

Animation with Scripting for Adobe® Flash® Professional CS5 Studio Techniques

Chris Georgenes and Justin Putney

This Adobe Press book is published by Peachpit.

Peachpit
1249 Eighth Street
Berkeley, CA 94710
(510) 524-2178
Fax: (510) 524-2221

Peachpit is a division of Pearson Education
For the latest on Adobe Press books, go to www.adobepress.com
To report errors, please send a note to errata@peachpit.com

Copyright © 2011 Chris Georgenes and Justin Putney

Project Editor: Susan Rimerman
Development Editor/Copy Editor: Anne Marie Walker
Production Editor: Hilal Sala
Technical Editor: Amy Petersen
Composition: David Van Ness
Proofreader: Scout Festa
Indexer: Karin Arrigoni
Cover design: Peachpit/Charlene Will
Cover illustration: Pascal Campion

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the authors nor Peachpit shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Adobe, Flash, and ActionScript are either registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries. All other trademarks are the property of their respective owners.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-68369-4
ISBN 10: 0-321-68369-2

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.adobepress.com

iii

Contents

 Introduction v

Chapter 1 Getting Started 1
File Setup Tips 2

Camera Techniques 13

Incorporating Audio 20

Narrative 27

Character Design 29

Storyboarding 31

Animatics 46

Chapter 2 Character Animation 49
Animation Techniques 50

Designing a Character 54

Building a Character in Flash 56

Animating a Character 90

Adding Dialogue 110

Chapter 3 Introduction to ActionScript Classes 129
Reasons to Use ActionScript 130

The Importance of Planning 131

ActionScript Basics 134

The Document Class 141

Object-oriented Programming 150

Attaching Classes to Library Items 151

Events 154

Creating Reusable Classes For Animation 155

Using Classes from Other Sources 224

Chapter 4 Workflow Automation 225
Why Automate? 226

What Is JSFL? 227

Writing Scripts to Control Flash 232

Extending Flash Even Further 257

Packaging Extensions for Distribution 268

More Resources 270

Chapter 5 Sharing Your Animation 273
Showcasing Your Animation on the Web 274

Publishing for Broadcast 325

Publishing to Mobile and Desktop 333

 Index 335

iv

Acknowledgments

This book would not have been possible if it weren’t for the tireless efforts of my coauthor
Justin Putney. His knowledge of designing and animating in Flash mixed with his Action-
Script prowess make for a rare combination of Flash talent.

Thanks to my wife Becky who for weeks tolerated my absence from most of our family-
related events. She continues to raise the bar of patience year after year, and for that our
marriage remains intact and my gratitude unparalleled.

Thanks to Thibault Imbert for his Sausage Kong ActionScript and overall generosity.
Thanks to Amy Petersen for her technical edits. Thanks to Pascal Campion for gracing
the cover with his strokes of genius. Thanks to Adobe Systems for providing the tools that
allow us to create endlessly.

—Chris Georgenes

Several years ago, in my first days of learning Flash, I emailed Chris for assistance with
one of his beginner-level tutorials. I was amazed not only that he wrote me back, but also
that he was so enthusiastic about helping a total stranger. His willingness to share his skills
with the Flash community has remained a source of inspiration, and I’m honored to have
coauthored this book with him.

I’m thrilled and honored that Pascal Campion created the beautiful cover. Thanks to John
Smick for graciously lending his voice talent.

Thanks to Anne Marie Walker, Susan Rimerman, and the entire team at Peachpit for their
flexibility in the course of making this book.

Thanks to my family, especially my mother and sister, as I worked on the book through
most of our shared vacation. Thanks to my mom and my grandfather for supporting my
drawing and computer interests. Thanks to Carole Petersen for her enthusiastic encour-
agement along the way.

Thanks to my wife, Amy Petersen, who not only did a fantastic job as technical editor, but
also served as my sounding board for several elements in the book. She was very patient as
she and I spent long hours at the computer. She gave me my first copy of Flash as a birth-
day present and encouraged me to start animating my drawings. I would not be where I
am today without her.

—Justin Putney

Introduction

This book assumes you have a working knowledge of Flash, meaning that you have
probably already drawn with the Brush tool, converted artwork to a symbol, created a
tween, personalized your Flash workspace, and published a SWF file. If you are not yet
familiar with these tasks, it is recommended that you read a beginning-level Flash book
before attempting the exercises in this book.

To best understand the approach to animating with Flash in this book, it helps to know a
little bit about Flash history.

The Nature of the Beast

In 1996, FutureSplash Animator was released with a basic set of editing tools and a Time-
line, which at the time was one of the few ways to create animations for the web. That same
year, Macromedia acquired FutureSplash Animator and renamed it Flash. Over the next
three releases, a Library was added, the Movie Clip symbol emerged, and basic scripting
was built into the package. In Flash 5, Macromedia introduced ActionScript 1.0, XML sup-
port, and HTML formatting. Flash 6, known as Flash MX, included video capabilities and
user interface components. Version 7, known as MX 2004, introduced ActionScript 2.0,
an extensibility language, more video support, and many other features. Flash 8 expanded
on the previous features and added additional mobile support. In 2005, Adobe purchased
Macromedia. In 2007, Flash Professional CS3 was released as part of the Adobe Creative
Suite and included ActionScript 3.0. Flash is now a platform capable of exporting to the
web, television and film, mobile devices, and computer desktops (as native applications).
Adobe has introduced a developer tool, Flash Builder (formerly Flex Builder), and a
designer tool, Flash Catalyst, which also author Flash content (SWF files).

The Flash we use today is not unlike a chimera, the beast from ancient Greek mythology
composed of parts from several different animals.

Introduction

vi

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Who Should Read This Book?

This book is for you: the aspiring animator, motion
designer, or graphic designer who seeks to exploit the chi-
meric nature of Flash to get the most out of your animat-
ing experience. If you’re interested in creating animated
shorts, video games, mobile games, or websites, this book
can introduce you to parts of Flash that you may have
previously shied away—or even recoiled—from, or that you
simply didn’t know about.

What makes Flash Professional different from the other
tools in the Flash platform is that, at its core, it’s still an
animation program. The nonanimation components can
be used to radically improve your animations, as well as
your animating experience. Although activities such as
writing ActionScript and extending Flash can feel daunting
to nonprogrammers, once you have completed a project or
two using these techniques, much of that original hesita-
tion subsides.

You may have been working in Flash for a little while, and
you might feel like you’ve plateaued at a certain skill or
productivity level. If you find yourself at such a juncture, it
is our hope that this book will provide some novel tech-
niques. The book also includes several “best practices” for
working in teams and may provide insight into the roles of
your colleagues who may be using Flash in a different way.

You may have noticed that the titles of many professional
Flash users (as well as those seen in job postings) contain
“hybrid slashes” (e.g., animator/designer, designer/devel-
oper), and even more eccentricities (e.g., Flash guru and
Flash ninja) are becoming increasingly common. This book
will help you wear any combination of hats you find neces-
sary while you’re on the job animating.

After you have completed the exercises in this book, you
will probably be pleased to find yourself off that plateau
and onto a higher level, and you and that Flash beast will
be playing a whole new game.

vii

Introduction

What’s in This Book?

We’ve compiled a mix tape containing some of Flash’s
greatest hits. Here’s a rundown of the playlist:

Chapter 1: Getting Started. This chapter covers some “best
practices” for file setup while introducing a few important
animation concepts.

Chapter 2: Character Animation. This chapter covers the
basics of creating a character and animating using inverse
kinematics or “bones” in Flash.

Chapter 3: Introduction to ActionScript Classes. This chap-
ter reaches right for the most powerful developer tools.
Don’t worry; we’ll provide the safety goggles. If you follow
the exercises, you’ll create some beautiful, reusable effects
that can be repurposed for as long as you like.

Chapter 4: Workflow Automation. This chapter focuses on
speeding up some of the otherwise time-intensive tasks
common to most animation projects.

Chapter 5: Sharing Your Animation. In this last chapter
you’ll assemble an animated portfolio to showcase your cre-
ations made in previous chapters. The chapter also provides
additional ways (broadcast, video sharing sites, mobile, and
desktop) to share your animation.

Conventions Used in This Book

This book uses Mac OS X for all the figures. Fortunately,
there is little difference between using Flash on a Mac and
on a Windows PC. All shortcuts are listed with the Mac ver-
sion first (e.g., Command+A/Ctrl+A). Because the average
Mac mouse has only one button, Ctrl-click refers to access-
ing context menus on Mac systems that lack a right-click
mouse option.

Code within the book is displayed in a monospaced font.
When new code is added to existing code, it is highlighted
in blue as follows:

//old code

//new code

//old code

viii

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

A return character (➥) in front of a line break is used to
designate continuous lines of code.

What’s on the CD?

The CD included with this book contains finished versions
of the exercises for each chapter, as well as the assets neces-
sary to complete the exercises. The CD also contains an
Extensions folder that provides you with free Flash exten-
sions to support your animation workflow.

Beyond This Book, Where Can I Go?

If you have the print version of the book, your copy comes
equipped with a tracking device. If you’re reading the
electronic version, we’re already monitoring your location
via satellite.

As a Flashstar, Chris is famously accessible. You can follow
him on Twitter, Facebook, and/or via his blog:

 . Twitter. @keyframer

 . Facebook. http://www.facebook.com/chris.georgenes

 . Blog. http://www.keyframer.com

 . Portfolio. http://www.mudbubble.com

You can find Justin at one or more of the following
locations:

 . Twitter. @justinputney

 . Blog. http://blog.ajarproductions.com

 . Portfolio. http://putney.ajarproductions.com

There is also a special landing page for this book at
http://animflashbook.ajarproductions.com.

http://www.facebook.com/chris.georgenes
http://www.keyframer.com
http://www.mudbubble.com
http://blog.ajarproductions.com
http://putney.ajarproductions.com
http://animflashbook.ajarproductions.com

CHAPTER

Animation is an intensely creative art. It requires an understanding not only of shape
and color, but also of weight, movement, and timing. Animators often work in teams
because creating the illusion of life on a two-dimensional screen is a laborious undertak-
ing. Any minuscule loss of form, even for a fraction of a second, chips away at the illusion.
To maintain this illusion for the audience, animators need to exercise a great deal of con-
trol over the medium. Every measure of control translates into a choice, which can quickly
become overwhelming, especially when several steps are needed to enact each choice.

In this chapter, you’ll learn how to make Flash do the heavy lifting for you by taking the
complicated sets of choices and automating them into single steps. By simplifying the
steps involved in creating your animation, you can focus on the choices that really mat-
ter—those involving shape, color, weight, movement, and timing.

The goals for this chapter include:

 . Learn some Flash extensibility language basics

 . Write scripts to automate common Flash animation tasks

 . Integrate user interaction into the scripts

 . Build a Flash panel from scratch

You’ll also learn the basics of sharing what you’ve created in this chapter with others as
well as where to look for additional resources. By the time you’ve finished this chapter
you’ll be an animator and an automator.

4
Workflow Automation

226

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Why Automate?

Suppose you’re creating a three-minute animation in
Flash that includes a character speaking onscreen for
approximately half the duration of the piece. At 24 frames
per second (fps), that’s 2,160 potential mouth shapes
needed to create the illusion of speech. Although altering
every frame may not be necessary to create the illusion of
speech, even the modification of every other frame would
require 1,080 new mouth shapes.

Now suppose that for each of those 1,080 shapes you must
do the following:

 1. Scrub the Timeline over the current frame once or
twice to hear the audio.

 2. Select the symbol on Stage by clicking on it.

 3. Highlight the first frame field in the Properties panel
by clicking and dragging.

 4. Remember the number of the frame inside the mouth
symbol containing the mouth shape (which corre-
sponds to the audio you heard on the frame).

 5. Type the frame number into the keypad.

 6. Press the Enter key.

 7. Scrub the playhead to the next frame.

All told, this entire process translates to approximately one
click, three to four click and drags, and two to three key
presses on the keyboard. In addition, the mouse must be
moved from the Timeline to the Stage to the Properties
panel; all the while, your gaze needs to be darting back
and forth between parts of the screen and the keyboard for
each new mouth frame for 1,080 frames.

Clearly, the time spent on these actions adds up. If you
assume that each frame requires at least 30 seconds to
sync, you’ve just spent nine hours lip syncing (and you
probably now have some repetitive strain injuries to boot).
What if you could reduce the entire process to only four to
five clicks—without dragging, keyboarding, and recalling
frame numbers—and what if your mouse only needed to

227

Chapter 4 Workflow Automation

traverse an area of 200 by 350 pixels? This latter scenario
might only require about ten seconds of your time per
frame, which translates into only three hours of lip sync-
ing! Now you’ve reduced your animating time by two-thirds
with absolutely no loss of creative control. In fact, a greater
proportion of your brain is likely to still be intact after only
three hours of this process! Also, if you’re getting paid a
fixed amount of money for the project, you’ve just tripled
your hourly income for that section of the job.

This more direct approach can be accomplished with a
coding language called JavaScript Flash (JSFL). Actually, the
rapid lip-syncing process just described can be achieved
using a free extension called FrameSync that can be added
to Flash (Figure 4.1). All the functionality in FrameSync
was built with ActionScript and JSFL. The examples you’ll
work with throughout this chapter will be simpler than
FrameSync in terms of coding, but like FrameSync, they’ll
be time-savers and are geared specifically toward animation
tasks. As a general rule, anytime you find that you’re doing
the same thing more than two or three times in Flash,
there’s probably something JSFL can do to help you.

What Is JSFL?

