

Adobe ColdFusion 9 Web Application Construction Kit, Volume 2: Application Development
Ben Forta and Raymond Camden
with Charlie Arehart, John C. Bland II, Ken Fricklas, Paul Hastings, Mike Nimer, Sarge Sargent, and
Matt Tatam

This Adobe Press book is published by Peachpit.
For information on Adobe Press books, contact:

Peachpit
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

For the latest on Adobe Press books, go to www.adobepress.com
To report errors, please send a note to errata@peachpit.com
Peachpit is a division of Pearson Education

Copyright ©2011 by Ben Forta

Series Editors: Rebecca Freed and Karen Reichstein
Editor: Judy Ziajka
Technical Reviewer: Brian Rinaldi
Production Editor: Tracey Croom
Compositor: Maureen Forys, Happenstance Typo-O-Rama
Proofreader: Liz Welch
Indexer: Ron Strauss
Cover design: Charlene Charles-Will

NOTICE OF RIgHTS

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For
information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

NOTICE OF LIABILITy

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of the book, neither the authors nor Peachpit shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions
contained in this book or by the computer software and hardware products described in it.

TRAdEMARKS

Adobe, ColdFusion, ColdFusion Builder, dreamweaver, Flash, Flash Builder, Flex, and LiveCycle are trademarks
or registered trademarks of Adobe Systems, Inc., in the United States and/or other countries. All other trademarks
are the property of their respective owners. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this book, and Peachpit
was aware of a trademark claim, the designations appear as requested by the owner of the trademark. All other
product names and services identified throughout this book are used in editorial fashion only and for the benefit of
such companies with no intention of infringement of the trademark. No such use, or the use of any trade name, is
intended to convey endorsement or other affiliation with this book.

ISBN 13: 978-0-321-67919-2
ISBN 10: 0-321-67919-9

www.adobepress.com

This page intentionally left blank

Introduction xxiii

PART 5 Creating Functions, Tags, and Components 1

CHAPTeR 22 Building User-defined Functions 3
CHAPTeR 23 Creating Custom Tags 23
CHAPTeR 24 Creating Advanced ColdFusion Components 51

PART 6 ColdFusion Configuration and Performance 95

CHAPTeR 25 ColdFusion Server Configuration 97
CHAPTeR 26 Managing Threads 133
CHAPTeR 27 Improving Performance 151

PART 7 Integrating with ColdFusion 173

CHAPTeR 28 Working with PdF Files 175
CHAPTeR 29 ColdFusion Image Processing 221
CHAPTeR 30 Advanced ColdFusion-Powered Ajax 243
CHAPTeR 31 Integrating with Adobe Flex 281
CHAPTeR 32 Integrating with Flash data Services 303
CHAPTeR 33 Building ColdFusion-Powered AIR Applications 323
CHAPTeR 34 Creating Presentations 335
CHAPTeR 35 Full-Text Searching 349
CHAPTeR 36 Event Scheduling 379

PART 8 Advanced ColdFusion Development 395

CHAPTeR 37 Using Stored Procedures 397
CHAPTeR 38 Working with ORM 415
CHAPTeR 39 Using Regular Expressions 455
CHAPTeR 40 ColdFusion Scripting 487
CHAPTeR 41 Working with XML 511
CHAPTeR 42 Manipulating XML with XSLT and XPath 531

PART 8 Online Chapters *

CHAPTeR 43 Manipulating XML with XSLT and XPath E1
CHAPTeR 44 Error Handling E47
CHAPTeR 45 Using the debugger E71

Index 557

* Pages mentioned throughout the text as online content are included after the index.

contents at a glance

This page intentionally left blank

contents

Introduction xxiii

PART 5 Creating Functions, Tags, and Components 1

CHAPTeR 22 Building User-defined Functions 3
Thinking About Extending CFML 3
Functions Turn Input into Output 4
Building your First UdF 4

Basic Steps 5
Using the Function 6
UdF Tag Syntax 6
Using Local Variables 8
Where to Save your UdFs 10

Creating Libraries of Related UdFs 13
designing the UdF Library 13
Putting the UdF Library to Use 16

Creating general-Purpose UdFs 18
Things to Consider 18
Writing the SimpleJavaScriptFunctions Library 19

Sharing UdF Libraries with Others 21
CHAPTeR 23 Creating Custom Tags 23
Easy, Powerful Extensibility 23
Introducing CFML Custom Tags 23

The Basic Custom Tag Idea 24
How to Use Custom Tags 24

How to “Install” a Custom Tag 24
Using Custom Tags 25
Changing the Custom Tag Search Path 26
Placing Custom Tags in the Current directory 27
Specifying Locations with Application.cfc 28

Writing Custom Tags That display Information 28
Writing your First Custom Tag 28
Introducing the ATTRIBUTES Scope 29
Making Attributes Optional or Required 31
Using <cfparam> to Establish default Values 31

Custom Tags That Process data 34
Introducing the CALLER Scope 34
Returning Variables to the Calling Template 34
Variable Names as Tag Attributes 37
Using <cfparam> with type=”variableName” 37
Setting a Variable dynamically 38

xii Contents

Additional Custom Tag Topics 40
Passing Attributes with attributeCollection 40

Working with <cfimport> 41
Advanced Custom Tags 42
Paired Custom Tags 43

The Execution Cycle 43
The Concept of GeneratedContent 45
Custom Tags That May Be Called as Paired or Empty 46
Using thisTag.HasEndTag 46
Using cfexit to Control Custom Tag Processing Flow 47

Nested Custom Tags 48
Where to go from Here 49
CHAPTeR 24 Creating Advanced ColdFusion Components 51
Review of ColdFusion Components 51

About ColdFusion Components 51
The Two Types of Components 53

Simple CFCs 54
Structure of a CFC File 54
CFCs as groups of Functions 56
Using the CFC in ColdFusion Pages 58
Separating Logic from Presentation 61

Introspection and HINTs 62
cfdump and the GetMetaData() Function 63

Accessing a CFC via a URL 65
getting Raw data from a ColdFusion Component via a URL 65
Accessing a CFC via a Form 66

Type Checking in Components 67
Components That Hold Instance data 68

Introducing the THIS Scope 69
Instance data CFC Example 70
Storing CFCs in the APPLICATION Scope 75
Storing CFCs in the SESSION Scope 76
Instance data as Properties 76
Keeping your Properties Clean: getters and Setters 79
Implicit getters and Setters 80
Initializing Components 81
CFCs, Shared Scopes, and Locking 82

Working with Inheritance 84
Overriding Properties and Methods 85
Using the SUPER Scope 86

defining Interfaces 87
Implementing Security 88

Implementing Access Control 88
Implementing Role-Based Security in CFCs 89

xiiiContents

Using the OnMissingMethod Method 91
distributed CFCs and Serialization 92

PART 6 ColdFusion Configuration and Performance 95

CHAPTeR 25 ColdFusion Server Configuration 97
The ColdFusion Administrator 97

The Administrator Home Page 97
Server Settings 98

The Settings Page 98
The Request Tuning Page 104
The Caching Page 107
The Client Variables Page 109
The Memory Variables Page 110
The Mappings Page 111
The Mail Page 112
The Charting Page 114
The Font Management Page 115
The document Page 116
The Java and JVM Page 116
Settings Summary 117

data and Services 118
The data Sources Page 118
The ColdFusion Collections Page 118
The Verity K2 Server Page 119
The Solr Server Page 119
Migrate Verity Collections 119
The Web Services Page 119
The Flex Integration Page 120

debugging and Logging 120
The debug Output Settings Page 120
The debugging IP Addresses Page 122
The debugger Settings Page 123
The Logging Settings Page 123
The Log Files Page 124
The Scheduled Tasks Page 124
The System Probes Page 125
The Code Analyzer Page 125
The License Scanner Page 126

Server Monitoring 126
The Server Monitor Page 126

Extensions 127
The Java Applets Page 127
The CFX Tags Page 127

xiv Contents

The Custom Tag Paths Page 128
The CORBA Connectors Page 128

Event gateways 129
The Settings Page 129
The gateway Types Page 129
The gateway Instances Page 130

Security 130
The Administrator Page 130
The RdS Password Page 131
The Sandbox Security Page 131
The User Manager Page 131

Packaging and deployment 132
The ColdFusion Archives Page 132
The J2EE Archives Page 132

CHAPTeR 26 Managing Threads 133
Using the <cfthread> Tag 134

Scripting the <cfthread> tag 135
Starting Threads 136
Suspending Threads 136
Ending Threads 137
Joining Threads 137

Accessing Thread data 138
Thread Scopes 138

Monitoring and Administering Threads 144
Handling Thread Exceptions 144
Administrator Tools 148

Best Practices 149
CHAPTeR 27 Improving Performance 151
Options in the ColdFusion Administrator 151
Improving Query Performance with Caching 152

Understanding Query Caching 152
Using Cached Queries 154
Refreshing Cached Queries Programmatically 156
Limiting the Number of Cached Queries 158
Controlling the Number of Records Fetched at Once 158

Caching Page Output 159
Introducing the <cfcache> Tag 159
Client-Side Page Caching 159
Server-Side Page Caching 161
ColdFusion-Optimized Caching 162
Flushing the Page Cache 163
Caching Page Fragments 164
Caching data 164
Using the Caching Functions 166

xvContents

Inspecting the Cache 167
digging Even deeper 168
Controlling White Space 168
Understanding the Issue 169
Automatic White-Space Control 169
Suppressing White-Space Output with <cfsilent> 170
Suppressing Specific White Space with <cfsetting> 170

PART 7 Integrating with ColdFusion 173

CHAPTeR 28 Working with PdF Files 175
Using cfpdf 175

Creating PdF Files 176
Reading PdF Files 177
Merging PdF Files 178
Using the pages Attribute 179
deleting Pages 180
Creating Thumbnails 180
Extracting Images 182
Creating Watermarks 182
Extracting Text 184
Optimizing PdFs 187
Creating PdF Portfolios 189
Manipulating Headers and Footers 189
Protecting PdF Files with Passwords, Permissions, and Encryption 192
Adding Encryption 194

Using ddX 196
Creating a Simple ddX Processing Application 197
Adding a Table of Contents 198
Adding Headers and Footers 200
Adding Watermarks 202
Using Style Profiles 203
Extracting PdF Text 205

Working with PdF Forms 208
Populating PdF Forms 208
Submitting PdF Forms 213
Embedding PdF Forms 216

Creating PdF Files from Microsoft Office documents 216
Converting Microsoft Word documents to PdF Files 216
Creating the Résumé Manager Application 217

CHAPTeR 29 ColdFusion Image Processing 221
Introducing <cfimage> 221
Manipulating Images with <cfimage> 223

Resizing an Image 223
Adding Borders 227

xvi Contents

Controlling JPEg Quality and drawing Text 228
Adding a Watermark 231
Adding a CAPTCHA Test 232

Exploring Other ColdFusion Image Manipulation Techniques 235
Creating and drawing Images with ColdFusion 237
In Summary 241
CHAPTeR 30 Advanced ColdFusion-Powered Ajax 243
Ajax-Based Layout Controls 243

Working with Tabs 247
Working with Accordions 249
Working with Pods 250
Working with Windows 251
Working with Menus 252
Adding Tooltips 255
Working with Trees 256
Working with Message Boxes 257
Handling Multiple File Uploads 258
Working with Maps 260
Playing Videos 261
displaying a Progress Bar 262

dynamically Populating Ajax Controls 263
Using Bindings to Load Content 266

Working with <CFAjaxProxy> 271
AjaxProxy as a Binding 274

Working with JSON 274
Special Considerations with ColdFusion Ajax Applications 276

Importing JavaScript Ajax Libraries 276
Running Functions on Page Load 278
defining JavaScript Functions in Loaded Pages 278

debugging Ajax 278
Security Options 279
CHAPTeR 31 Integrating with Adobe Flex 281
Understanding the Relationship Between ColdFusion and Flex 281
ColdFusion-Powered Flex 284

No More Request and Response 284
Asynchronous Requests and Callbacks 285
Session Scope 285

data Translation 286
Returning Simple Objects 286
Returning Value Objects 287

ColdFusion data Wizards 290
Calling the Server (RPC) 290

Result and Fault Handlers 291

xviiContents

Invoking a CFC Method 292
AsyncToken 292

ColdFusion Flex Services 293
data Messaging 294

Messaging in Flex 294
Messaging in ColdFusion 295

data Management 295
ColdFusion and Flex Configuration Settings 296

ColdFusion Administrator Settings 296
services-config.xml 297

debugging 299
Console Output 299
Flash Builder and ColdFusion Line debuggers 302
Network Monitors 302

CHAPTeR 32 Integrating with Flash data Services 303
Configuring Flash Builder for Flash Remoting 303

Configuring the Flash Builder -services Compiler Argument 304
Flash Remoting Application 304

Adding Best-Practice Improvements to the data grid 308
Adding an Edit Form to the data grid 309

data Management Application 311
Configuring the ColdFusion data Push destination 312
Synchronizing the data grid 314
Adding Conflict Resolution to the Form 318

Messaging Application 318
Configuring the ColdFusion data Messaging destination 319
Creating an Event gateway 319

Conclusion 321
CHAPTeR 33 Building ColdFusion-Powered AIR Applications 323
Creating AIR Clients for ColdFusion Applications 323
Comparison with LCdS data Management 323
Configuring the Flash Builder Project 324
Building the ColdFusion Service CFC 325

The fetch Method 325
The sync Method 326

Building the Value Objects 328
Creating the ColdFusion Value Object 328
Creating the ActionScript Value Object 329

Initializing syncManager 329
Loading data 331
Editing and Saving data 332
Synchronizing data with the Server 333
Managing Conflicts 333

xviii Contents

CHAPTeR 34 Creating Presentations 335
Presenting <cfpresentation> 335
Setting Play and Control Options 340
Embedding Content 340
Styling your Presentation 341
Adding Presenters 343
Saving your Presentation 345
Converting from PowerPoint 346
CHAPTeR 35 Full-Text Searching 349
getting to Know Solr 349

Searching for different Types of Files with Solr 350
Creating a Search Tool for your documents 350

Understanding Collections 351
Creating a New Collection 351
Indexing the Collection 352
Creating a Search Interface 355

Indexing SQL data 359
Searching Without Solr 360
Indexing your Table data: Solr to the Rescue 361
Understanding Solr and your Table’s Key Values 370
Searching on More Than One Collection 370

Improving Search Results 370
Maintaining Collections 374

Repopulating your Solr Collection 374
Administering Collections with <cfcollection> 375

Optimizing a Solr Collection 376
deleting a Collection 376
Creating a Collection Programmatically 377

CHAPTeR 36 Event Scheduling 379
ColdFusion Event Scheduling Concepts 379
ColdFusion Scheduling Versus Other Kinds of Scheduling 380
Creating, Modifying, and deleting Scheduled Tasks 381

Administering Scheduled Tasks 381
Creating Scheduled Tasks with the ColdFusion Administrator 382
Running, Modifying, and deleting Scheduled Tasks 384
Creating, Modifying, and deleting Tasks Using <CFSCHEDULE> 385

Scheduling Application Examples 389
Creating a Scheduled Task for a POP3 Application 389
Building an Automatic Promotional Email Application 390
Scheduling Updates to a Solr Collection 392

xixContents

PART 8 Advanced ColdFusion Development 395

CHAPTeR 37 Using Stored Procedures 397
Why Use Stored Procedures? 397
Calling Stored Procedures from ColdFusion Templates 398

Two Ways to Execute Stored Procedures 398
Using the <cfstoredproc> Tag 399
Stored Procedures That Return Record Sets 401
Stored Procedures That Take Parameters and Return Status Codes 403
Calling Procedures with <cfquery> Instead of <cfstoredproc> 410

CHAPTeR 38 Working with ORM 415
Welcome to ORM 415
ColdFusion and Hibernate 416
getting Started with ORM 416
Working with Persistent CFCs 417

Working with Properties 418
Working with Entities 420
Putting It Together 429

Hibernate and Sessions 431
Working with Relationships 432

One-to-Many and Many-to-One Relationships 433
Many-to-Many Relationship 437
One-to-One Relationship 443

Enhancing your Entities 448
Searching with ORM 448
Lazy Is good! 452
digging deeper into Hibernate 453
CHAPTeR 39 Using Regular Expressions 455
Introducing Regular Expressions 455

What Are Regular Expressions? 455
RegEx Support in ColdFusion 458

Where Can you Use Regular Expressions? 458
Using Regular Expressions in ColdFusion 459

Finding Matches with reFind() 459
Working with Subexpressions 462
Working with Multiple Matches 465
Replacing Text using reReplace() 465
Altering Text with Backreferences 469

Some Convenient RegEx UdFs 472
Using a RegEx Testing Page 472
Crafting your Own Regular Expressions 473

Understanding Literals and Metacharacters 473
Introducing the Cast of Metacharacters 474
Metacharacters 101: Character Classes 474

xx Contents

Metacharacters 102: Quantifiers 477
Metacharacters 201: Alternation 481
Metacharacters 202: Word Boundaries 481
Metacharacters 203: String Anchors 481
Metacharacters 301: Match Modifiers 484
Metacharacters 302: Lookahead Matching 485
Metacharacters 303: Backreferences Redux 486
Metacharacters 304: Escape Sequences 486

CHAPTeR 40 ColdFusion Scripting 487
A New Era in CFML Scripting 487

Times Have Changed 487
Now CFML Has Changed 488

What Is <cfscript>? 488
differences Between <cfscript> and JavaScript 490
Implementing <cfscript> 490

Implementing CFCs in Script 491
Replacing Tags with Script 492

Using Script Statements 494
Using Script Functions 500
Using Script Functions (CFCs) 502

defining Functions in Script 505
Making Variables Private to the Function 506
Improved Support for Function Typing 506

Exception Handling in Script 507
Common Problems and Solutions 508

A Note About the {} Symbols 509
“Could not find the ColdFusion Component or Interface” 509

Conclusion 510
CHAPTeR 41 Working with XML 511
XML document Structure 511

Elements and Their Attributes 513
Naming Conventions 514

Reading and Creating XML documents 514
Reading an XML File Using XmlParse() 514
Creating XML documents Using CFXML 516
Creating XML documents Using XmlNew() 518
Accessing XML Elements and Attributes 519

Using Special Characters in XML 521
Entity References 522
CDATA Sections 522

XML Namespaces 523
The default Namespace 525

xxiContents

When to Use Namespaces 526
Validating XML 526

dTds 527
XML Schemas 527
Validating XML in ColdFusion 528

More XML Resources 530
CHAPTeR 42 Manipulating XML with XSLT and XPath 531
Understanding XPath 531

Example: A Cd Collection 531
XPath Syntax 533
Using XmlSearch() to Retrieve an Array of Nodes 535

Transforming XML into Content by Using XSLT 536
Creating a Basic Transformation 537
Performing the Transformation by Using XmlTransform() 542
Ignoring Nodes in the Hierarchy 542
Creating a More Complex Transformation 543

More XPath and XSLT Resources 555

PART 8 Online Chapters *

CHAPTeR 43 ColdFusion and globalization E1
Why go global? E1
What Is globalization? E2

globalization Terminology E2
dancing the globalization Jig E3

going global E3
Locales E3
Character Encoding E14
Resource Bundles E16
Addresses E24
date/Time E25
Calendars E25
Calendar CFC Use E28
Time Zones E30
databases E31
display E33
Text Searching with Solr E35
What’s New in ColdFusion Internationalization E36
Relevant ColdFusion Tags and Functions E37

Better g11N Practices E40
What Not to do E40
Monolingual or Multilingual Web Sites E41
Locale Stickiness E42
HTML E42

xxii Contents

CFML E43
Resource Bundles E43
Just Use Unicode E45
When ColdFusion Isn’t Enough E45

CHAPTeR 44 Error Handling E47
Catching Errors as They Occur E47
What Is an Exception? E47
Introducing <cftry> and <cfcatch> E48
Basic Exception Handling E49

A Typical Scenario E49
A Basic Template, Without Exception Handling E50
Adding <cftry> and <cfcatch> E52

Understanding What Caused the Error E53
Writing Templates That Work Around Errors E56

Working Around a Failed Query E56
Writing Templates That Recover from Errors E59

Nesting <cftry> Blocks E61
deciding Not to Handle an Exception E64

Exceptions and the Notion of Bubbling Up E65
Using <cfrethrow> E65
Throwing and Catching your Own Errors E68

Introducing <cfthrow> E68
Throwing Custom Exceptions E69

Handling Exceptions with Scripting E70
CHAPTeR 45 Using the debugger E71
Overview E72

Traditional Forms of debugging E72
Introducing Step debugging E72

Configuring ColdFusion and the debugger E73
Configuring the ColdFusion Administrator E74
Configuring ColdFusion Builder E76

Using the debugger E80
Setting a Breakpoint E82
Starting a debugging Session E82
Browsing a Page to Be debugged E85
Stepping Through Code E88
Observing Variables and Expressions E91
Observing the debug Output Buffer E93
Stopping the debugger E94
Other Features E95

Index 557

* Pages mentioned throughout the text as online content are included after the index.

in this introduction

Who Should Use This Book xxiii

How to Use This Book xxiii

The Web Site xxvi

Who Should Use This Book
This book is written for anyone who wants to create cutting-edge Web-based applications.

If you are a Webmaster or Web page designer and want to create dynamic, data-driven Web pages,
this book is for you. If you are an experienced database administrator who wants to take advantage
of the Web to publish or collect data, this book is for you, too. If you are starting out creating your
Web presence but know you want to serve more than just static information, this book will help get
you there. If you have used ColdFusion before and want to learn what’s new in ColdFusion 9, this
book is also for you. Even if you are an experienced ColdFusion user, this book provides you with
invaluable tips and tricks and also serves as the definitive ColdFusion developer’s reference.

