838–839
OSSTMM version, 835
overview of, 830
in PTES, 837
UNIX system, 842–843, 844
using, 831–832

Flooding attacks
availability and, 215–221, 223
other types of, 221–222
using IDIP to handle, 979

Flow-based model of penetration analysis, Gupta and
Gligor, 869–872

Flow function, safety analysis of SPM, 75–76
Follow-up phase, intrusion handling, 980–985
Forensics. See Digital forensics
Formal evaluation methodology, 728
Formal languages, 676–677
Formal methods

current veri�cation systems, 713–721
early formal veri�cation techniques, 705–713
formal speci�cations, 702–705
formal veri�cation techniques, 699–702
functional programming languages, 721–723
overview of, 699

1356 Index

proving programs are correct, 695
review, 723–726

Formal model
Bell-LaPadula Model, 151–158
Chinese Wall Model, 230–233

Formal proof mechanisms, 681–682
Formal security evaluation, 727–730
Formal speci�cations

de�ned, 702
documentation and, 676–677
Gypsy, 711–712
justifying design meets requirements, 681–682
NPA Temporal Requirements Language (NPATRL),

720–721
overview of, 702–705
Prototype Veri�cation System (PVS), 713–715
SPECIAL. See SPECIAL formal speci�cation language
Symbolic Model Veri�er (SMV), 716–718

Formal transformation model, software development,
644–645

Formal veri�cation
formal speci�cation as part of, 703
overview of, 699–702
penetration testing vs., 826
of products, 722–723
proving absence of vulnerabilities, 826

Formal veri�cation, current techniques
Naval Research Laboratory (NRL) Protocol Analyzer

(NPA), 720–721
overview of, 713
Prototype Veri�cation System (PVS), 713–716
Symbolic Model Veri�er (SMV), 716–720

Formal veri�cation, early techniques
Boyer-Moore theorem prover, 709–710
Enhanced HDM, 710–711
Gypsy Veri�cation Environment (GVE), 711–713
Hierarchical Development Methodology (HDM),

705–708
overview of, 705

Formulas
compound sentences as, 1179
connectives of propositional logic, 1179
reaching proof using truth tables, 1182–1183
well-formed, 1182

Forward search
countermeasures to, 312
overview of, 332
precomputing possible messages, 367–368
preventing with session keys, 332

Foundational results
basic results, 51–56
comparing expressive power of models, 81–94
comparing security properties of models, 94–101
general question, 49–51
overview of, 49
review, 101–105
Schematic Protection Model (SPM), 68–81
Take-Grant Protection Model. See Take-Grant

Protection Model
Framework, design for program security, 1104–1105
Frameworks, vulnerability

Aslam’s model, 859–860
comparison and analysis of, 860–864
NRL taxonomy, 857–859

Protection Analysis (PA) model, 851–856
review, 864
RISOS study, 849–851
structure determined by goals of, 849
vulnerability classi�cation, 845–848

FreeBSD system
availability during �ooding attacks, 219–220
implementing Biba’s strict integrity model, 178
long passwords in v10, 417
supporting audit ID in v10.3, 1049

FTP. See File Transfer Protocol (TFP)
Full speci�cation veri�cation, 700
Function f , main DES algorithm, 1191–1192
Function �ow generator, automated penetration analysis, 873
Functional (black box) testing, 688–689
Functional programming languages, 721
Functional requirements

CC, 752, 756–759
CISR, 743
Federal Criteria, 745
TCSEC, 731–732
United Kingdom IT Security Evaluation and

Certi�cation Scheme Certi�cation Body, 738
waterfall life cycle model, 639

Functional speci�cation, design documentation, 666–668
Functions

access control module issues, 1114–1117
documentation for high-level security, 665–666
at heart of SPECIAL speci�cation, 703–704
role as group tying membership to, 475
separation of, 174
validation, 1137–1138

Fuzzy time, mitigating covert channels, 617

G
Galois Counter Mode (GCM), AEAD, 379–381
GCIR. See generalized con�ict of interest relation (GCIR)
GCM. See Galois Counter Mode (GCM)
Geinimi, Android cell phones, 776–777
Gemsos system, 655
General provisions, electronic communications policy,

1213–1215
Generalized noninterference, policy, 274–277
Generation effect, user-created passwords, 421–425
Generation, key, 341–343
Genesis, NRL taxonomy �aws, 857
Get-read rule, 159–160, 165
GISTA. See Guide to Information Security Testing and

Assessment (GISTA)
Give-access rule, Bell-LaPadula, 702–705
Give-read rule, Multics system, 160–161
Global identi�er, on web, 486
Global object tables, 522
Global Positioning System (GPS), location authentication,

445–446
Goals

attack trees and, 961–964
of attackers, 959–960
of attacks, 960–961
of con�dentiality policies, 141–142
of covert �ow tree, 605–606
of formal evaluation, 727–730
of intrusion detection systems, 918–919

Index 1357

in network security policy practicum, 1006
of penetration studies, 827–828
of privacy-enhanced electronic mail, 386
role of requirements in assurance, 631–632
of security, 10–11

Good symbols node, covert �ow trees, 603
Good cert authorities, TLS handshake protocol, 398
Google Chrome, sandboxing using Capsicum, 590
Google, two-factor authentication, 446–447
Goto statements, information �ow and, 554–556
Government (military)

Bell-LaPadula Model. See Bell-LaPadula Model
early driver of computer security research,

729–730
integrity policies, 174
protection of citizen’s privacy, 141

GPS. See Global Positioning System (GPS)
Grammar, specifying log content using, 887–888
Grant, digital rights management, 242
Grant policies, break-the-glass policy, 249
Grant rule, Take-Grant Protection Model

formulating as instance of SPM, 71–72
interpretation of, 61–63
overview of, 56
sharing of rights, 58–59
theft, 62–66

Graph-based representation
comparing security models, 88–92
Take-Grant Protection Model. See Take-Grant

Protection Model
Graphical interfaces

intrusion detection systems, 946–947
Network Security Monitor, 949

Graphical Intrusion Detection System (GrIDS), 946–947,
952

Graphical passwords, authentication, 425–426
Graphs, attack, 969–971
Greatest lower bound, lattices, 1154
GrIDS. See Graphical Intrusion Detection System (GrIDS)
Groups, 475–476, 1081–1082
GTbot, 793
Guessing entropy, passwords, 432–433
Guide to Information Security Testing and Assessment

(GISTA), 835–836
Gupta and Gligor’s penetration analysis theory, 868–873
GVE. See Gypsy Veri�cation Environment (GVE)
Gypsy Veri�cation Environment (GVE), 711–713

H
Halt instruction, Data Mark Machine, 564
Halting problem, 52, 54
Handle (descriptor), access control information, 1107
Handshake protocol, TLS, 397–399
Hardware-based virtual machines (HVMs), 584
Hardware-supported challenge-response procedures, 439
Harrison-Ruzzo-Ullman (HRU) Model

basic results, 51–56
as central to safety analysis, 82
of computer security, 49
ESPM security properties vs., 94–101
general question, 49–51
relationship between ESPM and, 87–88
simulation and expressiveness of, 88–92

SPM vs., 82
Typed Access Matrix Model, 92–94

Hash functions
key crunching with, 420
Merkle’s tree authentication, 344–345
UNIX password mechanism, 417

Haskell functional programming language, 721
Haystack, anomaly detection, 922
HDM. See Hierarchical Development Methodology (HDM)
Heartbeat protocol extension, TLS, 399–400
Hierarchical Development Methodology (HDM)

early formal veri�cation via, 705–707
Enhanced HDM (EHDM), 705, 710–711
formal veri�cation example, 701–702
veri�cation in, 707–708

Hierarchical domains, Ponder, 119
Hierarchies

certi�cate-based key management, 477–478
control scheme, large botnets, 793
formal model of Bell-LaPadula Model, 151–158
RBAC adding role, 247

Hierarchy consistency checker, HDM, 706
Hierarchy Speci�cation Language (HSL), HDM, 705–706
High-level design, user interface, 1104–1105
High-level policy languages, 119–125
High-level test speci�cations (HLTS), PGWG, 693–695
High severity behavior, adware/madware, 798
Highland, Harold Joseph, 782
History

access control by, 36–37
safety analysis of SPM, 75, 77–81

HKDF. See HMAC-based key derivation function (HKDF)
HLTS. See High-level test speci�cations (HLTS)
HMAC-based key derivation function (HKDF), instant

messaging, 390–392
HMAC-Based One-Time Password Algorithm (HOTP),

437–438
HMAC functions, 317–318
HMAC-SHA-1, one-time passwords, 436–438
HMAC SHA256, instant messaging, 390–392
Hold and wait, deadlocks from, 202
Hold speci�cation, Gypsy, 712
Homomorphic encryption schemes, 325
Honeynet Project, 976
Honeypot (honey�le or honeydocument), 976–977
Host-based information gathering, agents, 942–943
Host monitoring, 949–952
Host names

DNS associating IP address with, 485–486
identity on web and, 484–485
security issues with DNS, 487
specifying, 1131

Hostname resource record (NSEC RR), DNSSEC, 488
Hosts, network, 381–383
Hot �xes, maintenance, 695–696
HOTP. See HMAC-Based One-Time Password Algorithm

(HOTP)
HSL. See Hierarchy Speci�cation Language (HSL)
Human class, OSSTMM, 834
Human factors

of graphical passwords, 426
implementing security controls, 20
organizational problems, 20–21
people problems, 21–22

1358 Index

principle of least astonishment, 464–465
principle of psychological acceptability, 465–466

HVMs. See Hardware-based virtual machines (HVMs)
Hybrid policies

break-the-glass policies, 249–250
Chinese Wall Model. See Chinese Wall Model
clinical information systems security policy,

236–239
ORGCON or ORCON access control, 239–244
overview of, 227
RBAC, 244–249
review, 250–253

HYDRA, amplifying capabilities for, 521
Hypertext display technique, audit browsing, 908
Hypervisor (virtual machine monitor), 1171–1172
Hypervisors, virtual machines and, 583–585
Hypotheses, Gupta and Gligor, 869

I
I&A. See Identi�cation and authentication (I&A)
IBAC. See Identity-based access control (IBAC)
IBM, cryptographic locks and keys, 527
ICMP packets, Smurf attacks, 221
IDEA, modern symmetric cipher, 303
Ideas, conception stage of life cycle process, 635–636
Identi�cation and authentication (I&A), TCSEC, 732
Identi�ers, static or dynamic, 485–487
Identity

anonymity on web, 490–501
capabilities encapsulating object, 518
con�rming. See Authentication
�les and objects, 472–473
groups and roles, 475–476
intruders changing, 950
naming and certi�cates, 475–484
overview of, 471
review, 501–505
theft, 501
understanding, 471–472
user, 473–475
on web, 484–490

Identity-based access control (IBAC), security policy,
117–118

Identity pair IK, instant messaging, 390
IDES Intrusion Detection Expert System (IDES)
IDEVAL dataset, 925, 930–931
IDIOT. See Intrusion Detection In Our Time (IDIOT)
IDIP. See Intruder Detection and Isolation Protocol (IDIP)
IFD. See immediate forward dominator (IFD)
IG. See Security Requirements for Cryptographic Modules

(IG)
IIS web servers, and Code Red I computer worm, 791–792
IKE protocol. See Internet Key Exchange (IKE) protocol
Immediate forward dominator (IFD), basic blocks, 555–556
Implementation

access control module, 1114–1117
Agile, 642–644
auditing system design and, 886–887
computer security and, 15–16
improper isolation of detail, 1123–1125
noncryptographic. See Noncryptographic

implementation mechanisms
rules, 1247–1248

veri�cation in HDM, 707–708
in waterfall life cycle model, 640

Implementation assurance
considerations, 685–686
de�ned, 634
implementation management, 686–687
justifying implementation meets design, 687–688
need for, 630
overview of, 15–16
security testing for, 688–689
security testing using PGWG, 689–695

Implementation Guidance for FIPS PUB 140-2, 748
Implementation-level constructs, DTEL, 121–125
Implication, connectives of propositional logic,

1179–1180
Implicit �ows of information

Data Mark Machine studying, 562–565
de�ned, 541
dynamic mechanisms involving, 562
may occur in goto statements, 554–556

Implicit sharing of privileged/con�dential data class of �aw,
RISOS study, 850

Importing, �le systems from another zone, 149–150
Improper change, program security, 1125–1129
Improper choice of operand or operation �aws, Protection

Analysis (PA), 853–854, 1139–1141
Improper deallocation or deletion, program security,

1131–1132
Improper indivisibility, program security, 1138–1139
Improper naming, program security, 1129–1131
Improper protection �aws, Protection Analysis, 852–853
Improper synchronization �aws, Protection Analysis,

853–854
Improper validation �aws, 853, 1132–1138
Inadequate identi�cation/authentication/authorization class

of �aw, RISOS study, 850
Incident prevention, 971–975
Incident response groups, 985–987
Incomplete parameter validation class of �aw, RISOS study,

849–850
Inconsistent parameter validation class of �aw, RISOS study,

849–850
Inconsistent static analysis, state-based auditing, 894
Incremental development, Gypsy language, 711
Independence, PEM design principles, 386
Indirect trust, 190
Indirection, revoking rights in capability systems, 522
Indivisibility, improper, 1138–1139
Induction phase, OSSTMM modules, 835
Inductive veri�cation techniques, 700–701, 703
Inetd daemon, development system, 1059–1060
Infection phase, computer viruses, 817
Infection vectors, computer viruses, 782–785
Inferred recognition goal, covert �ow tree, 605–606
Inferred via-goal, covert �ow tree, 606
In�nite loops, unexpected information �ow, 558
Informal arguments, 680–681
Informal description, Chinese Wall Model, 228–230
Informal (representation) correspondence, 677–680
Information

aggregation in commercial integrity policies, 174
assurance, 628
extracting from data in digital forensics, 992
�ltering, 120

Index 1359

leakage, 111
processing/presenting in digital forensics, 990

Information �ow
basics and background, 539–540
Bell-LaPadula Model restricting, 183
concurrency, 558–561
con�guring internal network, 1021
con�guring outer �rewall, 1014–1015
dynamic mechanisms, 562–566
entropy-based analysis, 540–541
examples of controls, 567–573
high assurance, 655
integrity mechanisms, 566–567
metrics for malware containment, 812–813
models and mechanisms for, 541–542
nonlattice policies for, 542–548
policies. See Con�dentiality policies
review, 573–577
soundness, 561–562
static mechanisms, 548–558
uncovering covert channels in, 601–602

Information �ow generator, penetration analysis, 873
Information gathering, Flaw Hypothesis Methodology

