LEARNING 105
GAME PROGRAMMING

A Hands-on Guide to Building Your First iPhone Game

MICHAEL DALEY

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw
Library of Congress cataloging-in-publication data is on file.
Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

ISBN-13: 978-0-321-69942-8

ISBN-10: 0-321-69942-4

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

First printing September 2010

Senior Acquisitions
Editor

Chuck Toporek

Senior
Development
Editor

Chris Zahn

Managing Editor
Kristy Hart

Project Editors
Barbara Campbell
and Jovana

San Nicolas-Shirley

Copy Editor
Water Crest
Publishing

Indexer
Lisa Stumpf

Proofreader
Sheri Cain

Publishing
Coordinator

Romny French

Cover Designer
Chuti Prasertsith

Contents at a Glance

N

© 0O N oo o &~ W

11
12
13
14
15
16

Preface xxi
Game Design 1

The Three Ts: Terminology, Technology,
and Tools 13

The Journey Begins 39
The Game Loop 73
Image Rendering 97
Sprite Sheets 137
Animation 153

Bitmap Fonts 165

Tile Maps 183

The Particle Emitter 223
Sound 249

User Input 285

The Game Interface 299
Game Objects and Entities 325
Collision Detection 357
Putting It All Together 369
Index 395

Table of Contents

Prefacettt i i i e XXi
1 Game Designciiiiiiii it 1
The Game That Started It All (ForMe) i 3
So, What's the Big [dea? i e e e 4
A Game That Fits with the iPhone 4
The Storyline e 5
What's ina Name? e 5
The Game’s Objective 6
Game Play Componentsttt e e e e 7
TIME o e 7
LIVES L e 7
Health ... 8

10 o] =T 1 £ 8
DOOIS . 9
WBaPONS .t ittt e e e e 10
ENtities . . oo e 10
Player . 11
SUMMI Y . o vttt et e e e e e e 11
2 The Three Ts: Terminology, Technology, and Tools 13
TerminOlOgY . . . ot e e 14
] 0 1= 14
Sprite Sheet e 16
ANIMation e 18
Bitmap FONts e 19
Tile MapPS . . o e e e 20
Particle System e 21
Collision Detectionot e 22
Artificial Intelligence (Al) oot e 23
GaME LOOP . .ttt e 24
Technology . .. o v e 26
Objective-C . .o o e e e 26
Cocoa ToUCh e 27
OpenGL ES . .. 27

OPENAL . o e 30

Contents

T00IS . .t e e e 31
The iPhone SDK 32
SUMMIAIY o e et et e e e e e e e e e e e e e 38
3 TheJourney Beginsttt ittt e s s e nnsnnnnsns 39
Creating the Project in Xcodet e 39
Running the Project i e e 42
Under the HOOd i e 43
Application Delegate e 43
Examining the Header File i 44
Examining the Implementation File 46
EAGLY W . o e 49
EAGLVieW.h . . 49
EAGLY i eW.M e 50
ESARENErero 58
Examining ES1Renderer.h e 58
Examining ES1Rendererm 59
Creating the Framebuffer and Renderbuffer 60
Defining the Color Values i e e e 66
PoSItioNiNg 67
How OpenGL WOrKS oot e e e e e e e e e e e e e 68
Applying Transformations on the Model 69
Rendering to the Screen 70
SUMMI Y . o vt et et e e e e e e 72
4 The Game Loopiciiiieinennennrnnsnnnasnnsnnnnnns 73
Timing Is Everything e 73
Collision Detection it e 74
The Game LOOp . ..o it e e e e e e e 75
Frame-Based e 75
Time-Based, Fixed Interval 77
Getting Started e 78
Inside the EAGLView Classottt e e e e 79
Inside the EAGLView.m File i 79
ESARenderer Classot 82
Configuring the View Port e 85

Game Scenes and the Game Controller 86

Contents

Creating the Game Controller e 87
The GameController Classo e e 87
Creating the Singleton e e 89
Inside GameControllerm 89
AbstractScene Class 92
GameScene Classottt e 93
SUMMAIY . ot et e e e e e e e e e e e e 95
EXEICISES L i e 95
Image Renderingc0iiiiiiinnnnerncnnnncarnnnnns 97
Introduction to Rendering e 97
Rendering @ Quad i e e 98
Texture Mapping . ..o v e e 101
Texture Coordinates i e 101
Interleaved Vertex Arraysot e e e 104
SHUCTUIES . o . o e e e e e 106
Image Rendering Classeso it ittt e e 107
Texture2D Class ittt e 108
TextureManager Classo i it e e e 116
ImageRenderManager Classottt e 119
The Image Class . .. v i e e e e e e e e 126
Initialization e 126
Retrieving a Sub-lmage 129
Duplicate an Imageot i it e e 130
Rendering an Image it e 130
Getters and Setters 134
SUMMI Y . o et e e e e e e e e e e 134
EXEICISE .o e 135
Sprite Sheets i i i it a e 137
Introduction to Sprite Sheets 137
Simple Sprite Sheet e 138
Complex Sprite Sheets e 139
USING ZWOPTEX . . v ottt e e e e e 141
The SpriteSheet Class i i e e e e e e 142
Initialization 143

Retrieving Sprites e 146

Xi

Xii

Contents

PackedSpriteSheet Class e e et e 147
Initialization e 147
Parsing the Control File e 148
Retrieving @ Sprite e 149

SUMMIAIY o ettt e e e e e e e e e e 150

EXEICISE .o e 151

Animationttt i e s a e 153

Animation Chapter Project e 153

Introduction to Animation 154
Frames . . o e 154
State .. 155
T D .t i e 155
DireCtion . .. 155
Bounce Frame e 155

Animation Classot e 156
Initialization e 156
Adding Frames e e 157
Animation Updates i e 158
Animation Rendering 160
Finishing Things Off e e e 161

SUMMIAIY ottt et e e e e e e e e e 163

EXEICISE .ot e 163

BitmapFontsciiiiiiii ittt e nnnns 165

Bitmap Font Project e 165

Introduction to Bitmap Fonts 166

Creating the Bitmap Font Sprite Sheet 167

The BitmapFont Class i e e e e e e 170
Header File e 170

What's with the C? e e 171
Inftializer e 171
Parsing the Control File e 172

Rendering Text oot e 176
Rendering Justified Text i 178
Text Width and Height 180

Deallocation e e e 181

10

Contents

SUMMAIY . ot et e e et et e e e e 181
EXEICISE .ot e 182
Tile Mapsciiiii ittt et s et nasasnasnannsnnnnnns 183
Getting Started with the Tile Map Project 183
Introduction to Tile Mapsottt e e 184
Tile Map Editor e 186
Tile Palette e 188
LayErS e e 188
Creating aTile Map . ..ottt e e e e e e e 189
Create aNew Tile Set e 190
Creating Map Layerst e e e e e e 191
Creating Object Layers et e e e 191
Drawing the Mapot e 192
Placing ObjJects . . .o it e e 192
Understanding the Tiled Configuration File 193
Map Element e 193
Tileset Element e 193
Layer Element e e 194
Object Group Element e 195
Tile Map ClasSes . . . v vttt e i e et e e e e e e e 196
Layer Class . . oo v i e e e 196
TileSet Class .. oo e 202
TiledMap Classottt e e e 204
Initialization e 205
Parsinga Map File 207
Creating the Layer Imageso i ittt e e e e e s 216
Rendering @ Layerot e e e 218
Getting Tile Informaiton 220
SUMMI Y . . et e et e e e e e e e 220
EXEICISE .o 221
The Particle Emitter i 223
Particle Emitter Project 224
Introduction to Particle Systems 225

Particle System Parameters 226

xiii

Xiv

Contents

11

12

Life Cycle of a Particle e 227
AParticle IS Born 227
A Particle Lives e 228
A Particle Dies e e 229
A Particle IsReborn 229
Particle Emitter Configuration i 230
Particle Emitter Classesot e 231
TBXMLParticleAdditions Classt 231
ParticleEmitter Class e 233
Have a Play e 247
SUMMIAIY o ettt e e e e e e e 248
SoUNd ... e i a e e e e e e e 249
Sound Project e 249
Introduction to Sound onthe iPhone 250
AUdIO SESSIONS . . o\ttt e 250
Playing MUSICo e 252
Playing Sound Effects i e 252
Creating Sound Effects i e 254
Stereo Versus MONOot 256
Sound Manager ClasSes . . v v ittt e e 256
SoundManager Class ... vt it e 257
Sound Effect Management 273
Loading Sound Effects ot 274
Playing Sound Effects i e 276
Stopping Sound Effects 279
Setting Sound Effect and Listener Position 281
Handling Sound Interruptions i 281
SUMIMAIY ot e e e e e e e e e e e 284
Userlnput0ttt nernennsnerannnsnnsnnnns 285
User Input Project e e 285
Introduction to User Input e 287
Touch Events e 287
Processing Touch Events i e e 289
The touchesBegan Phase i 290
The touchesMoved Phase i 292

The touchesEnded Phase 294

13

14

15

Contents

Processing Tapsot i i e 294
Accelerometer EVENtS e 296
SUMMIAIY o ettt e e e e e e e e e e e 298
TheGamelnterfaceciiiiirninernnnnrnnnnnns 299
Game Interface Project e 299
OpenGL ES Interface i e e e e 300
Rendering the Interface 301
Defining Button Bounds i e 304
Handling TouChes i e e e e e e 304
Handling Transitions 308
OpenGL ES Orientation i 308
UIKIt Interfaceso e e 312
Creating the Interface 312
Wiring Up the Interface e 315
UIKit Orientation e e e 318
Showing and Hiding a UlKit Interface 320
SUMMI Y .t et e et e e e e e e e e 323
Game Objects and Entities it iiiannnnn 325
Game Objects and Entities Project i 325
Game ObJeCtSot e 326
AbstractObject Class vt i i e 327
EnergyObject Class e e e 329
Game Entities o e 338
AbstractEntity Classo e 339
Artificial Intelligence e 341
Player Entity Class oot e 343
Saving a Game Object or Entity o i 352
SUMMIAIY ottt et e e e e e e e e e e 355
Collision Detectionttt nnnnrnnnnnns 357
Introduction to Collision Detection 357
Collision Pruningot e e e e e 358
Frame-Based Versus Time-Based 359

Axis-Aligned Bounding BOXESot i i it e 360

XV

XVi

Contents

16

Detecting ColliSioNS oot e 361
CollisSioN Map . ..ot e e e e e e 362
Entity-to-Map Collision Detection i 365
Entity-to-Entity Collision Detection 367
SUMMIAIY o ettt e e e e e e e e e e 368
Putting It All Together i iiiinarnanns 369
The “Camera” 369
Saving the Game State and Settings i 371
Saving Game State e 371
Loading Game State 373
Saving Game Settings i e 375
Loading Game Settingst e 376
Saving High SCores e 377
AddiNg @ SCOIE . .ttt e e 379
Saving High SCOres i e 380
Loading High Scores i e 381
Performance and TUNINGo i ittt e e e et e 382
Using Instruments i e e 383
Leaks Instrument 384
Using the OpenGL ES Instrument 387
Compiling for Thumb e e 389
Beta Testing oo 390
Multiple Device TYPeS . .. ittt et e e e e e 391
Feedback 392
SUMIMAIY et e e e e e e e e e e e 392

Preface

Writing a game can be a daunting task. Even if youre an experienced programmer,
the design patterns, terminology, and thought processes can seem strange and unusual.
Having spent most of my working life creating business applications, writing games has
been a hobby that has seen me create many games my children have played and enjoyed
over the years. With the release of the iPhone and iPod touch, it was time to unleash one
of my creations on the world.

