

Effortless Flex 4 Development
Larry Ullman

New Riders
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)
Find us on the Web at: www.newriders.com
To report errors, please send a note to: errata@peachpit.com

New Riders is an imprint of Peachpit, a division of Pearson Education.

Copyright © 2010 by Larry Ullman

Editor: Rebecca Gulick
Production Coordinator: Myrna Vladic
Compositor: Debbie Roberti
Copy Editor: Elle Yoko Suzuki
Proofreader: Patricia Pane
Cover and Interior Design: Terri Bogaards
Indexer: Valerie Haynes Perry
Technical Editor: Ryan Stewart

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Adobe, the Adobe logo, Flash, the Flash logo, Flash Builder, Flash Catalyst, Flash Lite, and Flash Player are
either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or
other countries. MySQL is a registered trademark of MySQL AB in the United States and in other countries.
Macintosh and Mac OS X are registered trademarks of Apple Computer, Inc. Microsoft and Windows are
registered trademarks of Microsoft Corporation. Other product names used in this book may be trademarks
of their own respective owners. Images of Web sites in this book are copyrighted by the original holders
and are used with their kind permission. This book is not officially endorsed by nor affiliated with any of the
above companies, including MySQL AB.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-70594-5
ISBN 10: 0-321-70594-7
9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.newriders.com

Introduction . xiii

What is Flash? . xiii

Why use Flash? . xiv
The Case for RIAs . xiv
The Case for Flash . xv
The Case Against Flash . xvi

What is Flex? . xvi

About This Book . xvii

PART One: THe FUnDAMenTALS . 1

Chapter One: Building Flex Applications . 2

A Survey of the Land . 2
The Flex Framework . 3
The Software . 4
Deployment . 5

Basic MXML . 5

Using Flash Builder . 8
A Quick Tour of Flash Builder . 8
Creating a Simple Application . 11
Saying “Hello” to the World . 12
Deploying Web Applications . 14

The Open Source Alternative . 15
Installation and Setup . 17
Creating a Simple Application . 20
Saying “Hello” to the World . 21
Deploying Web Applications . 22

Creating Desktop Applications . 24
A Word on Certificates . 24
Desktop Applications in Flash Builder . 24
Desktop Applications the Open-Source Way . 28

CONTENTS

vi CONTENTS

Getting Help . 32
On the Web . 32
Within Flash Builder . 34

Chapter Two: User Interface Basics . 36

Things to Know . 37
Comments within MXML . 37
Adding Components . 37
Debugging . 40
Component Types and Terminology . 41

Customizing the Application . 42

Simple Controls . 44
Text Controls . 45
Media Controls . 47
Other Controls . 50

Controlling the Layout . 51
Layout Classes . 52
Layout Containers . 53
Constraint-Based Layout . 55

Creating Forms . 56

Putting It All Together . 60

Chapter Three: ActionScript You Need to Know . 64

Data Binding . 64

OOP Fundamentals . 66

ActionScript and MXML . 69
The Compilation Process . 69
Including ActionScript . 70
Importing ActionScript . 72

ActionScript Comments . 74

Simple Data Types . 75
Making Variables Bindable . 77
Constants . 78
Operators . 79

Creating Functions . 80

CONTENTS vii

Looking Ahead: the Click Event . 82

Control Structures . 85

Arrays . 89

Loops . 93
for Loops . 93
while Loops . 95

Manipulating Components . 95

Debugging Techniques . 99

Chapter Four: Event Management . 102

Fundamental Concepts . 103
The Event Object . 105
Event Flow . 107

Inline Event Handling . 109

Functions as Event Handlers . 110
Creating Simple Event Handlers . 111
Sending Values to Event Handlers . 112
Sending Events to Functions . 112
Using Specific Events . 117

System Events . 118

User Events . 120
Keyboard and Mouse Events . 120
Keyboard and Mouse Event Objects . 122
Other User-Driven Events . 123

Managing Event Handlers with ActionScript . 124
Watching for Phases . 126
Removing Event Handlers . 129

PART TWO: DATA AnD COMMUnICATIOnS . 133

Chapter Five: Displaying Data . 134

Representing Data . 134
In ActionScript . 135
In MXML . 139

Providing Data to Components . 144

ComboBox and DropDownList Components . 146
Events . 147
An Example . 149

viii CONTENTS

The List Component . 152
List Basics . 152
List Events . 154
The Tree Component . 155
Tree Events . 157
An Example . 157

The DataGrid Component . 160
DataGrid Events . 162
Updating Data in a DataGrid . 162

Chapter Six: Manipulating Data . 168

Using Label Functions . 168
ComboBox, DropDownMenu, List, and Tree Label Functions 169
DataGrid and DataGridColumn Label Functions 171

Item Renderers . 174
External Item Renderers . 176
Declared Item Renderers . 177
Inline Renderers . 178
Drop-In Item Renderers . 179
Comparing Component Renderers . 180

Changing the Editor . 181

The DataGroup Component . 182
Creating a DataGroup . 182
Controlling the Layout . 183

Formatting Data . 184
Creating Formatters . 185
Applying Formatters . 187

Validating Data . 189
Validator Fundamentals . 190
Validators in More Detail . 192
The DateValidator . 193
The CreditCardValidator . 195
Creating Validators in ActionScript . 196
An Example . 198

CONTENTS ix

Chapter Seven: Common Data Formats . 202

The Client-Server Relationship . 203

Four Data Formats . 204
Plain Text . 205
XML . 205
JSON . 208
AMF . 210

Data Formats in PHP . 211

Data Types in ActionScript . 223
Plain Text . 223

Debugging . 228

Chapter Eight: Using Simple Services . 230

Flash Security Model . 231

Setting Up a Local Environment . 233

Creating the PHP Scripts . 236
The MySQL Script . 237
Retrieving Employees . 237
Adding Employees . 240

Flex Networking Components . 243

The HTTPService Component . 244
Creating . 244
Invoking a Service . 246
Handling the Response . 246
Handling Response Errors . 248
Putting It All Together . 248

Sending Data to a Server . 251

Flash Builder Data Wizards . 260
Creating a Client-Server Application . 261
Adding Some MXML . 262
Creating Services . 263
Testing Services . 266
Making Changes . 267
Configuring Services . 268
Using the Services . 271
Generating Forms . 273

Using the Network Monitor . 278

x CONTENTS

Chapter Nine: Using Complex Services . 280

Connecting to Web Services . 280
The WebService Component . 281
Using the WebService Component . 284
Using Flash Builder Wizards . 286

Setting Up the Local Environment . 292
Creating the Database . 292
Creating the PHP Script . 293

Using RPC . 296
The RemoteObject Component . 297
Using the RemoteObject Component . 300

Data Management in Flash Builder . 307
Updating the PHP Script . 307
Establishing the Service . 309
Creating the Flash Client . 312

Data Paging . 319
Updating the PHP Script . 320
Updating the Flash Client . 321

Creating Value Objects . 322
Updating the PHP Code . 323
Updating the Flex Client . 324

Adding Authentication . 326
Using .htaccess . 326
Using PHP Sessions . 327
Using PHP Tokens . 329

PART THRee: APPLICATIOn DeveLOPMenT . 331

Chapter Ten: Creating Custom Code . 332

Simple Custom Components . 332
Creating Custom Components . 333
Using Custom Components . 334
Creating More Complex Components . 336

A Wee Bit More OOP . 338

CONTENTS xi

Using ActionScript in Components . 340

Custom Events . 344

Creating a Custom Editor . 347

Chapter Eleven: Improving the User Experience . 352

Establishing Menus . 352
Menu Data . 353
Menu Events . 356
Starting the Example . 356

Adding Navigation . 358
The Accordion and TabNavigator . 358
The ViewStack and Navigation Button Components 359
Adding to the Example . 360

Using View States . 366
Creating View States . 366
Using View States . 366
View State Events . 368
View States and Custom Components . 368
View States in Flash Builder . 369

Adding Deep Linking . 370
Setting Up the HTML Page . 371
Using the BrowserManager . 371
Reading the URL . 373
Completing the Example . 374

More on ToolTips . 378

Chapter Twelve: Alerts and Pop-ups . 380

Working with Alerts . 380
Creating a Basic Alert . 381
Customizing the Look . 382
The Alert Buttons . 382
Handling Alert Events . 383
Putting It Together . 384
Adding an Image . 385

xii CONTENTS

Creating Pop-up Windows . 385
The TitleWindow Component . 385
The PopUpManager . 386
Closing the Window . 386
Putting It Together . 388

Communicating Between Windows . 392
Using Events on Other Windows . 392
Using Variables . 393

Chapter Thirteen: Improving the Appearance . 394

Creating Graphics . 394
Stroking Graphics . 395
Filling Graphics . 396
Basic Shapes . 397
A Simple Example . 399

Styling Applications . 400
Basic CSS Syntax . 401
Creating Styles in Flash Builder . 404
Understanding CSS Inheritance . 405
Changing Styles Using ActionScript . 406

Skinning Applications . 407
How Skins Are Written . 407
Skinning States . 409
Creating Your Own Skins . 410
Skinning a Button . 411
Skinning a Panel . 414
Using Skins . 416

Working with Fonts . 417
Using Device Fonts . 417
Embedding Fonts . 418

Using Themes . 419

Index . 421

The Rich Internet Application (RIA) has been a driving force online for the past several years.
RIAs provide an improved user experience compared to what’s possible using HTML alone
and the somewhat clunky interface that is the Web browser. A good RIA turns the Web expe-
rience into something much closer to what users have become accustomed to with desktop
applications: easy to use, without too many overt server requests, and clearly the work of a
professional Web developer.

RIAs can be created using a handful of technologies, but the top two choices are certainly
Flash and Ajax (“Ajax” being the name often given to the combination of HTML and Java-
Script). People commonly think of Flash as an animated, timeline-driven thing designers
use to create games and advertisements, but there’s an entirely different side to Flash,
based upon the Flex framework.

This book is intended as a programmer’s guide to Flex. As I have practically no design skills,
you won’t see the best-looking Flash content, but you will discover and master the best
techniques for creating functional Flash content. In short, this book is the perfect guide to
learning an excellent technology for making today’s exemplary Web applications.

WHAT IS FLASH?
Flash is talked about a lot, but there’s still quite a bit of misunderstanding about what,
exactly, Flash is. Flash, in its broadest sense, is a platform of software and technologies
created by Adobe for the purpose of presenting dynamic content. The content itself can
range from basic text to forms to multimedia and games. In a narrow sense, Flash is another
medium for communication, like HTML, PDFs, or video. However you prefer to think of Flash,
it all starts with the development tools and ends with the user’s environment.

Adobe has created three programs for generating Flash content:

n Flash Professional

n Flash Builder

n Flash Catalyst

Flash Professional is the current version of the original program used to generate Flash. It
provides graphic designers a way to create content that plays out over time, like animation
and games. In many ways, Flash Professional is what people generally associate with Flash:
a tool for designers.

INTRODUCTION

xiv INTRODUCTION

Flash Builder is an Integrated Development Environment (IDE) for creating Flash
content using the Flex framework. Flex will be discussed next in the chapter, but
just know that Flex provides a programmatic, event-driven approach to Flash
development. Just as Adobe’s Dreamweaver application makes Web develop-
ment faster and easier, Flash Builder makes Flex development faster and easier.
I will add that although the book discusses Flash Builder, it really focuses on
Flex itself, so you aren’t required to have Flash Builder to follow along.

Flash Catalyst is a new product in the Adobe family and acts as an agent
between graphical applications like Flash Professional or even Photoshop
and the programming tool Flash Builder.

No matter how you develop Flash content, the output will be a Flash file, with
an .swf extension (pronounced “swiff”). Flash content can then be run in one
of three ways:

n In a Web browser that has a Flash Player plug-in installed

n Outside of a Web browser, using the standalone Flash Player

n Outside of a Web browser, using Adobe AIR

Generally speaking, Flash content run in a Web browser through the Flash
Player plug-in is the most common use of Flash. And, towards that end, most
of this book is written with that in mind, although you’ll encounter some infor-
mation about developing for Adobe AIR, too.

WHY USE FLASH?
Flash is one way to present dynamic content but certainly not the only way.
Whether you’re making an interactive Web site or a standalone desktop appli-
cation, you have your choice of technologies to use. But before making a com-
parison, let’s look at the argument for Rich Internet Applications as a whole.

The Case for RIAs
Over the course of the Internet’s relatively short history, it has already gone
through several unique phases. At first, the Web used just HTML and images
to present information statically. Then, JavaScript and plug-ins added the
ability to run animations, display video, and create (often annoying) effects.
Splash pages, pop-ups, and blinking text were not the Internet’s high point!
But static HTML, with or without adornment, is of limited value and far too
impractical to maintain. To make a better Web for end users and developers
alike, several server-side technologies arose for generating HTML content

tip

Flash Builder was named Flex

Builder in previous versions.

tip

Adobe AIR provides a way to

create desktop applications

using Web technologies.

INTRODUCTION xv

on the fly. The most common of these include Microsoft’s ASP, Adobe’s
ColdFusion (originally by Macromedia), Java Server Pages (JSP), and my
personal favorite, PHP.

Server-side technologies made dynamic sites possible, but still relied upon
the classic client-server model, where the client (aka, the browser) makes a
request of the server, the server returns its response, and the client redraws
itself accordingly. For each user action, a separate request and another redraw-
ing of the browser was required. It was time for something new…

Over time, through technologies such as Flash and Ajax, the client-server
model has been significantly altered. What Flash and Ajax have in common is
that both can make server requests behind the scenes, unbeknownst to the
user, and then update the client in a more seamless manner. The end result is
a better user experience, akin to that of a desktop application. Some call this
“Web 2.0” (I prefer not to), but whatever you call it, the fact is that the best,
most popular, and certainly the most useful Web sites around, all qualify as
Rich Internet Applications.

The Case for Flash
Why should you use Flash to develop your next RIA then, instead of HTML and
JavaScript, the most logical alternative? First of all, thanks to Flex, developing
Flash applications can be really quick. And I mean really, really quick. With a
fair understanding of Flex, you can complete projects in a day that would take
you a week to do using HTML and JavaScript alone. And as your RIAs become
more complex, this is even truer. Achieving simple effects and interactivity using
JavaScript is not that hard, but anything of moderate to advanced complexity
gets to be really difficult to do in JavaScript, even if you use a framework.

A second reason to use Flash is that the content will look and function the
same in all browsers regardless of type, version, or operating system. If you’ve
done any Web development at all, you know that getting a site to look and
work the same in various browsers can be a tedious chore: in Internet Explorer
6, 7, and 8 on Windows; Firefox and Safari on Windows and other operating
systems. Flash will always run through the Flash Player plug-in, so there’s a
consistent experience regardless of the browser or operating system in use.

