

Elemental Design Patterns

This page intentionally left blank

Elemental Design Patterns

Jason McC. Smith

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, whichmay include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Smith, Jason McC. (Jason McColm)
Elemental design patterns / Jason McC. Smith.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-71192-0 (hardcover : alk. paper) 1. Software patterns. 2. Software architecture

3. System design. I. Title.
QA76.76.P37S657 2012
005.1—dc23

2012001271

Copyright c© 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. To obtain permission to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN 13: 978-0-321-71192-2
ISBN 10: 0-321-71192-0

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, March, 2012

For B.
You were there at the beginning of this journey,
I wish you’d been able to see the end.

This page intentionally left blank

Contents

Figures xi

Tables xv

Listings xvii

Foreword xix

Preface xxi

Acknowledgments xxiii

About the Author xxv

1 Introduction to Design Patterns 1
1.1 Tribal Musings 5
1.2 Art or Science? 9

1.2.1 Viewing Patterns as Rote 9
1.2.2 Language-Dependent Views 10
1.2.3 From Myth to Science 12

2 Elemental Design Patterns 13
2.1 Background 14
2.2 The Where, the Why, the How 17

2.2.1 Decomposition of Decorator 18
2.2.2 Down the Rabbit Hole 21
2.2.3 Context 30
2.2.4 The Design Space 33

2.3 Core EDPs 42
2.4 Conclusion 44

3 Pattern Instance Notation 45
3.1 Basics 45
3.2 The PINbox 49

3.2.1 Collapsed PINbox 49

vii

viii Contents

3.2.2 Standard PINbox 51
3.2.3 Expanded PINbox 55
3.2.4 Stacked PINboxes and Multiplicity 56
3.2.5 Peeling and Coalescing 62

3.3 Conclusion 65

4 Working with EDPs 67
4.1 Composition of Patterns 68

4.1.1 Isotopes 72
4.2 Recreating Decorator 77
4.3 Refactoring 91
4.4 The Big Picture 101
4.5 Why You May Want to Read the Appendix 105
4.6 Advanced Topics 108

4.6.1 Focused Documentation and Training 108
4.6.2 Metrics 109
4.6.3 Procedural Analysis 112

4.7 Conclusion 112

5 EDP Catalog 115
Create Object 117
Retrieve 126
Inheritance 130
Abstract Interface 140
Delegation 145
Redirection 151
Conglomeration 159
Recursion 165
Revert Method 172
Extend Method 181
Delegated Conglomeration 187
Redirected Recursion 193
Trusted Delegation 200
Trusted Redirection 209
Deputized Delegation 216
Deputized Redirection 222

6 Intermediate Pattern Compositions 229
Fulfill Method 231
Retrieve New 235

Contents ix

Retrieve Shared 240
Objectifier 244
Object Recursion 251

7 Gang of Four Pattern Compositions 259
7.1 Creational Patterns 260

7.1.1 Abstract Factory 260
7.1.2 Factory Method 263

7.2 Structural Patterns 265
7.2.1 Decorator 265
7.2.2 Proxy 269

7.3 Behavioral Patterns 273
7.3.1 Chain of Responsibility 273
7.3.2 Template Method 275

7.4 Conclusion 279

A ρ-Calculus 281
A.1 Reliance Operators 282
A.2 Transitivity and Isotopes 285
A.3 Similarity 286
A.4 EDP Formalisms 287
A.5 Composition and Reduction Rules 291
A.6 Pattern Instance Notation and Roles 293
A.7 EDP Definitions 295

A.7.1 Create Object 295
A.7.2 Retrieve 296
A.7.3 Inheritance 298
A.7.4 Abstract Interface 298
A.7.5 Delegation 299
A.7.6 Redirection 300
A.7.7 Conglomeration 300
A.7.8 Recursion 301
A.7.9 Revert Method 301
A.7.10 Extend Method 302
A.7.11 Delegated Conglomeration 303
A.7.12 Redirected Recursion 303
A.7.13 Trusted Delegation 304
A.7.14 Trusted Redirection 305
A.7.15 Deputized Delegation 306
A.7.16 Deputized Redirection 307

x Contents

A.8 Intermediate Pattern Definitions 308
A.8.1 Fulfill Method 308
A.8.2 Retrieve New 309
A.8.3 Retrieve Shared 310
A.8.4 Objectifier 311
A.8.5 Object Recursion 312

A.9 Gang of Four Pattern Definitions 313
A.9.1 Abstract Factory 313
A.9.2 Factory Method 314
A.9.3 Decorator 316
A.9.4 Proxy 317
A.9.5 Chain of Responsibility 318
A.9.6 Template Method 319

Bibliography 321

Index 325

Figures

2.1 Decorator’s usual example UML. 19
2.2 Objectifier as UML. 20
2.3 Object Recursion as UML. 20
2.4 A simple method call as UML. 23
2.5 The parts of a method call. 31
2.6 A simple design space. 34
2.7 A simple design space with EDPs. 35
2.8 Our first four EDPs. 39
2.9 The design space extended to three dimensions. 39
2.10 The design space with method similarity fixed to similar. 40
2.11 Recursion Example UML. 42
2.12 Deputized Redirection example UML. 42
3.1 UML collaboration diagram. 47
3.2 Strategy as pattern:role tags in UML. 48
3.3 Huge UML of a not-so-huge system. 48
3.4 Multiple instances of Strategy as pattern:role tags in UML. 49
3.5 Collapsed PINbox. 50
3.6 Collapsed PINbox as annotation. 50
3.7 Singleton and Abstract Factory in class diagram. 50
3.8 Template Method in sequence diagram. 51
3.9 Standard PINbox. 51
3.10 PIN used with UML class diagram. 52
3.11 PIN used with UML sequence diagram. 53
3.12 Standard PIN role connections. 54
3.13 Blank expanded PIN instance. 55
3.14 Expanded PIN instance. 56
3.15 Expanded PIN instance using UML. 57
3.16 A need for multiple related PINboxes. 59

xi

xii Figures

3.17 Stacked PINbox. 60
3.18 Multiple Strategy instances as PINboxes. 61
3.19 Showing the interaction between multiple Strategy PINboxes. 62
3.20 Abstract Factory as part of a larger UML diagram. 63
3.21 Abstract Factory subsumed within the expanded PINbox. 64
3.22 Coalesced PINbox. 65
4.1 Abstract Interface and Inheritance EDPs as UML. 68
4.2 Internal definition of Fulfill Method as UML. 69
4.3 Fulfill Method as simple connected PINboxes. 69
4.4 Fulfill Method as expanded PINbox. 69
4.5 Fulfill Method as standard PINbox. 70
4.6 Flipping our EDPs in Fulfill Method—oops. 71
4.7 Flipped EDPs as PINboxes. 72
4.8 Alternative classes that can fulfill an Abstract Interface EDP. 75
4.9 Alternative structures that can fulfill an Inheritance EDP. 76
4.10 Decorator’s usual example UML. 78
4.11 Fulfill Method definition as annotated UML. 79
4.12 Objectifier UML annotated with PIN. 80
4.13 Objectifier and Trusted Redirection. 81
4.14 Object Recursion annotated with PIN. 82
4.15 Object Recursion as just PIN. 83
4.16 Object Recursion and Extend Method. 84
4.17 Decorator annotated with PIN. 85
4.18 Decorator as PIN. 86
4.19 Decorator instance as a PINbox. 86
4.20 Expanding Decorator: one level. 87
4.21 Expanding Decorator: two levels. 88
4.22 Expanding Decorator: three levels. 89
4.23 Expanding Decorator: four levels. 90
4.24 Delegation before Rename Method refactoring. 93
4.25 Delegation after Rename Method refactoring—Redirection. 94
4.26 Delegation beforeMove Method refactoring. 95
4.27 The design space with method similarity fixed to dissimilar. 96
4.28 Delegation afterMove Method refactoring: boring case. 97
4.29 Delegation afterMove Method refactoring: into same type. 97
4.30 Delegation afterMove Method refactoring: Delegated Conglomeration. . 97
4.31 Delegation afterMove Method refactoring: Conglomeration. 98
4.32 Delegation afterMove Method refactoring: Trusted Delegation. 98