Burroughs B5700, 839
corporate computer system, 840
ISSAF version, 833
Michigan Terminal System, 837–839
overview of, 830
in PTES, 837
UNIX system, 841–842
using, 830–831
Windows system, 844

Information Systems Security Assessment Framework
(ISSAF), 833–834

Information Technology Security Evaluation Criteria
(ITSEC)

assurance requirements, 739
CISR, 742
evaluation levels, 740–741
evaluation process, 741
evaluation process limitations, 742
impacts of, 741–742
overview of, 738–739
replaced by Common Criteria, 629
requirements not found in TCSEC, 739–740
suitability analysis, 660–662

Information transfer path, Biba Model, 175
Infrastructure as a service cloud, 1024–1025
Infrastructures

analysis of network, 1013–1017
key. See Key infrastructures

Inheritable set (IS) privileges, Trusted Solaris, 525
Inhibit anyPolicy extension, X.509 PKI certi�cates, 352
Initial message, instant messaging, 391–392
Initial product assessment report (IPAR), TCSEC evaluation

process, 735
Initial protection domain, �aws

access control �le permissions, 1120–1121
memory protection, 1121–1122
overview of, 1118
process privileges, 1118–1120
trust in system, 1123

Initial state operations, comparing simulation in models,
88–89

Initialization vector, block ciphers, 375, 379
Input

checking all user, 1136–1137
parameters, 549–550

Inquest phase, OSSTMM modules, 835
Insecure (unauthorized) states, security policies, 109–113
Insertion phase, computer viruses, 780–781
Insiders

problems from, 21
threats to security from, 650–651

Installation of system, deployment stage, 638
Instant messaging

supplanting some use of electronic mail, 389–393
transition-based logging, 895

Instructions, improper change over time, 1125–1129
Integration

as implementation management tool, 687
of security at beginning, 653–657
supporting assurance, 685–686
in waterfall life cycle model, 640–641

Integrity
as basic to computer security, 5–6
Chinese Wall Model and, 227
Clinical Information Systems security policy, 236–239
in commercial security policies, 114
constraints, Clark-Wilson integrity model, 184–186
countering threats with, 7
cryptography providing, 290
of data moving from internal network, 1011–1012
of data moving from Internet, 1011
DNSSEC providing DNS, 488
in electronic communications policy, 1226
�le con�guration for DMZ WWW server and, 1063
of information �ow mechanisms, 566–567
protecting master copy of program, 1146
security policies and, 110–111
security threats as disruptions of, 650

Integrity levels
Biba’s model, 175–178
Clark-Wilson model vs. Biba model, 188
Lipner’s full model, 181–182

Integrity models
Clark-Wilson. See Clark-Wilson integrity model
Lipner. See Lipner’s integrity matrix model
SPM subsuming, 82
trust models vs., 189

Integrity policies
Biba model, 175–178
Clark-Wilson integrity model, 183–189
de�nition of, 111, 115
goals of, 173–174
information �ow policy within, 539–540
Lipner’s integrity matrix model, 178–183
penetration tests violate constraints in, 827–828
review, 196–200
security and precision in, 131, 133–135
trust and, 114–115
trust models, 189–196

Integrity Value Check (IVC), AH protocol, 407–408
Integrity veri�cation procedures (IVPs), Clark-Wilson

integrity model, 184–186
Intel architectures

privilege and virtual machines, 1174–1175
ring-based access control for Itanium, 533

1360 Index

Intellectual property, electronic communications policy,
1219–1220

Interaction phase, OSSTMM modules, 835
Interchange key

Bellare-Rogaway protocol, 336
PEM design, 386–387
session key vs., 332
TLS cryptography, 394

Interface
for external functional speci�cation, 667
operations, 207–208

Interference
electronic communications policy on, 1218–1219
noninterference. See Noninterference, and policy

composition
system security and, 259

Intermediate systems, and network �ooding, 216–218
Internal design

access to roles/commands, 1107–1108
design documentation, 665, 668–673
requirements tracing/informal correspondence, 677–680
speci�cation, 673–675

Internal network
concealing addresses of, 1013–1014
con�guring inner �rewall, 1016–1017
network organization practicum, 1021–1025
using �rewalls to protect, 573

Internal packet marking, IP header marking, 981
Internet

anonymity on web. See Web, anonymity on
identity on web. See Web, identity on
isolating electronic voting systems from, 583

Internet Key Exchange (IKE) protocol, 361, 404
Internet of Things, and botnets, 796
Internet Policy Registration Authority (IPRA), 477–481
Internet worm

as bacterium, 803
incident response groups and, 985
overview of, 790–791
publicizing �aw in UNIX, 847–848

Interpretation, Take-Grant Protection Model, 61–63
Interprocess communication, DMZ WWW server, 1058
Intervention phase, OSSTMM modules, 835
Introduction rules, natural deduction, 1180–1181
Introduction section, CC protection pro�les, 752
Intruder Detection and Isolation Protocol (IDIP),

978–979
Intrusion detection

adding signatures of known attacks, 1028
anticipating attacks, 1027
architecture, 942–948
autonomous agents via AAFID, 952–953
basic, 918–920
goals of, 918–919
host/network monitoring with DIDS, 949–952
incident prevention via, 971–975
monitoring network traf�c with NSM, 948–949
organizing systems, 948–953
principles, 917–918
review, 954–957

Intrusion Detection Exchange Protocol (IDXP), 947–948
Intrusion Detection Expert System (IDES), 819, 921–922,

924
Intrusion Detection In Our Time (IDIOT), 933–934

Intrusion Detection Message Exchange Format (IDMEF),
947–948

Intrusion detection models
as adaptive or static, 920
anomaly modeling, 920–932
misuse modeling, 932–938
overview of, 920
speci�cation-based modeling, 938–941
summary, 941–942

Intrusion handling
containment phase, 975–977
eradication phase, 977–980
follow-up phase, 980–985
incident response groups, 985–987
intrusion response, 975
phases of, 975–987

Intrusion prevention system, 948
Intrusion response

containment phase, 975–977
digital forensics. See Digital forensics
eradication phase, 977–980
follow-up phase, 980–985
incident prevention, 971–975
incident response groups, 985–987
intrusion handling, 975
review, 996–1001

InvMixColumns transformation, AES decryption, 304,
1201–1205

InvShiftRows transformation, AES decryption, 304,
1200–1205

InvSubBytes transformation, AES decryption, 304,
1200–1205

IO integrity classi�cation. See Operational (IO) integrity
classi�cation

IP address hopping, network defense, 973–974
IP addresses

concealing on internal networks, 1013
DNS associating host names with, 485–486
DNS security issues, 487

IP �ux botnets, 795
IP header marking, 981
IPAR. See Initial product assessment report (IPAR)
IPRA. See Internet Policy Registration Authority (IPRA)
IPsec

AH protocol, 407–408
architecture, 404–407
ESP protocol, 408–410
network layer security via, 402–404

IRC channel, as C&C channel for bots, 793–794
Iris, eye biometrics, 443–444
IS privileges. See Inheritable set (IS) privileges
ISL. See System Low (ISL) integrity classi�cation
Islands, Take-Grant Protection Model, 59–61
ISO/IEC standardization

future of Common Criteria, 764–765
impact of FIPS 140-2, 748
SSE-CMM, 765

ISO. See International Standards Organization (ISO)
ISO/OSI model

context for host naming, 484–485
network layer security. See IPsec
networks and cryptography, 381–384
transport layer security. See Transport layer (TLS and

SSL) security

Index 1361

Isolation
con�nement problem, 582
controlled environment, 582–590
of implementation detail, improper, 1123–1125
library operating systems, 585–586
program modi�cation, 590–594
review, 619–623
sandboxes, 586–590
virtual machines, 583–585

ISP integrity classi�cation. See System Program (ISP)
integrity classi�cation

Israeli (Jerusalem) virus, 783–784
ISSAF. See Information Systems Security Assessment

Framework (ISSAF)
Issuance policy, CA, 477
Issuer, digital rights management, 242
Iteration, in stages of water life cycle model, 641
Iterative statements, information �ow, 553–554
ITSEC. See Information Technology Security Evaluation

Criteria (ITSEC)
IVC. See Integrity Value Check (IVC)
IVPs. See integrity veri�cation procedures (IVPs)

J
Jailbreaking, Pegasus spyware, 800
Jailing technique, 432, 971–972
Janus, user-level sandbox, 587–588
Java applets, blocking at �rewalls, 572, 979
Java, as type-safe language, 592
Jerusalem (Israeli) virus, 783–784
JIGSAW language, 967
Joint and conditional probability, 1163–1165
Joint creation operation, ESPM, 83–88
Joint entropy, 1166–1167
Justi�cation

of security requirements, 660–662
that design meets requirements. See Requirements,

justifying that design meets

K
Kanban, Agile software development, 643
Kasiski attack method, Vigenére cipher, 294–299
KDDCUPS- 99 (or KDD-99) dataset

analyzing with neural nets, 928
analyzing with self-organizing maps, 930
anomaly detection using distance to neighbor, 931
intrusion detection evaluations, 925

Keccak hash function, as SHA-3, 317
KEDP. See Key Escrow Decrypt Processor (KEDP)
Kerberos

further reading, 361
key exchange, 337–338
user identity, 474–475

Kerckhoff’s Principle, security of cryptosystem, 290–291
Kernel function, anomaly detection with SVM, 931–932
Kernels

audit analysis of NFSv2, 900–901
building system with security, 654
containers enforcing isolation, 584–585
events in system logs, 892
as formally veri�ed products, 722–723
hypervisor functioning as, 583–584
identifying covert channels in source code, 601

later rootkits altering parts of, 778
library operating systems enforcing isolation, 585–586
sandboxes restricting actions, 587–590

Key crunching, 420
Key Escrow Decrypt Processor (KEDP), and Clipper chip,

355–357
Key escrow system

and Clipper chip, 355–357
key escrow component, 355
key storage using, 354–355
Yaksha security system, 357

Key exchange
Kerberos, 337–339
overview of, 332–333
public key cryptographic, 338–341
symmetric cryptographic, 333–336

Key infrastructures
Merkle’s tree authentication scheme, 344–345
overview of, 343–344
PGP certi�cate signature chains, 348–350
PKIs, 350–353
X.509 certi�cate signature chains, 346–348

Key length, AES, 303
Key management

hierarchical certi�cate-based, 477–478
key exchange. See Key exchange
key generation, 341–343
key infrastructures. See Key infrastructures
overview of, 331
review, 359–365
revocation, 358–359
session and interchange keys, 332, 386–387
storage, 353–358

Key usage extension, X.509 PKI certi�cates, 351–352
Keyed cryptographic checksums, 317
Keyless cryptographic checksums, 317
Keynote trust management system, 191–194, 198
Keys, PEM design, 386–387
Keystroke dynamics, biometric authentication, 444–445
Knark rootkit, 778
Knowledge-based subsystem, malware containment, 814–815
Known plaintext attack, 291
Konheim’s model of single-character frequencies,

substitution ciphers, 294

L
Labeled security protection, TCSEC, 734
Labeled zones (zones), directories in Trusted Solaris, 149–150
Labels

security vs. integrity, 175
TCSEC functional requirements, 732
Trusted Solaris security classi�cations, 146–151

LAFS. See Logging and Auditing File System (LAFS)
Lagrange interpolating polynomials, secret sharing via,

530–531
Lampson, 580, 616
Land attack, auditing to detect known violations, 896–897
Lanes of work, in Kanban, 643
Languages

DTEL, 121–125, 529
formal speci�cation. See Formal speci�cations
HSL, 705–706
programming. See Programming languages

1362 Index

Lattach command, LAFS, 906
Lattices

Bell-LaPadula Model, 143–144, 235
Bell-LaPadula Model information �ow policy, 539
composition of Bell-LaPadula models, 256–258
embedding nonlattice policies into, 548
mathematical nature of, 1153–1155
as models of information �ow policies, 541–542
nonlattice information �ow policies, 542–548
self-organizing maps with neurons arranged in,

929–930
Law Enforcement Access Field (LEAF), 356
Laws

electronic communications policy and, 1209, 1215
key escrow system and, 354–357
operational issues and, 19–20

Layers
abstraction in representing attacks, 960–964
architecture security mechanisms, 652–653
ISO/OSI model, 381–382
penetration study, 828–829
penetration testing at all, 829
simplifying design to support assurance, 662–664

LEAF. See Law Enforcement Access Field (LEAF)
Leakage of information, 580–582
Leaking of rights, determining system safety, 50–52
Least astonishment. See Principle of least astonishment
Least authority, principle of, 458
Least common mechanism. See Principle of least common

mechanism
Leaving system unattended, user security and, 1079
Legal mechanisms, counterattacking and, 983–984
Legal practices, 19–20
Legal transitions, SPM, 75, 77, 79
Lemmata, Gypsy execution of, 712
Less than or equal to relation, lattices, 1153–1155
Levels

of adware, 797–798
Biba model integrity, 175–178
security. See Security levels

LFC. See locality frame count (LFC)
LFSR method. See linear feedback shift register (LFSR)

method
Libcapsicum library, Capsicum, 589
Libraries

con�nement constraints via loading, 593–594
Prototype Veri�cation System (PVS), 714

Library operating systems, isolation via, 585–586
Licenses

digital rights management, 242
unacceptable conduct for, 1209

Life cycle
assurance throughout, 632–634
of bots in botnet, 793
building secure/trusted systems, 634–639
PVS proof checker, 715–716
waterfall life cycle model, 639–641

Linear cryptanalysis attack, 301, 305
Linear feedback shift register (LFSR) method, synchronous

stream ciphers, 371–372
Linear time logic systems, 1186
Link predicates, SPM

de�ned, 69
multiple parenting in ESPM, 85–87

overview of, 69–70
putting it all together, 71–72

Link protocols, networks and cryptography, 381–384
Linux Rootkit IV, 777–779, 918–919
Linux system

adore-ng rootkit on, 778
Android based on, 568
Crimea virus targeting, 790
isolation features of Docker in, 585

Lipner’s integrity matrix model
comparing to Biba, 182–183
full model, 181–182
overview of, 178
use of Bell-LaPadula Model, 178–180

LLTS. See low-level test speci�cations (LLTS)
Loading libraries, process con�nement, 593–594
Loadmodule, penetration testing UNIX system, 842–843
Local identi�er, on web, 486
Locality frame count (LFC), intrusion detection with system

calls, 972
Locard’s Exchange Principle, 987
Location

authentication by, 445–446
function for obtaining, 1114–1115
improper choice of operand/operation, 1140
NRL taxonomy, �aws by, 857
second-level re�nement to access control module, 1113
unauthorized users accessing role accounts, 1102