But what if the user doesn’t have the Flash Player plug-in installed? That
would actually be surprising, as there’s a nearly 98% adoption rate of the
plug-in! And if the user doesn’t have a current enough version of the player,
they’ll be prompted to upgrade. Conversely, well-written Ajax sites should
degrade smoothly, but the responsibility is on you, the developer, to make
sure that’s the case. And, again, you have to test the degradation on multiple
browsers, with multiple JavaScript settings.

xvi INTRODUCTION

Finally, another benefit to using Flash is that the Flash platform changes
quickly with the times and expectations of users. Being a proprietary tech-
nology isn’t always a bad thing. Adobe regularly improves upon the Flash
platform to reflect what people want to be able to do. Conversely, JavaScript
evolves over the course of years, not months, so JavaScript developers often
have to play catch-up.

The Case Against Flash
It wouldn’t be honest or credible to argue why you should use Flash without
mentioning the valid reasons not to. First, you’ll need to learn a new technol-
ogy, in this case, Flex. I personally like learning new things, but not everyone
wants to be bothered. If you’ve already mastered HTML and JavaScript, then
maybe you don’t have a compelling need to learn Flex. Second, although the
Flash Player plug-in is installed on practically every browser, if it’s not, then the
Flash content will not be shown at all; there is no “degrade nicely” option.

The third reason you may not want to use Flash is because of its incomplete
support on mobile devices. While some phone companies are specifically
working with Adobe to allow Flash content to be viewed using their devices,
Apple is famously resistant, meaning that iPod, iPhone, and iPad users won’t
be able to see your Flash work. (As I write this, Apple and Adobe are in the
middle of a public fight over this very issue, but this could change in time, too.)

Finally, although you can develop Flash content without spending a dime
(without even using any of Adobe’s tools, in fact), you’re likely to spend some
money if you embrace the Flash platform at all. For example, the Flash Builder
application is excellent, but is a commercial product (see Adobe’s site for
specific pricing).

All that being said, if you’re looking at this introduction, then I assume you’re
at least curious about Flex (and therefore Flash), so I’d recommend you at least
give it a quick spin around the block. This book shouldn’t set you back much,
Flex is an open source technology, and Flash Builder is available in a 60-day
free trial, so you can decide for yourself if it is worth your while, without a
significant financial investment.

WHAT IS FLEX?
As I already said, Flex is a framework for creating Flash content. Most people
think of Flash as a graphic design technology, and think they need those skills
for Flex, but Flex is for programmers. Trust me on this: I have absolutely no
design skills whatsoever, but that hasn’t hindered my Flex development at all.

note

As a minor point, printing Flash

content is less than ideal, but I

personally hardly ever consider

printing out online content.

note

The first chapter discusses Flex,

MXML, ActionScript, and Flash

Builder in more detail.

INTRODUCTION xvii

The Flex framework consists of two pieces: MXML and ActionScript. MXML
defines the elements you’ll use in an application, and the primary application
file will be an MXML document. MXML is very similar in both syntax and usage
to HTML. ActionScript is an object-oriented programming language used to add
logic to an application. ActionScript is very similar in both syntax and usage to
JavaScript. But, simply stated, Flex is a framework: an easy means to an end.

If you’re using the Flash Builder IDE to develop in Flex, it comes with the Flex
framework, along with all the tools needed to turn Flex into Flash (called com-
pilers). If you’re not using Flash Builder, you’ll need to download the free Flex
Software Development Kit (SDK). Along with the Flex framework itself, the Flex
SDK contains the compilers, code templates, examples, and more.

Flex has been around since 2004 and is currently in version 4, released in 2010.
That’s the version this book uses exclusively.

AbOUT THIS bOOK
To understand this book, you should know a little about me. I’m a programmer
and developer by occupation, entirely self-taught and with a complete lack
of aesthetic skills, as previously mentioned. As with all my books—this is my
18th—it’s written under the principle of “If I were learning this subject for the
first time, what kind of book would I want?” Largely this means

n Real-world examples

n No fluff, filler, or esoteric examples that you’d never actually use

n Minimal expectations of the reader

n Crystal-clear explanations

Technical writing is largely a matter of making choices about what you need to
know and what you don’t need to know. Hopefully, I’ve done a good job of that.
By the end of the book you should have a sound understanding not just of how
to use Flex but how to use it well. Everything you need to know about Flex is
covered including, most importantly, how you go about learning more when
your knowledge and needs have eclipsed the parameters of this text.

I should also point out that I have a strong aversion to spending any money at
all. I say that because I generally use open source software and free applica-
tions whenever possible. Still, I find Flex to be a strong enough tool that I use
it—and willingly pay for Flash Builder. But this book is not for the purpose of
making money for Adobe, and so I’m not going to assume you’re necessar-
ily using Flash Builder. The book is really about Flex. Still, Flash Builder is an

tip

Flex 4-generated Flash content

will run on Flash Player version

10 and later.

xviii INTRODUCTION

excellent tool that most Flex developers are in fact using, so the book does
discuss some Flash Builder-specific topics. And now that I’m talking more
about the book and less about me, I’ll point out that the book doesn’t spend
much time dwelling on how Flex 4 differs from Flex 3 or earlier versions. If you
already know Flex 3, you’ll see a few notes that X or Y has changed, but that’s
about it. Flex 3 is Flex 3 and Flex 4 is Flex 4 and this here book is about Flex 4.

A lot of the talk surrounding Rich Internet Applications goes into how you can
create a great user interface. And while that’s both true and valid, I’m of the
opinion that the data used by an RIA is the real star of the show. It’s the data
that gives users the reason to be at a Web site in the first place and it’s the
data that will give them reason to return. Accordingly, the meat of the book can
be found in Part 2, “Data and Communications.” The five chapters there cover
everything you need to know about displaying, manipulating, and transmitting
data, including three chapters on the client-server relationship. For those chap-
ters, I exclusively use PHP as the server-side technology. Although I explain the
purpose of every line of PHP code, if you’re not familiar with PHP, you may have
difficulty with two of those chapters. In such a case, I could recommend my
PHP for the Web: Visual QuickStart Guide (Peachpit Press, 2009) book, or any
of the available PHP tutorials to be found online. Similarly, MySQL will be used
as the database application in those chapters.

So what else do I expect of you, the benevolent reader? I expect many readers
will be like me, having used PHP and MySQL but now accepting the need to also
know a powerful client-side technology. I expect you probably have done some
Web development, having dirtied your hands with HTML even the slightest. If
this is true and you have even minimal familiarity with JavaScript, learning Flex
will not be a problem. Flex is easy to learn and not even that hard to master.

If you do have problems along the way, you can turn to the book’s correspond-
ing Web site: www.DMCInsights.com/flex4/. There you can download all of the
code from the book, find supplemental material (I also write about Flex, PHP,
and other topics on my blog), and get assistance through my online forum.

www.DMCInsights.com/flex4/

4 EVENT
MANAgEMENT

If you’ve been reading this book sequentially, you should already have a pretty
sound sense of the Flex landscape. The first chapter shows how to create appli-
cations. The second introduces the basic elements of a user interface. And the
third teaches the fundamentals of ActionScript programming. But in order for
applications to be truly a user experience (which is to say, interactive), you need
to know how to manage events. A lot of what applications do is watch for, and
respond to, events.

You can develop Flash content using Flash Professional, the old standard, or
Flash Builder (previously known as Flex Builder). Flash Professional tends to
start with animation that runs over a timeline. Conversely, Flex development is
event-driven: The application is told to respond to things that happen. This take
may be different than what you’ve done before, but it’s really easy to adopt. If
anything, the biggest hurdle will be making the most of what’s possible.

Flex uses an event system that’s quite close to the Document Object Model
(DOM) Level 3 Event Specification present in Web browsers (to varying
degrees). What this means is that if you’ve done a wee bit of JavaScript
programming, much of the syntax and theory in this book will be familiar. And
even if you haven’t, you may be pleasantly surprised to see how obvious much
of this information is. For example, can you guess what event represents the
cursor going over an element? Yes, mouseOver.

The chapter begins with several pages discussing the premise of event man-
agement and what pieces are involved. Then you’ll learn how to handle events
by placing ActionScript code within MXML components. The third section of

EVENT MANAgEMENT 103

the chapter walks through using functions to handle events (the functions are
called event handlers in such circumstances). After that, I discuss the types
of events in a bit more detail. The chapter concludes with an alternate way to
manage events in an application.

FUNDAMENTAL CONCEPTS
Event-driven development can be summed up as follows: When this event
occurs with this thing, take these actions. Just a few examples are

n Fetch some data from a server after the application loads.

n Change the choices in one drop-down menu after the user makes
a selection in another (e.g., one drop-down represents car makes,
the other car models).

n Reveal a block of information when the user moves the cursor over
an image.

n Make new application options available once a network connection
is detected.

n Store user-supplied data in a database after the user clicks a button.

n Move some other components around after one is removed.

n Update the contents of a DataGrid (a table-like component, introduced
in the next chapter) as new information becomes available.

The events are already predefined for you within the framework. Events fall
under two categories: system events and user events. System events are
not caused by user actions. Specific types include the application being
fully loaded (i.e., ready to run), components being created, responses being
received (like from a network connection), and so forth. User events are the
direct result of a user action: moving the cursor, typing in a text input, selecting
from a drop-down menu, checking a check box, clicking a button, and more.

The things involved are the application’s elements: its controls, containers,
even the root application itself. The actions to be taken are defined by you,
and represent the greatest range of possible options. This is where you would
decide to update a drop-down menu, show a block of information, and so forth.

Once you’ve identified the event you want to watch for and the element it
should be associated with, there are two ways of telling the application what

104 CHAPTER 4

actions to take when that event occurs. You can place your instructions inline
or in a function. Chapter 3, “ActionScript You Need to Know,” demonstrates
both. The following button gets moved to the right ten pixels every time it
is clicked:

<s:Button id="myButton" x="20" y="20" click="myButton .x += 10"
label="Click Me!" />

The inline ActionScript, used as the value for the click property, does the work.

Chapter 3 also has examples of the click event calling a user-defined function:

<fx:Script>
<![CDATA[
private function moveMe():void {
 myButton .x += 10;
}
]]>
</fx:Script>
<s:Button id="myButton" x="20" y="20" click="moveMe();" label="Click
Me!" />

Again, this is all there really is to event-driven programming: Tell the applica-
tion that when this event occurs with this thing, take these actions. Establish-
ing this connection in your application results in event handlers, also called
event listeners.

Before moving on, there are two more things to understand about events in
Flash and Flex. First, the events themselves are going to occur whether you
address them or not. Say you have a VGroup that has not been instructed to
respond to a mouseover event:

<s:VGroup>
</s:VGroup>

When the user moves the cursor over this VGroup, the mouseover event still
occurs, but nothing happens as a response.

It’s also important to know that Flex events are asynchronous, which means
that they don’t have to wait for each other, or their responses. In other words,
multiple events and multiple event reactions can, and often will, take place
simultaneously. For example, while a user may be moving the cursor over a
component, the application itself may also be handling the data sent back
from a server request.

EVENT MANAgEMENT 105

The event Object
ActionScript is an object-oriented language, which means that most everything
you work with in Flex, from components to strings, is an object. This includes
events, as well. ActionScript has a generic Event class that defines much of the
functionality needed to work with events. From this root class, there are many
children that inherit from Event; each child being a more specific type of event.
Every time an event occurs within a Flash application, some type of object from
the Event lineage is created.

The Event family of objects, like any other, has properties and methods for you
to use. Here are the three key properties:

n type

n target

n currentTarget

The Event’s type property reflects what kind of event just happened. This may
be click, initialize, mouseover, change, etc. The actual values will be repre-
sented by constants like MouseEvent .CLICK.

The target property of Event is an object reference to the component that
generated the event. If you click a CheckBox with an id of someCheckBox, the
target of that click event will be someCheckBox. This means that by referenc-
ing the Event’s target property, you can get to the properties and methods of
that target object. This will mean more later in the chapter.

The currentTarget property—as well as two others, bubbles and eventPhase—
comes into play when dealing with the flow of events, to be covered next.

More specific event types add new properties and methods. For example, the
MouseEvent object has an altKey property that returns a Boolean value indi-
cating if the ALT key was pressed when the mouse event took place. When you
go to handle events, you have the option of working with the generic Event
object or a specific event object. You’ll see this later in the chapter.

You’ll want to familiarize yourself with the ActionScript documentation for the
various events. Start by looking up the flash .events .Event class in either the
standalone Adobe Help application or online (http:// help.adobe.com/en_US/
FlashPlatform//reference/actionscript/3/ flash/events/Event.html, Figure 4.1
on the next page). Near the top of the page are links you can click to go directly
to listings of the class’s properties, methods, and constants. The top of the
page also shows every class that is derived from Event (i.e., subclasses). You
can click any subclass name to see the documentation for that class.

tip

You can investigate the proper-

ties and values of an event, like

any other variable, using Flash

Builder’s Debug perspective,

specifically the Variables win-

dow. See the end of Chapter 3

for an introduction to this.

http://help.adobe.com/en_US/FlashPlatform//reference/actionscript/3/flash/events/Event.html
http://help.adobe.com/en_US/FlashPlatform//reference/actionscript/3/flash/events/Event.html

106 CHAPTER 4

Figure 4.1

The second thing you’ll often want to do within the ActionScript documenta-
tion is view the events that can be triggered by any given component. If you
load the reference for a component, like Label in Figure 4.2, you’ll see an
Events link near the top of the page after Properties and Methods. Clicking that
link takes you to the full listing of events that the component supports. There
are several dozen possible events just for the Label component, and all that
component does is display a bit of text!

Figure 4.2

Obviously, considering the limitations of a book, I cannot go through uses of
every possible event for every possible component (and you wouldn’t want
that anyway), which is why you’ll need to familiarize yourself with navigating
the ActionScript documentation. If you’re using Flash Builder, you’ll see that it
provides code hinting for common and available events, too. Events in Flash
Builder are represented by a lightning bolt (Figure 4.3).

EVENT MANAgEMENT 107

Figure 4.3

Later in the book I’ll cover movement-related events (for dragging and drop-
ping), and those having to do with effects. There are also many events specific
to AIR application development. These include objects of type AIREvent,
FileEvent, SQLEvent, among others. Any property, constant, or method only
available in AIR applications are marked with the AIR icon (as in the Label’s
contextMenu event in Figure 4.4).

Figure 4.4

event Flow
The final thing to know about events, before getting into some actual program-
ming, is how events are propagated in an application, which is to say how
events move about. It’s not as simple as just clicking a Button creates a click
event: That does happen, but so does much more.