The term JSFL was introduced in Flash MX 2004. Normal
user interactions that occur on the Stage, in the toolbar,
on the Timeline, and elsewhere within Flash occur within
the authoring environment. Specifically written to interact
with the Flash Professional authoring environment, JSFL
is a variant of JavaScript that functions much like a user,
and as such, can do nearly everything that a user can do
within Flash, such as create layers, create objects, select
frames, manipulate Library items, open files, and save files.
In addition, JSFL allows you to script a few tasks that users
cannot normally perform (at least not easily or quickly).
Anything made with JSFL can be referred to as an extension,
because it extends the capabilities of Flash. You can effec-
tively house extensions within the following regions of the
authoring environment: in the Commands menu, in a SWF
panel containing buttons and graphics, and as a tool in the
toolbox. This chapter focuses primarily on commands.

See the section on lip syncing in

Chapter 2 to learn more about

FrameSync. You can download

the extension from the Extensions

folder on the CD included with this

book or from http://ajarproductions.

com/blog/flash-extensions.

Figure 4.1 The FrameSync panel using JSFL to

speed up the lip-syncing process.

Extensions in other systems are

sometimes referred to as plug-ins,

macros, or add-ons. These terms all

describe similar concepts that add

functionality to an application.

http://ajarproductions.com/blog/flash-extensions
http://ajarproductions.com/blog/flash-extensions

228

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Although this chapter is geared toward animators, JSFL is
a scripting language. Don’t worry if you don’t understand
every aspect of the language. Focus on completing the
examples. It may take time for new concepts to sink in.
The words scripting, programming, and coding will be used
interchangeably to mean writing code. Refer to Table 4.1
for any scripting terms that may be unfamiliar to you while
reading the chapter.

TABLE 4.1 Scripting terms used in this chapter

TERM DEFINITION

Variable A named object with an associated value that can
be changed

Function A portion of code that performs a specific task

Method A function associated with a particular object

Parameter A piece of data that can be used within a function

Argument A parameter that is sent to a function

Loop A piece of code that is repeatedly executed

You create a new JSFL script by choosing File > New and
selecting Flash JavaScript File in the New Document dialog
box. The file extension for a JSFL script is always .jsfl.
It should be noted that JSFL is distinct from ActionScript.
The latter is compiled into a SWF, and that SWF can play
in the ubiquitous Flash Player. On the other hand, JSFL
code is executed on the spot and is used to control the
Flash Professional authoring environment. Both JSFL
and ActionScript are based on a script standard known
as ECMAScript. Whereas the “vocabulary” of JSFL is much
smaller than that of ActionScript 3.0, much of the know-
how gained in one language will be applicable in the other.

If you’re familiar with other scripting languages, such
as ExtendScript or AppleScript, you may be pleasantly
surprised with how rapidly JSFL executes. The language
is an integral part of the Flash application and is used by
the Adobe Flash team to test features for quality assurance.
The speed of execution makes JSFL excellent for batch

229

Chapter 4 Workflow Automation

processing and complex actions. In short, JSFL enables
the animator to shed hundreds of redundant mouse clicks
while saving heaps of time. To date, each Flash Professional
update has included a few new commands for the JSFL
Application Programming Interface (API), but most of the
API has remained consistent since Flash MX 2004.

Your Buddy, DOM

Everything that you can manipulate with code in JSFL is
considered an object. The Document Object Model (DOM)
is basically the hierarchy or structure (model) of objects
within a particular document. If you’ve written JavaScript
for a web browser, you’re probably somewhat familiar with
this idea. In the case of the browser, you’re traversing the
structure of an HTML document to gain access (and make
changes) to tags and content.

The good news is that even though you may never have
thought about it before, you’re already familiar with the
Flash DOM. There’s an order to everything you do within
a Flash document, and since you are reading this book, we
can assume that you implicitly understand this order. Let’s
first consider some objects in Flash and how they relate to
each other, starting with frames and layers. Which of the fol-
lowing options makes more immediate sense to you?

 . A frame on a layer

 . A layer on a frame

If the latter makes you scrunch up your nose and won-
der how that might even be possible, you do possess an
implicit awareness of the DOM. Without this organization
of objects, it wouldn’t be possible to make much sense of
anything in Flash.

The most basic Stage object in Flash is called an element. All
Stage objects—for example, bitmaps, groups, graphic sym-
bols, and movieclip symbols—inherit the properties and
methods of a basic element. Here’s a representation of the
hierarchy for an element that resides on the Flash Stage:

Flash > Document > Timeline > Layer > Frame > Element

230

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

In reverse order and translated into plain Flenglish (English
for Flash users): An element is on a frame that is on a layer,
and that layer is on a Timeline within a document that is
open in Flash.

In JSFL, that same hierarchy is written as follows:

fl.documents[0].timelines[0].layers[0].frames[0].

➥elements[0]

Properties within objects, which can also be complex
objects, are referenced using dot (.) syntax, just as they
are in ActionScript. The object references in the code
sample are actually arrays (collections of objects) contain-
ing several items. The square brackets are used to refer-
ence objects within an array. The zero, in array notation,
denotes the first item in an array. So, in Flenglish, the
preceding code references the first element, on the first
frame, on the first layer, within the first Timeline (scene)
of the first document that is open in Flash. Flash will not
recognize any attempt to reference the first element on
the first layer because a layer contains frames, not ele-
ments (not directly, at least). Each object in the DOM
operates like a Russian doll that experiences a parent doll
and a child doll (with the exception of the outermost and
innermost objects). No object in the DOM has contact with
what’s inside its child object or outside of its parent object
(Figure 4.2).

Figure 4.2 The Flash DOM hierarchy.

231

Chapter 4 Workflow Automation

Consider this situation: Suppose an art director has a Flash
file with an animated scene, and said art director wants
you to hang a clock on the wall within that scene. You are
told the layer on which to place the illustration, so that the
clock doesn’t end up obscuring the main character’s face.
However, nobody informed you that there’s a transition
at the beginning of the scene. Being a savvy animator, you
scrub through the Timeline after inserting the clock to
verify that everything looks OK, but you notice a problem.
The clock is hanging in empty space on the first frame
(Figure 4.3). As a fix, you move the starting keyframe for
the clock to align it with the starting keyframes for the
other layers with artwork (Figure 4.4). Everything looks
good now, thanks to the fact that you were able to extend
beyond the literal directions given to you.

Figure 4.3 The clock hanging in empty space. Figure 4.4 The clock hanging where it should be.

Keep in mind that the JSFL interpreter is not as smart as
you are, so it will need you to spell out everything very
clearly. If you instruct it to do something to an element on
a layer, rather than to an element on a frame on a layer, it
won’t understand: Your script will stop executing and alert
you with an error. The upside of JSFL’s literal-mindedness
is that it is quite reliable. Again, your skills on the Flash
Stage already give you a leg up in understanding how to
interact with the Flash DOM. You also have an eager friend
who is ready to bridge the gap between the authoring envi-
ronment and the scripting API: the History panel.

232

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Writing Scripts to Control Flash

The History panel is your conduit from animating on
the Flash Stage to writing code in the Script Editor. The
History panel stores all the actions you take within a Flash
document: creating a new layer, editing a Library item,
adding a new scene, drawing a shape, and so on. As such,
the History panel is a great way to revert your document to
an earlier state, but it’s also a great way to peer inside Flash
and see what steps can be automated.

Getting Started with the History Panel

Let’s take a look at the basic workings of the History panel
and how you can use it to associate JSFL code with actions
that are occurring on Stage.

 1. Create a new Flash document by choosing File > New
and then selecting ActionScript 3.0 in the New Docu-
ment dialog box.

 2. Open the History panel by choosing Window > Other
Panels > History.

 3. Select the Rectangle tool, make sure there is a fill color
but no stroke color, and draw a rectangle on the Stage.
Notice that this action is recorded in the History panel
(Figure 4.5).

Figure 4.5 The new rectangle is recorded in the History panel.

 4. Click the menu on the top right of the History panel
to change the display format and tooltip display
(Figure 4.6).

233

Chapter 4 Workflow Automation

Figure 4.6 Change the History panel display using the menu at the top

right.

 5. Change the display to show JavaScript in Panel if it’s
not selected already (Figure 4.7).

Figure 4.7 JSFL code is displayed in the History panel.

 6. Switch to the Selection tool. Select the rectangle on the
Stage by clicking on it. Then delete the rectangle by
pressing the Delete key on your keyboard.

 7. On the left side of the History panel, drag the slider up
so that it’s parallel to the original rectangle command.
Note that sliding the arrow undid the deletion of the
rectangle. This slider acts as an undo and redo mecha-
nism (Figure 4.8).

Figure 4.8 Here the History slider is used as an undo.

Not all actions in the History panel

can be replicated with JSFL. If an

action cannot be replicated with

JSFL, it will appear with a red X in

the History panel, and there will

be a keyword or description in

parentheses rather than a line of

JavaScript.

234

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

 8. Drag the slider down to the deleteSelection command
(Figure 4.9). Select the original addNewRectangle
command and click the Replay button. This will create
a rectangle with the same dimensions as those of the
original rectangle (Figure 4.10).

Figure 4.9 Here the slider is used as a redo (before clicking Replay).

Figure 4.10 After clicking the Replay button.

If this is as far down the rabbit hole as you’d like to ven-
ture, you can just save your script as a command. To save
the command from the History panel, select the desired
steps within the History panel and click the button show-
ing the disk icon in the lower-right corner (Figure 4.11).
As a result, you will be prompted to name your command,
which will then be available via the Commands menu. Be
sure to at least skim ahead in this chapter to the section on
adding a keyboard shortcut to your command.

Moving from the History Panel to a Script

The History panel is a great place to start automating,
but it only allows you to repeat actions that you’ve already
taken. Let’s move the JSFL into the Script Editor so you
can start generating new actions.

You can select multiple steps in the

History panel using the Command

(Mac) or Ctrl (Windows) key. You

can also select continuous steps by

clicking on the first item, holding

Shift, and then clicking on the last

item.

Figure 4.11 Save your script as a com-

mand from the History panel.

235

Chapter 4 Workflow Automation

 1. With only the addNewRectangle command still
selected, click the Copy Steps button in the bottom
right of the History panel (Figure 4.12).

Figure 4.12 The Copy Steps but-

ton allows you to copy selected

steps to your clipboard.

 2. Drag the undo/redo slider to the very top of the His-
tory panel to revert the document to its opened state.

 3. Choose File > New. When the New Document dialog
box appears, select Flash JavaScript File and click OK.

 4. Paste the stored command into the newly created script
file by choosing Edit > Paste.

 5. Click the Run Script button (Figure 4.13) at the top of
the Script Editor and return to the Flash document.

Figure 4.13 The Run Script button inside the Flash Script Editor executes

the current script.

Note that a rectangle has been drawn on the Stage in the
same place and with the same dimensions as those of the ini-
tial rectangle drawn using the Rectangle tool (Figure 4.14).

Figure 4.14 The script successfully draws the rectangle.

236

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Now you’re able to control the Flash Professional author-
ing environment, aka the Flash Integrated Development
Environment (IDE), using a script, which is pretty cool
in its own right. At this point, though, your rectangle has
somewhat random and meaningless dimensions. In the
next section, you’ll leverage some information from the
Flash DOM to make a rectangle using dimensions that will
be more useful.

Composing a Smarter Script

You’ll now tweak the current script so that the new rect-
angle matches the current size of the Stage. Your rectangle
will then be useful as a Stage background or a background
for new symbols. By referring to the Extending Flash CS5
Professional help documents, you can see that a Flash
document contains simple height and width properties,
just like those of a Movieclip object in ActionScript. You’ll
utilize those properties when creating your rectangle.

 1. Create a new variable to store the current document
object by adding this code to the top of your script:

var dom = fl.getDocumentDOM();

 2. Replace fl.getDocumentDOM() in the original code
with dom.

 3. Set the top and left position for the rectangle to 0, and
the right and bottom to dom.width and dom.height,
respectively. The script should now read:

var dom = fl.getDocumentDOM();

dom.addNewRectangle({left:0, top:0,

➥right:dom.width, bottom:dom.height}, 0);

Now you have a rectangle you can use! Steps 1 and 2 just
did a bit of housekeeping to organize your script and
make it more readable, so it really only took you one step
to make the History panel step more useful. By collecting
data from the current document (like Stage height and
width), you can make highly responsive scripts that will
save you time. The next section shows you where to save
your script so you can run it without opening the Script
Editor.

To launch the help documents,

choose Help > Flash Help. In the

Adobe Community Help window,

select Extending Flash Professional

CS5. You’ll see a list of contents on

the left (mainly JSFL objects).

The help documents are a program-

mer’s best friend. Get to know the

Extending Flash help documents.

It is highly recommended that you

download a PDF to your local drive

using the link provided on the help

pages. The PDF is faster to navigate

than any other format. There’s no

reason to memorize all the com-

mands and properties within the

JSFL API; just keep your PDF handy.

A new variable is created using the

var keyword.

237

Chapter 4 Workflow Automation

Parameters in Square Brackets

One way of getting the most out of the Flash help documents is knowing how to read the method usage descriptions. These descrip-

tions will help you understand what arguments to send to each method:

. When a parameter is located within square brackets in a method definition of a help document page, it denotes that the

parameter(s) is optional.

