

by Joe Conway and Aaron Hillegass
Copyright © 2010 Big Nerd Ranch, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recoring, or likewise. For information regarding
permissions, contact

Big Nerd Ranch, Inc.
1963 Hosea L. Williams Drive SE
Suite 209
Atlanta, GA 30317
(404) 478-9005
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

ISBN-13 978-0321706249
ISBN-10 0321706242

Library of Congress Control Number: 2010903421

Second printing, August 2010

The authors and publisher have taken care in writing and printing this book but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

App Store, Apple, Bonjour, Cocoa, Cocoa Touch, Finder, Instruments, Interface Builder, iPad, iPhone, iPod, iPod touch,
iTunes, iTunes Store, Keychain, Leopard, Mac, Mac OS, Multi-Touch, Objective-C, Quartz, Snow Leopard, and Xcode are
trademarks of Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

http://www.bignerdranch.com/
http://www.informit.com

Introduction .. xi
Prerequisites ... xi
Our Teaching Philosophy .. xi
How To Use This Book ... xii
How This Book Is Organized ... xiii
Style Choices ... xv
Typographical Conventions ... xv
Hardware, Software, and Deployment .. xvi

1. A Simple iPhone Application .. 1
Creating an Xcode Project ... 2
Using Interface Builder ... 4
Model-View-Controller .. 7
Declarations ... 9

Declaring instance variables ... 9
Declaring methods .. 10

Making Connections .. 11
Setting pointers .. 11
Setting targets and actions .. 12
Summary of connections .. 14

Implementing Methods .. 14
Build and Run on the Simulator .. 16
Event-driven Programming ... 16
Deploying an Application ... 17
Application Icons .. 18
Default Images ... 19

2. Objective-C .. 21
Objects .. 21
Using Instances .. 22
Writing the RandomPossessions Tool ... 25

NSArray and NSMutableArray .. 27
Subclassing an Objective-C Class .. 29

Instance variables .. 32
Accessors and properties .. 32
Instance methods .. 34
Initializers .. 35
self ... 36
super .. 37
Initializer chain .. 38
Class methods .. 39

Exceptions and the Console Window .. 42
Objective-C 2.0 Additions .. 43

3. Memory Management .. 45
Memory Management Concepts .. 45

Managing memory in C ... 45
Managing memory with objects ... 47

Reference Counting ... 47
Using retain counts ... 48
Avoiding memory leaks with autorelease .. 50
Managing memory in accessors and properties ... 51
Retain count rules ... 52

Managing Memory in RandomPossessions .. 53
4. Delegation and Core Location ... 59

Delegation ... 59
Beginning the Whereami Application ... 62

Using frameworks ... 62
Core Location .. 63
Receiving updates from CLLocationManager ... 65

Releasing Controller Instance Variables .. 66
Challenge: Heading ... 67
For the More Curious: Compiler and Linker Errors ... 67
For the More Curious: Protocols .. 69

5. MapKit and Text Input ... 71
Object Diagrams ... 71
MapKit Framework ... 72
Interface Properties ... 73
Being a MapView Delegate .. 76

Your own MKAnnotation ... 78
Tagging locations .. 81

Challenge: Annotation Extras .. 84
Challenge: Reverse Geocoding .. 84
Challenge: Changing the Map Type ... 85
For the More Curious: Renaming an Application .. 85

6. Subclassing UIView .. 87
Creating a Custom View .. 88

The drawRect: method ... 89
Instantiating a UIView ... 91

Drawing Text and Shadows .. 92
Using UIScrollView .. 94
Zooming .. 95
Hiding the Status Bar .. 96
Challenge: Colors ... 97
For the More Curious: Retain Cycles ... 98
For the More Curious: Redrawing Views .. 98

7. View Controllers ... 101
View Controllers and XIB Files ... 101
Using View Controllers .. 103

Creating the UITabBarController ... 104
Creating view controllers and tab bar items .. 106
Creating views for the view controllers ... 110

viewWillAppear: ... 115
The Lifecycle of a View Controller .. 116
Challenge: Map Tab .. 117
For the More Curious: Paging ... 117

8. The Accelerometer ... 119
Setting Up the Accelerometer .. 119
Getting Accelerometer Data .. 121
Orientation and Scale of Acceleration ... 121
Using Accelerometer Data .. 122
Smoothing Accelerometer Data .. 123
Detecting Shakes ... 123
Challenge: Changing Colors .. 126
For the More Curious: Filtering and Frequency ... 126

9. Notification and Rotation .. 129
Notification Center .. 129
UIDevice Notifications ... 130
Autorotation ... 131
For the More Curious: Forcing Landscape Mode ... 135
Challenge: Proximity Notifications ... 136
For the More Curious: Overriding Autorotation .. 136

10. UITableView and UITableViewController .. 139
Beginning the Homepwner Application ... 140
UITableViewController .. 141

Subclassing UITableViewController ... 142
UITableView's Data Source .. 146

UITableViewDataSource protocol .. 147
UITableViewCells ... 150

Reusing UITableViewCells ... 152
Challenge: Sections ... 154

11. Editing UITableView .. 155
Editing Mode ... 155
Deleting Rows .. 159
Moving Rows ... 160
Inserting Rows .. 161

12. UINavigationController ... 167
UINavigationController .. 168

UINavigationBar ... 171
An Additional UIViewController ... 174

The XIB file and File's Owner ... 176
Setting up ItemDetailViewController .. 176

Navigating with UINavigationController .. 178
Appearing and disappearing views ... 183

Challenge: Number Pad .. 183
13. Camera and UIPopoverController ... 185

ImageCache: a Singleton .. 186
NSDictionary .. 186
Singletons .. 188

Displaying Images and UIImageView ... 189
Taking pictures and UIImagePickerController ... 191
UIPopoverController .. 196
Creating and using keys ... 199

Challenge: Removing an Image ... 203

For the More Curious: Recording Video .. 203
14. Saving, Loading and Multitasking ... 207

Application Sandbox .. 207
Archiving ... 209

Archiving Objects ... 214
Supporting Multitasking ... 215
Unarchiving Objects .. 218

Application State Transitions ... 220
Writing to Disk with NSData .. 221
Challenge: Archiving Wherewasi ... 222
For the More Curious: Reading and Writing to Disk .. 222
For the More Curious: The Application Bundle .. 224

15. Low-Memory Warnings .. 229
Handling Low-Memory Warnings .. 229

View controller memory warnings .. 231
Simulating Low-Memory Warnings .. 232

16. Subclassing UITableViewCell .. 233
Creating HomepwnerItemCell .. 234

Create subviews .. 235
Layout subviews ... 236
Using the custom cell .. 237

Image Manipulation ... 239
Challenge: Accessory Views ... 243
Challenge: Make it Pretty ... 243

17. Multi-Touch, UIResponder, and Using Instruments .. 245
Touch Events ... 245
Creating the TouchTracker Application ... 246
Turning Touches Into Lines .. 251
The Responder Chain ... 252
Instruments .. 253

The ObjectAlloc Instrument .. 254
The Sampler Instrument ... 257

Challenge: Saving and Loading ... 259
Challenge: Circles ... 259
For the More Curious: UIControl ... 259

18. Core Animation Layer .. 261
Creating a CALayer ... 262
Layer Content ... 264
Implicitly Animatable Properties .. 267
For the More Curious: Programmatically Generating Content 269
For the More Curious: Layers and Views .. 270
Challenge: Dynamic Layer Content .. 273

19. Controlling Animation with CAAnimation .. 275
Animation Objects ... 275
Spinning the Time with CABasicAnimation ... 278

Timing functions ... 281
Animation completion .. 282

Bouncing the Time with a CAKeyframeAnimation .. 283

Challenge: More Animation .. 284
For the More Curious: Presentation and Model Layers ... 285

20. Media Playback and Background Execution .. 287
Creating the MediaPlayer Application ... 287
Playing System Sounds .. 290
Playing Audio Files ... 293
Playing Movie Files ... 295
Background Processes .. 298

Other forms of background execution ... 300
Low-level APIs ... 301
Challenge: Audio Recording ... 301

21. Web Services .. 303
Creating the TopSongs Application .. 303

Setting up the interface .. 304
Fetching Data From a URL .. 306

Working with NSURLConnection .. 307
Parsing XML .. 309

For the More Curious: The Request Body .. 313
Challenge: More Data .. 313
For the More Curious: Credentials ... 313

22. Address Book .. 315
The People Picker ... 315
Additions to Possession Class .. 319
Address Book Functions ... 320
For the More Curious: That Other Delegate Method .. 323