My first task was to find a good book on developing games on the iPhone. After a lot
of research, I decided that the book I wanted just didn’t exist, and having had great feed-
back on a number of online tutorials I had created, I decided to write my own book.
This was a perfect opportunity for me to create the game programming book I've always
wanted myself.

Over the years, I've read many game development books and have been left wanting.
Although they provide information on the individual components required to make a
game and include small examples, they never go all the way to creating a complete game
good enough to publish. I've always believed that a good book should both tell the read-
er what is required to make a game but also demonstrate how those components can be
implemented inside a complete game project.

So, this book not only describes the components and technology needed to create a
game on the iPhone, but it does so through the creation of a complete game: Sir
Lamorak’s Quest: The Spell of Release. This game is currently available for free download
from the App Store, and is the game you learn how to build as you work your way
through this book.

Download the Game!

You can download Sir Lamorak’s Quest from the App Store:
http://itunes.apple.com/us/app/sir-lamoraks-quest-the-

spell/id368507448?mt=8. The game is freely available, so go ahead and download the
game, start playing around with it, and help Sir Lamorak escape from the castle!

This book describes the key components needed to create this 2D game. It covers both
the technology, such as OpenGL ES and OpenAL, as well as the key game engine com-
ponents required, including sprite sheets, animation, touch input, and sound.

http://itunes.apple.com/us/app/sir-lamoraks-quest-the-spell/id368507448?mt=8
http://itunes.apple.com/us/app/sir-lamoraks-quest-the-spell/id368507448?mt=8

XXii

Preface

Each chapter describes in detail a specific component within the game, along with
the technology required to support it, be it a tile map editor, or some effect we’re trying
to create with OpenGL ES. Once an introduction to the functionality and technology is
complete, the chapter then provides details on how the component has been implement-
ed within Sir Lamorak’s Quest. This combination of theory and real-world implementa-
tion helps to fill the void left by other game development books.

About Sir Lamorak’s Quest

My game-playing experiences started when I was given a Sinclair Spectrum 48k for
Christmas in 1982.1 was hooked from that moment, and I have had a close relationship
with computers ever since.

While thinking about the game I wanted to develop for this book, my mind kept
wandering back to the games I played in the 1980s. They may not have been visually
stunning, although at the time I was impressed, but they were fun to play.

I spent some time working on the design of the game, which included not only the
features I wanted in the game, but also how it should be implemented on the iPhone.
One key aspect of the game is that it should be casual—that is, the concept of the game
should be simple and easy to pick up, and players should be able to start and stop the
game easily without losing their progress.

I also wanted the controls to be easily recognizable and therefore decided to imple-
ment an onscreen joypad to control the main character. It was important, though, to
allow the player to swap the position of this joypad so that both left- and right-handed
players found the game comfortable.

As for the game play itself, I decided to take a number of design ideas from games I
played in the ‘80s and went with a top-down scroller, in which the player is trapped in a
haunted castle and has to find a magic spell so that he can escape.

Organization of This Book

There are 16 chapters in the book, each of which deals with a specific area of creating
Sir Lamorak’s Quest, as follows:

» Chapter 1, “Game Design”—This chapter describes the design considerations I
made while designing Sir Lamorak’s Quest. It provides an insight into the kind of
thought process required when sitting down to create a game. It doesn’t cover every
possible design decision needed for all genres of games, but it does cover the
important ones.

Preface

Chapter 2, “The Three Ts: Terminology, Technology, and Tools”—Even experienced pro-
grammers can become confused by the three Ts used within game development.
This chapter runs through the common technology, terminology, and tools used to
create Sir Lamorak’s Quest and games in general. This chapter helps you understand
the terms and technology covered throughout the book.

Chapter 3, “The Journey Begins”—This is where we start to get our hands on some
code and get the iPhone to render something to the screen. This chapter covers
the process of creating our first project using the OpenGL ES template project
within Xcode. The template is described in detail and sets the scene for the chap-
ters that follow.

Chapter 4, “The Game Loop”—The heartbeat of any game is the game loop. This
loop is responsible for making sure that all the core elements of the game, such as
Al and rendering, are done at the right time and in the right order. This may
sound simple, but there are a number of different approaches to the game loop, and
this chapter discusses them and details the approach taken for Sir Lamorak’s Quest.

Chapter 5, “Image Rendering”—Drawing images to the screen is a fundamental
requirement for any game. This chapter provides an overview of OpenGL ES and
runs through a number of classes created to simplify the creation and rendering of
images to the screen.

Chapter 6, “Sprite Sheets”—Sprite sheets are images that contain a number of small-
er images. These sheets can be used to reduce the number of individual images
held in memory and the number of different textures OpenGL ES needs to bind
to improving performance. They are also commonly used when creating animated
sprites. This chapter covers how to create sprite sheets that contain the images used
in the game, regardless of whether they have fixed or variable dimensions.

Chapter 7, “Animation”—Having created the means to store the different frames
needed in an animation using sprite sheets, this chapter describes how separate
images can be played in sequence to provide you with animation, such as the play-
er character running.

Chapter 8, “Bitmap Fonts”—The most common way to interact with your game’s
user is through the use of text. Being able to render instructions and information
(such as the player’s score or instructions on how to use the game) is important.
This chapter describes how you can use open source tools to take any font and
turn it into a bitmap font. Once the bitmap font is created, you’ll see how to cre-
ate a sprite sheet that contains all the images needed to render the characters in
that font. It also details the Bitmap font class used in Sir Lamorak’s Quest, which
provides a simple API for rendering text to the screen.

XXiii

XXiv

Preface

Chapter 9, “Tile Maps”—Tile maps allow large game worlds to be created from
reusing a small number of tile images. This common approach has been used in the
past to create large game worlds (think of the original Super Mario Brothers game
for Nintendo) when memory is limited, back in the early days of home game sys-
tems. This technique is still popular today, and this chapter describes the use of an
open source tile-editing tool to create tile maps, along with a class that can render
these maps to the screen.

Chapter 10, “The Particle Emitter”—Many games have impressive effects, such as
fire, explosions, smoke, and sparks. These are created using a particle system. The
particle system is responsible for creating and controlling a number of particles;
each has its own properties, such as size, shape, direction, color, and lifespan.
During a particle’s life cycle, its position, speed, color, and size are changed based
on the particle’s configuration. This chapter details how to create a particle system
that can be used to generate any number of organic effects.

Chapter 11, “Sound”—Giving the player feedback using sound is important in
today’s modern games. This chapter describes how the media player functionality
of the iPhone, along with OpenAL, can be used to play a cool soundtrack in the
game, as well as 3D (surround) sound effects.

Chapter 12, “User Input”—This chapter describes how to use the iPhone’s unique
touch and accelerometer capabilities to control your game. It details how to cap-
ture and process multiple touches at the same time and also how data from the
accelerometer can be used within your own games.

Chapter 13, “The Game Interface”—In this chapter, we start to look at how the
game interface for Sir Lamorak’s Quest was implemented. This includes how to deal
rotation events to make sure that the user interface is always oriented correctly. It
also describes how to mix both OpenGL ES and UIKit interface controls.

Chapter 14, “Game Objects and Entities”—As the player runs around the castle in Sir
Lamorak’s Quest, we want him to be able to find objects, pick them up, and fight
baddies. This chapter describes how objects and entities have been implemented
within Sir Lamorak’s Quest.

Chapter 15, “Collision Detection”—Having the player and baddies run through walls
and doors would really spoil the game, so it’s important to be able to register colli-
sions between either the player and the map or objects and entities within the cas-
tle. This chapter describes difterent types of collision detection and how this has
been implemented within Sir Lamorak’s Quest.

Chapter 16, “Pulling It All Together”—At this point, a great deal of ground has been
covered. There is, however, a number of things you can do to the game to add pol-
ish. This chapter covers how to save the player’s game state for when he quits or
leaves the game when he has an incoming call. Chapter 16 also covers perform-
ance tuning using instruments and tips for getting your game beta tested.

Preface

Audience for This Book

This book has been written for people who are already programmers but who have
never written computer games before. Although it assumes that you already have
some experience with Objective-C, each chapter provides enough information on
both Objective-C and other technologies so you can follow the concepts and
implementations.

By the time you complete this book, you will have an in-depth understanding of the
game engine that was built for Sir Lamorak’s Quest and the key capabilities and consider-
ations are needed to create a 2D game engine. This enables you to take the same game
engine developed in this book and use it in your own games, or simply use the knowl-
edge you have gained about creating games in general and use one of the many game
engines available for the iPhone, such as Cocos2D.

Who This Book Is For

If you are already developing applications for the iPhone for other platforms, but want to
make a move from utility applications to games, this book is for you. It builds on the
development knowledge you already have and leads you into game development by
describing the terminology, technology, and tools required, as well as providing real-
world implementation examples.

Who This Book Isn’t For

If you already have a grasp of the workflow required to create a game or you have a
firm game idea that you know requires OpenGL ES for 3D graphics, this is not the
book for you.

It is expected that before you read this book, you are already familiar with Objective-
C, C, Xcode, and Interface Builder. Although the implementations described in this
book have been kept as simple as possible and the use of C is limited, a firm foundation
in these languages is required.