Figures xiii

4.33 Delegation afterMove Method refactoring: Revert Method. 99
4.34 Delegation afterMove Method refactoring: Deputized Delegation. 99
4.35 Summarizing refactoring effects so far. 100
4.36 Implicit used-by relationships among the EDPs and selected other

patterns. 102
4.37 The full method-call EDP design space: dissimilar method. 103
4.38 The full method-call EDP design space: similar method. 104
4.39 Method-call EDP refactoring relations. 106
5.1 Polymorphic approach . 173
5.2 Subclassing approach . 175
5.3 UI class cluster showing an instance of Trusted Delegation. 203
5.4 UI class cluster showing an instance of Trusted Redirection. 211
5.5 UI class cluster showing an instance of Deputized Delegation. 218
5.6 UI class cluster showing an instance of Deputized Redirection. 225
7.1 Abstract Factory subsumed within the expanded PINbox. 261
7.2 Reducing the diagram to just one instance of Abstract Factory. 262
7.3 Simplifying Figure 7.2. 264
7.4 Abstract Factory as PIN only. 265
7.5 Factory Method subsumed within the expanded PINbox. 266
7.6 Factory Method as PIN only. 267
7.7 Decorator subsumed with the expanded PINbox. 268
7.8 Decorator as PIN only. 269
7.9 Decorator expanded three levels deep and flattened. 270
7.10 Proxy subsumed with the expanded PINbox. 271
7.11 Proxy as PIN only. 272
7.12 Proxy PIN reorganized to better match Decorator. 272
7.13 Chain of Responsibility subsumed within the expanded PINbox. 274
7.14 Chain of Responsibility as PIN only. 275
7.15 Template Method subsumed within the expanded PINbox. 276
7.16 Template Method reduced to a single instance. 277
7.17 Template Method as PIN only. 278
7.18 Template Method PIN reorganized to better match Decorator. 279
7.19 Factory Method redefined using Template Method. 279
A.1 The full method call EDP design space: similar method 288
A.2 The full method call EDP design space: dissimilar method 289
A.3 Standard PINbox . 294
A.4 Expanded PIN instance . 294

This page intentionally left blank

Tables

2.1 Pattern pieces sorted into three categories of a pattern definition 22
2.2 All interactions between entities of object-oriented programming 28
2.3 Nonscoping interactions between entities of object-oriented

programming . 28
A.1 All interactions between entities of object-oriented programming 283
A.2 Nonscoping interactions between entities of object-oriented

programming . 284

xv

This page intentionally left blank

Listings

2.1 A simple method call as pseudocode. 24
2.2 Fields within classes, instances, and namespaces, as defined and used

in C++. 26
2.3 A Java class, and one possible equivalent object and type. 27
2.4 Typing as context. 29
2.5 A method call chain as pseudocode. 30
2.6 Simple method call for Figure 2.5. 31
2.7 Example of a Recursion method call in Java. 36
2.8 Example of a Delegation method call in C++. 36
2.9 Example of a Redirection method call in Objective-C. 37
2.10 Example of a Conglomeration method call in Java. 38
5.1 Uninitialized data. 118
5.2 Fixed default values. 120
5.3 Dynamic initialization . 121
5.4 Create Object Implementation. 125
5.5 Retrieve with an update. 126
5.6 Retrieve in a temporary variable. 127
5.7 Basic inheritance example in Objective-C. 131
5.8 Overriding an implementation. 132
5.9 Implementation assumption mismatch. 133
5.10 Obvious fix—but likely not feasible. 134
5.11 Fixing a bug while leaving old code in place. 134
5.12 Using Redirection to hide part of an interface. 137
5.13 Animals almost all move but in very different ways. 141
5.14 CEO delegates out responsibilities. 145
5.15 Tom paints the fence with help. 152
5.16 Prep work and cleanup are important. 153
5.17 Prep work and cleanup are decomposable. 160

xvii

xviii Listings

5.18 Instance swapping for protocol fallback in C++. 173
5.19 Auto fallback/forward using Revert Method. 176
5.20 Using Redirection in Python to add behavior. 182
5.21 Using Extend Method to add behavior. 182
5.22 Inviting friends naively in Java. 187
5.23 A slightly better approach for inviting friends. 188
5.24 Delegated Conglomeration in Java. 188
5.25 Traditional iteration and invocation in C. 193
5.26 Object-oriented iteration and invocation in C++. 193
5.27 Basic Redirected Recursion in C++. 194
5.28 Paratroopers implementing Redirected Recursion. 195
5.29 UI widgets demonstrating Trusted Delegation in C++. 201
5.30 Event handler in C++ showing Trusted Redirection. 210
5.31 UI widgets demonstrating Deputized Delegation in C++. 216
5.32 UI widgets demonstrating Deputized Redirection in C++. 222
6.1 Conditionals to select behavior. 246
6.2 Using Objectifier to select behavior. 247
A.1 Simple code example . 287

Foreword

There’s a wonderful scene in the movie 2001: A Space Odyssey that comes to mind.
Having spent several months alone on the derelict ship Discovery—and that

after having earlier lobotomized the errant Hal—Dr. David Bowman approaches a
monolith that draws him in to a new world. His final message back to earth ends
“It’s full of stars!”

Software-intensive systems are new worlds that we create with our own mental
labor. Whereas the world that Bowman saw was formed from atoms and thus full
of stars, our worlds are formed from bits…and are full of patterns.

Whether intentional or not, all well-structured, software-intensive systems are
full of patterns. Identifying the patterns in a system serves to raise the level of
abstraction in reasoning about that system; imposing patterns on a system serves
to bring even further order, elegance, and simplicity to that system. In my experi-
ence, patterns are one of the most important developments in software engineering
in the past two decades.

I’ve had the pleasure of working with Jason as he evolved his work on SPQR,
and let me assure you that he has contributed greatly to the advance of the under-
standing and practice of patterns. Elemental Design Patterns will help you think
about patterns in a new way, a way that will help you apply patterns to improve the
software worlds that you create and evolve. If you are new to patterns, this is a great
book to start your journey; if you are an old hand with patterns, then I expect you’ll
learn some new things. I certainly did.

Grady Booch
IBM Fellow

February, 2012

xix

This page intentionally left blank

Preface

This book is an introduction to a new class of design pattern, the Elemental Design
Patterns, which form a foundation for the study and application of software engi-
neering design patterns. Its foundations are in research into the very fabric of soft-
ware programming theory, but it is intended to be practical and pragmatic. It is
intended for both the beginning programmer and the seasoned developer. It should
help students engage with the software industry and give researchers new points to
ponder.

In short, this book is meant to be used.
By the end of it, you should have a new set of tools in your toolbelt, a richer

understanding of some of the basic concepts of programming that we all use every
day, and knowledge of how they relate and interact with one another to do amazing
things. The Elemental Design Patterns, or EDPs, are a collection of fundamental
programming ideas that we use reflexively and probably don’t think twice about
when doing so. This body of work gives them explicit descriptions, regularized
names to use in discussions, and a framework for using them in concert and for com-
paring them on their own merits. If you’re a new student, you’ll learn that instead
of facing the ever-growing design patterns literature as a collection of daunting all-
or-nothing blocks, you have a chance to take them on piece by piece and gradually
understand the literature in a methodical way. If you’re an old hand at software
design and patterns, you’ll find new ways to look at old approaches and see new
opportunities for our discipline.

This book assumes you have a passing familiarity with design patterns as a field
but have not used or studied them in detail. Knowing that they exist and having a
brief colloquial knowledge of what they are is enough to start the discussion. The
book does not assume you have a background in programming theory, language
design, or even a strong one in object-oriented programming, just a desire to learn
how to think critically about software design. These subjects will be touched on
but only as a starting point for those interested in diving deeper into them through

xxi

xxii Preface

the provided references. The Unified Modeling Language is used to describe small
examples, and I suggest either [20] or [33] as references if you do not already know
UML. You should have a basic foundation in programming, either procedural or
object oriented. The latter will help, but it’s not absolutely required—this text pro-
vides much of the necessary information to explain object-oriented programming in
easily digestible chunks. Developers experienced with object-oriented systems may
still be surprised at finding new perspectives on concepts that they thought they
had mastered long ago and a greater appreciation for object-oriented programming
as a whole.

Many programmers see the “design patterns community” as an esoteric body
of experts and one that they themselves are not a part of. By giving you a new
perspective on what can constitute a design pattern, this book should convince you
that every programmer is a member of the design patterns community, whether they
know it or not. Every single programmer uses design patterns every time they write
a line of code, even if don’t think of it that way. Nor are they likely to realize the
options they have at their disposal. Design patterns are the shared conceptual space
in which we write the electronic dreams that shape our world. It’s time we had a
map of the landscape in which we work and play.