This book teaches you how to create real-world applications that solve real-world problems. Along
the way, you acquire all the skills you need to design, implement, test, and roll out world-class
applications.

How to Use This Book
This is the ninth edition of ColdFusion Web Application Construction Kit, and what started as a single
volume a decade ago has had to grow to three volumes to adequately cover ColdFusion 9. The
books are organized as follows:

Volume 1—■■ Adobe ColdFusion 9 Web Application Construction Kit, Volume 1:
Getting Started (ISBN 0-321-66034-X) contains Chapters 1 through 21 and is
targeted at beginning ColdFusion developers.

Volume 2—■■ Adobe ColdFusion 9 Web Application Construction Kit, Volume 2:
 Application Development (ISBN 0-321-67919-9) contains Chapters 22 through 45

Introduction

xxiv Introduction

and covers the ColdFusion features and language elements that are used by most Cold-
Fusion developers most of the time. (Chapters 43, 44, and 45 are online.)

Volume 3—■■ Adobe ColdFusion 9 Web Application Construction Kit, Volume 3:
Advanced Application Development (ISBN 0-321-67920-2) contains Chapters 46
through 71 and covers the more advanced ColdFusion functionality, including extensi-
bility features, as well as security and management features that will be of interest pri-
marily to those responsible for larger and more critical applications.

These books are designed to serve two different, but complementary, purposes.

First, as the books used by most ColdFusion developers, they are a complete tutorial covering
everything you need to know to harness ColdFusion’s power. As such, the books are divided into
parts, or sections, and each section introduces new topics building on what has been discussed in
prior sections. Ideally, you will work through these sections in order, starting with ColdFusion
basics and then moving on to advanced topics. This is especially true for the first two books.

Second, the books are invaluable desktop references. The appendixes and accompanying Web site
contain reference chapters that will be of use to you while developing ColdFusion applications.
Those reference chapters are cross-referenced to the appropriate tutorial sections, so that step-by-
step information is always readily available to you.

The following describes the contents of Adobe ColdFusion 9 Web Application Construction Kit,
 Volume 2: Application Development.

Part V: Creating Functions, Tags, and Components

Chapter 22, “Building User-defined Functions,” introduces the <cffunction> tag and explains
how it can (and should) be used to extend the CFML language.

Chapter 23, “Creating Custom Tags,” teaches you how to write your own tags to extend the
CFML language—tags written in CFML itself.

Chapter 24, “Creating Advanced ColdFusion Components,” continues exploring ColdFusion Com-
ponents by introducing advanced topics, including persistence, encapsulation, and inheritance.

Part VI: ColdFusion Configuration and Performance

Chapter 25, “ColdFusion Server Configuration,” revisits the ColdFusion Administrator, this time
explaining every option and feature, while providing tips, tricks, and hints you can use to tweak
your ColdFusion server.

Chapter 26, “Managing Threads,” explains asynchronous development and how to use multi-
threaded processing to improve application performance.

developers are always looking for ways to tweak their code, squeezing a bit more performance
wherever possible. Chapter 27, “Improving Performance,” provides tips, tricks, and techniques
you can use to create applications that will always be snappy and responsive.

xxvIntroduction

Part VII: Integrating with ColdFusion

Adobe PdF files are the standard for high-fidelity document distribution and online forms pro-
cessing, and ColdFusion features extensive PdF integration, as explained in Chapter 28, “Work-
ing with PdF Files.”

Chapter 29, “ColdFusion Image Processing,” teaches you how to read, write, and manipulate
image files using ColdFusion tags and functions.

Chapter 30, “Advanced ColdFusion-Powered Ajax,” continues to explore Ajax user interface con-
trols and concepts.

Chapter 31, “Integrating with Adobe Flex,” introduces the basics of ColdFusion-powered Flex
applications.

Chapter 32, “Integrating with Flash data Services,” discusses ColdFusion and Flash, exploring
Flash Remoting, LiveCycle data Services, Blaze dS, and more.

Chapter 33, “Building ColdFusion-Powered AIR Applications,” teaches you how to use Cold-
Fusion to build desktop applications, including applications that can be taken offline.

Chapter 34, “Creating Presentations,” teaches you how to use ColdFusion to build dynamic
 Acrobat Connect presentations.

Chapter 35, “Full-Text Searching,” introduces the Apache Solr search engine. Solr provides a
mechanism that performs full-text searches of all types of data. The Solr engine is bundled with
the ColdFusion Application Server, and the <cfindex> and <cfsearch> tags provide full access to
Solr indexes from within your applications.

Chapter 36, “Event Scheduling,” teaches you how to create tasks that run automatically and at
timed intervals. you also learn how to dynamically generate static HTML pages using Cold-
Fusion’s scheduling technology.

Part VIII: Advanced ColdFusion Development

Chapter 37, “Using Stored Procedures,” takes advanced SQL one step further by teaching you
how to create stored procedures and how to integrate them into your ColdFusion applications.

Object Relational Mapping, or ORM, provides a powerful new way to build data-driven applica-
tions , with an emphasis on rapid development and simplified ongoing maintenance. Chapter 38,
“Working with ORM,” introduces this new ColdFusion 9 capability and explains how to fully use
this powerful Hibernate-based technology.

Chapter 39, “Using Regular Expressions,” introduces the powerful and flexible world of regular
expression manipulation and processing. Regular expressions allow you to perform incredibly
sophisticated and powerful string manipulations with simple one-line statements. ColdFusion
supports the use of regular expressions in both find and replace functions.

Chapter 40, “ColdFusion Scripting,” introduces the <CFSCRIPT> tag and language, which can
be used to replace blocks of CFML code with a cleaner and more concise script-based syntax.

xxvi Introduction

<CFSCRIPT> can also be used to create ColdFusion Components and user-defined functions, both
of which are explained in this chapter, too.

Extensible Markup Language (XML) has become the most important means of exchanging and
sharing data and services, and your ColdFusion applications can interact with XML data quite
easily. Chapter 41, “Working with XML,” explains what XML is and how to use it in your Cold-
Fusion code.

Chapter 42, “Manipulating XML with XSLT and XPath,” explains how to apply XSL trans-
formations to XML data, as well as how to extract data from an XML document using XPath
expressions.

The Internet is a global community, and multilingual and localized applications are becoming
increasingly important. Chapter 43, “ColdFusion and globalization” (online)*, explains how to
build these applications in ColdFusion to attract an international audience.

Chapter 44, “Error Handling” (online)*, teaches you how to create applications that can both
report errors and handle error conditions gracefully. you learn how to apply the <cftry> and
<cfcatch> tags (and their supporting tags) and how to use these as part of a complete error-
handling strategy.

Chapter 45, “Using the debugger” (online)*, explores the ColdFusion Builder debugger and offers
tips and tricks on how to best use this tool.

The Web Site
The book’s accompanying Web site contains everything you need to start writing ColdFusion
applications, including:

Links to obtain ColdFusion 9■■

Links to obtain Adobe ColdFusion Builder■■

Source code and databases for all the examples in this book■■

Electronic versions of some chapters■■

An errata sheet, should one be required■■

An online discussion forum■■

The book Web page is at http://www.forta.com/books/0321679199/.

And with that, turn the page and start reading. In no time, you’ll be creating powerful applica-
tions powered by ColdFusion 9.

* Pages mentioned throughout the text as online content are included after the index.

http://www.forta.com/books/0321679199/

This page intentionally left blank

Review of ColdFusion Components
An important part of ColdFusion is its ColdFusion Components (CFCs) framework. Think of
the CFC framework as a special way to combine key concepts from custom tags and user-defined
 functions into objects. These objects might represent concepts (such as individual films or actors),
or they might represent processes (such as searching, creating special files, or validating credit card
numbers).

I covered the basics of ColdFusion Components in Chapter 11, “The Basics of Structured Develop-
ment,” in Adobe ColdFusion 9 Web Application Construction Kit, Volume 1: Getting Started, but I’ll
review them here.

About ColdFusion Components
You can think of CFCs as a structured, formalized variation on custom tags. The CFC framework
gently forces developers to work in a more systematic way. If you choose to use the CFC framework
for parts of your application, you will find yourself thinking about those aspects in a slightly more
structured, better organized way. Because CFCs are more structured, the code is generally very
easy to follow and troubleshoot. Think of the CFC framework as a way to write smart code, guid-
ing you as a developer to adopt sensible practices.

But the most dramatic benefit is that the structured nature of CFCs makes it possible for Cold-
Fusion to look into your CFC code and find the important elements, such as what functions you
have included in the CFC and what each function’s arguments are. This knowledge allows Cold-
Fusion Builder to act as a kind of interpreter between your CFC and other types of applications,
such as Dreamweaver, Flash, and Web Services. If you want them to, these components become
part of a larger world of interconnected clients and servers, rather than only being a part of your
ColdFusion code.

in this chapter

Review of ColdFusion Components 51

Simple CFCs 54

Introspection and HINTs 62

Accessing a CFC via a URL 65

Type Checking in Components 67

Components That Hold Instance Data 68

Working with Inheritance 84

Defining Interfaces 87

Implementing Security 88

Using the OnMissingMethod Method 91

Distributed CFCs and Serialization 92

Creating Advanced
ColdFusion
Components

chapter 24

52 chapter 24 Creating Advanced ColdFusion Components

CFCs Can Be Called in Many Different Ways

This chapter and the previous one have been all about making it easier to reuse the code that you
and other developers write. CFCs take the notion of code reuse to a whole new level, by making
it easy to reuse your code not only within ColdFusion but in other types of applications as well.
Components can be called directly in ColdFusion pages, but the functions in them can also be
called directly from external URLs, like Web pages that return data instead of HTML. Because of
this, CFCs both can provide functionality to ColdFusion pages similarly to custom tags and user-
defined functions (UDFs) and can also be called directly from Flash, from Ajax code in Web brows-
ers, and as Web Services from other applications not on the same machine as the CFCs.

In other words, if you like the idea of reusing code, you’ll love the CFC framework even more
than the UDF and custom tag frameworks.

CFCs Are Object-Oriented Tools

Depending on your background, you may be familiar with object-oriented programming (OOP).
Whether you know OOP or not, CFCs give you the most important real-world benefits of object-
oriented programming without getting too complicated—exactly what you would expect from
ColdFusion.

Without getting too deeply into the specifics, you can think of object-oriented programming as a
general programming philosophy. The philosophy basically says that most of the concepts in an
application represent objects in the real world and should be treated as such. Some objects, like
films or merchandise for sale, might be physical. Others, like expense records or individual mer-
chandise orders, might be more conceptual but still easy to imagine as objects—or objectified, like
many of Orange Whip Studios’ better-looking actors.

ColdFusion’s CFC framework is based on these object-oriented ideas:

Classes.■■ In traditional object-oriented programming, the notion of a class is extremely
important. For our purposes, just think of an object class as a type of object, or a thing.
For instance, Orange Whip Studios has made many films during its proud history. If
you think of each individual film as an object, then it follows that you can consider the
general notion of a film (as opposed to a particular film) as a class. CFCs themselves are
the classes in ColdFusion.

Methods.■■ In the object-oriented world, each type of object (that is, each class) will
have a few methods. Methods are functions that have been conceptually attached to a
class. A method represents something an object can do. For instance, think about a
car as an object. A car has to start, change gears, stop, accelerate, and so on. So, a cor-
responding object class called car might have methods named Car.start(), Car.shift(),
 Car.avoidPedestrian(), and so on.

Instances. ■■ If there is a class of object called Film, then you also need a word to refer to
each individual film the studio makes. In the OOP world, this is described as an instance.
Each individual film is an instance of the class called Film. Each instance of an object

53Review of ColdFusion Components

usually has some information associated with it, called its instance data. For example, Film
A has its own title and stars. Film B and Film C have different titles and different stars.

Properties. ■■ Most real-world objects have properties that make them unique, or at least
distinguish them from other objects of the same type. For instance, a real-world car has
properties such as its color, make, model, engine size, number of doors, license plate
and vehicle identification numbers, and so on. At any given moment, it might have other
properties such as whether it is currently running, who is currently driving it, and how
much gas is in the tank. If you’re talking about films, the properties might be the film’s
title, the director, how many screens it is currently shown on, or whether it is going
to be released straight to video. Properties are just variables that belong to the object
(class), and they are generally stored as instance data.

Inheritance. ■■ In the real world, object have various types—cars are a type of motorized
vehicle, which is a type of conveyance, while a bicycle is also a conveyance. ColdFusion’s
CFC framework allows you to define an order of inheritance, where you can have proper-
ties and methods that are shared between various kinds of objects share the high-level
stuff and then implement more specific versions with custom features. In our car example,
you’d have a conveyance that might define number of wheels. Bicycle, motor vehicles, and
skateboards are all types (called subclasses) of conveyances. Cars are a subclass of motor
vehicle (as are trucks), and electric cars are a subclass of cars. I’ll talk about this in more
detail later in the chapter.

The Two Types of Components
Most CFCs fall into two broad categories: static components and instance-based components.

Static Components

I’ll use the term static to refer to any component where it doesn’t make sense to create individual
instances of the component. These contain methods (functions, remember?) but no data that hangs
around after a function runs. Often you can think of such components as services that are constantly
listening for and answering requests. For instance, if you were creating a film-searching component
that made it easy to search the current list of films, you probably wouldn’t need to create multiple
copies of the film-searching component.

Static components are kind of like Santa Claus, the Wizard of Oz, or your father—only one of
each exists. You just go to that one and make your request.

Instance-Based Components

Other components represent ideas where it is very important to create individual instances of a
component. For instance, consider a CFC called ShoppingCart, which represents a user’s shopping
cart on your site. Many different shopping carts exist in the world at any given time (one for each
user). Therefore, you need to create a fresh instance of the ShoppingCart CFC for each new Web
visitor, or perhaps each new Web session. You would expect most of the CFC’s methods to return

54 chapter 24 Creating Advanced ColdFusion Components

different results for each instance, depending on the contents of each user’s cart. Instance-based
components contain properties as well as functions, which define the differences between each
instance of the component and the other instances.

Simple CFCs
The best news about CFCs is that there is really very little to learn about them. For the most part,
you just write functions in much the same way that you learned in the previous chapter.

When you want to use user-defined functions (UDFs) in general, you have to include the files that
contain the functions on every page that runs them. Frequently you’ll create a library file that
contains just the functions you need—perhaps a file called utilityfunctions.cfm and include it on
the page.

Simple static CFCs are just a different way to call these functions—one that doesn’t require you to
explicitly include them and instead lets you call them similarly to custom tags.

Structure of a CFC File
Each ColdFusion component is saved in its own file, with a .cfc extension. Except for one new tag,
<cfcomponent>, everything in the file is ordinary CFML code. With the .cfc extension instead of
.cfm, the ColdFusion server can easily detect which files represent CFC components.

Introducing the <cfcomponent> Tag

The <cfcomponent> tag doesn’t have any required attributes, so in its simplest use, you can
just wrap opening and closing <cfcomponent> tags around everything else your CFC file con-
tains (mainly <cffunction> blocks). That said, you can use two optional attributes, hint and
 displayName, to make your CFC file more self-describing (see Table 24.1).

If you provide these optional attributes, ColdFusion and Dreamweaver can automatically show
hint and displayName in various places to make life easier for you and the other developers who
might be using the component.

Table 24.1 <cfcomponent> Tag Syntax

AttrIbute DesCrIPtIon

hint Optional. What your component does, in plain English (or whatever language
you choose, of course). I recommend that you provide this attribute.

displayName Optional. An alternative, friendlier phrasing of the component’s name. Make
the component’s actual name (that is, the file name) as self-describing as
possible, rather than relying on the displayName to make its purpose clear.

output Optional. See output under <cffunction> below. Only affects any code not
inside a <cffunction>.

55Simple CFCs

note

As you will soon see, the <cffunction> and <cfargument> tags also have hint and displayName attributes. Each
aspect of a CFC that someone would need to know about to actually use it can be described more completely within the compo-
nent code itself.

Using <cffunction> to Create Methods

The biggest part of a CFC is the ColdFusion code you write for each of the CFC’s methods (func-
tions). To create a component’s methods, you use the <cffunction> tag the same way you learned
in Chapter 23, “Creating Custom Tags.” If the method has any required or optional arguments,
you use the <cfargument> tag, again as shown in Chapter 23.

The <cffunction> and <cfargument> tags each take a few additional attributes that Chapter 23
didn’t discuss because they are relevant only for CFCs. The most important new attributes are
hint and displayName, which all the CFC-related tags have in common. Tables 24.2 and 24.3
 summarize all <cffunction> and <cfargument> attributes.

Table 24.2 <cffunction> Syntax for CFC Methods

AttrIbute DesCrIPtIon

name Required. The name of the function (method), as discussed in Chapter 23.
hint Optional. A description of the method.
displayName Optional.
returnType Optional.
returnFormat Optional. The format in which the data should be returned when accessed

remotely. By default, all data is returned in WDDX format, unless
returnType is XML. You can specify WDDX, JSON (for JSON format, used
by Ajax), or plain (for no formatting).

access Optional. This attribute defines where your method can be used. See the
“Implementing Security” section below for more information.

roles Optional. A list of security roles or user groups that should be able to use
the method. Again, see the “Implementing Security” section below for more
information.

output Optional. If false, acts like the entire function is within a <cfsilent> tag.
If true, acts like the entire function is within a <cfoutput> tag. If not set,
acts normal; variables being output must be in <cfoutput> tags.

note

The valid data types you can provide for returnType are any, array, binary, component, Boolean, date, guid,
numeric, query, string, struct, uuid, variableName, and xml. If the method isn’t going to return a value at all, use
returnType=”void”. If the method is going to return an instance of another component, you can provide that component’s
name (the file name without the .cfc) as the returnType value.

56 chapter 24 Creating Advanced ColdFusion Components

Table 24.3 <cfargument> Syntax for CFC Method Arguments

AttrIbute syntAx

name Required. The name of the argument.
hint An explanation of the argument’s purpose. Like the HINT attribute for

<cfcomponent> and <cffunction>, this description will be visible in Dream-
weaver to make life easier for you and other developers. It is also included in the
automatic documentation that ColdFusion produces for your components.

displayName Optional, friendly name.
type Optional. The data type of the argument. You can use any of the values

mentioned in the note below Table 24.2 except for void.
required Optional. Whether the argument is required.
default Optional. A default value for the argument, if required=”No”.

note

There is actually another CFC-related tag, called <cfproperty>. See the “Introspection and HINTs” section below.

<cfcomponent> and <cffunction> also have many other optional attributes that are discussed in the chapters on Web
Services, ORM, and ActionScript.

CFCs as Groups of Functions
Let’s look at a simple example of a CFC. Say you want to create a CFC called FilmSearchCFC,
which provides a simplified way to search for films or print out the results. You like the idea of
being able to reuse this component within your ColdFusion pages, instead of having to write
 queries over and over again. You’d also like to be able to flip a switch and have the component
available to Flash Player or Web Services.

Listing 24.1 is a simple version of the FilmSearchCFC.

Listing 24.1 FilmSearchCFC.cfc—A Simple CFC
<!---
Filename:FilmSearchCFC.cfc
Author:KenFricklas(KF)
Purpose:CreatesFilmSearchCFC,asimpleColdFusionComponent
--->

<!---The<CFCOMPONENT>blockdefinestheCFC--->
<!---ThefilenameofthisfiledeterminestheCFC’sname--->
<cfcomponenthint=”Searchanddisplayfilms”>

<cffunctionname=”listFilms”returnType=”query”output=”false”access=”remote”
hint=”Searchforafilm,andreturnaquerywiththeidandtitleofthematching
films.”>
<!---OptionalSearchStringargument--->
<cfargumentname=”searchString”required=”no”default=””hint=”movietitleto
searchfor.Ifnotprovided,returnsallfilms.”>

<!---varscopedvariables--->

57Simple CFCs

Listing 24.1 (continued)
<cfsetvargetFilms=“”>
<!---Runthequery--->
<cfqueryname=”getFilms”datasource=”ows”>
SELECTFilmID,MovieTitleFROMFilms
<!---Ifasearchstringhasbeenspecified--->
<cfifARGUMENTS.searchStringneq“”>
WHERE(MovieTitleLIKE‘%#ARGUMENTS.searchString#%’
ORSummaryLIKE‘%#ARGUMENTS.searchString#%’)
</cfif>
ORDERBYMovieTitle
</cfquery>

<!---Returnthequeryresults--->
<cfreturngetFilms>

</cffunction>

<cffunctionname=”printFilms”returnType=”void”access=”remote”hint=”Searchfora
film,anddisplaytheresultsinanHTMLtable.”>
<cfargumentname=”searchString”required=”no”default=””hint=”Movietitleto
searchfor.Ifnotprovided,returnsallfilms.”>
<!---callthelocalfunctiongetFilmswiththeargumentsearchString--->
<cfsetvarqFilms=listFilms(arguments.searchString)>
<table>
<tr><th>ID</th><th>Title</th></tr>
<cfoutputquery=”qFilms”>
<tr><td>#qFilms.FilmID#</td><td>#qFilms.MovieTitle#</td></tr>
</cfoutput>
</table>
<!---Returnthequeryresults--->
<cfreturn>

</cffunction>
</cfcomponent>

note

Earlier, I explained that there are two types of components: static components, which just provide functionality, and instance-
based components, which provide functionality but also hold information. This CFC is an example of a static component. You will
see how to create instance-based components shortly.

note

The access attribute is set to remote, so this component can be called directly from a Web browser, as you’ll see later in this
chapter.