The following titles can help provide you with the grounding you need to work
through this book:

» Cocoa Programming for Mac OS X, Third Edition, by Aaron Hillegass (Addison-
Wesley, 2008).

» Learning Objective-C 2.0, by Robert Clair (Addison-Wesley, 2011).
s Programming in Objective-C 2.0, by Stephen G. Kochan (Addison-Wesley, 2009).

» Cocoa Design Patterns, by Erik M. Buck and Donald A.Yacktman (Addison-Wesley,
2009).

XXV

XXVi

Preface

= The iPhone Developer’s Cookbook, Second Edition, by Erica Sadun (Addison-Wesley,
2010).

s Core Animation: Simplified Animation Techniques for Mac and iPhone Development, by
Marcus Zarra and Matt Long (Addison-Wesley, 2010).

= iPhone Programming: The Big Nerd Ranch Guide, by Aaron Hillegass and Joe Conway
(Big Nerd Ranch, Inc., 2010).

These books, along with other resources you'll find on the web, will help you learn
more about how to program for the Mac and iPhone, giving you a deeper knowledge
about the Objective-C language and the Cocoa frameworks.

Download the Source Code

Access to information is not only limited to the book. The complete, fully commented
source code to Sir Lamorak’s Quest is also available for download on InformIT.com.

There is plenty of code to review throughout this book, along with exercises for you
to try out, so it is assumed you have access to the Apple developer tools, such as Xcode
and the iPhone SDK. Both of these can be downloaded from the Apple iPhone Dev
Center.?

2 Apple’s iPhone DevCenter: developer.apple.com/iphone.

0

Sprite Sheets

Chapter 5,“Image Rendering,” was large and covered a number of complex concepts.
Having done all that hard work, and with the classes in place for representing and render-
ing images, we can move on to the other components needed in the game engine for Sir
Lamorak’s Quest.

As the title suggests, this chapter is all about sprite sheets. If you remember from
Chapter 2,“The Three Ts: Terminology, Technology, and Tools,” a sprite sheet is a large im-
age that contains a number of smaller images.

There are two key benefits to using sprite sheet, as follows:

= You reduce the number of times you need to ask OpenGL ES to bind to a new
texture, which helps with performance.

= You gain the ability to easily define and reuse image elements of the game, even in
animations.

This chapter reviews the spriteSheet and PackedSpritesheet classes and shows how to
extract specific images from within a larger image sprite sheet.

Introduction to Sprite Sheets

As mentioned in Chapter 2, there are two different types of sprite sheets, as follows:

= Basic, where all the images in the sprite sheet have the same dimensions.

= Complex, where the images in the sprite sheet could all have different dimensions.

For Sir Lamorak’s Quest, we are going to be using both kinds of sprite sheets. Although it
is possible to merge both the simple and complex sprite sheet functionality into a single
class, I have split them into two different classes to make things easier to understand. Basic
sprite sheets are handled in a class called spritesheet, whereas the PackedSpriteSheet
class handles complex sprite sheets.

138

Chapter 6 Sprite Sheets

Note

| use the term packed because you can place smaller sprite sheets within this larger sprite
sheet, thus reducing the number of separate sprite sheets used in the game.

Another term for a sprite sheet is a fexture atlas, but I will continue to use the old-school
term of “sprite sheet” throughout this book.

Simple Sprite Sheet

The spritesheet class takes the image provided and chops it up into equally sized sub-
images (sprites). The dimensions to be used when dividing up the sprite sheet will be pro-
vided when a new sprite sheet is instantiated. Information is also provided about any
spacing that has been used within the provided sprite sheet image. Spacing is an important
property within a sprite sheet. Without going into detail, when defining texture coordi-
nates within an image for OpenGL ES, it is possible to sample a pixel beyond the edge of
the texture you are defining. This can cause your textures to have an unwanted border that
is made up of pixels from the image around the image defined with your texture coordi-
nates. This is known as fexture bleeding.

To reduce the risk of this happening, you can place a transparent border around each
image within a sprite sheet. If OpenGL ES then goes beyond the edge of your texture, it
will only sample a transparent pixel, and this should not interfere with the sprite you have
defined. Zwoptex' enable you to specify the number of pixels you would like to use as a
border around your sprites. Figure 6.1 shows a simple sprite sheet image with single pixel
border between each sub-image. If you are drawing non-square triangles, the spacing may
need to be more than one pixel to help eliminate texture bleeding.

.--ili('

Figure 6.1 Sprite sheet with spacing between each
sprite.

In terms of how we are going to access the sprites on a simple sprite sheet, we're going to
use its grid location. A simple sprite sheet makes a nice grid because all the images are the

* Zwoptex (www.zwoptexapp.com/flashversion/) is a Flash-based sprite sheet builder. There is also
a Cocoa-based version of this tool available. This Cocoa version generates output the same as the
flash version, but was not available during the writing of this book.

www.zwoptexapp.com/flashversion/

Introduction to Sprite Sheets

same size. This makes it easy to retrieve a sprite by providing its row and column number.
Figure 6.2 shows a sprite sheet of twelve columns and three rows with the sprite at loca-
tion {5, 1} highlighted.

IIIIIHIIIIII

IEese=am il
Illll*lﬁ+iim

Figure 6.2 Sprite sheet grid with location {5, 1}
highlighted.

Complex Sprite Sheets

The PackedsSpritesheet class takes an image and the name of the control file. The control
file is parsed to obtain the location and size of every sprite within the sprite sheet image.

The control file is the key difference between a basic (Spritesheet) and complex
(Packedspritesheet) sprite sheet. With the basic sprite sheet, you can work out where
each sprite is by performing a simple calculation using its grid position. This is harder to
do with a complex sprite sheet because the sprites can be different sizes and are often
placed randomly throughout the image to make the best use of space.

To help identify the coordinates of the sprites in a complex sprite sheet, the control file
provides information on where each sprite is located inside the sprite sheet, along with its
dimensions. The control file also gives each image a key, usually the name of the image file
of the original sub-image, which then allows the Packedspritesheet class to reference
each sprite. Figure 6.3 shows the complex sprite sheet that we use in Sir Lamorak’s Quest.

M OR T OTSAAY 0 e e

L v B8 BTG
aanttHRAR’ HBB.-cssssn @

< o -

< >

TOTOADAD
w0 D O
SOWOTD
KOXOLO LD

Figure 6.3 Complex sprite sheet from Sir Lamorak’s Quest.

139

140

Chapter 6 Sprite Sheets

As you can see from Figure 6.3, a complex sprite sheet has many images that are all dif-
ferent sizes and shapes—thus the need for a control file to make sense of it all.

You could create your own control file for these files, providing the information on the
pixel locations within the image and its dimensions, but to be honest, that is a really te-
dious job. Luckily for us, there are tools that can help.

The Zwoptex tool (mentioned earlier, and discussed in Chapter 2) is one such tool. It
not only produces a PNG image of the generated sprite sheet, but it also creates the con-
trol file you need to identify the individual images within.

Zwoptex has a number of different algorithms that can help pack images, but it also
enables you to move the images around, making it possible for you to pack as many im-
ages as possible into a single sheet. There are some good algorithms out there for optimiz-
ing the packing of variably sized images, but you’ll always get the best results doing this
manually.

Figure 6.4 shows the flash version of Zwoptex editing the complex sprite sheet.

hitp: /) ewaptex. rvopplecom) Zwontex. swi
A ||]| @ b, h 2 wl G | (Qr Coogle

File Ecit Modify Avangs

Figure 6.4 The Flash-based Zwoptex tool, used for editing a complex
sprite sheet.

Zwoptex has three different outputs, as follows:

= A project file that stores your settings and images for a particular sprite sheet
= A PNG image of the sprite sheet

= A plist control file, which you can add to your game

The thing I like the most about Zwoptex is that it gave me the control file as a plist file.
Although you can obviously handle raw XML if needed (or any other format, for that

Using Zwoptex

matter), having a plist file makes things so much easier (and I like to take the easy route
whenever possible).
Now that you know what Zwoptex is, let’s show you how to use it.

Using Zwoptex

Using Zwoptex is really easy. Just point your browser to www.zwoptexapp.com/
flashversion/. Once there, Zwoptex opens, and you can start creating your sprite sheet.

The first step is to import images. Start by going to the menu File > Import Images
(see Figure 6.5), and you see an Open File panel for you to navigate to the file(s) you
want to import.

http:/

« | E E ~r |6 htp:/ fzwoptex.zwopple.com/Zwoptex.swfi

File Edit Modify Arrange

Load Project
Sawve Project I

Import Images

Export Texiure |

Export Coordinates

Figure 6.5 Import images into the sprite sheet.

After you select your images, hit the Select button to load the images into Zwoptex. All
the images you’ve selected will be placed at the top-left corner of the screen, as shown in
Figure 6.6.

http:/ /2
‘|l~ ar | +|6nn:p:.f,“_ prex. .COM/ZWopTex.swf

Fila Edit Mindify Arrange

Figure 6.6 Zwoptex imports the images in the
top-left corner of the canvas.

141

www.zwoptexapp.com/flashversion/
www.zwoptexapp.com/flashversion/

142

Chapter 6 Sprite Sheets

Now that you’ve placed the images in Zwoptex, there are a number of ways to arrange
the sprites on the canvas. Under the Arrange menu, you will find different options for
laying out the sprites. Figure 6.7 shows the sprites having been laid out using the
Complex By Width (no spacing) option.

http:/ fzwoptex. zwopple.com/ Fwaptex. swf

4 I 13| [+ 6 hitp: f rwoptex. rwopple com [Swoptex. swi v

ByName & Widn
ByName & Height

By Widin

By Haight

Complex By Width (no spacing)
Campilex By Height (no spacing)

Minimum Spacing

Figure 6.7 Sprite options menu and arranged sprites.

You can do this manually by clicking any sprite and moving it to the position you want.
You can also use the Modify menu to change the size of the canvas to fit your needs.

By default, Zwoptex trims transparent edges from the imported images. This can be a
problem, however, if the image you imported will be used as a simple sprite sheet. These
images need to retain their original dimensions or the calculations used to define the posi-
tion of each sprite will be incorrect.

Within the Modify menu is the option to Untrim Selected Images. This should be
used to ensure that the images are returned to their original size. This is not necessary if
the image won’t be used as a sprite sheet.