. In the following method usage description from the help documents, the parameter boundingRectangle is obligatory, but

the parameter for suppressing the fill of the new rectangle as well as the parameter for suppressing the stroke are both optional:

document.addNewRectangle(boundingRectangle, roundness [, bSuppressFill

➥[, bSuppressStroke]])

. To suppress the stroke, an argument must initially be passed for the bSuppressFill parameter. Here’s an example that

 suppresses the stroke, but not the fill:

fl.getDocumentDOM().addNewRectangle({left:0,top:0,right:100,bottom:100},0, false,

➥true);

Saving a Script as a Command

To run your script conveniently from Flash, it helps to be
able to access your script from within the Flash authoring
environment. The simplest way to access a script inside
of Flash is via the Commands menu. To add your script
to the Commands menu, place the script file inside the
Commands directory. The Commands directory is located
within the Flash Configuration directory. The Extending
Flash CS5 help document lists the following locations for
the three common operating systems:

 . Windows Vista. boot drive\Users\username\Local Set-
tings\Application Data\Adobe\Flash CS5\language\
Configuration\

 . Windows XP. boot drive\Documents and Settings\username\
Local Settings\Application Data\Adobe\Flash CS5\
language\Configuration\

 . Mac OS X. Macintosh HD/Users/username/Library/
Application Support/Adobe/Flash CS5/language/
Configuration/

238

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

If you still have trouble locating your Configuration direc-
tory, you can create and execute a simple new JSFL script
with the following code:

fl.trace(fl.configDirectory);

This script displays the path to your Configuration directory
in the Output panel. When you’ve found your configura-
tion directory, save your existing script as Create Stage Size
Rectangle.jsfl in the Configuration/Commands directory.

Running a Saved Command

With your script saved as a command, you can now access
the command!

 1. Create a new Flash document by choosing File > New
and selecting ActionScript 3.0.

 2. Run the command by choosing Commands > Create
Stage Size Rectangle (Figure 4.15).

Figure 4.15 The command

appears in the Commands

menu.

Voila! You have a rectangle with dimensions that match the
Stage. Once written, commands are quite easy to run. The
power of a command as an automation tool lies in the fact
that a command only has to be written once. The com-
mand can then be run instantly, whenever you need it.

Creating a Matte

Animators and designers often find it necessary to use a
matte or a mask to hide artwork at the edge of the Stage.
A matte covers up areas that are not to be displayed. A
mask operates by only showing content within the bounds

Copies of the finished scripts can be

found in the Chapter 4 folder on the

CD that accompanies this book.

Be careful when opening a JSFL

script from your operating system’s

file browser. Rather than opening

the script in Flash’s Script Editor,

Flash will actually execute the

script. If you want to open the

script for editing, choose File >

Open inside Flash.

The rectangle was created using

the currently selected fill and stroke

colors from the toolbar. If you had

object drawing mode selected

when last using a drawing tool,

your rectangle will be a shape

object; otherwise, the rectangle

will exist as raw vector data.

239

Chapter 4 Workflow Automation

of the mask’s shape. Both mattes and masks must sit on a
layer above all others to function properly. Both devices
are used to hide objects—typically those that are entering
into or exiting from view—at the edge of the Stage. One
reason to use a matte or a mask is to prevent these hidden
objects from being seen when a SWF is scaled. The experi-
ence of seeing what is supposed to be hidden undermines
the illusion that the artist is trying to create. This trespass
across the imaginary wall separating an audience from the
performance on a Stage is sometimes referred to as “break-
ing the fourth wall.”

In Flash, it can be frustrating to work with masks because
the mask and all the “masked” layers need to be locked
for the mask to appear correctly on the Stage. A matte, on
the other hand, appears on the Stage just as it will in the
published SWF. So, a matte can also serve as Stage guide-
lines for the animator. For these reasons, some Flash users
prefer to use mattes instead of masks.

Just as there are numerous approaches to accomplishing
a task using the tools in the Flash authoring environment,
there are a number of ways to accomplish the same end
using JSFL. The approach to a problem in JSFL often par-
allels what a user would be doing onscreen in the author-
ing environment. So, let’s consider this issue when creating
a matte script.

Start by making a mental map of the steps that the script
might follow. One way to create a matte involves drawing
two rectangles and using the inside rectangle to cut a hole
in the outer rectangle. You can refer to this strategy as the
“two-rectangles” method. Once you have the two rectan-
gles, you can approach the next step in two different ways.
If the rectangles you drew are not shape objects and they
have different color fills, simply deselecting the rectangles
and deleting the inner rectangle will leave you with the
matte appearance that you’re seeking. Alternatively, you
could draw two rectangles, make sure both rectangles are
shape objects, and use document.punch() (Modify > Com-
bine Objects > Punch) to generate your matte shape. You
can verify that this works by replicating these steps on the
Stage. If you copy the steps from the History panel, you’ll
be most of the way toward having a completed matte script.

Identifying Raw Vector Data

Raw vector graphics are part of Flash’s default

Merge Drawing Model, which automatically

merges shapes that overlap. A raw vector, when

selected, appears as though it’s covered with a dot

pattern. In contrast, shape objects will appear with

a “marquee” border when selected, just as a symbol

or group would appear (Figure 4.16). Shape

objects are part of the Object Drawing Model,

which does merge shapes that overlap.

Figure 4.16 Display differences with

shape objects and raw vector data.

240

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

One problem with both of the two-rectangles approaches
is that they require you to change the object drawing mode
(and/or fill color) setting in the user interface. So you
should first check to see whether object drawing mode is
off or on (depending on the method), and then restore
the setting when you’re finished, so you don’t interrupt
your workflow (or the workflow of other users you might
share the script with).

Let’s go back to the proverbial drawing board and come
up with a strategy that will create a matte without requiring
you to fiddle with the user settings. This time let’s consider
something that would be difficult for a user to accomplish
on Stage. Instead of worrying about object drawing mode,
draw a rectangle, select it, and then break it apart into raw
vector data (Modify > Break Apart). You could then draw
a selection rectangle inside your rectangle on the Stage,
and then delete that selection, leaving a hollow frame that
surrounds the Stage area. A quick check in the documenta-
tion reveals that there is a document.setSelectionRect()
method. Accomplishing this type of selection would be dif-
ficult (if not impossible) for a user, because the selection
would start with a mouse click. As soon as the user clicks,
the entire fill is selected. This is a case where JSFL can take
an action that a user cannot. Let’s now put this “single-
rectangle” strategy to the test.

 1. You’ll build on the existing Create Stage Size Rectangle
script (choose File > Open to open the script if you’ve
closed it) to create your matte script. Choose File >
Save As and save the script (also in the Commands
directory) as Create Stage Matte.jsfl. This sequence will
not overwrite your previous script as long as you choose
Save As.

 2. Copy the original addNewRectangle line and paste it
below the first one:

dom.addNewRectangle({left:0, top:0,

➥right:dom.width, bottom:dom.height}, 0);

dom.addNewRectangle({left:0, top:0,

➥right:dom.width, bottom:dom.height}, 0);

If you check the help page for

fl.objectDrawingMode,

which can toggle object drawing

mode on or off, you’ll notice

that Flash 8 is listed under

 Availability. This means that the

fl.objectDrawingMode

property was not available in

Flash MX 2004 (the version before

Flash 8). Pay special attention to

the availability of the properties

and methods that you use if you

intend to distribute your extension

to others.

You can also work with the Create

Stage Size Rectangle script and

ActionScript to create an effect

similar to your Stage matte script

using masking. Do this by convert-

ing the rectangle into a movieclip

symbol and using that symbol

as an ActionScript mask for the

Stage. Note that the masking set in

ActionScript only shows when the

file is compiled. The masking will

not be apparent within the Flash

authoring environment.

241

Chapter 4 Workflow Automation

 3. Modify the second line so that it calls the setSelection-
Rect instead. Change the second parameter to true to
force the selection to replace any existing selections:

dom.addNewRectangle({left:0, top:0,

➥right:dom.width, bottom:dom.height}, 0);

dom.setSelectionRect({left:0, top:0,

➥right:dom.width, bottom:dom.height}, true);

 4. Add a variable at the top of the script set to however
many pixels you like to control matte thickness. Then
update your original rectangle to account for the extra
area created by the matte thickness, which will extend
beyond the bounds of the Stage on all sides:

var matteThickness = 200;

dom.addNewRectangle({left:-matteThickness, top:

➥-matteThickness, right:dom.width+matteThickness,

➥bottom:dom.height+matteThickness}, 0);

 5. Add a couple of optional arguments to keep the fill but
suppress the stroke, since the stroke won’t be needed
for a matte:

dom.addNewRectangle({left:-matteThickness, top:

➥-matteThickness, right:dom.width+matteThickness,

➥bottom:dom.height+matteThickness}, 0, false,

➥true);

 6. Check to see if object drawing mode is indeed turned
on, and then break apart your rectangle before mak-
ing a selection. To use the breakApart() command,
you need to be certain that you’ve first made a selec-
tion. Add the following two lines of code between the
 addNewRectangle and setSelectionRect lines:

dom.selectAll();

if(fl.objectDrawingMode) dom.breakApart();

 7. Using selectAll is imprecise because there might be
something else on the layer you don’t want to select,
but you’ll improve on that step in a moment. Delete
your selection to form the cut-out part of the matte by
adding this line to the end of the script:

dom.deleteSelection();

242

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

If you run the current script on a blank document, it works
as intended. Unfortunately, if you run it in almost any
other scenario, it will likely wreak havoc on your existing
artwork. One thing you can do to improve your single-
rectangle script is to situate the matte on its own named
layer. Then you’ll be sure to select the contents of that
layer rather than selecting all. Ideally, this will prevent your
selection rectangle (that you then delete) from also select-
ing artwork on other layers as well.

Jumping ahead a few steps, the astute reader may see
a speed bump on the horizon. The selection rectangle
selects content on all available layers, so when you delete
your selection, you’ll still be deleting content from other
layers as well. You’ll rectify that in the steps that follow.

Improving the matte script

You can use several approaches to resolve the problem
introduced by the selection rectangle:

 . Loop through and remove items from the selection
that are not contained on your new layer prior to delet-
ing the selection.

 . Use a mouse click to select only your rectangle (yes,
JSFL can do that, too).

 . Convert your rectangle into a shape object or a group,
enter edit mode, and safely make your deletion there.

 . Start over and try an entirely different approach.

Let’s try the third option listed, the edit mode approach.
Even if you make your object into a group, you still have to
determine if your rectangle is a shape object once you’re
in edit mode. If you convert the rectangle into a shape
object, you know you’ll be dealing with a raw-vector rectan-
gle inside edit mode. However, if your rectangle is a shape
object from the beginning, the rectangle will be unaffected
by being made into a shape object again, so you’ll attempt
to convert the rectangle to a shape object regardless. Test
this out: Make an element into a drawing object by select-
ing the element on Stage and choosing Modify > Com-
bine Object > Union. Then enter edit (in place) mode by
double-clicking on the shape object. The shape within the

243

Chapter 4 Workflow Automation

shape object will be raw vector data regardless of whether
the shape was a shape object to begin with.

 1. Create a variable that will reference the current Time-
line. Insert the following text just below the declaration
of the dom variable near the top of the script:

var tl = dom.getTimeline();

 2. Create a new layer below the matteThickness variable.
The addNewLayer method will return the index of the
new layer. The index refers to the position of the layer
within its parent Timeline. You’ll store the index so that
you can use it later:

var newLayerNum = tl.addNewLayer("matte");

 3. Make your selection more precise by assigning the ele-
ments contained on the first frame of your new layer
(which will just be your rectangle) as the document’s
current selection. You’re using the elements object
because it’s already in array format, and dom.selection
only accepts an array. Replace the selectAll line with
the following code:

dom.selection = tl.layers[newLayerNum].frames[0].

➥elements;

 4. Remove the breakApart line entirely. You’ve rendered
the break apart step obsolete.

 5. Convert the selection into a shape object, and enter
edit mode by adding these two lines right after the line
in step 3:

dom.union();

dom.enterEditMode('inPlace');

 6. To clean up, exit out of edit mode and lock your matte
layer by adding these two lines to the end of the script:

dom.exitEditMode();

tl.setLayerProperty("locked", true);

If you want to make sure your matte layer is on top of
the pile, you can add this line to the end of your script:

tl.reorderLayer(newLayerNum, 0);

244

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

 7. Open a new ActionScript 3.0 document and run your
script by choosing Commands > Create Stage Matte
(Figure 4.17).

Figure 4.17 The Stage matte in action after the Create Stage Matte com-

mand has been run.

The full script should now read as follows:

var dom = fl.getDocumentDOM();

var tl = dom.getTimeline();

var matteThickness = 200;

var newLayerNum = tl.addNewLayer("matte");

dom.addNewRectangle({left:-matteThickness,

➥top:-matteThickness, right:dom.width+matteThickness,

➥bottom:dom.height+matteThickness}, 0, false, true);

dom.selection = tl.layers[newLayerNum].frames[0].

➥elements;

dom.union();

dom.enterEditMode('inPlace');

dom.setSelectionRect({left:0, top:0, right:dom.width,

➥bottom:dom.height}, true, false);

dom.deleteSelection();

dom.exitEditMode();

245

Chapter 4 Workflow Automation

tl.setLayerProperty("locked", true);

tl.reorderLayer(newLayerNum, 0);

If you were curious as to what your script would have
looked like if you had initially followed the two-rectangles
approach using object drawing mode, here it is with the
drawing mode stored and then restored after all the other
code has executed:

var dom = fl.getDocumentDOM();

var tl = dom.getTimeline();

var matteThickness = 200;

var storedODM = fl.objectDrawingMode;

var newLayerNum = tl.addNewLayer("matte");

fl.objectDrawingMode = true;

dom.addNewRectangle({left:-matteThickness,

➥top:-matteThickness, right:dom.width+matteThickness,

➥bottom:dom.height+matteThickness}, 0, false, true);

dom.addNewRectangle({left:0, top:0, right:dom.width,

➥bottom:dom.height}, 0, false, true);

dom.selection = tl.layers[newLayerNum].frames[0].