23. Localization .. 325
Internationalization using NSLocale .. 326
Localizing Resources ... 327
NSLocalizedString and Strings Tables .. 330
Challenge: Another Localization .. 333
For the More Curious: NSBundle's Role in Internationalization 333

24. Bonjour .. 335
Publishing a Service .. 335
Browsing for Services .. 337
TXT Record ... 340
Socket Connections ... 343

25. Settings .. 345
Settings Bundle ... 345
NSUserDefaults .. 348

Registering defaults ... 348
Using the defaults ... 349

Respecting changes in suspended applications .. 349
26. SQLite ... 351

Creating the Nayshunz Application ... 351
Creating the Database .. 355
Fetching Data ... 356
Making and Using the Tree .. 359
Challenge: Fetching More Data ... 362

Challenge: Custom Objects ... 362
27. Core Data ... 363

Creating the Inventory Application ... 365
Editing the model file .. 366
AppController ... 371
LabelSettingViewController .. 374
LocationListViewController .. 378
AssetListViewController ... 382
CountViewController ... 386

How It All Works ... 392
Trade-offs of Persistence Mechanisms ... 393
Challenge 1: Deleting .. 394
Challenge 2: Custom NSManagedObject Subclasses .. 394

28. Developing for the iPad .. 395
Universal Applications ... 395

Porting existing projects to the iPad .. 395
New iPad Stuff ... 399

Index .. 401

An aspiring iPhone developer faces three basic hurdles:

• You must learn the Objective-C language. Objective-C is a small and simple extension to the
C language. After the first four chapters of this book, you will have a working knowledge of
Objective-C.

• You must master the big ideas. These include things like memory management techniques,
delegation, archiving, and the proper use of view controllers. The big ideas take a few days to
understand. When you reach the halfway point of this book, you will understand these big ideas.

• You must master the frameworks. The eventual goal is to know how to use every method of
every class in every framework on the iPhone. This is a project for a lifetime: there are over
3000 methods and more than 200 classes available for the iPhone. To make things even worse,
Apple adds new classes and new methods with every release of the iPhone OS. In this book,
you will be introduced to each of the subsystems that make up the iPhone SDK, but we will
not study each one deeply. Instead, our goal is get you to the point where you can search and
understand Apple's reference documentation.

We have used this material many times at our iPhone Development Bootcamp at Big Nerd Ranch.
It is well-tested and has helped hundreds of people become iPhone application developers. We
sincerely hope that it proves useful to you.

This book assumes that you are already motivated to learn to write iPhone apps. We won't spend
any time convincing you that the iPhone is a compelling piece of technology.

We also assume that you know the C programming language and something about object-oriented
programming. If this is not true, you should probably start with an introductory book on C and
Objective-C. We recommend Kochan's Programming in Objective-C.

This book is based on our iPhone Development Bootcamp course. It will teach you the essential
concepts of iPhone programming. At the same time, you’ll type in a lot of code and build a bunch
of applications. By the end of the book, you’ll have knowledge and experience. However, all the
knowledge shouldn’t (and, in this book, won’t) come first. That’s sort of the traditional way we’ve
all come to know and hate. Instead, we take a learn-while-doing approach. Development concepts
and actual coding go together.

Here’s what we’ve learned over the years of teaching iPhone programming:

• We’ve learned what ideas people must have to get started programming, and we focus on that
subset.

• We’ve learned that people learn best when these concepts are introduced as they are needed.

• We’ve learned that programming knowledge and experience grow best when they grow
together.

• We’ve learned that “going through the motions” is much more important than it sounds. Many
times we’ll ask you to start typing in code before you understand it. We get that you may feel
like a trained monkey typing in a bunch of code that you don’t fully grasp. But the best way to
learn coding is to find and fix your typos. Far from being a drag, this basic debugging is where
you really learn the ins and outs of the code. That’s why we encourage you to type in the code
yourself. You could just download it, but copying and pasting is not programming. We want
better for you and your skills.

What does this mean for you, the reader? To learn this way takes some trust. And we appreciate
yours. It also takes patience. As we lead you through these chapters, we will try to keep you
comfortable and tell you what’s happening. However, there will be times when you’ll have to
take our word for it. (If you think this will bug you, keep reading — we’ve got some ideas that
might help.) Don’t get discouraged if you run across a concept that you don’t understand right
away. Remember that we’re intentionally not providing all the knowledge you will ever need all
at once. If a concept seems unclear, we will likely discuss it in more detail later when it becomes
necessary. And some things that aren’t clear at the beginning will suddenly make sense when you
implement them the first (or the twelfth) time.

People learn differently. It’s possible that you will love how we hand out concepts on an as-
needed basis. It’s also possible that you’ll find it frustrating. In case of the latter, here are some
options:

• Take a deep breath and wait it out. We’ll get there, and so will you.

• Check the index. We’ll let it slide if you look ahead and read through a more advanced
discussion that occurs later in the book.

• Check the online Apple documentation. This is an essential developer tool, and you’ll want
plenty of practice using it. Consult it early and often.

• If it’s Objective-C or object-oriented programming concepts that are giving you a hard time (or
if you think they will), try Kochan's Programming in Objective-C. It’s a great book that presents
these concepts in a more traditional way.

This book is based on the class we teach at Big Nerd Ranch. As such, it was designed to be
consumed in a certain manner.

Set yourself a reasonable goal, like “I will do one chapter every day.” When you sit down to attack
a chapter, find a quiet place where you won't be interrupted for at least an hour. Shut down your
email, your Twitter client, and your chat program. This is not a time for multi-tasking; you will
need to concentrate.

Do the actual programming. You can read through a chapter first, if you'd like. But the real
learning comes when you sit down and code as you go. You will not really understand the idea
until you have written a program that uses it and, perhaps more importantly, debugged that
program.

A couple of the exercises require supporting files. For example, the SQLite exercise is a lot
more fun if you have some data to browse. Thus, we have made a script that inserts data into
a SQLite file. You can download these resources and solutions to the exercises from

.

There are two types of learning. When you learn about the Civil War, you are simply adding
details to a scaffolding of ideas that you already understand. This is what we will call “Easy
Learning”. Yes, learning about the Civil War can take a long time, but you are seldom flummoxed
by it. Learning iPhone programming, on the other hand, is “Hard Learning,” and you may find
yourself quite baffled at times, especially in the first few days. In writing this book, we have tried
to create an experience that will ease you over the bumps in the learning curve. Here are two
things you can do to make the journey easier:

• Find someone who already knows iPhone programming and will answer your questions. In
particular, getting your application onto the device the first time is usually very frustrating if
you are doing it without the help of an experienced developer.

• Get enough sleep. Sleepy people don't remember what they have learned.

In this book, each chapter addresses one or more ideas of iPhone development followed by hands-
on practice. For more coding practice, we issue challenges towards the end of each chapter.
We encourage you to take on at least some of these. They are excellent for firming up the
concepts introduced in the chapter and making you a more confident iPhone programmer. Finally,
most chapters conclude with one or two “For the More Curious” sections that explain certain
consequences of the concepts that were introduced earlier.

Chapter 1 introduces you to iPhone programming as you build and deploy a tiny application.
You’ll get your feet wet with Xcode, Interface Builder, and the iPhone simulator along with all the
steps for creating projects and files. The chapter includes a discussion of Model-View-Controller
and how it relates to iPhone development.

Chapters 2 and 3 provide an overview of Objective-C and memory management. Although you
won’t create an iPhone application in these two chapters, you will build and debug a tool called
RandomPossessions to ground you in these concepts. (You will reuse this tool and its related
class in the Homepwner application introduced in Chapter 10.)

In Chapters 4 and 5, you will learn about the Core Location and MapKit frameworks and create a
mapping application called Whereami. You will also get plenty of experience with the important
design pattern of delegation and working with protocols, frameworks, and object diagrams.

Chapters 6 and 7 focus on the iPhone user interface with the Hypnosister and HypnoTime
applications. You will get lots of practice working with views and view controllers as well as
implementing scrolling, zooming, paging, and navigating between screens.

Chapter 8 covers the iPhone’s accelerometer.You will learn how to obtain, filter, and use the data
from the accelerometer to handle motion events, including shakes. You will use accelerometer
data to add a new feature to the HypnoTime application.

In Chapter 9, you will create a smaller application named HeavyRotation while learning about
 notifications and how to implement autorotation in an application.

Chapter 10 introduces the largest application in the book — Homepwner. (By the way,
“Homepwner” is not a typo; you can find the definition of “pwn” at .)
This application keeps a record of your possessions in case of fire or another catastrophe.
Homepwner will take nine chapters total to complete.