Having arranged your sprites, you can then export both the image (texture) and the
control file (coordinates). There are two options within the File menu that let you do this:
Export Texture and Export Coordinates. Both options enable you to select the loca-
tion where you would like the file(s) saved.

That’s it! You now have a sprite sheet image file and its accompanying control file.

The SpriteSheet Class

Having looked at the basics of a sprite sheet, we can now look at our implementation of
the spritesheet class. In Xcode, open the CH06_SLQTSOR project and look inside the
Game Engine group.You will see a new group called Sprite Sheet, inside of which are the
Spritesheet classes header and implementation files.

The SpriteSheet Class

Initialization
Inside the SpriteSheet.m file, you find the following class methods:

= spriteSheetForImageNamed:spriteSize:spacing:margin: imageFilter

m spriteSheetForImage:sheetKey:spriteSize:spacing:margin:

These methods are used to create new sprite sheets either from an image file or from an
Image instance that has already been created. Notice that both of these are class methods.
This means you don’t need an instance of the Spritesheet class to access them. Having
also defined a static NSDictionary within the class, you can use these class methods to ac-
cess the dictionary information that only has a single instance.

The idea is that a sprite sheet is cached when it is created. Whenever a new sprite
sheet that either uses the same image file or key is requested, a reference to the sprite
sheet already created is returned. This helps with performance when you have a large
number of entities that share the same sprite sheet (for example, the Door class, which you
will see soon).

These class methods still make use of the standard initializer methods; they just cache
the sprite sheet returned by these methods for later use. Listing 6.1 shows the

spriteSheetForImageNamed:spriteSize:spacing:margin:imageFilter: method.

Listing 6.1 The spriteSheetForimageNamed:spriteSize:spacing:margin:imageFilter:
Method

static NSMutableDictionary *cachedSpriteSheets = nil;

+ (SpriteSheet*)spriteSheetForImageNamed: (NSString*)almageName
spriteSize: (CGSize)aSpriteSize spacing:(NSUInteger)aSpacing
margin: (NSUInteger)aMargin imageFilter:(GLenum)aFilter {

SpriteSheet *cachedSpriteSheet;

if (!cachedSpriteSheets)
cachedSpriteSheets = [[NSMutableDictionary alloc] init];

if (cachedSpriteSheet = [cachedSpriteSheets objectForKey:almageName])
return cachedSpriteSheet;

cachedSpriteSheet = [[SpriteSheet alloc]
initWithImageNamed:aImageName spriteSize:aSpriteSize
spacing:aSpacing margin:aMargin imageFilter:aFilter];
[cachedSpriteSheets setObject:cachedSpriteSheet forKey:almageName];
[cachedSpriteSheet release];

return cachedSpriteSheet;

143

144

Chapter 6 Sprite Sheets

The first line in Listing 6.1 defines a static NSMutableDictionary.This creates a single in-
stance of NSMutableDictionary that the class methods use to cache the sprite sheets. This
dictionary has been defined at the class level, which means that only a single copy of this
dictionary will exist, regardless of how many Spritesheet instances are created. This pro-
vides us with a single cache of the sprite sheets.

The rest of the class simply checks to see if an entry already exists in the dictionary for
an image name passed in (using spriteSheetForImageNamed). If the other method passes
in a ready-made image, the sheetKey provided is used.

If no match is found, a new sprite sheet is created and added to the dictionary. Other-
wise, the matching entry from the dictionary is passed back to the caller.

The initializer used when an image name is provided is shown in Listing 6.2.

Listing 6.2 SpriteSheet initWithimageNamed:spriteSize:spacing:margin:imageFilter
Method

- (id)initWithImageNamed: (NSString*)aImageFileName
spriteSize: (CGSize)aSpriteSize spacing:(NSUInteger)aSpacing
margin: (NSUInteger)aMargin imageFilter:(GLenum)aFilter {

if (self = [super init]) {
NSString *fileName = [[aImageFileName lastPathComponent]
stringByDeletingPathExtension];

self.image = [[Image alloc]
initWithImageNamed:filename filter:aFilter];

spriteSize = aSpriteSize;
spacing = aSpacing;
margin = 0;

[self cacheSprites];

}

return self;

The start of the initializer method is standard, and we have seen it many times already. The
first interesting action comes when we create an image instance of the image used as the
sprite sheet.

We are using the Image class that we created in the last chapter, passing in the image
name that has been provided along with the image filter.

Next, the sprite’s size, spacing, and margin are defined. At this point, we branch oft and
call a private method, called cachesprites, which caches the information for each sprite
in this sprite sheet. Calculating this information only once is important to help perform-
ance. This information should never change during the lifetime of a sprite sheet, so there
is no need to calculate each time we request a particular sprite.

The SpriteSheet Class

We examine the cacheSprites method in a moment; first, there is another initializer
method to look at, as shown in Listing 6.3.

Listing 6.3 SpriteSheet initWithimage:spriteSize:spacing:margin Method

- (id)initwWithImage:(Image*)almage spriteSize:(CGSize)aSpriteSize
spacing: (NSUInteger)aSpacing margin: (NSUInteger)aMargin{
if (self = [super init]) {
self.image = aImage;

spriteSize = aSpriteSize;
spacing = aSpacing;
margin = aMargin;

[self cacheSprites];

}

return self;

The previous initializer took the name of an image file and created the image as part of
creating the sprite sheet. This second initializer takes an image that’s already been created.
Not only is it useful to create a sprite sheet using an image instance that already exists, but
it is also the method that’s used when we create a sprite sheet from an image held in a
complex (or packed) sprite sheet.

The only difference in this initializer from the last is that we set the sprite sheet’s image
to reference the Image instance that has been passed in.This method still calls the
cacheSprites method, and that’s the next method we discuss.

The cachesprites method (shown in Listing 6.4) is a private method, as we only use
it internally in the spritesSheet class.

Listing 6.4 SpriteSheet cacheSprites Method

- (void)cacheSprites {

horizSpriteCount = ((image.imageSize.width + spacing) + margin) /
((spriteSize.width + spacing) + margin);

vertSpriteCount = ((image.imageSize.height + spacing) + margin) /
((spriteSize.height + spacing) + margin);

cachedSprites = [[NSMutableArray alloc] init];
CGPoint textureOffset;

for(uint row=0; row < vertSpriteCount; row++) {
for(uint column=0; column < horizSpriteCount; column++) {

CGPoint texturePoint = CGPointMake((column *

145

146

Chapter 6 Sprite Sheets

(spriteSize.width + spacing) + margin),
(row * (spriteSize.height + spacing) + margin));

textureOffset.x = image.textureOffset.x *
image.fullTextureSize.width + texturePoint.x;

textureOffset.y = image.textureOffset.y *
image.fullTextureSize.height + texturePoint.y;

CGRect tileImageRect = CGRectMake (textureOffset.x,
textureOffset.y, spriteSize.width, spriteSize.height);

Image *tileImage = [[image subImagelnRect:tileImageRect]
retain];

[cachedSprites addObject:tileImage];

[tileImage release];

The first two calculations work out how many sprites there are in the sprite image, and a
new NSMutableArray is created. This array holds Image instances created for each image
in the sprite sheet. Again, creating the images at this stage and caching them improves per-
formance. This is not an activity you want to be performing in the middle of game play.

With the array created, we then loop through each row and column, creating a new
image for each sprite. We use the information we have about the sprite sheet, such as size,
spacing, and margin, to calculate where within the sprite sheet image each sprite will be.
With this information, we are now able to use the subImageInRect method of the Image
class to create a new image that represents just the sub-image defined.

Retrieving Sprites

Having set up the sprites on the sprite sheet, the next key activity is to retrieve sprites. We
have already discussed that one of the key tasks of the spritesheet class is to return an
Image class instance configured to render a single sprite from the sprite sheet, based on the
grid location of the sprite.

The spriteImageAtCoords: method shown in Listing 6.5 implements the core mech-
anism for being able to retrieve a sprite.

Listing 6.5 SpriteSheet spritelmageAtCoords: Method

- (Image*)spriteImageAtCoords: (CGPoint)aPoint {

if(aPoint.x > horizSpriteCount-1 || aPoint.y < 0 || aPoint.y >
vertSpriteCount-1 ||
aPoint.y < 0)

PackedSpriteSheet Class

return nil;
int index = (horizSpriteCount * aPoint.y) + aPoint.x;

return [cachedSprites objectAtIndex:index];

The first check we carry out in this class is on the coordinates that are being passed in.
This method takes the coordinates for the sprite in a CGPoint variable. cGPoint has an x
and y value that can be used to specify the grid coordinates in the sprite sheet.

When we know that the coordinates are within the sprite sheet, we use the coordinates
of the sprite to calculate its location within the NSMutablearray. It’s then a simple task of
retrieving the image from that index and passing it back to the caller

That’s it for this class. It’s not that long or complex, but it does provide an important
building block within our game engine.

PackedSpriteSheet Class

As mentioned earlier, the Packedspritesheet class is responsible for dealing with com-
plex sprite sheets. These sprite sheets contain many variably sized images to which we
want to get access. This often includes other sprite sheets. This class can be found in the
same group within the CH06_SLQTSOR project, as before.

Initialization

This class uses the same caching technique as the spritesheet class. There is, however,
only one initializer, which is shown in Listing 6.6.

Listing 6.6 PackedSpriteSheet initWithimageNamed:controlFile:filter Method

- (id)initWithImageNamed: (NSString*)almageFileName
controlFile: (NSString*)aControlFile

filter:(GLenum)aFilter {

if (self = [super init]) {
NSString *fileName = [[aImageFileName lastPathComponent]
stringByDeletingPathExtension];

image = [[[Image alloc] initWithImageNamed:fileName
filter:aFilter] retain];

sprites = [[NSMutableDictionary alloc] init];
controlFile = [[NSDictionary alloc]

initWwithContentsOfFile:[[NSBundle mainBundle]
pathForResource:aControlFile ofType:@"plist"]];

147

148

Chapter 6 Sprite Sheets

[self parseControlFile:controlFile];
[controlFile releasel;

}

return self;

Once inside the initializer, we create a new Image instance from the details passed in and
allocate an NSMutableDictionary instance called sprites that will hold the details of the
sprites in our packed sprite sheet.