➥elements;

dom.punch();

tl.setLayerProperty("locked", true);

tl.reorderLayer(newLayerNum, 0);

fl.objectDrawingMode = storedODM;

The two-rectangles method has the same number of lines
as the single-rectangle/edit-mode method. Both scripts are
fairly robust (i.e., tough to “break” and will work in many
scenarios). Both scripts require at least Flash 8, because
they use aspects of the object drawing mode that were
introduced with Flash 8.

There’s at least one scenario in which the two-rectangles
method could be a more robust script: Suppose you
wanted to add a matte to a symbol’s Timeline rather than
to the main Timeline. If you’re operating on a symbol’s
Timeline, then that places you in edit mode to start with,
and exiting edit mode could potentially transport you to
the main Timeline of the current scene instead of back to
the symbol’s Timeline (which you had been editing before
you ran the script). The circumstances in which you might

246

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

want to render a matte within a symbol may seem rare, but
this type of scenario should be considered when develop-
ing scripts, especially when you plan to distribute your
script to other users. Fortunately, if you test this scenario by
running the current matte command while in symbol edit-
ing mode, the matte is drawn as expected (Figure 4.18).

Figure 4.18 Stage matte shown working properly within the edit mode of a

symbol.

You will run into cases where a method functions differ-
ently in various scenarios or doesn’t function exactly as
anticipated in any scenario. In these cases, there are often
still workarounds to accomplish your desired end. When
seeking a new solution, it can be helpful to consider how
you might accomplish the same task within the Flash
interface. For instance, if exitEditMode did not produce
the desired result, you could trigger a mouse double-click
action on an empty part of the Stage to exit the current
edit mode.

Developing for Others

As in all other development projects, it’s good to

think through how someone might cause your

script to execute in a way that you did not intend.

Try to “break” your script by testing it in as many

different scenarios as you can imagine. Potential

users who unintentionally run the script in a

scenario that you had not imagined are likely to

think of your script as breaking their workflow, not

the other way around.

247

Chapter 4 Workflow Automation

The process of creating a “smart” script is as much a pro-
cess of creative thinking as anything else that can be done
in Flash. As with any creative project, you may occasionally
find that you need to scrap an idea entirely and start from
scratch. With your matte script, a bit of persistence paid off
and allowed you to move forward, but scenarios may arise
during scripting in which there aren’t ready alternatives.
If you feel stuck, remember to comb the documentation
further or post your questions on the help forums listed in
the “More Resources” section at the end of this chapter.

Adding a Keyboard Shortcut to a Command

The ability to add a shortcut to your commands allows for
huge gains in workflow efficiency. Follow the steps here to
add a new shortcut to one of the commands that you’ve
written.

 1. To open the Keyboard Shortcuts dialog box, choose
Edit > Keyboard Shortcuts in Windows or Flash > Key-
board Shortcuts in Mac OS X (Figure 4.19).

Figure 4.19 The Keyboard Shortcuts dialog box allows you to add shortcuts

to several items within the Flash authoring environment, including com-

mands that you’ve written.

If you’re not worried about the back-

ward compatibility of your script

for any version prior to CS4, you can

write a shorter version of the two-

rectangles matte script using the

addNewPrimitiveRectangle

command. Rectangular Primitives

will be shape objects by default.

248

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

 2. If you have not done so already, start by duplicating
the default set of shortcuts and giving that set a unique
name. The Duplicate button is the first on the left after
the menu for the current set.

 3. Choose Drawing Menu Commands from the Com-
mands menu, and then twirl open the Commands item
by clicking the adjacent arrow to reveal the list from
your Commands menu.

 4. Select the command to which you’d like to add a short-
cut, and click the plus (+) button where it says Short-
cuts. The word <empty> will appear in the “Press key”
field and the Shortcut box.

 5. Using the keyboard, perform the shortcut that you’d
like to add. The shortcut keys will appear in the “Press
key” field. If the shortcut is invalid or conflicts with
another one of your shortcuts, a warning message will
appear at the bottom of the dialog box.

 6. When you are happy with a particular (valid) key com-
bination, click the Change button to apply this shortcut
to the <empty> item in the shortcut list. Note that you
can click the plus (+) to add additional shortcuts to the
same command.

 7. Click the OK button to close the dialog box and save
your settings when you’ve finished.

Creating a Script with User Interaction

Three different types of basic user interactions are listed
as global methods within the JSFL documentation: alert,
confirm, and prompt. The alert method is the simplest. It
accepts a single string parameter that is then displayed to
the user (Figure 4.20). At this point, OK is the only user
option, so alert is useful for cases in which you want to
provide feedback such as error messages and script com-
pletion notifications to the user.

The confirm method adds a Cancel button to the alert.
This is useful when you need the user to make a choice,
such as whether or not to allow the script to continue to

Figure 4.20 The alert message box.

249

Chapter 4 Workflow Automation

run, even though some precondition has not been met
(Figure 4.21). The confirm method returns a value to
notify you about which option the user selected.

Figure 4.21
The confirmation

message box.

The prompt method is the most sophisticated of the three.
It allows the user to enter text and accepts two parameters
when called (Figure 4.22). The first parameter is a prompt
message. The second is optional and includes any text
that you want to prepopulate into the user’s text entry
field. The prompt will then either return what was entered
into the field or return a value of null if the user clicked
Cancel. Although the prompt function has a number of
applications, the most common is to allow the user to
name something (e.g., a new symbol, a prefix for Library
items, etc.).

Figure 4.22 The Prompt message box.

Bitmap Smoothing

Bitmaps can sometimes become pixelated, blurry, or
otherwise “crunchy” when they are animated or scaled.
Flash’s default settings don’t tend to display bitmaps well
at any scale other than 100%. To fix this, you can open
the bitmap Library item by Ctrl-clicking/right-clicking on
the Library item and choosing Properties. In the Bitmap

Debugging Your Scripts

Debugging is the process of finding and reducing

the number of bugs, or defects, in your script. You

can use the following methods to generate feed-

back when parts of your script are not working:

. The alert method (described in this section)

can be useful for providing you, the developer,

with feedback when something is not

working.

. The fl.trace method can also be used. It is

similar to the trace method in ActionScript

and prints the feedback into the Output

panel instead of an alert message box. The

fl.trace method will not clear the Output

panel when you retest your script like the

ActionScript trace method does when you

retest a SWF. To clear the Output panel, use

fl.outputPanel.clear() at the top

of your script.

250

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Properties dialog box, select the Allow Smoothing check
box. If you’re producing a project for broadcast or physical
media (e.g., CD or USB drive) or if you are more con-
cerned about quality than about file size, set the Com-
pression to Lossless (PNG/GIF) instead of Photo (JPEG)
(Figure 4.23). Setting these properties on every bitmap can
be a headache if you have a lot of bitmaps in your Library,
so let’s script it!

Figure 4.23 The Bitmap Properties dialog box allows you to control settings on

individual bitmaps within the Library.

 1. Create a new JSFL file (File > New > Flash JavaScript
File) and save it in the Commands directory as Smooth
and Lossless Bitmaps.jsfl.

 2. Define variables for the Library and the items currently
selected in the Library:

var lib = fl.getDocumentDOM().library;

var items = lib.getSelectedItems();

 3. Loop through the contents of your items variable using
a for in loop and store the current Library item as you
go:

for(var i in items) {

 var it = items[i];

}

 4. You need to set the allowSmoothing and compressionType
properties of each variable. Before doing so, check
to make sure the current item is a bitmap, since only

251

Chapter 4 Workflow Automation

a bitmap will possess these properties (attempting to
apply these properties to any other types of Library
items will generate an error). Add the following lines
after the declaration line for the it variable inside the
for in loop:

if(it.itemType == "bitmap") {

 it.allowSmoothing = true;

 it.compressionType = 'lossless';

}

The script will run fine at this point, but the user
remains uninformed about what’s going on behind
the curtain. Even when you’re scripting just for you,
it’s nice to have confirmation that the script ran as
intended. While you’re at it, check to see if any Library
items are selected in the first place. If there are no
items selected, give the user the option to apply this
command to all the bitmaps in the Library.

 5. To see if the user wants to apply the command to all
Library items, use a confirm box if no Library items
are selected. If the user clicks OK, you’ll reassign your
items variable to the entire list of Library items. Add
the following lines just after the line containing the
declaration of the items variable:

if(items.length < 1) {

 var confirmed = confirm("No items are

➥selected. Do you want to run this on all library

➥items?");

 if(confirmed) items = lib.items;

}

 6. Add a variable at the top of your script that will keep
track of the number of bitmap items you’ve altered:

var runCounter = 0;

 7. You’ll now increment this variable by 1 for each time a
bitmap is encountered in your list of items. When your
loop is complete, you’ll display the resulting number
to the user in the form of an alert message. Add the
highlighted code as shown:

252

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

for(var i in items) {

 var it = items[i];

 if(it.itemType == "bitmap") {

 it.allowSmoothing = true;

 it.compressionType = 'lossless';

 runCounter++;

 }

}

alert(runCounter + " items affected.");

If nothing is selected in the Library, the user will see the
message that you added in step 5 (Figure 4.24). Now the
user has more control and receives some feedback from
your script (Figure 4.25).

Figure 4.24 The confirmation message appears and informs the user that no

Library items are selected.

Figure 4.25 The alert message tells the

user how many bitmaps were affected by

the script.

Generating a Ready-made Mouth Symbol

For setting up and organizing files, JSFL is a great tool.
Perhaps you have a common set of layers or Library folders
that you always use for your files. Any repeated activities
used to set up a file or assets within a file will lend them-
selves well to scripting. Standards make files simpler to
work with. Aside from the organization benefits, standards
take away the burden of memorization. For instance, if you
have a standard set of mouth shapes for your character,
you won’t have to memorize a new set when working with
each new character. In this example, you’ll set up a mouth

253

Chapter 4 Workflow Automation

symbol with ready-made frame labels for lip syncing an
animated character (Figure 4.26).

Figure 4.26 Frame labels as they will appear when the script is complete.

 1. Create a new JSFL file and save it in the Commands
directory as New Mouth Symbol.jsfl.

 2. Define variables for the current document’s DOM and
Library:

var dom = fl.getDocumentDOM();

var lib = dom.library;

 3. You’ll define two settings for your script. The first vari-
able will store all your standard mouth shapes (which
tend to represent phonemes, basic units of sound) as
a string with the values separated by commas. You can
add to or subtract from this list to fit your needs. The
second variable will tell the script how many frames you
want between each label, which will enable you to easily
read each label. Add the following two variable declara-
tions to your script:

var labelString = "default,ee,oh,ah,mm,L,s";

var framesPerLabel = 10;

 4. Prompt the user to name the new symbol and to store
that name by adding this code immediately after the
code in the previous step:

var namePath = prompt("Symbol name: ");

 5. You’ll add a graphic symbol to the Library using the
name given by the user. The new Library item will auto-
matically be selected. You’ll edit the symbol from there.
Add these two lines after the code in the previous step:

lib.addNewItem('graphic', namePath);

lib.editItem(namePath);

254

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

 6. Since you’ve called editItem(), you’re now inside the
symbol, and by requesting the current Timeline, you’ll
receive the symbol’s Timeline. Add the following line
after the lines in the previous step:

var tl = dom.getTimeline();

 7. You’ll create a new variable and convert your
labelString into an array so that you can loop through
each label. Then you’ll use the length of that array and
the framesPerLabel variable to determine the number
of frames that the symbol should have on its Timeline.
Add the following lines to your script:

var labels = labelString.split(',');

tl.insertFrames(labels.length * framesPerLabel);

 8. Add the following lines to create a new layer to store
your labels, as well as create a variable to store your new
layer for easy referencing:

var newLayerNum = tl.addNewLayer("labels");

var newLayerObj = tl.layers[newLayerNum];

 9. Loop through all your labels and assign a frame num-
ber to each label based on your framesPerLabel setting
and the number of times that your loop has run by add-
ing this block of code:

for (var i=0; i < labels.length; i++){

 var frameNum = i * framesPerLabel;

}

 10. For each iteration of the loop, you also want to add a
keyframe (except on the first frame, because there’s
already a keyframe there by default). You also want to
set the name of the current frame in your loop to the
current label in the loop. Setting the name of the frame
is equivalent to assigning the label name via the Proper-
ties panel. Add these next two lines within the for loop
after the first line, but before the closing curly brace:

if(frameNum != 0) tl.insertKeyframe(frameNum);

newLayerObj.frames[frameNum].name = labels[i];

255

Chapter 4 Workflow Automation

Improving the mouth symbol script

Your script will work just fine as it is right now, but you
should probably do a little housekeeping:

 1. Lock the new layer to make sure no content is acciden-
tally placed on the “labels” layer by adding the follow-
ing line to the end of the script:

newLayerObj.locked = true;

 2. You’ll use the next bit of code to move the playhead
back to the first frame and target “Layer 1” so the user
can immediately begin adding artwork after running
the script. This can be accomplished in a single step by
setting the selected frame.