To start, let’s say there’s a Label within a Panel that’s a direct child of the
Application:

<s:Application xmlns:fx="http://ns .adobe .com/mxml/2009"
xmlns:s="library://ns .adobe .com/flex/spark"
 xmlns:mx="library://ns .adobe .com/flex/mx" minWidth="955">
 <s:Panel>
 <s:Label id="myLabel" text="Click Me!" click="doThis();"/>
 </s:Panel>
</s:Application>

tip

Event management goes hand-

in-hand with creating good user

interfaces. Unless you’re pur-

posefully creating Easter eggs,

you’ll need to ensure that what

the user can do is successfully

communicated. For example,

clicking a button is a logical

action, but clicking a bit of text,

like a Label, is not.

108 CHAPTER 4

When the user clicks the Label, he or she has also clicked the Panel and the
Application. The program then needs to figure out how that event should be
handled. To do so, the event goes through three phases looking for event-
handler assignments (Figure 4.5):

Label

Panel

Application

3. Bubble

2. Target

1. Capture

Figure 4.5

1. Capture

2. Target

3. Bubble

In the capture phase the program will start looking for event handlers from the
outside (or top) parent to the innermost one. The capture phase stops at the
parent of the object that triggered the event. So in my example, the capture
phase starts at the Application and ends at the Panel. If either component
has an associated event handler, it will be triggered during this phase (and,
consequently, before the Label’s event handler).

By default, the capture phase is disabled as it’s not commonly used and it
can take its toll on the application’s performance. But you can define event
handlers to watch the capture phase when needed. You might do so to handle
an event in a parent component, then prevent it from being handled within a
child. Towards the end of the chapter I’ll discuss this less common approach to
event management.

The second phase, target, is the most important phase. Here the actual subject
of the event (i.e., the component that triggered it) is checked for an event
handler. This is where most event handling takes place.

Finally, the bubble phase is like capture in reverse, working back through the
structure, from the target component’s parent on up. There are a couple of
reasons you may add handlers to parent components that will catch events
during the bubble phase:

n To execute additional actions, besides those triggered by the target phase.

EVENT MANAgEMENT 109

n To execute the same actions when an event is triggered by any of a compo-
nent’s children.

For example, if you have a form with multiple components, you may want to
validate an individual component when that component’s value changes, and
also do something with the entire body of form data at the same time.

The event object’s eventPhase property stores a number, also represented by
a constant, that reflects the current stage (Table 4.1).

Table 4 .1 Event Phase Values and Constants

Value Constant

1 EventPhase .CAPTURING_PHASE

2 EventPhase .AT_TARGET

3 EventPhase .BUBBLING_PHASE

Do note that just as not every component can trigger every event type, not all
events participate in all three phases. The event object’s bubbles property
returns a Boolean indicating if the event participates in the bubbling phase,
in particular.

As already mentioned, the event object’s target property refers to the com-
ponent that triggered the event. This value will not change over the course of
the event flow. In the example I’m discussing, the target would always be the
Label object (assuming that was what the user clicked).

The event object also has a currentTarget property that reflects the object cur-
rently being examined for an event handler. This value will change repeatedly
over the course of the event flow. In the Label-Panel-Application example,
the currentTarget would go from Application to Panel (in the capture phase)
to Label (in target) to Panel to Application (in the bubble phase). I’ll dem-
onstrate a utility program in this chapter that may help you understand the
phases and targets.

INLINE EVENT HANDLINg
The first, most direct, way you can handle events is inline. To do so, you assign
some ActionScript code to the corresponding event property of a component.
For example:

<s:Label id="myLabel"/>
<s:TextInput id="myText" change="myLabel .text=myText .text"/>

110 CHAPTER 4

Every time the TextInput is changed, the Label’s text property will be assigned
the value of the TextInput’s text property. This is functionally equivalent to
data binding the two components together:

<s:Label id="myLabel" text="{myText .text}"/>
<s:TextInput id="myText" />

In fact, data binding is just a simple and direct way to place an event handler
on a variable (or object property in this example). When that variable’s value
changes, an event is triggered. The event handler itself updates the compo-
nent that is bound to that variable.

You should note Flex assumes that the values assigned to event properties,
like change, will be ActionScript, so the curly braces are not necessary. Using
ActionScript for the values of non-event properties, like text, does require the
curly braces.

Inline event handling can be applied across components, as in the Label-Text
Input example, or on a component to itself. An earlier example had a Button’s
horizontal location moved 10 pixels each time it is clicked. This next Button will
be made 10 pixels taller with each click:

<s:Button label="Bigger" id="myButton" click="myButton .height += 10" />

If you wanted to increase the Button’s height and width by 10 with each click, you
can add a second ActionScript command after a semicolon (Figures 4.6 and 4.7):

<s:Button label="Bigger" id="myButton" click="myButton .height += 10;
myButton .width += 10" />

While you can put multiple commands inline, assigning more than one com-
mand to a component property can get ugly pretty quick. Also, you’ll find there
are limits to what you can do inline. Say you had a check box that, if checked,
showed an image; if unchecked, the image should be hidden. Accomplishing
that requires more complex logic, best put into a function.

FUNCTIONS AS EVENT
HANDLERS
Functions often provide a better way to handle events. Some examples of
functions as event handlers are used in Chapter 3. Having a function be called
when an event occurs is easy:

n Define the function in a Script block.

Figure 4.7

Figure 4.6

EVENT MANAgEMENT 111

n Assign the function call as the value of whatever event property in the
MXML component.

This approach does a better job of separating your presentation from your
logic, allows you to handle events in a more sophisticated manner, and will
also let you use the same function to handle all sorts of events on all sorts of
components.

Creating Simple event Handlers
If you want to create an application that only displays an image if a box is
checked (Figures 4.8 and 4.9), you can start by defining the components:

<s:CheckBox id="showImageCheckBox" label="Show Image?"
change="showHideImage()" />
<mx:Image id="myImage" source="@Embed('assets/trixie .jpg')"
visible="false" />

The check box has an id value of showImageCheckBox and, when changed,
calls the showHideImage() function. You’ll notice that I’m referencing the
change event here, because I want the function to be called whenever the
check box’s status changes, whether that means the user just checked or
unchecked it.

The image has an id of myImage and its source property will embed the image
file at compilation, using a relative path to the image. The image itself is ini-
tially invisible (its visible property is false), meaning it’s part of the application
but not seen. (In fact, it could even affect the layout while invisible).

Within the Script tags, the showHideImage() needs to be defined:

private function showHideImage():void {
 // Actually functionality .
}

The function takes no arguments and returns no values. Within the function,
the image’s visibility should toggle depending upon whether the check box is
selected or not. A simple conditional takes care of that:

if (showImageCheckBox .selected == true) {
 myImage .visible = true;
} else {
 myImage .visible = false;
}

And that’s all there is to it: Check the box and the image appears, uncheck it
and the image disappears.

tip

The same component can

have multiple associated

events. A Panel may watch for

mouseover, mouseout, and

even click events. Each event

needs to be assigned a listener

separately, although they can

all be assigned the same event

handler, when appropriate.

Figure 4.8

Figure 4.9

112 CHAPTER 4

Sending values to event Handlers
Event-handling functions can also be written so that they take arguments, just
like any function. The value then needs to be passed when the function is called.
To do so, you would write that into the component. Here are two RadioButtons,
each of which calls the same function but sends a different Boolean value to it:

<s:RadioButton label="show" click="showHideImage(true);" />
<s:RadioButton label="hide" click="showHideImage(false);" />

And here is that function definition:

private function showHideImage(visible:Boolean):void {
 myImage .visible = visible;
}

The function takes one parameter, of type Boolean. Inside the function, the
image’s visible property is assigned the value passed to the function.

Sending events to Functions
It’s probably not obvious why, offhand, but the most likely value you’ll want
to send to an event-handling function would be an event object. To do so, just
define the function call so that it sends along the event variable:

<s:Button text="Click Here!" click="myEventHandler(event);" />

Then you write the function so that it takes an argument of type Event:

private function myEventHandler(event:Event):void {
 // Actual functionality .
}

By convention, the parameter is named event or just e.

Within the function, you can make use of the event object’s properties and
methods. This includes type, currentTarget, eventPhase, and so forth. Most
importantly, you can access the object that triggered the event by referencing
event .target. Any of the target object’s available properties and methods are
then accessible using event .target .whatever. For example, here’s another way
of writing the moveMe() function (for moving a component):

private function moveMe(event:Event):void {
 event .target .x += 10;
}

Instead of hard-coding the component’s id value in the function, you can
refer to the id value of event .target, where target represents the object that

tip

Flash Builder can automati-

cally define the shell of event

handlers for you. You’ll see this

option appear via code comple-

tion in Source mode and by click-

ing the icon of a lightning bolt

with a plus sign in the Properties

panel of Design mode.

EVENT MANAgEMENT 113

triggered the event. There may be no apparent benefit to this approach, but
now that same function can be used on any number of components without a
knowledge of what those components are (so long as they have an x property):

<s:Button id="myButton" x="20" y="20" click="moveMe(event);"
label="Click Me!" />
<s:Label id="myLabel" x="20" y="120" click="moveMe(event);"
text="Click Me!" />
<mx:Image id="myImage" x="20" y="220" click="moveMe(event);"
source="@Embed('assets/image .png')" />

Taking this a step further, you could call the same function when any member
of the group is clicked:

<s:Group click="moveMe(event);">
<s:Button id="myButton" x="20" y="20" label="Click Me!" />
<s:Label id="myLabel" x="20" y="50" text="Click Me!" />
<mx:Image id="myImage" x="20" y="70" source="@Embed('assets/
image .png')" />
</s:Group>

Now the same function call applies to the click event in all four objects (click-
ing anywhere in the group, but not one of the children moves the entire group
over ten pixels). Figure 4.10 shows the application as it originally displays;
Figure 4.11 shows it after multiple clicks.

Figure 4.10 Figure 4.11

Before going further, let’s take this information and create a utility for report-
ing upon what events were triggered by what components. Doing so will better
demonstrate the event flow.

tip

If you wanted an event handler

to take different actions

depending upon the type of

component involved, refer to

the target’s className prop-

erty: event.target.className.

You can write a conditional that

checks if that property equals

Button, Label, etc.

114 CHAPTER 4

1. Create a new Flex project for the Web.

2. In the Application tag, associate the reportOnEvent() function with
any click:

<s:Application xmlns:fx="http://ns .adobe .com/mxml/2009"
 xmlns:s="library://ns .adobe .com/flex/spark"
 xmlns:mx="library://ns .adobe .com/flex/mx"
 click="reportOnEvent(event)">

By assigning this event handler in the Application tag, the reportOnEvent()
function will be called when the user clicks anywhere in the application. The
function is passed an event object.

3. Within a Script block, define the function:

<fx:Script>
<![CDATA[
private function reportOnEvent(event:Event):void {
 results .text += "Target: " + event .target .id + "\ncurrentTarget: " +
 event .currentTarget .id + "\nPhase: " + event .eventPhase +
 "\n----------\n";
}
]]>
</fx:Script>

The function expects one argument of type Event. Within the function,
the text property of the results component will be updated. This will be
a RichText component, added in the next step. Each call of this function
will concatenate several strings and values to the current value of the text
property. Those strings are: Target:, followed by a space; the id value of
target; a newline (\n, which will space the output over multiple lines),
currentTarget:, followed by a space; the id value of the currentTarget prop-
erty; another newline, followed by Phase: and a space; the eventPhase,
which will be the number 1, 2, or 3; and a newline, followed by several
dashes, and another newline. If you’re at all confused about how this will
look, take a peek at the next three figures in the book.

4. Define the components:

<s:VGroup id="myVGroup" paddingLeft="10" paddingTop="10">
 <s:Label id="myLabel" text="Click on Me!" />
 <s:Panel title="Results">
 <s:RichText id="results" />
 </s:Panel>
</s:VGroup>

tip

If you download the source code

from the corresponding Web site

(www.dmcinsights.com/flex4),

you’ll find this code in the Ch04/

Ch04_01 folder.

www.dmcinsights.com/flex4

EVENT MANAgEMENT 115

To best demonstrate what’s going on, I want to add a couple of compo-
nents, so I started with a Label inside of a VGroup. To display the results,
I added a RichText component within a Panel, also in the VGroup.
Figure 4.12 shows the application when first loaded.

Figure 4.12

5. Save, compile, and run the application.

6. Click the various components, and not any components at all, to see the
results (Figure 4.13).

Figure 4.13

The figure shows the results after clicking the VGroup first (I clicked to
the left of the Panel), clicking the Label next, the body of the Panel (i.e.,
the RichText component) after that, and, finally, outside of any compo-
nent. You’ll note that the target for each is the item clicked, except when
I clicked outside of any component, in which case the target was null. The
currentTarget is the application (Ch04_01) and the phase is 3, bubble, for
every click. This is because the only event handler was assigned to the
application itself. Let’s see what happens when the components get their
own event handlers.

116 CHAPTER 4

7. Add click event handlers to the VGroup, Label, and RichText components:

<s:VGroup id="myVGroup" paddingLeft="10" paddingTop="10"
click="reportOnEvent(event)">
 <s:Label id="myLabel" text="Click on Me!"
click="reportOnEvent(event)" />
 <s:Panel title="Results">
 <s:RichText id="results" click="reportOnEvent(event)" />
 </s:Panel>
</s:VGroup>

Each component now also calls the reportOnEvent() function when a click
event occurs.

8. Save, compile, and run the application.

9. Click the various components, and not any components, to see the results
(Figure 4.14).

Figure 4.14

The figure shows the results after clicking the components in the same
order as in Step 6: VGroup, Label, RichText, nothing. Now when you click a
component, the first event triggered has matching target and currentTarget
values, and occur in the second phase (target). Secondarily, after each target

EVENT MANAgEMENT 117

phase, one or more bubble phase events are triggered, depending upon
how nested the target is. For example, clicking the VGroup creates one
target phase event (when the VGroup’s event handler is triggered) and one
bubble phase event (when the Application’s event handler is triggered).
In this latter event, the target remains the VGroup but the currentTarget
becomes the application (Ch04_01).

You may also notice that no capture phase events are taking place (event
phase 1). This is because capture phase event handling is disabled by
default. Later in the chapter I’ll show you how to change that.