Following the example of the seminal Gang of Four text [21], this book is
divided into two sections. First is a discussion of why this book was written and
who it is written for and an explanation of what EDPs are, where they came from,
and why they’re important. This section explains the rationale, the why, behind the
EDPs. Next is an introduction to the Pattern Instance Notation, a diagramming
system for working with patterns at many levels of granularity and in a multitude
of environments. Wrapping up this first section is a discussion of how EDPs can
be used to build up to, and in conjunction with, the greater design patterns litera-
ture. The second section of the book is a collection of design patterns, starting with
the EDPs and working through examples of how they combine to form Interme-
diate patterns, and finally, a selection of the Gang of Four patterns recast as EDP
compositions. The EDPs presented here are only a portion of the EDP Catalog,
a collection of the first round of defined and described fundamental patterns. The
software engineering community will continue to define and refine additional EDPs
as the underlying concepts take root. I hope you decide to help in the endeavor.

Welcome, it’s good to have you join us.

Acknowledgments

I have many people to thank for this book coming to life. In not quite chronological
order. . .

From the University of North Carolina at Chapel Hill, David Stotts, my Ph.D.
advisor who oversaw the birth of SPQR and the EDPs over many years; also
my committee, who, even though they were convinced it was probably infeasible,
thought it would be an interesting journey and let me go for the brass ring anyway:
Jan Prins, David Plaisted, Al Segars, and Sid Chatterjee. You each added invaluable
help at critical times.

From my years at IBM Watson Research in New York, Sid Chatterjee again,
who convinced me to come play in the Big Blue Playpen; Clay Williams, who gave
me free rein to pursue these crazy ideas further and with whom I still miss having
coffee; Peter Santhanam, who championed those ideas and from whom I learned
a greater appreciation for legacy systems; Brent Hailpern, from whom I learned
many valuable lessons in management, the dark humor of corporate life and simple
humanity; Edith Schonberg, who put up with my shenanigans more than any man-
ager should have to; and many others who listened to me maniacally talk about this
body of work at every turn. My friends, I miss you all.

Also from IBM but deserving a special mention, Grady Booch, who took me
under his wing for a wild ride that I wouldn’t have traded for anything. Grady, your
guidance, mentoring, and advocacy have been immeasurable, and I look forward
to future collaborations and continued friendship.

FromThe Software Revolution, Inc., in Kirkland,Washington, where I am now
Senior Computer Scientist, I have to thank everyone for being understanding and
supportive of my need to commit this information to paper. It has been a true plea-
sure working with all of you, and I am eager to see where we can take our company.

To my many reviewers, your advice and comments were highly insightful
and helpful. You made this book a much better product, and you have my
deepest thanks: Lee Ackerman, Lars Bishop, Robert Bogetti, Robert Couch,

xxiii

xxiv Acknowledgments

Bernard Farrell, Mary Lou Hines Fritts, Gail Murphy, Jeffrey Overbey,
Ethan Roberts, Carlota Sage, Davie Sweis, Peri Tarr, and RebeccaWirfs-Brock. Eliz-
abeth Ryan, Raina Chrobak, Chris Zahn, and Chris Guzikowski at Addison-Wesley
were the model of compassionate support during the trials of this process—my
thanks to you and the rest of the crew there, with a special thanks to Carol Lallier,
whose expert polish on this book was invaluable.

On a personal note, I thank my friends and family, who have been incredibly
patient while I have put in seemingly endless hours on this, even though they were
hoping to see more of me now that I’ve moved back to the Seattle area.

Finally, my wife Leah. You have supported me in so many large and small ways
throughout our time together. You have given your time, your patience, and your
love, and you have my immense love and gratitude. Thank you. Words are simply
inadequate.

Thank you all. Every one of you contributed in some way to the refinement of
these ideas and this text. This may have been my baby, but it had many midwives.

— Jason McC. Smith
Seattle

September 4, 2011

About the Author

Jason McC. Smith received his Ph.D. in computer science in 2005 from the
University of North Carolina at Chapel Hill, where the Elemental Design Patterns
were born as part of the System for Pattern Query and Recognition project. Dr.
Smith has been awarded two U.S. patents for research performed at UNC-CH, one
for technologies related to SPQR and one for the FaceTop distributed document
collaboration system.

Prior to that, Dr. Smith spent many years in industry as a physics simulation
engineer and consultant building off of dual B.Sc. degrees in physics andmathemat-
ics from the University of Washington. Projects of note included sonar and oceanic
environment simulation, electronic engineering simulation, commercial and mili-
tary aircraft flight simulation, and real-time graphical training systems.

Four years at IBM Watson Research provided Dr. Smith with an opportunity
to apply the lessons of SPQR and the EDP catalog and compositional approach to
immense bodies of software, both legacy and modern.

Dr. Smith is currently Senior Research Scientist at The Software Revolution,
Inc., in Kirkland, Washington, where he continues to refine the EDP catalog and
look for ways to enhance the company’s goal of automatedmodernization and trans-
formation of legacy systems.

xxv

This page intentionally left blank

1Introduction to Design
Patterns

Design patterns are one of themost successful advances in software engineering,
by any measure. The history of design patterns is a strange one though, and some-
where along the way, much of their original utility and elegance has been forgotten,
misplaced, or simply miscommunicated. This book can fill in some possible gaps for
those who have experience with design patterns and can provide students new to
the literature a better way of consuming it bite by bite.When it comes down to it, the
design patterns literature as it stands is a collection of rather large nuggets of infor-
mation of varying degrees of digestibility. This text is a foundation that provides a
practitioner familiar with design patterns a methodology for placing those nuggets
into a larger system of understanding and provides the student new to design pat-
terns an approach for learning them from basic principles and in smaller pieces that
make sense individually. The Elemental Design Patterns are truly elemental in that
they form a foundation for design patterns as a discipline.

The collective wisdom of the software engineering community is one of our
most valuable assets, and we still have much to learn from each other. This book
and the research onwhich it is based are an attempt to bring to light some of what we
have lost regarding design patterns. In the process, it helps fulfill the original intent

1

2 Chapter 1: Introduction to Design Patterns

of design patterns by establishing a better mechanism for shared discussions of pat-
terns, giving us a richer understanding of the software we produce and consume.
Our community has produced a breadth of design patterns, but what we lack is
depth. That is, we have a broad understanding of wide areas but only a weak ability
to stitch them together into a comprehensive whole. It reminds me of the histor-
ical transition from alchemy to modern chemistry—until the periodic table came
along, the collective wisdom of many intelligent researchers was precise but not
strongly correlated. Arguably, the biggest impact of Dmitri Mendeleev’s original
periodic table was not so much that it provided a way for chemists to identify pat-
terns between the building blocks of matter but that it provided a way to use those
patterns to predict properties of then-undiscovered elements. Gallium and germa-
nium were the first examples of this, with Mendeleev accurately describing their
chemical and physical properties well before their discovery. The periodic table
advanced chemistry from descriptive discipline to predictive science.

The emergence of design patterns within the software engineering community
began with the publication of the seminal Design Patterns: Elements of Reusable
Object-Oriented Software in 1995. The Gang of Four (or GoF), Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides, gathered the various collected
wisdoms that had been percolating in the research and academic communities fol-
lowing Gamma’s 1991 PhD dissertation. That work drew heavily from Christopher
Alexander’s earlier work in the 1960s. Alexander was a civil engineer and architect,
and his work focused on finding patterns of solutions to particular sets of forces
within particular contexts. His primary insight was that there are two types of design
that occur within architecture, what he named unselfconscious and selfconscious.

Unselfconscious design is most often seen in so-called primitive cultures: a
house design is copied faithfully, every time, and apprenticeships are used to ensure
fidelity and faithfulness to that particular design. This design changes rarely, and
adherence to a given form is considered the goal, primarily because the particular
design is the distillation of centuries or millennia of trial and error—it works, and
if it ain’t broke, don’t fix it. While the problem of providing people with housing is
universal, the various contexts in which that problem occurs, such as rain, desert,
ice, swamp, and forest, give rise to an amazing array of styles and designs, but within
a particular context, a single design may be considered “the only solution,” and it is
frequently incredibly effective given its specific environmental needs. The design,
however, is applied without much, if any, individual discretion or decision making.