Location signature sensor (LSS), location authentication,
445–446

Locks and keys, access control, 526–530
Locky ransomware, 801
Log �les

analysis phase in digital forensics, 993–994
computer security and, 880
de�nition of, 879
director eliminates unnecessary records in, 945–946
improper deallocation or deletion of, 1132
network con�gurations for system security, 1045
processes on development systems and, 1060
transition-based, 895

Log sanitization, auditing system design, 888–891
Logging and Auditing File System (LAFS), 905–907
Logic. See Symbolic logic
Logic bombs, triggering on external event, 797
Logical Coprocessor Kernel (LOCK) system

malware detection on data/information, 812
sharing procedures and, 818
type checking, 528–529

Login
procedure, 1076–1079
UID, 474

LOKI89, modern symmetric cipher, 302
LOKI91, modern symmetric cipher, 302
LOKI97, modern symmetric cipher, 303
LOOKUP request, audit analysis of NFSv2, 901, 903–904
Loops

information �ow using semaphores, 560
iterative statements/information �ow, 553
unexpected information �ow from in�nite, 558

Lotus 1-2-3, virus, 782
Low-level policy languages, 125–126
Low-level test speci�cations (LLTS), using PGWG, 693–695
Low severity behavior, adware, 797

Index 1363

Low-water-mark policy, Biba Model, 176–177
Lower bound, lattices, 1154–1155
LSS. See location signature sensor (LSS)
LUCIFER algorithm, modi�ed as DES, 300

M
MAC. See Mandatory access control (MAC)
Machine learning, anomaly detection, 924–925
MacMag Peace virus, 782
Macro viruses, 785
Macro worms, 791
Madware, 798
Maintenance

assurance during system, 695–696
�elded product life stage, 638
waterfall life cycle model, 641

Malware
adware, 797–799
bots and botnets, 793–796
combinations, 803
computer viruses, 780–790
computer worms, 790–792
de�ned, 775–776
introduction, 775–776
logic bombs, 797
phishing, 802–803
rabbits and bacteria, 796
ransomware, 800–801
review, 820–824
spyware, 799–800
theory of computer viruses, 803–807
Trojan horses, 776–780

Malware defenses
containment, 812–817
data and instructions, 811–812
limiting sharing, 817–819
notion of trust, 819–820
scanning, 808–811
speci�cations as restrictions, 817
statistical analysis, 819

Man-in-the-middle attack
integrity services countering, 7
problems with SSL, 402
public key exchange and, 339

Management, computer security incident response team, 986
Management rules

list of, 1249
security-related problems. See Program security

practicum, common programming problems
Mandatory access control (MAC)

Bell-LaPadula Model, 142, 153
RBAC as form of, 245–246
security policy, 118
TCSEC requirements, 731–732
Trusted Solaris, 146–151
UNIX built-in security in vs. adding later and, 656–657

Manifesto for Agile Software Development, 642
Manipulation detection codes (MDCs), malware defense, 808
Manufacturing stage, life cycle process, 636–637
Mapping

in compositional security analysis, 96–97
of improper isolation of implementation detail,

1123–1125

of security threats to security objectives, 651
of speci�cations in HDM, 706–707
strongly security-preserving, 97–99
of system to existing model for policy de�nition,

658–659
that preserves security properties, 95–99
threats to requirements, 661–662

Markov models, anomaly detection, 922–924
Masquerading, 7–8
Master Comment List, review process, 684
Master secret

instant messaging, 391–392
SSLv3 vs. TLSv1.2, 400–401
TLS, 393–395, 398–399

Mathematical induction, proof technique, 1183–1184
Mathematics

Boyer-Moore theorem prover, 709–710
cryptosystem attack using, 291
El Gamal cryptosystem using, 307–309
elliptic curve ciphers based on, 312–315
Extended Euclidean Algorithm and, 1157–1161
formal security models, 700
formal speci�cation in BLP security policy as,

702–705
functional programming, 721
public key systems based on, 306–307
RSA cryptosystem, 309–312
Symbol Model Veri�er (SMV) based on, 716–720
symbolic logic and. See Symbolic logic
transposition ciphers and, 292
underlying all veri�cation techniques, 700

Matrix, Network Security Monitor, 949
Maximal state, SPM, 75–78, 81
McLean’s †-property, Basic Security Theorem, 164–166
McLean’s System Z, Bell-LaPadula Model, 166–168
MDCs. See manipulation detection codes (MDCs)
Mebroot, Torpig botnet, 794
Mechanisms. See Security mechanisms
Mediation. See Principle of complete mediation
Medical records, Clinical Information Systems security

policy, 236–239
Medium severity behavior, adware, 797–798
Melissa virus, 785
Membership, in group, 475
Memory

digital forensics and data stored in, 991–992
improper choice of initial protection domain and,

1121–1122
network �ooding, TCP state and, 218–221
protecting capabilities, 519
SYN �ooding consuming, 216

Merkle’s tree authentication scheme, 344–345
Message integrity check (MIC), PEM, 387, 388
Message key, instant messaging, 390–392
Message transfer agent (MTA), network mail service,

384–385
Metamorphic viruses, 789
Methodologies

Agile, 642–644
at each layer of penetration studies, 829
evidence of assurance/trustworthiness, 629
Flaw Hypothesis Methodology, 830
vulnerability analysis goal is developing,

845–846

1364 Index

Metrics
anomaly detection using distance to neighbor, 930–931
assurance, 646–647
intrusion detection methods, 925
recommendation system, 196

MIC-CLEAR mode, PEM, 388
MIC. See message integrity check (MIC)
Michigan Terminal System, penetration testing, 837–839
MieLog, audit browser, 910
Military, as early driver of computer security research,

729–730
Military (governmental) security policies, 113–115
Millen model, SYN �ooding analysis, 216
Min-entropy, passwords, 432–433
Minimum Security Functionality Requirements for

Multi-User Operating Systems (MISR), FC, 745
Mirai Internet-of-Things botnet, 793
Misordered blocks, ciphertext problems, 368
MISR. See Minimum Security Functionality Requirements

for Multi-User Operating Systems (MISR)
Misuse detection

anomaly detection vs., 941–942
Bro, 937–938
de�ned, 920
IDIOT, 933–934
overview of, 932–933
speci�cation-based detection vs., 942
STAT, 934–937
summary, 941

Mitigation
of covert channels, 616–619
security objectives for identi�ed threats, 651

MITRE tool, 712, 865
MixColumns transformation, AES, 304, 1198, 1199,

1203–1205
Mixing functions, software pseudorandom number

generators, 342
Mixmaster remailers, 493–494
MLD. See Multilevel Directory (MLD)
MLS tool. See Multilevel Security (MLS) tool
Mobile computing, wireless network practicum, 1023–1024
Model checking

formal speci�cation languages in, 703
formal veri�cation, 700
overview of, 701
processing speci�cation to meet constraints, 681–682

Models
of information �ow, 541–542
intrusion detection. See Intrusion detection models

speci�c; Foundational results
veri�cation techniques based on, 700

Moderator, review process, 682–685
Modes

AES, 305
DES, 302
IPsec, 403

Modi�cation
constructing covert �ow tree, 605
speci�cations, 675
and threats, 7

Modular scheme, salting, 430
Modules

analyzing OSSTMM channels, 834
building speci�cations in EHDM, 710–711

building speci�cations in HDM, 706
de�ned, 663
designing access to roles/commands, 1106–1110
designing framework, 1104–1105
developing systems designed in, 686
FIPS 140 cryptographic, 748
PVS language supporting, 714
simplifying design to support assurance, 662–664
SMV program, 717
SPECIAL module speci�cation, 703
testing, 1143–1144
testing composed, 1145

Modus tollens rules, natural deduction, 1181–1182
Monitoring

network traf�c by agents, 943
network traf�c with NSM, 948–949

Monitors
AFFID system and, 953
and characters, 1086
Windows systems and, 1086–1087

Mono-operational protection systems, safety in, 51–52
Monoalphabetic cipher, Vigenére cipher, 294
Monoconditional commands, protection state transitions, 41
Monoconditional monotonic protection systems, safety in,

55–56
Monotonic protection systems, safety in, 55–56
Monotonic Typed Access Matrix (MTAM) Model, 92–94
Monotonicity of release principle, declassi�cation, 163
Moving target defenses, intrusion detection, 973–974
MOVPSL instruction, privilege and virtual machines,

1172–1173
MRA. See Mutual Recognition Arrangement (MRA)
MTA. See message transfer agent (MTA)
MTAM Model. See Monotonic Typed Access Matrix

(MTAM) Model
MtE tool kit. See Mutation Engine (MtE) tool kit
Multiconditional commands, HRU, 82
Multicreate command, HRU, 82
Multics system

analysis procedure for PA, 855–856
example model instantiation, 158–161
ring-based access control, 531–533
for secure applications, 655

Multifactor authentication, 446–448
Multilevel Directory (MLD), Trusted Solaris, 148–149
Multilevel Security (MLS) tool

formal veri�cation, 701–702
HDM design veri�cation package for, 707–708
providing axions to theorem prover, 709–710
SRI model embedded in, 707–708

Multilevel security models
limit sharing for malware defense, 818
shared resource matrix and covert channels, 598–599
SPM subsuming, 82

Multipartite viruses, 783–784
Multiple encryption, block ciphers, 375–377
Multiple parenting

comparing expressive power of models, 90–92
comparing simulation in models, 88–90
in ESPM, 83–88

Multistage attacks, 960, 965
Mutation Engine (MtE) tool kit, 788
Mutual exclusion, deadlocks from, 202
Mutual Recognition Arrangement (MRA), 749

Index 1365

N
N previous password, password aging, 435
N-stage nonlinear feedback shift register (NLFSR) method,

372–373
N-version programming, as malware defense, 817
Name constraints extension, X.509 PKI certi�cates, 352
Name (or key) value, cookies, 489
Naming

assigning user login, 474
�le and objects, 472–473
implementing logging criteria and, 886–887
imported �le systems in Solaris Trusted Extensions,

149–150
improper, 1129–1131
static and dynamic, 485–487
user, 473–474

Naming and certi�cates
con�icts, 479–481
meaning of identity, 481–484
overview of, 476–479

NAT. See Network Address Translation (NAT)
National Computer Security Center (NCSC), and TCSEC,

731, 736
National Scheme, CC evaluation methodology, 750
Natural deduction

in predicate logic, 1185
in propositional logic, 1180–1184

Naval Research Laboratory (NRL), Protocol Analyzer
(NPA), 720–721

NCSC. See National Computer Security Center (NCSC)
Need for assurance, 629–631
Need to know rule, 143–144, 457–458
Needham-Schroeder protocol, 333–335, 337–339
Negation, connectives of propositional logic, 1179–1180
Network Address Translation (NAT), 1013
Network-based information gathering, agents, 942–943
Network File System (NFS), development system, 1051
Network File System version 2 (NFSv2) audit analysis of,

900–905 LAFS vs., 905–907
Network identi�cation number (NID), DIDS, 950–951
Network Security Monitor (NSM), 949–952
Network security practicum

analysis of infrastructure, 1013–1017
anticipating attacks, 1027–1028
availability, 1026
cloud, 1024–1025
DMZ DNS server, 1020
DMZ log server, 1020–1021
DMZ mail server, 1017–1018
DMZ WWW server, 1018–1019
general comment on assurance, 1025–1026
internal network, 1021–1023
introduction, 1005–1006
overview of, 1011–1013
policy development, 1006–1011
review, 1028–1033
wireless network, 1023–1024

Networks
computer incident security response, 743
and cryptography, 381–384
layer security. See IPsec
monitoring traf�c in DIDS, 949–952
monitoring traf�c with NSM, 948–949
system security practicum, 1042–1047

Neural nets, anomaly detection, 928–929
New nonargument (NNA) �les, malware containment,

815–816
NewDES, modern symmetric cipher, 302
NFS. See Network File System (NFS)
NFSv2 (NFS version 2) protocol

audit analysis of, 900–905
LAFS vs., 905–907

NID. See network identi�cation number (NID)
Nizza architecture, 591
NLFSR method. See n-stage nonlinear feedback shift

register (NLFSR)
NNA �les. See new nonargument (NNA) �les
No preemption, deadlocks from, 202
Node creation operations, simulation in models, 88–89
Nodes, attack tree, 961–964
Noiseless covert channels, 595
Noisy covert channels, 595
Non-competition, electronic communications policy at

UCD, 1217
Nonce

Galois Counter Mode (GCM) of AEAD, 379
Needham-Schroeder protocol, 334

Noncryptographic implementation mechanisms
access control. See Access control mechanisms
con�nement. See Con�nement principle
design principles. See Design principles
information �ow. See Information �ow
representing identity. See Identity

Nondeductibility
noninterference/policy composition and, 271–274
and side channels, 280–282

Nonfunctional requirements, waterfall life cycle model, 639
Noninterference

covert channels and, 596–598, 613–614
policy model, 146–151

Noninterference, and policy composition
deducibly secure systems, 273–274
deterministic noninterference. See Deterministic

noninterference
generalized noninterference, 274–277
nondeductibility, 271–273
overview of, 255
the problem, 255–258
restrictiveness, 277–279
review, 282–286
side channels and deducibility, 280–282

Nonlattice information �ow policies
con�nement �ow model, 543–544
nontransitive, 545–548
overview of, 542–543
transitive, 544–545

Nonmalicious computations, with botnets, 796
Nonrepudiation

digital signatures providing, 318
PEM design, 387

Nonsecure systems, auditing mechanisms for, 899–900
Nontransitive information �ow policies, 545–548
Normal behavior (traces), anomaly detection, 923–924
Normal data tests, 1143
Noti�er

auditing system component, 883–884
intrusion detection system architecture, 946–948

Notion of trust, malware defenses, 819–820

1366 Index

The Nozzle, 224
NP-complete problems, public key systems, 306–307
NPA. See NRL Protocol Analyzer (NPA)
NPA Temporal Requirements Language (NPATRL),

720–721
NPATRL. See NPA Temporal Requirements Language

(NPATRL)
NRL. See Naval Research Laboratory (NRL)
NRL taxonomy, 857–859, 861–863
NSEC RR. See hostname resource record (NSEC RR)
NSM. See Network Security Monitor (NSM)
NSTISSP #11 policy, for IA and IA-enabled products,

728–729

O
Objects

access control matrix model and, 32–37
adding categories to security classi�cations for, 143–146
Aggressive Chinese Wall Model and, 233–234
basic results of determining system safety, 51–52
Bell-LaPadula Model and, 142–143, 151–158
Biba model for integrity policy, 175–178
capabilities and, 518
Chinese Wall Model, formal model, 230–233
Chinese Wall Model, informal description, 228–230
detecting covert channels via noninterference, 597–598
DTEL associating types with, 122
example model instantiation in Multics, 158–161
identifying by assigning names, 472–473
improper naming of, 1129–1131
Lipner’s security levels for, 180, 182
principle of tranquility for security levels of, 161–163
Propagated Access Control List (PACL), 533–534
as protection types in SPM, 69
Take-Grant Protection Model and. See Take-Grant