Using Specific events
As mentioned earlier, it’s often best to use specific event object types in your
functions rather than the generic Event. Doing so requires no change in how
the function call is defined:

<s:Button text="Click Here!" click="myEventHandler(event)" />

But you do need to change the expected parameter type in the handling function:

private function myEventHandler(event:EventType):void {
 // Actual functionality .
}

The EventType value needs to be one of the defined types in ActionScript:
MouseEvent, KeyboardEvent, DateChooserEvent, ToolTipEvent, etc. Here’s
how the moveMe() function would be written to take a MouseEvent object:

private function moveMe(event:MouseEvent):void {
 event .target .x += 10;
}

By specifying the event type, you can take advantage of that event’s extended
abilities. For example, MouseEvent has stageX and stageY properties that
reflect where, on the application’s stage, the mouse was clicked. You could use
that to move an image to the user-designated location:

private function moveImage(event:MouseEvent):void {
 myImage .x = event .stageX;
 myImage .y = event .stageY;
}

With this particular event handler, it would have to be associated with the
application, or a container, and you’d have to reference the image directly by
its id, as it wouldn’t be the target of the event (because you wouldn’t be click-
ing the image).

tip

It is possible for a function to

take a generic Event parameter

and then typecast that object

to a more specific type, but

there are fewer justifications

for doing so.

118 CHAPTER 4

Before getting any further, understand that in order for the application to have
access to that event type definition, you may need to import the corresponding
class or package. Many events, like MouseEvent and KeyboardEvent are part
of the flash .events package, which does not need to be manually imported.
Some other events, like ToolTipEvent and DropDownEvent are defined within
mx .events and spark .events respectively. If you want to use one of these
other event types in a function, you’ll need to import the class first:

import spark .events .*;
import mx .events .*;

The ActionScript documentation shows the package each class is defined in.

Using specific types of event objects in your code will

n Provide additional functionality through added properties and methods

n Result in tighter, less bug-prone code

n Perform better

 You’ll see examples of this in action over the course of the rest of the chapter.

SYSTEM EVENTS
The past several pages have looked at how you handle events, but let’s look
at some of the specific events in more detail. As previously mentioned, there
are two categories of events: system and user-generated. System events are
not triggered by user behavior but rather by application occurrences. There are
three events that are triggered by every component as they are created, in the
following order:

n preInitialize

n initialize

n creationComplete

A preInitialize event is triggered when a component has just been created
(because it has to exist in order to have events) but none of its children have
been generated. The initialize event is triggered when a component has been
created as have its immediate children, but the component hasn’t been fully
sized and drawn. In other words, the component has been fully realized save
for being visually manifested. When this event is triggered, you can tweak
some of the component’s properties, like those used to size the component,

EVENT MANAgEMENT 119

if need be. The creationComplete event occurs when a component has been
created, as well as all of its direct descendents. Further, the component has
been sized and fully drawn in the application.

Similar to how the event flow works, components are initialized from the
outside in but created from the inside out. So if you have two Buttons within
a VGroup within the Application, the Application will be initialized, then the
VGroup, then the Buttons. Conversely, the Buttons will be created (completely)
first, then the VGroup, then the Application (Figure 4.15).

Button

Panel

Application

CreationInitialization

Button
Figure 4.15

The application itself has a variation on creationComplete: application
Complete. This event is triggered when every component in the application
has been triggered. This event is frequently used, as programs will take this
cue as the time to perform any kind of setup code:

<?xml version="1 .0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns .adobe .com/mxml/2009"
 xmlns:s="library://ns .adobe .com/flex/spark"
 xmlns:mx="library://ns .adobe .com/flex/mx"
 applicationComplete="init()">
 <fx:Script>
 <![CDATA[
 private function init():void {
 // Do whatever .
 }
]]>
 </fx:Script>

Typically, a function named init()—short for initialize, but that may be a bit
confusing here—is called when the application is ready to run. It might set
the values of variables, populate data-driven components, start network
requests, etc.

tip

Another system event is show,

which is when a component

switches from being invisible to

being visible.

120 CHAPTER 4

USER EVENTS
Already in this chapter and in Chapter 3, I’ve made frequent references to two
user events: click and change. The former is a mouse event, occurring when
the user clicks a component. The later is a general event type, and is triggered
when the user changes something, like what’s entered in a text box or selected
in a drop-down menu. Let’s look at user-generated events in more detail.

Keyboard and Mouse events
Many of the user events are driven by keyboard and mouse activities (and
“mouse” does include the range of cursor inputs, like trackpads, trackballs, and
tablets). Here’s a list of the most common keyboard and mouse-related events:

n click

n doubleClick

n focusIn

n focusOut

n keyDown

n keyUp

n mouseDown

n mouseOut

n mouseOver

n mouseUp

n mouseWheel

n move

n rollOut

n rollover

n toolTipShow

n toolTipHide

Each should be rather obvious. For some user actions several events come into
play: pressing a key can trigger both keyDown and keyUp; clicking a compo-
nent can entail mouseOver, mouseDown, mouseUp, mouseOut, and click.

EVENT MANAgEMENT 121

As an example, let’s create an application that when you mouseover a word,
it displays the Spanish version of that word (Figure 4.16). The application will
need to respond to two events: mouseOver, to show the Spanish word, and
mouseOut, to show no word (Figure 4.17).

1. Create a new Flex project for the Web.

2. Within a Script block, define a function:

<fx:Script>
<![CDATA[
private function updateSpanish(spanishWord:String = ''):void {
 spanishWordLabel .text = spanishWord;
}
]]>
</fx:Script>

The function expects one argument of type String. It has a default value of
an empty string, making that argument optional. Within the function, the
text property of the spanishWordLabel component will be assigned the
received value.

3. Create an HGroup that contains a VGroup and two Labels:

<s:HGroup x="10" y="10">
 <s:VGroup mouseOut="updateSpanish()">
 </s:VGroup>
 <s:Label text="In Spanish: " /><s:Label id="spanishWordLabel" />
</s:HGroup>

The HGroup is used to lay the elements out horizontally. Within it, there’s a
VGroup, which will contain the list of words, and two Labels. The first Label
is a, um, label, for the second, which will actually display the Spanish ver-
sion of the word. It’s the only component that needs an id value.

The VGroup has an event handler tied to the mouseOut event. When that
event occurs on the VGroup or on any children of the VGroup (thanks to
event bubbling), the updateSpanish() function will be called. Since the
function is called without passing along any values, the function will assign
an empty string to the text property of the spanishWordLabel Label.

4. Within the VGroup, add three Labels:

<s:Label text="red" mouseOver="updateSpanish('rojo')" />
<s:Label text="blue" mouseOver="updateSpanish('azul')" />
<s:Label text="green" mouseOver="updateSpanish('verde')" />

Figure 4.16

Figure 4.17

tip

If you download the source code

from the corresponding Web site

(www.dmcinsights.com/ flex4),

you’ll find this code in the Ch04/

Ch04_02 folder.

www.dmcinsights.com/flex4

122 CHAPTER 4

The three Labels differ in two ways: Each has a different text value and
each sends a different string to the updateSpanish() function, called when
the cursor moves over the Label.

5. Save, compile, and run the application.

Keyboard and Mouse event Objects
When you have keyboard and mouse events, you have the option of the event
handler receiving a KeyboardEvent or MouseEvent object. Along with the
properties inherited from the Event class, both keyboard and mouse objects
have each of the following:

n altKey

n ctrlKey

n shiftKey

Each returns a Boolean value indicating if the key in question was also pressed
down when the click, or other key press, occurred. For example, if you want to
program your application so that Shift+clicking a component has a different
effect, the event handler might be written like so:

private function handleClick(event:MouseEvent):void {
 if (event .shiftKey == true) {
 // Do this .
 } else {
 // Do this instead .
 }
}

As said earlier, mouse events also have stageX and stageY properties that
store where, on the application, the click occurred, in pixels.

Keyboard events have their own charCode and keyCode properties. The latter
is a numeric representation of which key on the keyboard was pressed. The
former is a numeric representation of which character in the user’s character
set was pressed. In some cases, as with the capital letters, these numbers will
be the same. For example, if you wanted to take some action when the user
pressed Control+E (actually, the lowercase letter e, whose character code is
101), you could write the function like so:

private function handleKeys(event:KeyboardEvent):void {
 if ((event .ctrlKey == true) && (event .charCode == 101)) {
 // Do this .
 }
}

EVENT MANAgEMENT 123

You can find the symbolic equivalents of the codes at www.signar.se/ blog/
as-3-charcodes/, among other places.

With keyboard-related events, you most likely want to set the handler on the
entire application. For example, if pressing Control+T should do something,
the whole program has to watch for that. That being said, be forewarned that
if you’re using the modifier keys and overriding default browser behavior, the
results may not be expected. For example, you could assign the combination
of Command+W (on Mac) or Control+W (on Windows) to have meaning within
your Flash application. However, these are already used by the browser to
close the window. In all likelihood, when the user presses that combination,
the window will close and the Flash application will never get the chance to
respond to the input.

Other User-Driven events
There are a number of common events not specific to the keyboard or mouse:

n copy

n cut

n paste

n select

n selectAll

n open

n close

n change

These are all defined within the generic Event class, and therefore inherited
by the other specific classes. The editing events—cut, copy, paste, and select
all—are triggered when the user takes those actions, allowing the application
to respond if need be. The open and close events apply to things like drop-
down menus and combo boxes. And change has been demonstrated many
times over by now.

There are four other specific event classes worth mentioning:

n ColorPickerEvent

n DateChooserEvent

n DropDownEvent

www.signar.se/blog/as-3-charcodes/
www.signar.se/blog/as-3-charcodes/

124 CHAPTER 4

A ColorPickerEvent object is created when the user makes a selection within a
ColorPicker component. A DateChooserEvent object is created when the user
makes a selection within a DateChooser component. And DropDownEvent (an
update in Spark from DropdownEvent in Halo) applies to drop-down menus.
All of these objects are manufactured when the component experiences a
change event.

MANAgINg EVENT
HANDLERS WITH
ACTIONSCRIPT
You can make the event-component-event handler connection in two ways.
The first has been the focus thus far; create the association within the compo-
nent’s MXML:

<s:Label id="myLabel" x="20" y="120" click="moveMe(event)"
text="Click Me!" />

The alternative is to use ActionScript to make the association. Although the
MXML approach is easy to understand, there are some good reasons to go the
ActionScript route.

First of all, there are some occasions where you cannot identify event handlers
in MXML. This would be the case if you were using ActionScript classes that
aren’t defined in MXML, or when you create objects on the fly.

Second, by using ActionScript, you can add and remove event handlers as
needed. For example, you might have part of an application wherein the user
selects one of three images by clicking it. Once the image has been selected,
you could remove the event handlers from all of the images, so that the selec-
tion could not be changed.

A third benefit of using ActionScript in this way is that it further separates the
application’s behavior from its markup (i.e., its visual elements). In Web devel-
opment, this concept is called unobtrusive scripting (there are other benefits
to this approach in Web development that don’t apply to Flash).

To add an event handler to a component using ActionScript, call the addEvent
Listener() method on the component. The method’s first argument is the
event to watch for, the second is the function to call when that event occurs:

someObject .addEventListener(EVENT_TYPE, someFunction);

tip

In Chapter 10, “Creating Custom

Code,” you’ll learn how to create

your own event types.

EVENT MANAgEMENT 125

You’ll note by the capitalization that the event type is to be identified using a
predefined constant. You’ll find these constants listed under Public Constants
in the ActionScript documentation; here are several examples:

n Event .CHANGE

n KeyboardEvent .KEY_DOWN

n KeyboardEvent .KEY_UP

n MouseEvent .CLICK

n MouseEvent .DOUBLE_CLICK

n MouseEvent .MOUSE_DOWN

n MouseEvent .MOUSE_MOVE

n MouseEvent .MOUSE_OUT

n MouseEvent .MOUSE_OVER

n MouseEvent .MOUSE_UP

n MouseEvent .MOUSE_WHEEL

n MouseEvent .ROLL_OUT

n MouseEvent .ROLL_OVER

The function to be called is the name of the function, without quotes, and with-
out the parentheses (because it’s a function reference, not a function call).

With this in mind, here is how you would replicate the previous bit of MXML,
which associates the move() function with the click event on the myLabel
Label, using ActionScript:

myLabel .addEventListener(MouseEvent .CLICK, moveMe);

It’s up to you to decide when it’s appropriate to add event listeners, but you
cannot do so before the component has been initialized. For that reason, you
may want to establish the event handlers in an init() function after the entire
application has been created:

<s:Application xmlns:fx="http://ns .adobe .com/mxml/2009"
 xmlns:s="library://ns .adobe .com/flex/spark"
 xmlns:mx="library://ns .adobe .com/flex/mx"
 applicationComplete="init()">
 <fx:Script>
 <![CDATA[

code continues on the next page

tip

You can use a string to indicate

the event type: ‘click’, ‘change’,

etc., but you’re less likely to have

bugs and problems if you use

the constants.

126 CHAPTER 4

 private function init():void {
 myLabel .addEventListener(MouseEvent .CLICK, moveMe);
 // Add other event listeners .
 }
]]>
 </fx:Script>

Apply addEventListener() multiple times to an object to add multiple event
handlers:

someObj .addEventListener(MouseEvent .MOUSE_DOWN, doThis1);
someObj .addEventListener(MouseEvent .MOUSE_UP, doThis2);

Or the same function can be used for the same event on different components:

someObj1 .addEventListener(MouseEvent .DOUBLE_CLICK, doThis);
someObj2 .addEventListener(MouseEvent .DOUBLE_CLICK, doThis);

When you add event listeners in this manner, the event object will automati-
cally be passed to the handling function. You need to write the function to
accept that parameter. You can write it to accept either the generic Event or
the specific event type, as appropriate:

private function moveMe(event:Event):void {
}
private function moveMe(event:MouseEvent):void {
}

Watching for Phases
The addEventListener() method has two required arguments but three
more optional ones. I want to look at the first of these. The next parameter
is useCapture, which takes a Boolean value. If set to true, the listener will
watch for events during the capture phase. If false, which is the default for
most components, the listener will only watch for events during the target
and bubble phases.

someObj .addEventListener(MouseEvent .CLICK, doThis, true);

This means that if you want to have a listener watch for events under all
phases, you’ll need to call addEventListener() twice—once with a false
value for useCapture (the default) and once with a true value:

someObj .addEventListener(MouseEvent .CLICK, doThis);
someObj .addEventListener(MouseEvent .CLICK, doThis, true);

Let’s use this knowledge to recreate the event-reporting utility created earlier
in the chapter.

EVENT MANAgEMENT 127

1. Create a new Flex project for the Web.

2. In the Application tag, associate the init() function with the complete
creation of the application:

<s:Application xmlns:fx="http://ns .adobe .com/mxml/2009"
 xmlns:s="library://ns .adobe .com/flex/spark"
 xmlns:mx="library://ns .adobe .com/flex/mx"
 creationComplete="init()">

All of the event handlers are going to be assigned using ActionScript,
which means that a function needs to be called once every component
has been created.