Selfconscious design is a more modern invention; the designer is free to make
conscious decisions at almost every turn involving style, aesthetics, and materials.
This architectural freedom can be seen in the wide array of modern architecture

Chapter 1: Introduction to Design Patterns 3

within a given locale, city, or neighborhood. Even on your own street, you are likely
to see a plethora of styles and distinctive flourishes, each the result of many con-
scious decisions on the part of the architect. Themodern designer has a wide palette
of styles to choose from, and generally speaking, the only problem is balancing the
owner’s aesthetics and wallet. Sure, the houses meet the basic criteria of putting a
roof over the occupants’ heads, but that’s a pretty low bar to set when there are so
many other axes on which a design can be examined. When a designer is freed to
do anything, it becomes even harder to pick the effective solutions out of the nearly
infinite set of inappropriate or just plain bad ones. Building codes are one way we
try to limit the bad choices in housing design, but even given those as a starting
point, the task is daunting. Merely reading building codes and adhering to them is
not going to produce an effective work of architecture. Building codes are generic,
but good architecture takes into consideration the environment at every level of
detail, from global latitude and regional weather patterns to local soil grades and
site-specific terrain or foliage.

You can see the results of this selfconscious design in almost any town or city.
One house may be Georgian, one pseudo-Victorian, another a modern glass and
steel box, or perhaps a split-level, a ranch, or any other number of styles, kinds, and
types of construction, materials, and architectures. We have to ask ourselves, how-
ever, whether these designs work as optimal, or even just effective, solutions for that
particular environment, for that particular context. Austin, Texas, for example, may
not be the best place to build an unshaded glass-faced edifice because the sun is so
intense in the summer, creating an added expense from the large increase in cooling
costs. Upstate New York may not be an appropriate place for a flat roof because
the weight of many feet of snow in the dead of winter adds a significant load to the
room beams. The environmental context, the set of forces that create the situation
in which the general problem of designing appropriate housing must be solved, is
frequently ignored, and the solutions are generally only minimally satisfying or give
rise to new problems that must be addressed.

It should be apparent how this applies to software engineering: we are capable
of doing nearly anything that pops into our heads, even more so than the archi-
tects of physical buildings. This is the amazing strength of programming—and its
Achilles heel. We can do just about anything, and usually manage to do so, but
unfortunately, the subset of good things out of the set of anything is quite small,
and our projects are often late, over budget, and frequently fail in ways spectacular
and quiet. Rarely dowewalk away fromprojects with a feeling of accomplishment—
more often, we feel we dodged a bullet. Again. Why is this? Why, when we have
decades of collective experience, and quite possibly millions of tallied person-years

4 Chapter 1: Introduction to Design Patterns

in the field, are we still thrashing in the weeds every time we approach a problem?
Some designers and developers seem to be phenomenally able to sidestep the com-
plexity and find the kernel of effectiveness in a design. The rest of us seem to be
perpetually stuck between the unselfconsciousness of “because I was told to” and
the paralysis of selfconscious design.

Alexander’s work was an attempt to alleviate this problem for architects of
buildings, to bring to light the disparity between the effectiveness of the primitive
cultures at design and the nearly spastic try-anything approach of modern architec-
ture. Somewhere in between is a balance to be struck. We need to find the under-
lying principles and general solutions that exist in unselfconscious architecture and
describe them in a way that makes them applicable in a wide variety of contexts
selfconsciously and with deliberate intent. The wisdom of the various attempts at
solutions, hard-earned through trial and error, need to be distilled into a body of
concepts that can be learned by anyone, applied in numerous places, and used as a
guide for thinking about design.

This is what design patterns are—the distillation of expertise by an exuberant
and robust community. This is crowdsourcing at its best. The patterns community
that has grown over the decade-plus since the original GoF work is large and ener-
getic, and our output is voluminous. Grady Booch and Celso Gonzalez have been
collecting every pattern they can find in industry and academia at their website [11].
So far, they have over 2,000 of them. The quantity of output in this community is
huge, and although there are some discussions about the quality, the more pressing
problem is one of scale.

Even with a fully indexed, well-curated collection of quality design patterns,
there is simply toomuch information for a nonscholar to sift through accurately and
quickly. Worse, it is incredibly difficult for a student wishing to learn the principles
behind good design to do so solely from examples of good design. It is a bit like
trying to learn the mathematics of aeronautical flow from inspecting aircraft on a
runway. For experienced patterns practitioners who believe they have uncovered a
new design pattern, there’s no ready way to compare a new pattern against existing
patterns to see how it relates to the established literature, and there’s no way to
create tooling to support this need.

What the software development community needs is a more thorough under-
standing of what it has at its disposal, a methodology that explains how to more
precisely describe the existing design patterns and does so using components and
well-defined principles that are accessible to the student or new developer.What we
need is a guide to the underlying basic principles of our design patterns literature

1.1 Tribal Musings 5

so that we can better comprehend, teach, and learn our identified best practices.
This book is a foundation for that guide.

1.1 Tribal Musings
The efficiencies we gain from documenting and passing along known best practices
are important, but the reason we must do so has been largely ignored in our com-
munity. To put it bluntly, we are mortal, and our young field is aging. Already we
have lost a number of luminaries who established the groundwork for our industry,
and many more will be gone soon. It is just a fact of life, one that we are poorly
prepared to deal with as a discipline.

Worse still, software has a peculiar trait of living long past its expected lifetime.
COBOL is still a force to be reckoned with in business systems around the globe.
Fortran still performs much of the computation in the world’s scientific modeling
software. Currently shipping major high-performance computer systems have code
embedded deep in their firmware that was first created three decades or more ago,
in assembler or C. You can be almost certain that somewhere in the millions of lines
of implementation that came with your latest personal computer acquisition lies a
piece of source code that no person currently understands.

We know we should document our software; we know we should keep it up
to date; we know we should commit to pen or screen the whys, the hows, and the
reasons; but we also know it is a pain. It really is, so we don’t do it. What we have
instead is a body of knowledge that is locked within the heads of developers, that
is passed along in fits and spurts, when prompted and only where necessary, fre-
quently without any comprehensive framework of common understanding among
stakeholders.

Grady Booch has popularized the phrase “tribal knowledge” for such informa-
tion [10], and it fits all too well. It also has some rather unsettling corollaries.

Cultures that rely solely on oral tradition for the passing of knowledge are
limited in both bandwidth and accuracy, and that’s assuming they have a strong
tradition of passing along the information. Cultures with a weak discipline for verac-
ity and precision in information transfer leave themselves open to more rapid cor-
ruption. A strong oral tradition, however, can result in a very different outcome.

The development community has what is ultimately an oral tradition of infor-
mation transfer. Although we may write down bits and pieces of what we under-
stand, we frequently do not write down the entirety of our comprehension, and we
do not keep such documentation in sync with the evolution of our systems. This

6 Chapter 1: Introduction to Design Patterns

document rot is pervasive, and only by asking around for further information can
we hope to fill in the gaps to find out why a particular system is how it is.

This isn’t always seen as a bad thing, to be honest. Agile software development
methodologies prefer working code over documented code, and it’s hard to argue
with this viewpoint. Until it matters, of course. Agile systems have a funny way
of becoming legacy systems, of growing into mature codebases with larger teams
that must work in concert. Eventually, code that started as an agile effort, if it is
successful, will face many of the same challenges as traditionally developed systems.
Developers leave. Documentation rots. Knowledge is lost.

Software as it currently stands is not what anyone could accurately call self-
documenting, and extracting the salient reasons why a thing was done in a particu-
lar way, directly from the source code, has been considered nearly impossible for an
automated system. This is unfortunate, because we would like to have our cake and
eat it too. We want up-to-date documentation when and where we need it, but we
don’t want to be burdened with it otherwise. We’d like our code to be much more
self-documenting, or at least automatically documentable, but most of us don’t have
that luxury. So we punt and hope for the best. Meanwhile, our collective under-
standing of the system degrades. In the end, what we have is best described as a
very weak oral tradition.

The result is that the collected tribal knowledge degrades into “tribal mythol-
ogy.” “Why?” is not a question that can be answered any longer, except to say,
“Because we’ve always done it that way.” I have a sneaking suspicion that if you
have ever been the new hire on a development team, you’re nodding in horror right
now. You’ve had that discussion in real life, probably more times than you care to
recall.

Tribal mythology is action without comprehension. It is rote without any foun-
dation on which to state why. Other indications that tribal mythology is active in a
group include the following: “Because that’s how I was taught it.” “I’m not really
sure, but Joe says that’s how its done.” “Jane could have told you, but she retired
last year, so just copy what’s there.” “Oh no, don’t change that! It’ll break and we
won’t be able to fix it.” These comments exhibit a failure to comprehend the reasons
behind an action, or at least an unwillingness or inability to pass the comprehen-
sion along to the listener. Over time, this lack of understanding breeds a great deal
of uncertainty and fear of change. Unfortunately, it is at some level the status quo
on most projects, which is ironic given that our industry is driven by innovation,
change, and advancement of the state of the art.