This version of the CFC has two methods: listFilms(), which queries the database for a listing of
current films, and printFilms(), which prints them out as an HTML table. For listFilms(), the
query object is returned as the method’s return value (this is why returnType=”query” is used in
the method’s <cffunction> tag).

The listFilms() method takes one optional argument called searchString. If the searchString
argument is provided, a WHERE clause is added to the database query so that only films with titles
or summaries containing the argument string are selected. If the searchString isn’t provided, all
films are retrieved from the database and returned by the new method.

58 chapter 24 Creating Advanced ColdFusion Components

PrintFilms() takes the same arguments but outputs the data as an HTML table. Since it does not
return a value, it returns void as the return type.

As you can see, building a simple component isn’t much different from creating a user-defined
function. Now that you’ve created the component, let’s take a look at how to use it in your Cold-
Fusion code.

Using the CFC in ColdFusion Pages
Once you have completed your CFC file, there are two basic ways to use the new component’s
methods in your ColdFusion code:

With the ■■ <cfinvoke> tag, as discussed next.

Using the ■■ new keyword (new in ColdFusion 9) to create and initialize the object and
calling its methods using function syntax, in the form component.methodName(). (You
can also use the <cfobject> tag or the createObject() function, although these are less
used since the introduction of the new keyword, which is simpler and does more.)

Calling Methods with <cfinvoke>

The most straightforward way to call a CFC method is with the <cfinvoke> tag. <cfinvoke> makes your
CFC look a lot like a custom tag. To provide values to the method’s arguments, as in the optional
searchString argument in Listing 24.1, either you can add additional attributes to <cfinvoke> or you
can nest a <cfinvokeargument> tag within the <cfinvoke> tag. Tables 24.4 and 24.5 show the attributes
supported by <cfinvoke> and <cfinvokeargument>.

Table 24.4 <cfinvoke> Tag Syntax

AttrIbute DesCrIPtIon

component The name of the component, as a string (the name of the file in which
you saved the component, without the .cfc extension) or a component
instance.

method The name of the method you want to use.
returnVariable A variable name in which to store whatever value the method decides to

return.

(method arguments) In addition to the component, method, and returnVariable
attributes, you can also provide values to the method’s arguments
by providing them as attributes. For instance, the listFilms()
method from Listing 24.1 has an optional argument called
searchString. To provide a value to this argument, you could use
searchString=”Saints” or searchString=”#FORM.keywords#”. You
can also provide arguments using the separate <cfinvokeargument> tag
(see Table 24.5).

argumentCollection Optional. This attribute lets you provide values for the method’s
arguments together in a single structure. It works the same way as the
attributeCollection attribute of the <cfmodule> tag. This is great
for passing all your arguments to another function, as you’ll see in the
section on inheritance.

59Simple CFCs

note

For the component attribute, you can use the component name alone (that is, the file without the .cfc extension) if the .cfc
file is in the same folder as the file that is using the <cfinvoke> tag. You can also specify a .cfc file in another folder, using dot
notation to specify the location of the folder relative to the Web server root, where the dots represent folder names. For instance,
you could use the FilmSearchCFC component by specifying component=”ows.24.FilmSearchCFC”. For more infor-
mation, see the ColdFusion 9 documentation.

note

You can also save .cfc files in the special CustomTags folder (or its subfolders) or in a mapped folder. Specify the path from
the customtag root or from the mapping using the dot syntax above.

Table 24.5 <cfinvokeargument> Tag Syntax

AttrIbute DesCrIPtIon

name The name of the argument as specified in the arguments of the method
value The value of the argument

Listing 24.2 shows how to use <cfinvoke> to call the listFilms() method of the FilmSearchCFC
component created in Listing 24.1.

Listing 24.2 Using FilmSearchCFC.cfm—Invoking a Component Method
<!---
Filename:UsingFilmSearchCFC.cfm
Author:NateWeiss(NMW)
Purpose:UsestheFilmSearchCFCcomponenttodisplayalistoffilms
--->

<html>
<head><title>FilmSearchExample</title></head>
<body>

<!---InvoketheListFilms()methodoftheFilmSearchComponent--->
<cfparamname=”FORM.keywords”default=”ColdFusion”>

<cfinvokecomponent=”FilmSearchCFC”method=”listFilms”searchString=”#FORM.keywords#”
returnVariable=”FilmsQuery”>

<!---Nowoutputthelistoffilms--->
<cfoutputquery=”filmsQuery”>
#FilmsQuery.MovieTitle#

</cfoutput>

</body>
</html>

First, the <cfinvoke> tag invokes the listFilms() method provided by the FilmSearchCFC1 compo-
nent. Note that the correct value to provide to component is the name of the component file name,
but without the .cfc extension.

60 chapter 24 Creating Advanced ColdFusion Components

The returnVariable attribute has been set to FilmsQuery, which means that FilmsQuery will hold
whatever value the method returns. The method in question, listFilms(), returns a query object
as its return value. Therefore, after the <cfinvoke> tag executes, the rest of the example can refer
to filmsQuery as if it were the results of a normal <cfquery> tag. Here, a simple <cfoutput> block
outputs the title of each film.

We pass the argument searchString to the method, passing the keywords from the form (or in
this case, from the <cfparam> tag).

The result is a simple list of film titles, as shown in Figure 24.1. Since ColdFusion was passed in as
the searchString, only the single matching film is returned.

Figure 24.1

It’s easy to execute a
component’s methods
and use the results.

note

You can use the <cfinvokeargument> tag to supply the searchString argument (or any other argument), instead of pro-
viding the argument as an attribute of <cfinvoke>. This is useful when an argument is optional and may not always be passed in
because of the program logic. This is an improvement over custom tag syntax, where you have to write extra code to accomplish this.

Creating an Instance of a CFC

In the previous listing, you saw how to use the <cfinvoke> tag to call a CFC method. Calling meth-
ods this way isn’t much different from calling a custom tag with <cfmodule> or calling a UDF.
It’s also possible to create an instance of a CFC and then call the instance’s methods. If the CFC
doesn’t track instance data (a shopping cart, say, or information about a particular film), there isn’t
much of a functional difference. It does, however, create a simpler syntax if you’re going to invoke
a lot of methods from a component, and you can also store the instance in a scope variable (appli-
cation or session), as discussed later in this chapter.

To work with methods in this way, two steps are involved:

 1. Create an instance of the CFC with the new keyword. You need to do this only once,
since it is then in a variable that can be reused.

 2. Call the method directly, using function syntax. (You can also use the <cfinvoke> tag, but
instead of specifying the component by name, you pass the component instance variable
directly to the component attribute.)

61Simple CFCs

When using the new keyword, you simply set a variable to be a “new” copy of the CFC. You add
parentheses to the end of the component name, as if it were a function. (You can also pass argu-
ments to the component while creating it; I’ll talk more about this in the section on initialization
later in this chapter.) For example, to use this method in the code in Listing 24.2, you’d simply
replace the <cfinvoke> tag with the following:

<!---CreateaninstanceoftheCFC--->
<cfsetcfcFilmSearch=newFilmSearchCFC()>

<!---InvoketheListFilms()methodoftheCFCinstance--->
<cfsetfilmsQuery=cfcFilmSearcher.listFilms(searchString=variables.keywords)>

Just as in the previous example, filmsQuery would now contain the query returned by the
 listFilms() method.

If the component you are initializing isn’t in the current path, you’d again use dot syntax; for
example, if the code for FilmSearchCFC were in the path /ows/24/FilmSearchCFC, you would use
this syntax:

<cfsetcfcFilmSearch=newows.24.FilmSearchCFC()>

You can see an example of this in action in Listing 24.3, below.

note

It’s good practice to name variables that contain CFCs in a way that’s easily recognizable. In the examples below, I begin all CFC
variables with cfc, for example cfcFilmSearch.

note

You can also use the <cfimport> tag with the path attribute to import a directory of CFCs into the current namespace. This
form of invocation will also execute theinit() method if one is defined. <cfimportpath=”ows.24.*”> would allow you
to use <cfsetcfcFilmSearch=newFilmSearchCFC()> without specifying the path. This is similar to having a
mapping in the ColdFusion Administrator, but one that’s only valid for the current page. This can be great when you have multiple
revisions of CFCs in different paths and are testing them.

Separating Logic from Presentation
As you can see, it’s relatively easy to create a CFC and use its methods to display data, perhaps to
create some sort of master-detail interface. The process is basically first to create the CFC and
then to create a normal ColdFusion page to interact with each of the methods.

When used in this fashion, the CFC is a container for logic (such as extraction of information from
a database), leaving the normal ColdFusion pages to deal only with presentation of information.
Many developers find it’s smart to keep a clean separation of logic and presentation while coding.

This is especially true in a team environment, where different people are working on the logic
and the presentation. By keeping your interactions within databases and other logic packaged
in CFCs, you can shield the people working on the presentation from the guts of your applica-
tion. They can focus on making the presentation as attractive and functional as possible, without

62 chapter 24 Creating Advanced ColdFusion Components

needing to know any CFML other than <cfinvoke> and <cfoutput>. And they can easily bring up
the automatically generated documentation pages for each component to stay up to date on the
methods each component provides.

Introspection and HINTs
If you access your component via a Web browser, it displays all the information you have provided
in your component—methods, arguments, and any documentation you have provided in the
hint arguments in a human-readable fashion. It also shows you the return types and argument
types. This is known as introspection. This ability to see into the information in your component
is also made available in logical form and is used by Flash, Web Services, ColdFusion Builder, and
Dreamweaver to make the details of your component usable from within those environments.

Assuming you installed ColdFusion on your local machine and are saving this chapter’s listings in
the ows/24 folder within your Web server’s document root, the URL to access a component called
FilmSearchCFC would be as follows:

http://localhost/ows/24/FilmSearchCFC.cfc

Figure 24.2 shows the data you see in a Web browser when you navigate to this URL.

Figure 24.2

Introspection
of ColdFusion
component—
an automatic
reference page.

63Introspection and HINTs

cfdump and the GetMetaData() Function
You can dump a component with cfdump. For example, you can dump FilmSearchCFC as shown
here:

<cfobjectcomponent=”FilmSearchCFC”name=”cfcFilmRotation”>
<cfdumpvar=”#cfcFilmRotation#”>

The result is shown in Figure 24.3.

Figure 24.3

The result of <cfdump>
on a component.

As you can see, the dump shows the component’s methods and instance data. This data can be
useful to your code. ColdFusion provides a means to programmatically examine an instance of a
component to get this data: the getMetaData() function. The getMetaData() function returns a
structure containing the same information that you can see in the HTML view of a component
that cfdump provides.

There are two syntaxes for using the getMetaData() function. From outside of a component, pass
the function a reference to the component object. Within a component, pass the function the
component’s own scope keyword THIS. So, for example, the code

<cfobjectcomponent=”FilmSearchCFC”name=”cfcFilmSearch”>
<cfdumpvar=”#getMetaData(cfcFilmSearch)#”>

will produce a structure similar to that shown in Figure 24.4.

64 chapter 24 Creating Advanced ColdFusion Components

Figure 24.4

The result of the
getMetaData()
function.

With this data, you could produce component HTML documentation in whatever form you wish
simply by accessing the information in the structure. This approach can be useful when you want
to check the properties of a component that’s been passed into a function or verify whether a
method is implemented in it. This specification is demonstrated in Listing 24.3.

Listing 24.3 getMetaData.cfm—Display Data Using getMetaData()
<!---
getMetaData.cfm
DemonstrateuseofgetMetaData()function
--->
<!---instantiatetheFilmSearchCFCobjectintocfcFilmSearch--->
<cfsetcfcFilmSearch=newFilmSearchCFC()>
<!---nowgetthemetadata,intotheourMetaDatafunction--->
<cfsetourMetaData=getMetaData(cfcFilmSearch)>

<cfoutput>
<!---ShowthedisplayNameandsize;wecouldalsoshowthehint,
path,etc.--->
<h3>Welcometothe#ourMetaData.Name#!</h3>
Enjoyour#arrayLen(ourMetaData.functions)#functions:

<!---loopthroughandshoweachfunction’snameandhint;couldalsoshow
parametersarray,etc.butlet’skeepitsimple.--->
<cfloopindex=”thisFunction”from=”1”to=”#arrayLen(ourMetaData.functions)#”>
#ourMetaData.functions[thisFunction].Name#-#ourMetaData.
functions[thisFunction].Hint#
</cfloop>

</cfoutput>

65Accessing a CFC via a URL

Accessing a CFC via a URL
You have seen how to use CFC methods in your .cfm pages using the <cfinvoke> and <cfobject>
tags. It’s also possible to access methods directly with a Web browser.

note

I recommend that you use CFCs by invoking their methods within a .cfm page (using <cfinvoke> or the <cfscript>
method syntax), as you have seen already, rather than having browsers visit the CFC’s methods directly. This keeps the separa-
tion of functionality and presentation clean. If you do decide to have your CFCs accessed directly via a URL, keep the parts of the
code that output HTML in separate methods, as the example in this section does.

To use one of the component’s methods, just add a URL parameter named method to the example
in the previous section, where the value of the parameter is the name of the method you want
to call. You can also pass any arguments on the URL. For instance, to use the method called
 ProduceFilmListHTML, passing the searchString value of ColdFusion, you would visit this URL
with your browser:

http://localhost/ows/24/FilmSearchCFC.cfc?method=printFilms&searchString=ColdFusion

note

It is possible to access a method via a URL only if the <cffunction> block that creates the method contains an
access=”remote” attribute. If you try to use the URL to access a method that has a different access level (including the
default value public), ColdFusion will display an error message.

To provide values for multiple arguments, just provide the appropriate number of name-value
pairs, always using the name of the argument on the left side of the equals (=) sign and the value of
the argument on the right side of the equals sign.

note

If the value of the argument might contain special characters such as spaces or slashes, you need to escape the value with Cold-
Fusion’s URLEncodedFormat() function. This is the case for any URL parameter, not just for CFCs. In fact, it’s the case for
any Web application environment, not just ColdFusion.

If you need to provide non-simple arguments such as arrays or structures, you can do so by creating a structure that contains all
of your arguments (similar to creating a structure to pass to the attributeCollection attribute of the <cfmodule> tag),
using the <cfwddx> tag to convert the structure to a WDDX packet and then passing the packet as a single URL parameter
called argumentCollection. Or, if you are accessing the CFC via a form, you can provide such a packet as a form field
named argumentCollection.

note

In general, methods that generate HTML or other output with <cfoutput> should not also produce a return value. In other
words, you generally shouldn’t use <cfoutput> and <cfreturn> within the same method.

Getting Raw Data from a ColdFusion Component via a URL
The example I just used calls the printFilms method in the component, which returns the data in
an HTML table. Formatted data isn’t useful if you want to return your data to a program running
on another machine or if you want to consume the data from within JavaScript running on a Web

66 chapter 24 Creating Advanced ColdFusion Components

page. Fortunately, ColdFusion does something that makes these cases simple. Figure 24.5 shows
the result of calling the listFilms method directly from a Web browser using this URL:

http://localhost/ows/24/FilmSearchCFC.cfc?method=listFilms&searchString=ColdFusion

Figure 24.5

A WDDX packet
returned by running a
component remotely.

This is a WDDX packet, which is an XML representation of the data. This data can be con-
sumed via JavaScript libraries, by a ColdFusion page, or by many other languages via a WDDX
interpreter.

More often these days, however, you would like to return the data in JSON format, which is what
Ajax Web applications most often consume. To return JSON, all you have to do is modify the defi-
nition of the function that is returning the data by setting the returnFormat attribute to JSON, as
shown in the following example for the listFilms method:

<cffunctionname=”listFilms”returnType=”query”output=”false”access=”remote”
hint=”Searchforafilm,andreturnaquerywiththeidandtitleofthematching
films.”returnFormat=”JSON”>

The result is what you see in Figure 24.6—a JSON packet that is consumable by Ajax applications.
Talk about making it easy!

Figure 24.6

The JSON
response returned
by component.

note

Listing 24.1 contains one logic method and one presentation method. They are both included in the same CFC file. If you wanted,
you could create a separate CFC for the presentation method. You would just use the <cfinvoke> tag within the presentation
CFC to call the logic methods.

Accessing a CFC via a Form
It is also possible to access a method directly from a browser using a form. Conceptually, this
is very similar to accessing a method via a URL, as discussed above in “Accessing a CFC via a
URL.” Just use the URL for the .cfc file as the form’s action, along with the desired method
name. Then add form fields for each argument that you want to pass to the method when the form

67Type Checking in Components

is submitted. For example, the following snippet would create a simple search form, which, when
submitted, would cause a list of matching films to appear:

<cfformaction=”FilmSearchCFC.cfc?method=PrintFilms”>
<inputname=”searchString”>
<inputtype=”Submit”value=”Search”>
</cfform>

note

Again, the method must use access=”remote” in its <cffunction> tag. Otherwise, it can’t be
accessed directly over the Internet via a form or a URL.

Type Checking in Components
Methods in CFCs can return types through the use of the returntype attribute of <cffunction>.
Consider this example:

<cffunctionname=”listFilms”returnType=”query”output=”false”>

Here, the method must return a variable with a data type of query. Any other return type would
cause an error. For example, it might make sense to return a value of the Boolean false because
no valid query could be returned, but that would throw an error. Instead, you’d want to return an
empty query or throw a custom error.

You can also specify data types in your arguments for methods. In any <cfargument>, you can
specify the type that your method must return (just as with <cfparam>). This specification can
prevent you from having to create a lot of custom error-handling code in your application to
check the data types of arguments passed in, and it also helps in introspection. In addition, the
 <cfproperty> tag allows you to document variables and define their types for subsequent self-
documentation (more on this in the next section).

note

The data type attributes of <cffunction> and <cfargument> are required when creating Web Services (see Chapter 59,
“Creating and Consuming Web Services,” in Adobe ColdFusion 9 Web Application Construction Kit, Volume 3: Advanced Applica-
tion Development, for more information).

Table 24.6 lists the allowed data types.

Table 24.6 Type Values Used for returntype (<cffunction>) and type (<cfargument>, <cfproperty>)

tyPe DesCrIPtIon

Any Can be any type.
Array ColdFusion array complex data type.
Binary String of ones and zeros.
Boolean Can be 1, 0, true, false, yes, or no.

68 chapter 24 Creating Advanced ColdFusion Components

tyPe DesCrIPtIon

Date Any value that can be parsed into a date. Note that POP dates (see the
ParseDateTime()function) and time zones are not accepted, but simple
timestamps and ODBC-formatted dates and times are accepted.

GUID The argument must be a UUID or GUID of the form xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx where each x is a character representing a hexadecimal
number (0–9, A–F).

Numeric Integer or float.
Query ColdFusion query result set.
String ColdFusion string simple data type.
Struct ColdFusion struct complex data type.
UUID The argument must be a ColdFusion UUID of the form xxxxxxxx-xxxx-xxxx-

xxxxxxxxxxxxxxxx where each x is a character representing a hexadecimal
number (0–9, A–F).

variableName A string formatted according to ColdFusion variable naming conventions (a
letter, followed by any number of alphanumeric characters or underscores).

Void Does not return a value.

If anything else is specified as a return type, ColdFusion processes it as returning a component for
which properties have been defined. This technique allows components to define complex types
for Web Services. Chapter 58, “Using Server-Side HTTP and FTP,” in Volume 3, discusses this
feature in depth. Typically, though, the standard data types will suffice.

Components That Hold Instance Data
The ColdFusion Components discussed so far in this chapter (the FilmSearchCFC and FilmDataCFC
examples) have both been static components, meaning they don’t hold any instance data. That is,
although you can create an instance of a component with <cfobject> before using it, there really
isn’t any need to do so. One instance of a component isn’t going to behave any differently from any
other instance, so it’s fine to simply call the CFC’s methods directly.

If you create components that hold instance data, though, each instance of the component lives on
its own and has its own memory in which to store information. If your component is about films,
each instance might be an individual film, and the instance data might be the film’s title, budget,
gross receipts, or even critics’ reviews. If your component is about shopping carts, each instance of
the component would represent a separate user’s shopping cart, and the instance data would be the
cart’s contents.

This section will explain how to create this type of component.

Table 24.6 (continued)

69Components That Hold Instance Data

Introducing the THIS Scope
The CFC framework sets aside a special variable scope called THIS, which stands for this instance
of a component. You can think of the word THIS as meaning “this film” or “this shopping cart” or
“this object,” depending on what you intend your component to represent.

The THIS Scope Represents an Instance

The THIS scope is similar in its function to the SESSION scope you learned about in Chapter 19,
“Working with Sessions,” in Volume 1, except that instead of being a place to store information that
will be remembered for the duration of a user’s session, THIS is a place to store information that will
be remembered for as long as a particular instance of a component continues to exist.

As an example, consider a fictional CFC called ParrotCFC. The idea behind the component is that
each instance of the component represents one parrot. Each instance of the component needs
to have a name, an age, a gender, a wingspan, a favorite word or cracker, and so on. This kind of
information is exactly what the THIS scope was designed for. Your CFC code just needs to set vari-
ables in the THIS scope (perhaps THIS.favoriteWord or THIS.wingSpan) to remember these values.
ColdFusion will keep each component’s variables separate.

Steps in the THIS Process

Here are the steps involved:

 1. Create the CFC file. Within the file, use the THIS scope as the component’s personal
memory space, keeping in mind that each instance of the component (that is, each par-
rot) will get its own copy of the THIS scope for its own use.

 2. In your ColdFusion pages, create an instance of the CFC with new before you use any of
the component’s methods. If you want the instance to live longer than the current page
request, you can place the instance in the SESSION or APPLICATION scope.