Protection Model
TCSEC reuse requirements, 731
Trusted Solaris security classi�cations for, 146–151

Obligation, policy speci�cations in Ponder, 121
Oblivious transfer, cryptography, 358
Observation component, D-WARD, 218
OCaml functional programming language, 721
Occlusion principle, declassi�cation, 163
OCSP. See Online Certi�cate Status Protocol (OCSP)
OFB mode. See output feedback (OFB) mode
Off-line dictionary attacks, 428–430, 440–441
Of�cial Comment List, review process, 684–685
OFUNs, SPECIAL speci�cation and, 703–704
On-line dictionary attacks, thwarting, 430–432
One-time pad

meeting perfect secrecy requirement, 1168–1169
as proven secure, 371
simulating with LFSR method, 372
as substitution cipher, 299
weakness of, 299

One-time password authentication, 436–438
One-time pre-key pair OPK, instant messaging, 390–392
Onfusion, in cryptosystems, 290
Onion proxy, Tor, 497–499
Onion routing, anonymity on web, 494–498
Online Certi�cate Status Protocol (OCSP), X.509 PKI online

revocation, 359
Online revocation system, X.509 PKI, 359

Open design. See Principle of open design
Open �les, interception of requests to, 816
Open Source Security Testing Methodology Manual

(OSSTMM), 834–835
OpenPGP, 348–350, 388–389
Operand or operation, improper choice of, 853–854,

1139–1141
Operation

assurance during system, 695–696
waterfall life cycle model, 641

Operation symbol node, covert �ow trees, 603
Operational assurance

de�ned, 634
need for, 630
overview of, 695–696
TCSEC functional requirements, 732

Operational (IO) integrity classi�cation, Lipner, 181–182
Operational issues

computer security and, 16
cost-bene�t analysis, 16–17
laws and customs, 19–20
risk analysis, 17–18

Operations
commercial integrity policies, 173–174
improper choice of operand or, 853–854, 1139–1141
improper sequencing of, 1139

Operator user account, development system backups,
1051–1052

Optical devices, �ngerprint biometrics, 442
Or symbol node, covert �ow trees, 603
ORCON. See Originator controlled access control (ORCON

or ORGCON)
Organizational certi�cates, issuing, 478
Organizational problems

operational controls and, 20–21
security life cycle and, 22–24

Organizational security policies (OSPs), 752
ORGCON. See Originator controlled access control

(ORCON or ORGCON)
Origin integrity

as authentication. See Authentication
cryptography providing, 290
de�ned, 5
DNSSEC providing, 488
nature of security policies, 110–111

Originator controlled access control (ORCON or ORGCON)
PACL implementation for, 533–534
security policy, 118

Originator controlled access control (ORCON or ORGCON)
digital rights management, 241–244
further reading, 251
overview of, 239–241
PACL implementation for, 533–534
security policy, 118

OSPs. See organizational security policies (OSPs)
OSSTMM. See Open Source Security Testing Methodology

Manual (OSSTMM)
Otway-Rees protocol, 335–336, 369–370
Output

conception stage of life cycle, 636
feedback mode, 372
manufacturing stage of life cycle, 637
parameters, 549–550

Output feedback (OFB) mode, DES, 302

Index 1367

Outsiders
problems from, 21
threats to security from, 650

Outsiders class, policy development, 1008–1010
Overt (documented or known) purpose, Trojan horses, 776,

781
OVFUNs, 703–704, 708
Own right, access control matrix, 33, 42–43
Ownership, allowable use and, 1216–1217

P
PA model. See Protection Analysis (PA) model
Packets, IP header marking and, 981–983
PacketScore, 224
PACL. See Propagated Access Control List (PACL)
Padding Oracle On Downgraded Legacy Encryption

(POODLE) attack, SSL, 401–402
Paging, virtual machines and, 1175–1176
Pakistani (or Brain) virus, IBM PC, 782, 783
PAM. See pluggable authentication modules (PAM)
Panorama, analyzing suspected malware, 810–811
Parameters

passing information into/out of procedures via, 549–550
validation �aws in RISOS study, 849–850

Parent component, internal design, 669–670
Parenting

comparing expressive power of models, 91–92
ESPM multiple, 83–88

Partial ordering, lattices, 1153–1154
Pascal programming language, Gypsy based on, 711
Pass algorithms, challenge-response authentication, 438–439
Passive side channel attack, deducibility, 280
Passive wiretapping, 7
Passively monitoring attack, containment in intrusion

handling, 975–976
Passphrases

used with passwords, 424–425
voice recognition systems, 443

Passports, as certi�cates/assurance of trust, 483
Password space, de�ned, 416–417
Passwords

aging, 434–438
attacks on, 426–434
authentication via, 416–418, 1053–1055
challenge response authentication for, 438–441
graphical, 425–426
improper deallocation or deletion of, 1131–1132
meters for password strength, 434
in multifactor authentication, 446–448
one-time, 436–438
passphrases used with, 424–425
password wallet or password manager, 425
policy enforcing restrictions on new, 422–424
principle of open design and, 461
problem of sharing. See Program security practicum
pronounceable, 420–421
random, 418–420
strength, 432–434
user-created, 421–425
user security and, 1074–1076
writing down, 419–420

Patching of bugs, 638
Path value, cookies, 489

PATH variable, penetration testing in UNIX, 842–843
Paths, testing ordering of, 1143
Patients, Clinical Information Systems security policy,

236–239
Pattern-directed protection evaluation, Protection Analysis

(PA) model, 851
Patterns of usage, audit reviews of, 880
PC CYBORG ransomware, 800–801
PC category. See Production Code (PC) category
PCAs. See policy certi�cation authorities (PCAs)
PCC. See proof-carrying code (PCC)
PD category. See Production Data (PD) category
PD class. See public data (PD) class
Peer-to-peer botnets, 794
Peer-to-peer Overnet protocol, 794
PeerTrust recommendation system, 196
Pegasus spyware, iPhones, 799–800
PEM, See Privacy-enhanced Electronic Mail (PEM)
Penetration analysis theory, Gupta and Gligor, 868–873
Penetration studies

conclusion, 845
debate on validity of, 844–845
Flaw Hypothesis Methodology, 830–833
Flaw Hypothesis Methodology, versions, 833–837
goals, 827–828
layering of tests, 828–829
methodology at each layer, 829
overview of, 827

Penetration studies examples
compromise of Burroughs system, 839–840
penetration of corporate computer system, 840–841
penetration of Michigan Terminal System, 837–839
penetration of UNIX system, 841–843
penetration of Windows system, 843–844

Penetration testing
formal veri�cation vs., 826
using attack graphs to guide, 970–971

Penetration Testing Execution Standard (PTES), 836
People problems

operational controls and, 21–22
security life cycle and, 22–24

Perceptron neural network, anomaly detection, 928
Perfect secrecy, 1168–1169
Performance

intrusion detection using system calls, 972
paging, virtual machines, and loss of, 1176

Permissions
access control �le, 1120–1121
on �le creation, 1081
security-related programming problems. See Program

security practicum, common programming
problems

Permitted set (PS) privileges, Trusted Solaris, 525
Permutation table, main DES algorithm, 1193
Personal conduct, acceptable use policy for,

1209–1212
Personal health information, Clinical Information Systems

security policy, 236–239
Personal information, privacy/con�dentiality policy, 1223
Personal use

allowable use policy, 1219
unacceptable conduct policy, 1212

Petri nets, IDIOT system, 933–934
PGP. See Pretty Good Privacy (PGP)

1368 Index

PGWG. See Process Action Team Guidance Working Group
(PGWG)

Phases
GISTA, 835–836
OSSTMM modules, 835
PTES, 836–837

Phenomes, voice recognition systems, 443
Phishing, impersonating legitimate entity, 802–803
Phonemes, pronounceable passwords based on, 420–421
Physical class, OSSTMM, 834
Physical resources, virtual machines and, 1175
PHYSSEC class, OSSTMM, 834
Pigeonhole principle, cryptographic checksums, 316
PKI. See public key infrastructure (PKI)
Plagiarism, as unacceptable conduct, 1209
Plaintext

block ciphers and, 374–377
ciphertext messages security issues, 367–370
perfect secrecy and, 1168–1169
self-synchronous stream ciphers, 373–374
substitution ciphers changing characters in, 292–294
transposition ciphers rearranging characters in, 291–292

Planning phase, GISTA, 835
Plans, manufacturing stage of life cycle, 637
Platform as a service cloud, 1024
PlayReady DRM, Microsoft, 243–244
Pluggable authentication modules (PAM), UNIX, 447–448,

1053, 1054
Pluggable transports, Tor, 499
Pointers, specifying con�nement for compiler, 592
Policies. See also Noninterference, and policy composition

assurance, throughout life cycle, 632–633
availability policies. See Availability policies
computer security incident response team, 986
con�dentiality policies. See Con�dentiality policies
high-level, 119–125
how certi�cates encode, 477–478
hybrid policies. See Hybrid policies
information �ow, 539–540
integrity policies. See Integrity policies
low-level, 125–126
models of information �ow, 541–542
nonlattice information �ow, 542–548
overview of, 118
password, 422–423
policy-based trust models, 191–192
program distribution, 1146–1147
security. See Security policy
shared password, 1100–1101
system security practicum, 1036–1041
user security practicum, 1072–1073

Policy-based trust models, 191–194
Policy certi�cation authorities (PCAs), 478–479, 481–484
Policy checkers, 906, 942–943
Policy development practicum

availability, 1010
consistency check, 1010–1011
data classes, 1007–1008
overview of, 1006–1007
user classes, 1008–1010

Policy models, 113, 632
Policy script interpreter, Bro, 937
Political activity, unacceptable conduct policy, 1211–1212
Polyalphabetic cipher, 294

Polymorphic viruses, 787–789
Ponder

expressing trust relationships via, 194
as high-level policy language, 119–121

POODLE attack. See Padding Oracle On Downgraded
Legacy Encryption (POODLE) attack

Poset, partial ordering and, 1153
Postconditions, vulnerability analysis, 826
Postdevelopment veri�cation technique, 700
Posting and authority to change, electronic communications

policy, 1233–1234
Power, establishing clear chains of responsibility and, 20–21
PP-Con�guration, CC, 753
PP-Module, CC, 753
PP. See protection pro�les (PP)
PP Reference, CC, 753
Practice, of digital forensics, 990–994
Pre-key bundle, instant messaging, 391
Precedence rules, Control Tree Logic, 1186
Precision

degree of overrestrictiveness, 134
security mechanisms and, 12
security policies and, 9–10, 131–136

Precomputing off-line dictionary attacks, 428
Precomputing possible messages, ciphertext problems,

367–368
Preconditions, vulnerability analysis, 826
Predevelopment veri�cation technique, 700
Predicate logic (predicate calculus or �rst order logic),

1184–1185
Predicate subtypes, PVS language, 714
Preliminary technical review (PTR), TCSEC, 734
Preludes, as prede�ned theories in PVS, 714
Premaster secret, TLS handshake protocol, 398
Pretty Good Privacy (PGP)

certi�cate revocation, 359
certi�cate signature chains, 348–350
certi�cates and assurance of trust, 483–484
creation of, 385–386
OpenPGP and PEM, 388–389

Prevention mechanisms
deadlock, 202–203
as goal of security, 10
and integrity, 5

PRF function, TLS, 394–395
Primitive commands, 38–41
Primitive �ow generator, penetration analysis tool, 872–873
Primitive inference rules, PVS proof checker, 715–716
Primitive operations

basic results of, 51–52
as mono-operational, 51
TAM, 92–93

Primitive rights, determining system safety, 50, 52–56
Principals

assigning rights to groups, 475
authentication policy de�nes proof of identity for,

481–484
certi�cates bind cryptographic keys to, 476–478
in digital rights management, 242
�oating identi�ers assigned to, 486
host identity on web identifying, 485
as unique entities speci�ed by identity, 471

Principle, Locard’s Exchange, 987
Principle of attenuation of privilege, 42–44, 74

Index 1369

Principle of complete mediation
access to developer systems, 1040
development system, 1060
direct login to sysadmin account, 1050
improper choice of initial protection domain, 1120
inner �rewall meeting, 1014
overview of, 460
restricting caching, 460–461
systems not enforcing, 1056
WWW server system in DMZ, 1066

Principle of conservativity, declassi�cation, 163
Principle of economy of mechanism

access control �le permissions, 1121
autonomous agents and, 953
con�guration of outer �rewall, 1015
development system, 1045–1046
overview of, 459–460
re�nement of program security, 1113

Principle of fail-safe defaults
design access to roles/commands, 1107
overview of, 458–459
principle of least astonishment vs., 1066
storage of access control data, 1108–1109
validation should apply principle of, 1135

Principle of least astonishment
development system, 1045, 1047, 1063
overview of, 464–465
overwriting �les, 1089
principle of fail-safe defaults vs., 1066
re�nement and implementation, 1113, 1116–1117
storage of access control data, 1108, 1110
testing program, 1145–1146

Principle of least authority, 458
Principle of least common mechanism

analysis of network infrastructure, 1014
development system, 1064
hiding information among modules, 1051
memory programming problems, 1127
network services, 1047
overview of, 463–464
users for system security, 1052

Principle of least privilege
cell phones in violation of, 568
con�guring memory to enforce, 1122
con�guring outer �rewalls, 1014–1015
con�nement enforcing, 581
containment of internal addresses, 1014
data classes in policy development, 1007–1008
for improper choice of initial protection domain,

1118–1119
for malware containment, 813–816
overview of, 457–458
processes run on development system, 1059–1060
processes run on DMZ WWW server, 1055
processes with �ne-grained restrictions, 524
Trusted Solaris privilege sets, 525–526
user classes in policy development, 1008–1010

Principle of monotonicity of release, declassi�cation, 163
Principle of occlusion, declassi�cation, 163
Principle of open design

data classes in policy development, 1007–1008
development system, 1064
distribution of program, 1146
minimize secrets, 462

overview of, 461–462
user classes in policy development, 1008–1010

Principle of psychological acceptability, 465–466
Principle of semantic consistency, declassi�cation, 163
Principle of separation of duty

access control �le permissions, 1120
commercial integrity policies, 174, 183–184
overview of, 463
policy-based trust models, 193–194
RBAC modeling, 246

Principle of separation of privilege
con�guring outer �rewall, 1014
data classes in policy development, 1007–1008
overview of, 463
user classes in policy development, 1008–1010
via threshold scheme, 530