Tribal wisdom, however, is the virtuous flip side of this tribal mythology. It is
prescribed action with understanding, how accompanied by why, and is adaptable

1.1 Tribal Musings 7

to new environments, new situations, and new problems. It transcends rote copy-
ing, and provides illumination through a comprehensive discussion of the reasons
behind the action. At some point in the past, for almost every action or decision in a
system, someone knew why it was done that way. Carrying those decisions forward,
even the small ones, can be critical. Small decisions accrete into large systems, and
small designs build into large designs. By ensuring that we have a strong tradition
of knowledge retention that facilitates understanding, we build a tradition of tribal
wisdom.

Tribal wisdom is what design patterns were intended to collect. Sadly, they are
frequently (mis)treated as tribal mythology, by applying the how without a clear
comprehension of the why.

If you haven’t yet had the pleasure of running into this situation in your career,
let me offer another example that may be illuminating. Recently my wife and I
bought our first house, and with it, our first yard. The region we live in is renowned
for its rain and consequently its moss. Now, I like moss. It’s green, it takes about
zero maintenance, and it makes a nice soft ground cover. It satisfies all the usual
requirements for a yard, with less work than grass requires, but we had an odd
situation. Part of the yard is heavily shaded and rarely, if ever, sees sun. This area
is basically solid moss, with no grass or any other vegetation. Even shade-tolerant
grasses can’t get enough light to thrive.

Twenty feet on either side of the heavily shaded portion, however, sunlight is
available on most days when the sun is actually out. Moss grows in patches through
this section, but in my initial assessment, I thought it was fine. The moss and grass
were coexisting nicely, and the moss wasn’t choking out the grass, merely filling in
the places where the grass wasn’t quite so thick. In the sunniest areas, there was
almost no moss but lots of grass. In the shadiest areas, there was solid moss but no
grass. In the transitional regions, the two coexisted. What could be better?

Unfortunately, long-time residents who saw this situation were horrified. “You
have to get rid of all the moss!” When I asked why, I was met with answers such
as “Because it’s not grass.” “Because it’s what you do.” “Because it’s bad for the
lawn.” No one could tell me, to my satisfaction, why I should get rid of the moss.
It seemed to me that if I removed all of the moss, in all areas, regardless of the
local micro-environment, I would have a bare spot where grass wouldn’t grow in
the shade. This was less than optimal.

To make matters worse, as is the case in many software projects, I had inherited
a situation in which I had no idea what the previous residents had done for mainte-
nance in the yard or why. There was no documentation to indicate what I should do
for my lawn or why the yard had been left in this configuration. So I ran a couple of

8 Chapter 1: Introduction to Design Patterns

experiments. In the shadiest areas, I pulled up a small section of moss and seeded
it with grass. In the rest of the yard, I let the moss go to see what would happen.

The grass seed in the shadiest area never thrived. Some sprouted, but it could
never get established well. Applying the tribal mythology would have resulted in
bare dirt in a good section of my yard, and frankly, I prefer the moss to that. It is
green and lush, and it thrives in that area without maintenance. For that specific
area, moss is a good ground cover solution.

In the rest of the yard with little or no shade, it turns out that moss and grass do
play well together, more or less. The grass grows nicely, and themoss can’t overcome
it directly. Unfortunately, the moss has a side effect. In the sunniest areas, the moss
acts as a protective layer for weeds to sprout underneath, safe from birds and mice
who would eat the seeds or shoots, and properly moist. The moss won’t choke out
the grass, but the weeds definitely will. By letting the moss exist in the sunny areas,
I was giving weeds a nursery to get established, and when they penetrated the moss,
they thrived in the sunlight and spread rapidly. The moss also provided a protective
moist layer for the roots of weeds to travel along, offering them an unhindered
growth channel.

In the shadiest areas, this wasn’t a problem, because there simply isn’t enough
sun for grass or weeds to grow well, but in the sunny areas, it was horrible. Within
a couple of months, I was fighting a literal turf war with the weeds. The moss was
never a problem by itself, but it set the scene for a much larger one.

And now I know the why behind removing moss from a lawn. It’s not so much
the moss that is the issue, it is that the moss creates a secondary microclimate that
sets up a serious situation. Essentially, themoss creates a new set of forces at play that
form a new context. Within that new context, that new environment, new problems
arise—like weeds. Now the advice to remove themoss makes sense, at least for areas
where weeds are an issue, such as the sunny areas of my yard.

Because I know the why, I can now alter my application of this knowledge
according to the environmental forces. In the sunny areas, I must remove and pre-
vent the moss so that weeds are not a later problem. In the shady areas, I choose
not to because doing so would create another problem for me, leaving me with bare
dirt where I’d struggle to get grass to grow well.

As it is, because I know the reasons behind the advice, I can custom fit the solu-
tion I was given—“Remove the moss”—based on the context—sunny vs. shady—
and not only solve my initial problem but prevent new ones from being created.
Whatwas initially tribalmythology is now tribalwisdomthat canbe shared, adjusted,
and appliedwhen andwhere appropriate. In essence, it is the beginning of a pattern.

1.2 Art or Science? 9

1.2 Art or Science?
There is no doubt that patterns are a thriving meme, and one with great utility.
Entire academic conferences are now dedicated to patterns, Ackerman and
Gonzalez’s patterns-based engineering is becoming a defined discipline in its own
right [2], and industry consultants are now expected to have them under their belt
and be able to whip out Unified Modeling Language (UML) diagrams of them on
the spot. Tools exist to produce, display, generate, and extract patterns. Patterns,
as a collective whole, are an assumed component of the software engineering land-
scape. We’re just not quite sure how they fit into that landscape or how they fit
with each other. Two issues prevent a more comprehensive approach to patterns,
and unfortunately they are ubiquitous in the industry. The first is treating patterns
as frozen elements to be blindly copied, the second is confusing language-specific
pattern implementations with variants of the patterns themselves.

1.2.1 Viewing Patterns as Rote
Ask a dozen developers to define design patterns, and you’ll likely get a dozen
answers. Among the more traditional “a solution to a recurring problem within
a particular context” answers, you’re also likely to hear phrases such as “a recipe”
or “an example structure” or “some sample code,” betraying a rather narrow view
of what patterns provide. Patterns are intended to be mutated, to be warped and
molded, to meet the needs of the particular forces at play in the context of the
problem, but all too often, a developer simply copies and pastes the sample code
from a patterns text or site and declares the result a successful application of the
pattern. This is usually a recipe for failure instead of a recipe for producing a good
design.

Pure rote copying of the structure of the pattern “because this authority says so”
is a reversion to Alexander’s concept of unselfconscious design. We undermine the
entire purpose of design patterns when we do that. We need to be able to describe
the whys behind a pattern as well as the hows. Without the understanding of the
reasons that led to the description of that pattern, rote application often results in
misapplication. At best, the result is a broken pattern that simply does not match
the intended outcome. At worst, it injects an iatrogenic pattern into the system—
one that is intended and thought to be of benefit but instead produces a malignant
result that may take years to uncover. It doesn’t just fail to provide the expected
enhancement, it actively creates a new problem that may be worse than the original
one. This is patterns as tribal mythology—action without understanding.

10 Chapter 1: Introduction to Design Patterns

The traditional design pattern form, as defined inDesign Patterns [21], explains
the whys behind a pattern—motivations, applicability, and consequences—but it is
up to the reader to tease out the underlying concepts that form a pattern. To some
degree, these subconcepts are described in the Participants (what are the pieces)
and Collaborations (how do they relate) sections for each patterns, but again, these
are frequently treated by developers as checklists of pieces of the solution for rote
implementation instead of as a description of the underlying concepts and abstrac-
tions that comprise a solution.

1.2.2 Language-Dependent Views
Ask a developer how important patterns are to his or her work, and frequently the
answer will be based on the implementation language the developer is using. This
isn’t surprising. Different languages offer different strengths centered around the
concepts they support and how they express them. How those concepts happen
to be expressed is more often the start of flame wars between language fans, but
ignoring the underlying concepts leads tomuch argument over nothing of particular
consequence in most cases. Whether blocks are delineated by curly braces, as in the
C family, or by whitespace, as with Python, isn’t nearly as important as having the
concept of blocks in the first place.