The last section of the initializer grabs the contents of the control file that were passed
in and loads it into an NSDictionary called controlFile. It is always assumed that the
type of file is a plist, so the file type is hard coded. After we have the controlFile diction-
ary populated, we then parse the information inside that dictionary using the private
parseControlFile method shown in Listing 6.7.

Listing 6.7 PackedSpriteSheet parseControlFile: Method

- (void)parseControlFile: (NSDictionary*)aControlFile {
NSDictionary *framesDictionary = [controlFile objectForKey:@"frames"];
for (NSString *frameDictionaryKey in framesDictionary) {

NSDictionary *frameDictionary = [framesDictionary
objectForKey:frameDictionaryKey];

float x = [[frameDictionary objectForKey:@"x"] floatValue];
float y = [[frameDictionary objectForKey:@"y"] floatvalue];
float w = [[frameDictionary objectForKey:@"width"] floatvalue];
float h = [[frameDictionary objectForKey:@"height"] floatvalue];
Image *subImage = [image subImagelnRect:CGRectMake(x, y, w, h)];

[sprites setObject:subImage forKey:frameDictionaryKey];

Parsing the Control File
The parsecontrolFile method creates a dictionary from all the frames objects within
the dictionary we passed in. There are several objects inside the plist file, as follows:

= Texture, which holds the dimensions of the texture.

= Frames, which hold objects keyed on the image’ filename for each image in the
sprite sheet.

PackedSpriteSheet Class

An example of the plist file inside the Plist Editor can be seen in Figure 6.8.

Key Type
¥ Root Dicvionary ; ®
¥ texture Dictionary
width Number
height Number
¥ frames Dictionary
¥ ghost_spritesheet.ong Dictionary
x Number
¥ Number o
width Number 120
height Number 40
offserx Number o
offsety Number o
¥ player_spriteshest.png Dictionary |16 iter
x Number o
¥ Kumber a0
width Number 180
height Number 160
offsetx Number o
offsety Number a

Figure 6.8 Sprite sheet plist control file.

The details we want for the sprites are therefore held in the frame’s objects.

Now that we have a dictionary called frames, we loop through each of them, extract-
ing the information we need. For each frame we find, we assign another NsSbictionary
that contains the objects for the key we are dealing with. Remember that the key is a
string that contains the name of the original image file that was embedded into the larger
sprite sheet. This makes it easy later on to reference the image we need.

Once we have the information for the frame, we then add a new object to our
sprites dictionary. The key is the name of the image file we have just read from the con-
trol file, and the object is an Image instance.

Getting a sub-image from the full sprite sheet image creates the Image instance. Again,
we are just making use of functionality we have already built.

This process is repeated for each image in the sprite sheet control file, and we end up
with a dictionary that contains an image representing each image in our packed sprite sheet.

Retrieving a Sprite
Having all our sprites in a dictionary now makes retrieving a sprite from our

Packedspritesheet very simple. This is done using the imageForkey method. Listing 6.8
shows this method.

Listing 6.8 PackedSpriteSheet imageForKey Method

- (Image*)imageForKey: (NSString*)aKey {
Image *spriteImage = [sprites objectForKey:aKey];
if (spriteImage) ({
return [sprites objectForKey:aKey];

149

150

Chapter 6 Sprite Sheets

NSLog(@"ERROR - PackedSpriteSheet: Sprite could not be found for key
's@'", aKey);
return nil;

We pass an NSString into this method containing the key to the sprite’s dictionary that
we created earlier. If you remember, the key is the filename of the image that was placed
inside the packed sprite sheet. If an image is found for the key supplied, a reference to this
image is returned. Otherwise, an error is logged, so we know that the sprite we wanted
could not be found.

Note

Notice that, in some methods, an error is raised using NSLog. This is handy when debug-
ging your game, but this is also a huge performance hog. To reduce the possibility of an
NSLog message being called in the production code, it would be worth only generating the
log messages when running in debug code.

Summary

In this chapter, we have reviewed the Spritesheet and PackedSpriteSheet classes that
continue to build out our game engine for Sir Lamorak’s Quest. These classes enable us to
retrieve sub-images from within a specified image in a number of ways:

= Spritesheet class: As a new Image instance based on a sprite’s grid location.

= PackedSpritesheet class: As an Image reference based on a sprite’s key (for ex-
ample, the sub-image’s original filename).

These important classes enable us to not only manage the number of textures we need,
but also provide us with a mechanism for grabbing the images needed to create anima-
tion.

Classes such as Image, Spritesheet, and PackedSpriteSheet are the building blocks
that form the backbone of our game engine. Being comfortable with how they work and
how they can be used enable you to get the most out of the game engine itself, as well as
a clearer view of how to implement your own games. Although the game engine we are
building for Sir Lamorak’s Quest is not suited to all types of games, it provides you with
the basis for any future games you want to develop. This enables you to take the game en-
gine in new directions as your needs and experience grow.

The next chapter covers animation. It’s not exactly Pixar Animation,” but animation
nonetheless.

2 Pixar Animation is an award-winning computer animation studio responsible for feature films such
as Toy Story, Monsters, Inc., and Finding Nemo, among many others.

Exercise

Exercise

The example project that is provided with this chapter, CHO6_SLQTSOR, displays three
different images that have been taken from a single sprite sheet. These images are scaled,

rotated, and colored using the features of the Image class covered in Chapter 5 to show

that the Image instance returned is an entirely separate image in its own right.

The current project 1s using a couple of sprite sheets from Sir Lamorak’s Quest that

have been placed inside a complex sprite sheet.

Using this project as a guide, why not try to create your own basic sprite sheet or

download one from the Internet? Once you have your sprite sheet, create a complex

sprite sheet using Zwoptex and then render your sprites to the screen.

Here are the steps you need to follow:

1.
2.

Decide what fancy sprites you want to create.

Work out the dimensions each sprite is going to be (for example, 4040 or
50%80) and any spacing you want to use.

. Open up your favorite graphics package and draw your sprites, remembering to

keep each sprite in a square that has the dimensions you decided.

4. Export your sprite sheet as a PNG file.

5. Open up the Zwoptex link (www.zwoptexapp.com/flashversion/), and add

the sprite sheets that are included in the project along with your own.

6. Export the texture and coordinates from Zwoptex.

7. Add the two files you have just generated to the Xcode project.This can be

done by right-clicking the Images group inside the Game Resources group and
selecting Add > Add Existing File. Inside the panel that pops up, navigate to
the file and select it.You should also select the Copy option to make sure the
files are copied to the project folder.

. Finally, follow the code example in the current project to import and start using

your sprite sheet.

. Once you are rendering your sprites, try to apply some image functions, such as

scaling, rotation, and color.

151

www.zwoptexapp.com/flashversion/

Index

A

A*, 343

AABB (Axis-Aligned Bounding Boxes),
360-361

abstract classes, 79
AbstractEntity class, 339
AbstractObject class, 327-329
AbstractObject Methods, 329
AbstractScene, 92-93
accelerometer, 285
accelerometer events, 296-298
adding

frames, Animation class, 157-158

images to render queue,
ImageR enderManager, 120-123

object layers to maps, 335
particles, ParticleEmitter class, 243-244
scores, to high scores, 379-380
tile images, to layers, 199-200
tiles, to layers, 198-199
Al (artificial intelligence), 23
game entities, 341-343
alBufferData, 276
alBufferDataStaticProc, 276

alertView:clickedButtonAtindex:
method, 378

alGenSources, 261
AngelCode, 20
angleOfMovement, 348-349

animation

animation, 18-19
bounce frames, 155-156
direction, 155
frames, 154-155
projects, 153-154

rendering with Animation class,
160-161

states, 155
types, 155
updates, Animation class, 158-160
Animation class, 156
animation
rendering, 160-161
updates, 158-160
finishing things oft, 161-163
frames, adding, 157-158
initialization, 156-157
animationFramelnterval, 55
applicationWillTerminate, 43
application delegates, 43-44
header files, examining, 44-46

implementation files, examining,
46-49

applicationDidBecomeActive, 43

applicationDidFinishLaunching, 43

applicationWillResignActive, 43

arrays, vertex arrays, 104

artificial intelligence (Al), 23
game entities, 341-343

audio playback formats, 255

audio sessions, 250-251

AudioServices, 273

AVAudioPlayer, 255

AVAudioSessionCategorySoloAmbient,
250-251

Axe class, 339

Axis-Aligned Bounding Boxes (AABB),
360-361

B

beta testing, 390-391
feedback, 392
multiple device types, 391

binding, texture and setting parameters,
Texture2D, 113-114

bitmap fonts, 19-20, 165-167
C, 171
initializer, 171-172
parsing control files, 172-174
projects, 165
rendering text, deallocation, 181
sprite sheets, creating, 167-170
BitmapFont class, 170
header files, 170-171
bounce frames, animation, 155-156
boundaries, visualizing, 306-308
button bounds, defining, 304
bitmap fonts, 171
initializer, 171-172
parsing control files, 172-174