There are two different ways to pass a selection to the
setSelectedFrames() method. Method A accepts argu-
ments for a startFrameIndex, an endFrameIndex, and a
toggle about whether to replace the current selection
(the toggle is optional and true by default). Method
B accepts a selection array as its first argument and
the same toggle from method A as the second argu-
ment. Because you want to specify the layer that you’re
selecting, you’ll use method B with a three-item array
that includes the layer that you want to select, the first
frame, and the last frame. Layer index numbering starts
with zero at the top of the stack. To access the layer
below your “labels” layer, you need to add 1 to the layer
index that you stored. Add this next line to the bottom
of the script:

tl.setSelectedFrames([newLayerNum + 1, 0, 1]);

 3. If the user clicks Cancel when asked for the symbol
name, you need to be sure to abort the rest of the
script. You’ll do this by wrapping most of your code in
a function. You can then exit that function at any point
in time. Add the following function definition before
the declaration of the namePath variable:

function createNewSymbol(){

 4. You still need to make sure that you close your function
and that the script actually calls the function that you

256

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

just defined. Do so by adding the following to the end
of the script:

}

createNewSymbol();

 5. You’re now able to exit the function if and when the
user clicks Cancel. Clicking Cancel causes the prompt()
to return a value of null. To exit the function if the
user cancels, add the following line immediately after
the namePath prompt:

if(namePath == null) return;

 6. Save your script (Command+S/Ctrl+S) and test it by
opening a new document and choosing Commands >
New Mouth Symbol.

Rather than wrapping your code in a function (as you
just did), you could have wrapped your code in an if
statement block, which would have checked to see if
namePath was not set to null. The advantage of wrapping
everything in a function is that it’s easy to then exit the
function for any number of reasons. For example, you
could add another prompt before the symbol name
to determine if the user wants to add (or remove) any
labels to your set. This is an easy feature to add because
you originally defined your label set as a string, not
an array. The prompt will also return a string. You
thus have the option to abort the script if the user
clicks Cancel within the Prompt box. If you had used
a second if statement instead of a function, you’d in
turn have to wrap everything in another set of brackets,
rendering everything more difficult to read.

 7. Return to your script. By adding the following snippet
inside the beginning of the createNewSymbol function
block, the command will present the user with your set
of labels and allow the user to add or remove labels:

var returnedLabels = prompt("Labels: ",

➥labelString);

labelString = returnedLabels;

if(labelString == null) return;

257

Chapter 4 Workflow Automation

 8. Save your script, return to the open document, and
run the command again. Your script will now include
a prompt that allows the user to add or remove frame
labels (Figure 4.27).

Your completed New Mouth Symbol script should look like
this:

var dom = fl.getDocumentDOM();

var lib = dom.library;

var labelString = "default,ee,oh,ah,mm,L,s";

var framesPerLabel = 10;

function createNewSymbol(){

var returnedLabels = prompt("Labels: ", labelString);

labelString = returnedLabels;

if(labelString == null) return;

var namePath = prompt("Symbol name: ");

if(namePath == null) return;

lib.addNewItem('graphic', namePath);

lib.editItem(namePath);

var tl = dom.getTimeline();

var labels = labelString.split(',');

tl.insertFrames(labels.length * framesPerLabel);

var newLayerNum = tl.addNewLayer("labels");

var newLayerObj = tl.layers[newLayerNum];

for (var i=0; i < labels.length; i++){

 var frameNum = i * framesPerLabel;

 if(frameNum != 0) tl.insertKeyframe(frameNum);

 newLayerObj.frames[frameNum].name = labels[i];

}

newLayerObj.locked = true;

tl.setSelectedFrames([newLayerNum + 1, 0, 1]);

}

createNewSymbol();

Extending Flash Even Further

Several topics capable of improving your workflow have
been covered to this point, but there are even more power-
ful techniques yet to be discovered. This section gives you

Figure 4.27 The prepopulated prompt that allows

users to add or remove labels.

258

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

a taste of additional techniques that you can use to extend
Flash beyond the topics covered thus far in this chapter.

Advanced Dialog Boxes

So far, we’ve touched upon some very simple user interac-
tions, but you can create more complex interactions using
the XMLUI object (Figure 4.28). The XMLUI object allows you
to create complex dialog boxes using a simple XML con-
figuration file. An XML file is a simple text file that uses
tags to describe data. Similar to HTML, XML tags begin
with a less than sign (<) and end with a greater than sign
(>), and a slash (/) is used to close a tag. Here’s the XML
that describes the structure of a dialog box for a command
that combines textfields in Flash:

<?xml version="1.0" encoding="UTF-8"?>

<dialog id="combineTF" title="Combine TextFields"

➥buttons="accept,cancel">

 <vbox>

 <label value="Sort from:" />

 <radiogroup id="sortby" tabindex="5">

 <radio label="top" accesskey="t"

➥selected="true"/>

 <radio label="left" accesskey="l" />

 <radio label="bottom" accesskey="b" />

 <radio label="right" accesskey="r" />

 </radiogroup>

 </vbox>

 <spacer />

 <hbox>

 <label value="Separator:" />

 <textbox id="separator" maxlength="20"

➥multiline="false" value="" tabindex="1" size="12"

➥literal="false" />

 </hbox>

</dialog>

Once the XML file is saved, the file location can be passed
as an argument using the document.xmlPanel() method,
which launches the dialog box. You can access the user

Figure 4.28 The dialog box produced

by an XMLUI file that appears for the

Combine TextFields command.

259

Chapter 4 Workflow Automation

selections made within the dialog box after the dialog box
has been closed just as you can with the confirm and prompt
methods.

Adobe has almost no official documentation of how these
XML files work. The only complete documentation can
be found in Extending Macromedia Flash MX 2004: Complete
Guide and Reference to JavaScript Flash by Todd Yard and
Keith Peters (friends of ED, 2004). You can also find a
great article by Guy Watson at www.devx.com/webdev/
Article/20825.

Panels

The JSFL knowledge covered in this chapter carries over
to Flash panels as well. A Flash panel is simply a published
SWF that can be loaded into the Flash Professional inter-
face and accessed by choosing Window > Other Panels.
You can design custom panels to look like the panels that
come installed with Flash, or you can make them entirely
unique. To have your SWF show up as a panel, you’ll need
to place it in the Configuration/WindowSWF folder. If you
have Flash open when you paste (or save) the SWF into the
folder for the first time, you must restart Flash to make the
panel available.

From a SWF, there is one primary way for ActionScript to
talk with JSFL, which is to use the MMExecute() function.
This function passes a string to be interpreted as JSFL.
When you pass this code as a string, you’ll have to be
careful to escape any characters such as quotation marks
(using a backslash, e.g., /") that will disrupt the string in
ActionScript. If you use double-quotes for JSFL, you can
use single quotes to wrap your string, and vice versa:

MMExecute("alert('hello');");

When you publish your SWF by choosing Control > Test
Movie, you won’t see any indication that the JSFL code has
executed. If you place the SWF inside the WindowSWF
folder, restart Flash, and locate the panel by choosing Win-
dow > Other Panels (the panel name will be the filename
minus the .swf extension), you will then see an alert box
that displays “hello” (Figure 4.29).

Figure 4.29 An alert box generated by

a SWF panel using MMExecute.

www.devx.com/webdev/Article/20825
www.devx.com/webdev/Article/20825

260

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Complex ActionScript-to-JSFL Interactions

For more complex interactions, it is recommended that you place all your JSFL

functions in a script file and call individual functions within the script using the

fl.runscript() method (from MMExecute) rather than including all your

JSFL inside your ActionScript and sending large strings with MMExecute.

. The method usage for fl.runscript() is documented as follows:

fl.runScript(fileURI [, funcName [, arg1, arg2, ...]])

. To execute an entire script, pass the file location of the script as the only

argument.

. To call a function within a script, also pass the name of the function as the second

argument.

. All arguments after the second one are for arguments that you are passing to the

function that you are calling.

. By keeping your JSFL in a separate script, you avoid the need to republish your

SWF (and copy it to the WindowSWF folder) with every update.

Building the Animation Tasks panel

There are several reasons to design a SWF panel. Action-
Script has several capabilities to analyze and display
content that JSFL does not. Sometimes, however, house-
cleaning for your Commands menu is reason enough.
As more commands are collected, the Commands menu
list can be so extensive that it becomes difficult to locate
the desired command. Since the name of the game is
efficiency, there’s good reason to keep the Commands list
manageable (Figure 4.30). Let’s take some of the com-
mands that you developed in this chapter and design a
simple SWF panel.

 1. Create a new JSFL script and save it as
Animation Tasks.jsfl in a folder of your choosing.

 2. Copy the content from Create Stage Size Rectangle.jsfl,
Create Stage Matte.jsfl, Smooth and Lossless Bitmaps.jsfl,
and New Mouth Symbol.jsfl scripts that you saved previ-
ously, and paste each into the Animation Tasks script.

Figure 4.30 The Queasy Tools panel

started out as a way to clean up the

Commands menu and has evolved

into a powerful SWF panel.

261

Chapter 4 Workflow Automation

 3. Wrap each block of code from the scripts you cop-
ied within the following function names respec-
tively: stageRectangle, stageMatte, smoothBMPs, and
newMouthSymbol.

 4. Consolidate any variable declarations for the docu-
ment, Library, and Timeline (except the one in the
middle of the newMouthSymbol function) at the top of
the script.

Your Animation Tasks script should now read as follows:

var dom = fl.getDocumentDOM();

var tl = dom.getTimeline();

var lib = dom.library;

function stageRectangle(){

 dom.addNewRectangle({left:0, top:0,

➥right:dom.width, bottom:dom.height}, 0);

}

function stageMatte(){

 var matteThickness = 200;

 var newLayerNum = tl.addNewLayer("matte");

 dom.addNewRectangle({left:-matteThickness,

➥top:-matteThickness,

➥right:dom.width+matteThickness,

➥bottom:dom.height+matteThickness},

➥0, false, true);

 dom.selection = tl.layers[newLayerNum].

➥frames[0].elements;

 dom.union();

 dom.enterEditMode('inPlace');

 dom.setSelectionRect({left:0, top:0,

➥right:dom.width, bottom:dom.height}, true,

➥false);

 dom.deleteSelection();

 dom.mouseDblClk({x:10, y:10}, false, false,

➥false);

 tl.setLayerProperty("locked", true);

 tl.reorderLayer(newLayerNum, 0);

}

262

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

function smoothBMPs(){

 var items = lib. getSelectedItems();

 if(items.length < 1) {

 var confirmed = confirm("No items are

➥selected. Do you want to run this on all library

➥items?");

 if(confirmed) items = lib.items;

 }

 var runCounter = 0;

 for(var i in items) {

 var it = items[i];

 if(it.itemType == "bitmap") {

 it.allowSmoothing = true;

 it.compressionType = 'lossless';

 runCounter++;

 }

 }

 alert(runCounter + " items affected.");

}

function newMouthSymbol(){

 var labelString = "default,ee,oh,ah,mm,L,s";

 var framesPerLabel = 10;

 var returnedLabels = prompt("Labels: ",

➥labelString);

 labelString = returnedLabels;

 if(labelString == null) return;

 var namePath = prompt("Symbol name: ");

 if(namePath == null) return;

 lib.addNewItem('graphic', namePath);

 lib.editItem(namePath);

 var tl = dom.getTimeline();

 var labels = labelString.split(',');

 tl.insertFrames(labels.length *

➥framesPerLabel);

 var newLayerNum = tl.addNewLayer("labels");

 var newLayerObj = tl.layers[newLayerNum];

 for (var i=0; i < labels.length; i++){

 var frameNum = i * framesPerLabel;

 if(frameNum != 0) tl.insertKeyframe

➥(frameNum);

263

Chapter 4 Workflow Automation

 newLayerObj.frames[frameNum].name =

➥labels[i];

 }

 newLayerObj.locked = true;

 tl.setSelectedFrames([newLayerNum + 1, 0, 1]);

}

 5. Create a new ActionScript 3.0 document and save it as
Animation Tasks.fla (in the same folder with the cor-
responding JSFL script).

 6. In the Properties panel under the Properties heading,
click the Edit button next to Size, change the size of the
document to 200 x 150, and click OK.

 7. Use the color selector within the Properties panel to
change the background color of the Stage to a light
gray color, like #CCCCCC.

 8. Open the Components panel (Window > Compo-
nents), twirl open the User Interface folder, and drag
four instances of the Button component onto the Stage.

 9. Select all four buttons (Command+A/Ctrl+A), set their
width properties to 200 in the Properties panel, and
arrange the buttons evenly on the Stage (Figure 4.31).

 10. Give the buttons the following instance names using
the Properties panel (from top to bottom): rect_btn,
matte_btn, bmp_btn, and mouth_btn.

 11. Give the buttons the following labels using the Compo-
nent Parameters area of the Properties panel: Create
Stage Rectangle, Create Stage Matte, Smooth Bitmaps,
and New Mouth Symbol (Figure 4.32).

Figure 4.32 Setting the button label in the Prop-

erties panel.

Figure 4.31 Button instances evenly

spaced on the Stage.

264

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

 12. Create a new layer and name it actions. Lock the layer
and select the first frame.

 13. Open the Actions panel (Window > Actions) and type
the following ActionScript into the Actions panel:

rect_btn.addEventListener(MouseEvent.CLICK,

➥rect_click);

matte_btn.addEventListener(MouseEvent.CLICK,

➥matte_click);

bmp_btn.addEventListener(MouseEvent.CLICK,

➥bmp_click);

mouth_btn.addEventListener(MouseEvent.CLICK,

➥mouth_click);

function rect_click(event:MouseEvent):void {

}

function matte_click(event:MouseEvent):void {

}

function bmp_click(event:MouseEvent):void {

}

function mouth_click(event:MouseEvent):void {

}

This code uses the instance names you added to the
buttons to create mouse click listeners. When the SWF
is rendered and a user clicks one of the four buttons,
your panel will summon the corresponding function.
Each one of these functions will trigger a function
inside of your Animation Tasks JSFL script.