In Chapters 10, 11, and 16, you will build experience developing tables on the iPhone. You will
learn about table views, their view controllers, and their data sources. You will learn how to
display data in a table, how to allow the user to edit the table, and how to improve the interface.

Chapter 12 builds on the navigation experience gained in Chapter 7. You will learn how to use
, and you will give Homepwner a drill-down interface and a navigation

bar.

In Chapter 13, you’ll learn how to take pictures with the iPhone’s camera and how to display and
store images in Homepwner. You’ll use and . You'll
also learn about for the iPad.

Chapter 14 delves into ways to save and load data. In particular, you will archive data in the
Homepwner application using the protocol. The chapter also shows you how to work
with multitasking and transistions between application states, such as active, background, and
suspended.

Chapter 15 teaches you how to prepare for low-memory warnings and leads you through handling
low-memory warnings in Homepwner.

In Chapter 17, you’ll take a break from Homepwner and create a drawing application named
TouchTracker. You’ll learn how to add multi-touch capability and more about touch events.
You’ll also get experience with the first responder and responder chain concepts and more practice
with . In addition, you’ll learn about the Instruments application while debugging
performance and memory issues in TouchTracker.

Chapters 18 and 19 introduce layers and the Core Animation framework with a brief return to
the HypnoTime application to implement animations. You will learn about implicit and explicit
animations and animation objects, like and .

Chapter 20 will teach you how to play audio and video as you build an application called
MediaPlayer. You will learn about playing audio and video on the iPhone, where to keep these
resources, streaming limits, and the low-level audio API. You will also enable MediaPlayer to play
music while in the background state and learn guidelines and other uses for background execution.

Chapter 21 ventures into the wide world of web services. You will fetch and parse XML data from
the iTunes server in an application you create named TopSongs. You’ll use and

 along the way.

In Chapter 22, you’ll return to Homepwner to learn about the iPhone’s Address Book functions
and the People Picker as you update Homepwner to allow the user to assign people to inherit
possessions.

Chapter 23 introduces the concepts and techniques of internationalization and localization. You
will learn about , strings tables, and as you localize Homepwner.

Chapter 24 teaches you how to publish a service on the peer-to-peer network Bonjour. You will
start a new application named Nayberz that advertises itself on the network.

Chapter 25 explores how to get an application to work with the iPhone’s Settings application
to create application settings and preferences that the user can customize. You will use

 and give Nayberz a pane in Settings.

Chapter 26 introduces the SQLite library for storing and fetching data on the iPhone. You get a
chance to practice with a small data application named Nayshunz.

Chapter 27 gives you a good grounding in using Core Data to store and access data in an iPhone
application. In this chapter, you will build a complex and business-like application named
Inventory.

Chapter 28 introduces the iPad and some of its features, like and Core
Text. You will turn the Whereami application into a universal application, enabling it to run
natively on the iPad and the iPhone.

It is important to note something that is not covered in this book: OpenGL ES. We actually wrote
a chapter. And then we rewrote it. And rewrote it. And rewrote it. It got longer with every pass.
Thus, we've decided to take that chapter and expand it into a separate book.

This book contains a lot of code. We have attempted to make that code and the designs behind it
exemplary. We have done our best to follow the idioms of the community, but at times we have
wandered from what you might see in Apple's sample code or code you might find in other books.
You may not understand these points now, but it is best that we spell them out before you commit
to reading this book:

• There is an alternative syntax for calling accessor methods known as dot-notation. In this book,
we will explain dot-notation, but we will not use it. For us and most beginners, dot-notation
tends to obfuscate what is really happening.

• In our subclasses of , we always change the designated initializer to . It
is our opinion that the creator of the instance should not need to know the name of the NIB file
that the view controller uses, or even if it has a NIB file at all.

• We will always create view controllers programmatically. Some programmers will instantiate
view controllers inside XIB files. We've found this practice leads to projects that are difficult to
comprehend and debug.

• We will nearly always start a project with the simplest template project: the window-based
application. The boilerplate code in the other template projects doesn't follow the rules that
precede this one, so we think they make a poor basis upon which to build.

We believe that following these rules makes our code easier to understand and easier to maintain.
After you have worked through this book (where you will do it our way), you should try breaking
the rules to see if we're wrong.

To make this book easier to read, certain items appear in certain fonts. Class names, method
names, and function names appear in a bold, fixed-width font. Class names start with capital

letters, and method names start with lowercase letters. In this book, method and function names
will be formatted the same for simplicity's sake. For example, “In the method of the

 class, use the function to print the value to the console.”

Variables, constants, and types appear in a fixed-width font but are not bold. So you'll see, “The
variable will be of type . Initialize it to .”

Applications and menu choices appear in the Mac system font. For example, “Open XCode and
select New Project... from the File menu.”

All code blocks will be in a fixed-width font. Code that you need to type in is always bold. For
example, in the following code, you would type in everything but the first and last lines. (Those
lines are already in the code and appear here to let you know where to add the new stuff.)

To develop iPhone applications, you will need an Intel Mac running Mac OS X Leopard (or
above). You will also need to download the iPhone SDK (Software Development Kit). The
SDK includes Xcode (Apple's Integrated Development Environment), the iPhone simulator, and
other development tools. To download the iPhone SDK, you only need to register as an iPhone
Developer, which is free. As a “Registered iPhone Developer,” you will be able to access the
iPhone Dev Center (including the Development docs). Go to

 to register. Make sure you have the USB cable that connects the
device to the computer.

You can do a lot with just the simulator, but for more complete and realistic testing, you'll want
to install your applications on a real device — an iPhone, iPad, or iPod touch. (Nearly everything
in this book will apply to all three devices, but we will usually refer to the “iPhone.” The iPad
runs the same OS as the iPhone, and writing iPad applications uses the same techiniques with
a few additions discussed in the final chapter. The iPod touch is nearly the same as the iPhone
except for the telephone.) To install applications on your iPhone or to distribute them on the App
Store, you have to join the “iPhone Developer Program,” which costs $99/year. Go to

 to join.

Excited yet? Good. Let's get started.

Understanding memory management in the Cocoa Touch framework is one of the first major
roadblocks for newcomers. Unlike Objective-C on the Mac, Objective-C on the iPhone has no
garbage collector. Thus, it is your responsibility to clean up after yourself.

This book assumes you are coming from a C background, so the words "pointer," "allocate," and
"deallocate" shouldn't scare you. If your memory is a little fuzzy, here's a review. The iPhone has
a limited amount of random access memory. Random access memory (RAM) is much faster to
write to and read from than a hard drive, so when an application is executing, all of the memory
it consumes is taken from RAM. When an operating system like iPhone OS launches your
application, it reserves a heaping pile of the system's unused RAM for your application. Not-so-
coincidentally, the memory your application has to work with is called the heap. The heap is your
application's playground; it can do whatever it wants to it, and it won't affect the rest of the OS or
any other applications.

When your application creates an instance of a class, it goes to the giant heap of memory it
was given and takes a little scoop. Since you typically create objects during the course of
your application's execution, you start using more and more of the heap. Most objects are not
permanent, and when an object is no longer needed, the memory it was consuming should be
returned to the heap. This way, it can be reused for another object created later.

There are two major problems in managing memory:

premature deallocation You must never return memory to the heap until you are sure
that no part of the program is still using it.

memory leaks When a chunk of memory is no longer needed by any part of
a program, it must be freed so that the memory can be used
again.

In the C programming language, you have to explicitly ask the heap for a certain number of bytes.
This is called allocation. It is the first stage of the heap life cycle shown in Figure 3.1. To do this,
you use a function like . If you want 100 bytes from that heap, you do something like this:

You then have 100 bytes with which you can perform some task like writing a string to it and then
printing that string (which would require reading from those bytes). The location of the first of
those 100 bytes is stored in the pointer . You access the 100 bytes by using this pointer.

Available Memory (Heap)

pointer

pointer = malloc(100);

Available Memory (Heap)

pointer

strcpy(pointer, "abbbccc");

100
Bytes

100 Bytes
"abbbccc"

Available Memory (Heap)

pointer

free(pointer);

Available Memory (Heap)

pointer = 0

pointer = NULL;

???

1 2

3 4

When you don't want to use those bytes anymore, you have to give them back to the heap by using
the function. This is called deallocation.

By calling , those 100 bytes (starting at the address stored in) are returned to the heap.
If another function is executed, any of these 100 bytes are fair game to be returned. Those
bytes could be divvied up into smaller sections, or they could become part of a larger allocation.