3. Within a Script block, define the init() function:

<fx:Script>
<![CDATA[
private function init():void {
 this .addEventListener(MouseEvent .CLICK, reportOnEvent);
 this .addEventListener(MouseEvent .CLICK, reportOnEvent, true);
 myVGroup .addEventListener(MouseEvent .CLICK, reportOnEvent);
 myVGroup .addEventListener(MouseEvent .CLICK, reportOnEvent, true);
 myLabel .addEventListener(MouseEvent .CLICK, reportOnEvent);
 myLabel .addEventListener(MouseEvent .CLICK, reportOnEvent, true);
 results .addEventListener(MouseEvent .CLICK, reportOnEvent);
 results .addEventListener(MouseEvent .CLICK, reportOnEvent, true);
}
]]>
</fx:Script>

This function is called after the application has been created. Its job is to add
event handlers to the application, VGroup, Label, and RichText components,
just like in the earlier version of this program. For each element, addEvent
Listener() is being called twice: once with no value for useCapture (meaning
it’ll be false) and once with a true value. For every case, the reportOnEvent()
function is being associated with the mouse click.

Note that the Application tag cannot be given an id value, but the special
keyword this refers to the Application.

4. Still within the Script block, define the reportOnEvent() function:

private function reportOnEvent(event:Event):void {
 results .text += "Target: " + event .target .id + "\ncurrentTarget: "
+ event .currentTarget .id + "\nPhase: " + event .eventPhase +
"\n----------\n";
}

The function is defined exactly as it was before.

tip

If you download the source code

from the corresponding Web site

(www.dmcinsights.com/ flex4),

you’ll find this code in the Ch04/

Ch04_03 folder.

tip

In OOP, the keyword this refers

to the current object. In a Flex

application, the current object is

the application itself.

www.dmcinsights.com/flex4

128 CHAPTER 4

5. Define the components:

<s:VGroup id="myVGroup" paddingLeft="10" paddingTop="10">
 <s:Label id="myLabel" text="Click on Me!" />
 <s:Panel title="Results">
 <s:RichText id="results" />
 </s:Panel>
</s:VGroup>

These components are defined exactly as they were before, using the same
id values, but they no longer have event listeners defined within the MXML.

6. Save, compile, and run the application.

7. Click the various components, and not any components at all, to see the
results (Figure 4.18).

Figure 4.18

The figure shows the results after clicking the VGroup first (I clicked to the
left of the Panel), the Label next, and, finally, outside of any component.

EVENT MANAgEMENT 129

The target value for each is what you would expect. But now you have at
least one capture-phase event (phase 1) for each click. And in the capture
phase, just as in the bubble phase, the currentTarget value differs from the
actual target.

evenT PRIORITIeS

The fourth argument to addEventListener() is for assigning priorities to event han-

dlers. If two events are triggered at the same time, like if you have click event handlers

on both a Button and the Panel it’s in, the listener with the higher priority will be called

first. The value can be any integer, positive or negative, with the default value being 0.

Removing event Handlers
To remove an event handler from an object, apply the removeEventHandler()
method, passing it the same two values as were used to add the event handler
(three values if the addEventListener() method):

someObj .removeEventListener(MouseEvent .CLICK, doThis);
someObj .removeEventListener(MouseEvent .CLICK, doThis, true);

To demonstrate how you might dynamically add and remove event handlers
on the fly, this next application will either show, or not show, the answer to a
series of (easy) math questions based upon whether a box is checked. If the
box is checked, then event handlers are added so that when the user moves
the cursor over a question, the answer is revealed (Figure 4.19). If the box is
unchecked, the event handlers are removed so that moving the cursor over a
question has no effect (Figure 4.20).

Figure 4.19 Figure 4.20

tip

The hasEventListener() method

returns a Boolean value indicat-

ing if the object has the indi-

cated event listener. It takes the

event type as its only argument.

130 CHAPTER 4

1. Create a new Flex project for the Web.

2. Define the components:

<s:VGroup x="10" y="10" gap="20">
 <s:CheckBox id="showAnswers" change="addRemoveHandlers();"
 label="Show Answers on Mouseover?" />
 <s:Label id="question1" text="2 + 2 = ???" />
 <s:Label id="question2" text="5 * 5 = ???" />
 <s:Label id="question3" text="9 % 4 = ??? " />
 <s:Label text="Answer: " />
 <s:Label id="answerLabel" fontSize="20" />
</s:VGroup>

This application has a handful of components, placed within a vertical
group. Only one of these components—the check box—has an MXML-
assigned event listener. When the check box is changed, the addRemove
Handlers() function will be called.

Each Label is given a unique id so that its answer can be displayed. The
answer itself will be shown in the answerLabel component.

3. Within a Script block, define the addRemoveHandlers() function:

<fx:Script>
<![CDATA[
private function addRemoveHandlers():void {
 if (showAnswers .selected == true) {
 question1 .addEventListener(MouseEvent .MOUSE_OVER,
 showAnswer);
 question2 .addEventListener(MouseEvent .MOUSE_OVER,
 showAnswer);
 question3 .addEventListener(MouseEvent .MOUSE_OVER,
 showAnswer);
 question1 .addEventListener(MouseEvent .MOUSE_OUT,
 clearAnswer);
 question2 .addEventListener(MouseEvent .MOUSE_OUT,
 clearAnswer);
 question3 .addEventListener(MouseEvent .MOUSE_OUT,
 clearAnswer);
 } else {
 question1 .removeEventListener(MouseEvent .MOUSE_OVER,
 showAnswer);

tip

If you download the source code

from the corresponding Web site

(www.dmcinsights.com/ flex4),

you’ll find this code in the Ch04/

Ch04_04 folder.

www.dmcinsights.com/flex4

EVENT MANAgEMENT 131

 question2 .removeEventListener(MouseEvent .MOUSE_OVER,
 showAnswer);
 question3 .removeEventListener(MouseEvent .MOUSE_OVER,
 showAnswer);
 question1 .removeEventListener(MouseEvent .MOUSE_OUT,
 clearAnswer);
 question2 .removeEventListener(MouseEvent .MOUSE_OUT,
 clearAnswer);
 question3 .removeEventListener(MouseEvent .MOUSE_OUT,
 clearAnswer);
 }
}
]]>
</fx:Script>

The function takes no arguments. Within the function, an if-else conditional
either adds or removes event listeners based upon the selected property of
the check box. If the box is selected, then two event listeners are added to
each of the three components. If the box is not selected, then those same
two event listeners are removed from each component.

The first event listener watches for a mouseover, at which point the show
Answer() function will be called. The second event listener watches for a
mouseout event, at which point the clearAnswer() function will be called.
This function removes the previously displayed answer.

4. Also within the Script block, define the showAnswer() function:

private function showAnswer(event:MouseEvent):void {
 var answer:String = '';
 switch (event .target .id) {
 case 'question1':
 answer = '4';
 break;
 case 'question2':
 answer = '25';
 break;
 case 'question3':
 answer = '1';
 break;
 }
 answerLabel .text = answer;
}

tip

Through much more complicated

code, you could streamline this

process, but for demonstration

purposes I’m going with a bit

more code in the hopes that the

process is clearer.

132 CHAPTER 4

The goal of this function is to display an answer in Label by assigning
a value to that component’s text property. To determine what the right
answer is, the function looks at the event .target .id property within
a switch.

5. Still within the Script block, define the clearAnswer() function:

private function clearAnswer(event:MouseEvent):void {
 answerLabel .text = '';
}

All this function does is assign an empty string to the text property of the
Label. Even though it doesn’t use the event object, the function will still
receive one, as is always the case when using addEventListener().

6. Save, compile, and run the application.

COnTROLLIng evenTS

There’s a lot more you can do with events than what I demonstrate in this chapter,

although certainly this chapter’s material covers the information you’d use the majority

of the time. In Flash you can prevent event responses from taking place by calling the

preventDefault() method of an event object. This doesn’t stop the event from hap-

pening, just stops whatever default behavior is associated with that event. To stop

an event itself, you’d call the event object’s stopPropagation() or stopImmediate

Propagation() methods.

On the other side of the coin, you can dispatch events manually, if you need. You can

even create your own event types, which you might do in conjunction with a custom

component you’ve created.

note

Even though the answers are

all numbers, I create them as

strings as they’ll be assigned to

a property that expects a string.

INDEX

Action Message Format (AMF). See also FireAMF plugin
debugging, 228
using, 210–211
using in PHP, 219–223

ActionScript
adding event handlers to components, 124–125
adding to Flex applications, 69
AMF data type, 227
applying formatters, 188
arrays, 89–93
associative arrays, 90–91
Boolean data type, 75
breaks, 87–88
changing styles in, 406–407
comments, 74
compilation process, 69–70
constants, 78
control structures, 85–88
cost calculator, 83–85
creating arrays, 135–137
creating formatters in, 189
creating functions in, 80–82
creating validators in, 196–198
dataProvider property, 144
debugging techniques, 99–101
displaying data in, 135–139
event handlers, 124–126
event listeners, 125–126
if conditional, 86
if-else if-else conditional, 87–88
importing into MXML, 72–74
including, 70–71
int data type, 75–76
internal access modifier, 339
JSON data type, 226–227
for loops, 93–94
making variables bindable, 77–78
manipulating components, 95–98
NaN special value, 88
Number data type, 75
operators, 79–80
performing math calculations, 79–80
phases and event handlers, 126–129
plain text data type, 223–224
private access control, 75–76
removing event handlers, 129–132
scalar types, 75
special values, 88
static access modifier, 339
String data type, 75
strings as objects, 76–77
switch, 87–88
typecasting, 76

SyMBOLS
- operator, using in ActionScript, 79
-- operator, using in ActionScript, 79–80
! operator, using in ActionScript, 79–80
!= operator, using in ActionScript, 79
% operator, using in ActionScript, 79
&& operator, using in ActionScript, 79–80
() (parentheses), using with methods, 298
* (asterisk) wildcard, using to import ActionScript, 74
* operator, using in ActionScript, 79
/ operator, using in ActionScript, 79
; (semicolons), using in SQL queries, 235
@ (at) character, using with XML data types, 225
[] (square brackets), using with arrays, 89–90
{ } (curly brackets)

use of, 82
using with arrays, 137
using with control structures, 87
using with data sources, 144

|| operator, using in ActionScript, 79–80
+ operator, using in ActionScript, 79–80
++ operator, using in ActionScript, 79–80
< (open angle bracket), using in code hinting, 39
< !-- --> tags, using in MXML, 37
< operator, using in ActionScript, 79
<![CDATA[]]> tags, using, 69
<= operator, using in ActionScript, 79
== operator, using in ActionScript, 79
=== operator, using in ActionScript, 79
> operator, using in ActionScript, 79
>= operator, using in ActionScript, 79
‘ (single quotation mark), using with XML tag, 215
// and /*, using with ActionScript comments, 74
/>, typing to close elements, 40

A
a tags

using in RichEditableText components, 47
using in RichText components, 47

absolute path, defined, 48
access modifiers, using in OOP, 339
accessibilities, promoting, 379
Accordion component in Halo

adding, 360
change event handler for deep linking, 375
init() function, 363
NavigatorContent containers, 361
switch conditional, 364–365
updateBookInfo() function, 364
updating bookDescription variable, 365
using for navigation, 358–359

422 INDEX

Apache Web server, .htaccess files, 326–327
Application tag

adding, 61
associating init() for event handling, 127
backgroundColor property, 43
height property, 43
maxHeight property, 43
maxWidth property, 43
pageTitle property, 43
width property, 43

Application tag, including in MXML, 6–7
applications. See also desktop applications; Flex applications;

Web applications
creating, 20–21
creating in Flash Builder, 11–12
displaying family trees for, 42
testing in Flash Builder, 13

application .xml descriptor file, saving for AIR, 31
arithmetic operators

using in ActionScript, 79–80
using in cost calculator, 84

Array variable type, creating, 135
ArrayCollection

adding employee to, 200
adding to Script block, 165–166
variables, 135–137

ArrayList tag, adding to forms, 59
ArrayList variables

adding to HTTPService project, 254
creating, 135–137
using in e-commerce calculator, 150

arrays
accessing values in, 90
adding elements to, 89
associative, 90
creating, 89
creating and populating, 89
creating in ActionScript, 135–137
creating in MXML, 140–141
indexing, 90
meal options application, 91–93
pop() method, 89
push() method, 89
removing items from, 89
unshift() method, 89
using curly brackets ({ }) with, 137
using for loops with, 94
using square brackets ([]) with, 89–90
using strings for indexes, 90
values, 89

assets, local versus remote, 48
associative arrays, using in ActionScript, 90
asterisk (*) wildcard, using to import ActionScript, 74
at (@) character, using with XML data types, 225
authentication

alternative for, 329
.htaccess files, 326–327
PHP sessions, 327–329
PHP tokens, 329–330

authorized() method, using with PHP sessions, 328–329

ActionScript (continued)
uint data type, 75–76
undefined special value, 88
using in components, 340–343
variable types, 75
void special value, 88
while loops, 95
XML variable type, 138
XMLList data type, 138

ActionScript files, organizing, 73
addElement() method, using with components, 96–97
addEmployee() function

creating for HTTPService project, 258–259
running validation routines, 199–200

addEmployee.php script, creating, 240–242
addEmployeeResult() function, defining for HTTPService,

259–260
addEventListener() method

arguments, 126
calling, 124–126
useCapture parameter, 126

addition operator, using in ActionScript, 79
addRemoveHandlers() function, defining, 130–131
Adobe

documentation for framework, 33
Web site, 32

AdvancedDataGrid component, features of, 167
AIR

controls for, 63
data-driven components, 159

AIR applications
compiling, 31
creating, 29–32
descriptor file, 30
features of, 24
id identifier, 30
required fields for XML file, 30
using amxml with, 31
visible element, 30

AIR certificate, creating, 28–29
Alert buttons, using, 382–383
Alert class

features of, 380
using, 381

Alert events, handling, 383
Alerts

adding images to, 385
customizing, 382
using, 384

Alert .show() function, calling for debugging, 100
allow-access-from tag, using in Flash Player, 231–232
AMF (Action Message Format). See also FireAMF plugin

debugging, 228
using, 210–211
using in PHP, 219–223

AMF data type, using in ActionScript, 227
AMFPHP versus Zend AMF, 307, 330
amxml, using with AIR applications, 31
and operator, using in ActionScript, 79–80