C

cachedTextures, 118
CADisplayLink, 56
CAEAGLLayer, 52
calloc command, 157
cameras, 369-371
CGPoint, 147
CGRectContainsPoint function, 305
char id, 174
parsing, 175-176
cheating, Al (artificial intelligence), 342

checkForCollisionWithEntity: method,
333-334, 367-368

checkForParchment:pickup: method, 351

checklJoypadSettings method, 322

@class, 45

clipping, 67

Cocoa Design Patterns, 312

Cocoa Touch, 27

Cocoa Touch Class, 312

codecs, 255

collision detection, 22-23, 357-358, 361-362

Axis-Aligned Bounding Boxes
(AABB), 360-361

entity-to-entity collision detection,
367-368

entity-to-map collision detection,
365-366

frame-based versus time-based,
359-360

game loops, 74-75
collision maps, 362-365
collision method, 334
collisionBounds method, 334
collisions

detecting, 361-362

EnergyObject class, 333-334

pruning, 358-359
color values, ES1Renderer, 66

positioning, 67-68
common, 173

parsing, 174
Compiling for Thumb, performance, 389-390
components, 7

doors, 9

entities, 10

health, 8

lives, 7-8

objects, 8

energy items, 9
keys, 9

parchment pieces, 9

energy items

players, 11

time, 7

weapons, 10
configuration, particle emitters, 230-231
configuring, view ports, 85-86
control files, 17

parsing

C,172-174

with PackedSpriteSheet class,
148-149

controlling music, SoundManager, 265-266
copylmageDetails method, 121

Core Animation, 321

CPU spike, OpenGL ES instrument, 377

createLayerTilelmage: method, 216

D

dealloc method, 162, 181

deallocation, rendering text, 181

delegates. See application delegates
design patterns, 312

detecting, collisions, 361-362

direction, animation, 155

directories, 353-354

doors, 9, 338

drawing maps, tile maps, 192
droplnventoryFromSlot: method, 351-352

duplicating images, Image class, 130

E

EAGLView, 49, 290

EAGLView class, 79

EAGLView.h, 49-50

EAGLView.m, 50-58, 79-82
encodeWithCoder: method, 354-355

energy items, 9

397

398

EnergyObject class

EnergyObject class, 329

collisions, 333-334

initialization, 329-332

rendering, 333

updating, 332-333
entities, 10
entity-to-entity collision detection, 367-368
entity-to-map collision detection, 365-366
ES1Renderer, 58

color values, 66

positioning, 67-68

framebulffer, creating, 60-66

game loops, 82-85

render method, 63-66

renderbuffer, creating, 60-66
ES1Renderer.h, 58-59
ES1Renderer.m, 59-60
ES2Renderer, 52
examining

header files, 44-46

implementation files, 46-49

F

fadelmage, 303

fading music, SoundManager, 266-268
feedback, beta testing, 392

fonts, bitmap fonts, 19-20. See bitmap fonts
FPS (Frames Per Second), 74

frame-based collision detection, versus time-
based, 359-360

frame-based game loops, 75-76
framebuffer, ES1Renderer, 60-66
frames
adding with Animation class, 157-158
animation, 154-155
Frames Per Second (FPS), 74

G

game controllers, 79, 86-87
creating, 87
game entities, 325, 338-339
AbstractEntity class, 339-341
artificial intelligence (AI), 341-343
Player class, 343-344
initialization, 344
inventory, 350-352
updating, 344-346
updating player’s location, 346-350
projects, 325-326
saving, 352-355
game interfaces

OpenGL ES interfaces. See OpenGL
ES interfaces

projects, 299-300
game loops, 24-26, 75

collision detection, 74-75

ES1Renderer class, 82-85

frame-based, 75-76

time-based, fixed interval, 77-78

timing, 73-74

view ports, configuring, 85-86

game objects, 325-326

AbstractObject class, 327-329

EnergyObject class, 329
collisions, 333-334
initialization, 329-332
rendering, 333
updating, 332-333

location, 336

naming, 336

projects, 325-326

saving, 352-355

tile maps and, 334-337

game scenes, 79, 86-87

AbstractScene, 92-93
game settings

loading, 376-377

saving, 375-376
game state

loading, 373-375

saving, 371-373
GameController class, 87-89, 308
GameController.m, 89-91
games

for the iPhone, special considerations
for, 4-5

Manic Miner, 3
naming, 5-6
objectives, 6-7
GameScene class, 93-95
generating
image data, Texture2D, 111-112
texture names, Texture2D, 112-113
getters, 134
getTileCoordsForBoundingRect method, 341
GL_LINE_LOOP, 98
GL_LINE_STRIP, 98
GL_LINEAR, 114
GL_LINES, 99
GL_NEAREST, 114
GL_POINTS, 98
GL_TRIANGLE_FAN, 99
GL_TRIANGLE_STRIP, 98
OpenGL ES, 99
GL_TRIANGLES, 98-100
glDrawArrays, 71, 246
glEnableClientState, 70
glGenBuffers, 274
glGenTextures, 113
GlobalTilelD, 199

image rendering, classes

glTransferlatef, 69-70

glTranslate, 370

glVertexPointer, 70

GPUs (Graphics Processing Units), 30
group headers, 79

H

header files
BitmapFont class, 170-171
examining, 44-46
health, 8
height, text, 180-181
hiding UIKit interfaces, 320-322
Hiero, 36-37, 166
high score list, adding scores to, 379-380
high scores
loading, 381-382
saving, 377-381

IBAction keyword, 317
IBAction methods, 317
IBOutlet, 315-316

ideas for games, 4

Image class, 126
images
duplicating, 130
rendering, 130-133
initialization, 126-129
sub-images, creating, 129-130

image data, loading into OpenGL texture,
114-116

image rendering, classes, 97, 107-108

Image class. See Image class

399

image rendering, classes

ImageR enderManager. See
ImageR enderManager

Texture2D. See Texture2D

TextureManager. See TextureManager

ImageRenderManager, 119

images
adding to render queue, 120-123
rendering, 123-126

initialization, 119-120

images

adding to render queue,
ImageR enderManager, 120-123

duplicating in Image class, 130
generating data in Texture2D, 111-112
loading, in Texture2D, 108-109
rendering

with Image class, 130-133

ImageR enderManager, 123-126
sizing in Texture2D, 109-111

implementation files, examining, 46-49

initialization

Animation class, 156-157

bitmap fonts, Cocoa Touch, 171-172
EnergyObject class, 329-332

Image class, 126-129

ImageR enderManager, 119-120
Layer class, tile map classes, 196-197
PackedSpriteSheet class, 147-148
ParticleEmitter class, 234-235

Player class, 344

SoundManager, 258-262
SpriteSheet class, 143-146
Texture2D, 108

TextureManager, 117

TiledMap class, 205-207

TileSet class, tile map classes, 202-203

initWithCoder: method, 51, 355
initWithTileLocation: method, 329
Instruments, 35, 382-384
Leaks Instrument, 384-387
OpenGL ES, 387-389
Interface Builder, 32-33, 315
interfaceOrientation, 320
Interleaved Vertex Arrays (IVA), 104-106
interruptions, sound, 281-283
inventory, Player class, 350-352
i0S, 256
iPhone SDK, 32
Hiero, 36-37
Instruments, 35
Interface Builder, 32-33
iPhone Simulator, 34-35
Shark, 36
Tiled, 37
Xcode, 32
iPhone Simulator, 34-35
iPhones, sound, 250
audio sessions, 250-251
creating sound effects, 254-256
playing music, 252
playing sound effects, 252-253
stereo versus mono, 256
isBlocked:y: method, 366
IVA (Interleaved Vertex Arrays), 104-106
structures, 106-107

J

justification values, 179-180
justified text, rendering, 178-180

K

keys, 9
keywords, IBAction, 317
kFadelnterval, 267

L

Layer class, tile map classes, 196-197
adding tile images to layers, 199-200
adding tiles to layers, 198-199

getting and setting tile information,
201-202

initialization, 197-198
layer elements
parsing, 212-216
tiled configuration file, 194-195
layer images, creating, 216-217
layerClass method, 51
layers
rendering, 218-219
tile maps, 188-189
Leaks Instrument, 384-387
life cycle of particles
birth of particles, 227-228
death, 229
lives of, 228-229
rebirth, 229-230
linking, IBAction, 317
listener positions, sound effects, 281
listings

AbstractEntity encodeWithCoder:
Method, 354-355

AbstractEntity Methods, 340

AbstractEntity Properties in
AbstractEntity.h, 339-340

AbstractObject Properties, 338

Action Methods Defined in
SettingeViewController.h, 317

listings 401

The addFrameWithImage:delay:
Method, 158

Adjusting the Image Size to
1024x1024, 110-111

Animation init Method, 156

BitmapFont parseCharacterDefinition:
Method, 175

BitmapFont parseCommon:
Method, 174

BitmapFont parseFont:controlFile:
Method, 172-173

BitmapFont renderStringAt:text:
Method, 176

BitmapFont
renderStringJustifiedInFrame:
justification:text: Method, 178-179

BitmapFonts
initWithFontImageNamed:
controlFile: Method, 171

CGRect Variables Defined in
MenuScene.h, 304

CHO03_SLQTSORAppDelegate.h, 44

CHO3_SLQTSORAppDelegation.m,
46-47

Checking The Bounds of the Start
Button, 305

Circle-to-Circle Collision Detection
Function, 362

Circle-to-Rectangle Collision
Detection Function, 361-362

Code to Render Interface Element
Boundaries Inside
MainMenu.m, 307

Code Used to Convert RGP565
Image Data from 32-16-Bits, 112

Complete Layer Element within a
.tmx File, 194

Complete objectgroup Element
Within a .tmx File, 195

A Complete Tileset Element within a
.tmx File, 194

listings

Configure the Bitmap Context for
Rendering the Texture, 111

EAGLView gameLoop: Method, 80
EAGLView render Method, 83
EAGLView Touch Methods, 290

EnergyGame object
checkForCollisionWithEntity:
Method, 333-334

EnergyObject collisionBounds
Method, 334

EnergyObject initWithTileLocation:
Method, 330-331

EnergyObject render Method, 333

EnergyObject updateWithDelta:
Method, 332

Entity State enums Defined in
Global.h, 340

Entity-to-Map Collision Check, 366

ES1Renderer orientationChanged
Method, 310

Example Tile Elements with
Properties, 211

Excerpt from the Bitmap Font
Control File, 173

The Game Loop, 24-25

Game Object Type and Subtype
enums in Global.h, 327-328

GameController
addToHighScores:gameTime:players
Name:didWin: method, 379

GameController
adjustTouchOrientationForTouch:
Method, 311

GameController loadHighScores
Method, 381-382

GameController loadSettings
Method, 376

GameController saveHighScores
Method, 381

GameController saveSettings

Method, 375

GameController sortHighScores
Method, 380

GameScene
accelerometer:didAccelerate:

Method, 296

GameScene
alertView:clickedButtonAtIndex:
Method, 378

GameScene checkJoypadSettings
Method, 322

GameScene
initCollisionMapAndDoors:
Method, 363-364

GameScene isBlocked:y: Method, 365

GameScene loadGameState: Method,
374-375

GameScene saveGameState: Method,
372-373

GameScene saveGameState Method
NSKeyedArchiver Creation
Snippet, 353

GameScene touchesBegan:withEvent:
view: Method, 291

GameScene touchesBegan:withEvent:
view Method Handling Taps,
294-295

GameScene touchesEnded:withEvent:
view Method, 294

GameScene touchesMoved:withEvent:
view Method, 292-293

GameScene updateSceneWithDelta:
Method, 297

GameScene updateSceneWithDelta:
Method—Object Update, 358-359

GameScene’s renderScene Method
Positions the Player in the Middle of
the Screen, 369