 14. To save some typing, funnel all the JSFL communica-
tion through a single ActionScript function. Add the
following highlighted code to the click functions:

265

Chapter 4 Workflow Automation

function rect_click(event:MouseEvent):void {

 jsFunct("stageRectangle");

}

function matte_click(event:MouseEvent):void {

 jsFunct("stageMatte");

}

function bmp_click(event:MouseEvent):void {

 jsFunct("smoothBMPs");

}

function mouth_click(event:MouseEvent):void {

 jsFunct("newMouthSymbol");

}

Now you’ll write the function that will communicate
with your JSFL script. This function will accept a JSFL
function name from your script as an argument, and
then your ActionScript function will call the function
within the JSFL script.

 15. Add the following code at the end of the ActionScript
within the Actions panel:

function jsFunct(fname:String):void{

 var jsfl:String = "fl.runScript('" +

➥scriptPath + "','" + fname + "');";

 trace(jsfl);

}

Notice how complex the jsfl string is with all the
single and double quotations. You need JSFL to recog-
nize parts of your message as a string, hence the use of
the single quotes within the double quotes that define
your string. You’ll be sending a message for JSFL to run
a function from within a script.

 16. Add this line of ActionScript to the top of your code to
define the location of the JSFL script:

var scriptPath:String = this.loaderInfo.url.

➥replace(".swf",".jsfl");

266

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

This line retrieves the name of your SWF and replaces
the .swf extension with a .jsfl extension to locate the
path for your JSFL script (which is in the same folder).

For the moment, you’re using the trace method
instead of MMExecute, so that you can preview your JSFL
strings in the Output panel.

 17. Ensure that Control > Test Movie > in Flash Profes-
sional is selected and press Command+Return/
Ctrl+Enter to test the movie.

 18. Click all four buttons. Your Output window should
trace text resembling the following:

fl.runScript('file:////Volumes/Macintosh%20HD/

➥Users/YourName/Desktop/AnimatingWithFlash/

➥jsfl%5Fscripts/Animation%20Tasks.jsfl',

➥'stageRectangle');

fl.runScript('file:////Volumes/Macintosh%20HD/

➥Users/YourName/Desktop/AnimatingWithFlash/

➥jsfl%5Fscripts/Animation%20Tasks.jsfl',

➥'stageMatte');

fl.runScript('file:////Volumes/Macintosh%20HD/

➥Users/YourName/Desktop/AnimatingWithFlash/

➥jsfl%5Fscripts/Animation%20Tasks.jsfl',

➥'smoothBMPs');

fl.runScript('file:////Volumes/Macintosh%20HD/

➥Users/YourName/Desktop/AnimatingWithFlash/

➥jsfl%5Fscripts/Animation%20Tasks.jsfl',

➥'newMouthSymbol');

Verify that the two arguments being sent to
fl.runScript are in single quotes and that there are no
other quotation marks.

 19. Close the test window and update your code to replace
the trace method with MMExecute:

MMExecute(jsfl);

 20. Test your movie again, click each button, and ensure
that there are no errors in the Compiler Error or
Output panels.

267

Chapter 4 Workflow Automation

 21. Locate the folder containing Animation Tasks.fla.
There will be a corresponding Animation Tasks.swf file
that was generated as a result of testing your movie in
Flash. Copy the Animation Tasks.swf and Animation
Tasks.jsfl files into your Configuration/WindowSWF
directory. Restart Flash.

 22. Open a new ActionScript 3.0 document. You can now
open your SWF panel by choosing Window > Other
Panels > Animation Tasks (Figure 4.33). Verify that
each button completes its task (Figure 4.34).

Figure 4.33 Locating the newly created Flash panel by

choosing Window > Other Panels.

Figure 4.34 The Flash panel in action.

Because you’ve successfully grouped these four commands
in a panel, you can now delete the original commands
from your Configuration/Commands directory to free
some space in the Commands menu.

You can also delete (or rename)

commands by choosing Commands >

Manage Saved Commands.

268

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Tools

You can also create custom tools for the Flash toolbar using
JSFL. Tool files reside in the Configuration/Tools directory.
Tool files have special functions not generally used in other
JSFL scripts, like mouse event handlers and Properties panel
settings. The PolyStar tool that comes with Flash (found
with the shape tools in the toolbar) is actually an example of
an extensible tool. You won’t be developing any tools in this
book, but you can view the code that powers the PolyStar
tool by opening Configuration/Tools/PolyStar.jsfl.

Packaging Extensions for Distribution

The first step toward making your extension available (and
easily installable) to others is creating an MXI descriptor
file. An MXI file is a special XML file that contains infor-
mation about the extension (title, author, version, copy-
right, license agreement, which files it includes, where to
install the files, etc.). Here’s sample text from an MXI file:

<?xml version="1.0" encoding="UTF-8"?>

<macromedia-extension

 name="Sample Extension"

 version="1.0.0"

 type="command">

 <author name="Your Name Here" />

 <products>

 <product name="Flash" version="7" primary=

➥"true" />

 </products>

 <description>

 <![CDATA[

 This extension does A and B.

]]>

 </description>

 <ui-access>

 <![CDATA[

 The command can be found in ‘Commands > Sample

➥Extension’

]]>

The file extension for an MXI file

is .mxi.

269

Chapter 4 Workflow Automation

 </ui-access>

 <license-agreement>

 <![CDATA[

]]>

 </license-agreement>

 <files>

 <file source="Sample Extension.jsfl"

➥destination="$flash/Commands" />

 </files>

</macromedia-extension>

The highlighted text needs to be customized for each
extension using a text editor like TextEdit in Mac OS X or
Notepad in Microsoft Windows.

After you’ve edited your MXI file in a text editor, open it in
the Adobe Extension Manager (Figure 4.35). The Exten-
sion Manager comes free with any of the Adobe Creative
Suite applications. The Extension Manager will ask where
you want to save your packaged file. Once you’ve given
your file a name and location, the Extension Manager will
package all the files referenced in the <files> tag of the
MXI file and include them in a single MXP (or ZXP for
CS5-specific extensions) file. That new file can then be
distributed to other users and installed using the Extension
Manager.

Figure 4.35 The Adobe Extension Manager allows you to package extensions for

others as well as save and manage extensions on your own system.

270

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

More Resources

This chapter covered the basics of writing commands and
creating a handy SWF panel for accelerating your Flash
animation workflow, but we’ve still only scratched the
surface of Flash extensibility. This last section provides you
with additional resources to continue extending your Flash
animation workflow.

Other People’s Extensions

There’s a wealth of cool stuff that’s already available and
free to use. If you’re on a tight deadline and you don’t
have time to write your own script, don’t be shy about
checking to see if anyone has gotten there before you.
Conversely, if you just want to write the script as a chal-
lenge or to make something work exactly the way you want,
then go for it. You can always learn from comparing your
solution to others on the web.

Books

There’s only one book to-date that is completely dedicated
to JSFL. It hasn’t been updated since the release of JSFL
in 2004. Luckily, very little of the language has changed
since 2004. Coupled with the (up-to-date) help documenta-
tion, Extending Macromedia Flash MX 2004: Complete Guide
and Reference to JavaScript Flash by Todd Yard & Keith Peters
(friends of ED, 2004) is an invaluable reference.

Forums

Forums are a great way to start a conversation. Sometimes
a web search is all that is needed to find a solution, but
other times you really need a back-and-forth interaction
with someone who understands your problem. Many of
the Flash forums are packed with knowledgeable people
willing to give free advice. If you’re looking for existing
extensions or help with JSFL, here are a few good sites to
start with:

 . http://forums.adobe.com/

 . http://www.keyframer.com/forum/

http://forums.adobe.com/
http://www.keyframer.com/forum/

271

Chapter 4 Workflow Automation

 . http://bbs.coldhardflash.com/

 . http://www.actionscript.org/forums/

Sites with Flash Extensions

Looking for sites with Flash extensions? Check out these
sites:

 . http://www.adobe.com/exchange/

 . http://ajarproductions.com/blog/

 . http://theflashblog.com/

 . http://www.animonger.com/flashtools.html

 . http://www.dave-logan.com/extensions

 . http://www.toonmonkey.com/extensions.html

 . http://www.5etdemi.com/blog/archives/2005/01/
toolsextensions-for-flash-mx-2004/

Sites with JSFL Help

Here are a few other sites to visit for JSFL techniques:

 . http://summitprojectsflashblog.wordpress.com/

 . http://www.bit-101.com/blog/

 . http://www.adobe.com/devnet/flash/articles/invis-
ible_button.html

 . http://www.adobe.com/go/em_file_format (MXI
documentation in PDF format)

http://bbs.coldhardflash.com/
http://www.actionscript.org/forums/
http://www.adobe.com/exchange/
http://ajarproductions.com/blog/
http://theflashblog.com/
http://www.animonger.com/flashtools.html
http://www.dave-logan.com/extensions
http://www.toonmonkey.com/extensions.html
http://www.5etdemi.com/blog/archives/2005/01/toolsextensions-for-flash-mx-2004/
http://www.5etdemi.com/blog/archives/2005/01/toolsextensions-for-flash-mx-2004/
http://summitprojectsflashblog.wordpress.com/
http://www.bit-101.com/blog/
http://www.adobe.com/devnet/flash/articles/invis-ible_button.html
http://www.adobe.com/devnet/flash/articles/invis-ible_button.html
http://www.adobe.com/go/em_file_format

This page intentionally left blank

335

A

absolute paths, 147
action, 35
action safe guides, 2–5, 328
Actions panel, 12, 13
ActionScript, 313–318. See also code; scripts

adding animation with, 313–318
adding to Flash files, 12–13
advantages of, 130–131, 313
basics, 12–13, 134–141
case sensitivity, 149
classes. See classes
code coloring, 138
considerations, 129, 132
creating new document, 142
keywords, 137–138
navigating to frame labels, 6
navigating to scenes, 10
objects in, 134
operators, 138–141
planning phase, 131–133
resources, 129, 142, 224
saving documents, 142, 143
settings, 147
statements, 137–138
typing, 152–153
versions, 12
vs. JSFL, 228
vs. Timeline, 130–131, 313

ActionScript mask, 240
ActionScript-to-JSFL interactions, 259–267
addChild method, 300
addNewPrimitiveRectangle command, 247
Adobe (company), v
Adobe Extension Manager, 122, 269
After Effects, 328
AIFF files, 20
alert box, 248, 252, 259
alert method, 248, 249, 252
alphaMultiplier property, 180
animated preloaders, 287–291
animatics, 46–48, 93
animation. See also character animation

ActionScript vs. Timeline, 313
adding with ActionScript, 313–318
cutout, 53–54
digital portfolio, 274–291
dynamic, 330–333

exporting to PNG sequences, 328–330
publishing for broadcast, 325–333
publishing to mobile/desktop, 333–334
resources, 50, 111
sharing via web, 274–325
stop-motion, 53–54
traditional, 50–51

animation classes, 313–318. See also classes
Animation Tasks panel, 260–267
AnimSlider, 127
anti-aliasing, 284
arguments

considerations, 170–171, 237, 260
described, 137, 228
syntax, 137, 139

arithmetic operators, 139
armatures, 104–110
arrays, 137, 139, 230
arrow keys, 39, 41, 196, 199, 216, 224
artwork. See also sketches

collecting for site content, 292
converting to symbols, 57–58, 110–111, 148
creating for Flash files, 276–281
hiding/showing, 8
locking layers, 5, 12
for preloaders, 287–291
previewing, 7
repository for, 11–12
scaling, 321
synchronizing audio with, 22–23
vector, 159, 275

as keyword, 171
aspect ratio, 326
audio. See sound
authoring environment, 227
auto-completion, code, 146
automating repetitive tasks. See workflow

automation

B

backups, 328
Bandwidth Profiler, 310–312
base class, 155
behaviors

button, 57, 318–321
controlling sound with, 22–23
edge, 200–206
graphics, 57–58

Index

336

Index

drawing on twos, 51
driver character. See driver character
flour sack exercise, 50
hand-drawn, 50–51
lip syncing, 110–128
resources, 50
run/walk cycle, 92–103, 217–224
screen edge behavior, 200–206
stop-motion, 53–54
synchronizing sound to, 22–23
techniques, 50–54
traditional, 50–51
tweening. See tweening; tweens
wandering around screen, 206–216

character control classes, 191–224
character design, 29–31, 54–56
characters

animating. See character animation
bones, 104–110
building in Flash, 56–89
cleaning up sketches, 56
converting to symbols, 88–89
designing, 29–31, 54–56
driver. See driver character
joints, 90–92
lip syncing, 110–128
mouth symbol/shapes, 111–118

checkEdges method, 202–206, 219
class examples

character control, 191–224
visual effects, 156–191

classes, 129–224. See also specific classes
access control attributes, 161
attaching to Library items, 151–154
author of, 146
base, 155
basic structure, 143
within classes, 161
composition, 161
creating, 141–145, 155–224
document class, 141–149, 296–310
empty, 154
encapsulation, 160
event, 154–155
examples. See class examples
extending, 135, 155, 160
helper, 161
importing, 147–148, 315
inheritance, 134, 135
instantiating, 141
names, 142, 145
from other sources, 224
overview, 134–137

behaviors (continued)
movie clip, 57
start, 22
stop, 22
stream, 22
symbol, 57–58

Bitmap object, 159, 161, 172, 174
bitmap smoothing, 249–252
BitmapData object, 172–174
blocking, 32
blur, motion, 18, 181–191
Bone tool, 90, 104–110
bones, 104–110
Boolean properties, 164
boundaries property, 200
BoundedMover class, 201–206
braces { }, 139, 152
brackets [], 139, 230
branching narrative, 29
breakApart() command, 241
Brush tool, 47, 61–62, 83–84, 93
Button symbols, 57
buttons

behaviors, 57, 318–321
menu, 281, 297
in panels, 263
states, 57

C

camera
perspective angle, 37–39
stop-motion animation, 53
techniques, 13–20

camera shots, 36–37, 328
cartoon characters. See characters
case sensitivity, 149
CD, included with book, viii
cel animation, 50
character animation, 49–128. See also animation;

characters
adding dialogue, 110–128
animating manually, 90–103
animating with inverse kinematics, 104–110
bones, 104–110
building characters, 56–89
cel animation, 50
conceptualization, 55–56
creating armatures, 104–110
creating joints, 90–92
cutout animation, 53–54
designing characters, 29–31, 54–56
doodling, 55
drawing on ones, 51