INDEX 423

client versus server, 203
client-server application. See also data wizards

adding MXML to, 262–263
Button control, 263
creating with data wizard, 261–262
DataGrid component, 263
deploying, 330
DropDownList component, 263
title Label, 262

client-server interactions
basis of, 228
debugging, 228–229
Flex components for, 243–244
Web versus Flash, 250

close event, using with ComboBox and DropDownList, 147
code

adding in Flash Builder, 37
removing in debugging process, 101
restoring previous versions of, 41

code completion, using, 39–40
code hinting, using in Flash Builder, 13, 39–40
ColorPicker component, adding to forms, 60
colors. See also hexadecimal colors

representing as XML, 137–138
representing in CSS styling, 403

column element, using with DataGridColumn component, 173
ComboBox component

e-commerce calculator, 149–151
events, 147–148
features of, 146–147
using with labelFunction property, 169–171

command keyboard shortcuts, viewing, 35
command-line editors

availability of, 19
using, 20

command-line interface, accessing, 16
comments

adding TextArea component for, 62
including in MXML, 37
using in ActionScript, 74

comparison operators, using in ActionScript, 79–80
components. See also custom components

addElement() method, 96
adding to event handlers in ActionScript, 124–125
adding in MXML, 37–40
complex, 336–337
containers, 41–42
controlling relative sizes of, 56
controls, 41–42
defining for functions as event handlers, 114–117
displaying, 39
displaying attributes for, 39
enabled property, 44
getting current settings, 406
getting visual references for, 41
height attribute, 44
id property, 44
initializing, 119
manipulating in ActionScript, 95–98

B
backgroundColor property, using with Application tag, 43
bash shell, using, 19
 .bash_profile file, editing, 20
BasicLayout class, using, 52
bindable complex data types, table of, 144
bindable variable

creating for HTTPService, 249
using with servers, 252

[Bindable], using with variables, 77–78
binding

to lastResult property of methods, 298
lastResult property of service, 247
variables in ActionScript, 77–78

Binding component, using, 66
bookDescription variable

adding in Script block, 362–363
updating for Accordion, 365

BookInfoGroup custom component, states, 368–369
Boolean data type, using in ActionScript, 75
BorderContainer component, adding, 61
breakpoints, using in debugging, 99–100
breaks, using with control structures, 87–88
BrowserManager

setting up, 374
using with deep linking, 371–372

browserURLChange events, watching for deep linking, 373
Button control

adding to cost calculator, 83
adding to HTTPService project, 255
creating, 97
creating for client-server application, 263
creating for employee-management application, 164
using, 51, 62
using unique id with, 96
using with RemoteObject component, 302

buttons, skinning, 411–414

C
calculateTotal() function, creating for cost calculator, 84
CallResponder object, using with wizards, 290
caret index, using with List component, 155
CDATA blocks, using in XML format, 208
<![CDATA[]]> tags, using, 69
certificates. See digital signature certificates
change event

triggering for Tree component, 157
using with ComboBox and DropDownList, 147, 151

“channels disconnect” error, receiving, 307
CheckBox component, adding to forms, 58
checkForm() function, defining for validator, 196
classes

creating in OOP, 72
placing in packages, 72–73

click event
associating reportOnEvent() function with, 114
using, 82
using function with, 113

424 INDEX

curly brackets ({ })
use of, 82
using with arrays, 137
using with control structures, 87
using with data sources, 144

CurrencyFormatter
adjusting for Web service, 286
applying, 188
creating for Web service, 284
features of, 185

CurrencyValidator, properties of, 193
CursorManager, using, 377
custom code, third-party, 349
custom components. See also components

creating, 333–334
creating namespace for, 334–335
listing in Design mode, 337
styling, 404
using, 334–336
and view states, 368–369

custom editor, creating, 347–351
custom events, creating, 344–346
custom formatters, using, 351
custom validators, using, 351

D
data

displaying in ActionScript, 135–139
displaying in MXML, 139–143
formatting, 184–189
passing to server, 298–299
passing to service methods, 298–299
providing to components, 144–146
sending to server, 251–253
validating against patterns, 195

data binding
id values, 65
using, 144, 252

data components, availability in MXML, 140
data files, local in MXML, 143
data formats

AMF (Action Message Format), 210–211, 219–223
checking performance of, 204
JSON (JavaScript Object Notation), 208–210, 217–219
overview of, 204
plain text, 205, 214
XML, 205–208, 214–216

data management, enabling for Flash Builder, 312–313
data paging

Flash client update, 321–322
overview of, 319
PHP script update, 320

data set, using label identifier in, 146
data source, wrapping in curly brackets, 144
data types in ActionScript

AMF data type, 227
JSON data type, 226–227
plain text data type, 223–224

components (continued)
percentHeight attribute, 44
percentWidth attribute, 44
providing data to, 144–146
removeElement() method, 97
removeElementAt() method, 97
removing by indexes, 97
selecting, 39
toolTip property, 44
tying to variables, 77–78
using ActionScript in, 340–343
using item renderers with, 180
using percentages for height and width, 56
using unique ids, 96
visible property, 44
width attribute, 44
x and y coordinates, 44

Components view, using in Flash Builder, 38
concatenator operator, using in ActionScript, 80
conditional control structures, using in ActionScript, 85–87
Connect to HTTP data wizard, using, 263–264
Connect to PHP wizard, selecting, 309
Connect to Web Service wizard, selecting, 287
constants

creating for cost calculator, 84
creating for PHP scripts, 237
using for trigger values, 191
using in ActionScript, 78

constraint-based layout, using, 55–56
constraints, setting visually, 56
containers, explained, 41–42, 51
control structures

using curly brackets ({}) with, 87
using in ActionScript, 85–88

controls
for Adobe AIR, 63
explained, 41–42

cost calculator, creating, 83–85. See also e-commerce calculator
CreditCardValidator

DropDownList component, 195
using, 195

cross-domain-policy tag
resource for, 232
using in Flash Player, 231

CRUD functionality, explained, 292
CSS inheritance, overview of, 405–406
CSS styling. See also styles

applying to components, 400–401
colors, 403
custom components, 404
descendent selector, 402
fontFamily property, 417
fontSize property, 403
global keyword, 401
namespaces, 402
properties in, 403
selectors, 401–402
source property, 404
syntax, 401–404
using in Flash Builder, 404–405

INDEX 425

dataProvider property
associating data set with, 144–145
using with menus, 353

Date object, using in OOP, 67
DateChooser component, adding to forms, 60
DateField component, adding to forms, 60
DateFormatter, features of, 186–187
DateValidator, using, 193–194
debugging

ActionScript, 99–101
client-server interactions, 228–229
Flex applications, 229
MXML, 40–41
PHP, 228–229
PHP scripts, 277
services, 266–267
using toString() methods, 229

Declarations section
adding XML component to, 157–158
creating formatters in, 185, 257–258
creating validators in, 190, 198–199
using in MXML, 139
Web service definition, 284

decrement operator, using in ActionScript, 79–80
deep linking

adding, 374–377
BrowserManager, 371–372, 374
browserURLChange events, 373
overview of, 370
reading URL, 373
requirement for, 370
setting up HTML page, 371

DepartmentEditor.mxml file, creating, 348
DepartmentsDropDownList component, using, 335–336
deploying SWF files, 5
describeType() method, using in debugging, 101
Design mode

listing custom components in, 337
using to add components, 37

desktop applications. See also applications; Web applications
creating, 5
digital signature certificates, 24
in Flash Builder, 24–28
open source, 28–32

device fonts, using, 417
digital signature certificates

creating for AIR, 28–29
requirement by AIR, 24

div tags
using in RichEditableText components, 47
using in RichText components, 47

division operator, using in ActionScript, 79
DropDownList component

adding, 62, 144–146
adding for Web service, 284–285
adding to HTTPService project, 253
adding to meal options application, 91
change handler, 272

ResultEvent type, 227
XML, 224–225

data validation. See validators
data wizards. See also client-server application; services; wizards

adding MXML, 262–263
availability of, 260–261
Configure HTTP Service window, 264–265
configuring services, 268–270
Connect to HTTP, 263–264
creating client-server application, 261–262
creating services, 263–266
Generate Forms, 273–277

databases
adding products to table for RPC service, 293
creating for local environment, 234
creating for RPC service, 292–293
creating table for RPC service, 293
creating tables for local environment, 235
formatting data returned by, 250
populating tables for local environment, 235

data-driven components, using in Adobe AIR, 159. See also item
renderers

DataGrid columns, configuring in Design mode, 314–315
DataGrid component

AdvancedDataGrid component, 167
Boolean properties for columns, 161
creating, 160
creating columns in, 160
creating VGroup for RemoteObject, 301–302
customizing columns in, 161
defining for HTTPService, 250
editable property, 161–162
employee-management application, 163–167
events, 162
features of, 160
height property, 161
horizontalGridLines property, 161
identifying columns in, 161
properties of, 161
setting editable property to true, 181
sizing, 161
TextInput component, 162–163
updating data in, 162–167
using with labelFunction property, 171–174
verticalGridLines property, 161
width property, 161
wrapping in HGroup, 253
wrapping in VGroup, 253

DataGridColumn component, using with labelFunction property,
171–174

DataGroup component
creating, 182–183
creating for client-server application, 263
displaying employees in, 246
features of, 182
layout property, 183
virtualization, 184

DataGroup layout container, using, 53–55

426 INDEX

target property, 105, 109
type property, 105
using with custom events, 344–345

event properties, values assigned to, 110
event responses, preventing, 132
event types

accessing definitions, 118
indicating via string, 125
specifying, 117

event .currentTarget, referencing for List component, 154
event-driven development, overview of, 103–104
event-handler assignments, looking for, 108
eventPhase property, using, 109
events. See also user events

asynchronous, 104
change for ComboBox and DropDownList, 147, 151
change for Tree components, 157
close for ComboBox and DropDownList, 147
for ComboBox component, 147–148
controlling, 132
customizing, 344–346
for DataGrid component, 162
documentation, 105–106
for DropDownList component, 147–148
open for ComboBox and DropDownList, 147
sending to functions, 112–117
specifying, 117–118
stageX and stageY, 122
stopping, 132
system events, 118–119
triggering for menus, 356
triggering for Tree components, 157
triggering via components, 113–117
user-driven, 123–124
using on windows, 392–393

Export Release Build wizard, using in Flash Builder, 14

F
FireAMF plugin, installing, 229. See also AMF (Action Message

Format)
Firebug console, outputting PHP messages to, 229
Flash applications

behavior of, 370
“channels disconnect” error, 307

Flash Builder
adding code, 37
adding components, 37
authentication credentials, 326
basis on Eclipse IDE, 8
Build Automatically option, 40–41
choosing SDK, 12
closing views, 10
code hinting, 13
Components view, 9, 38
configuring PHP service in, 309–312
creating applications, 11–12
creating Flash client for PHP service, 312–319

DropDownList component (continued)
creating for client-server application, 263
creating for employee-management application, 165
customizing for departments, 333–334
e-commerce calculator, 149–151
features of, 146–148
using with CreditCardValidator, 195
valueCommt handler, 272

DropDownMenu component, using with labelFunction property,
169–171

Dynamic Help, opening, 35

e
echo, changing in PHP script, 267–268
e-commerce calculator, creating, 149–151. See also cost calculator
editable property, setting to true, 181
Editor modes, switching in Flash Builder, 10
editors

changing, 181–182
customizing, 347–351

Editor’s Source mode, getting help in, 35
else clause, using with if conditional, 86
else if clause, using with if conditional, 86
employee extensions, displaying, 169–171
employee-management application, 163–167
employees

adding to forms, 273–277
displaying in DataGrid component, 246

Employees Management application, validating, 198–201
enabled property

displaying values for, 40
using with components, 44

encapsulated classes, getter and setter methods, 340
encapsulation, defined, 338
encoding, setting in Flash Builder, 6
equals operator, using in ActionScript, 79
error property, using with formatters, 189
Event class

ColorPickerEvent, 123–124
DateChooserEvent, 123–124
DropDownEvent, 123–124
extending for LoginForm component, 346

event flow, phases of, 108
event handlers

assigning priorities to, 129
managing, 124–126
phases in ActionScript, 126–129
removing in ActionScript, 129–132
sending values to, 112

event handling, inline, 109–110
event listeners

adding in ActionScript, 125–126
creating, 392

Event objects
bubbles property, 109
currentTarget property, 105, 109
keyboard and mouse, 122–123

INDEX 427

Same Origin Policy, 231
sandbox, 231
security model, 231–233

Flash Professional application, 4
FlashDevelop Web site, 16
Flex

ActionScript, 3
creating “pages” in, 358
documentation for framework, 33
framework, 3
MXML, 3
using PHP with, 322

Flex applications. See also applications
adding ActionScript to, 69
changing window dimensions, 43
cursor customization, 377
debugging, 229
window dimensions, 42–43

Flex client, updating for value objects, 324–326
Flex core components, abbreviation, 4, 6
Flex Lib Project Web site, 349
Flex program, shell of, 5–7
Flex Software Development Kit (SDK). See also open source

availability of, 16
choosing for Flash Builder, 12
creating applications, 20–21
deploying Web applications, 22–23
downloading, 17
“Hello, World!” example, 21–22
HTML template, 23
installation of Flash Player, 20
overview of, 15–17
updating path on Mac OS X, 18–20
updating path on Windows, 17–18
Windows installation, 17

Flex Web sites, 32
flex_test database, tables defined in, 213
Flexcoders Yahoo! Group, 33
FlexSearch Web site, 33
folders

creating for projects, 21
HelloAir, 29

font types
embedding, 418–419
referencing, 417

fontFamily property, using with CSS, 417
fontSize property, assigning, 403
for loops, using in ActionScript, 93–94
Form component

adding for e-commerce calculator, 149
adding to HTTPService project, 255–256
creating, 61
features of, 57
horizontalGap property, 57
verticalGap property, 57

Form component, representing, 38
Form control, creating for employee-management application, 164
form inputs, clearing for use with validators, 200

creating project directory, 12
creating skins, 411
creating styles in, 404–405
customizing DataGrid columns, 160
data management mechanism, 312–313
debug version of, 100
debugging in, 40–41
deploying Web applications, 14–15
Design mode, 12–13
Design mode in Editor, 8
desktop applications in, 24–28
Editor, 8
entering code in, 13
Export Release Build wizard, 14
features of, 8–10
generating forms in, 291
“Hello, World!” example, 12–13
Help menu, 34
item renderers, 176
Label element, 13, 26
limiting clutter, 38
menu choices, 10
naming projects in, 11
Network Monitor tool, 278–279
organizing ActionScript files in, 73
Outline view, 9, 42
Package Explorer view, 9
panels, 9
Preferences area, 10
Problems view, 9, 41
Properties view, 9, 38
s: initial, 13
setting encoding in, 6
Source mode in Editor, 8
switching Editor modes, 10
testing applications, 13
themes, 419–420
trial version, 4
updating PHP script, 307–309
using, 12
using Design mode to add components, 37
view states in, 369–370
views, 9–10
workbench, 8–9