What this means is simply that some patterns are easier to implement in some
languages than in others. In fact, some languages can make the concepts behind cer-
tain patterns so simple to implement that they’re known as language features. The
Visitor pattern is a good example.1 Visitor’s Implementation section [21, pg. 338]
says, “Visitor achieves [its goal] by using a technique called double-dispatch. It’s
a well-known technique. In fact, some programming languages support it directly
(CLOS, for example).” What does this mean? It means that mentioning the Visi-
tor design pattern to CLOS (Common LISP Object System) developers will leave
them scratching their heads. “A pattern? For a language feature? Why?” In CLOS,
Visitor is essentially built in. You don’t need a pattern to tell you how to best express
the concept—it’s already there in the language as a basic feature. In most other lan-
guages, however, Visitor provides a clean way of expressing the same programming
concept of double dispatch.

This illustrates an important point. If you mention double dispatch instead of
theVisitor pattern to the same CLOS developers, they would know what you mean,
how to use double dispatch, andwhen not to use it. Terminology, particularly shared
common terminology, matters a great deal.

1. You don’t need to knowwhat theVisitor pattern is right now. I selected it only because the discussion
of Visitor explicitly addresses the point I’m making.

1.2 Art or Science? 11

This is true for all languages and all patterns: some languages make certain
patterns easier or trivial to implement and other patterns more difficult to realize.
No language can really be considered superior to another in this case, however.
One common myth is that design patterns make up for flaws in programming lan-
guages, but that isn’t the case. Design patterns describe useful concepts, regardless
of the language used to implement them. Whether a specific concept is baked into
the feature set of a language or must be implemented from scratch is irrelevant.
The concept is still being expressed in the implementation, and that is the criti-
cal observation that lets us talk about software design independently of software
implementation. Design is concepts; how those concepts are made concrete in a
given language is implementation.

When you get down to it, there’s no reason you couldn’t implement every pat-
tern in the GoF text in plain C—but it would be extremely tedious. You’d have
to build up best practices for binding data and functions into meaningful semantic
units, encapsulating that data, ensuring that data is ready to use at first accessibility,
and so on. This sounds like a lot of work, but these were concepts considered so
important that they launched a revolution in language features to make them easier
to work with. That revolution was object-oriented programming.

In object-oriented languages, those concepts are included as primary language
features called classes, visibility, and constructors. Again, we can refer to the GoF:
“If we assumed procedural languages, we might have included design patterns
called ‘Inheritance,’ ‘Encapsulation,’ and ‘Polymorphism.’” The authors felt that
this statement was important enough that it appears in Section 1.1 in the Introduc-
tion. And yet again, this is a fundamental point that seems lost on most developers,
so let me restate it.

Patterns are language-independent concepts; they take form and become con-
crete solutions only when you implement them within a particular language with a
given set of language features and constructs.

This means that it is a bit strange to talk about “Java design patterns,” “C++
design patterns,” “WebSphere design patterns,” and so on, even though we all do
it. It’s a mildly lazy form of shorthand for what we really mean, or should mean:
design patterns as implemented in Java, C++, WebSphere, and so on, regardless of
language or API.2

Unfortunately, if you’re like many developers who have encountered one of
the multitude of books on design patterns, you may have been trained, or at least
have been erroneously led to believe, that there is some ephemeral yet fundamental

2. Some design patterns are unique to specific languages, and only those languages, but those patterns
are often called language idioms. In this text when we use the term design patterns, we are specifically
talking about concepts that are language independent.

12 Chapter 1: Introduction to Design Patterns

difference between patterns as expressed in Java and those expressed in another
language such as Smalltalk. There really isn’t. The concepts are the same; only the
manner in which they are expressed and the ease with which a programmer can
implement them in that specific language differ.

We need to focus on these when investigating design patterns, and these
abstractions must be the crux of understanding patterns. Unless we make the effort
to look at patterns as language-independent concepts, we are merely learning rote
recipes again and losing much of what makes them so useful.

1.2.3 From Myth to Science
The issues described previously belie an underlying problem with design patterns
as they are often conveyed, used, and understood today. All too often, we still don’t
know why we do what we do, even when we use design patterns in our code.
By using design patterns so inflexibly, we’ve simply better documented a body of
unselfconscious snippets without the comprehension that comes from a methodical
analysis of the snippets.

We have an art. What we need is a science. After all, we throw around the
terms computer science and software engineering with abandon. Treating patterns
as sample code misses the point of design patterns. Design patterns enable us as
an industry to experiment with those concepts and share, discuss, and refine our
findings.

Patterns as rote recipes are tribal mythology.
Patterns as concepts are the foundations of a science.
Elemental Design Patterns are the building blocks of that science.

Index

A
Abadi, Martı́n, 281
Abstract Factory pattern
as coalesced PINbox, 65
as collapsed PINbox, 50
as expanded PINbox, 64
as stacked PINbox, 60
as UML, 59
description, 260–263
rho-calculus, 313

Abstract Interface pattern
applicability, 141–142
as part of Fulfill Method pattern, 68-72
collaborations, 142
consequences, 142–143
creating objects, 43–44
implementation, 143–144
intent, 140
isotopic forms, 75
motivation, 140–141
participants, 142
related patterns, 144
rho-calculus, 298
structure, 142

Abstraction density, EDPs, 110–112
Ackerman, Lee, 9
Alexander, Christopher, 2, 4, 86
Animal example
eating. See Objectifier pattern.
moving. See Abstract Interface pattern.

Anti-patterns, 91
Array sorting example. See Recursion pattern.
Asynchronous execution, 146

B
Beck, Kent, 32–33
Behavioral patterns, 273–279

Booch, Grady
pattern collections, 4
tribal knowledge, 5–8

Books and publications
Clean Code, 32
Design Patterns: Elements of..., 2
Refactoring, 92
Refactoring to Patterns, 92

C
C code examples, 118, 120, 121, 193, 246
C# code examples, 178
C++ code examples, 26, 29, 31, 36, 125,

128, 138, 143, 148, 153, 160, 166–168,
173, 176, 184, 190, 193–195, 201, 210,
213, 216, 220, 222, 227, 233,
238, 247

Calls. See Delegation pattern.
Cardelli, Luca, 281
Categories of pattern definition, 22
CEO example, 36. See also Delegation

pattern.
Chain of Responsibility pattern
description, 273–275
rho-calculus, 318

Chemical isotopes, 72–74
Cheshire cat technique, 119
Clarity of expression, EDPs, 109–110
Classes
decomposing patterns, 25–26
objectifying similar behaviors, 244. See also
Objectifier pattern.

Clean Code, 32
Coalescing PINboxes, 62–65
Cohesion
EDPs, 43–44
objects, 35

325

326 Index

Collapsed PINboxes, 49–51
Common Lisp Object System (CLOS), 10
Composing EDPs, 68–77
Composition, rho-calculus, 291–293
Conglomeration pattern. See also Delegated

Conglomeration pattern.
applicability, 161
as part of Factory Method pattern, 263–265
as part of Template pattern, 275–279
collaborations, 162
consequences, 162
design space, 35–38
implementation, 162
intent, 159
method call classification, 163–164
motivation, 159–161
participants, 161–162
related patterns, 162–163
rho-calculus, 300
structure, 161

Context, EDPs, 30–33
Context category, 22
Create Object pattern
applicability, 122
as part of Abstract Factory pattern, 261–263
as part of Factory Method pattern, 263–265
collaborations, 123
consequences, 124
implementation, 124–125
intent, 117
motivation, 117–122
participants, 123
related patterns, 125
rho-calculus, 295–296
structure, 123

Creational patterns, 260–265

D
Data protocol fallback example. See Revert

Method pattern.
Decomposing Message. See Conglomeration

pattern.
Decomposing patterns
categories of pattern definition, 22
classes, 25–26
context category, 22
example, Decorator pattern, 18–21
fields, 25–30

goal of, 22
methods, 25–30
minimum size, 21–30
object-oriented programming, entity
interactions, 28

objects, 25–30
problem category, 22
scoping, 22–24
solution category, 22
types, 25–30
unnamed namespaces, 24

Decorator pattern
as collaboration UML element, 47
as expanded PINbox, 57
as PINbox, 52
description, 265–269
rho-calculus, 316

Decorator pattern, examples
decomposing patterns, 18–21
recreating, 77–90

Defer Implementation pattern. See Abstract
Interface pattern.