GameScene’s renderScene Method
(Tile Map Rendering), 370

The getHeightForString: Method,
180-181

Getters and Setters, 134
The getWidthForString: Method, 180

Ghost checkforCollisionWithEntity:
Method, 367

The ImageDetails Structure, 107
The imageDuplicate Method, 130

ImageR enderManager
addImageDetailsToR enderQueue:
Method, 121

ImageR enderManager
addToTextureList: Method, 122

ImageR enderManager init
Method, 120

ImageR enderManager
initializelmageDetails Method, 128

ImageR enderManager renderImages
Method, 123-124

ImageR enderManager
sublmagelnR ect: Method, 130

Initialization of Button Bounds, 304

Layer addTileAt:tileSetID:tileID
Method, 198

Layer addTilelmageAt: Method, 200

Layer getGlobalTileIDAtX:
Method, 201

Layer initWithName: Method, 197
Layer setValueAtX: Method, 201

Layer tilelmageAt: Method, 202
MenuScene renderScene Method, 302

PackedSpriteSheet imageForKey
Method, 149-150

PackedSpriteSheet
initWithImageNamed:controlFile:
filter Method, 147-148

PackedSpriteSheet parseControlFile:
Method, 148

Particle Emitter XML Configuration
File, 230-231

Particle Structure, 234

GameScene saveGameState: Method 403

ParticleEmitter addParticle Method
Exert, 244

ParticleEmitter
initParticleEmitter WithFile:
Method, 235

ParticleEmitter parseParticleConfig:
Partial Method (Part 1), 235

ParticleEmitter parseParticleConfig:
Partial Method (Part 2), 236

ParticleEmitter renderParticles
Method (Part 1), 244-245

ParticleEmitter renderParticles
Method (Part 2), 245-246

ParticleEmitter setupArrays
Method, 237

ParticleEmitter stopParticleEmitter
Method, 246

ParticleEmitter update WithDelta
Method (Part 1), 239

ParticleEmitter updateWithDelta
Method (Part 2), 240

ParticleEmitter updateWithDelta
Method (Part 3), 242-243

Player checkForCollisionWithEntity:
Method, 367-368

Player Class Properties, 343-344

Player dropInventoryFromSlot:
Method, 351-352

Player placelnInventory: Method,
350-351

Player updateLocationWithDelta:
Method (Part 1), 347

Player updateLocationWithDelta:
(Part 2), 349

Player updateWithDelta: Method
(Part 1), 344-345

Player updateWithDelta: Method
(Part 2), 346

PointSprite Structure, 234

Primitives drawBox Function,

306-307

GameScene saveGameState: Method

The render Method, 131-132

The Render Methods Within
Animation.m, 160-161

The renderCenteredAtPoint:scale:
rotation: Method, 131

Rendering the Texture Image, 111

Scene State as Defined in the
Global.h File, 303

Setting the Image Size in Texture2D
to a Power-of-Two, 110

SettingsViewController class, 318

SettingsViewController hide
Method, 321

SettingsViewController

shouldAutorotate TolnterfaceOrientat

ion: Method, 318-319

SettingsViewController show
Method, 320

SettingsViewController.h
IBOutlets, 315

SettingsViewControllerview Will
Appear: Method, 319

A Simple Game Loop, 73

SoundManager addToPlayListName:
track: Method, 268-269

SoundManager audioPlayerDidFinish
Playing:successtully: Method, 270

SoundManager AVAudioSession
Delegate Methods, 282

SoundManager fadeMusicVolume
From: toVolumen: duration: stop:
Method, 267

SoundManager fadeVolume Method,
267-268

SoundManager init Method (Part 1),
258

SoundManager init Method (Part 2),
258-259

SoundManager init Method (Part 3),
259-260

SoundManager initOpenAL Method
(Part 1), 260

SoundManager initOpenAL Method
(Part 2), 261

SoundManager initOpenAL Method
(Part 3), 262

SoundManager isExternal Audio
Playing Method, 259

SoundManager loadMusicWithKey:
musicFile Method, 263

SoundManager loadSoundWithKey:
soundFile: Method, 275-276

SoundManager loadSoundWithKey:
soundFile: Method (Part 1), 274

SoundManager nextAvailableSource
Method, 277-278

SoundManager
playMusic WithKey:timesToR epeat:
Method, 264-265

SoundManager playNextTrack
Method, 271

SoundManager
playSoundWithKey:gain:pitch:
location:shouldLoop: Method
(Part 1), 277

SoundManager playSoundWithKey:
gain:pitch:location:shouldLoop:
Method (Part 2), 278

SoundManager removeFromPlaylist
Named:track:, 271-272

SoundManager removeMusicWith
Key: Method, 264

SoundManager removePlaylistNamed:
and clearPlaylistNamed:
Method, 272

SoundManager setActivate: Method,
282-283

SoundManager setListenerLocation
and setOrientation Methods, 281

SoundManager startPlaylistNamed:
Method, 269-270

SoundManager stopMusic,
pauseMusic, resumeMusic, and
setMusicVolume: Methods, 265-266

SoundManager stopSoundWithKey:
Method, 279-280

SpriteSheet cacheSprites Method,
145-146

SpriteSheet InitWithImageNamed:
spriteSize:spacing:margin:imageFilter
Method, 144

SpriteSheet initWithImage:spriteSize:
spacing:margin Method, 145

SpriteSheet spritelmageAtCoords:
Method, 146-147

The spriteSheetForlmageName:
spriteSize:spacing:margin:image
Filter: Method, 143

Structure of BitmapFontchar, 170

TBXMLParticleAdditions Header
File, 232

Texture and Ratio Calculations, 115

The TexturedColoredQuad
Structure, 107

The TexturedColoredVertex
Structure, 106

TextureManage texture WithFile
Name:filter: Method, 117-118

TiledMap createLayerTilelmages:
Method, 217

TiledMap initWithFileName:
fileExtension Method (Part 1), 206

TiledMap initWithFileName:
fileExtension Method (Part 2), 206

TiledMap parseMapFileTBXML:
Method (Part 1), 207-208

TiledMap parseMapFileTBXML: Method
(Part 2), 208

TiledMap parseMapFileTBXML:

Method (Part 3), 209

location 405

TiledMap parseMapFile TBXML:
Method (Part 4), 210

TiledMap parseMapFile TBXML:
Method (Part 5), 211

TiledMap parseMapFileTBXML:
Method (Part 6), 212

TiledMap parseMapFileTBXML:
Method (Part 7),213

TiledMap parseMapFileTBXML:
Method (Part 8), 214

TiledMap parseMapFileTBXML:
Method (Part 9), 215

TiledMap
renderLayer:mapx:mapy:width:heigh
t:useBlending Method, 218-219

TileSet’s initWithImageNamed:
Method, 203

TXMLParticleAdditions color4fFrom
ChildElementNamed:parentElement
Method, 232-233

The updateWithDelta: Method, 159

Witch Chase Code in the update
WithDelta:scene: Method, 342

lives, 7-8
loadGameState: method, 373-375
loadHighScores method, 381-382
loading

game settings, 376-377

game state, 373-375

high scores, 381-382

image data into OpenGL texture, into
OpenGL texture, 114-116

images, Texture2D, 108-109
music, SoundManager, 263-264
sound effects, 274-276
loadSettings method, 376
location
of game objects, 336
of players, updating, 346-350

406 managing

M N
managing naming
playlists, 271-272 game objects, 336
sound effects, 273 games, 5-6
Manhattan distance, 293 nextAvailableSource method, 278
Manic Miner, 3 nonatomic property, 50
map element, tile configuration file, 193 notifications, 308
map elements NSDataAdditions class, 205
parsing, 207-209 NSKeyedArchiver, 352
tiled configuration file, 193 NSNotificationCenter, 308
map files NSUserDefaults, 375
parsing, 207
map elements, 207-209 @)
map layers, creating, 191 0BB (Oriented Bounding Boxes), 361
maps object group element
collision maps, 362-365 tiled configuration file, 195-196
drawing, 192 object group elements, parsing, 216

tile maps, 192 object layers

message nesting, 48 adding to maps, 335
motion events, 287 creating, 191-192
multiple device types, beta testing, 391 objectgroups, 196
multiple touches, 288 Objective-C, 26

music

@property, 46

application delegates, 44
Objective-C 2.0, 162
objectives, games, 6-7

controlling in SoundManager,
265-266

fading in SoundManager, 266-268
loading with SoundManager, 263-264

objects
playing in SoundManager, 264-265

> components, 8
removing in SoundManager, 264 .

energy items, 9
keys, 9

parchment pieces, 9

music management, Sound, 262-263
music playlists, SoundManager, 268-271

icPlaylists dicti , 258, 269 S
musicrayiists dictionary placing, in tile maps, 192

OES, 245

Open GL texture, loading image data into,
114-116

OpenAL, 30-31, 253

OpenGL, 68-69

applying transformations on models,
69-70

axis configuration, 64
rendering to screens, 70-72
OpenGL ES, 15, 27-29
XXXX1.1 versus 2.029-30
GL_TRIANGLE_STRIP, 99
instrument, 387-389
OpenGL ES interfaces, 300-301
defining button bounds, 304
handling touches, 304-308
rendering, 301-303
transitions, 308
OpenGL ES orientation, 308
manually setting, 309-311
orientation
OpenGL ES, 308
manually setting, 309-311
UIKit interfaces, 318-320
orientationChanged method, 310
Oriented Bounding Boxes (OBB), 361

P

PackedSpriteSheet class, 147

bitmap fonts, 167

initialization, 147-148

parsing control files, 148-149

sprites, retrieving, 149-150
parameters, particle systems, 226-227
parchment pieces, 9
parseParticleConfig method, 235
parsing

char id, 175-176

common prefix, 174

ParticleEmitter classes 407

control files
C,172-174
PackedSpriteSheet class, 148-149
layer elements, 212-216
map files, 207
map elements, 207-209
object group elements, 216
particle configuration, 235-237
tile set elements, 209-212
particle arrays, 237-238
particle configuration, parsing, 235-237
Particle Designer, 247
particle emitters
configuration, 230-231
playing with, 247-248
projects, 224-225
stopping, 246-247
particle systems, 21-22
overview, 225-226
parameters, 226-227
ParticleEmitter class, 233
initialization, 234-235

parsing particle configuration,
235-237

particles
adding, 243-244
rendering, 244-246
updating, 239-243

setting up particle and render arrays,
237-238

stopping particle emitters, 246-247
structures, 233-234
ParticleEmitter classes, 231