 3. Now go ahead and use the instance’s methods with the <cfinvoke> tag as you learned in
previous examples. Make sure that you specify the instance (that is, the individual par-
rot) as the component attribute of the <cfinvoke> tag, rather than as the name of the
CFC. Alternatively, call the methods using function syntax.

In this scenario, each individual instance of the ParrotCFC has a life of its own. The <cfobject> tag
is what makes a particular parrot come to life. The THIS scope automatically maintains the parrot’s
characteristics.

Extending the metaphor, if the parrot is the pet of one of your Web users, you can make the parrot
follow the user around by having it live in the user’s SESSION scope. Or if the parrot doesn’t belong
to a particular person but instead belongs to your application as a whole (perhaps the parrot is your
site’s mascot), you could have it live in the APPLICATION scope. Or you might have a bunch of parrots
that are looking for owners. You could keep these parrots (each one an instance of the ParrotCFC
component) in an array in the APPLICATION scope. When a user wants to take one of the parrots
home as a pet, you could move the parrot out of the array and into the SESSION scope.

70 chapter 24 Creating Advanced ColdFusion Components

Okay, that’s enough about parrots. The idea here is to think of a CFC as an independent thing or
object with its own properties. You store individual instances of the object in the APPLICATION or
SESSION scope if you want it to remain in memory for a period of time, or just leave it in the normal
scope if you need the instance to live only for the current page request.

note

By definition, a component that doesn’t refer to the THIS scope at all in its methods doesn’t need to be instantiated with
<cfobject> before calling its methods and can therefore be considered a static component. Any component that does use
the THIS scope internally probably needs to be instantiated to function properly.

Instance Data CFC Example
Let’s look at a simple example of a CFC that holds instance data. The component is called
 FilmRotationCFC, and its purpose is to keep track of a featured film.

Designing FilmRotationCFC

To demonstrate the use of multiple methods within an instantiated component, the FilmRotationCFC
component will contain the methods listed in Table 24.7.

Table 24.7 Methods Provided by FilmRotationCFC

MethoD DesCrIPtIon

currentFilmID() Returns the ID number of the currently featured film. Because
this method uses access=”Private”, it can only be used internally
within the FilmRotationCFC.

isFilmNeedingRotation() Returns TRUE if the current film has been featured for more than
the amount of time specified as the rotation interval (5 seconds by
default). Returns FALSE if the current film should be left as is for
now. This is a private method that can only be used internally.

rotateFilm() Rotates the currently featured film if it has been featured for more
than the amount of time specified as the rotation interval (5 seconds
by default). Internally, this method calls isFilmNeedingRotation()
to find out if the current film has expired. If so, it sets the current
film to be the next film in the rotation.

getCurrentFilmID() Rotates the current movie (if appropriate) and then returns
the currently featured film. Internally, this function calls
rotateFilm() and then returns the value of currentFilmID().
This is a public method.

getCurrentFilmData() Returns the title, summary, and other information about
the currently featured film. Internally, this function calls
getCurrentFilmID() and then returns the information provided
by the GetFilmData() method of the FilmDataCFC2 component.
This method is included mainly to show how to call one
component’s methods from another component.

randomizedFilmList() Returns a list of all FilmID numbers in the ows database, in
random order. Internally, this uses the listRandomize() method
to perform the randomization.

71Components That Hold Instance Data

MethoD DesCrIPtIon

listRandomize(list) Accepts any comma-separated list and returns a new list with
the same items in it, but in a random order. Because this method
uses access=”Private”, it can only be used internally within the
FilmRotationCFC. This method really doesn’t have anything to
do with this CFC in particular; you could reuse it in any situation
where you wanted to randomize a list of items.

tip

In this CFC, I am adopting a convention of starting all public method names with the word Get. You might want to consider using
naming conventions such as this when creating your own component methods.

It is conventional in many programming languages to start the name of any function that returns a Boolean value with the word
Is. You might want to consider doing the same in your own CFCs.

Building FilmRotationCFC

Listing 24.4 shows the code for the FilmRotationCFC component. Because this component includes
a number of methods, this code listing is a bit long. Don’t worry. The code for each of the indi-
vidual methods is quite short.

Listing 24.4 FilmRotationCFC.cfc—Building a CFC That Maintains Instance Data
<!---
Filename:FilmRotationCFC.cfc
Author:NateWeiss(NMW)
Purpose:CreatesFilmRotationCFC,aColdFusionComponent
--->

<cfcomponentoutput=”false”hint=”ProvideRandomizedFilmListFunctions”>
<cfpropertyname=”currentListPos”hint=”currentpositioninlist”type=”numeric”
required=”no”default=”1”>
<cfpropertyname=”filmList”hint=”randomizedlistoffilms”type=”string”>
<cfpropertyname=”rotationInterval”hint=”howoftenthefilmrotates,inseconds”
type=”numeric”required=”no”default=”5”>
<cfpropertyname=”currentUntil”hint=”whendoesthisfilmexpire,andthenextin
thelistbecomescurrent”type=”date”>

<!---***begininitializationcode***--->
<cfsetTHIS.filmList=randomizedFilmList()>
<cfsetTHIS.currentListPos=1>
<cfsetTHIS.rotationInterval=5>
<cfsetTHIS.currentUntil=dateAdd(“s”,THIS.rotationInterval,now())>

<!---***endinitializationcode***--->
<!---Privatefunction:RandomizedFilmList()--->
<cffunctionname=”randomizedFilmList”returnType=”string”access=”private”
output=”false”
hint=”Forinternaluse.ReturnsalistofallFilmIDs,inrandomorder.”>

Table 24.7 (continued)

72 chapter 24 Creating Advanced ColdFusion Components

Listing 24.4 (continued)
<!---Thisvariableisforthisfunction’suseonly--->
<cfsetvargetFilmIDs=“”>

<!---Retrievelistofcurrentfilmsfromdatabase--->
<cfqueryname=”getFilmIDs”datasource=”ows”
cachedwithin=”#CreateTimeSpan(0,1,0,0)#”>
SELECTFilmIDFROMFilms
ORDERBYMovieTitle
</cfquery>

<!---Returnthelistoffilms,inrandomorder--->
<cfreturnlistRandomize(valueList(getFilmIDs.FilmID))>
</cffunction>

<!---Privateutilityfunction:ListRandomize()--->
<cffunctionname=”listRandomize”returnType=”string”
output=”false”
hint=”Randomizestheorderoftheitemsinanycomma-separatedlist.”>

<!---Listargument--->
<cfargumentname=”list”type=”string”required=”Yes”
hint=”Thestringthatyouwanttorandomize.”>

<!---Thesevariablesareforthisfunction’suseonly--->
<cfsetvarresult=“”>
<cfsetvarrandPos=“”>

<!---Whilethereareitemsleftintheoriginallist...--->
<cfloopcondition=”listLen(ARGUMENTS.list)gt0”>
<!---Selectalistpositionatrandom--->
<cfsetrandPos=randRange(1,listLen(ARGUMENTS.list))>
<!---AddtheitemattheselectedpositiontotheResultlist--->
<cfsetresult=listAppend(result,listGetAt(ARGUMENTS.list,randPos))>
<!---Removetheitemfromselectedpositionoftheoriginallist--->
<cfsetARGUMENTS.list=listDeleteAt(ARGUMENTS.list,randPos)>
</cfloop>

<!---Returnthereorderedlist--->
<cfreturnresult>
</cffunction>

<!---Privatemethod:IsFilmNeedingRotation()--->
<cffunctionname=”isFilmNeedingRotation”access=”private”returnType=”boolean”
output=”false”
hint=”Forinternaluse.ReturnsTRUEifthefilmshouldberotatednow.”>

<!---ComparethecurrenttimetotheTHIS.CurrentUntiltime--->
<!---Ifthefilmisstillcurrent,DateCompare()willreturn1--->
<cfsetvardateComparison=dateCompare(THIS.currentUntil,now())>

<!---ReturnTRUEifthefilmisstillcurrent,FALSEotherwise--->
<cfreturndateComparisonneq1>
</cffunction>

<!---RotateFilm()method--->
<cffunctionname=”rotateFilm”access=”private”returnType=”void”output=”false”

73Components That Hold Instance Data

Listing 24.4 (continued)
hint=”Forinternaluse.Advancesthecurrentmovie.”>

<!---Ifthefilmneedstoberotatedatthistime...--->
<cfifisFilmNeedingRotation()>
<!---Advancetheinstance-levelTHIS.CurrentListPosvaluebyone--->
<cfsetTHIS.currentListPos=THIS.currentListPos+1>

<!---IfTHIS.CurrentListPosisnowmorethanthenumberoffilms,--->
<!---Startoveragainatthebeginning(thefirstfilm)--->
<cfifTHIS.currentListPosgtlistLen(THIS.FilmList)>
<cfsetTHIS.currentListPos=1>
</cfif>

<!---Setthetimethatthenextrotationwillbedue--->
<cfsetTHIS.currentUntil=dateAdd(“s”,THIS.rotationInterval,now())>
</cfif>
</cffunction>

<!---Privatemethod:CurrentFilmID()--->
<cffunctionname=”currentFilmID”access=”private”returnType=”numeric”
output=”false”
hint=”Forinternaluse.ReturnstheIDofthecurrentfilminrotation.”>

<!---ReturntheFilmIDfromthecurrentrowoftheGetFilmIDsquery--->
<cfreturnlistGetAt(THIS.filmList,THIS.currentListPos)>
</cffunction>

<!---Publicmethod:GetCurrentFilmID()--->
<cffunctionname=”getCurrentFilmID”access=”public”returnType=”numeric”
output=”false”
hint=”ReturnstheIDnumberofthecurrently‘featured’film.”>
<!---First,rotatethecurrentfilm--->
<cfsetrotateFilm()>

<!---ReturntheIDofthecurrentfilm--->
<cfreturncurrentFilmID()>
</cffunction>

<!---Publicmethod:GetCurrentFilmData()--->
<cffunctionname=”getCurrentFilmData”access=”remote”returnType=”struct”
output=”false”
hint=”Returnsstructureddataaboutthecurrently‘featured’film.”>

<!---Thisvariableislocaljusttothisfunction--->
<cfsetvarcurrentFilmData=“”>

<!---InvoketheGetCurrentFilmID()method(inseparatecomponent)--->
<!---Returnsastructurewithfilm’stitle,summary,actors,etc.--->
<cfinvokecomponent=”FilmDataCFC2”method=”getFilmData”
filmID=”#getCurrentFilmID()#”returnVariable=”currentFilmData”>

<!---Returnthestructure--->
<cfreturncurrentFilmData>
</cffunction>

</cfcomponent>

74 chapter 24 Creating Advanced ColdFusion Components

The most important thing to note and understand about this CFC is the purpose of the first
few <cfset> tags at the top of Listing 24.4. Because these lines sit directly within the body of the
<cfcomponent> tag, outside any <cffunction> blocks, they are considered initialization code that
will be executed whenever a new instance of the component is created. Notice that each of these
<cfset> tags creates variables in the special THIS scope, which means they are assigned to each
instance of the component separately. Typically, all that happens in a CFC’s initialization code is
that it sets instance data in the THIS scope.

note

It’s important to understand that these lines don’t execute each time one of the instance’s methods is called. They execute only
when a new instance of the component is brought to life with the <cfobject> tag.

The <cfset> tags at the top of the listing create these instance variables:

THIS.filmList■■ is a list of all current films, in the order in which the component should
show them. The component’s randomizedFilmList() method creates the sequence. This
order will be different for each instance of the CFC.

THIS.currentListPos■■ is the current position in the randomized list of films. The initial
value is 1, which means that the first film in the randomized list will be considered the
featured film.

THIS.rotationInterval■■ is the number of seconds that a film should be considered fea-
tured before the component features the next film. Right now, the interval is 5 seconds.

THIS.currentUntil■■ is the time at which the current film should be considered expired. At
that point, the CFC will select the next film in the randomized list of films. When the
component is first instantiated, this variable is set to 5 seconds in the future.

Let’s take a quick look at the <cffunction> blocks in Listing 24.4.

The randomizedFilmList() method will always be the first one to be called, since it is used in the
initialization code block. This method simply retrieves a record set of film IDs from the database.
Then it turns the film IDs into a comma-separated list with ColdFusion’s valueList() function
and passes the list to the CFC’s listRandomize() method. The resulting list (which is a list of films
in random order) is returned as the method’s return value.

The listRandomize() method uses a combination of ColdFusion’s list functions to randomize the
list supplied to the list argument. The basic idea is to pluck items at random from the original
list, adding them to the end of a new list called result. When there are no more items in the origi-
nal list, the result variable is returned as the method’s return value.

The currentFilmID() method simply returns the FilmID in the current position of the CFC’s random-
ized list of films. As long as THIS.currentListPos is set to 1, this method returns the first film’s ID.

The isFilmNeedingRotation() method uses dateCompare() to compare THIS.currentUntil to the
current time. If the time has passed, this method returns TRUE to indicate that the current film is
ready for rotation.

75Components That Hold Instance Data

The rotateFilm() method is interesting because it actually makes changes to the variables in the
THIS scope first created in the initialization code block. First, it uses isFilmNeedingRotation() to
see whether the current film has been featured for more than 5 seconds already. If so, it advances
the This.currentListPos value by 1. If the new currentListPos value is greater than the length of
the list of films, that means all films in the sequence have been featured, so the position is set back
to 1. Lastly, the method uses ColdFusion’s dateAdd() function to set the THIS.currentUntil vari-
able to 5 seconds in the future.

The getCurrentFilmID() method ties all the concepts together. Whenever this method is used, the
rotateFilm() method is called (which will advance the current film to the next item in the sequence
if the current one has expired). It then calls currentFilmID() to return the current film’s ID.

Storing CFCs in the APPLICATION Scope
Now that the FilmRotationCFC component is in place, it’s quite simple to put it to use. Listing 24.5
shows one way of using the component.

Listing 24.5 UsingFilmRotationCFCa.cfm—Instantiating a CFC at the Application Level
<!---
Filename:UsingFilmRotationCFCa.cfm
Author:NateWeiss(NMW)
Purpose:DemonstratesstorageofCFCinstancesinsharedmemoryscopes
--->

<html>
<head>
<title>UsingFilmRotationCFC</title>
</head>

<body>

<!---IfaninstanceoftheFilmRotatorCFCcomponenthasn’tbeencreated--->
<!---yet,createafreshinstanceandstoreitintheAPPLICATIONscope--->
<cfifnotisDefined(“APPLICATION.filmRotator”)>
<cfsetAPPLICATION.FilmRotator=newFilmRotationCFC()>
</cfif>

<!---InvoketheGetCurrentFilmID()methodoftheFilmRotatorCFCobject--->
<cfsetfeaturedFilmID=Application.filmRotator.getCurrentFilmID()>

<p>Thecalloutattherightsideofthispageshowsthecurrentlyfeaturedfilm.
Thefeaturedfilmchangeseveryfiveseconds.
Justreloadthepagetoseethenextfilminthesequence.
ThesequencewillnotchangeuntiltheColdFusionserverisrestarted.</p>

<!---Showthecurrentfilminacallout,viacustomtag--->
<cf_ShowMovieCallout
filmID=”#featuredFilmID#”>

</body>
</html>

76 chapter 24 Creating Advanced ColdFusion Components

The idea here is to keep an instance of FilmRotationCFC in the APPLICATION.filmRotator variable.
Keeping it in the APPLICATION scope means that the same instance will be kept in the server’s mem-
ory until the ColdFusion server is restarted. All sessions that visit the page will share the instance.

First, a simple isDefined() test sees if the CFC instance called APPLICATION.filmRotator already
exists. If not, the instance is created with the <cfobject> tag. So, after this <cfif> block, the
instance is guaranteed to exist. Keep in mind that the CFC’s initialization code block is executed
when the instance is first created.

note

If you wanted the CFC instance to be available to all pages in the application, you could move the <cfif> block in Listing 24.5 to
your Application.cfc file.

Displaying the currently featured film is simply a matter of calling the getCurrentFilmID()
method and passing it to the <cf_ShowMovieCallout> custom tag. When a browser visits this list-
ing, the currently featured movie is displayed. If you reload the page repeatedly, you will see that
the featured movie changes every 5 seconds. If you wait long enough, you will see the sequence of
films repeat itself. The sequence will continue to repeat until the ColdFusion server is restarted, at
which point a new sequence of films will be selected at random.

Storing CFCs in the SESSION Scope
One of the neat things about CFCs is their independence. You will note that the code for the
RotateFilmCFC component doesn’t contain a single reference to the APPLICATION scope. In fact, it
doesn’t refer to any of ColdFusion’s built-in scopes at all, except for the THIS scope.

This means it’s possible to create some instances of the CFC that are kept in the APPLICATION
scope, and others that are kept in the SESSION scope. All the instances will work properly and will
maintain their own versions of the variables in the THIS scope.

To see this in action, go back to Listing 24.5 and change the code so that the CFC instance is kept
in the SESSION scope instead of the APPLICATION scope. Now each Web session will be given its own
FilmRotator object, stored as a session variable. You can see how this looks in Listing 24.6 (in the
upcoming section “Modifying Properties from a ColdFusion Page”).

To see the difference in behavior, open the revised listing in two different browsers (say, Firefox
and Internet Explorer 8), and experiment with reloading the page. You will find that the films are
featured on independent cycles and that each session sees the films in a different order. If you view
the page on different computers, you will see that each machine also has its own private, random-
ized sequence of featured films.

Instance Data as Properties
As I’ve explained, the code for the FilmRotationCFC component uses the THIS scope to store cer-
tain variables for its own use. You can think of these variables as properties of each component
instance, because they are the items that make a particular instance special, giving it its individu-
ality, its life.

77Components That Hold Instance Data

Sometimes you will want to display or change the value of one of these properties from a normal
ColdFusion page. ColdFusion makes it very easy to access an instance’s properties. Basically, you
can access any variable in a CFC’s THIS scope as a property of the instance itself.

Modifying Properties from a ColdFusion Page

If you have a CFC instance called SESSION.myFilmRotator and you want to display the current value
of the currentUntil property (that is, the value of the variable that is called THIS.currentUntil
within the CFC code), you can do so with the following in a normal .cfm page:

<cfoutput>
#timeFormat(SESSION.myFilmRotator.currentUntil)#
</cfoutput>

To change the value of the rotationInterval property (referred to as THIS.rotationInterval in
the FilmRotationCFC.cfc file) to 10 seconds instead of the usual 5 seconds, you could use this line:

<cfsetSESSION.myFilmRotator.rotationInterval=10>

After you changed the rotationInterval for the SESSION.FilmRotator instance, then that session’s
films would rotate every 10 seconds instead of every 5 seconds. Listing 24.6 shows how all this
would look in a ColdFusion page.

Listing 24.6 UsingFilmRotationCFCb.cfm—Interacting with a CFC’s Properties
<!---
Filename:UsingFilmRotationCFCc.cfm
Author:NateWeiss(NMW)
Purpose:DemonstratesstorageofCFCinstancesinsharedmemoryscopes
--->

<html>
<head>
<title>UsingFilmRotationCFC</title>
</head>

<body>

<!---IfaninstanceoftheFilmRotatorCFCcomponenthasn’tbeencreated--->
<!---yet,createafreshinstanceandstoreitintheSESSIONscope--->
<cfifnotisDefined(“SESSION.myFilmRotator”)>
<cfsetSESSION.myFilmRotator=newFilmRotationCFC()>

<!---Rotatefilmseverytenseconds--->
<cfsetSESSION.myFilmRotator.rotationInterval=10>
</cfif>

<!---Displaymessage--->
<cfoutput>
<p>
Thecalloutattherightsideofthispageshowsthecurrentlyfeaturedfilm.
Featuredfilmsrotateevery#SESSION.myFilmRotator.rotationInterval#seconds.
Justreloadthepagetoseethenextfilminthesequence.
Thesequencewillnotchangeuntilthewebsessionends.</p>
Thenextfilmrotationwilloccurat:

78 chapter 24 Creating Advanced ColdFusion Components

Listing 24.6 (continued)
#timeFormat(SESSION.myFilmRotator.currentUntil,“h:mm:sstt”)#
</cfoutput>

<!---Showthecurrentfilminacallout,viacustomtag--->
<cf_ShowMovieCalloutfilmID=”#SESSION.myFilmRotator.getCurrentFilmID()#”>

</body>
</html>

note

You can experiment with changing the RotationInterval property to different values. Keep in mind that the code in the
<cfif> block will execute only once per session, so you may need to restart ColdFusion to see a change. If you are using J2EE
Session Variables, you can just close and reopen your browser. Or you could move the <cfset> line outside the <cfif> block.

What all this means is that the CFC’s methods can access an instantiated CFC’s properties inter-
nally via the THIS scope, and your ColdFusion pages can access them via the instance object vari-
able itself. As you learned in the introduction to this topic, CFCs can be thought of as containers
for data and functionality, like many objects in the real world. You know how to access the data
(properties) as well as the functionality (methods).

Documenting Properties with <cfproperty>

As you learned earlier, you can easily view a CFC’s methods in the Component tree in the Dream-
weaver’s Application panel. You can also view them in the automatically generated reference page
that ColdFusion produces if you visit a CFC’s URL with your browser. Since a CFC’s properties
are also important, it would be nice if there was an easy way to view them too.

ColdFusion provides a tag called <cfproperty> that lets you provide information about each vari-
able in the this scope that you want to document as an official property of a component. The
<cfproperty> tags must be placed at the top of the CFC file, just within the <cfcomponent> tag,
before any initialization code.