Principle of tranquility, security levels, 161–163
Principles

access to medical records, 237–238
composition policy, 257–258
declassi�cation, 163–164
intrusion detection, 917–918
record creation and information deletion, 238–239

Printf function, checking input from untrusted sources,
1136–1137

Privacy
Android cell phones and, 568–570
assurance of, 630
Clinical Information Systems security policy, 236–239
and con�dentiality, 114, 1220–1225
electronic communications policy and, 128–129,

1208–1209, 1220–1225
expectations, 1235–1236
limits, 1237–1239
protections, 1236–1237
right to anonymity, 500–501

Privacy Act of the United States, 114, 141
Privacy-enhanced Electronic Mail (PEM)

basic design, 386–387
certi�cate con�icts, 479–481
certi�cates and assurance of trust, 482–483
creation of, 385
design principles, 385–386
OpenPGP and, 388–389

Privacy Research Group, 385
Private functions, SPECIAL speci�cation, 703–704
Private key, public key cryptography

de�ned, 306
infrastructures. See Key infrastructures
public key cryptographic key exchange, 338–341

Privileges
amplifying for capabilities, 521
improper choice of initial protection domain and

process, 1118–1120
overriding restrictions on access via, 524–526
principle of attenuation of privilege, 42–44, 74
principle of fail-safe defaults, 458–459
principle of least privilege, 457–458
principle of separation of privilege, 463
programming problems. See Program security practicum,

common programming problems
RBAC managing assignment of, 248
virtual machines and, 583–584, 1172–1175

Proactive password checking, 422–424

1370 Index

Proactive password selection, 421
Probabilistic packet selection, IP headers, 981
Problem sources, in computer systems, 630
Procedure calls, information �ow and, 556–557
Procedure segments, ring-based access control, 531–532
Procedures, electronic communications policy, 127
Process Action Team Guidance Working Group (PGWG),

security testing, 689–695
Processes

con�guration of development system, 1059–1061
con�guration of DMZ WWW server, 1055–1061
con�nement problem, 580–582
isolation of. See Isolation
limitations of TCSEC, 736
SSE-CMM analysis of existing, 765–768
system security practicum, 1055–1061
three sets of privileges in, 524
trusted UNIX, 815

Processes, user security
accidentally overwriting �les, 1088–1089
copying and moving �les, 1087–1088
encryption, cryptographic keys, and passwords,

1089–1090
limiting privileges, 1091
malicious logic, 1091–1092
startup settings, 1090–1091

Processor status longword (PSL), virtual machines,
1172–1174

Product backlog, Scrum, 643
Product cipher, DES as, 300
Production Code (PC), Lipner, 179–180
Production Data (PD), Lipner, 179–180
Production, deployment stage of life cycle, 637
Production (IP) entities, Lipner, 181–182
Products

formally veri�ed, 722–723
retirement of, 638
TCSEC documentation requirements, 733
tools for generation of, 687

Pro�le registry, Federal Criteria, 745
Program

distribution, 1146–1147
memory protection, 1122
testing, 1145–1146

Program modi�cation
compiling, 592–593
loading, 593–594
overview of, 590
rewriting, 590–591
sandboxes using, 589–590

Program security practicum
designing access to roles and commands, 1106–1110
designing framework, 1104–1105
distribution, 1146–1147
overview of, 1099
password management problem, 1099–1100
re�nement and implementation, 1111–1117
requirements and policy, 1100–1103
review, 1147–1150
testing, maintenance, and operation, 1141–1146

Program security practicum, common programming
problems

improper change over time, 1125–1129
improper choice of initial protection domain, 1118–1123

improper choice of operand or operation, 1139–1141
improper deallocation or deletion, 1131–1132
improper indivisibility, 1138–1139
improper isolation of implementation detail,

1123–1125
improper naming, 1129–1131
improper validation, 1132–1138
overview, 1117–1118

Program statements
assignment statements, 551
certi�ed information �ow policy and, 548
classi�cation of, 550–551
compound statements, 551–552
conditional statements, 552–553
goto statements, 554–556
iterative statements, 553–554
procedure calls, 556–557

Programming languages
choice affects assurance of implementation, 685–686
formal speci�cation. See Formal speci�cations
functional, 721
information �ow control in, 575
type-safe, 592

Programming rules
implementation, 1247–1248
management, 1249

Pronounceable passwords, 420–421
Proof

by contradiction, 1183
of correctness, 15, 318
logical systems used in formal proof technologies. See

Symbolic logic
PVS based on constructing/writing proofs, 713–716
rules, 1180
theory, SMV, 718–720
using truth tables in natural deduction,

1182–1183
Proof-based veri�cation techniques, vs. model-based, 700
Proof-carrying code (PCC), malware defense, 818–819
Proof checkers

overview of, 681–682
Prototype Veri�cation System (PVS), 713, 715–716

Proof of concept, conception stage of life cycle, 636
Propagated Access Control List (PACL), 533–534
Propagating (or replicating) Trojan horse, 779–780
Propagation phase, computer worms, 791–792
Properties

ATAM vs. TAM, 99–101
cloud, 1024–1025
comparing in access control models, 95–99
mapping system to existing model for policy de�nition,

659–660
nature of security policies, 111
SMV proof theory for, 718–720

Property-based testing, detecting vulnerabilities, 826
Property speci�cation veri�cation, 700
Propositional logic (propositional calculus), 1179–1180
Protected memory, 519
Protection Analysis (PA) model

analysis procedure, 854–856
�ngerd buffer over�ow �aw, 862–863
�aw classes, 852–854
legacy, 856
overview of, 851–852

Index 1371

programming problems. See Program security practicum,
common programming problems

xterm log �le �aw, 860–861
Protection domain, restricting for role processes, 1125
Protection �aws, improper, 852–853
Protection mechanisms, 132–135
Protection pro�les (PP)

CC, 751–753
evaluating security target against, 754–756
Federal Criteria, 744–745

Protection rings, 531
Protection state

access control matrix model of, 32–37
describing via access control matrix, 31–32
determining if system is safe, 50–51
results of determining system safety, 51–56
Take-Grant Protection Model of. See Take-Grant

Protection Model
transitions, 37–41
Typed Access Matrix Model (TAM), 92–94

Protection type, Schematic Protection Model, 69
Protocol Analyzer (NPA), NRL, 720–721
Protocol veri�ers, 703
Protocols

affect on security of cryptosystems, 367–370
CAPSL speci�cation, 721
electronic mail (PEM and OpenPGP), 384–389
formal methods for analyzing cryptographic, 702
key management for instant messaging, 390–393
networks and cryptographic, 381–384
NPA cryptographic protocol veri�cation, 720–721
symmetric key exchange/authentication, 333–336

Prototype Veri�cation System (PVS)
as current veri�cation system, 713
experience with, 716
proof checker, 715–716
speci�cation language, 713–715

Prototyping model, software development, 644
Proxy, multiple parenting in ESPM, 83–88
Proxy (or application level) �rewalls

blocking Java applets with, 978
con�guration of outer �rewall, 1015
overview of, 571–572

PS privileges. See permitted set (PS) privileges
Pseudo-anonymous (or pseudonymous) remailers, 491
Pseudocode, 1111–1114
Pseudonymizing sanitizers, auditing system design, 889–891
Pseudonyms, electronic communications policy at UCD,

1218
Pseudorandom numbers, key generation, 341–342
PSL. See processor status longword (PSL)
PTES. See Penetration Testing Execution Standard (PTES)
PTR. See preliminary technical review (PTR)
Public data (PD) class, policy development, 1007–1008
Public key cryptography

El Gamal, 307–309
elliptic curve ciphers, 312–315
key exchange, 338–341
overview of, 306–307
RSA, 309–312
TLS, 394

Public key digital signatures
El Gamal, 321–322
RSA, 318–321

Public key infrastructure (PKI), 350–353
Public key resource record (DNSKEY RR), DNSSEC, 488
Public records, electronic communication policy, 1224
Publication mission, CSIRT, 986
Pulsing denial-of-service attack, 221–222
Pumps, mitigation of covert channels via, 617–619
Purge function, noninterference security, 261–263
Purpose, electronic communications policy, 1213
PVS. See Prototype Veri�cation System (PVS)

Q
Quality of service, availability policy ensuring, 201
Quasi-identi�ers, auditing system design, 890

R
RA. See Registration authority (RA)
Rabbits, exhausting resources, 796
Race conditions

detecting in �le accesses, 817, 1128–1129
improper indivisibility of, 1138

RACF, security enhancement package for IBM, 881
RAMP. See Ratings Maintenance Program (RAMP)
Random data tests, testing modules, 1145
Random numbers, key generation and, 341–342
Random (or pseudorandom) number generator, 419
Random (or pseudorandom) passwords, 436–438
Random password selection, 418–420
Random variable, 1163, 1165–1166
Randomness

El Gamal cryptosystem, 309
key generation and, 341–343

RANSOM-A ransomware, 801
Ransomware, 800–801
Rapid prototyping, Extreme Programming, 643
Rapid system iterations, exploratory programming model,

644
Rate-limiting component, D-WARD, 218
Rated product, TCSEC, 731
Rating Pro�le, SSE-CMM, 767–768
Ratings Maintenance Program (RAMP), 735, 737
Ratings, TCSEC trust management, 731
Rationale, CC, 752
Raw error patterns, Protection Analysis (PA), 854
RBAC. See role-based access control (RBAC)
RC. See control rights (RC)
Rdist UNIX program, 939–941
Re-call based systems, graphical passwords, 425
Read right, access control matrix, 33
Readable object set, detecting covert channels, 597–598
Real UID, 474
Reallocation transition, 211–212
Recognition-based systems, graphical passwords, 425–426
Recognition branch, covert �ow tree, 605–606
Recognition goal, covert �ow tree, 605–606
Recommendation systems, reputation-based trust models,

194–196
Recommender trust (RT), trust value semantics, 195
RECON guard, information �ow control, 655
Record layer, TLS, 396
Recovery, 10–11, 1227
Red team attack. See Penetration studies
REDOC-II, modern symmetric cipher, 302

1372 Index

Reduced-round AES, 305
Reductio ad absurdum rules, natural deduction, 1181–1182
REFEREE trust model, 198
Reference monitor

building system with security, 654
de�ned, 654
heavily in�uencing TCSEC approach, 730

Reference validation, 662
Reference validation mechanism (RVM), 654, 730
Re�nement, access control module, 1111–1114
Re�ector attacks, 221
Refrain, policy speci�cations in Ponder, 120–121
Registration authority (RA)

CA delegates certi�cate requirements to, 477
certi�cates and assurance of trust, 484
certi�cates in X.509 PKI, 351

Registration, instant messaging, 391
Regular �xes, 695–696
Relational database browsing, audit browsing, 908
Relations, describing properties of, 1153–1155
Relationships, digital rights management, 242
Relay commands, Tor, 497–499
Reliability

need for assurance of, 630
paging, virtual machines and loss of, 1176

Religious activity, acceptable use policy, 1211–1212
Remote shell (rsh) connection spoo�ng attack

JIGSAW representation of, 967–969
overview of, 966–967
using attack graphs, 970–971

Remove rule, Take-Grant Protection Model, 57
Repetitions

attacks on Vigenére cipher and, 294–299
iterative statements/information �ow, 553

Replay attacks
Kerberos clock synchronization and, 338
symmetric key exchange vulnerability, 333–336
on voice recognition systems, 443

Replay technique, audit browsing, 908–909
Reporting phase, GISTA, 836
Repository, program distribution, 1146
Representation

correspondence, justifying design meets requirements,
677–680

electronic communications policy at UCD, 1218
Repudiation of origin, as form of deception, 8
Reputation-based trust models, 194–196
Requirements

access to role accounts, 1100–1103
CISR, 743
commercial integrity policies, 173–174, 187–188
Common Criteria (CC), 752, 756
conception stage of life cycle, 636
design phase feeds back into, 1105
Federal Criteria, 745
FIPS 140, 746–747
formal evaluation methodology, 728
levels of abstract machines in HDM, 705–706
mapping security functions to security, 666
policy de�nition and speci�cation of, 657–660
role in assurance, 631–632
TCSEC functional, 731–732
testing begins with, 1142
waterfall life cycle model, 639–640

Requirements, de�nition and analysis
architecture, 651–657
justifying requirements, 660–662
policy de�nition/requirements speci�cation, 657–660
system assurance, 649
threats and security objectives, 650–651

Requirements, justifying that design meets
formal methods/proof techniques, 681–682
informal arguments, 680–681
overview of, 677
requirements tracing/informal correspondence, 677–680
review, 682–685

Requirements tracing, 677–680
Research Into Secure Operating Systems. See RISOS

(Research Into Secure Operating Systems) study
Research Into Secure Operating Systems (RISOS) study

�ngerd buffer over�ow �aw, 863, 864
�aw classes, 849–851
legacy of, 851
overview of, 849
xterm log �le �aw, 861

Residential certi�cates, issuing, 478
Resource allocation system model, 210–215
Resource monitor, 213
Resource Public Key Infrastructure (RPKI), 361
Resource records (RRs), DNS and DNSSEC, 488
Resources

constraint-based DoS model and, 209
exhausted by malware, 796
integrity of electronic communications, 1210
leakage of information from shared, 581
mitigation of covert channels via obfuscation,

616–617
preserving con�dentiality via hiding, 4
problems from lack of, 21
SYN �ooding consuming, 216, 1026
UIDs and exhaustion of, 1124
virtual machines and physical, 1175

Responsibilities
electronic communications policy at UCD, 1208, 1215
establishing clear chains of, 20–21
of users, 1234–1235

Restrictions
as design principle, 455–457
electronic communications policy at UCD, 1217–1218
malware defense using speci�cations as, 817
noninterference and policy composition, 277–279
shared password requirements, 1100–1101

Retention, policy for, 129, 1227
Retina, eye biometrics, 443–444
Retirement, of DES, 302
Retrospective, for system security practicum,

1066–1068
Return oriented programming (ROP) �aw, UNIX, 848
Return-to-libc attacks, 848, 974–975
Returns control, Data Mark Machine, 563
Reusable components, system assembly from, 645
Reverse name lookup, DNS, 487
Review process, design meets requirements, 682–685
Revocation

key, 358–359
of rights, capability systems, 522
rule, HRU vs. SPM, 82

Rewriting, program modi�cation via, 590–591

Index 1373

Rights
acceptable use policy for, 1208
access control model entries as, 32–37
capabilities and. See Capabilities
delegation policy speci�cations in Ponder, 119–120
determining system safety, 49–56
formal model of Bell-LaPadula Model, 151–158
Multics rules for, 158–161
multiple parenting in ESPM, 83–88
passing to other users, 269–270
principle of least privilege, 457–458
reducing to contain malware, 813–816
SPM, 69–72
SPM vs. HRU revocation rule, 82
testing in TAM via ATAM, 99–101