Because you don't know what will happen with those bytes when they are returned to the heap, it
isn't safe to access them through the pointer anymore.

Even though at the base level an object is bytes allocated from the heap, you never explicitly call
 or with objects.

Every class knows how many bytes of memory it needs to allocate for an instance. When you
create an instance of a class by sending it the message, the correct number of bytes is
allocated from the heap. Like with , you are returned a pointer to this memory (Figure 3.2).
However, when using Objective-C, we think in terms of objects rather than raw memory. While
our pointers are still pointing to a spot in memory, we don't need to know the details of that
memory; we just know we have an object.

retainCount = 1
Dog

He a p
Owner

Owner creates instance of Dog...

... memory allocated from the heap for instance.

8
Bytes

canine
1 2

Bytes

canine = [[Dog alloc] init];

Of course, once you allocate memory from the heap, you need a way to return that memory back
to the heap. Every object implements the method . When an object receives this message,
it returns its memory back to the heap.

So, is replaced with the class method , and the function is replaced with the
instance method . However, you never explicitly send a message to an object; an
object is responsible for sending to itself. That begs the question: if an object is in charge
of destroying itself, how can it know if other objects are relying on its existence? This is where
reference counting comes into play.

In the Cocoa Touch framework, Apple has adopted manual reference counting to manage memory
and avoid premature deallocation and memory leaks.

To understand reference counting, imagine a puppy. When the puppy is born, it has an owner.
That owner later gets married, and the new spouse also becomes an owner of that dog. The dog
is alive because they feed it. Later on, the couple gives the dog away. The new owner of the dog
decides he doesn't like the dog and lets it know by kicking it out of the house. Having no owner,
the dog runs away and, after a series of unfortunate events, ends up in doggy heaven.

What is the moral of this story? As long as the dog had an owner to care for it, it was fine. When
it no longer had an owner, it ran away and ceased to exist. This is how reference counting works.
When an object is created, it has an owner. Throughout its existence, it can have different owners,
and it can have more than one owner at a time. When it has zero owners, it deallocates itself and
goes to instance heaven.

An object never knows who its owners are. It only knows its retain count (Figure 3.3).

retainCount = 3
Dog

Owner

PersonShelter

When an object is created — and therefore has one owner — its retain count is set to 1. When
an object gains an owner, its retain count is incremented. When an object loses an owner, its
retain count is decremented. When that retain count reaches 0, the object sends itself the message

, which returns all of the memory it occupied to the heap.

Imagine how you would write the code to implement this scheme yourself:

Simple, right? Now let's consider how retain counts work between objects. If object A creates
object B (through and), A must send B the message at some point in the
future. Releasing B doesn't necessarily deallocate it; it is left to B to decide if it should be
deallocated. (If B has another owner, it won't destroy itself.)

If some other object C wants to keep B around, C becomes an owner of B by sending it the
message . What reason does C have to keep B around? C wants to send B messages.

Let's imagine you have a grocery list. You created it, so you own it. Later, you give that grocery
list to your friend to do the shopping. You don't need to keep the grocery list anymore, so you
release it. Your friend is smart, so he retained the list as soon as he was given it. Therefore, the
grocery list will still exist whenever he needs it, and your friend is now the sole owner of the list.

Here is your code:

Here is your friend's code:

Retain counts can still go wrong in the two classic ways: leaks and premature deallocation. First,
you could give the grocery list to your friend who retains it, but you don't release it. Your friend
finishes the shopping and releases the list. You have forgotten where it is, but because you never
released it, it still exists. Nobody has this grocery list anymore, but it still exists because its retain
count is greater than 0. This is a leak.

Think of the grocery list as an . You have a pointer to this in the method where
you created it. If you leave the scope of the method without releasing the , you'll lose the
pointer along with the ability to release the later. Even if every other object releases the

, it will never be deallocated.

Consider the other way this process can go wrong — premature deallocation. You create a grocery
list and give it to a friend, who doesn't retain it. When you release it (thinking it was safe with
your friend), it is deallocated because you were its only owner. When your friend attempts to use
the list, he can't find it because it doesn't exist anymore.

When an object attempts to access another object that no longer exists, your application accesses
bad memory, starts to fail, and eventually (although sooner is better than later for debugging)
crashes.

If an object retains another object, that other object is guaranteed to exist. So correct use of retain
counts avoids premature deallocation. Now let's look more closely at memory leaks.

You already know that an object is responsible for returning its own bytes to the heap and that an
object will do that when it has no owners. What happens when you want to create an object to give
away, not to own? You own it by virtue of creating it, but you don't have any use for it.

Let's make this idea more concrete with an example from the RandomPossessions tool you
wrote last chapter. In the class, you implemented a convenience method called

 that returns an instance of with random parameters. The owner
of this instance is the class (because the object was created inside of a
class method), but is only creating it because another object wants it. The pointer to
the instance is lost when the scope of runs out, but the object still
has a retain count of 1.

Now, in your function, you could release the instance returned to you by this method. But,
you didn't allocate the random possession in the function. Therefore, releasing the memory
isn't 's responsibility. Since the message was sent to the class inside

's implementation, it is 's responsibility to release the
memory. But looking at the following block of code, where could you safely release it?

How can you avoid this memory leak? You need some way of saying "Don't release this object
yet, but I don't want to be an owner of it anymore." Fortunately, you can mark an object for
future release by sending it the message . When an object is sent , it
is not immediately released; instead, it is added to an instance of the . This

 keeps track of all the objects that have been autoreleased. Periodically, the
autorelease pool is drained; it sends the message to the objects in the pool and then
removes them.

An object marked for autorelease after its creation has two possible destinies: it can either
continue its death march to deallocation or another object can retain it. If another object retains it,
its retain count is now 2. (It is owned by the retaining object, and it has not yet been sent

by the autorelease pool.) Sometime in the future, that autorelease pool will release it, which will
set its retain count back to 1. The return value for is the instance that is sent the
message, so you can method chain .

Sometimes the idea of "the object will be released some time in the future" confuses developers.
When an iPhone application is running, there is a run loop that is continually cycling. This run
loop checks for events (like a touch or a timer firing) and then processes that event by calling the
methods you have written in your classes. Whenever an event occurs, it breaks from that loop and
starts executing your code. When your code is finished executing, the application returns to the
loop. At the end of the loop, all autoreleased objects are sent the message , as shown in
Figure 3.4. So, while you are executing a method, which may call other methods, you can safely
assume that an autoreleased object will not be released.

Application launches

Application terminates

A new autorelease pool is created

Draining the pool sends
release to all the objects in
the pool. The pool is
deallocated

In handling the event, objects are
added to the autorelease pool

Waiting for an event

Accessors are methods that get and set instance variables. Getter methods don't require any
additional memory management:

Setters, however, need to take care to properly retain new values and release old ones.

Notice that if hasn't been set, it is , and would have no effect.

It is important to retain the new value before releasing the old one. Why? What if and are
pointers to the same object? What if that object has a retain count of 1? If you release it before you
retain it, the retain count goes to 0, and the object is deallocated.

Here is the same thing in another style:

Once again, properties come to the rescue. If you use properties, all of the memory management
code for your accessors is written for you when you synthesize the property. To have the compiler
generate an accessor that properly releases and retains for you, you can use the attribute
when declaring your properties in a header file:

Then, in the implementation file, synthesize the method:

Let's make a few rules from these ideas:

• If you send the message to a class, the instance returned has a retain count of 1, and you
are responsible for releasing it.

• If you send the message (or) to an instance, the instance returned has a retain
count of 1, and you are responsible for releasing it (just as if you had allocated it).

• Assume that an object created through any other means (like a convenience method) has a retain
count of 1 and is marked for autorelease.

• If an object wants to keep another object around (and the keeper didn't allocate it), it must send
the wanted object the message .

• If an object no longer wants to keep another object around, it sends that object the message
.

There is one exception to the rules: in any method that starts with , the object returned should
be assumed to not be autoreleased.

Now that you have the theory and some rules, you can implement better memory management in
RandomPossessions. Open the file that you created in the last
chapter. There are four memory management problems to fix in this project.

The first is found in the function of where you created an instance
of named . You know two things about this instance: its owner is the
function and it has a retain count of one. It is then 's responsibility to send this instance the
message when it no longer needs it. The last time you reference in this function is
when you print out all of its entries, so you can release it after that:

The object pointed to by decrements its retain count when this line of code is executed.
In this case, that object is deallocated because was the only owner. If another object had
retained , it wouldn't have been deallocated.