Another function that <cfproperty> provides for you is the ability to do type checking on your
properties (this is new in ColdFusion 9). Using the attributes validate and validateparams, you
can specify the data types that are allowed for your components’ properties, and if something tries
to set them to an invalid value, ColdFusion will throw an error.

Table 24.8 shows the syntax for the <cfproperty> tag.

Table 24.8 <cfproperty> Tag Syntax

AttrIbute DesCrIPtIon

name The name of the property. This should match the name of the variable in the
THIS scope that is used within the component’s methods.

type The data type of the property, such as numeric, string, or query.
required Whether the property is required (documentation only).

79Components That Hold Instance Data

AttrIbute DesCrIPtIon

default The initial value of the property (documentation only).
hint An explanation of what the property does or represents.
displayName An alternate name for the property.
validate Data type for the parameter. See the “Implicit Getters and Setters” section

below.
validateparams Parameters required for the validation type, such as if, range, max, and so

on. See the “Implicit Getters and Setters” section below.

You’ll notice in Listing 24.6 that I’ve documented all the properties with <cfproperty>, for
example:

<cfproperty
name=”RotationInterval”
type=”numeric”
required=”No”
default=”5”
hint=”Thenumberofsecondsbetweenfilmrotations.”>

note

Remember that <cfproperty> doesn’t actively create a property in this version of ColdFusion. Just because you add
the <cfproperty> tag to document the THIS.rotationInterval property doesn’t mean that you can remove the
<cfset> tag that actually creates the variable and gives it its initial value.

CFCs and the VARIABLES Scope

The THIS scope isn’t the only way to persist data within a CFC. Each CFC also has a VARIABLES
scope. This scope acts just like the VARIABLES scope within a simple CFM page. Like the THIS scope,
each method in the CFC can read and write to the scope. However, unlike the THIS scope, you can’t
display or modify the value outside the CFC.

Some people consider this a good thing. Look at the code in Listing 24.6. One line sets the CFC’s
rotationInterval variable. What happens if the code sets it to a value of “ten” instead of the num-
ber “10”? The next time this page, or any other, runs the getCurrentFilmID method, the code will
blow up because the property is no longer a number. The whole point of encapsulation is to pre-
vent problems like this. How can you prevent this?

Keeping Your Properties Clean: Getters and Setters
To make sure your properties are the right type, in the right range, and so on, you generally don’t
want to allow your users to directly access the properties of your CFCs. To prevent this, for each
property of your CFC, build two methods—one to get the current value and another to set its value.
This allows you to check and make sure the value being set is valid, as well as massage any data
on the way out so code that’s getting a property’s value gets it in a way that’s useful. For example,
instead of directly accessing the rotationInterval value of the CFC, the CFC itself could define a

Table 24.8 (continued)

80 chapter 24 Creating Advanced ColdFusion Components

setRotationInterval method. Any CFM that needs to set this value would simply use the method. If
an invalid value is passed in, the component can throw an error or simply ignore it.

It’s considered good programming practice to always name the getters and setters getProperty()
and setProperty(). For example, for the currentUntil property, you would name them
 getCurrentUntil() and setCurrentUntil().

Listing 24.7 shows an excerpt from the FilmRotationCFC that contains a typical getter and setter
for the rotationInterval property.

Listing 24.7 FilmRotationCFCb.cfc—Film Rotation with Getters and Setters (Excerpt)

<!---gettermethodforrotationInterval--->
<cffunctionname=”getrotationInterval”returntype=”numeric”hint=”getterfor
rotationIntervalproperty”>
<cfreturnthis.currentUntil>
</cffunction>

<!---settermethodforrotationInterval--->
<cffunctionname=”setrotationInterval”returntype=”void”hint=”setterfor
rotationIntervalproperty”>
<cfargumentname=”newValue”required=”yes”type=”numeric”hint=”newvaluefor
rotationIntervalproperty”>
<cfifisNumeric(arguments.newValue)>
<cfsetthis.currentUntil=arguments.newValue>
<cfelse>
<cfthrowtype=”application”message=”InvalidvalueforsetrotationInterval:must
benumeric”>
</cfif>
<cfreturn>
</cffunction>

Implicit Getters and Setters
Since all getter and setter methods generally do is validate the data being set, most of these methods
wind up looking almost exactly the same. Because of this, the folks who designed the ColdFusion 9
language added a feature to components that lets ColdFusion provide this functionality without you
actually having to write the functions.

All you need to do to add getter and setter functions to all your properties is add a single attribute
to the <cfcomponent> tag: accessors=”true”. For example, in FilmRotationCFC.cfc, you’d simply
change the first line to read as follows:

<cfcomponentoutput=”false”hint=”ProvideRandomizedFilmListFunctions”
accessors=”true”>

Without any additional work, you can now call getters and setters for any of the proper-
ties you have defined with <cfproperty> tags. getFilmList, setFilmList, getCurrentListPos,
 setCurrentListPos, and so on, are all now available.

81Components That Hold Instance Data

In addition, you can now use the validate and validateparams attributes of <cfproperty>
to automatically create the validation code for your properties. To effectively create the
 setrotationInterval validation in Listing 24.7, you’d just change your <cfproperty> tag to this:

<cfpropertyname=”rotationInterval”hint=”howoftenthefilmrotates,inseconds”
type=”numeric”validate=”numeric”>

note

If you explicitly define getters and setters for some of your properties, ColdFusion won’t override them if you have
accessors=true. Also, If you don’t want certain properties to have a getter or setter, for those individual properties you can
add a“getter=no” or “setter=no”attribute to the <cfproperty> tag, and ColdFusion won’t create them.

Initializing Components
Most of the time, when you create a component, you’ll want it to be independent of the application
that is calling it. For example, you wouldn’t want to hard-code the value of the data source into a
component, because it would be different between one application using it and another. However,
the component isn’t usable until it “knows” what its data source is and probably some other initial-
ization values. Therefore, most components require some sort of initialization to work.

The typical thing to do with a component is create a special method called init that is called when
starting up the component; it returns a reference to the component itself. ColdFusion 9 supports
this behavior with the new keyword by automatically calling the init method with whatever argu-
ments are passed to the component when it is invoked.

Listing 24.8 contains an excerpt of the init method from the updated version of the FilmRotationCFC
that contains the init function. Note that the code outside the methods has been moved to the init
method, and the <cfquery> tag in the randomizedFilmList method now uses the local variable vari-
ables.dsn instead of the hard-coded value for the data source.

Listing 24.8 Updated FilmRotationCFCc.cfc with init Method
<!---
Filename:FilmRotationCFCc.cfc
Author:NateWeiss(NMW)
Purpose:CreatesFilmRotationCFC,aColdFusionComponent
--->
<cfcomponentoutput=”false”>
<cfpropertyname=”currentListPos”hint=”currentpositioninlist”type=”numeric”>
<cfpropertyname=”filmList”hint=”randomizedlistoffilms”type=”string”>
<cfpropertyname=”rotationInterval”hint=”howoftenthefilmrotates,inseconds”
type=”numeric”>
<cfpropertyname=”currentUntil”hint=”whendoesthisfilmexpire,andthenextin
thelistbecomescurrent”type=”date”>
<!---***begininitializationcode***--->
<!---initmethod--->
<cffunctionname=”init”returntype=”component”hint=”initialization”>
<cfargumentname=”datasource”required=”yes”type=”string”>
<cfargumentname=”rotationInterval”required=”no”default=”5”type=”numeric”>
<cfsetvariables.dsn=arguments.datasource>
<cfsetTHIS.rotationInterval=arguments.rotationInterval>
<cfsetTHIS.filmList=randomizedFilmList()>

82 chapter 24 Creating Advanced ColdFusion Components

Listing 24.8 (continued)
<cfsetTHIS.currentListPos=1>
<cfsetTHIS.currentUntil=dateAdd(“s”,THIS.rotationInterval,now())>
</cffunction>
<!---***endinitializationcode***--->
<!---Privatefunction:RandomizedFilmList()--->
<cffunctionname=”randomizedFilmList”returnType=”string”access=”private”
output=”false”
hint=”Forinternaluse.ReturnsalistofallFilmIDs,inrandomorder.”>

<!---Thisvariableisforthisfunction’suseonly--->
<cfsetvargetFilmIDs=“”>

<!---Retrievelistofcurrentfilmsfromdatabase--->
<cfqueryname=”getFilmIDs”datasource=”#variables.dsn#”
cachedwithin=”#CreateTimeSpan(0,1,0,0)#”>
SELECTFilmIDFROMFilms
ORDERBYMovieTitle
</cfquery>

<!---Returnthelistoffilms,inrandomorder--->
<cfreturnlistRandomize(valueList(getFilmIDs.FilmID))>
</cffunction>

To call this new method, you change the line in Listing 24.5 that creates the component variable
to pass in the required arguments, as shown here:

<cfsetAPPLICATION.FilmRotatorc=newFilmRotationCFCc(datasource=”ows”,
rotationInterval=”#variables.rotInterval#”)>

note

It’s standard practice to use the initialization method init, but ColdFusion allows you to override that value by passing the argu-
ment initmethod=<methodname>.

CFCs, Shared Scopes, and Locking
In Chapter 18, “Introducing the Web Application Framework,” in Volume 1, you learned that
it’s important to beware of race conditions. A race condition is any type of situation where strange,
inconsistent behavior might arise if multiple page requests try to change the values of the same
variables at the same time. Race conditions aren’t specific to ColdFusion development; all Web
developers should bear them in mind. See Chapter 18 for more information about this important
topic.

Since the past few examples have encouraged you to consider storing instances of your CFCs in
the APPLICATION or SESSION scope, you may be wondering whether there is the possibility of logical
race conditions occurring in your code and whether you should use the <cflock> tag or some other
means to protect against them if necessary.

The basic answer is that packaging your code in a CFC doesn’t make it more or less susceptible
to race conditions. If the nature of the information you are accessing within a CFC’s methods is
such that it shouldn’t be altered or accessed by two different page requests at the same time, you

83Components That Hold Instance Data

most likely should use the <cflock> tag to make sure one page request waits for the other before
continuing.

Direct Access to Shared Scopes from CFC Methods

If your CFC code is creating or accessing variables in the APPLICATION or SESSION scope directly
(that is, if the words APPLICATION or SESSION appear in the body of your CFC’s <cffunction> blocks),
place <cflock> tags around those portions of the code. The <cflock> tags should appear inside the
<cffunction> blocks, not around them. Additionally, you should probably place <cflock> tags
around any initialization code (that is, within <cfcomponent> but outside any <cffunction> blocks)
that refers to APPLICATION or SESSION. In either case, you would probably use scope=”SESSION” or
scope=”APPLICATION” as appropriate; alternatively, you could use <cflock>’s NAME attribute as explained
in Chapter 18 if you wanted finer-grained control over your locks.

Also, ask yourself why you’re even using the APPLICATION or SESSION scope in your CFC code. Is it
really necessary? If the idea is to persist information, why not simply store the CFC itself in one of
the persistent scopes? This will be helpful if you decide that the information needs to be specific
to the SESSION and not to the APPLICATION. If you never directly referenced any scope in your CFC
code but instead simply stored the CFC in one of the scopes, “moving” the CFC then becomes a
simple matter.

Locking Access to the THIS Scope

The FilmRotationCFC example in this chapter (Listing 24.4) doesn’t manipulate variables in the
APPLICATION or SESSION scope; instead, the CFC is designed so that entire instances of the CFC
can be stored in the APPLICATION or SESSION scope (or the SERVER scope, for that matter) as the
application’s needs change over time. This is accomplished by only using variables in the THIS
scope, rather than referring directly to SESSION or APPLICATION, within the CFC’s methods.

You may wonder how to approach locking in such a situation. I recommend that you create a
unique lock name for each component when each instance is first instantiated. You can easily
accomplish this with ColdFusion’s CreateUUID() function. For instance, you could use a line like
this in the component’s initialization code, within the body of the <cfcomponent> tag:

<cfsetTHIS.lockName=CreateUUID()>

The THIS.lockName variable (or property, if you prefer) is now guaranteed to be unique for each
instance of the CFC, regardless of whether the component is stored in the APPLICATION or SERVER
scope. You can use this value as the name of a <cflock> tag within any of the CFC’s methods. For
instance, if you were working with a CFC called ShoppingCartCFC and creating a new method
called addItemToCart(), you could structure it according to this basic outline:

<cffunctionname=”addItemToCart”>
<cflockname=”#THIS.lockName#”type=”Exclusive”timeout=”10”>
<!---ChangestosensitivedatainTHISscopegoeshere--->
</cflock>
</cffunction>

84 chapter 24 Creating Advanced ColdFusion Components

For more information on the <cflock> tag, especially when to use type=”Exclusive” or type=
”ReadOnly”, see the “Using Locks to Protect Against Race Conditions” section in Chapter 18.

Working with Inheritance
Frequently it is useful to have components that implement similar functionality in different ways.
For example, you might have a circle component and a square component. Each has a draw
method: The circle component draws a circle on the screen, and the square component draws a
square. Each also has independent properties. For example, the circle has circumference, and the
square has length. The two components also have a lot in common: They each have perimeter
and area. The square and circle components are special cases of a shape; they have everything a
shape has, plus more. Thus, it would make sense to create a single parent component called shape
that has the information that is common to all types of shapes and then to have child components
that inherit this information and also add their own. Thus, square, as a child of shape, would have
all the things that shape has plus length, and it would implement its own variation of draw.

Just as you can use the word my to refer to a CFC’s THIS scope (“my ID is 123 and my first name is
Fred…”), in inheritance, you can think of the words is a. A square is a shape. An actor is aperson. A
cat is amammal. In these cases, actor, square, and cat are children of person, shape, and mammal.
Some parents can exist by themselves; there can be a person who is not an actor. Some other par-
ents, though, are abstract; shape can’t draw itself without knowing what shape it is. Rather, the
parent is intended as more of a handy template upon which more specific things can be based.

In a movie studio application, actors and directors are both types of people, with some properties
that are common and some that are unique. So, for types of people, you could create a component
to represent a person and have each of these variants inherit from it.

Listing 24.9 shows the basic person component. It has a first name and last name (stored in the
THIS scope) and has one function that “shows” the person by outputting the first and last names.

Listing 24.9 person.cfc—The Basic person Component
<!---
Filename:Person.cfc
Author:KenFricklas(KF)
Purpose:BasicPersonCFC
--->
<cfcomponenthint=”ParentComponent-Person”>

<cfparamname=”THIS.firstName”default=”John”>
<cfparamname=”THIS.lastName”default=”Doe”>

<cffunctionname=”showPerson”output=”true”hint=”showPersoninperson.cfc”>
#THIS.firstName##THIS.lastName#
</cffunction>

</cfcomponent>

85Working with Inheritance

A component inherits from a parent component with the EXTENDS attribute of the <cfcomponent>
tag. The value of the attribute is the name of the component upon which the new component
should be based. Thus, a director component could consist of nothing more than Listing 24.10.

Listing 24.10 director.cfc—The director Component
<!---
Filename:Director.cfc
Author:KenFricklas(KF)
Purpose:AMinimalInheritedCFC
--->
<cfcomponentdisplayName=”MovieDirector”extends=”person”>
</cfcomponent>

Now, the director is an exact copy of the person component and has inherited all the proper-
ties and methods of its parent. A CFML page, then, could create an instance of the director and
invoke the methods of the person component as though they were part of the director component
(Listing 24.11).

Listing 24.11 showDirector.cfm—Display the Director
<!---
Filename:showDirector.cfm
Author:KenFricklas(KF)
Purpose:Showthedirector
--->
<cfsetcfcDirector=newDirector()>
<cfoutput>#cfcDirector.showPerson()#</cfoutput>

note

In fact, every component inherits from a root component called WEB-INF.cftags.component. This component is the
mother of all components. In its default case, it is simply an empty file without any functions or properties, but you can implement
custom logging, debugging, and other behavior by modifying this root component.

Overriding Properties and Methods
Just because the parent does something doesn’t mean that the child is stuck with it. The compo-
nent can override parts of the parent component. If you want the director component to set the
firstName and lastName properties to different values than those of the person component, you
simply add code that redefines the values. The director, because it’s the one being invoked, will
take precedence. So, the director component is now coded like this:

<cfcomponentdisplayName=”MovieDirector”extends=”person”>
<cfsetTHIS.firstName=“Jim”>
<cfsetTHIS.lastName=“Jarofmush”>
</cfcomponent>

When invoked from the CFML page, this component now will output “Jim Jarofmush” instead
of “John Doe.” The THIS scope assignments made in a child override those of its parent. Likewise,

86 chapter 24 Creating Advanced ColdFusion Components

adding a showPerson function to the director component will override the showPerson function
from the parent:

<cffunctionname=”showPerson”output=”true”hint=”showPersonindirector.cfc”>
Aswelldirectornamed#THIS.firstName##THIS.lastName#
</cffunction>

Using the SUPER Scope
What if a child component needs to use the functionality in a method in its parent, but it has
redefined that method already? In the director component, you could call the parent showPerson
method, but you want to add your own information to it. You do this with the special scope
SUPER. SUPER acts similarly to THIS, but instead of referring to a property or method in the current
component, it refers to the property or method in the component’s parent. You could redefine
 showPerson in the director component as shown in Listing 24.12.

Listing 24.12 Final director.cfc
<!---
Filename:director.cfc
Author:KenFricklas(KF)
Purpose:Demonstratesuseofsuperandpropertyoverrides
--->
<cfcomponentdisplayName=”MovieDirector”extends=”person”>
<cfsetTHIS.firstName=“Jim”>
<cfsetTHIS.lastName=“Jarofmush”>
<cffunctionname=”showPerson”output=”true”hint=”showPersonindirector.cfc”>
Aswelldirector-#super.showPerson()#
</cffunction>
</cfcomponent>

This code calls the showPerson method in the person component.

note

In addition to the child being able to invoke functions that are really part of the parent component (and overriding them, if
desired), the parent can call functions that are part of the child by referencing them in the instance’s THIS scope. This technique
can be useful when multiple components are descendants of the same parent but require slightly different methods.

Must you use inheritance in your ColdFusion applications? Certainly not. But it can be very use-
ful in ways similar to other code-reuse techniques. Components can be built-in “branches,” as in a
family tree with chains of ancestral parent components, each providing base functionality to their
children.

Component packages can help with this type of organization, too, to make applications more
easily maintainable. In that case, the extends=”...” attribute uses the same package path syn-
tax as a <cfinvoke> tag. For example, to inherit from a component called person in the package
 myApp.components, the <cfcomponent> tag would be coded like this:

<cfcomponentextends=”myApp.components.person”>

87Defining Interfaces

note

Inheritance can also be more than one level deep. Just as actor is a special case of person, comedian is a special case of
actor. comedian could extend actor, which extends person. Then comedian would inherit methods and properties
from actor, which inherits from person. Super() can also be chained; super.super.showPerson() is a valid construct,
if you wanted to run the showPerson() from person directly from comedian and bypass an override method in actor.

Defining Interfaces
When designing components, it’s frequently useful to define a template for anyone passing com-
ponents to general functions. For example, you might create a function that takes as an argument
an instance of a cast or crew member of a movie, calls a method named getResume to get a copy
of the crew member’s résumé as a query, and calls another method named showPersonHTML to show
the crew member’s name and information in an HTML display.

When requesting several implementations of this function to implement different types of cast
members, actors, directors, producers, and so on, you might want these components to each do
everything differently—you don’t want them to inherit from a common parent, but they all have
to implement a minimum set of functionality to meet the requirements of the system.

The definition of functions without actual implementation is a special type of component defini-
tion called an interface. An interface is basically a contract between a component and a system. You
define an interface in a file with an extension of .cfc, but instead of enclosing the component with
<cfcomponent? tags, you use a tag called <cfinterface>. Any component that implements the inter-
face must contain all the methods defined in it, or the system will display an error.

Listing 24.13 contains an interface for the component just described.

Listing 24.13 iCastCrew.cfc—An Interface
<cfinterfacehint=”castorcrewmemberinterface”>
<cffunctionname=”getResume”access=”public”returntype=”query”hint=”return
resumeasquery”>
</cffunction>
<cffunctionname=”showPersonHTML”access=”public”returntype=”string”hint=”show
personinformationasHTML”>
<cfargumentname=”detail”type=”boolean”required=”no”default=”true”
hint=”showdetailedinformation”>
</cffunction>
</cfinterface>

Introspection and inheritance (via the extends attribute of <cfinterface>) can be used with inter-
faces the same way as with components.

note

Interfaces are typically given names that start with a lowercase i—for example, iComponent.cfc—to distinguish them from
other components.

88 chapter 24 Creating Advanced ColdFusion Components

To make sure that a component implements an interface, you use the implements keyword in the
<cfcomponent> tag; for example, to make the director an implementation of iCastCrew, you would
change the first line to this:

<cfcomponentdisplayName=”MovieDirector”extends=”person”implements=”iCastCrew”>

If you ran this code, you would get the error shown in Figure 24.7, since the director component
is missing some of the functions defined in the interface.

Figure 24.7

Error results from a
failed implementation
of an interface.

Implementing Security
ColdFusion provides two ways to secure the functionality that you encapsulate in a ColdFusion
component: roles-based authorization and access control. Chapter 52, “Understanding Security,”
in Volume 3, discusses application user authentication and authorization, which allows the assign-
ment of roles to your application’s users. This roles-based security can also be applied to the func-
tions in a CFC. The second technique, access control, was used in the preceding chapter in every
<cffunction> tag as the attribute access=”...”.

Implementing Access Control
The access attribute of the <cffunction> tag basically answers the question, “Who can use this
function?” The attribute has four options: private, package, public (the default), and remote.
These four options represent, in that order, the degree of openness of the function.