Rights expression language, digital rights management,
243–244

Rights, Take-Grant Protection Model
conspiracy, 66–68
interpretation of, 61–63
overview, 56–57
sharing, 57–61
theft and, 62–66

Rijndael, as AES, 303
Ring-based access control, 531–533
Ring compression, privilege and virtual machines, 1174
Ring policy, Biba Model, 177
Risk

affecting level of trust in system, 730
analysis, 17–18

RISOS study. See Research Into Secure Operating Systems
(RISOS) study

Role account
designing access to roles/commands, 1106–1110
shared password problem, 1100–1101
threats against, 1102–1103
user interface design for access to, 1104–1105

Role-based access control (RBAC), 244–249
Role engineering, 248
Role mining, 249
Roles

designing access to commands and, 1106–1110
issuing certi�cates to principals as, 479
keys can belong to, 354
representing identity, 475–476
role-based access control (RBAC), 244–249
in second-level re�nement to access control module,

1112–1114
ROM, for key storage, 354
Root key, instant messaging, 390–392
Rootkits, as pernicious Trojan horses, 777–779
ROP �aw. See return oriented programming (ROP) �aw
RotWord transformation, AES, 1202–1203
Round key

AES, 1201–1203
DES, 1191–1195

Round key schedule generation, AES, 1203
Rounds

AES, 303–305, 1196
DES, 300, 1191–1192

Routers, as �ltering �rewalls, 571
Routines

access control record, 1115–1116
error handling in reading/matching, 1116–1117

obtaining location, 1114–1115
re�ning high-level design to produce, 1111–1112
in second-level re�nement, 1112–1114

Routing, anonymity on web with onion, 494–498
RPKI. See Resource Public Key Infrastructure (RPKI)
RRs. See resource records (RRs)
RRSIG RR. See signature resource record (RRSIG RR)
RSA ciphers

digital signatures, 319–321
misordered blocks and, 368
public key cryptography, 309–312
as TLS interchange cipher, 394
Yaksha security system based on, 357

RSA’s SecurID system. phishing attack on, 803
RSA’s SecurID system, phishing attack on, 803
RST packet, SYN �ooding countermeasure, 217
RT. See recommender trust (RT)
Rule of transitive con�nement, 581
Rules

for access control by Boolean expressions, 35–36
altered by adaptive directors, 946
for Bell-LaPadula Model transformation, 155–158
break-glass, 249
Control Tree Logic (CTL), 1186
of engagement, penetration studies, 828
for Multics system rights, 158–161
for multiple parenting in ESPM, 83–85
natural deduction in predicate logic, 1185
natural deduction in propositional logic, 1180–1182
Network Security Monitor, 949
programming, 1247–1249
PVS proof checker, 715–716
for Take-Grant Protection Model, 56–57, 61–63
Trusted Solaris, 146–147

Rumpole’s enforcement model, break-the-glass policy,
249–250

Running state
denial of service protection base, 214
model of resource allocation system, 210–211

Rust functional programming language, 721
RVM. See reference validation mechanism (RVM)

S
S-boxes

AES, 304–305
DES, 300–301, 1193–1194

S/Key system, one-time passwords, 437
SA. See Security association (SA)
SA database (SAD), IPsec, 405–409
SAD. See SA database (SAD)
Safe state, Banker’s Algorithm, 203
Safety analysis

of Augmented TAM (ATAM), 99–101
comparing HRU and SPM, 82
MTAM, 94
SPM, 75–81

Safety, need for assurance of, 630
Salting, thwarting off-line dictionary attacks, 429–430
Sandboxes

loading libraries for process con�nement vs., 593
malware attempts to evade detection in, 811
malware containment via, 816–817
process restriction using, 586–590

1374 Index

Sanitization, auditing system for log, 888–891
SAT system, detecting covert channels, 596–597
Saved set of privileges, processes, 524
Saved set (SS) privileges, Trusted Solaris, 525
Saved UID, 474
SCADA systems. See supervisory control and data

acquisition (SCADA) systems, 582
Scalability, of formal veri�cation methods, 733
Scanning

as malware defense, 808–811
network con�guration for development system, 1046

Schematic Protection Model (SPM)
of computer security, 68–69
demand and create operations, 72–75
ESPM, 83–88
�lter function, 70–71
HRU vs., 82
link predicate, 69–70
putting it all together, 71–72
results of SSR Protection Model, 68–69
safety analysis, 75–81
simulation and expressiveness of, 88–92
Typed Access Matrix Model, 92–94

Schematic Send-Receive (SSR) Protection Model, 68
Schemes

in access control models, 95–99
comparing simulation in models, 89–90
in digital rights management, 242
as �nite set of link predicates in SPM, 70

Science DMZ, 946
Scope

electronic communications policy at UCD, 1213–1214
limitations of TCSEC, 736

Scrum, Agile software development, 643
SD category. See System Development (SD) category
Second-level re�nement, access control module,

1112–1114
Secret key cryptosystems. See Symmetric cryptosystems
Secret key digital signatures, 318
SECRET (S) security clearance, Bell-LaPadula Model,

142–146
Secrets

minimizing in principle of open design, 462
planning for compromised, 462
sharing, 529–530

Secure communication mission, CSIRT, 986
Secure, de�nition of, 49–51
Secure �eld, cookies, 489
Secure Shell (SSH) protocol

authentication for development system, 1054
authentication for DMA WWW server, 1053–1054
con�guring inner �rewall, 1016–1017
network con�guration for development system, 1045
processes running on development system, 1060
user con�guration for DMZ WWW server, 1050

Secure Sockets Layer (SSL), 394, 400–402
Secure systems

auditing mechanisms, 897–898
basic security theorem and, 143, 145
de�nition of, 109

Secure Xenix kernel, 602
Security

assurance, 628–629
CC protection pro�les, 752–753

electronic communications policy at UCD, 1225–1227,
1237–1239

feasibility, in conception stage of life cycle, 636
functional testing, 688–689
kernels. See Kernels
no longer exclusive realm of government/military, 730
patches, 115–117
principle of, 257–258
problem de�nition, 752
problems from overloaded administrators, 21
speci�cations, 675–676
structural testing, 688
TCSEC domains, 734
test suites, 689
testing, 688–695

Security association (SA)
AH protocol, 407–408
bundle, 406
ESP protocol, 408–409
IPsec architecture, 404–407
tunnel mode and transport mode, 406

Security classi�cations
declassi�cation problem, 162
model instantiation in Multics, 161–163
objects in Bell-LaPadula Model, 142
principle of tranquility for security levels, 161–163
Trusted Solaris, 146–151

Security clearance
Bell-LaPadula and Chinese Wall Models, 234–236
commercial vs. military integrity policies, 174
formal model of Bell-LaPadula Model, 151–158
forming security levels from, 143–144
Lipner’s full model, 181–182
of subjects in Bell-LaPadula Model, 142

Security Features User’s Guide (SFUG), TCSEC, 733
Security functional requirements (SFRs), CC, 752
Security functions

design documentation, 665
requirements tracing/informal correspondence,

677–680
summary speci�cation, design document, 665–666

Security gateway, IPsec, 403
Security levels

in Bell-LaPadula and Chinese Wall Models, 234–236
in Bell-LaPadula Model, formal model, 151–158
change of access within, 143–146
FIPS 140-2, 747–748
in Lipner’s full model, 181–182
in Lipner’s integrity matrix model, 178–180
in Multics, 158–159
principle of tranquility for, 161–163
in Trusted Solaris, 148–151

Security life cycle, 22–24
Security mechanisms

auditing, 897–900
cost-bene�t analysis of, 17
design principles for. See Design principles
laws and customs as constraints on, 19–20
in layered architecture, 652–653
protection state and, 31
security and precision in, 131–135
security policies vs., 9–10, 112–113
supporting availability, 202
TLS cryptographic, 394–396

Index 1375

Security models
de�nition of, 632
formal vs. informal, 700

Security-Oriented Analysis of Application Programs
(SOAAP), 722–723

Security Parameters Index (SPI), 405–409
Security policy. See also Noninterference, and policy

composition
attacks violating, 959
auditing to detect violations, 893–897
de�nition of, 109, 631–632
de�nition/requirements speci�cation, 657–660
determining safety of system, 49–51
development of, 1006–1011
example. See Academic computer security policy

example
�rewalls, 570–571
HRU vs. SPM, 82
justifying requirements, 660–662
languages, 118–126
laws/customs as constraints on, 19–20
malware causing violation of, 775–776
nature of, 109–113
penetration tests violate constraints stated in, 827–828
protection state and, 31
review, 136–139
role of trust in, 115–117
security and precision in, 131–136
security mechanisms vs., 9–10
as set of noninterference assertions, 262
system security. See System security practicum
types of, 7
types of access control, 117–118
using vulnerability to violate, 825

Security policy databases (SPDs), IPsec, 404–405
Security-preserving rules, Bell-LaPadula Model, 155
Security Requirements for Cryptographic Modules (IG), 748
Security speci�cations, 657, 675–677, 702
Security target (ST), CC, 751, 754–756
Security target (ST), ITSEC

assurance requirements, 739
de�ned, 738
evaluation process, 741
examples of informal arguments, 680–681
justifying requirements, 660–662
limitations of vendor-provided, 742

Security targets, vendor-provided, 742
Segment identi�er, untrusted modules, 591
Segment matching, untrusted modules, 591
Segments, ring-based access control, 531–533
seL4 microkernel, as formally veri�ed product, 722
Self-healing property, 374, 375–376
Self-issued certi�cate, X.509 PKI, 350
Self-organizing maps, anomaly detection, 928–930
Self-signed certi�cates, 349, 350
Semantic consistency principle, declassi�cation, 163
Semantics, object name, 472–473
Semaphores, information �ow using, 558–561
Sending instant messages, 392
Sendmail, penetration testing UNIX system, 841–842
Sensitive data

Bell-LaPadula Model labels, 142
consistency check in policy development, 1010–1011
improper deletion of, 1131–1132

Trusted Solaris labels, 146–151
virtual machines and, 1172–1175

Separation of duty. See Principle of separation of duty
Separation of function, 174
Separation of privilege. See Principle of separation of

privilege
Sequences of events, in speci�cation-based detection, 938
Sequencing, improper, 1139
Servers, con�nement problem, 579–582
Service providers, access control and, 579–580
Service speci�cation, denial of service models, 208–210
Session keys

Bellare-Rogaway protocol, 336
interchange key vs., 332
Kerberos protocol, 337–338
Needham-Schroeder protocol, 333–335
Otway-Rees protocol, 335–336
public key exchange and authentication, 338–341

Session id, TLS handshake protocol, 397
Sessions

instant messaging setup, 391–392
TLS, 393–394

Setuid programs, 474
SFRs. See security functional requirements (SFRs)
SFUG. See Security Features User’s Guide (SFUG)
SHA-256-based password hashing, 1053
Shared resource matrix model, SDLC, 610
Shared resource matrix (SRM) methodology, 598–600
Sharing

limiting for malware defense, 817–819
limiting with least common mechanism, 463–464
memory, 1121–1122, 1126–1128
problems with password. See Program security practicum
resources, 581, 594
secrets, 529–530

Sharing rights, Take-Grant Protection Model
conspiracy, 66–68
overview of, 57–61
theft, 62–66

Shift (Caesar) cipher, 289–291, 294
ShiftRows transformation, AES, 304, 1197–1199,

1203–1205
Shipping, deployment stage of life cycle, 637
Side channel attacks

covert channels vs., 581
and deducibility, 280–282
de�ned, 280
as form of covert channel, 582

Sidewinder �rewall
restricting access via type checking, 529
as sandbox built into kernel, 587

Siemens systems, targeted by Stuxnet worm, 792
Signal handlers, improper operation of, 1141
Signal protocol, instant messaging, 390
Signature-based detection, incident prevention, 972
Signature block, scanning as malware defense, 808
Signature chains. See Certi�cate signature chains
Signature, malware, 809
Signature resource record (RRSIG RR), DNSSEC, 488
Signature algorithm, TLS handshake protocol, 398
Signatures

adding dynamically in IDIOT system, 934
malware, 809–810

Signcryption, cryptographic primitive, 326

1376 Index

Signed pre-key pair SPK, instant messaging, 390–392
Simplicity, as design principle, 455–456
Simulation, ESPM vs. SPM, 88–90
Simultaneity policy, �nite waiting time policy, 207–208
Simultaneous users, copied material and, 1209
Single �ux botnet, 795
Single key cryptosystems. See Symmetric cryptosystems
Single-level directories (SLDs), Trusted Solaris, 148–149
Skipjack symmetric cipher, 355–356
SL security level. See System Low (SL) security level
SLDs. See single-level directories (SLDs)
Sleeping state

denial of service protection base, 214
resource allocation system, 210

Slicing technique, audit browsing, 909
Smallest bucket problem, pronounceable passwords,

420–421
Smart cards, for key storage, 354
Smart terminals, user security and, 1085–1086
SMTP

anticipating attacks in network security, 1027
con�guring inner �rewall, 1015–1016
con�guring outer �rewall, 1015
network con�guration for development system,

1045–1046
Smurf attack, as ampli�cation attack, 221
SMV. See Symbolic Model Veri�er (SMV)
Snooping (eavesdropping), 7
SOAAP. See Security-Oriented Analysis of Application

Programs (SOAAP)
Social engineering, 22
Software

adware entering system via, 798–799
design. See Design assurance, system/software
development life cycle, 635–639
fault isolation, 587, 591

Software as a service cloud, 1024
Software development models

Agile, 641–644
other, 644–645
waterfall life cycle model, 640–641

Software Tools (T) category, Lipner, 179–180, 181
SOG-IS. See Senior Of�cials Group Information Systems

Security (SOG-IS)
Sony, DRM implementation, 244
Soundness, of information �ow rules, 561–562
Source code, identifying covert channels in, 601
SPDs. See security policy databases (SPDs)
Speaker recognition, biometrics authentication, 443
Speaker veri�cation, biometrics authentication, 443
Spearphishing, tailored for particular victim, 802–803
SPECIAL formal speci�cation language

eliminated as speci�cation language for EHDM, 710
in formal veri�cation example, 701–702
MLS tool and, 707–708
precise semantics of, 702–705
strengths of, 703

Special topics
attack and response. See Attack and response
auditing. See Auditing
intrusion detection. See Intrusion detection
malicious logic. See Malware
vulnerability analysis. See Vulnerability analysis