Delegated Conglomeration pattern. See also
Conglomeration pattern; Delegation
pattern; Deputized Delegation pattern;
Trusted Delegation pattern.

applicability, 189
collaborations, 190
consequences, 190
implementation, 190–191
intent, 187
method call classification, 191–192
motivation, 187–189
participants, 189–190
related patterns, 191
rho-calculus, 303
structure, 189

Delegation pattern. See also Delegated
Conglomeration pattern; Deputized
Delegation pattern; Trusted Delegation
pattern.

applicability, 147
collaborations, 148
consequences, 148
design space, 35–38
implementation, 148
intent, 145
method call classification, 149–150

Index 327

motivation, 145–146
participants, 147
related patterns, 149
rho-calculus, 299
structure, 147

Delegation patterns
Delegated Conglomeration, 187–192
Delegation, 145–150
Deputized Delegation, 216–221
Trusted Delegation, 200–208

Deputized Delegation pattern. See also
Delegated Conglomeration pattern;
Delegation pattern; Trusted Delegation
pattern.

applicability, 218
collaborations, 219
consequences, 219–220
implementation, 220
intent, 216
method call classification, 220–221
motivation, 216–218
participants, 218–219
related patterns, 220
rho-calculus, 306
structure, 219

Deputized Redirection pattern. See also
Redirected Recursion pattern;
Redirection pattern; Trusted Redirection
pattern.

applicability, 224
as part of Proxy pattern, 269–273
collaborations, 226
consequences, 227
implementation, 227
intent, 222
method call classification, 227–228
motivation, 222–224
participants, 224–226
related patterns, 227
rho-calculus, 307
structure, 226

Design patterns. See also EDPs (Elemental
Design Patterns).

anti-patterns, 91
collections of, 4
definition, 21
diagramming. See PIN (Pattern Instance
Notation); PINboxes.

iatrogenic, 91
instance notation and roles, 293–295
malignant, 91
partial, 91
recognizing, 15–17
as rote, 9–10

Design patterns, history of
documentation, 5–8
founders, 2, 4
language-dependent views, 10–12
from myth to science, 12
pattern collections, 4
patterns as rote, 9–10
selfconscious design, 2–3
seminal works, 2
tribal knowledge, 5–8
types of design, 2–3
unselfconscious design, 2–3

Design Patterns: Elements of..., 2
Design space, EDPs, 33–42
Diagramming design patterns. See PIN

(Pattern Instance Notation); PINboxes.
Documentation
history of design patterns, 5–8
and training, 108–109

Dot operators, 283
Double-dispatch, 10
d-pointer technique, 119

E
EDPs (Elemental Design Patterns). See also

Design patterns.
abstraction density, 110–112
anti-patterns, 91
background, 14–17
breaking into smaller parts. See
Decomposing patterns.

clarity of expression, 109–110
cohesion, 43–44
combining with other patterns, 101–105
composing patterns, 68–77
concepts vs. constructs, 16
context, 30–33
definition, 18
design space, 33–42
documentation, 108–109
field usage, 42–44
formalisms, 287–291

328 Index

EDPs (Cont.)
iatrogenic patterns, 91
isotopes, 72–77
malignant patterns, 91
method call reliance, 29–33
method similarity, 32
metrics, 109–112
partial design patterns, 91
pattern specifications, 16–17
procedural analysis, 112
recognizing patterns, 15–17
recreating Decorator, example, 77–90
refactoring, 91–100
reliances, 29–33, 42–44
rho-calculus. See Rho-calculus, EDP
definitions.

SPQR (System for Pattern Query and
Recognition), 14–17

state changes, 42–44
training, 108–109
unique traits, 13–14
used-by relationships, 101–102

EDPs (Elemental Design Patterns), objects
Abstract Interface pattern, 43–44
cohesion, 35
creating, 43–44
decomposing patterns, 25–30
equivalence, 34–35
Inheritance pattern, 43
instantiating, 43–44

Encapsulation
similarity, 32
of data. See Create Object pattern.
of design, 101

Equivalence, objects, 34–35
Executive pattern. See Delegation pattern.
Expanded PINboxes, 55–56
Extend Method pattern
applicability, 183
as part of Decorator pattern, 83–86,
268–269

as part of Chain of Responsibility pattern,
273–275

collaborations, 184
consequences, 184
implementation, 184–185
intent, 181
method call classification, 185–186

motivation, 181–182
participants, 183
related patterns, 185
rho-calculus, 302
structure, 183

Extending Super pattern. See Extend Method
pattern.

F
Factory Method pattern
description, 263–265

Fencepost error, 132–134
Field usage, EDPs, 42–44
Fields, decomposing patterns, 25–30
Flyweight pattern
as PINbox, 53

Formalism of patterns, 105–108. See also
Rho-calculus.

Founders, history of design patterns, 2, 4. See
also specific names.

Fowler, Martin, 92
Fulfill Method pattern
applicability, 231
as part of Abstract Factory pattern,
261–263

as part of Factory Method pattern, 263–265
as part of Objectifier pattern, 77, 79–80,
248–249

as part of Proxy pattern, 269–273
as part of Template pattern, 275–279
collaborations, 232
consequences, 233
implementation, 233–234
intent, 231
motivation, 231
participants, 231
related patterns, 234
rho-calculus, 308
structure, 232

G
Gamma, Erich, 2
Gang of Four patterns
Abstract Factory, 260–263, 313
behavioral, 273–279
Chain of Responsibility, 273–275, 318
creational, 260–265
Decorator, 265–269, 316

Index 329

Factory Method, 263–265, 314–315
Proxy, 269–273, 317
rho-calculus, 313–319
structural, 265–273
Template Method, 275–279, 319

Gonzalez, Celso, 4, 9

H
Helm, Richard, 2
Helper Methods. See Conglomeration

pattern.
History of design patterns
documentation, 5–8
founders, 2, 4. See also specific names.
language-dependent views, 10–12
from myth to science, 12
pattern collections, 4
patterns as rote, 9–10
selfconscious design, 2–3
seminal works, 2
tribal knowledge, 5–8
types of design, 2–3
unselfconscious design, 2–3

I
Iatrogenic patterns, 9–10, 91
Inheritance, multiple, 136
Inheritance pattern
applicability, 135
as part of Fulfill Method pattern, 68–72
collaborations, 135
consequences, 135–138
creating objects, 43
implementation, 138–139
intent, 130
isotopic forms, 76
motivation, 130–134
participants, 135
related patterns, 138
rho-calculus, 298
structure, 135

Instances, creating, 235–239. See also Retrieve
New pattern.

Instantiating objects, 43–44
Instantiation pattern. See Create Object

pattern.
IsA pattern. See Inheritance pattern.
Isotopes, 72–77, 285–286

J
Java code examples, 27, 36, 38, 126, 127, 129,

133–134, 141, 144, 145, 152, 156, 162,
169, 184, 187, 188, 197, 206, 233, 243

Johnson, Ralph, 2

K
Kerievsky, Joshua, 92

L
Language idioms, 11
Language-dependent patterns, 10–12

M
Malignant patterns, 91
Martin, Robert, 32
Mathematics of patterns, 105–108. See also

Rho-calculus.
Memory management. See Object

management.
Messaging pattern. See Delegation pattern.
Method call reliance, 29–33
Method Invocation pattern. See Delegation

pattern.
Method Invocation patterns
Conglomeration, 159–164
Delegated Conglomeration, 187–192
Delegation, 145–150
Deputized Delegation, 216–221
Deputized Redirection, 222–228
Extend Method, 181–186
Recursion, 165–171
Redirected Recursion, 193–199
Redirection, 151–158
Revert Method, 172–180
Trusted Delegation, 200–208
Trusted Redirection, 209–215

Methods
decomposing patterns, 25–30
naming, 32–33
overloaded, 32
previously extracted, implementing,
231–234. See also Fulfill Method pattern.

similarity, 32
Metrics for EDPs, 109–112
Moss example, 7
Meyers, Scott, 124
Multiplicity connections, PINboxes, 56–62

330 Index

N
Namespaces, unnamed, 24
Naming conventions, 18

O
Object Elements patterns
Create Object, 117–125

Object management
C++ shared ptr, 240
C++ unmanaged, 235
garbage collection, 235, 238, 240, 243
Objective-C autorelease, 240

Object Recursion pattern. See also Recursion
pattern; Redirected Recursion pattern.

applicability, 252–253
as part of Decorator pattern, 83-86,
268-269

collaborations, 255–256
consequences, 256
implementation, 256–257
in Inheritance, 133
intent, 251
motivation, 251–252
participants, 253
related patterns, 257
rho-calculus, 312
structure, 253, 254–255

Objectifier pattern
applicability, 245–247
collaborations, 249
consequences, 249–250
implementation, 250
intent, 244
motivation, 244–245
participants, 249
related patterns, 250
rho-calculus, 311
structure, 248–249

Objective-C code examples, 37, 131, 132, 137,
156, 190

Object-oriented programming, entity
interactions, 28

Objects
Abstract Interface pattern, 43–44
cohesion, 35
Create Object pattern, 117–125
creating, 43–44
decomposing patterns, 25–30

equivalence, 34–35
hiding details. See Proxy pattern.
Inheritance pattern, 43
instantiating, 43–44
limiting access. See Proxy pattern.
Retrieve pattern, 126–129
shared, referencing without owning,
240–243. See also Retrieve Shared
pattern.