Flash Builder wizards
CallResponder object, 290
Source mode, 290
using with Web services, 286–291

Flash Catalyst application, 4
Flash client

creating, 312–319
updating for data paging, 321–322

Flash Debug perspective, features of, 99
Flash Develop editor, downloading, 41
Flash Player

allow-access-from tag, 231
cross-domain policy, 231
installing, 20

428 INDEX

returning values, 82
syntax, 80
types, 82

f x abbreviation
explained, 4
including in code, 6

g
gateway .php script, configuring for Zend Framework, 319
Generate Forms wizard

Data type model, 291
Master-Detail model, 291
Service call model, 291
using, 273–277
using with Web services, 288–290

getAllProducts() function, setting, 319
getEmployees() function, setting, 319
getEmployees.php script, creating, 237–240
getStyle() method, calling, 406
getter methods, using with encapsulated classes, 340
graphics

filling, 396–397
stroking, 395–396

greater than operator, using in ActionScript, 79
greater than or equal to operator, using in ActionScript, 79
Group layout container, using, 53–55, 97–98

H
Halo

versus Spark, 3
text input, 3

Halo components. See also mx namespace
Accordion for navigation, 358–360
LinkBar for navigation, 359–360
TabNavigator, 358–359
ViewStack for navigation, 359–360

hasEventListener() method, using, 129
height and width, using percentages for, 56
height attribute, using with components, 44
height property, using with Application tag, 43
“Hello, World!” example, 12–13, 21–22
HelloAir folder, creating, 29
HelloAir .swf file, creating, 31
HelloWorld .mxml file, saving, 21, 29
help

getting on Web, 32–34
getting within Flash Builder, 34–35

Help application, opening, 34
hexadecimal colors, assigning to tree, 156. See also colors
HGroup layout container

completing for HTTPService project, 256
creating for client-server application, 262
creating for employee-management application, 163
creating for mouse and keyboard event, 121
creating for RemoteObject component, 301
using, 53–55
wrapping DataGrid in, 253

hidden files, identifying in Mac OS X, 19

form validators, creating for HTTPService project, 256–257
formatters

applying, 187–189
availability of, 184
creating, 185–187
creating for HTTPService project, 257–258
creating in ActionScript, 189
CurrencyFormatter, 185, 188, 284
customizing, 351
DateFormatter, 186
defining for Generate Forms wizard, 275
error property, 189
NumberFormatter, 185
PhoneFormatter, 186
using with label functions, 172
ZipCodeFormatter, 186

FormHeading component
adding, 58
adding for e-commerce calculator, 149

FormItem component
placing form elements in, 57
required property, 190
setting direction property for, 58

forms
adding components to, 60–63
adding employees to, 273–277
adding indicatorGap property to, 58
adding validation to, 198–201
ArrayList tag, 59
CheckBox component, 58
ColorPicker component, 60
creating for meal options application, 91
creating in TitleWindow, 390
DateChooser component, 60
DateField component, 60
DropDownList component, 91
features of, 56
Generate Forms wizard, 273–277
generating, 273–277
generating in Flash Builder, 291
NumericStepper component, 60
placing TextArea components in, 57–58
placing TextInput components in, 57–58
RadioButton component, 59
RadioButtonGroup component, 59
resetting after validation, 200
resetting in Generate Forms wizard, 276–277
SELECT component, 59
String element, 59

functions
creating as event handlers, 110–111
sending events to, 112–117

functions in ActionScript
calling, 81
declaring variables in, 84
defining to take arguments, 81
naming conventions, 81
parameters, 81
private access control, 80

INDEX 429

using with components, 44
using with validators, 191

id values
assigning to MXML components, 84
using in data binding, 65
using with ActionScript components, 96

identical operator, using in ActionScript, 79
if conditional

completing for meal options application, 92
else clause, 86
else if clause, 86
using in ActionScript, 86

if-else if-else conditional, using in ActionScript, 87
Image control

adding, 63
using, 47–50

Image object
creating for component, 98
source property, 98

Image tag
centering, 55
Embed directive, 48
source property, 48

images
displaying when boxes are checked, 111
embedded, 49
embedding at compile time, 48
embedding in applications, 47
importing at runtime, 47–48
using absolute paths with, 48
using remote assets with, 48

increment operator, using in ActionScript, 79–80
indexed arrays, using for loop with, 94
inheritance

in CSS, 405–406
defined, 338
overview of, 68

init() function
calling for system events, 119
defining for Accordion, 363

initialize system event, using, 118–119
inline styling, 401
installation and setup

Flash Player, 20
updating path on Windows, 17–18

int data type, using in ActionScript, 75–76
item editors, changing, 181
item renderers. See also data-driven components

comparing, 180
Component element, 177–178
declared, 177–178
drop-in, 179
external, 176–177
inline, 178–179
using with data-driven components, 174–175
using with DataGroup component, 182
using with Tree component, 180

home directory, moving to in Mac OS X, 19
HorizontalLayout class, using, 52
HRule control, using, 50–51
HScrollBar control, using, 50
.htaccess files, using in Apache Web server, 326–327
HTML (HyperText Markup Language), text input, 3
HTML page, setting up for deep linking, 371
HTML template. See also templates

opening, 23
placeholders, 23

HTTPService component. See also services
creating, 244–245
creating bindable variable, 249
DataGrid, 250
DataGrid columns, 250
fault function, 251
features of, 243
GET and POST requests, 244–245
getEmployeesResult() function, 249
handling response errors, 248
handling responses, 246–247
HTTPService tag, 244–245
invoking services, 246
Label element, 249
lastResult property, 247
method property, 244–245
request property, 251
response property, 248
result property, 246–247
resultFormat property, 245
sample application, 248–251
serviceFault() function, 249
showBusyCursor property, 245
useProxy property, 245
versus WebService component, 282

HTTPService project
addEmployee() function, 258–259
addEmployeeResult() function, 259–260
adding Button, 255
adding DropDownList, 253
changing selected department, 254
completing HGroup component, 256
creating ArrayList in Declarations, 254
creating form validators, 256–257
creating formatter, 257
Form component, 255–256
resetting form, 259
Validator definition in Script block, 258
validatorsEnabled variable, 258
wrapping DataGrid in VGroup and HGroup, 252

I
icon property, using with normal menu items, 355
id property

adding, 139
NumberValidator, 191

430 INDEX

less than operator, using in ActionScript, 79
less than or equal to operator, using in ActionScript, 79
LinkButton control, using, 51
List component

allowMultipleSelection property, 155
alternatingItemColors property, 153
caret index, 155
change event, 154–155
changing layout of, 152–153
click event, 154–155
customizing look of, 153
doubleClick event, 154–155
event .currentTarget, 154
features of, 152–153
itemClick event, 154–155
requireSelection property, 155
Tree component, 155–156
using with labelFunction property, 169–171

listener property, using with validators, 194
ListEvent definition, importing for phone tree, 158
local environment, setting up, 233–236
local versus remote assets, 48
logical operators, using in ActionScript, 79–80
login form, creating as component, 336–337
LoginForm component

adding public and private members, 340–343
extending Event class, 346
limitations of, 340, 344
validators, 342

LoginWindow.mxml file, creating, 389
logs directory, using with PHP data formats, 228
loops

for loops, 93–94
while loops, 95

M
Mac OS X

hidden files, 19
inserting full paths, 20
listing current files, 19
moving to home directory, 19
updating path on, 18–20

makeImages() function, using with components, 98
math calculations

performing in ActionScript, 79–80
using in cost calculator, 84

maxHeight property, using with Application tag, 43
maxWidth property, using with Application tag, 43
meal options application, 91–93
media controls

images, 47–49
SWFLoader component, 50
video, 49–50

menu components, labelField property, 355
Menu control, creating, 353
menu events

change, 356
event object, 356

J
Java Runtime Environment, accessing, 17
JSON (JavaScript Object Notation) format

debugging, 228
msqli_fetch_array() function, 217–218
outputting, 267–268
using, 208–210
using converting functions, 267
using in PHP, 217–219
while loop, 218

JSON data type, using in ActionScript, 226–227

K
keyboard events

charCode and keyCode properties, 122
using, 120–123

keyboard shortcuts, viewing, 35

L
Label component

adding, 61
adding for cost calculator, 83–84
adding for e-commerce calculator, 150–151
adding to phone tree, 158–159
creating for employee-management application, 163
creating in Flash Builder, 13, 26
creating for mouse and keyboard event, 121–122
creating for Web service, 285
placing in Panel component, 44
updating for meal options application, 92
updating for Web service, 286
using, 45
using with HTTPService, 249

label identifier, using in data set, 146
labelField property, using to display data, 145
labelFunction property

using with ComboBox component, 169–171
using with DataGrid component, 171–174
using with DataGridColumn component, 171–174
using with DropDownMenu component, 169–171
using with List component, 169–171
using with Tree component, 169–171

lastResult property of methods, binding to, 298
layout classes

BasicLayout, 52
HorizontalLayout, 52
TileLayout, 52
using, 52–53
VerticalLayout, 52

layout containers
affecting spacing, 54
alignment of, 54
DataGroup, 53–55
Group, 53–55
HGroup, 53–55
using skins with, 54
VGroup, 53–55

INDEX 431

Model component, 142
node element, 142–143
opening and closing tags, 12
Script tags, 69, 71
tags, 7
using in Web development, 5–6
XML component, 141–143
XMLListCollection, 142

MXML components
applying formatters, 188
assigning id values to, 84
customizing, 333–334

MXML files
compiling as SWF, 31
restoring previous versions of code in, 41

MXML Skin wizard, using, 408, 411
mx .utils .ObjectUtil .toString() method, using, 100
MySQL database, downloading, 212
MySQL script, creating, 237
mysql.inc.php file, saving, 237

n
namespaces, including in code, 6
NaN special value, using in ActionScript, 88
navigation components

ButtonBar, 359–360
LinkBar, 359–360
TabBar, 359–360
TabNavigator component in Halo, 358–359

NavigatorContent containers, using with Accordion, 361
Network Monitor tool

disabling, 300
using, 278–279

networking components
availability of, 243
communication types, 243
HTTPService component, 243
REST-style services, 243
RPC (Remote Procedural Calls), 243–244

node element, using in MXML, 142–143
not equals operator, using in ActionScript, 79
not identical operator, using in ActionScript, 79
not operator, using in ActionScript, 79–80
notes. See comments
notifications. See Alerts
Number data type, using in ActionScript, 75
NumberFormatter, features of, 185
NumberValidator

maxValue property, 193
minValue property, 193
using, 191

numeric values, typecasting in PHP scripts, 239
NumericStepper component

adding to cost calculator, 83
adding to forms, 60
creating, 97
using as item editor, 181

itemClick, 356
itemRollOut, 356
itemRollOver, 356
menuHide, 356
menuShow, 356
MouseEvent click, 356
PopUpMenuButton control, 356
triggering, 356

menu items
associating properties with, 354
check, 355
icon property, 355
normal type of, 355
separator, 355
type property, 354–355

MenuBar control
creating, 357–358
explained, 353

menus
components, 352–353
creating, 356–358
data, 353–355
dataProvider property, 353

Metadata directive, using with custom events, 344
methods, invoking, 298
Model component, using, 142
modulus operator, using in ActionScript, 79
mouse events, using, 120–123
mouse-click event, watching for, 154
MouseEvent object, altKey property, 105
msqli_fetch_array() function, using with JSON, 217–218
multiplication operator, using in ActionScript, 79
mx namespace. See also Halo components

Flex components defined in, 38
including in code, 6

mxmic, getting help on, 31
MXML

adding components, 37–40
adding to client-server application, 262–263
basis of, 3
Application tag, 6
Array component, 1401
ArrayCollection component, 141
ArrayList variables, 140–141
case-sensitivity, 7
creating arrays, 140–141
creating XML, 141–143
data components, 140
Date component, 140
debugging, 40–41
Declarations section, 139
displaying data in, 139–140
event handlers, 124–126
hierarchy, 68
id property, 139–140
importing ActionScript into, 72–74
including comments in, 37
local data files, 143

432 INDEX

JSON (JavaScript Object Notation), 217–219
overview of, 211–214
plain text, 214
XML, 214–216

PHP scripts
addEmployee.php, 240–242
changing uses of echo, 267–268
class for RPC service, 294
completing class for RPC service, 296
constructor for RPC service, 294
createProduct() method for RPC service, 294–295
creating constants for, 237
creating for RPC service, 293
database information for RPC service, 293
debugging, 229, 277
deleteProduct() method for RPC service, 296
executing, 214
getAllProducts() method for RPC service, 294
getEmployees.php, 237–240
MySQL script, 237
mysql.inc.php, 237
outputting JSON, 267–268
ProductService, 299
typecasting numeric values, 239
updateProduct() method for RPC service, 295–296
updating for data paging, 320
updating for value objects, 323–324
updating in Flash Builder, 307–309
while loop for getEmployees.php script, 239

PHP service. See also services
configuring in Flash Builder, 309–312
creating Flash client for, 312–319

PHP sessions
authorized() method, 328–329
using, 327–329

PHP tokens, using, 329–330
phpMyAdmin, running sample queries, 236
plain text

debugging, 228
using in PHP, 214

plain text data format, overview of, 205
plain text data type, using in ActionScript, 223–224
pop() method, using with arrays, 89
pop-up windows. See also TitleWindow component; windows

closing, 386–388
custom behaviors, 388
PopUpManager, 386
TitleWindow component, 385–386

PopUpManager, using, 386
PopUpMenuButton control

creating, 354
explained, 353

preInitialize system event, using, 118–119
preventDefault() method, using with events, 132
private access control

using in ActionScript, 75–76
using with functions, 80

private member, adding to LoginForm component, 340–343

O
object introspection, using, 101
OOP (object-oriented programming)

access modifiers, 339
creating classes, 72
encapsulation, 338
inheritance, 338
loosely coupled classes, 339
overview of, 66–68
subclasses, 338
superclasses, 338

open angle bracket (<), using in code hinting, 39
open event, using with ComboBox and DropDownList, 147
open source, desktop applications, 28–32. See also Flex Software

Development Kit (SDK)
operators, using in ActionScript, 79–80
or operator, using in ActionScript, 79–80
OS X. See Mac OS X
Outline view, using in Flash Builder, 42