There is one more detail to take care of. The instance of that pointed to is
now gone. However, is still storing the address that was the instance's location in memory.
It is much safer to set the value of to . Then any messages mistakenly sent to will
have no effect.

The ordering of those two statements is important. Ordering them this way says, "Send the object
release, and then clear my pointer to it." What would happen if you swapped the order of these
statements? It would be the same thing as saying, "Set my pointer to this object to and then
send the message to.... Oh, no! I don't know where that object went!" You would leak the
object: it wasn't released before you erased your pointer to it.

The second memory problem occurs when you create an instance of and fill it
with instances of returned from the convenience method:

The implementation for returns an instance of type that it created
by sending the message . This object is owned by this class method and therefore has a
retain count of 1.

When you add a instance to an , the array becomes an owner of that
object, so its retain count is increased to 2. After finishes executing, however,
it loses its pointer to the it created. The instance still has two owners, but
only one still has a pointer to it (). Memory leak!

This is a perfect opportunity to use . The method should
send to an instance it creates and relinquish its ownership of that instance. The
object will still exist temporarily and be retained when it is added to the . The
instance of will then be the sole owner of this new . In effect, you
have transferred ownership of the instance from to . When the array
deallocates itself and releases the objects it contains, each object will have a retain count of 0 and
will deallocate itself. Memory leak solved.

Now fix the leak in the method in .

When working with an instance of , three rules apply to object ownership:

• When an object is added to an , that object gets sent the message ; the
array becomes an owner of that object and has a pointer to it.

• When an object is removed from an , that object gets sent the message
; the array relinquishes ownership of that object and no longer has a pointer to it.

• When an is deallocated, it sends the message to all of its entries as
shown in Figure 3.5.

N
SM

utableA
rray

Possession

Possession

Possession

dealloc

release

release

release

The third memory problem in RandomPossessions is in the method that
 implements. This method creates and returns an instance of that needs to be

autoreleased.

You can make this even simpler by using a convenience method. (as well as many other
classes in the iPhone SDK) includes convenience methods that return autoreleased objects. Update

 to use the convenience method to ensure that the
instance that creates will be autoreleased.

The final memory problem has to do with the instance variables within objects.

When the retain count of a instance hits zero, it will send itself the message .
The method of has been implemented by its superclass, , but

 knows nothing about the instance variables added to . So you must override
 in to release any instance variables that have been retained.

Always call the superclass implementation of at the end of the method. When an object is
deallocated, it should release all of its own instance variables first. Then, it should go up its class
hierarchy and release any instance variables of its superclass. In the end, the implementation of

 in will return the object's memory to the heap.

Now let's check your understanding of memory management concepts by looking more closely at
instance variables and memory management.

Why send to instance variables and not ?

One object should never send to another. Always use and let the object check its
own retain count and decide whether to send itself .

Why do you need to release these instance variables in the first place? Where are the calls to
, , or that make an instance of an owner of these objects?

Let's start with the instance variable . Because it is allocated in the designated
initializer for , that instance of becomes an owner and needs to release the
object pointed to by according to the first of the retain count rules described on page
52.

To figure out the other two instance variables, and , you have to go
back to their property declarations in .

Both of the properties associated with these instance variables have the attribute. When the
message is sent to an instance of , the incoming parameter is
sent the message . The instance variable is then set to point at that copied
instance. If you wrote the code for instead of using , it would
look something like this:

The second retain count rule states that, if an object copies something, the object becomes an
owner of that thing. Therefore, the owning object needs to release the copied object in its

method. The same would hold true of these instance variables if their property attribute was
 (but not if the attribute were , which is a simple pointer assignment).

Strings come in two flavors: and . Because an can never
be changed, there is seldom a need to copy it. Thus, in the case of (and most other
immutable objects), the copy method looks like this:

This approach prevents unnecessary copying. For example, the code above is basically equivalent
to this:

Note, however, that this code is not exactly equivalent. Because of some underlying
implementation details, both and might return if asked whether
they are of type .

Sometimes in this book, we will show you example code that does not exactly match the
implementation in the SDK. We do this to give you a better understanding of the concepts
being discussed. We're not lying to you; we're just sparing you some of the details until you're
more comfortable with the concepts. Once you're there, you can divine all the details from the
documentation. (In fact, we already did this when we gave an example of implementing
and earlier in this chapter. The implementations of these methods are actually much
dirtier.)

Congratulations! You've implemented retain counts and fixed four memory leaks. Your
RandomPossessions application now manages its memory like a champ!

Keep this code around because you are going to use it in later chapters.

This page intentionally left blank

, 42
%@ prefix, 29
 prefix, 27, 31

, 42
, 31

, 31
, 61
, 33

, 34
, 220

, 322
, 315,

318
, 321

, 320-322
accelerometer (see also)

data filters, 123, 126, 127
and orientation, 126
setting up, 119-121
uses, 119, 123, 126

, 119, 121
accessor methods

defined, 32
dot-notation for, 44
memory management, 51
and properties, 32-34

accessory view (of), 150
action methods, 12-14, 157, 259, 260
active state, 216

, 281
Address Book

frameworks, 315
functions, 321, 322
People Picker, 315-319

, 92
, 22, 23, 47, 52

allocation, 45-47
, 188

angled brackets, 84
animation objects

, 276, 277, 279-281, 286

, 277, 283, 284
choosing, 279
classes, 275-278
and data types, 277
identity matrices, 284
key paths, 276, 280
keyframes, 278-280
keys, 281
reusing, 281
timing functions, 281, 282

animation transactions, 268
, 282

animations
explicit, 278

(see also animation objects)
implicit, 267-269, 278

(see also)
, 281

APIs (see also frameworks)
Core Animation, 261, 266, 276, 279
Core Audio, 301
Core Foundation, 199-201, 205
Core Text, 399
Core Video, 301
private, 392

App ID, 17
application bundle, 4, 207, 224-227, 292, 298
application delegate, 8, 306
application dock, 216
application sandbox, 207-209, 225
application states, 216-218, 220, 221, 298, 349

, 220
, 218, 220

, 229
applications

building, 16, 330
cleaning, 330
controllers for, 66, 72
data storage, 207, 208
data storage options, 393
debugging (see debugging)
default images for, 19
deploying, 17, 18
directories in, 207-209
icons for, 18
low-memory warnings, 229
memory limits, 229
optimizing with Sampler, 257-259

renaming, 85, 86
and run loop, 51
running on simulator, 16
size limits, 298
streaming video limits, 296
templates for, xv, 2, 3, 104
universal, 395
user preferences for, 345-350

, 220
, 220

, 218
, 214

archiving
, 218

, 218
encoding, 209, 210, 214-218
overview, 209
thumbnail images, 242
unarchiving, 210, 218
when to use, 393

arguments, 23, 24
arrays (see also ,)

archiving, 214
fast enumeration, 43
memory management, 54
overview, 27-29

, 56
, 33

attributes (Core Data), 363, 364
audio

AudioToolbox (framework), 290, 301
AVFoundation (framework), 293
categories, 299
compressed files, 293-295
Core Audio, 301
file formats, 290, 293
handling interruptions, 295
in background, 298-300
low-level APIs, 301
MP3, 290, 293
playing, 290-295
recording, 301

, 299
system sounds, 290-293

, 295
, 295

, 292
AudioToolbox, 290, 301

, 50, 51, 54, 55
autoresize masks, 133
autorotation, 131-137

, 203
, 293

, 301
, 299

AVFoundation, 293

background (application state)
and VOIP, 300
general guidelines, 300
location updates, 300
and low-memory warnings, 300
playing audio, 298-300
transitions, 216-218, 220, 221, 300, 301

battery life, conserving, 64, 120
, 125

,
301
bitmap contexts, 271
Bonjour, 335, 343

(see also net services)
braces, 31
brackets, 84
Build Results window, 16
bundles

application, 4, 207, 224-227, 292, 298
identifier, 17

, 292, 333
settings, 345-348

, 261, 275
(see also animation objects)

, 278
, 276, 277, 279-281, 286

, 277, 283, 284
 (see also animation objects)

bitmap context for, 271
contents, 265
creating, 262-264
and delegation, 269
designated initializer, 263
drawing to, 269-272, 285
hierarchy, 262

and implicit animations, 267-269, 278
overview, 261

, 285
properties, 264-268, 276, 280, 285, 286

, 267
size and position, 264, 265
subclassing, 269

, 266, 267
callbacks, 59
camera (see also images)

recording video, 203-205
taking pictures, 191-196

, 125
, 276

, 268
, 284

, 278
Celko, Joe, 356
cells (see)