Speci�cation-based detection, 920, 938–942

Speci�cations
access control matrix and, 32
assurance and, 13–14
de�ned, 657, 702
design satisfying, 14–15
external interfaces, 666–668
formal. See Formal speci�cations
Gypsy for external/internal, 712
implementation satisfying, 15–16
internal design, 673–674
modi�cation, 675
overview of, 658
policy de�nition and requirements, 657–660
PVS based on writing, 713–715
requirements tracing/informal correspondence, 677–680
as restrictions, in malware defense, 817
security, 657, 675–677, 702
security functions summary, 665–666
security testing, 688–689, 693–695
service, 208–210

SPECSEC class, OSSTMM, 834
SPI. See Security Parameters Index (SPI)
SPM. See Schematic Protection Model (SPM)
Spoo�ng attacks

as deception and usurpation, 7
DNSSEC immediately detecting, 488
on facial recognition systems, 444
on identity of host on web, 485
remote shell connection, 966–971

Sprints, Scrum, 643
Spyware, 799–800
SRI model, Bell-LaPadula Model vs., 707–708
SRM. See shared resource matrix (SRM)
SS privileges. See saved set (SS) privileges
Ssc-preserving rules, Bell-LaPadula Model, 155–156
SSE-CMM. See System Security Engineering Capability

Maturity Model (SSE-CMM)
SSH protocol. See Secure Shell (SSH) protocol
SSL. See Secure Sockets Layer (SSL)
SSR Protection Model. See Schematic Send-Receive (SSR)

Protection Model
ST reference, 754
ST. See security target (ST)
Stacking, PAM modules, 448
Stages, of life cycle process, 635–639
Stand-alone technique, formal speci�cation in, 703
Stand up meeting, Scrum, 643
Standards, examining vulnerabilities, 864–868
STAT, misuse intrusion detection, 934–937
State

cookies and, 488–490
system, 31

State-based auditing, 894
State-based denial of service model, 210–215
State machine model, 277–279
State-matching reductions, 97–101
State transitions

affecting protection state, 32
ATAM, 99–101
comparing schemes/security properties, 95–98
deterministic noninterference and, 259–261
model of resource allocation system, 211–212
security in terms of, 271–272
unwinding theorem, 263–265

Index 1377

Stateful �rewalls, 572
Statement of importance, electronic communications policy,

127
Statements. See Program statements
Static analysis, malware detection, 811
Static identi�ers, on web, 485–487
Static intrusion detection models, 920
Static keystroke recognition, biometric authentication, 444
Static mechanisms, information �ow

assignment statements, 551
compound statements, 551–552
conditional statements, 552–553
declarations, 549–550
exceptions and in�nite loops, 557–558
goto statements, 554–556
iterative statements, 553–554
overview of, 548
procedure calls, 556–557
program statements overview, 550–551

Static rights, access control by history, 36–37
Statistical analysis, as malware defense, 819
Statistical methods, anomaly detection, 921–922
Statistical regularities, ciphertext problems,

368–369
Statistics, cryptosystem attack using, 291
Stealing, as theft in Take-Grant Protection Model,

63–66
Stealth virus, 786
Storage

of access control data, 1108–1110
in cloud, 1025
covert channels constraining access to, 581

Storage, key
key escrow, 354–355
key escrow system and Clipper chip, 355–357
other approaches to, 357–358
overview of, 353–354
Yaksha security system, 357

Stream ciphers
block ciphers vs., 371
generating random, in�nitely long key, 370
self-synchronous, 373–374
synchronous, 371–373

Strength, password, 432–434
Strict conformance, CC methodology, 752
Strict integrity policy (Biba’s model), 177–178
Strong hash function, 316
Strong mixing function, 342
Strong one-way hash function, 316
Strong tranquility principle, 162
Structural (white box) testing, 688
Structure, AES, 303–304
Structure, DES, 300
Structured protection, TCSEC, 734
Student information, electronic communication privacy,

1223–1224
Stuxnet worm, 792
SubBytes transformation, AES encryption, 304, 1197–1199,

1203–1205
Subcomponents, 663–664
Subgoals, of attacks, 960–966
Subject alternative name extension, X.509 PKI certi�cates,

352
Subject key identi�er extension, X.509 PKI certi�cates, 351

Subjects
access control matrix model and, 32–37
adding categories to security classi�cation of, 143–146
Aggressive Chinese Wall Model, 233–234
basic results of determining system safety, 51–52
Biba model for integrity policy, 175–178
capabilities and, 518
Chinese Wall Model, formal model, 230–233
Chinese Wall Model, informal description, 229–230
DTEL associating domains with, 122–125
example model instantiation in Multics, 158–161
formal model of Bell-LaPadula Model, 151–158
link predicate in SPM as relation between two, 69–70
Lipner’s full model of security/integrity levels for, 182
Lipner’s security levels for, 179–180
principle of tranquility for security levels of, 161–163
Propagated Access Control List (PACL), 533–534
as protection types in SPM, 69
security clearance in Bell-LaPadula Model, 142–143
Take-Grant Protection Model. See Take-Grant

Protection Model
Trusted Solaris security classi�cation/categories, 146–151

Subnets, wireless networks, 1023
Substitution ciphers

one-time pad, 299
overview of, 292–295
Vigenére cipher, 295–299

Substitution, DES using, 300
Subsystem, de�ned, 663
Subtrace of trace, 938
SubWord transformation, AES round key generation,

1202–1203
Suitability analysis map, 660–662
Supervised machine learning methods, anomaly detection,

924
Supervisory control and data acquisition (SCADA) systems,

582
Surreptitious forwarding attack, 322
SVM. See support vector machine (SVM)
Symbolic logic

overview of, 1179
predicate logic, 1184–1185
propositional logic, 1179–1184
review exercises, 1188–1189
temporal logic systems, 1186–1188
used in formal proof technologies, 700

Symbolic Model Veri�er (SMV)
experience with, 720
proof theory, 718–720
speci�cation language, 716–718

Symmetric cryptosystems
AES, 303–306
DES, 299–302
key exchange, 333–336
other modern symmetric ciphers, 302–303
overview of, 291
as single key or secret key, 291
substitution ciphers, 292–299
transposition ciphers, 291–292

Symmetric key exchange protocol, Dif�e-Hellman as, 340
SYN/ACK packet

availability and SYN �ood attack, 215, 218–221
remote shell (rsh) attack on, 966–967

SYN cookies, and �ooding attacks, 219–220

1378 Index

SYN �ood attack, availability and, 215–221, 1026
SYN packets

availability during �ooding attacks, 218–221
SYN �ooding countermeasures, 217

Synchronization
coding faults in Aslam’s model, 859
�aws, 853–854
one-time passwords and, 436–438

Synchronous stream ciphers, 371–374
Syntactic issues, auditing system design, 887–888
System administrator, authentication, 1054
System Development (SD) category, Lipner, 179–180
System Low (ISL) integrity classi�cation, Lipner, 181–182
System Low (SL) security level, Lipner, 178–180, 182
System Program (ISP) integrity classi�cation, Lipner,

181–182
System Security Engineering Capability Maturity Model

(SSE-CMM), 628, 765–768
System security practicum

authentication, 1053–1055
�les, 1061–1066
introduction, 1035–1036
networks, 1042–1047
policy, 1036–1041
processes, 1055–1061
retrospective, 1066–1068
review, 1068–1072
users, 1048–1053

System trace, de�nition of, 938
Systems

architecture, 728, 732
assembly from reusable components, 645
digital forensics for entire, 990–992, 998–999
evaluation of. See Evaluation of systems
intrusion detection, 972
logs, designing auditing system, 891–893
monitoring, 1225
problems from administrators, 22
testing, 640–641, 688

Systems, building with assurance
documentation and speci�cation, 675–677
implementation. See Implementation assurance
operation and maintenance, 695–696
overview of, 673
requirements de�nition. See Requirements, de�nition

and analysis
requirements design. See Requirements, justifying that

design meets
review, 696–698
system/software design. See Design assurance,

system/software

T
T (Software Tools) category, Lipner, 179–180, 181
T (tainted) lower level security model, Android, 568
Tags, protecting capabilities via, 519
Taint sinks, Android, 568
TaintDroid, Android, 568–570
Tainted (T) lower level security model, Android, 568
Take-Grant Protection Model

of computer security, 56
conspiracy in, 66–68
controlling copying of capabilities, 523

create rule, 57
demand and create operations in SPM vs., 72–75
formulating as instance of SPM, 72
grant rule, 56
interpretation of model, 61–63
principle of least authority and, 458
remove rule, 57
review, 68
schemes and security properties, 95–99
sharing of rights, 57–61
SPM subsuming, 82
take rule, 56
theft in, 62–66

Take rule, Grant-Protection Model
conspiracy, 61–63
demand and create operations, 72
overview of, 56
sharing of rights, 58–59
theft, 64–66

TAM Model. See Type Access Matrix (TAM) Model
Target

of attacks, 960
moving target defense, 973

Target Corporation breach of 2013, 638
Target of evaluation (TOE), 738, 752–756
Target selection phase, computer worms, 791–792
Tautologies, 1180–1181
Tautology, natural deduction in propositional logic, 1180
Taxonomy, enforcing security via NRL, 857–859
TCB. See trusted computing base (TCB)
TCC. See type correctness condition (TCC)
TCP intercept mode, SYN �ooding countermeasures, 217
TCP state, 218–221
TCP three-way handshake

auditing to detect known violations of policy,
896–897

availability and SYN �ood attack, 215–216
SYN �ooding countermeasures, 217

TCP wrappers, con�guring network development system,
1046

Tcp wrappers program, transition-based auditing, 895
TCSEC. See Trusted Computer System Evaluation Criteria

(TCSEC)
TDI. See Trusted Database Management System

Interpretation (TDI)
Technical review board (TRB), TCSEC, 735
Technical review, design meets requirements, 683
Telecommunications class, OSSTMM, 834
Telephone conversations, privacy protection/limits, 1224
Temporal logic systems, types of, 1186
Terminate and stay resident (TSR) viruses, 785–786
Test assertions, security testing using PGWG, 690, 693
Test matrices, security testing using PGWG, 690–692
Testing

for informal validation of design/implementation, 1142
satisfying assurance via, 16
security, 688–689
TCSEC, 733

Text display technique, audit browsing, 908
TFM. See Trusted Facility Manual (TFM)
Theft, in Take-Grant Protection Model, 62–66
Theorem prover

Bledsoe, 712–713
Boyer-Moore, 709–710

Index 1379

EHDM, 710–711
PVS tightly integrated with, 713

Theorems
formal mathematical speci�cations in BLP security

policy, 702–705
undecidability of virus detection, 803–808

Theories, PVS language and, 714
Theory of computer viruses, 803–807
Theory of penetration analysis, Gupta and Gligor, 868–873
Therac 25 computer-based electron accelerator radiation

therapy, 630–631
Third party

independent testing, 688
spyware recording data for use by, 799–800

Threats
from botnets, 793–796
building trusted system, 650–651
classes of, 7
identifying in conception stage of life cycle, 636
mapping to requirements, 661–662
monitoring with audit trails, 879
overview of, 6–9
role accounts accessed by authorized users, 1102–1103
Security Problem De�nition, CC, 752
vulnerabilities vs., 650

Three-key Triple DES mode, 377
Three Mile Island nuclear failure, 631
Threshold metrics, anomaly detection, 921
Threshold scheme

one-time pad as, 299
principle of separation of privilege via, 530

Thumbprinting, tracing attack through network, 980
Ticket-granting servers, Kerberos, 337–338
Tickets

Kerberos, 337–338
multiple parenting in ESPM, 83–88
safety analysis of SPM, 75–81
SPM, 69–75

Tiger team attack. See Penetration studies
TIM research system, Digital Equipment Corporation,

922–923
Time

covert channels and, 581–582
covert timing channels, 594
of day, access control module, 1113
hardware challenge-response procedures and, 439
improper choice of operand/operation and, 1140–1141
interpreting for key storage, 357–358
of introduction, in NRL taxonomy �aws, 857
mitigating covert channels via, 617
in password aging, 435
risk changing with, 18
in temporal logic systems, 1186

Time-based inductive learning, anomaly detection, 922–923
Time-Based One-Time Password Algorithm (TOTP), 438
Time �aw attacks, Otway-Rees protocol vulnerability, 336
Time-of-check-to-time-of-use problem, race conditions,

1128–1129
Timestamps

cryptographic key infrastructure and, 344
detecting replay attacks, 335–336

Timestomp plug-in, 995
TLS protocol. See Transport Layer Security (TLS) protocol
TNI. See Trusted Network Interpretation (TNI)

TOE Security Functions (TSF), CC, 750
TOE Security Policy (TSP), CC, 750
TOE. See target of evaluation (TOE)
Token-subsequence signatures, worm detection, 810
Tokens

hardware challenge-response procedures and, 439
using cookies for authentication, 490

TOP SECRET (TS), Bell-LaPadula Model, 142–146
Topmost goal, covert �ow trees, 605
Tor onion router, 497–499
Torpig botnet, 793–796
Total isolation, 580, 616
Total ordering, lattices, 1153–1154
TOTP. See Time-Based One-Time Password Algorithm

(TOTP)
Toyota manufacturing, Kanban, 643
TPE. See Trident Polymorphic Engine (TPE)
TPs. See transformation procedures (TPs)
Traces

of events, 938–939
every contact leaves, 987–990
left by anti-forensic tools, 996

Traditional scheme, salting, 429
Traf�c analysis, as cryptanalysis, 383–384
Traf�c-policing component, D-WARD, 218
Traf�c Validation Architecture, 224
Training data

anomaly detection using distance to neighbor, 931
anomaly detection with Markov models, 924
anomaly detection with neural nets, 928–929
anomaly detection with self-organizing maps, 929–930
in systems using clustering, 926

Tranquility principle, 161–164, 885
Transactions

as basic operation. See Clark-Wilson integrity model
integrity security policies, 114
maintaining state to simplify, 488–490
RBAC, 244–249

Transceivers, AAFID, 953
Transformation procedures, as sequences of state transitions,

38
Transformation procedures (TPs), Clark-Wilson integrity

model, 184–188
Transformations, AES

decryption, 1200–1201
encryption, 1197–1199
order for encryption vs. decryption, 1203–1205
round key generation, 1201–1203

Transformations, cryptosystem, 290
Transitions

auditing based on, 881–883, 895
logging based on, 895
protection state, 37–41

Transitive con�nement, rule of, 581
Transitive nonlattice information �ow policies, 544–545
Transitivity of trust, 189
Translucent cryptography, 358
Transmatrix procedure, 555–557
Transport adjacency, IPsec, 406
Transport Layer Security (TLS) protocol

alert protocol, 399
application data protocol, 400
change cipher spec protocol, 399
cryptographic mechanisms, 394–396