P
p tags

using in RichEditableText components, 47
using in RichText components, 47

packages, placing classes in, 72–73
pageTitle property, using with Application tag, 43
paging, adding to applications, 319
Panel component

creating, 61
placing Label component in, 44

Panel container, using with layout containers, 54
panels, skinning, 414–416
parentheses (()), using with methods, 298
password, hiding for complex components, 336
path for installation

updating on Mac OS X, 18–20
updating on Windows, 17–18

percentHeight attribute, using with components, 44
percentWidth attribute, using with components, 44
phone tree application, creating, 157–159
PhoneFormatter, features of, 186
PhoneNumberValidator, using, 191
PHP

cross-domain requests, 232
debugging, 228–229
fopen() function for cross-domain requests, 232
identifying as server type, 261–262
using with Flex, 322
as weakly typed language, 322

PHP class
count() function, 320
getThings_paged() method, 320
shell of, 220

PHP data formats
AMF (Action Message Format), using, 219–223
creating logs directory, 228
goals of, 211

INDEX 433

RichEditableText tags, using 47
div tags, 47
p tags, 47
span tags, 47
a tags, 47
tcy tags, 47

RichText control
sizing and positioning, 55
using, 45

RichText tags
div tags, 47
p tags, 47
span tags, 47
a tags, 47
tcy tags, 47
using textFlow tags in, 46

RichTextEditor control, using, 46
RPC (Remote Procedural Calls). See also services

binding to lastResult property of methods, 298
EmployeesService, 297–298
features of, 243–244
RemoteObject component, 297–306

RPC service. See also services
creating database for, 292–293
overview of, 292
PHP script, 293–296

rules
coloring, 51
sizing, 51

S
s namespace. See also Spark components

Flex components defined in, 38
including in code, 6

scalar types, using in ActionScript, 75
Script blocks

addEmployee() function, 166–167
adding ListEvent for phone tree, 158
bookDescription variable, 362–363
creating ArrayCollection, 165–166
creating for meal options application, 92
creating for mouse and keyboard event, 121
defining addRemoveHandlers() function, 130–131
defining clearAnswer() function, 132
defining function for event, 114
defining init() function for event handling, 127
defining reportOnEvent() function, 127
defining showAnswer() function, 131–132
event definitions for HTTPService, 248–249
getSomeEmployees() function, 272
handlePhoneTree() function, 158–159
removeEmployee() function, 166
updateTotal() function, 150
using with components, 98
Validator definition, 199
Validator definition for HTTPService, 258
validatorsEnabled variable, 258

Problems view, using in Flash Builder, 41
procedural programming versus OOP, 66
product management system. See RPC service
ProductService script, createProduct() method, 299
ProgressBar control, using, 50
projects

creating folders for, 21
naming in Flash Builder, 11

properties, selecting, 39–40
Properties view

displaying selected tags in, 37
using in Flash Builder, 38

proxy sniffer, using with client-server interactions, 229
public member, adding to LoginForm component, 340–343
push() method, using with arrays, 89

Q
quotation mark (’), using with XML tag, 215

R
RadioButton component

adding to forms, 59
function definition for event, 112

RadioButtonGroup component, adding to forms, 59
Raw View, using with services, 266
rectangle

adding lines to, 399–400
filling, 399

RegExpValidator, using, 195
Remote Procedural Calls (RPC). See RPC (Remote Procedure Calls)
remote versus local assets, 48
RemoteObject component

adding buttons, 302
clearForm() function, 306
createProduct result handler, 306
deleteButton handler, 304
deleteProduct result handler, 305
destination indicator, 297
fault handler, 303
features of, 297–299
flag variable, 303
HGroup and VGroup, 301
label function, 303
saveButton handler, 304–305
updateButton handler, 303–304
updateProduct result handler, 305
using, 300–306
validators, 301

removeElement() method, using with components, 97
removeElementAt() method, using with components, 97
removeEventHandler() method, applying, 129
reportOnEvent() function, associating with click, 114
required property

setting, 190
using with validators, 191

REST-style services, features of, 243

434 Index

Software Development Kit (SDK). See Flex Software Development
Kit (SDK)

Source mode
developing applications in, 38–39
getting help in, 35

source property
using in CSS styling, 404
using with images, 98
using with XML component, 143

span tags
using in RichEditableText components, 47
using in RichText components, 47

Spark
versus Halo, 3
text input, 3

Spark components, indicating in Flash Builder, 13. See also
s namespace

Spark navigation components, using, 359–360
Spinner control, using, 50
SQL commands, downloading, 213
SQL queries, semicolons (;) in, 235
square brackets ([]), using with arrays, 89–90
state events, viewing, 368
state groups, using with view states, 367–368
State instances, assigning states property to, 366
states

clearing property values in, 367
skinning, 409–410

Stewart, Ryan, 329
stopImmediatePropagation() method, using with events, 132
stopPropagation() method, using with events, 132
String data type

language reference, 77
substring() method, 77
toUpperCase() method, 77
using in ActionScript, 75

String element, adding to forms, 59
strings

length property, 77
using in ActionScript, 76–77

StringValidator
maxLength property, 192
minLength property, 192

stroked rectangle, creating, 400
stroking graphics, 395–396
styles. See also CSS styling

changing using ActionScript, 406–407
creating in Flash Builder, 404–405

subtraction operator, using in ActionScript, 79
SWF files

compiling MXML files as, 31
deploying, 5

SWFLoader component, using, 50
switch conditional

creating for meal options application, 92
using with Accordion, 364–365
writing if-else if-else conditional as, 87–88

symbol value, sending, 252

Script tags
adding source property to, 71
adding to cost calculator, 84
using in MXML, 69, 71

scrollbars, adding, 50
Scroller component, using, 50
SDK (Software Development Kit). See Flex Software Development

Kit (SDK)
search box, adding to form, 63
SELECT component, adding to forms, 59
semicolons (;), using in SQL queries, 235
send() method, using to invoke services, 246
servers

versus clients, 203
passing data to, 298–299
primary URL for local environment, 234
sending data to, 251–253
using bindable variables with, 252
using validators with, 252

service methods, passing data to, 298–299
services. See also data wizards; HTTPService component; PHP

service; RPC service; WebService component
authentication, 268
configuring, 268–270
configuring input types, 268–270
configuring return types, 268–270
creating with data wizards, 263–266
finding, 330
invoking, 246, 298
method definitions, 297
Raw View, 266
redirecting, 267–268
send() method, 246
testing, 266–267
using, 271–273

setStyle() method, using with components, 406–407
setter methods, using with encapsulated classes, 340
shapes, creating, 394–395, 397–399
shells

confirming in Mac OS X, 18
creating for Flex project, 20–21
types of, 18

show system event, explained, 119
showAnswer() function, using with event handler, 131–132
showRoot property, using with Tree component, 156
single quotation mark (’), using with XML tag, 215
Sitepoint Web site, 34
Skin wizard, using, 408
SkinnableContainer, using with layout containers, 54
SkinnableDataContainer, using with layout containers, 54
skinning

buttons, 411–414
panels, 414–416

skinning states, 409–410
skins

creating, 410–411
features of, 407
using, 416–417
writing, 407–409

INDEX 435

trace() function, using in debugging, 100, 229
Tree component

assigning hexadecimal colors, 156
creating for phone tree, 158
events, 157
navigating, 157
phone tree application, 157–159
providing data to, 155
selectedItem attribute, 157
showRoot property, 156
@tag attributes for XML data source, 156
using item renderer with, 180
using with labelFunction property, 169–171
using XML as data source for, 155–156

trigger property, using with validators, 191
trigger values, using constants for, 191
triggerEvent property, using with validators, 191
typecasting

in ActionScript, 76
incoming data as XML, 170
numeric values in PHP scripts, 239

U
uint data type, using in ActionScript, 75–76
undefined special value, using in ActionScript, 88
unobtrusive scripting, defined, 124
unshift() method, using with arrays, 89
updateTotal() function, adding to Script block, 150
URL

deep linking, 370–371
reading for deep linking, 373

user events. See also events
keyboard, 120–123
mouse, 120–123

UTF8 encoding, use of, 6

v
validate() method, using in ActionScript, 197
validateAll() method, using in ActionScript, 197–198
validation errors, styling, 402
Validator class, importing for LoginForm, 340
Validator definition, creating for HTTPService, 258
validators

addEmployee.php script, 241
adding for Generate Forms wizard, 275–276
adding for login form, 337
adding to Employee Management application, 198–201
adding to LoginForm component, 342
allowedFormatChars properties, 192
applying in ActionScript, 197
availability of, 190
checkForm() function, 196
creating for HTTPService project, 256–257
creating for RemoteObject component, 301
creating in ActionScript, 196–198
CreditCardValidator, 193, 195

system events
creationComplete, 118–119
initialize, 118–119
preInitialize, 118–119
show, 119

T
table of contents

adding in Declarations, 361
creating variable for, 363

TabNavigator component in Halo, using, 358–359
tags, displaying in Properties view, 37
tcy tags

using in RichEditableText components, 47
using in RichText components, 47

templates, customizing, 12. See also HTML template
Terminal Inspector

bringing up, 18
closing, 19

Terminal window, opening, 18
testing services, 266–267
text, displaying, 45
text controls

Label control, 45
RichEditableText control, 45
RichText control, 45
RichTextEditor control, 46

text files, creating for books, 362
Text Layout Framework, supported tags, 46
text property, using, 46
TextArea component

adding for comment, 62
dropping into forms, 57–58

TextFlow tags, using, 46–47
TextInput component

adding for page number, 62
adding to cost calculator, 83
adding to form, 38
dropping into forms, 57–58

TextMate text editor, using, 19
themes, using, 419–420
third-party custom code, using, 349
TileLayout class, using, 52
TitleWindow component. See also pop-up windows

creating form in, 390
using with pop-up windows, 385–386

TitleWindow tag, adding close event handler to, 389–390
ToggleButton control, using, 51
toolTip property, using with components, 44
ToolTipManager, accessing, 378
ToolTips

hideDelay setting, 378–379
scrubDelay setting, 378–379
showDelay setting, 378
using, 378–379

toString() method, using in debugging, 100, 225, 229
Tour de Flex Web site, 33

436 INDEX

W
Web, getting help on, 32–34
Web applications. See also applications; desktop applications

deploying in Flash Builder, 14–15
deploying in SDK, 22–23
exporting in Flash Builder, 14–15

Web root directory, determining for local environment, 234
Web services, using Flash Builder wizards with, 286–291
Web sites

authentication alternative, 329
BBEdit, 19
Charles proxy sniffer, 229
Community Flex, 33
Community MX, 33
Dzone, 34
Eclipse IDE, 8
FireAMF plugin, 229
FirePHP, 229
Flash Develop editor, 41
FlashDevelop, 16
Flex Lib Project, 349
Flex-centric resources, 32–34
Flexcoders Yahoo! Group, 33
FlexSearch, 33
Java Runtime Environment, 17
MySQL database, 212
RIAForge, 349
SDK (Software Development Kit), 17
Sitepoint, 34
SQL commands, 213
third-party custom code, 349
Tour de Flex, 33
Zend, 34
Zend Framework, 218–219

WebService component. See also services
adjusting CurrencyFormatter, 286
calling operations, 282
DropDownList component, 284–285
fault event handler, 283
fault property, 281
function definitions, 285
versus HTTPService, 282
id property, 281
Label components, 285
lastResult property, 283
message property, 283
operation elements, 281
providing data to, 282–283
ResultEvent argument, 283
send() method, 282
showBusyCursor property, 281
using, 284–286
wsdl property, 281

while loop
for getEmployees.php script, 239

validators (continued)
CurrencyValidator, 193
customizing, 192, 351
DateValidator, 193–194
disabling, 200
id property, 191
listener property, 194
NumberValidator, 193
PhoneNumberValidator, 191
predefinition of, 192
properties, 190
RegExpValidator, 195
StringValidator properties, 192
trigger and triggerEvent properties, 191
using, 190
using with servers, 252
ZipCodeValidator, 193

validatorsEnabled variable, creating for HTTPService, 258
value objects

Flex client update, 324–326
overview of, 322–323
PHP script update, 323–324

variable names, using with for loop, 94
variable types, using in ActionScript, 75
variables

creating for book selection, 363
creating for table of contents, 363
creating in ActionScript functions, 84
declaring, 76
making bindable in ActionScript, 77–78
tying components to, 77–78
typecasting, 76
using with windows, 393

VerticalLayout class, using, 52
VGroup layout container

creating, 62–63
creating for client-server application, 262–263
creating for employee-management application, 164
creating for mouse and keyboard event, 121
creating for RemoteObject component, 301–302
using, 53–55
wrapping DataGrid in, 253

VideoPlayer component, using, 49–50
view states

creating, 366
and custom components, 368–369
in Flash Builder, 369–370
using, 366–368

views, closing in Flash Builder, 10
ViewStack component, using for navigation, 359–360
virtualization, using with DataGroup component, 184
visible property, using with components, 44
void special value, using in ActionScript, 88
VRule control, using, 50–51
VScrollBar control, using, 50

INDEX 437

closing tags, 207
debugging, 228
entities, 208
entity version for special characters, 208
example, 206–207
nesting tags, 207
pros and cons, 208
root document, 206
syntax rules, 207–208
using in PHP, 214–216
while loop, 216

XML data type
children() method, 225
using @ (at) character, 225
using in ActionScript, 224–225

XML declaration, adding for item renderer, 176
XML files, creating for books, 362
XML tag, using single quotation mark with, 215
XML variables, creating in ActionScript, 137–138
XMLListCollection, creating from XMLList, 142

z
Zend AMF

versus AMFPHP, 307, 330
installing, 309–310

Zend Framework installation, customizing, 319
Zend Framework Web site, 218–219
Zend Web site, 34
ZipCodeFormatter, features of, 186
ZipCodeValidator, domain property, 193

using in ActionScript, 95
using with JSON (JavaScript Object Notation), 218
using with XML data format, 216

width and height, using percentages for, 56
width attribute, using with components, 44
width property, using with Application tag, 43
window dimensions, changing, 43
Windows

editing system variables, 17
System Properties dialog, 17
updating path on, 17–18

windows. See also pop-up windows
communicating between, 392–393
using events on, 392–393
using variables with, 393

wizards, using with Web services, 286–291. See also data wizards

X
x and y coordinates, using with components, 44
XML

adding attributes to, 138
representing colors as, 137–138

XML component
adding to Declarations for phone tree, 157–158
source property, 143
using in MXML, 141–143

XML data format
attributes, 207
calling header() function, 214
CDATA blocks, 208

	Contents
	Introduction
	What is Flash?
	Why use Flash?
	The Case for RIAs
	The Case for Flash
	The Case Against Flash

	What is Flex?
	About This Book

	Chapter Four: Event Management
	Fundamental Concepts
	Inline Event Handling
	Functions as Event Handlers
	System Events
	User Events
	Managing Event Handlers with ActionScript

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