, 201, 321, 322
, 199, 200, 205, 321, 322

, 292
, 201

, 201
, 199-201

, 272

and layers, 271, 272
drawing to, 240
inside , 89, 94

, 90, 246, 247, 258, 276, 277
, 90, 258
, 90, 240
, 42

class methods, 23, 39-41
classes (see also individual class names)

documentation for, 147, 148
inheritance, 31
overview, 21, 22
renaming, 371
reusing, 145, 152
subclassing, 29-42

clean and build, 330
, 65, 66

, 78-81
, 63-66, 300

, 64, 69
, 220

Cocoa Touch, 62, 148, 205
command-line tool, 25
compile-time errors, 42, 67, 68

, 309
, 308, 309
, 308, 309

content view (of), 150, 151
, 190, 191

controllers, 8, 66, 67, 71, 72, 120
(see also view controllers)

convenience methods, 39-41, 52, 55
 (), 80

, 52, 56, 57
, 57, 188, 247

Core Animation, 261, 266, 276, 279
Core Audio, 301
Core Data

attributes, 363, 364
entities, 363, 364, 366-371
faults, 392, 393
logging SQL commands, 392
managing data, 371
model files, 364, 366-371

, 364-366, 371
, 364, 372, 378,

379
as ORM, 363
presenting data, 378-382
relationships, 363, 364, 368
and SQLite, 363-365, 392-394
when to use, 393

Core Foundation, 199-201, 205
Core Graphics, 89, 90, 240, 266, 269-272
Core Location, 63-66, 72
Core Text, 399
Core Video, 301

 (), 28
curly braces, 31

, 326

data storage (see also archiving, Core Data,
SQLite)

for application data, 207, 208
binary, 222, 223
choosing, 393
with I/O functions, 223

for images, 239-243
with , 221, 239, 240

data trees, 352, 359-361
 (UITableView), 141, 147

(see also)

and retain counts, 47, 48
and , 54
optional for controllers, 67
overriding, 55
releasing instance variables, 55, 116, 117,
124
and , 130

deallocation
of controllers, 66
overview, 46, 47
premature, 45, 49
and release, 55

debugging
compile-time errors, 67, 68
exceptions, 42, 43
linker errors, 68

, 223, 224
with Instruments, 253-259

declarations
forward, 42
instance variables, 32
method, 32, 35, 36, 39-41
overview, 31
properties, 33, 39
protocol, 59

default images, 19, 20
, 19

delegate methods, 59-62
delegates

application, 8, 306
assigning, 65
choosing, 120
classes that use, 62
controllers as, 120
for , 269
and protocols, 59-62, 70
and , 65

delegation, 59-62
delete rule, 368

,
159

 (), 29, 34, 55

designated initializers, 35-39
developer certificates, 17
device

acceleration, 121
checking for camera support, 193, 194
deploying to, 17
iPad, 395-399
iPod touch, xvi, 293
memory limits, 152
orientation, 121, 130
provisioning, 17, 18
vibrating, 293

dictionaries (see)
, 116, 231, 232

directories
application, 207-209, 292

, 208, 211
, 208

, 207
, 328, 333

, 345-348
temporary, 208

doc window, 4
dock, 216
documentation, using, 60, 62, 147, 148

 (directory), 208, 211
dot-notation, xv, 44
dragging, 260, 268, 269

, 269
, 269, 270

, 89, 90, 93, 94, 99, 234, 271
drill-down interface, 167

 property (), 158
, 209, 210, 214

, 31
, 202

entities (Core Data), 363, 364, 366-371
errors

compile-time, 67, 68
connection, 309
linker, 68, 69
and , 223, 224
run-time, 42, 43

event loop, 16
exceptions, 28, 42

explicit animations, 278
(see also animation objects)

explicit layers, 278
(see also)

fast enumeration, 43, 246
faults, 392, 393
File's Owner, 5, 113, 176

, 292
filters (accelerometer data), 123, 126, 127
First Responder, 5
first responder

becoming, 125
and -targeted actions, 260
overview, 82
resigning, 202
and responder chain, 82, 252, 253

forward declarations, 42
Foundation framework, 70

 (), 265
frameworks (see also APIs)

adding to projects, 62, 63, 261
AddressBook, 315
AddressBookUI, 315
AudioToolbox, 290, 301
AVFoundation, 293
Cocoa Touch, 62, 148, 205
Core Audio, 301
Core Foundation, 199-201, 205
Core Graphics, 89
Core Location, 63, 72
Core Video, 301
Foundation, 70
importing, 62, 84
MapKit, 71, 72
MediaPlayer, 296
MobileCoreServices, 205
QuartzCore, 261, 279
UIKit, 62, 89, 266

functions (in C), 21, 42, 201

, 332
getter methods (see accessor methods)
graphic memory, 229
graphics contexts (see)

GUIDs, 199

 files (see header files)
header files

description, 31
importing, 33, 41, 42
order of declarations in, 39
shortcut to implementation files, 81

header view, 155-158
heap, 45
HeavyRotation application

implementing autorotation, 132-134
registering and receiving notifications, 130,
131

hierarchies
class, 29
layer, 262, 270
and retain cycles, 98
view, 87, 98, 110, 116

high-pass filter, 127
Hipp, Richard, 351
Homepwner application

adding Address Book support, 315-323
adding drill-down interface, 167-183
adding images, 185-203
archiving data, 209-221
customizing cells, 233-243
enabling editing, 155-165
handling low-memory warnings, 229-232
localizing, 326-333
object diagrams, 146, 169
reusing class, 145
storing images, 221, 222

Hypnosister application
adding text with shadow, 92
creating , 88-90
hiding status bar, 96
object diagram, 94
scrolling and zooming, 94-96

HypnoTime application
adding animation, 262-269, 278-284
choosing a delegate, 120
creating a tab bar, 104-110
creating views, 110-115
object diagram, 120
using accelerometer data, 122-126

I/O functions, 223
i18n (see internationalization)

, 10, 175, 232
icons

application, 18
camera, 191
tab bar, 109, 110
for , 150
, 35, 277

Identity Inspector, 248
identity matrices, 284
image picker (see)

, 193
, 193

images (see also camera, ,
)

archiving, 239, 240, 242
creating thumbnail, 239-243
default, 19, 20
displaying in , 189-191
from offscreen contexts, 240
manipulating, 239-243
saving and retrieving, 187
storing in cache, 186-188, 221, 222

, 222
, 33

implementation files, 33, 81
implicit animations, 267-269, 278

(see also)
implicit layers, 270-272, 278

, 42
importing files, 42, 84
inactive state, 216

, 4, 17-19, 135, 298, 396
informal protocols, 70
inheritance, single, 31

and , 22, 23
and NIB files, 398
overview, 35-39
for view controllers, xv, 107, 116, 147, 398
and XIB files, 114

, 348
, 266, 272

, 209-211, 249

, 223, 224
, 91, 92, 249, 263, 265
, 147

Inspector
Attributes, 4-7, 74, 75
Connections, 14, 177, 289
Identity, 248
Library, 73
Size, 133

instance methods, 23
instance variables

declaring, 31, 32
described, 21
memory management, 55-57, 67
setting in Inspector, 6
setting to , 24, 53

instances, 21-24
Instruments

ObjecAlloc, 254-256
Sampler, 257-259

, 31
Interface Builder, 4-14

(see also XIB files)
interface files (see header files)
internationalization (see also localization)

defined, 325
, 333
, 326

, 331
Inventory application

creating controllers for, 371-391
defining model file, 366-371

iOS4
background audio, 298-300
dock, 216
multitasking, 215-218, 298-301
and view controllers, 105

iPad, xvi, 196, 198, 395-399 (see also device)
iPhone OS (see also iOS4)

3.0 additions, 71, 123, 137
and iPad, 395
SDK (Software Development Kit), xvi

iPod touch, xvi (see also device)
, 193

key paths, 276-280

key-value coding, 276, 280
key-value pairs (see also keys)

and , 321
and dictionaries, 186, 247
in , 4, 135
and strings tables, 330
and user preferences, 345-348

keyboard
dismissing, 82, 202
and -targeted actions, 260
number pad, 183
setting properties of, 74

keyframes, 278-280
(see also)

keys
for animations, 281
in archiving, 210
in Core Data, 363
for , 186-188, 199-202, 247
for preferences, 346-348
in relational databases, 363

keywords, 31
Kochan, Stephen G., 21

, 203, 205
, 203, 205

L10n (see localization)
labels (message names), 24
landscape mode, 135
language settings, 325, 330
layers

explicit, 278
(see also)

in hierarchy, 266, 270
implicit, 270-272, 278
and views, 270-272

, 236, 237
lazy allocation, 116
leaks (see memory leaks)
Library, 4-6, 73

 (directory), 208
 (directory), 207

linker errors, 68
listeners, 59
load state notifications, 298

, 298

, 110, 116, 176, 178, 232
, 332

localization (see also internationalization)
adding, 327
and application settings, 346
defined, 325

 directories, 328, 333
, 333

resources, 327-330
strings tables, 332, 333
user settings for, 325, 330
XIB files, 327-330