1380 Index

handshake protocol, 397–399
Heartbeat protocol extension, 399–400
overview of, 393–394
record layer, 396
SSLv3 vs. TLSv1.2, 400–401

Transport layer (TLS and SSL) security
application data protocol, 400
Heartbeat protocol extension, 399–400
overview of, 393–394
problems with SSL, 401–402
SSLv3 vs. TLSv1.2, 400–401
supporting cryptographic mechanisms, 394–396
TLS alert protocol, 399
TLS change cipher spec protocol, 399
TLS handshake protocol, 397–399
TLS record protocol, 396

Transport mode, IPsec, 403
Transport mode SAs, IPsec, 406
Transposition cipher, 291
Transposition, DES using, 300
TRB. See technical review board (TRB)
Tree authentication scheme, Merkle, 344–345
Trees, attack, 961–964, 965–971
The Trial (Kafka), 500
Trident Polymorphic Engine (TPE), 788
Trident Vulnerabilities, Pegasus spyware, 799–800
Triple DES mode, 302
Tripwire

low-level policy language, 125–126
scanning as malware defense, 808
static analysis and, 894

Trojan horse
accessing role accounts, 1102–1103
adware as, 797
computer viruses as, 781
overview of, 776–777
propagating, 779–780
ransomware as, 800–801
rootkits as pernicious, 777–779
spyware as, 799–800
Stuxnet worm carried via, 792
theft in Take-Grant Protection Model, 63
triggering with logic bombs, 797

Trojan.Peacomm bot, 794
True positive (detection) rate, intrusion detection, 925
Trust

assumptions and, 11–12
assurance and, 12–13, 627–629
attempted attacks within DMZ/misuse of, 1027
Biba model integrity levels and, 175–178
certi�cates and assurance of, 482–484
con�dentiality policies and, 114
DNSSEC improving DNS, 488
formal evaluation and, 728–729
of host name in DNS database, 486
information �ow metrics containing malware, 813
integrity policies and, 114–115
ITSEC levels of, 731, 738
malware defense and notion of, 819–820
malware detection on data/information, 812
meaning of identity in, 481–484
no longer realm of government/military, 730
problems with PKIs, 352–353
propagation, 190

reducing user rights for malware containment, 815–816
role in computer security, 115–117
security issues with DNS, 487
in system, 1123

Trust anchor, CA certi�cate as, 351
Trust models

integrity models vs., 189
overview of, 189–191
policy-based, 191–194
reputation-based, 194–196

Trusted Computer System Evaluation Criteria (TCSEC)
assurance requirements, 732–733
Canadian efforts, 737–738
CISR, 742–743
de�ned, 727
evaluation classes, 733–734
evaluation process, 734–735
Federal Criteria developed to replace, 744–745
functional requirements, 731–732
impacts, 735–737
ITSEC evaluation vs., 741–742
overview of, 730–731
requirements in ITSEC not found in, 739–740

Trusted Database Management System Interpretation (TDI),
TCSEC, 736

Trusted distribution, TCSEC assurance, 732
Trusted modules, software fault isolation for, 591
Trusted Network Interpretation (TNI), TCSEC, 736
Trusted path requirements, TCSEC, 732
Trusted, remote shell (rsh) attack and, 966–967
Trusted Solaris example

directories and labels, 148–151
limiting sharing for malware defense, 818
privileges in, 525–526
security classi�cation and categories, 146–148
weak tranquility in, 162–163

Trusted systems
de�ned, 629
development of, 632–634
formal security evaluation in, 728–730
scanning as malware defense, 808–809

Trusted systems, building secure and
Agile software development, 641–644
life cycle, 634–639
other models of software development, 644–645
waterfall life cycle model, 639–641

Trusted third party
key escrow system, 354–355
secret key digital signatures rely on, 318
symmetric key exchange relies on, 333

Trusted users, Multics system, 158–161
Trustworthiness

integrity as data or resource, 5–6
methodologies assigning levels of, 629
trust as measure of, 628

Truth tables, natural deduction, 1182–1183
TS. See TOP SECRET (TS)
TSF. See TOE Security Functions (TSF)
TSP. See TOE Security Policy (TSP)
TSR viruses. See terminate and stay resident (TSR) viruses
Tunnel mode, IPsec, 403
Tunnel mode SAs, IPsec, 406
Turing machine, 52–56, 804–808
Two-bit machine, 259–263, 272–273

Index 1381

Two-factor authentication, 446–447
Two-key Triple DES mode, 376
Two-level security model, Android, 568
Two�sh cipher, 303
Type-1 hypervisor, 583, 1172–1173
Type-2 hypervisor, 583, 1172–1173
Type Access Matrix (TAM) Model

ATAM, 99–101
Dynamic TAM Model, 102
MTAM, 93–94
overview of, 92–93

Type checking
designing for validation, 1137–1138
improper validation and, 1134
locks and keys access control, 527–528

Type �aw attacks, ciphertext problems, 369–370
Type-safe programming languages, implementing

con�nement, 592
Types

CAPSL speci�cation, 721
DTEL based on, 121–125
SPECIAL speci�cation and, 703–705
Typed Access Matrix Model, 92–94

U
UA. See user agent (UA)
UC Davis. See Academic computer security policy example
UC clearance. See UNCLASSIFED (UC) clearance
UDIs. See unconstrained data items (UDIs)
UID. See Unique Identi�er for Device (UID)
UIDs. See User identi�cation numbers (UIDs)
Unacceptable conduct, electronic communications policy,

1209–1212
Unauthorized access, electronic communications policy, 1210
Unauthorized (insecure) states, security policies, 109–113
Uncertainty. See Entropy and uncertainty
UNCLASSIFED (UC) clearance, Bell-LaPadula Model,

142–146
Unconditional commands, TAM, 93
Unconstrained data items (UDIs), Clark-Wilson integrity

model, 184–186
Unique objects, require unique names, 1130
Unit testing, 640, 688–689
United Kingdom IT Security Evaluation and Certi�cation

Scheme Certi�cation Body, 738
UNIVAC 1108 computer, virus development, 782
Universal security analysis instance, 96, 98
UNIX systems

authentication for DMA WWW server, 1053
built-in security in vs. adding later, 656–657
Clark-Wilson model implementation, 186–187
Internet worm, 790–791
known security �aws, 846–848
malware detection on data, 812
multifactor authentication, 447–448
opening �les, 518
password mechanism, 417–418
penetrating, 841–843
privileges, 524–526
process con�guration for system security, 1056–1057
representing accounts by UID, 1049
speci�cation-based intrusion detection, 939–941
spread of viruses, 782

trusted processes, 815
type checking, 528
types of �le names, 472–473
user identity, 474

Unsafe instruction, untrusted modules, 591
Unsafe state, Banker’s Algorithm, 203
Unsupervised machine learning methods, anomaly detection,

924
Untainted (U) higher level security model, Android, 568
Untrained personnel problems, 21–22
Untrusted modules, software fault isolation for, 591–592
Unwinding theorem, 263–268, 596–597
Upper bound, lattices, 1154–1155
USENET news network, logic bomb, 797
User accounts, password sharing/administrative roles,

1100–1103
User advisories, electronic communications policy

introduction, 1234
overview of, 129–130
privacy expectations, 1235–1236
privacy limits, 1237–1239
privacy protections, 1236–1237
security considerations, 1239–1241
user responsibilities, 1234–1235

User agent (UA), network mail service, 384–385
User agreement

constraint-based DoS model, 205–207
denial of service models, 204
denial of service protection base, 213–214
�nite waiting time policy, 207–208

User classes
con�guring internal network, 1021–1022
policy development practicum, 1008–1011

User identi�cation numbers (UIDs)
access control module re�nement, 1113
FreeBSD 10.3 and audit, 1049
improper choice of operand/operation, 1140
privileges and, 524–525
process con�guration on development system, 1049
resource exhaustion and, 1124
UNIX accounts represented by, 1049
user con�guration for development system,

1051–1052
User identity, 473–475
User interface

access to roles/commands, 1106
designing for program security, 1104–1105
testing module, 1143–1144

User security component, key escrow systems, 355
User security practicum

access, 1074–1079
devices, 1084–1087
electronic communications, 1092–1094
�les, 1080–1084
overview of, 1072
policy, 1072–1073
processes, 1087–1092
review, 1094–1097

Users
checking input from untrusted sources, 1136–1137
system security practicum, 1048–1053
unacceptable conduct, 1210–1211

USTAT, misuse intrusion detection, 935–937
Usurpation, as class of threat, 7–9

1382 Index

V
Valid access lists (VALs), malware containment, 815–816
Validation

of access control entries, 1124
failure and CCM, 379

Validation, improper
bounds checking, 1133–1134
checking for valid data, 1135–1136
checking input, 1136–1137
designing for validation, 1137–1138
error checking, 1134–1135
�aws, 853
improper indivisibility, 1138–1139
improper sequencing, 1139
overview of, 1132–1133
type checking, 1134

Values, cookie, 489
Variable classes, information �ow, 565–566
Variables

checking that values are valid, 1135
identifying covert channels, 601–602

VAX-11/750 computer, developing virus for, 781–782
VAX architecture, privilege and virtual machines,

1172–1175
VAX hardware, virtual machines, 583–585
VAX VMM system, auditing mechanisms, 897–898
VAX/VMM system, paging and, 1176
VAX/VMS system, paging and, 1176
VCMS control structure, Intel VT-x, 1174–1175
VCs. See veri�cation conditions (VCs)
Vendor Security Analyst, RAMP, 735
Verbs, access control by Boolean expression, 35–36
Veri�cation

formal techniques for, 699–702
as goal of Gypsy language, 711
in HDM, 707–708
implementation phase issues, 15
TCSEC assurance requirements, 733

Veri�cation conditions (VCs), in HDM, 708
Veri�ed protection, TCSEC evaluation classes, 734
Verisign Corporation, CA issuance/authentication policies,

477
Version control and tracking, implementation management,

686
VFS layer. See virtual �le system (VFS) layer
VFUNs, 703–704, 708
Victim, remote shell (rsh) attack, 966–967
View entry, CWE, 867
Vigenére cipher

autokey versions of, 373–374
one-time pad as variant of, 299
overview of, 294–299
as stream cipher, 370, 373–374

Violable prohibition/limit class of �aw, RISOS study,
850–851

Violations of law and policy
acceptable use policy at UCD, 1209
electronic communications policy, 1215

Virtual circuits, Tor, 497–498
Virtual �le system (VFS) layer, adore-ng rootkit

compromising, 778
Virtual machine monitor (hypervisor), 1171–1172
Virtual machine monitor (VMM), 583–584, 587,

1171–1172

Virtual machines
de�ned, 583
exercises, 1176–1177
malware attempts to evade detection in, 811
malware containment via, 816–817
monitor, 1171–1172
overview of, 1171
paging and, 1175–1176
physical resources and, 1175
privilege and, 1172–1175
providing isolation via, 583–585
structure of, 1171

Virtual private network (VPNs), 1015, 1023–1024
Virtualization fault, Intel VT-i architecture, 1174
Virus detection problem, 803–808
Viruses. See Computer viruses
Visible functions, SPECIAL speci�cation and,

703–704
Visual Network Rating Methodology (VNRM), 647
VMM. See virtual machine monitor (VMM)
VMX root and nonroot operations, Intel VT-x, 1174
VNRM. See Visual Network Rating Methodology (VNRM)
Voice recognition systems, biometrics, 443
VPNs. See virtual private network (VPNs)
VT-i architecture, Intel, 1174
VT-x architecture, Intel, 1174–1175
Vulnerabilities

Apple patches for Trident, 800
penetration studies to �nd, 827–828
threats vs., 650

Vulnerability analysis
con�guring outer �rewall, 1015
frameworks, 849–864
Gupta and Gligor’s penetration analysis theory,

868–873
introduction, 825–827
overview of, 825
penetration studies. See Penetration studies
review, 873–878
standards, 864–868
vulnerability classi�cation frameworks, 845–848

Vulnerability classi�cation frameworks, 845–848
Vulnerability (or security �aw), de�ned, 825

W
Waiting time policy

denial of service models, 204
denial of service protection base, 213
SYN �ooding analysis and, 216

Walkthroughs (code review), implementation management,
687–688

Warning message, password aging, 435–436
Waterfall life cycle model, 639–641
Watergate scandal, 500
Weak tranquility principle, 162–163
Weakness base entry, CWE, 867
Weakness class entry, CWE, 867
Weakness variant entry, CWE, 867
Web, anonymity on

for better or worse, 499–501
electronic mail anonymizers, 491–494
onion routing, 495–499
overview of, 490–491

Index 1383

Web, identity on
DNS security extensions, 487–488
host identity, 484–485
overview of, 484
security issues with DNS, 487
state and cookies, 488–490
static and dynamic identi�ers, 485–487

Well-formed transactions, integrity of data, 183–184
WFFs. See well-formed formulas (WFFs)
Whistleblower policy, 129
Windows Event Log Service, 882–883
Windows systems

components/subcomponents, 663–664
and monitors, 1086–1087
penetration of, 843–844
Trojan.Peacomm bot infecting, 794
Windows 10 logger, 882–883

Wireless communication class, OSSTMM, 834
Wireless networks, security practicum, 1023–1024
Witness, graph rewriting rules as, 57
WordPerfect cipher, Kerberos, 338
Workstation security requirements, CISR, 743
Worms, computer, 790–792
Wrappers, blocking attacks, 977–978
Writable devices, user security, 1084–1085
Write right, access control matrix, 33
Writing, and Trusted Solaris, 147
Written passwords, obscuring, 419–420
WWW-clone, updating DMZ web server, 1019

X
X.509

certi�cate con�icts, 479–480
certi�cate signature chains, 346–348
certi�cates and assurance of trust, 482–483
PGP certi�cate signature chains vs.,

349–350
PKI, 350–352
PKI certi�cate revocation, 359
public-key certi�cates using Distinguished Names,

476
using Resource Public Key Infrastructure, 361

XCP anti-piracy software, Sony BMG, 778–779
Xen 3.0 hypervisor, 584
XML. See extensible markup language (XML)
XP. See Extreme Programming (XP)
Xterm �aw, 859–862
Xterm security �aw, UNIX, 846–847

Y
Yaksha security system, 357
Yu-Gligor denial of service model, 204–205, 216

Z
Zmist computer virus, 789
Zones

DMZ. See demilitarized zone (DMZ)
in Trusted Solaris, 149–150

	Cover

	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 31 Program Security
	31.1 Problem
	31.2 Requirements and Policy
	31.3 Design
	31.4 Refinement and Implementation
	31.5 Common Security-Related Programming Problems
	31.6 Testing, Maintenance, and Operation
	31.7 Distribution
	31.8 Summary
	31.9 Research Issues
	31.10 Further Reading
	31.11 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