The access options range from a narrow group of potential consumers to a very broad audience. The
consumers allowed by each option are as follows:

Private.■■ Only other functions within the same CFC can invoke the function. This is
great to hide the details of how your component is implemented and to keep sneaky

89Implementing Security

developers from writing code based on parts of your component that may not stay
the same in future revisions. Note that private functions are inherited like any other
methods.

Package.■■ Only components in the same package can invoke the function. This is just
like private, except if you have implemented a system made up of multiple related CFCs,
they can all use the methods declared package.

Public.■■ Any CFML template or CFC on the same server can invoke the function. This
is the default.

remote.■■ Any CFML template or CFC on the same server can invoke the function, as
can programs running through the Web server. For example, Flash, Web Services, and
methods can be invoked directly from a Web browser, as shown in the examples earlier
in the chapter.

Implementing Role-Based Security in CFCs
In some applications, you’ll want to control access to a component’s functions based on who is
using your application. This will be most common in traditional, HTML-based user interface
applications, but it may also be true of Adobe Flash applications. Role-based security is not, how-
ever, a common approach to securing access to Web Services, since a Web Services client is a pro-
gram and not an individual.

To see this technique in action, let’s go back to the director component that was created earlier
in this chapter—the one that retrieves information about all actors. Part of the Orange Whip
Studios Web application allows studio executives to review the salaries of the stars—how much
should the studio expect to fork over for their next box-office smash? Of course, this information
is not exactly something that they want just anybody seeing.

First you need to create the basic security framework for this part of the application, with the
security tags in ColdFusion: <cflogin>, <cfloginuser>, and <cflogout>. (I discuss this process in
detail in Chapter 21, “Securing Your Applications,” in Volume 1.)

For the purposes of this exercise, you can test by running the <cfloginuser> tag with the role you
want to test with:

<cfloginusername=”Test”password=”dummy”roles=”Producers”>

Any roles for the logged-in user will be the roles that correspond to those listed in the component
function—more on this after you create the function in Listing 24.14.

The function will be simple: It takes an actor ID as an argument, queries that actor’s salary his-
tory, and returns a record set. Notice, though, that the roles attribute in the <cffunction> tag
has a comma-delimited list of values. Only users who have authenticated and been assigned one or
more of those roles will be allowed to invoke the method.

90 chapter 24 Creating Advanced ColdFusion Components

Listing 24.14 actor.cfc—The Salary Method
<!---
Filename:actor.cfc
Author:KenFricklas(KF)
Purpose:Demonstratesroles
--->
<cfcomponentname=”actor”extends=”person”>
<cffunctionname=”init”returntype=”component”>
<cfargumentname=”datasource”required=”yes”type=”string”>
<cfsetvariables.dsn=arguments.datasource>
<cfreturnthis>
</cffunction>
<cffunctionname=”getActorSalary”returnType=”query”roles=”Producers,Executives”>
<cfargumentname=”actorID”type=”numeric”required=”true”
displayName=”ActorID”hint=”TheIDoftheActor”>
<cfqueryname=”salaries”dataSource=”#variables.dsn#”>
SELECTActors.ActorID,Actors.NameFirst,Actors.NameLast,
FilmsActors.Salary,Films.MovieTitle
FROMFilms
INNERJOIN(ActorsINNERJOINFilmsActors
ONActors.ActorID=FilmsActors.ActorID)
ONFilms.FilmID=FilmsActors.FilmID
WHEREActors.ActorID=#Arguments.actorID#
</cfquery>
<cfreturnsalaries>
</cffunction>
</cfcomponent>

The roles assigned to this function are producers and executives—they don’t want any prying eyes
finding this sensitive data. All you need now, then, is a page to invoke the component—something
simple, as in Listing 24.15.

Listing 24.15 showSalary.cfm—Show Salary Page
<!---
Filename:showSalary.cfm
Author:KenFricklas(KF)
Purpose:DemonstrateCFCroles
--->
<!---Makesuretheyareloggedin.Changerolesto“User”toseewhathappensif
theydon’thavesufficientaccess.--->
<cfloginusername=”Test”password=”dummy”roles=”Producers”>
<!---Invokeactorscomponent.getActorSalarymethodwillfailunless
theyhavesufficientaccess.--->
<cfsetcfcActor=newactor(datasource=”ows”)>
<cfsetsalaryHistory=cfcActor.getActorSalary(17)>
<h1>Salariesofourstars...</h1>
<cfoutput>
<H2>
#salaryHistory.NameFirst##salaryHistory.NameLast#</H2>
<cfloopquery=”salaryHistory”>
#MovieTitle#-#dollarFormat(Salary)#

</cfloop>
</cfoutput>

91Using the OnMissingMethod Method

ColdFusion now has all it needs to control the access to the component. When the salaryHistory
method is invoked, since there are values specified in the roles attribute, a comparison is automati-
cally made between the values in the roles attribute of the <cffunction> tag and those in the roles
attributes that were set in the <cfloginuser> tag. If the user is not logged in, this function will fail.

A match will allow the function to be executed as usual; a failure will cause ColdFusion to throw
the error “The Current user is not authorized to invoke this method.”

note

As noted, an unauthorized attempt to execute a secured function causes ColdFusion to throw an error. Consequently, you should
put a <cftry> around any code that invokes secured functions.

This is not the only way to secure component functionality, of course. You could use the
 isUserInRole() function to check a user’s group permissions before even invoking the function,
or you could use Web server security for securing the CFML files themselves. The role-based
security in CFCs is, however, a good option, particularly if you are already using the ColdFusion
authentication/authorization framework in an application.

Using the OnMissingMethod Method
It would be nice if all the CFCs that we write could handle their own errors. Starting in Cold-
Fusion 8, any component can have a special method named OnMissingMethod that will run when-
ever code attempts to run a method that hasn’t been defined in it. You can use this method to serve
several purposes:

Implement custom error handling. The ■■ OnMissingMethod method can be especially use-
ful when methods in different child classes might be called, even though they are not
implemented in a particular component. For example, you could use OnMissingMethod to
handle a call to getActorSalary made to a director component.

Run different code for several methods in a common place. If the same code can take the ■■

place of several methods, OnMissingMethod can provide a way to run the common code
from a single point. This approach is not recommended, however; it’s more straightfor-
ward to define all the methods separately and call the common code from each.

Act as a proxy that calls another object or component that will actually implement the func-■■

tion. For example, you could create a component that is empty except for onMissingMethod
that takes any method passed to it and calls a Web Service on another machine that con-
sumes the method name and its arguments and returns a value. This approach is a good
way to implement a flexible, distributed system.

The onMissingMethod function takes exactly two arguments, which contain the name of the
method that was being called and a structure with the arguments that were passed to it. For exam-
ple, here is a simple onMissingMethod method:

<cffunctionname=”onMissingMethod”>
<cfargumentname=”missingMethodName”type=”string”>

92 chapter 24 Creating Advanced ColdFusion Components

<cfargumentname=”missingMethodNameArguments”type=”struct”>
 Hey!Youcalled<cfoutput>#arguments.missingMethodName#</cfoutput>andIhaven’t
gotone!
</cffunction>

note

Since onMissingMethod always returns successfully, if you can’t handle an error in this method, you should throw a new
error.

Distributed CFCs and Serialization
I’ve already discussed storing CFCs in the session scope. One problem with storing CFCs in this
way is that when more than one server is in use, each server has its own session variables; if a user
moves to another server during the course of a visit to your site, the session data can be lost. One
way to solve this problem is to create “sticky” sessions, which requires special software or hard-
ware—but what if the Web server goes down?

Many Java application servers that ColdFusion runs on can support distributed sessions. Basically,
what the servers do is “serialize” the data in the session scope, which means that a server writes the
data in a flat form (turns it into a string, in the same way that CFWDDX does) and passes it to all other
servers in the cluster that might process the new request. No matter which server is used, it has a
copy of the session data.

Before ColdFusion 8, components could not be serialized, so they would not be passed between
machines as part of the session. As of ColdFusion 8, however, components can be serialized and
distributed.

note

In Java parlance, this means that ColdFusion now supports the Java serializable interface. You can read more about this at
http://java.sun.com/developer/technicalArticles/Programming/serialization/.

In addition, you can directly call the Java’s java.io.ObjectOutputStream API to write objects to
a file.

Listing 24.16 shows some sample code that checks to see whether a CFC exists in the session scope.
If the CFC isn’t found in the session, the code checks to see whether a serialized copy of the com-
ponent exists in a file and loads that. Finally, if the CFC is neither in the session nor on the disk, the
CFC is instantiated and written out as a new serialized copy.

Listing 24.16 serialize.cfm—Serializing a CFC
<!---
FileName:serialize.cfm
Author:KenFricklas(KF)
Purpose:Implementadistributed,serializedsystem
--->
<cfapplicationsessionmanagement=”yes”name=”serialdemo”>
<cfifnotisdefined(“session.cfcDirector”)>
<!---checktoseeifwe’vegotacopy--->

http://java.sun.com/developer/technicalArticles/Programming/serialization/

93Distributed CFCs and Serialization

Listing 24.16 (continued)
<cftry>
<cfsetfileIn=CreateObject(“java”,“java.io.FileInputStream”)>
<cfsetfileIn.init(expandpath(“./serialized_director.txt”))>
<cfsetobjIn=CreateObject(“java”,“java.io.ObjectInputStream”)>
<cfsetobjIn.init(fileIn)>
<cfsetsession.cfcDirector=objIn.readObject()>
Read!
<cfcatch>
<!---nocopytoload,createit--->
<cfsetsession.cfcDirector=createObject(“component”,“director”)>
<!---saveit--->
<cfsetfileOut=CreateObject(“java”,“java.io.FileOutputStream”)>
<cfsetfileOut.init(expandpath(“./serialized_director.txt”))>
<cfsetobjOut=CreateObject(“java”,“java.io.ObjectOutputStream”)>
<cfsetobjOut.init(fileOut)>
<cfsetobjOut.writeObject(session.cfcDirector)>
Written!
</cfcatch>
</cftry>
</cfif>
<cfoutput>
#session.cfcDirector.showPerson()#
</cfoutput>

note

ColdFusion 9 adds a new attribute, serializable, to the <cfcomponent> tag. If this is set false, only the component
will be serialized, and any local variables (in the variables or THIS scope of the component) will not be written, giving you a
“clean” copy. This can be used to pass program logic from one machine to another, such as serializing a component, passing it
via an HTTP request, and reassembling it on the far side and running the logic there on another copy of ColdFusion.

This page intentionally left blank

Index

(hatch symbol) comment indicator,
485

% (percent) wildcard, 360–361
* (asterisk)

metacharacter (RegEx), 479–480
for wildcard searches, 359

? (question mark)
quantifier (RegEx), 478
for wildcard searches, 359

@ (at symbol)
stored procedures and, 404
in XPath, 534

[] (square brackets)
to restrict XPath expressions,

534–535
specifying character classes with,

475
\ (backslash symbol), 473
^ (carat symbol), 475
{ } (braces) in scripts, 495, 509
| (pipe character) in RegEx, 474, 481
+ metacharacter (RegEx), 478–479
= (equals sign), 65

A
access controls, CFCs and, 88–89
Access, Microsoft, E31
accordions (Ajax), 249–250
ActionScript value object (AIR), 329
Add Watch Expression feature, E79,

E92
addresses (globalization), E24–E25
Administrator, ColdFusion. See

ColdFusion Administrator
Adobe Flex. See also Flash Builder

backend, 120
ColdFusion and, 281–284
ColdFusion Flex services,

293–294
ColdFusion-powered Flex

applications, 284–286
configuration settings, 296–299
Data Management service,

295–296
data messaging in, 294–295
data translation, 286–289
debugging applications, 299–302

Flex Server option
(FlashBuilder4), 304

invoking CFC methods, 292
result and fault methods, 291
RPC requests, 290–292

Adobe LiveCycle Designer, 208–209
advanced custom tags, 42–43
AIR applications, 323–334

AIR library, 282
AIR ORM feature, 325
CF service CFC, building,

325–328
clients for CF applications, 323
conflicts, managing, 333–334
data, loading, 331–332
data, saving and editing, 332–333
data, synchronizing with server,

333
Data Persistence Library and, 323
Flash Builder project,

configuring, 324
vs. LCDS, 323–324
syncManager, initializing,

329–331
value objects, building, 328–329

Ajax (Asynchronous JavaScript and
XML), 243–280

Ajax import examples (listings),
277

AjaxLink, loading content with,
268–269

AjaxProxy (listings), 271–273
<CFAjaxProxy>, 271–274
debugging, 278–279
functions (JavaScript), defining in

loaded pages, 278–279
functions, running on page load,

278
JavaScript Ajax libraries,

importing, 276–278
JSON and, 274–276
layout controls. See layout

controls (Ajax)
populating controls dynamically,

263–271
security options, 279–280

algo attribute, algorithm for, 188
alias attribute, 288–289

alternation metacharacter type, 474,
481

AMF binary protocol, 282, 294
AND searches, 359
Apache Derby database, 420
API, JavaScript, 269–271
APPLICATION scope, storing CFCs

in, 75–76
applications. See also AIR applications

Application.cfc, specifying
locations with, 28

DDX processing application,
creating, 197–198

email application example,
390–392

internationalizing (I18N), E3
per-applications settings,

enabling, 99–100
POP3 example, 389–390

arguments
CFC argument type checking,

101
of functions, 4
functions and (scripting), 501–502
javaScriptPopupLink(), 19
JVM, setting, 117
reFind() function syntax, 459
reReplace() function (RegEx),

466
script statements and, 494–496
sync method, 326

array and structure functions (XML),
521

Array Loops (scripting), 498–499
ArrayCollection object type, 286
assembler CFC, 313–314
asynchronous requests/callbacks

(Flex), 285
AsyncToken dynamic class, 292
attacks on servers, settings for,

103–104
attributes

attributeCollection, 40–41, 502
ATTRIBUTES scope, 29–31,

33, 139
<cfargument> tag, 7, 55
<cfcatch> tag, E48
<cfcomponent> tag, 54
<cffunction> tag, 6, 55

558 Index

attributes (continued)
<cfimage> CAPTCHA, 232
<cfimport> tag, 41
<cfinvoke> tag, 58–59
<cfinvokeargument> tag, 59
cfpdf optimization attributes, 187
<cfpresentation> tag, 335, 341–342
<cfpresentationslide> tag, 336,

341–342
<cfpresenter> tag, 343
<cfprocparam> tag, 405
<cfprocresult> tag, 401
<cfquery> tag, 152–153
<cfreturn> tag, 8
<cfschedule> tag, 386–387, 388
<cfstoredproc> tag, 399
<cfthread> tag, 135
declaring with <cfparam>, 30–31
defining for custom tag (listing),

29–30
establishing default values of,

31–33
<HTML> tag (G11N), E43
ImageDrawText, 228
imageNew() function, 238–239
ImageRotate() function, 236–237
making some optional (listing),

31–32
nonstandard attributes, allowing,

103
optional or required, 31
position, rotation and opacity

(watermarks), 183
supplying to custom tag (listing),

30
using functions to test for, 32–33
variable names as tag attributes,

37
XML, 513, 519–521

autoCommit function (Flex), 317
automated email applications. See

email
autoplay (presentations), 340

B
backreferences

altering text with, 469–471
defined, 469, 470
using in RegEx, 486

backslashes (\) (metacharacters), 473
Bauer, Christian, 416
BIDI (bidirectional) locales, E33–E34
bindings

AjaxProxy as, 274

Bind to Data wizard, 290
bindings to load content (Ajax)

AjaxLink, 268–269
basics of, 266–268
JavaScript API and, 269–271

BlazeDS, 281–283
bookmarks, DDX, 198–199
borders, adding to images, 227–228
bound parameters, 450–452
break statement (scripting), 495
breakpoints

debugging failures and, E86–E87
disabling, E95
importing/exporting, E95
setting, E82

browsers
browser tab, debugging and, E94
internal, E94
requests, E71

bubbling up, E65
Buddhist calendar, E26
building user-defined functions

basic steps, 4–6
local variables, 8–10
saving, 10–13
tag syntax, 6–8
using, 6

business rules/processes, 398

C
caching

Cache Template in Request
option, 108

cached queries. See query caching
caches, inspecting, 167–168
Caching page server settings,

107–109
Charting page and, 115
data, 164–165
functions, 166–167
page. See page caching

calendars (globalization), E25–E28
CALL Command, 411–413
CALLER scope, 34
calling template, returning variables

to, 34–37
Camden, Ray, 211
capitalization, ignoring with

reFindNoCase(), 461
CAPTCHA tests, 232–235
Cartesian coordinate system, 184
case sensitivity

debugging and, E77

reFindNoCase() function and,
461

catching exceptions, defined, E48
categories, using in searches

(listings), 372–373
CD collection example (XPath &

XSLT), 531–533, 537–555
CDATA sections, 522–523
<cf_initcap> tag, 25–26
<cfabort> tag (error handling), E53
<cfajaximport> tag, 277
<CFAjaxProxy> tag, 271–274
<cfargument> tag, 7, 55
CFC methods, invoking, 292
CFC service, AIR and, 325–328
<cfcache> tag, 159
<cfcatch> tag (error handling)

adding to basic template,
E52–E53

basics of, E47–E48
for trapping errors, 145
working around errors with,

E55–E56
<cfcollection> tag, 374, 375–377
<cfcomponent> tag, 54–55
CFCs (ColdFusion Components)

accessing via URLs, 65–67
basics of, 51–53
calendar CFCs, E28–E30
distributed (serialization), 92–93
error executing CFC-based tag

equivalents, 509–510
extending CFML and, 3, 23
file structure of, 54–56
as groups of functions, 56–58
holding instance data and. See

CFCs that hold instance
data

implementing in script, 491–492,
502–505

inheritance and, 84–87
instance-based components,

53–54
interfaces, defining, 87–88
introspection, 62–64
logic, separating from

presentation, 61–62
OnMissingMethod method,

91–92
security implementation, 88–91
simultaneous requests, 106
static components, 53
type checking for arguments, 101
type checking in, 67–68
using in ColdFusion pages, 58–61

559Index

CFCs that hold instance data
APPLICATI0N scope and, 75–76
basics of, 68
example of, 70–75
getter/setter properties, 79–80
implicit getters/setters, 80–81
initializing, 81–82
instance data as properties, 76–79
locking and, 82–84
SESSION scope and, 76
shared scopes and, 82–84
storing, 75–76
THIS scope and, 69–70

<cfdiv> tag, 267
<cfdump> tag, 63–64
<cfexit> tag, 47–48
<cffileupload> control, 258–259
<cffinally> tag, 508
</cfform> template, E51
<cffunction> blocks, 10, 74–75
<cffunction> tag

syntax, 6
using to create methods, 55–56

<cfhttp>, scripting (example), 502
<cfimage> tag

CAPTCHA attributes, 232
manipulating images with,

223–235
overview, 221–223

<cfimport> tag, 41–42
<cfinclude> tag, 12
<cfindex> tag

indexing files with, 353–355
for searches, 361–362, 363

<cfinvoke> tag, 58–60
<cfinvokeargument> tag, 59
<cflayout> tag, 243–246, 442
<cflayoutarea> options (listing),

246–247
<cflocation> tag, 432
<cflock> tag, 139
<cfmap> tag, 260–261
CFMAPPING folder, 288
<cfmediaplayer> tag, 261
<cfmenu> tag, 252–253
CFML (ColdFusion Markup

Language)
extending, 3–4
gateway, 133–134
in globalized applications, E43
scripting overview. See scripting

CFML custom tags, 23–49
advanced, 42–43
attributeCollection, 40–41

ATTRIBUTES scope, 29–31
basics of, 23–24
CALLER scope, 34
vs. CFCs, 52
<cfimport> tag, 41–42
<cfparam> tag, 31–33, 37–38
CustomTags folder, 24–27
default values, 31–33
extending CFML and, 3
installing, 24–25
nested, 48–49
optional and required attributes,

31
paired. See paired custom tags
placing in current directory, 27
search path, changing, 26–27
specifying locations, 28
types of, 34
using, 25–26
variable names as tag attributes,

37
variables, returning to calling

template, 34–37
variables, setting dynamically,

38–40
writing, 28–29

<cfmodule> tag, 28
CFMX UTF-8 resource bundle,

E20–E21
<cfoutput> tag, 21
<cfparam> tag

establishing default attribute
values with, 31–33

using with type=“variableName”,
37–38

<cfpdf> tag, importance of, 175
cfpdfparam tag, merging PDF files

with (listing), 178
<cfpod> tag, 251
<cfpresentation> tag

basics of, 335–339
PowerPoint and, 346
styling presentations and,

341–342
<cfpresentationslide> tag, 336,

341–342
<cfpresenter> tag, 343
<cfprocparam> tag, 405–408
<cfprocresult> tag (stored

procedures), 401–403
cfproperty tag, 288–289
<cfproperty> tag

defining properties with, 418–420

documenting properties with,
78–79

value objects, creating, 328
<cfquery> tag

attributes, 152–153
calling stored procedures with,

398, 410–414
vs. <cfstoredproc> tag, 414
scripting (example), 503–504
for searches, 361–362