, 223
location services, 63

(see also Core Location)
location updates, 65, 66, 300

, 66

, 65
low-memory warnings, 229-232, 300
low-pass filter, 123, 126

 directories, 328, 333

 files, 33
M4A, 290

, 257
, 26

main bundle, 333
(see also application bundle)

, 21, 45
MapKit (framework), 71, 72
MapKit annotation, 72, 78-81

, 77
masks, autoresize, 133
MediaPlayer (framework), 296
MediaPlayer application

in background, 298
playing audio, 290-295
playing video, 295-298
recording audio, 301

, 203
memory leaks

avoiding with , 50, 51
defined, 45
description, 49
finding with ObjecAlloc, 254-256

fixing, 53-56
and static analyzer, 67

memory limits, 229
memory management

basics of, 45-57
C functions, 201
controller objects, 66
Core Foundation objects, 201
delegates, 65
lazy allocation of views, 116
low-memory warnings, 229-232
memory limits, 229
and notifications, 130

, 187
, 54

optimizing with ObjecAlloc, 254-256
outlets, 116
reference counting, 255
and retain cycles, 98
structures, 81

, 152
messages, 23-25

(see also methods)
methods, 22

(see also accessor methods, individual
method names)
action, 12-14, 157, 259, 260
class, 39-41
convenience, 39-41, 52, 55
declaring, 31-33, 35, 36, 39
defined, 22
delegate, 59-62
designated initializer, 35-39
getter (see accessor methodsaccessor
methods)
implementing, 33, 34, 36
initializer, 35-39
with prefix, 53
optional, 61, 70
overriding, 34, 35, 37-39
parameters, 36
required, 61
setter (see accessor methods)
stub, 290
writing new, 35

, 78-81
, 78, 80

, 77

, 72, 73, 76-78
, 76, 77
, 84

MobileCoreServices, 205
 files, 17

modal presentation, 194
model files (Core Data), 364, 366-371
model objects, 7, 71, 72
Model-View-Controller, 7-9, 71, 72, 152
motion events, 82, 123-126

, 123, 124
, 123

, 123
movies (see video)
MP3, 290, 293

, 295-298
, 297

multi-touch, 245, 246, 249, 250, 259
multi-values, 322
multitasking

audio, 298-300
and saving data, 215-218

music (see audio)
, 52

naming conventions
accessor methods, 33
delegate protocols, 60
initializer methods, 35
iPad NIB files, 398

navigating (see also)
with drill-down interface, 167
paging, 117, 118
scrolling, 94
from tab bar, 101
zooming, 95, 96

, 179
Nayberz application

adding a user preference, 345-350
using Bonjour, 335-344

Nayshunz application (SQLite), 351-361
nested message sends, 23
net services

browsing for, 337-340
publishing, 335
resolving, 340-342

and socket connections, 343
TXT records, 340-342

network programming, 343, 344
(see also net services)

, 82, 252
NIB files

description, 4
and File's Owner, 176
for iPad, 396, 398
and view controllers, xv, 132
vs. XIB files, 4

and arrays, 28
as notification wildcard, 129
sending messages to, 24, 53
setting variables to, 53
-targeted actions, 260

not running state, 216
notifications, 129-131, 136, 229, 298, 350

(see also)
 (see also)

in data tree, 351
fast enumeration, 43
of key path values, 277
of s, 78
overview, 27-29
as stack, 168
writing to disk, 224

, 399
, 50, 51

, 176, 292, 333
, 209, 210
, 209-218, 239, 247

, 221, 239, 240, 242
, 32, 36, 115, 181, 224

, 115, 181, 326
 (see also

)
in data tree, 351
memory management, 187
overview, 186-188
writing to disk, 224

, 223, 224
, 208

, 151, 159, 165, 238
, 210, 214-218

, 210, 218
, 326

, 331, 333
, 27, 29

, 364-366, 371
, 364, 372, 378, 379

 (see also)
archiving, 211-218
fast enumeration, 43
memory management, 54
overview, 27-29

 (see also
)

as image cache, 186
in data tree, 359-361
and registering defaults, 348
of es, 247

, 57
(see also)

, 313
(see also)

, 335-344
, 337-340

, 129
, 129-131

, 28
, 224, 277
, 29-31

, 372
, 208,

212, 356
, 245, 246, 363-366, 392

 prefix, 27
convenience methods, 40, 55

, 57
 (method), 29

internationalizing, 330
as key type (), 186, 276
property list serializable, 224

, 40, 55
toll-free bridging, 199, 205
writing to disk, 222, 223

, 220
, 125

, 292-297, 306, 307
, 314

, 314
, 306-309
, 314

, 306, 307, 313
, 207, 348-350

, 247, 250-252, 277
, 309-313

number pad, 183
, 375

, 258
object diagrams, 71, 72
Object-Relational Mapping (ORM), 363
ObjectAlloc Instrument, 254-256

, 186-188, 326
Objective-C

2.0 additions, 32, 43
basics, 21-44
compile-time errors and, 42
memory management in, 47-57
message names, 24
naming conventions, 33, 35, 60
single inheritance, 31

objects
animation (see animation objects)
memory management, 47
overview, 21-23
printing (to console), 29
property list serializable, 224

offscreen contexts, 239, 240
OmniGraffle, 71

, 61
orientation

and accelerometer, 119, 121, 126
and autorotation, 131-136
landscape mode, 135

 constants, 130
, 131

ORM (Object-Relational Mapping), 363
outlets, 10-14, 116, 175, 232
overriding methods, 34, 35, 37-39, 147

paging, 117, 118

, 312
, 311

parsing XML, 309-313
passing by reference, 292

, 292, 333
, 212, 221

 files, 213
People Picker, 315-319

, 318

, 320,
323

,
319
pointers

overview, 22-25
setting in Interface Builder, 11, 12
setting to , 53

popover controller, 196-198
pre-compiled header files, 213
preferences, 345-350
prefix files, 213
preloading notification, 298
premature deallocation, 45, 49

, 285
,

194
,

297
printing objects (to console), 29
private API, 392
projects

adding frameworks to, 62, 63, 261
building, 16
cleaning and building, 330
copying files to, 104, 145
Core Data, 366
creating a class in, 29-31
creating new, 2
for iPad, 395-399
project window, 3, 4
target settings, 225
using templates, 104

properties
and accessor methods, 32-34
dot-notation for, 44
memory management, 52, 56

, 33
Property List Editor, 346
property list serializable, 224
protocols

, 69

declaring a class as conforming to, 59
defined, 59
documentation for, 60, 62

, 78-81
, 76

, 209-218, 239, 247
,

314
optional/required methods, 61, 70

, 119-121
, 218

, 193,
195, 196

, 195
, 95
, 141, 147-149

, 141, 158
provisioning profiles, 17
proximity monitoring, 136

, 179

QuartzCore, 261, 279
Quiz application, 2-20
quotation marks, 84

RandomPossessions application
creating command-line tool, 25-27
creating class, 29-42
managing memory, 53-57

receiver, 23
refactoring tool, 371
reference counting, 47, 255

, 348
registering

for notifications, 129, 130
user defaults, 348

relationships (Core Data), 363, 364, 368
, 48, 53

, 159, 161
renaming

applications, 85, 86
classes, 371

, 82, 202
resizing

in autorotation, 133

for iPad, 397, 398
views, 190, 191

resources, 3, 224, 292, 327-330
responder chain, 82, 252, 253

, 70
, 48, 52-54, 56

retain counts, 48-50, 52, 56, 98
retain cycles, 98
reuse identifiers (), 239
reusing

animation objects, 281
classes, 145, 152

s, 152-154
root object, 214
root view controller, 105, 168-170, 179

, 345-348
rotation, 131-136
rows (of)

deleting, 159, 160
inserting, 161-165
moving, 160, 161

run loop, 51, 98
run-time errors, 42, 43

Sampler Instrument, 257-259
sandbox, application, 207-209
screenshots (of applications), 19
scrolling, 94
SDK (Software Development Kit), xvi