337

Index

preparing for web, 292
title/action safe areas for, 2

content directory, 292
content layers, 4, 279
contentLoader property, 297, 304
contentLoaderInfo property, 304
coordinate system, 193
CSS, styling text with, 312–313
CSS files, 312–313
CSS properties, 312
curly braces { }, 139, 152
cutout animation, 53–54

D

debugging, 249
Deco tool, 159
design patterns, 150
desktop computers, publishing to, 333–334
dialog boxes, advanced, 258–259
dialogue, adding, 110–128
dispose method, 166, 174
document class, 141–149
Document Object Model (DOM), 229–231
documents. See also files; Flash files

compacting, 12
creating new blank, 59–60, 142
help, 236, 237, 270
saving, 142, 143
templates. See templates

DOM (Document Object Model), 229–231
doodling, 55
dot syntax, 230
DOWN conditional, 221
download speeds, 310–312
driver character

animating manually, 90–103
animating with inverse kinematics, 104–110
building, 59–89
converting to symbol, 88–89
run/walk cycle, 92–103
working with imported sketch, 59–63

driver character, components
bones, 104–110
eyes, 63–66
hat, 66–70
joints, 90–92
limbs, 83–89
mustache/hair, 71–76
torso, 77–83

dynamic animation, 330–333
dynamic content, 293–296
dynamic text, 283–284

polymorphism, 155–156
purpose of, 134
reusable, 136, 155–224
subclasses, 135, 155, 156
superclasses, 155, 156
user-created, 135
web addresses, 146

classpaths, 145–147
clearCanvasOnUpate property, 164, 170, 179, 190
code. See also ActionScript

auto-completion options, 146
case sensitivity, 149
color in, 138
comments, 139
indenting, 152

code blocks, 139
Code Editor, 138, 142–147, 153, 163
code hinting, 146
code snippets, 13
coding. See scripting
colon (:), 152
color

animating for broadcast and, 326
in code, 138
ColorTransform object, 180
fills, 61, 63, 65, 172, 232, 240

ColorTransform object, 180
commands

deleting, 267
managing, 260, 267
renaming, 267
running, 238
saving scripts as, 233, 237–238
shortcuts, 247–248

Commands directory, 237
commands list, 260
Commands menu, 234, 237, 248, 260, 267
comments, 139
compiler, 140–141
compiler errors, 143, 144, 146
composition, 161
compression, 332
conceptualization, 55–56
conditional statements, 171
configFile properties, 297
Configuration directory, 237–238
confirm method, 248–249, 251, 252
constructor method, 143, 163, 164
content

collecting artwork for, 292
dynamic, 293–296
guided, 4–5
loading/unloading, 297, 300, 303–305

338

Index

JPEG, 292
MP3, 20
MXI, 268–269
PNG, 292
SWF, 292
SWZ, 285
WAV, 20
XML, 258–259, 293–296, 299

fills, 61, 63, 65, 172, 232, 240
FLA files, 328
Flash

advanced techniques, 257–268
forums, 270–271
help documents, 236, 237, 270
popularity of, 54
resources, viii, 270–271

Flash Code Editor, 138, 142–147, 153, 163
Flash coordinate system, 193
Flash DOM, 229–231
Flash extensions. See extensions
Flash files. See also documents; files

action safe/title safe guides, 2–5, 328
creating artwork for, 276–281
displaying on web, 276–291
exporting to video, 325–333
organizing in Library, 11–12
saving/compacting, 12
setting up for video output, 326–328
setting up for web output, 277
setup tips, 2–13
templates. See templates

Flash panels, 259–267
Flash Player, 276, 331
flashbacks, 28–29
flashContent element, 324
flour sack exercise, 50
fl.trace method, 249
folders

ActionScript, 147
expanding/collapsing, 11
layer, 9
organizing in Library, 11
subfolders, 146

font embedding, 283–284
for loop, 300
forums, 270–271
frame labels, 5–6, 7
frame notes, 6
frame rates, 51, 327–328
frames. See also keyframes

adding, 6, 15, 21
adding ActionScript to, 12, 15
copying, 16, 210, 279

E

ease, 319
easing, 314
ECMAScript, 228
edge behavior, 200–206
elements, 229–230
else statement, 171
else-if statements, 171, 196, 220
encapsulation, 160
ENTER_FRAME event, 166
envelope, sound, 23–24
errors

compiler, 143, 144, 146
strict typing and, 153
try-catch statements, 305
Unhandled ioError, 299

Event behavior, 22
event classes, 154–155
event listeners, 152, 162, 195, 319
events

dispatching, 155
keyboard, 196
mouse, 154
overview, 154–155
sounds, 22

exporting
animations to PNG sequences, 328–330
dynamic animation, 330–333
to QuickTime, 330–333
video for Flash output, 325–333
to video sharing sites, 274, 333

Extensible Markup Language. See XML
Extension Manager, 122, 269
extensions

FrameSync, 122–128, 227
included on CD, viii
managing, 122, 269
MotionSketch, 177
packaging for distribution, 257–268
resources, 270–271
SmartMouth, 127

F

fade method, 179–180
fadeAmount property, 179, 181, 190
file formats, 56
files. See also documents; Flash files

AIFF, 20
CSS, 312–313
FLA, 328
GIF, 292
HTML, 322–325

339

Index

init method, 164–166, 190, 297–298
initBitmap method, 171–173
initialization methods, 164
instance names, 279
instances, 57–59, 110–111, 134
instantiation, 134, 141
int (integer data type), 193
integer data type (int), 193
internal keyword, 161
interpolation, 51–52. See also tweening
inverse kinematics (IK), 104–110

J

JavaScript, 229, 233
JavaScript Flash. See JSFL
JPEG files, 292
JPEG format, 56
JSFL (JavaScript Flash)

ActionScript-to-JSFL interactions, 259–267
advantages of, 228–229
basics, 227–231
custom tools, 268
extensions in, 227
Flash DOM and, 229–231
help documents, 236, 237, 270
objects in, 229
panels, 259–267
resources, 270–271
vs. ActionScript, 228

JSFL scripts, 228, 232–257

K

key poses. See keyframes
keyboard

moving object with, 192–200
shortcuts, 247–248

keyboard events, 196
keyCode property, 196
keyDown method, 196, 214–215
keyframes. See also frames

considerations, 57, 93
creating, 125
described, 51
frame labels, 5–6
inserting, 21, 115

keyUp method, 196, 221
keywords, 137–138

L

labels, 5–6, 7, 254, 256
lastX property, 182, 183
lastY property, 182, 183

cutting, 75, 99
layers and, 229
pasting, 16, 76, 88, 100
selecting, 16
size of, 6, 7
skipping, 219

FrameSync extension, 122–128, 227
framing, 32
FTP (File Transfer Protocol), 322, 325
functions, 137, 149, 228
FutureSplash Animator, v

G

Gap Size setting, 69
generateMenu method, 299–300
get method, 185
getBitmap method, 166
getCanvas method, 163
getters, 185
GIF files, 292
GIF format, 56
globalToLocal method, 172
gradients, 157, 282–283, 287
Graphic symbols

considerations, 326, 328
described, 57
lip syncing via, 111, 114–118
uses for, 57–58

graphics tablets, 59
greensock.com, 314, 315
guide layers, 4–5, 328
guides, 2–5, 328

H

help documents, 236, 237, 270
helper class, 161
hideSymbol property, 164, 179
History panel, 232–234
hover state, 312
HTML files, 322–325
htmlText property, 302

I

if statement, 171
IK (inverse kinematics), 104–110
Illustrator, 56
importing

ActionScript classes, 147–148
audio, 119–120
classes, 147–148, 315

index property, 301
inheritance, 134, 135, 170

340

Index

mouth symbol script, 252–257
Mover class, 192–200
Movie Clip symbols, 57
Movie Clip Timeline, 326
MovieClip class, 135
movies. See also video

action safe/title safe areas, 2–5, 328
adding sound to, 20–27
testing, 144, 266

MP3 files, 20
MXI files, 268–269

N

naming conventions, 11–12
narrative, 27–29
nesting

described, 58
lip syncing via, 111, 121–128
symbols, 58–59

new keyword, 166
nonlinear narrative, 28–29
notes, frame, 6
NTSC format, 326, 327

O

Object class, 134–135
Object Drawing mode, 112, 238, 240, 245
object-oriented design patterns, 150
object-oriented programming (OOP), 150
objects. See also specific objects

in ActionScript, 134
bitmap, 159, 161, 172, 174
instances, 57
in JSFL, 229
moving with keyboard, 192–200
primitive, 247
on Stage. See Stage

offset property, 169
onAddedToStage method, 162, 201
onClick function, 152–153
onContentLoadProgress method, 304
onContentLoadStarted method, 304
onDataLoaded method, 298
onFrame method, 163, 179
Onion Skin feature, 93, 115–118
onMenuItemClick method, 319–320
onRemovedFromStage method, 163
OOP (object-oriented programming), 150
operators, ActionScript, 138–139
Optimize Curves dialog box, 73
Oval tool, 66, 213
override keyword, 161, 179

layer folders, 9
layers

content, 4, 279
displaying as outlines, 8
frames on, 229
guide, 4–5, 328
height, 8–9
hiding/showing, 9
labels, 5–6, 126
locking/unlocking, 5, 12, 278
names, 8
properties, 8–9
sketch, 63, 89
title, 281

Library, organizing items in, 11–12
library folders, 11
Library items, 150, 151–154, 249–253
linear narrative, 28–29
lines, constraining, 70
links, 295, 298, 303, 312
lip syncing, 110–128
loadContent method, 303–304
loadItem method, 302
logical operators, 139
loops, 137, 228

M

Mac OS X, 237, 247, 324
Macromedia, v
masks, 177, 238–239, 240
Math.min method, 289
matte script, 238–247
Media Playback templates, 60
memory issues, 166, 174, 328, 333
menu buttons, 281, 297
menuItemStart property, 297
Merge Drawing model, 239
methods, 134, 137, 228
MMExecute() function, 259–260, 266
mobile devices, publishing to, 333–334
model sheets, 30–31, 56
motion blur, 18, 180–191
motion tweens, 4, 15, 16, 18, 52
MotionBlurClip class, 181–189
MotionBlurTrail class, 190–191
MotionBrush class, 159–168
MotionSketch extension, 177
MotionTrail class, 177–181
mouse click listeners, 152, 264, 300
mouse clicks, 111, 229, 240, 242, 264
MouseEvent object, 152
mouth shapes, 115–118
mouth symbol, creating, 111–115

341

Index

rotation property, 215
Runner class, 217–224
run/walk cycles, 92–103, 217–224

S

scaleX property, 215, 221
scaling artwork, 321
scanners, 56
scenes

converting to symbols, 16
overview, 10
panning, 14–18
using sound across, 24–25
zooming in/out, 18–20

scr object, 173
Script Editor, 234–236
scripting, 228. See also ActionScript; coding
scripting terms, 228
scripts. See also ActionScript; workflow automation

advanced dialog boxes, 258–259
for bitmap smoothing, 249–252
compatibility, 247
executing, 235, 290
History panel, 232–234
JSFL, 228, 232–257
matte creation, 238–247
modifying, 236–237
mouth symbol, 252–257
rectangle, 232–238
sample, 238
saving as commands, 234, 237–238
testing, 246
with user interactions, 248–249

scrubbing, 57
selectAll function, 241
semicolon (;), 140–141
set method, 186
setBounds method, 203
setters, 185
setting, 35
shape hints, 208–212
shapes

adjusting, 65
creating armatures with, 108–110
merging, 239
mouth, 115–118

sharing animations, 273–334
overview, 273
publishing for broadcast, 325–333
publishing to mobile/desktop, 333–334
via web, 274–325

Simulate Download option, 310–312
Single Frame option, 118

P

package paths, 146
packages, 143, 145–147
PAL format, 326, 327
panels, 259–267
panning, 13, 14–18
parallax scrolling, 17–18
parameters, 137, 228
parentheses (), 139–140
paths, 145–147
perspective angle, 37–39
phonemes, 115, 121
Photoshop, 56
playhead, 6, 10, 57, 226, 255
plot, 35
plug-ins. See extensions
PNG files, 292
PNG format, 56
PNG sequences, 328–330
points, 172
polymorphism, 155–156
portfolio, digital, 274–325
preloaders, 40, 287–291
Preview modes, 7
primitive objects, 247
private keyword, 161, 168
programming. See ActionScript; code; scripts
programming terms, 136–137
prompt method, 249
properties. See also specific properties