<cfqueryparam> tag, 450
<cfrethrow> tag (error handling),

E65–E68
<cfrethrow> tag, using (error

handling), E65–E68
<cfreturn> tag, 8
<cfschedule> tag

basics of, 385
creating scheduled tasks with,

386–388, 393
defined, 381
modifying, deleting and running

scheduled tasks with,
388–389

CFScript equivalents, 492–494
<cfscript> tag, 488–490
<cfsearch> tag, 355, 356–357, 365
<cfset> tag quoted syntax, 39
<cfsetting> tag, 170–171
<cfsilent> tag, 170
CFSPRYDATASET tag, 536
cfstart.bat script, 300
<cfstoredproc> tag

vs. <cfquery> tag, 414
calling stored procedures with,

398, 399–401
<cfprocresult> tag and, 402–403

<cfthread> tag, 106–107, 140
<cfthrow> tag (error handling),

E68–E70
CFTOKEN value, 100
<cftooltip> tag, 256, 265
<cftry> tag (error handling)

adding to basic template, E52–
E53

basics of, E47–E48
<cftry>–<cfcatch> constructs,

507–508
nesting <cftry> blocks, E61–E64
trapping errors with, 145
working around errors with,

E56–E57
<cfwindow> tag, 251–252, 264
CFX tag, 4, 23

560 Index

CFXML, creating documents with,
516–517

<channel-definition> XML element,
312

channels, Flex server, 298
character classes (RegEx), 474–477
character encoding, E14–E16
character references, 522
Charting page, 115–116
child components, 84–86
Chinese calendar, E26
Class Path setting (CF Admin), 117
classes, defined in OOP, 52
CLDR (Common Locale Data

Repository), E5–E6
CLIENT variables, 109–110
clients, AIR (F applications), 323
client-side page caching, 159–161
code

initialization code, 74
reusing, CFCs and, 52
reusing when saving UDFs, 13
stepping through for debugging,

E88–E91
ColdFusion

Adobe Flex and, 281–284
Collections page, 118–119
Components (CFCs). See CFCs

(ColdFusion Components)
configuring for debugging, E73
Data Persistence Library. See

Data Persistence Library
Debugging perspective, E81
Enterprise and Developer

editions, E74–E75
Evangelism Kit PDF file, 185
extending, 3, 23
Flex services, 293–294
line debuggers, 302
new internationalization features,

E36–E37
service CFC, building, 325–328
validating XML in, 528–530

ColdFusion Administrator. See also
server configuration

basics of, 97–98
configuring, E74–E76
configuring for debugging,

E74–E76
Flex settings in, 296–299
indexing files with, 352–353
options in, 151–152
scheduled tasks. See scheduled

tasks (CF Admin)

Timeout Requests feature, E75,
E88

tools for thread information,
148–149

ColdFusion Builder
configuring for debugging,

E76–E80
Debug Configurations page,

E79–80
Debug Mappings page, E78
Debug Settings page., E78
opening files and, E89
project, debugging, E77

ColdFusion Markup Language
(CFML). See CFML
(ColdFusion Markup Language)

collation (sorting) functionality
(locales), E9–E14

collections
Collections page, 118–119
defined, 118

collections (Solr)
adding custom fields to, 367–368
administering with

<cfcollection>, 375–377
basics, 351
creating, 351–352, 377
custom fields, adding to (listing),

367–368
defined, 351
deleting, 376–377
index collections with database

data (listing), 362
indexing, 352–355
maintaining, 374–375
optimizing, 376
repopulating, 374–375
scheduling updates to, 392–393
searching multiple, 370

columns
defining (persistent CFCs), 418
indexing multiple search query

columns, 365–367
indexing with custom fields,

367–370
returned by Verity searches, 358

comment statements (scripting), 500
comments, RegEx, 485
commit method, 333
Common Function Library Project,

21
Component Cache, 108
conflict resolution

adding to forms (Data
Management application),
318

defined, 295
with LCDS, 324

conflicts (AIR)
detecting, 327–328
managing, 333–334

Connect to ColdFusion wizard, 290
console output for debugging (Flex),

299–301
CONTENT-LANGUAGE META

tag (HTML), E43
CONTENT-TYPE META tag

(HTML), E43
controls. See also layout controls

(Ajax)
bindings to load content. See

bindings to load content
(Ajax)

control options, setting
(presentations), 340

populating dynamically (Ajax),
263–271

“convert” action, 227
count() function (XPath), 544
CRUD code, 420
CSS (Cascading Style Sheets)

<cf_initcap> tag and, 25–26
in G11N applications, E41

custom exceptions, E68–E70
custom fields, indexing columns with,

367–370
custom tags, CFML. See CFML

custom tags

D
data

caching, 164–165
Data and Services section (CF

Admin), 118–120
Data Management Services,

295–296, 323–324
data messaging, 294–295
Data Sources page (CFAdmin),

118
data-centric wizards (Flash

Builder), 290
DataServicesMessaging event

gateway type, 319
datasource parameters, 400
data-transfer object (DTO), 287

561Index

displaying using getMetaData()
(listing), 64

loading (AIR), 331–332
saving and editing, 332–333
synchronizing with server (AIR),

333
translation between CF and

Flash, 286–289
data grids

in Flash Remoting application,
308–309

synchronizing, 314–317
Data Management application

adding conflict resolution to
form, 318

configuring CF data push
destination, 312–314

overview, 311–312
synchronizing data grid, 314–317

Data Persistence Library
basics of, 323
Flash Builder project, configuring

for, 324
data types

parameter data types, 408
type checking in CFCs, 67–68

date objects, 286–287
date/time formatting (globalization),

E25
DDX (Document Description XML),

196–208
basics of, 196–197
elements, 196–197
headers and footers, adding,

200–202
simple processing application,

197–198
style profiles, 203–205
table of contents, adding, 198–200
text, extracting, 205–208
watermarks, adding, 202–203

Debug Output Buffer pane, E93–E94
Debugger Settings page, E74
debugger tool

basics of, E71–E72, E80–E81
breakpoints, setting, E82
code, stepping through, E88–E91
Debug Output Buffer pane,

E93–E94
Expressions pane, E92–E93
further features, E95–E96
stopping, E94–E95
Variables pane, E91–E92

debugging
Ajax, 278–279
applications, 299–302
browsing pages for, E85–E88
configuring CF. See ColdFusion,

configuring for debugging
debugger tool. See debugger tool
debugging perspective, switching

to, E81–E82
failure of starting sessions,

E84–85
sessions, starting, E82–E85
step debugging, E72–E73
task execution, 384
traditional forms of, E72

Debugging and Logging (CF Admin)
Code Analyzer page, 125–126
Debugger Settings page, 123
Debugging IP Addresses page,

122
Debugging Settings page,

120–122
License Scanner page, 126
Log Files page, 124
Logging Settings page, 123–124
Scheduled Tasks page, 124
System Probes page, 125

declarations, XML, 512
declaring local variables, 8–10
default namespaces, 525
deleting

collections (Solr), 376–377
entities (CFCs), 428–429
folders from custom tag search

path, 27
headers and footers (PDF files),

192
pages (PDF files), 180
records from Solr collections, 375
scheduled tasks, 385, 386,

388–389
destinations, setting, 297
Developing CFML Applications, E96
dir attribute (<HTML> tag), E34,

E43
directories

default ScriptSrc directory,
changing, 102

of PDF files, merging, 179–180
placing custom tags in current, 27

displaying output of threads, 144
Document page (CF Admin), 116
document search tool

collections, creating, 351–352
collections, indexing, 352–355
collections basics, 351
search interface, 355–359

documents
creating with CFXML, 516–517
creating with XmlNew(),

518–519
structure in XML, 511–514

dot-syntax naming scheme, E44
Do-While Loops (scripting), 498
downsampling PDF images (listing),

188
drawing

images, 237–241
text on images, 228–231

DTD (Document Type Definition)
standard, 526–527

dynamic presentations, 338–339

E
Eclipse Java debugger, 123, E96
edit forms, adding to data grid, 309
EditableHomePageDisplay (listings),

467–469, 470–471
editing data (AIR), 332–333
Ehcache project, 168
elements

DDX, 196–197
XML, 513, 519–521

email
application, building, 390–392
finding with RegEx (listings),

460, 462, 464–465
Mail Server page (CF Admin),

112–114
embedding

content (presentations), 340–341
PDF forms, 216

empty custom tag, 46
encryption of PDF files, 194–196
<endpoint> tag, 313
entities (CFCs)

adding functionality to, 448
creating/modifying/saving,

420–423
deleting, 428–429
Director entities (examples),

429–431
entity references, 522
entityLoad function, 423–426
entityLoad() function, 448–449

562 Index

entities (CFCs) (continued)
EntityLoad() method, 325
entityNew() function, 420
reading, 423–427
updating, 427–428

error handling
basics of, E48–E53
<cfcatch> tag, E47–E48
<cftry> tag, E47–E48
custom exceptions, E69–E70
decisions to not handle

exceptions, E64–E68
error messages, E47
errors, catching as they occur,

E47
errors, causes of, E53–E56
example (threads), 146–148
exception handling in script,

507–508
exceptions, E47–E48
site-wide, settings for, 103
templates that recover from

errors, E59–E64
templates that work around

errors, E56–E59
escape sequences (RegEx), 474
event gateway, creating (messaging

application), 319–321
event scheduling

basic concepts, 379–380
CF vs. other scheduling, 380–381
<cfschedule> tag basics, 385–389
creating with CF Admin, 382–384
email application, building,

390–392
POP3 application, creating

scheduled task for, 389–390
scheduled tasks. See scheduled

tasks (CF Admin)
scheduling updates to Solr

collections, 392–393
exceptions. See also error handling

basics of, E47–E48
bubbling up, E65
decisions to not handle, E64–E68
predefined exception types,

E48–E49
in scripts, 507–508
thread, 144–148

execution cycle of paired custom tags,
43–45

expressions
copying, E95

Expressions pane (debugging),
E92

extending ColdFusion, 3, 23
extractimage action (thumbnails), 182

F
fetch method (CFC service), 325, 331
field search operator (listing),

369–370
files

class files, saving, 108
configuration, 102
formats, converting, 227
indexing with CF Admin, 352–353
indexing with <cfindex> tag,

353–355
multiple file uploads (Ajax),

258–259
reading with XmlParse(),

514–515
saving task output to, 384
UDFs and, 10–13

FilmRotationCFC component, 70–74
filtering posted content with

reReplace() function, 466–469
fire-and-forget initialization

(resource bundles), E45
Flash Builder

ColdFusion line debuggers and,
302

configuring for Flash Remoting,
303–304

data-centric wizards in, 290
project, configuring for Data

Persistence Library, 324
Flash Remoting

basics of, 120
building value objects and, 328
configuring Flash Builder for,

303–304
RPC services and, 282–283
simultaneous requests, 105
support for value objects in, 287

Flash Remoting application
adding edit form to data grid,

309–311
adding improvements to data

grid, 308–309
Example1.mxml (listing), 307–308
ExampleService.cfc (listing),

304–307
Flex, Adobe. See Adobe Flex

flipping (inverting) images, 236
flushing cached queries, 157–158
folders, adding to custom tag search

path, 26–27
Font Management page (CF Admin),

115
footers

adding to DDX applications,
200–202

PDF files and, 189–192
using DDX vs. cfpdf tag, 200, 202

For Loops (scripting), 498
For-In (Collection/Structure) Loops

(scripting), 498
forms

accessing CFCs via, 66–67
search form page, creating, 355
search results page, 356–358
search with user interface

(listing), 368
simple form for collecting

input parameters (listing),
405–407

full-text searching. See searching
full text

functions
caching, 166–167
calendar, E28–E30
CFCs as groups of, 56–58
G11N-relevant CF functions,

E37–E39
input/output and, 4
JavaScript, defining in loaded

pages, 278–279
RegEx, 458
running on page load (Ajax), 278
scripting, 500–506
user-defined, 505–506
using to test for attributes, 32–33

FusionDebug debugger, E73

G
G11N applications

better practices, E40–E46
ColdFusion G11N functions,

E38–E39
G11N, defined, E2
monolingual/multilingual G11N

designs, E41–E42
relevant CF tag/functions,

E37–E39
general-purpose UDFs, 18–21

563Index

Generate Details View wizard, 290
Generate Form wizard, 290
GeneratedContent variable, 45
generic G11N applications, E46
geoLocator CFCs, E4–E5
getFilm() UDFs, 4–6, 14–16
GetMetaData() function, 63–64
getters

implicit (CFCs), 80–81
keeping CFC properties clean

and, 79–80
globalization

addresses, E24–E25
applications, internationalizing

(I18N), E3
calendars, E25–E28
CFML in applications, E43
character encoding, E14–E16
date/time formatting, E25
G11N application better

practices, E40–E46
G11N-relevant CF tag/functions,

E37–E39
generic 11N applications, E46
global Internet use, E1–E2
HTML-based META tag,

E42–E43
locales. See locales
monolingual/multilingual G11N

designs, E41–E42
new CF internationalization

features, E36–E37
overview, E1–E2
page display/layout, E33–E35
resource bundles. See resource

bundles
Solr engine for text searching,

E35–E36
terminology of, E2
time zones, E30–E31
Unicode capable databases,

E31–E33
GoogleMap API key

Ajax and, 260–261
specifying, 103

greedy matching, defined, 479
Gregorian calendar, E25–E26

H
headers

adding to DDX applications,
200–202

PDF files and, 189–192

using DDX vs. cfpdf tag, 200, 202
heap size, setting, 116–117
Hebrew calendar, E27
HelloWorld.cfm (listings), 28–32
Hibernate framework

Hibernate Query Language
(HQL), 449–450

lazy attribute and, 452–453
many-to-many relationships,

437–443
many-to-one relationships,

433–437
one-to-many relationships,

433–437
one-to-one relationships,

443–447
ORM feature, 325–326
overview, 416
relationships overview, 432–433
sessions and, 431–432

HINTs, introspection and (CFCs),
62–64

home page (OWS), implementing
with RegEx, 466–471

HTML (HyperText Markup
Language)

vs. Flex applications, 284
HTML-based character encoding

META tag, E42–E43
HTML-Based Tree (listing),

256–257
presentations, 348

HTTP (HyperText Transfer
Protocol)

status codes, setting, 100
submissions (PDF forms),

213–214

I
I18N (Internationalization), defined,

E2
ICU4J (IBM), E6–E9
If-Elseif-Else statement (scripting),

497
images

adding borders to, 227–228
adding watermarks to, 231
CAPTCHA tests and, 232–235
<cfimage> tag. See <cfimage> tag
creating and drawing, 237–241
drawing text on, 228–231
extracting (PDF files), 182
flipping (inverting), 236

imageDrawLine() function, 240
imageDrawRect() function, 239
ImageDrawText function,

228–230
ImageFlip() function, 236
imageNew() function, 238–239
ImageRotate() function, 236–237
imageSetDrawingColor()

function, 239
ImageSetDrawingTransparency()

function, 231
resizing, 223–227
rotating, 236–237

include processing statement
(scripting), 495

increment option (generator
argument), 420

indexing
collections (Solr), 352–355
collections interactively, 374
collections programmatically, 375
columns with custom fields,

367–370
index values (PDF forms), 210
table data. See table data, indexing

inheritance, 53, 84–87
init method, 81–82
initial views (PDF files), 207–208
initialization code, defined, 74
initializing resource bundles,

E44–E45
input parameters (stored procedures)

basics of, 404
form for collecting (listing),

405–407
installing custom tags, 24–25
instance data

CFCs that hold. See CFCs that
hold instance data

defined, 52–53
instance variables, 74
instance-based components, 53–54
instances

of CFCs, creating, 60–61
OOP and CFCs, 52–53
of syncManager class, 330–331
THIS scope representing, 69

interactive indexing, 374
interfaces

defined, 87–88
search interface, creating, 355–359

Internationalization (I18N), defined,
E2

564 Index

introspection, HINTs and (CFCs),
62–64

IResponder interface, 331
isDefined() function, 32
isJSON function, 275–276
Islamic calendar, E27
ISO-8859-1 character set, E14
ISyncManager interface, 326

J
J2EE mode, debugging and, E76
Japanese Imperial calendar, E27,

E36–E37
Java

Java IP (InetAddress) Locator
project, E4

Java Persistence with Hibernate, 416
Java ResourceBundle class,

E21–E22
Java Virtual Machine, 116–117
Java-style resource bundle, E21
JVM page, 116–117
objects, disabling access to, 101
serializable interfaces, 92

JavaScript
Ajax libraries, importing, 276–278
API, 269–271
vs. <cfscript>, 490
javaScriptPopupLink() function

syntax, 19
packaging for UDFs, 19–20

joining threads, 137–138
JPEG format, converting to, 231
JRun threads, 106
JSON (JavaScript Object Notation)

basics of, 274–276
JSON packets, 66
prefixes, 279
prefixing serialized, 101–102
vs. XML, 274–275

K
.keepServerObject() function, 325
keystore (mail Server page), 112
King, Gavin, 416

L
L10N (Localization), defined, E2
lang attribute (<HTML> tag), E43
language negotiation, E4
languages (programming), 457

lastResult property (RemoteObject
tag), 306

layout controls (Ajax)
accordions, 249–250
basics of, 243–244
maps, 260–261
menus, 252–255
message boxes, 257–258
multiple file uploads, 258–259
pods, 250–251
progress bars, 262–263
tabs, 247–249
tooltips, 255–256
trees, 256–257
videos, playing, 261–262
windows, 251–252

lazy attribute, 452–453
LCDS data management, 283–284,

311–312, 315
LCDS nonblocking I/O (NIO)

polling, 284
LCDS Server, 296
libraries

FilmFunctions UDF Library,
14–15

JavaScript Ajax libraries,
importing, 276–278

UDF. See user-defined functions
(UDFs)

line debugging
Allow Line Debugging option

(CF Admin), E84
Flash Builder/ColdFusion Builder

for, 302
line numbers and debugging, E82
stepping over/stepping into,

E88–E90
lines, drawing, 240
List Loops (scripting), 499
literals (literal characters), 473
LiveCycle Data Services (LCDS)

vs. AIR applications, 323–324
connecting ColdFusion to, 283
defined, 281
enabling, 120

LiveCycle DDX Reference, 196
LiveCycle Designer, 208–209
loading content. See bindings to load

content (Ajax)
loading data (AIR), 331–332
local scope, 9
local variables

in custom tag, 33
defined, 8

UDFs and, 8–10
locales

basics, E3–E4
CLDR (Common Locale Data

Repository), E5–E6
collation, E9–E14
defined, E2
determining user’s locale, E4–E5
ICU4J (IBM), E6–E9, E11–E14
locale stickiness, E42
localization (L10N), defined, E2

Location Processing functions
(scripting), 501–502

lock processing statement (scripting),
496

locking access to the THIS scope,
83–84

logging. See also debugging and
logging (CF Admin)

mail settings and, 114
scheduled tasks, 381

logic
defined, 61
separating from presentation

(CFCs), 61–62
long-form notation, XML, 520
lookahead matching (RegEx), 485
looping in CF scripting (listing), 489
LTR (left-to-right) layout, E33
Lucene project, 350

M
mail. See email
many-to-many relationships

(Hibernate), 437–443
many-to-one relationships

(Hibernate), 433–437
mappedBy attribute, 444
Mappings setting (debugging), E77
maps, working with (Ajax), 260–261
matches

finding with reFind(), 459–462
including with +, 478–479
lookahead matching, 485
match modifiers, 484–485
matches shortcuts, 476
matching with * metacharacter,

479–480
minimal matching quantifiers,

480–481
multiple, 465
non-greedy matching, 480
with pipe character (RegEx), 481

565Index

Memory Variables page (CF Admin),
110–111

menus, Ajax, 252–255
merging PDF files, 178–179
message boxes (Ajax), 257–258
messaging application

configuring CF data messaging
destination, 319

creating event gateway (listings),
319–321

overview, 318–319
metacharacters

basics of, 473
including as literals, 473
types of, 474

metadata
adding to PDF files, 176–177
encryption of PDF files and, 196
variables (<cfthread>), 140–141

methods
calling with <cfinvoke> tag,

58–60
CFC methods, Ajax security and,

280–281
CFCs, and access to shared

scopes, 83
<cfexit> tag, 48
FilmRotationCFC, 70–71
IResponder interface, 331
keeping properties clean and,

79–80
in OOP, 52
overriding, 85–86
using <cffunction> tag to create,

55–56
Microsoft

Access, E31
Office documents, creating PDF

files from, 216–219
SQL Server, E31–E32

Migrate Verity Collections option,
119

minimal matching, 480
missing template handler, 103
modifiers (metacharacter type), 474,

484–485
mojibake (ghost characters), E15
monolingual/multilingual G11N

designs, E41–E42
multi-line arguments (scripting),

495–496
multiline mode (RegEx), 482–483
multi-line programming statements

(scripting), 496–500

multiple-argument functions
(scripting), 501–502

Multiple-File Uploader (listings),
258–259

Multiserver edition of CF, E76
<mx:Consumer> tag, 295, 320
<mx:DataService> tag, 316
<mx:HTTPService> tag (REST),