Off-by-one error, 132–134
Opaque pointer technique, 119
Overriding a method
in Inheritance, 133
requiring. See Abstract Interface pattern.
without replacing. See Extend Method
pattern.

P
Painter example. See Redirection pattern,

Conglomeration pattern.
Paratroopers example. See Redirected

Recursion pattern.
Partial patterns, 91
Pattern specifications, 16–17
Patterns. See Design patterns.
Peeling PINboxes, 62–65
PIN (Pattern Instance Notation), 45–49
PINboxes
coalescing, 62–65
collapsed, 49–51
definition, 49
expanded, 55–56
multiplicity, 56–62
peeling, 62–65
stacked, 56–62
standard, 51–55

Pointer-to-implementation (pimpl) technique,
119

Polymorphism. See Abstract Interface pattern;
Object Recursion pattern.

Polymorphism pattern. See Abstract Interface
pattern.

Problem category, 22
Procedural analysis, EDPs, 112
Proxy pattern
description, 269–273
rho-calculus, 317

Pure virtual method, 143–144

Index 331

Python code examples, 129, 138, 144, 162,
182, 197, 206, 233, 238

R
Recursion, definition, 165
Recursion, patterns
Object Recursion, 251–257
Recursion, 165–171
Redirected Recursion, 193–199

Recursion pattern. See also Object Recursion
pattern; Redirected Recursion pattern.

applicability, 168
collaborations, 169
consequences, 169
design space, 35–38
implementation, 169
intent, 165
method call classification, 170–171
motivation, 165–168
participants, 168–169
related patterns, 169–170
rho-calculus, 301
structure, 169

Redirected Recursion pattern. See also
Deputized Redirection pattern; Object
Recursion pattern; Recursion pattern;
Redirection pattern; Trusted Redirection
pattern.

applicability, 196
as part of Chain of Responsibility pattern,
273-275

collaborations, 197
consequences, 197
design space, 40
implementation, 197–198
intent, 193
method call classification, 198–199
motivation, 193–196
participants, 197
related patterns, 198
rho-calculus, 303
structure, 196

Redirection pattern. See also Deputized
Redirection pattern; Redirected Recursion
pattern; Trusted Redirection pattern.

applicability, 153–154
collaborations, 155
consequences, 155

design space, 35–38
implementation, 156
intent, 151
method call classification, 157–158
motivation, 151–153
participants, 154
related patterns, 157
rho-calculus, 300
structure, 154

Redirection patterns
Deputized Redirection, 222–228
Redirected Recursion, 193–199
Redirection, 151–158

Reduction rules, 285–286, 291–293
Refactoring EDPs, 91–100
Refactoring, 92
Refactoring to Patterns, 92
Refactorings
between EDPs, 106
Extract Method, 92-93
Move Method, 92, 95, 97-99

Reliance operators, 282–284
Reliances, 29–33, 42–44
Requests, distributed handling. See Object

Recursion pattern.
Retrieve New pattern
applicability, 236
collaborations, 237–238
consequences, 238
implementation, 238–239
intent, 235
motivation, 235–236
participants, 237
related patterns, 239
rho-calculus, 309
structure, 236–237

Retrieve pattern
applicability, 127
as part of Abstract Factory pattern,
261–263

as part of Factory Method pattern, 263–265
collaborations, 128
consequences, 128
implementation, 128–129
intent, 126
motivation, 126–127
participants, 128
related patterns, 129

332 Index

Retrieve pattern (Cont.)
rho-calculus, 296–297
structure, 127

Retrieve Shared pattern
applicability, 241
collaborations, 243
consequences, 243
implementation, 243
intent, 240
motivation, 240–241
participants, 242
related patterns, 243
rho-calculus, 310
structure, 241–242

Revert Method pattern
applicability, 177
collaborations, 178
consequences, 178
implementation, 178–179
intent, 172
method call classification, 179–180
motivation, 172–176
participants, 177–178
related patterns, 179
rho-calculus, 301
structure, 177

Rho-calculus
composition, 291–293
dot operators, 283
EDP formalisms, 287–291
isotopes, 285–286
overview, 281–282
pattern instance notation and roles,
293–295

reduction rules, 285–286, 291–293
reliance operators, 282–284
scoping, 283
similarity, 286–287
transitivity, 285–286

Rho-calculus, EDP definitions
Abstract Interface, 298
Conglomeration, 300
Create Object, 295–296
Delegated Conglomeration, 303
Delegation, 299
Deputized Delegation, 306
Deputized Redirection, 307

Extend Method, 302
Inheritance, 298
Recursion, 301
Redirected Recursion, 303
Redirection, 300
Retrieve, 296–297
Revert Method, 301
Trusted Delegation, 304
Trusted Redirection, 305

Rho-calculus, Gang of Four definitions
Abstract Factory, 313
Chain of Responsibility, 318
Decorator, 316
Factory Method, 314–315
Proxy, 317
Template Method, 319

Rho-calculus, intermediate definitions
Fulfill Method, 308
Object Recursion, 312
Objectifier, 311
Retrieve New, 309
Retrieve Shared, 310

S
Scoping, 22–24, 283
Selfconscious design, 2–3
Shop foreman. See Redirection pattern.
Sigma-calculus, 282-285
Similarity
objects, 32

Singleton pattern
as collapsed PINbox, 50

Social network invites example. See Delegated
Conglomeration pattern.

Solution category, 22
SPQR (System for Pattern Query and

Recognition), 14–17
Stacked PINboxes, 56–62
Standard PINboxes, 51–55
State changes, 42–44
Strategy pattern
as pattern:role tags in UML, 48
multiple instances as pattern:role tags in
UML, 49

multiple instances as PINboxes, 61, 62
Structural patterns, 265–273
Synchronous method calls, 146

Index 333

T
Template Method pattern
as part of Factory Method pattern, 279
description, 275–279
in sequence diagram, 51
rho-calculus, 319

Tom Sawyer. See Redirection pattern.
Training, 108–109
Transitivity, rho-calculus, 285–286
Tribal knowledge, 5–8
Tribal mythology, 6–9, 12
Trusted Delegation pattern
applicability, 204
collaborations, 205
consequences, 205
implementation, 205–206
intent, 200
method call classification, 207–208
motivation, 200–204
participants, 205
related patterns, 206–207
rho-calculus, 304
structure, 204

Trusted Redirection pattern. See also Deputized
Redirection pattern; Redirected Recursion
pattern; Redirection pattern.

applicability, 212
as part of Object Recursion pattern, 79,
81–83, 254–256

collaborations, 213
consequences, 213
implementation, 213

intent, 209
method call classification, 214–215
motivation, 209–211
participants, 212–213
related patterns, 213–214
rho-calculus, 305
structure, 212

Type Relation patterns
Abstract Interface, 140–144
Inheritance, 130–139

Type Reuse pattern. See Inheritance pattern.
Types, decomposing patterns, 25–30

U
UML (Unified Modeling Language), 46–49.

See also PIN (Pattern Instance Notation);
PINboxes.

Unnamed namespaces, 24
Unselfconscious design, 2–3
Used-by relationships, EDPs, 101–102

V
Virtual Method pattern. See Abstract Interface

pattern.
Visitor pattern, 10
Vlissides, John, 2

W
Woolf, Bobby, 20, 251

Z
Zimmer, Walter, 244

	Contents
	Figures
	Tables
	Listings
	Foreword
	Preface
	Acknowledgments
	About the Author
	1 Introduction to Design Patterns
	1.1 Tribal Musings
	1.2 Art or Science?
	1.2.1 Viewing Patterns as Rote
	1.2.2 Language-Dependent Views
	1.2.3 From Myth to Science

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