, 359
sections (for , 149, 155, 352-354
selector, 23

, 36, 37, 41, 65
, 260
, 260

, 299, 300
, 191

, 269
, 158, 162, 173

 (), 265
, 98, 270

, 267
, 77

, 104, 105
setter methods (see accessor methods)

, 98

settings, 345-350
Settings application, 207, 345-348

, 345-348
shakes, detecting, 123-126

,
132, 135

, 76
simulator

downloading, xvi
low-memory warnings in, 232
and multi-touch simulating, 259
quitting properly, 219
running applications, 16
viewing application bundle in, 225

single inheritance, 31
singletons, 188
Size Inspector, 133
SOAP, 313

, 343
socket connections, 343

, 193, 194
SQL

and Core Data, 393
and SQLite, 351, 355, 393
logging commands, 392

SQLite
and C language, 351
copying database, 352, 356
and Core Data, 363-365, 392-394
creating the database file, 355
fetching data with, 356-359
history, 351
making data trees, 352, 359-361
when to use, 393

, 348
,

301
static analyzer, 67
static variables, 188
status bar, hiding, 96
streaming video, 296
strings (see)
strings tables, 330-333

, 40, 55
structures

 properties, 276, 277
, 199-201

, 90, 246, 247, 258, 276, 277

, 90, 258
, 90, 240

, 78-81
Core Graphics, 90

, 77
vs. Objective-C objects, 21, 22, 81, 258

, 343
toll-free bridging, 199, 200

stub methods, 290
subclassing, 29-42

, 37
, 98

suspended state, 216, 298, 349
swiping, 117, 118
syntax errors, 67, 68

, 34
system sounds, 290-293, 300

tab bar items, 106-110
table views (see)

, 143
, 164
, 148,

151-153, 163, 238

, 159, 164
, 179,

180, 182
, 158

,
160

, 148,
149, 163

, 158
target settings, 225
target-action pairs, 12-14, 157, 259, 260
targets, editing, 62, 85, 346, 395
templates, xv, 2, 3, 104

, 72, 81-83, 202
thumbnail images, creating, 239-243
timing functions, 281, 282

 (directory), 207
toll-free bridging, 199, 205
TopSongs application

fetching data, 306, 307
object diagram, 304

parsing data, 309-313
, 168

touch events
and animation, 267-269
basics of, 245, 246
enabling multi-touch, 249, 250
handling interruptions, 252
and responder chain, 82, 252, 253
target-action pairs, 259, 260

, 259, 260
, 246, 251, 256, 267

, 246, 252
, 246, 252
, 246, 251, 267, 268

TouchTracker application
creating, 246-252
fixing memory leak with ObjecAlloc,
254-256
object diagram, 247

trees, data, 352, 359-361
TXT record, 340-342
typecasting, 199, 205

, 122
 (see also accelerometer)

, 119, 121
and battery life, 120
delegate for, 119-121, 126
detecting shakes with, 123-126
and , 122

, 119, 120, 126
, 119-121, 126
, 72-75

and event loop, 16
as File's Owner, 5
handling low-memory warnings, 229, 230
and NIB files, 176
and responder chain, 253, 260

, 218
, 298, 300

, 172-174, 191, 192
, 82, 259, 260

, 260
, 157, 259

, 260

, 130
, 399

UIGraphics functions, 240, 271, 272

and , 271
, 266

wrapping in , 221, 239, 240
, 221

, 192-196, 203-205
, 193, 195,

196

aspect fit, 132
and image picker, 204
overview, 189-191
setting autoresize masks, 133
and tab bar items, 109, 110
as subview, 150

, 130
UIKit, 89, 266
UIKit (framework), 62

, 168, 170-174, 316, 317
, 168-171, 178-183

, 195
, 171-174

, 196-198
, 18

and shakes, 123
and touch events, 245, 252, 253
and , 82

paging, 117, 118
scrolling, 94
zooming, 95, 96

, 95
, 260

, 399
, 102-106, 108, 109, 167,

168
, 106-110

 (see also data sources,
UITableViewCell, UITableViewController)

editing mode, 155, 158, 162, 173, 235
footer view, 155
header view, 155-158
overview, 139
populating, 146, 147, 159

sections, 149, 155, 352-354

accessory view, 150
adding images to, 239-243
cell styles, 151
content view, 150, 151, 234-238
editing styles, 159, 164
retrieving, 151, 152
reusing, 152-154, 238, 239
subclassing, 233-239

, 159
, 164

s, 151
 (see also

)
as data source, 146-149, 159
as view controller, 142-144
deleting rows, 159, 160

 property, 158, 163
inserting rows, 161-165
moving rows, 160, 161
overview, 141, 142
returning cells, 151-154
template, 375

, 141, 147-149
, 141, 158

description, 72
as first responder, 81-83, 202, 260

, 98
setting attributes of, 74, 177, 183

, 74
, 70, 82

, 59-61
, 172

, 245-247
 (see also , views)

creating a subclass, 88-92, 110
description, 1

, 89, 90, 93, 94, 99
, 202

as first responder, 125
frame, 265
in hierarchy, 92, 98

, 91, 92
, 236, 237

paging, 117, 118
and responder chain, 252, 253

and run loop, 98
scrolling, 94

, 98
size and position, 264

, 98
zooming, 95, 96

 (see also)
adding to tab bar, 108, 109
creating views for, 110

, 398
instantiating, xv

, 110, 116, 176, 178, 232
managing views with, 115-117
and NIB files, 132, 398
passing data with, 181-183
subclassing, 106
and tab bar items, 106, 109

, 114
, 116

and XIB files, xv, 101-103
, 260

description, 1
in Interface Builder, 5, 6
and responder chain, 253
and view hierarchy, 87, 142, 270

, 14
, 218

universal applications, 197, 395
unrecognized selector, 43

 (), 119, 120,
126
user interface

dragging, 260, 268, 269
forcing landscape mode, 135
hiding status bar, 96
keyboard, 74, 82, 202
motion events, 82, 123-126
paging, 117, 118
scrolling, 94
shakes, 123-126
touch events, 82
vibration, 293
zooming, 95, 96

UUIDs, 199

variables

instance (see instance variables)
static, 188

vibration, triggering, 293
video

full-screen, 297
playing, 295-301
preloading, 298
recording, 203-205
streaming, 296, 298

view controllers (see also controllers,
)

and application delegates, 306
in iOS4, 105
lazy creation of views, 116
and low-memory warnings, 231, 232
memory management, 116
modal, 194
releasing subviews, 116

view hierarchy, 87, 92, 98, 105, 110, 116
, 168

, 115
, 115

, 116, 178, 232
, 116, 189, 232

, 96
views (see also)

autoresize masks for, 133
autorotating, 131-136
description, 1, 87
drawing , 92-94
in Model-View-Controller, 7, 71, 72
and layers, 270-272
lazy creation of, 116
modal presentation of, 194
redrawing, 98
resizing, 190, 191

, 115, 116, 181-183, 201
, 115, 183

VOIP, 300

web services
credentials, 313, 314
for data storage, 393
documentation for, 313
fetching data from, 306-309
overview, 303

packing data in request, 313
parsing retrieved XML, 309-313
security, 313, 314
SOAP, 313

Whereami application
configuring user interface, 73-75
finding and annotating locations, 76
object diagram, 71, 72
porting to iPad, 395-398
renaming, 85, 86
setting up Core Location, 64-66

..., 137

..., 136, 137
..., 137

window (see)
, 221

,
223

Xcode, xvi
(see also Instruments, Interface Builder,
projects, simulator)

XIB files
creating new instances in, 5
description, 4
editing object configurations in, 5
and File's Owner, 113, 176
for iPad, 398
localizing, 327-330
vs. NIB files, 4
number in applications, 103
and s, 101-103

XML
collecting from web service, 308
parsing, 309-313

XML property lists, 224

ZeroConf standard, 335
zooming, 76, 95, 96

, 266, 267

	Table of Contents
	Introduction
	Prerequisites
	Our Teaching Philosophy
	How To Use This Book
	How This Book Is Organized
	Style Choices
	Typographical Conventions
	Hardware, Software, and Deployment

	3. Memory Management
	Memory Management Concepts
	Managing memory in C
	Managing memory with objects

	Reference Counting
	Using retain counts
	Avoiding memory leaks with autorelease
	Managing memory in accessors and properties
	Retain count rules

	Managing Memory in RandomPossessions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