Boolean, 164
CSS, 312
layer, 8–9
sound, 22–23

protected keyword, 161, 168, 193
public keyword, 161, 168
publishing

for broadcast, 325–333
to mobile/desktop platforms, 333–334

Q

Queasy Tools panel, 260–267
QuickTime, 325, 330–333

R

raw vector data, 239
rectangles

Create Stage Size Rectangle script, 232–238
matte script, 239–247

rigging, 90
rollover state, 312
root keyword, 201

342

Index

SWF files, 292
SWF2Video, 333
SWZ files, 285
symbol behaviors, 57–58
symbol instances, 58–59, 110–111, 134
symbol names, 279
symbol parameter, 170
SymbolCanvas class, 168–177
symbolCanvas property, 164
symbols

buttons, 57
converting artwork to, 57–58, 110–111, 148
converting characters to, 88–89
converting items to, 57
converting scenes to, 16
creating armatures with, 104–108
described, 57
editing, 75, 93, 253, 285, 286
Graphic, 57–58
Movie Clips, 57
nested, 58–59
rendering mattes within, 245–246
using as masks, 177
working with, 57–59

T

tablet devices, 34
templates

animatic files as, 46
Media Playback, 60
NTSC, 326–327
PAL, 326–327
storyboard, 33
using, 3–4, 112

testing
download speeds, 310–312
files for publishing, 325, 331
in Flash Player, 331
movies, 144, 266
scripts, 246

text
anti-aliased, 284
classic vs. TLF, 285
dynamic, 283–284
embedded, 283–284, 286, 296
formatting, 296, 312–313
static, 286
styling with CSS, 312–313

text descriptions, 280
Text Layout Framework (TLF), 285
TextWrangler, 324
TIFF format, 56

site document class, 141–149, 296–310
site.html file, 323–325
sketch layer, 63, 89
SketchBook Pro, 56, 59
sketches. See also artwork

cleaning up, 56
for run/walk cycles, 92
in storyboards, 31–45
working with, 59–63

SmartMouth extension, 127
snapping, 65, 79
sound, 20–27

adding to movies, 20–21
controlling via behaviors, 22–23
disabling, 332
event, 22
importing, 119–120
lip syncing, 110–128
narrative, 27–29
settings, 25–27
streaming, 22
synchronizing to animation, 22–23
using across multiple scenes, 24–25

sound effects, 24
sound envelope, 23–24
sound properties, 22–23
Spring feature, 52
square brackets [], 139, 230, 237
Stage

camera techniques, 13–20
as frame border, 33
manipulating objects on, 148–149
width/height of, 34

Stage objects, 229
stage property, 172
Start behavior, 22
statements, 137–138
Stop behavior, 22
stop-motion animation, 53–54
story bibles, 30
storyboard example, 39–45
storyboarding, 31–45
storyboards, animated, 46–48
storytelling, 27–29
Stream behavior, 22
streaming sound, 22
strict typing, 152–153
stroke width, 82
styleFile properties, 297
styles, CSS, 312–313
subclasses, 135, 155, 156
super keyword, 179
superclasses, 155, 156

343

Index

waveforms, 23–24
web addresses, 146
websites

digital portfolio, 274–291
download speeds, 310–312
dynamic content, 293–296
preparing content, 292
sharing animations via, 274–325
site directory, 277
site document class, 296–310
uploading, 322–325
video sharing sites, 274, 333

Windows Vista/XP, 237, 247
workflow automation, 225–271. See also scripts

advantages of, 226–227
Document Object Model, 229–231
History panel, 232–234
JavaScript Flash. See JSFL
resources, 270–271

write-on effect, 177

X

x coordinate, 172, 193
x velocity, 195, 203, 220
XML (Extensible Markup Language), 293–296
XML attributes, 300
XML files, 258–259, 293–296, 299
XML tags, 258, 293
XMLUI object, 258–259

Y

y coordinate, 172, 193
y velocity, 195, 196
YouTube, 333

Z

zooming effects, 13, 18–20

Timeline
adding frame labels to, 5–6
applying audio clip to, 21
customizing look of, 6–9
vs. ActionScript, 130–131, 313

Tint effect, 87
title layer, 281
title safe guides, 2–5, 328
tools, custom, 268
trace method, 266
transparency, 172, 179, 180, 315
try-catch statements, 305
tween classes, 313–318
tweening, 51–53, 288
TweenLite, 314–318
tweens, 4, 15, 18, 52–53
typing, 152–153

U

uint (unsigned integer data type), 193
unloadContent method, 303, 304–305
unsigned integer data type (uint), 193
UP conditional, 221
update method, 166
updatePosition method, 195, 202, 214, 219
user interactions, 248–249

V

var keyword, 236
variables

described, 137, 228
local, 172
syntax example, 137

vector artwork, 159, 275
vector data, 239
velocity, 182, 196, 203, 220
video. See also movies

exporting for Flash output, 325–333
exporting to video sharing sites, 274, 333
publishing for broadcast, 325–333
publishing to mobile/desktop, 333–334

video sharing sites, 274, 333
Vimeo, 333
visemes, 115
visual effects classes, 156–191
vx property, 221

W

walk cycles, 92–103
Wanderer class, 213–217
Wanderer symbol, 206–213
WAV files, 20

WATCH
READ

CREATE
Meet Creative Edge.
A new resource of unlimited

books, videos and tutorials for

creatives from the world’s

leading experts.

Creative Edge is your one

stop for inspiration, answers to

technical questions and ways to

stay at the top of your game so

you can focus on what you do

best—being creative.

All for only $24.99 per month

for access—any day any time

you need it.

peachpit.com/creativeedge

1

Chapter 5 Sharing Your Animation

Publishing to Mobile and Desktop

Publishing an Adobe AIR Desktop Application

Adobe AIR (Adobe Integrated Runtime) is a cross-platform
(Windows, Mac OS X, and Linux) runtime environment
that allows you to deploy your Flash content as a desktop
application. Your application will coexist on the user’s
machine with Photoshop, Word, Excel, iTunes, and all
the other desktop applications on the dock or in the Start
menu (depending on the user’s operating system). As a
desktop application, your Flash file will enjoy the privileges
that come with being on the desktop.

Desktop capabilities

Being a citizen of the desktop has its perks.

Here is a selection of capabilities that an AIR application
can possess:

 . Native processes. Launch other desktop applications.

 . Copy, paste, drag-and-drop. Move content in and out
of your application and interact with the local machine
(see www.adobe.com/devnet/air/flash/quickstart/
scrappy_copy_paste.html for an introduction to these
concepts in AIR).

 . File menus. Utilize the operating system’s native menus.

 . File access. Access the local file system to read or save
a file. Also, access a local database to store application
information.

 . Custom icons. Brand your application in the dock, Start
menu, and/or file system.

Most of the capabilities listed are fairly easy to implement.
You can access all of these features (with the exception of
the custom icons) by utilizing ActionScript classes or meth-
ods that are specific to AIR.

The next section will introduce some of the basics of creat-
ing an AIR application.

Support for AIR on additional plat-

forms, including Google Android (as

a native application), is also under

development.

You can also use HTML and JavaS-

cript to build an AIR application.

Look for the AIR icon next to classes

or methods inside the ActionScript

3.0 Reference documentation.

www.adobe.com/devnet/air/flash/quickstart/scrappy_copy_paste.html
www.adobe.com/devnet/air/flash/quickstart/scrappy_copy_paste.html

2

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Building an AIR application

To begin a new AIR project, choose File > New and select
Adobe AIR 2.

Inside your new document, choose File > Adobe AIR 2
Settings to launch the Application & Installer Settings. The
Application & Installer Settings allow you to shape how
your application will function within the end-user’s operat-
ing system. In the Application & Installer Settings are four
headings: General, Signature, Icons, and Advanced.

General. The General section allows you to name your
output files, include author and version information, add
a description and copyright, control the Window style
(appearance), choose the device profile, and include any
auxiliary files (Figure 5.62).

Figure 5.62 The

General section of the

Application & Installer

Settings for an AIR

document.

Signature. The Signature section allows you to add a digital
signature to your application (Figure 5.63). The signature
is used to ensure that the application comes from a trusted
source. You can purchase an official signature certificate

By default, an application descriptor

file is generated to store informa-

tion about your application, and

this file is automatically incorpo-

rated into the Included files list.

Figure 5.63 The Signature section allows you to

include (and create) a digital certificate to verify the

publisher of your application.

3

Chapter 5 Sharing Your Animation

from a company like Thawte or VeriSign, or you can simply
create a new self-signed certificate. If you use a self-signed
certificate, users will be presented with a warning when
installing your application (Figure 5.64).

Icons. The Icons section allows you to attach images for
the various icon sizes used in different operating systems
(Figure 5.65). These images should be in PNG format.

Advanced. The Advanced section lets you do all kinds
of cool stuff, such as associate a file type with your appli-
cation, set the initial window size of your application,
indicate which window behaviors your application will
allow, and determine where to install your application
(Figure 5.66).

Figure 5.65 The Icons section of the Application &

Installer Settings for an AIR document.

Figure 5.66 The Advanced section of the Application

& Installer Settings for an AIR document.

When you have all your settings squared away and your
application has been created, you’ll need a way to share
your application.

Figure 5.64 A warning is generated when installing

a self-signed AIR application to inform the user that

the software publisher (you) is unverified.

4

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Distributing your desktop application on the web

When you’re ready to distribute your application, you’ll
publish your SWF and application descriptor XML file
into a single .air package by choosing File > Publish. Your
application can then be distributed like any other installa-
tion file.

If the users installing your application already have the AIR
environment installed, all they have to do is double-click
your .air file on their machine to begin the installation. If
the users do not have the runtime environment installed,
be sure to instruct them to download and install the AIR
runtime environment before installing your application.

As if it weren’t cool enough to be able to create a distribut-
able desktop application in Flash, Adobe has gone one step
further in making your AIR application easy to distribute.
You can also create an AIR badge. The badge is essentially
a SWF that you can embed in a web page. From the badge
SWF, you can allow users to install your AIR application
right in their browser (Figure 5.67)! If the users do not
yet have the runtime environment, the badge will install
that, too.

Figure 5.67 An AIR badge allows you to install a desktop application right from

a web browser.

And as if Flash wasn’t versatile enough, there’s yet another
way you can share your Flash content: on those little
devices that are everywhere.

For your application to download

properly from your web host, you

may need to add the AIR mime type

to your server. To find instructions

on how to accomplish this, try a

web search using the following

terms: set adobe air mime type.

The AIR installer can be found at

http://get.adobe.com/air.

To learn more about AIR installer

badges, see www.adobe.com/

devnet/air/articles/badge_for_air.

html.

http://get.adobe.com/air
www.adobe.com/devnet/air/articles/badge_for_air.html
www.adobe.com/devnet/air/articles/badge_for_air.html
www.adobe.com/devnet/air/articles/badge_for_air.html

5

Chapter 5 Sharing Your Animation

Publishing a Mobile Application

Developing Flash content for mobile devices thus far has
required writing your code in a subset of ActionScript and
publishing your movie to a platform known as Flash Lite.
Flash Lite is still available in CS5, but with the introduc-
tion of Flash Player 10.1, standard Flash content is rapidly
becoming available on mobile devices.

Flash Player 10.1 can now:

 . Receive text input (a virtual keyboard is automatically
raised and lowered in response to focus changes on
textfields when editing text on mobile devices support-
ing a virtual keyboard).

 . Interact with multiple objects simultaneously or inter-
pret the incoming event stream as gestures (multi-
touch). Native gestures include pinch, scroll, rotate,
scale, and two-finger tap.

 . Read accelerometer input. A new ActionScript Accel-
erometer class provides a way to receive acceleration
values in x, y, and z axes from native device accelerom-
eter sensors to ActionScript.

 . Optimize content for CPU usage and battery
performance.

 . Accelerate graphics and provide better video
performance.

Similar to the projects for other platforms (output for-
mats) discussed in this book, projects for a mobile platform
should begin with detailed planning. You’ll have to con-
sider how your movie will perform on a smaller screen with
less available memory and a different mode of interaction.
Additionally, you’ll have to decide which devices you are
targeting, whether those devices possess Flash Lite or Flash
Player 10.1, and how you will go about testing your content
for those devices.

Whether your mobile application is targeted for Flash
Lite or Flash Player 10.1, you’ll want to test your movie in
Device Central first to simulate how it will look and per-
form on a mobile device.

6

Animation with Scripting for Adobe Flash Professional CS5 Studio Techniques

Testing in Device Central

Device Central provides an easy way to preview and test
Flash Lite, bitmap, web, and video content for mobile
devices. The controls within Device Central allow you to
simulate the controls and variable conditions within a
mobile device (Figure 5.68).

Figure 5.68 Device Central allows you to simulate the conditions and interactions of several different mobile devices.

To test a movie in Device Central from Flash Professional,
choose Control > Test Movie > in Device Central. This
will launch Device Central if it’s not open already. Within
Device Central, you can select a device and begin testing.
The list of devices that you can simulate in Device Central
is updated frequently as new cell phones and other devices
are brought to market.

Not only can you create beautiful and dynamic content,
but you can now also distribute it anywhere. Go forth and
multiply (the number of places your animation can be
seen, that is)!

	Contents
	Introduction
	Chapter 4 Workflow Automation
	Why Automate?
	What Is JSFL?
	Writing Scripts to Control Flash
	Extending Flash Even Further
	Packaging Extensions for Distribution
	More Resources

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