TBXMLParticleAdditons class,
231-233

408

particles

particles, 21

adding in ParticleEmitter class,
243-244

life cycle of
birth of particles, 227-228
death, 229
lives of, 228-229
rebirth, 229-230

rendering in ParticleEmitter class,
244-246

updating in ParticleEmitter class,
239-243

performance, Compiling for Thumb, 389-390
phases, tracking touches between, 292
pixelLocation, 327
placeholders, prototyping, 19
placelninventory: method, 350-351
placing objects, tile maps, 192
Player class, 343-344

initialization, 344

inventory, 350-352

updating, 344-346

updating player’s location, 346-350
players, 11
playing

music

iPhones, 252
SoundManager, 264-265

sound effects, 252-253, 276-279
playlists

managing, 271-272

starting, 270

tracks, removing, 272
playNextTrack: method, 271
point sprites, 238
Portal class, 339

positioning, color values, ES1Renderer,
67-68

prefixes, 173-174
char id, parsing, 175-176
common, parsing, 174
processing
taps, 294-295
touch events, 289-290
touchesBegan phase, 290-292
touchesEnded phase, 294
touchesMoved phase, 292-294
projects
creating with Xcode, 39-42
running, 42-43
@property, 46
prototyping, with placeholders, 19
pruning collisions, 358-359

Q

quads, rendering, 98-101

R

releaseAllTextures, 118

releasing, textures with TextureManager, 118
removePlaylistNamed: method, 272
removing

music, SoundManager, 264

tracks from playlists, 272
render arrays, ParticleEmitter class, 237-238
render method, 63-66, 329

render queue, adding images to,
ImageRenderManager, 120-123

renderbuffer, ES1Renderer, 60-66
rendering, 97-98
animation, Animation class, 160-161
EnergyObject class, 333
images
Image class, 130-133
ImageR enderManager, 123-126

justified text, 178-180
layers, 218-219
OpenGL ES interfaces, 301-303

particles, ParticleEmitter class, 244-246

quads, 98-101
to screens, OpenGL, 70-72
text, 176-178

deallocation, 181

width and height, 180-181

renderLayer:mapx:mapy:width:height:
useBlending: method, 218

renderScene method, 303, 369-370
retrieving
sprites

with PackedSpriteSheet class,
149-150

SpriteSheet class, 146-147
textures, TextureManager, 117-118
rotation, animation, 161
rotationPoint, animation, 161

running, projects, 42-43

S

saveGameState, 372-373
saveHighScores method, 381
saveSettings method, 375
saving, 371

game entities, 352-355

game objects, 352-355

game settings, 375-376

game state, 371-373

high scores, 377-381
scores, adding to high score list, 379-380

screens, rendering to screens, OpenGL,
70-72

setListenerPosition method, 281
setters, 134

sound manager classes

setting parameters, binding with texture
parameters, 113-114

Shark, 36
showing, UIKit interfaces, 320-322
singletons, creating, 89
sizing, images, in Texture2D, 109-111
Smith, Matthew, 3
sortHighScores method, 380
Sound, music management, 262-263
sound
handling interruptions, 281-283
iPhones, 250
audio sessions, 250-251
creating sound effects, 254-256
playing music, 252
playing sound eftects, 252-253
stereo versus mono, 256
projects, 249
sound effects
creating, 254-256
listener positions, 281
loading, 274-276
managing, 273
playing, 252-253, 276-279
stopping, 279-280
sound manager classes, 256-257
MyOpenALSupport, 256-257
SoundManager, 257
controlling music, 265-266
fading music, 266-268
initialization, 258-262
loading music, 263-264
managing playlists, 271-272
music management, 262-263
music playlists, 268-271
playing music, 264-265

removing music, 264

409

410 soundLibrary dictionary

soundLibrary dictionary, 258

SoundManager, 257
controlling music, 265-266
fading music, 266-268
initialization, 258-262
loading music, 263-264
managing playlists, 271-272
music playlists, 268-271
playing music, 264-265
removing music, 264

SoundManagerAVAudioPlayer, 257

special considerations, for iPhone games,
45

speed, update speed, 74

speedOfMovement, 347

sprite sheets, 16-18, 137-138
bitmap fonts, creating, 167-170
complex sprite sheets, 139-141
simple sprite sheets, 138-139
Zwoptex, 141-142

sprites, 14-15
creating, 15
retrieving

with PackedSpriteSheet class,
149-150

with SpriteSheet class, 146-147
SpriteSheet class, 142
initialization, 143-146
sprites, retrieving, 146-147
startAnimation, 56-57
starting playlists, 270
states, animation, 155

stereo versus mono, sound on iPhones, 256

stopping
particle emitters, 246-247
sound effects, 279-280

storylines, 5
structures

IVA (Interleaved Vertex Arrays),
106-107

ParticleEmitter class, 233-234

sub-images, creating with Image class,
129-130

T

taps, processing, 294-295
TBXML, 204
TBXMLParticleAdditions class, 231-233
technology

Cocoa Touch, 27

Objective-C, 26

OpenAL, 30-31

OpenGL ES, 27-29
terminology, 13

Al (artificial intelligence), 23

animation, 18-19

bitmap fonts, 19-20

collision detection, 22-23

game loops, 24-26

particle systems, 21-22

sprite sheets, 16-18

sprites, 14-15

time maps, 20-21
testing, beta testing, 390-391

feedback, 392

multiple device types, 391
text

justified text, rendering, 178-180

rendering, 176-178

deallocation, 181
width and height, 180-181

texture coordinates, texture mapping,
101-103

texture mapping, 101
texture coordinates, 101-103

texture names, generating in Texture2D,
112-113

texture parameters, binding with setting
parameters, 113-114

Texture2D, 107, 108

binding texture and setting parame-
ters, 113-114

generating texture names, 112-113
images
generating data, 111-112
loading, 108-109
sizing, 109-111
initialization, 108

loading image data into OpenGL tex-
ture, 114-116

TexturedColoredQuad, 200
TextureManager, 116-117
initialization, 117
textures
releasing, 118
retrieving and creating, 117-118
textures
releasing with TextureManager, 118

retrieving and creating, with
TextureManager, 117-118

texturesToRender array, 122

textureWithFileName:filter: method,
117-118

tile configuration file, 193
layer elements, 194-195
map element, 193
object group element, 195-196
tileset element, 193-194
tile images, adding to layers, 199-200
tile information, getting, 220

Tiled map editor, game objects

tile map classes, 196
Layer class, 196-197

adding tile images to layers,
199-200

adding tiles to layers, 198-199

getting and setting tile information,
201-202

initialization, 197-198
TiledMap class, 204-205

initialization, 205-207
TileSet class, 202

getting tile set information,
203-208

initialization, 202-203
tile maps, 183, 184-188, 370
creating, 189
drawing maps, 192
map layers, 191
new tile sets, 190-191
object layers, 191-192
drawing maps, 192
game objects and, 334-337
layers, 188-189
placing objects, 192
projects, 183-184
rendering layers, 218-219
tile information, getting, 220
tile palette, Tiled, 188
tile set elements, parsing, 209-212
tile sets, creating, 190-191
Tiled, 37, 187
tile palette, 188
tiled configuration file, 193
layer elements, 194-195
map elements, 193
object group element, 195-196
tileset element, 193-194
Tiled map editor, game objects, 334

411

412

Tiled Qt

Tiled Qt, 186

TiledMap class
tile map classes, 204-205

initialization, 205-207

XML parsing, 204

TilelD, 199

tilelmageAt: method, 201

tileLocation, 327

tiles, adding to layers, 198-199

TileSet class, tile map classes, 202
getting tile set information, 203-208
initialization, 202-203

tileset element, 193-194

TileSetID:ldentifies, 199

time, 7

time maps, 20-21

time-based collision detection, versus frame-
based, 359-360

time-based fixed interval game loops, 77-78
timing
collision detection, 74-75
game loops, 73-74
tools, 31-32
iPhone SDK, 32
Hiero, 36-37
Instruments, 35
Interface Builder, 32-33
iPhone Simulator, 34-35
Shark, 36
Tiled, 37
Xcode, 32
touch events, 287-289
processing, 289-290
touchesBegan phase, 290-292
touchesEnded phase, 294
touchesMoved phase, 292-294
taps, processing, 294-295

touches, 285
OpenGL ES interfaces, 304-308
tracking between phases, 292
touchesBegan phase, 290-292
touchesEnded: method, 304
touchesEnded phase, 294
touchesMoved phase, 292-294
tracking touches, between phases, 292
tracks, removing from playlists, 272
transformation, 67
transformations, applying to models, 69-70
transitions, OpenGL ES interfaces, 308
translating, 370
types, animation, 155

U

uDID, 390
UlAccelerometerDelegate, 88
UlApplication, 43

UlinterfaceOrientationlsLandscape
macro, 319

UIKit interfaces, 312
creating, 312-315
showing/hiding, 320-322
wiring up interfaces, 315-318

UIKit orientation, 318-320

UliSlider controls, 314

UlSlider track, 314-315

UlTouch objects, 288

UlView, 55

update speed, 74

updateLocationWithDelta: method, 348-349

updates, animation, Animation class,
158-160

updateWithDelta: method, 303, 332,
344-345

updateWithDelta:scene: method, 341-342

Zwoptex 413

updating
EnergyObject class, 332-333
particles, ParticleEmitter class, 239-243
Player class, 344-346
user input, 287
accelerometer events, 296-298
projects, 285-286
taps, 294-295
touch events, 287-289
processing, 289-290
userDefaultsSet, 377

\Y

vertex arrays, 104

vertical synchronization, 52
view ports, configuring, 85-86
Viewport function, 85
visualizing boundaries, 306-308
vsync, 52

w

weapons, 10
width, text, 180-181

wiring up interfaces, UlKit interfaces,
315-318

X

Xcode, 32
projects, creating, 39-42
XML parsing, TiledMap class, 204

Y-Z
Zwoptex, 17, 138, 140-141
sprite sheets, 141-142

	Table of Contents
	Preface
	6 Sprite Sheets
	Introduction to Sprite Sheets
	Simple Sprite Sheet
	Complex Sprite Sheets

	Using Zwoptex
	The SpriteSheet Class
	Initialization
	Retrieving Sprites

	PackedSpriteSheet Class
	Initialization
	Parsing the Control File
	Retrieving a Sprite

	Summary
	Exercise

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