290
<mx:method> tag, 308
<mx:Publisher> tag, 295
<mx:RemoteObject> tag, 290–291,

305
<mx:WebService> tag, 290
MySQL 4.1, E32

N
named templates (XSLT example),

549–555
named vs. ordinal parameter

positioning, 408
names

attribute names, 30
of functions, 71
name attributes, CFML tag, 37
public method names, 71
variable names, 37–38

namespaces, XML, 523–526
naming conventions, XML, 514
negative lookaheads, 485
nested custom tags, 48–49
nesting <cftry> blocks, E61–E64
network monitors, 302
New Flex Project wizard, 303
new operator, 504
nodes

ignoring in hierarchy (XSLT),
542–543

retrieving array of with
XmlSearch(), 535–536

selecting with / and // (XPath),
533–534

non-greedy quantifiers, 480–481
NOT searches, 359
NVARCHAR/NCHAR/NTEXT

data types, E31

O
ObjectEquals() function, 327
object-oriented programming (OOP),

52–53
objects

Java, disabling access to, 101

local storage of, 324
XML, 515, 518

ODBC/JDBC CALL Command,
411–412

offline applications with AIR, 323
on-demand initialization (resource

bundles), E44–E45
one-to-many relationships

(Hibernate), 433–437
one-to-one relationships (Hibernate),

443–447
OnMissingMethod method, 91–92
Oracle, E33

<cfprocparam> tag and, 405
using <cfprocresult> with, 403

ordinal positioning, 408
ordinal vs. named parameter

positioning, 408
ORM (object relational model)

framework
AIR ORM feature, 325
basics of, 415–416
enabling, 416–417
Hibernate ORM feature, 325–326
ormFlush() function, 432
ormGetSession/

ormGetSessionFactory
functions, 453

persistent CFCs. See persistent
CFCs

searching with, 448–452
Output function (scripting), 501
output parameters (stored

procedures), 404
overwrite attribute (thumbnails), 180

P
page caching

<cfcache> tag, 159
client-side, 159–161
flushing page caches, 163
page fragments, 164
server-side, 161–162
using URL parameters, 162–163

pages
browsing for debugging, E85–E88
deleting (PDF files), 180
functions (JavaScript), defining in

loaded pages, 278–279
functions, running on page load

(Ajax), 278
modifying properties and, 77–78

566 Index

page display/layout (G11N
applications), E33–E35

page parameter setting statement
(scripting), 495

pages attribute (PDF files), 179
using CFCs in, 58–61

paired custom tags
execution cycle of, 43–45
flow, controlling, 47–48
GeneratedContent and, 45
paired or empty, 46
thisTag.HasEndTag, 46–47

parameters, stored procedures that take
basics of, 403–404
multiple records sets and,

408–410
ordinal vs. named parameter

positioning, 408
parameter data types, 408
providing parameters with

<cfprocparam> tag, 405–408
parameters, threadJoin, 135
parent components, 84–86
passwords

PDF files, 192–194
scheduled tasks and, 383

patterns, RegEx and, 456–457
PDF (Portable Document Format)

files
<cfpdf> tag, importance of, 175
creating, 176–177
creating from Microsoft Office

documents, 216–219
DDX, using. See DDX (Document

Description XML)
deleting pages, 180
documents vs. portfolios, 189
forms. See PDF forms
headers and footers, 189–192
images, extracting, 182
initial view, controlling, 207–208
merging, 178–179
optimizing, 187–189
pages attribute and, 179
portfolios, creating, 189
protecting, 192–196
reading, 177–178
support, 175
text, extracting, 184–186
thumbnails, creating, 180–182
watermarks, creating, 183–184

PDF forms
embedding, 216
populating, 208–213

submitting, 213–215
Perl

boundary sequences, 481
RegEx and, 455, 458
shortcuts for character classes

and, 475–476
permissions (PDF files), 192–194
Persian calendar, E28
persistent CFCs

creating entities, 420–423
deleting entities, 428–429
editing Director entities

(example), 429–431
overview, 417–418
properties, defining, 418–420
reading entities, 423–427
updating entities, 427–428

play options, setting (presentations),
340

pods (Ajax), 250–251, 263–264
POP3 application, 389–390
populating

Ajax controls. See controls,
populating dynamically
(Ajax)

PDF forms, 208–213
repopulating Solr collections,

374–375
portfolios (PDF files), 189
ports

debugging sessions failures and,
E85

port numbers when debugging
servers, E74

scheduled tasks and, 384
positive lookaheads, 485
POSIX-style shortcuts, 475–476
postal codes (ZIP codes), E24
PostgreSQL, E32
PowerPoint

converting from, 346–348
support (listing), 347

prefixes, JSON, 279
presentations

basic presentation (listing), 337
<cfpresentation> tag, 335–339
converting from PowerPoint,

346–348
dynamic presentation (listings),

338–340
embedding content, 340–341
play and control options, setting,

340
presenters, adding, 343–345

saving, 345–346
styling, 341–343

primary keys, defining (persistent
CFCs), 418

procedure parameters, 400
processing application, DDX

(listing), 197–198
programmatic indexing, 353–355, 375
progress bars, displaying (Ajax),

262–263
prompt message box (Ajax), 258
properties

CFCs, keeping clean, 79–80
CFCs, overriding, 84–87
channel (Flex), 298–299
instance data as, 76–79
<mx:RemoteObject> tag, 290–291
OOP, 53
persistent CFCs, 418–420
XMLNode, 520–521

protect-password.cfm (listings),
192–193, 195

proxy servers, scheduled tasks and,
384

proxytest.cfm (listing), 272–273
Publish and Subscribe, 283, 318

Q
quantifiers (RegEx), 477–480
queries

display of in Variables pane, E92
failed, working around, E56–E59
Flex and, 286
multiple search query columns,

indexing, 365–367
Query Loops (scripting), 499

query caching
basics, 152–154
controlling number of records

fetched at once, 158–159
limiting number of cached

queries, 158
maximum number of cached

queries, 109
refreshing programmatically,

156–158
usage example, 154–156

quoted <cfset> syntax, 39

R
race conditions, defined, 82
raising exceptions, defined, E47

567Index

RB Manager (resource bundles),
E22–E23

RDS. See Remote Developer Services
(RDS)

Real-Time Messaging Protocol
(RTMP), 283, 294, 296

record sets
multiple, and stored procedures,

408–411
stored procedures that return,

401–403
records

in search results, 363–365
speeding up browsing of, 154–156

reFind() function (RegEx), 458–462
reFindNoCase() function (RegEx),

459–462
regular expressions (RegEx)

appearance of, 457
backreferences redux, 486
basics of, 455–458
character classes, 474–477
in different languages, 457
escape sequences, 486
literals and metacharacters, 473
lookahead matching, 485
match modifiers, 484–485
metacharacter types, 474
pipe character, 481
quantifiers, 477–480
RegEx UDFs, 472
string anchors, 481–483
support for, 457
testing pages, 472
uses of, 456–457
word boundaries, 481

regular expressions, using
matches, finding, 459–462
matches, multiple, 465
subexpressions, 462–464
text, altering with backreferences,

469–471
text, replacing, 465–469
where to use, 458

relationships, defining (persistent
CFCs), 418

reMatch() call, finding multiple
matches with (listing), 465

reMatch() function (RegEx), 458
reMatchNoCase() function (RegEx),

458
Remote Developer Services (RDS)

configuring to secure servers, E75

debugging sessions failures and,
E84

RemoteObject tag, 305–306, 308
repopulating Solr collections,

374–375
report threads, maximum number

of, 106
Request Queue Timeout page, 107
Request Tuning page, 104–107
requests, browser, E71
reReplace() function (RegEx), 458,

465–469
reReplaceNoCase() function

(RegEx), 458, 465–466
resizing images, 223–227
resource bundles

basics, E16
initializing, E44–E45
locale examples, E17
tools and resources, E22–E23
types of (flavors), E20–E22
using, E17–E20

Responder classes, 331
REST (REpresentational State

Transfer), 282
Restart Debugger button, E95
restrictions in XPath expressions,

534–535
result and fault methods, 291
Résumé Manager application

(example), 217–219
return value of functions, 4
returnSubExpressions (RegEx)

argument, 459–460
getting matched text using,

461–462
returnVariable attribute, 39
RMI (Remote Method Invocation)

for data management, 120
root element, XML, 512, 520
rotating images, 236–237
RPC (Remote Procedure Call)

requests, 290–292
services, 282

RSS feed, caching, 166–167
RTL (right-to-left) writing systems,

E33–E35
run time, defined, 7

S
saving

data (AIR), 332–333
presentations, 345–346

savecontent processing statement
(scripting), 496

UDFs, 10–13
scale attribute (thumbnails), 182
scheduled tasks (CF Admin)

administering, 381–382
creating with CF Admin, 382–384
deleting, 386
modifying, 385
pausing, 384–385
running, 384
Scheduled Tasks page, 380, 382

scheduler.log file, 381–382, 385
scopes

ATTRIBUTES scope, 139
Debugger Scopes setting, E79
local scope, 9
thread, 138–141

scripting
CFML overview, 487–488
<cfscript> tag, 488–490
exception handling in script,

507–508
functions, defining in script,

505–506
implementing CFCs in script,

491–492
replacing tags with, 492–494
script functions, 500–505
scripting <cfhttp> (example), 502
scripting <cfquery> (example),

503–504
scripting <cfthread>, 135
ScriptSrc directory, changing

default, 102
statements in, 494–500
troubleshooting tips, 508–510

scrollbars, tab layout and, 249
searching

Ajax-based, 267–268
with ORM, 448–452
search form page (listing), 355
search path, changing (custom

tag), 26–27
search results page (listing),

356–357
text with Solr, E35–E36

searching full text
collections, administering, 375–377
collections, maintaining, 374–375
improving results, 370–374
search tool, creating. See

document search tool
Solr search technology, 349–350

568 Index

searching full text (continued)
SQL data, indexing. See SQL

data, indexing; table data,
indexing

security
Ajax options, 279–280
CFCs, 88–91
PDF files, 192–196

<select> statements, 411–412
selecting nodes with / and // (XPath),

533–534
serialization

distributed CFCs and, 92–93
SerializeJSON/DeserializeJSON

functions, 275–276
server configuration

ColdFusion Administrator, 97–98
Data and Services section,

118–120
Debugging and Logging section.

See Debugging and Logging
(CF Admin)

Event Gateways section, 129–130
Extensions section, 127–129
packaging and deployment, 132
security, 130–131
server monitoring, 126–127
settings. See server settings (CF

Admin)
Server Monitor, CF Admin, 148
server settings (CF Admin)

Caching page, 107–109
Charting page, 115–116
Client Variables page, 109–110
Document page, 116
Font Management page, 115
Java and JVM page, 116–117
Mail Server page, 112–114
Mappings Page, 111–112
Memory Variables page, 110–111
Request Tuning page, 104–107
Settings page. See Settings page

(CF Admin Server settings)
Settings Summary page, 117

servers
connections, defining, E77
debugging remote, E74
local, debugging, E83
massive size server attacks,

103–104
multiserver deployment and

debugging, E76
RDS, configuring to secure

servers, E75

server output buffer pane, E93
synchronizing data with (AIR),

333
terminating debugging from, E95

server-side page caching, 161–162
Service Capture, 286
–services compiler argument (Flash

Builder), 304
services-config.xml file (Flex), 296–

299, 303–304
SESSION scope, 76, 285–286
SESSION variables, 111, E42
sessions, Hibernate framework and,

431–432
setters

implicit (CFCs), 80–81
keeping CFC properties clean

and, 79–80
Settings page (CF Admin Server

settings)
CFC type checking, 101
CFTOKEN and, 100
default ScriptSrc directory, 102
global script protection, 102
googleMap API key, 103
HTTP status codes, 100
internal Java objects, access to,

101
massive size server attacks,

103–104
missing template handler, 103
nonstandard attributes, allowing,

103
per-applications settings, 99–100
prefixing serialized JSON,

101–102
site-wide error handler, 103
throttle threshold, 104
Timeout Requests After

checkbox, 98–99
VFS, 102
watching configuration files for

changes, 102
white space management,

100–101
setVariable() function, 39–40
shared scopes, 82–84
shortcuts for character classes,

475–476
short-form notation, XML, 520
SimpleJavaScriptFunctions.cfm

library, 19–21
single-argument functions

(scripting), 501

slides
autoplaying, 340
embedding content in, 341

Solr search technology
basics of, 349–350
different types of files, searching

with, 350
engine for text searching,

E35–E36
scheduling updates to collections,

392–393
searching SQL data without,

360–361
table data, indexing. See table

data, indexing
SOLR Server page, 119
special characters in XML, 521–523
spooling

mail settings and, 113–114
spool interval, setting, 113

SQL (Structured Query Language)
error codes, displaying (listing),

E55–E56
SQL statements and stored

procedures, 397
SQL data, indexing, 359–370

multiple collections, searching,
370

searching without Solr, 360–361
Solr and table key values, 370
table data. See table data, indexing

square brackets ([]) for character
classes, 475

SSL (Secure Sockets Layer), 113
Start Debugger button, E95
statements, scripting, 494–500
static components (Ajax controls), 53
static content (Ajax controls), 263
status codes, returning (stored

procedures), 404–408
status metadata variables (threads),

143–144
step debugging, E72–E73, E88–E91
stickiness, locale, E5, E42
stopping Debugger tool, E94–E95
storage

of CFCs in APPLICATION
scope, 75–76

client variables and, 109–110
default, 110
of objects, 324
UDFs stored in separate files

(listing), 75–76
stored procedures

569Index

calling from CF templates, 398
<cfprocparam> tag, providing

parameters with, 405–408
<cfquery> tag, calling procedures

with, 398, 410–414
<cfstoredproc> tag, 398–401
defined, 397
executing, 398
invoking, 397
reasons to use, 397–398
status codes, 404–408
that return record sets, 401–403

strings
anchors (RegEx), 474, 481–483
splitting long, 504

struct notation, 40
structure and array functions (XML),

521
style profiles, DDX, 203–205
styling presentations, 341–343
subexpressions (RegEx), 462–464
submissions (PDF forms), 213–215
SUPER scope, 86–87
suspending threads, 136–137
Switch-Case statement (scripting),

497–498
sync method (CFC service), 325–328
synchronization of data, 295, 333
syncManager class

initializing, 329–331
sync method and, 326

syntax
<cfcomponent> tag, 54
<cffunction> tag, 55
<cfinvoke> tag, 58
<cfinvokeargument>, 59
<cfproperty> tag, 78–79
javaScriptPopupLink() function,

19
stored procedures and database

syntax, 413–414
UDF tag, 6–8
XPath, 533–535

T
table data, indexing

basics of, 361–363
columns, indexing with custom

fields, 367–370
multiple query columns, 365–367
record contexts, displaying,

364–365

record summaries, displaying,
363–364

table of contents
adding to DDX applications,

198–200
customizing, 200

tags. See also custom tags, CFML
creating UDFs and, 5
G11N-relevant CF tag, E37–E39
replacing with scripting, 492–494

task scheduler. See event scheduling
templates

basic, without exceptions,
E50–E51

Cache Template in Request
option, 108

calling stored procedures from.
See stored procedures

maximum number of cached, 108
named (XSLT example), 549–555
returning variables to calling

template, 34–37
simple custom tag templates

(listing), 28
simultaneous template requests,

104–105
that recover from errors, E59–

E64
that work around errors, E56–E59

terminateThread() function, 137
terminating debugging, E94–E95
testing

<CF_HelloWorld> custom tag
(listing), 29

DDX test application (listing),
206

for existence of tag attributes,
32–33

RegEx testing pages, 472
text

altering with backreferences
(RegEx), 469–471

drawing on images, 228–231
extracting (DDX), 205–208
extracting (PDF files), 184–186
getting matched text, 461–462
removing based on RegEx

(listing), 467
replacing (RegEx), 465–469
searching with Solr, E35–E36

THIS scope
basics of, 69–70
locking access to, 83–84
variable, 28

thisTag.GeneratedContent, 45
thisTag.HasEndTag, 46–47
threads

administrator tools for, 148–149
CFML gateway compared to,

133–134
<cfthread> example, 142–143
<cfthread> tag, 134–135
displaying output of, 144
ending, 137
error handling example, 146–148
joining, 137–138
mail delivery threads, 113–114
maximum number of, 106–107,

115
starting, 136
status metadata variables, 143–144
suspending, 136–137
techniques for generating/

controlling, 149–150
thread exceptions, handling,

144–148
thread metadata, 140–141
thread scopes, 138–141

throttle memory/setting, 104
thumbnails, creating (PDF files),

180–182. See also images
time zones (globalization), E30–E31
timeouts

increase maximum request
(debugging), E75

page timeouts, debugging and,
E87–E88

responses from email servers
and, 113

scheduled tasks and, 383
setting values for variables, 111
Timeout Request setting (CF

Admin), 149
Timeout Requests After

checkbox, 98–99
timing for requests, setting, 107

timesheet (sample PDF form)
(listing), 209

timing of event scheduling, 383–384
tooltips (Ajax), 255–256, 265–266
toXML component, 211
transport level security (TLS), 113
trees

Ajax, 256–257
defined, 256

TruncateQuote custom tag, 44–45
try-catch handling, 499–500, 507
type checking in CFCs, 67–68, 101

570 Index

type=”variableName”, using with
<cfparam> tag, 37–38

U
UDFs. See user-defined functions

(UDFs)
Unicode, E14–E16, E31–E33, E45
URLs (Uniform Resource Locators)

accessing CFCs via, 65–67
parameters, caching pages with,

162–163
resolving for tasks, 384
scheduled tasks and, 383

user-defined functions (UDFs)
vs. CFCs, 52
CFML, extending, 3–4, 23
creating/using (listing), 12
defined, 505
general-purpose UDFs, 18–21
input/output and functions, 4
RegEx, 472
UDF libraries, 13–18, 21
UDF libraries, sharing, 21

usernames and passwords, 383
user’s locale (globalization), E4–E5
UTC (Universal Time Coordinate)

format, 286–287, E40
UTF-8 encoding, E16, E21

V
validating XML, 526–530
value objects

building (AIR), 328–329
returning, 287–289

values
<cfparam> to establish default,

31–33
outputting attribute values, 29–30

var keyword, 138, 506
variables

CFCATCH, E53–E54
<cfthread> metadata variables,

140–141
changing on the fly (debugging),

E93
copying, E95
local, in custom tags, 33
local, UDFs and, 8–10
making private to functions, 506
returning to calling template,

34–37
setting dynamically, 38–40

variable assignment statement
(scripting), 500

variable names as tag attributes,
37

Variables pane, debugging and,
E91–E92

VARIABLES scope, CFCs and,
79

Verity K2 Server page, 119
Verity search engine, 350, 356–358
VFS (virtualized file systems), 102
videos, playing (Ajax), 261–262
views, initial PDF, 207–208
virtualized file systems (VFS), 102

W
watermarks

adding to DDX applications,
202–203

adding to images, 231
creating (PDF files), 183–184
uses of, 182–183

WDDX packets, 66
Web server paths, caching, 109
Web Services

aliases, creating, 119
connecting to CF servers with,

282
simultaneous requests, 105

Web sites, for downloading
geoLocator CFCs, E5
RB Manager, E23
UDF libraries, 506

Web sites, for further information
address formats, E25
address styles (global), E40
Adobe LiveDocs, 221
calendars, E25–E30
ColdFusion applications, xxvi
ColdFusion Evangelism Kit PDF

file, 185
collation (Unicode Consortium),

E10
Common Function Library

Project, 21
encryption of PDF files, 194
FusionDebug, E73
IANA page on character sets, E15
Java IP (InetAddress) Locator

project, E4
Java serializable interfaces, 92
Lucene project, 350
multiserver deployment, E76

PDF files, 175
PDF portfolios, 189
resource bundle management

tools, E23
RTL page layout, E34
toXML component, 211
Unicode, E15
Unicode Collation Algorithm

(UCA), E14
Unicode Consortium, E6
Wolfram Mathworld articles,

236–237
XML, 530
XPath and XSLT resources,

555–556
WEB-INF.cftag.component, 85
WEB-INF/flex/services-config.xml

file, 305
While Loops (scripting), 498
white space management, 100–114,

168–171
wildcards

RegEx, 455–456
searching with, 359

windows
Ajax, 251–252
Ajax-loaded window (listing), 264

Windows-1252 character set, E14
word boundaries (RegEx), 481
writeToBrowser() element, 236

X
XDP files, defined, 212
XML (Extensible Markup Language).

See also DDX (Document
Description XML)

creating documents with
CFXML, 516–517

creating documents with
XmlNew(), 518–519

document structure, 511–514
documents, creating from

database content, 516
elements and attributes, 513,

519–521
vs. JSON, 274–275
namespaces, 523–526
naming conventions, 514
PDF Form Data (listing), 211
populating PDF form with

(listing), 211
reading files with XmlParse(),

514–515

571Index

resources for, 530
schemas, 526–530
special characters in, 521–523
transforming XML content with

XSL, 542
validating, 526–530
XmlFormat() function, 517, 522
XmlNew() function, 518–519
XmlParse() function, 514–515,

528
XmlSearch() function (XPath),

535–536
xmlText property, 519
XmlTransform() function

(XSLT), 542
XmlValidate() function, 528–529

XPath
CD collection example, 531–533
overview, 531

resources for, 555–556
syntax, 533–535
XmlSearch() to retrieve array of

nodes, 535–536
XSLT (Extensible Stylesheet

Language for Transformations)
ignoring nodes in hierarchy,

542–543
overview, 536–537
resources for, 555–556
stylesheet, creating, 537–541
transformation example using

<xsl:if>, 543–544
transformations with

XmlTransform(), 542
using named templates, 549–555
<xsl:apply-templates>, 541
<xsl:attribute> tag, 547
<xsl:choose tag, 544–545

<xsl:element> tag, 547–549
<xsl:element> to create dynamic

HTML elements, 547–549
<xsl:for-each> loop construct,

545–547
<xsl:if> tag, 543–544
<xsl:output> tag, 540
<xsl:stylesheet> tag, 540
<xsl:template> tag, 540
<xsl:text> tag, 545
<xsl:transform> tag, 540
<xsl:value-of> tag, 540, 541

	Contents
	Introduction
	CHAPTER 24 Creating Advanced ColdFusion Components
	Review of ColdFusion Components
	Simple CFCs
	Introspection and HINTs
	Accessing a CFC via a URL
	Type Checking in Components
	Components That Hold Instance Data
	Working with Inheritance
	Defining Interfaces
	Implementing Security
	Using the OnMissingMethod Method
	Distributed CFCs and Serialization

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

