

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United
States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trade-
marks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Michaelis, Mark.
 Essential C# 4.0 / Mark Michaelis.
 p. cm.
 Includes index.
 ISBN 978-0-321-69469-0 (pbk. : alk. paper)
1. C# (Computer program language) I. Title.
 QA76.73.C154M5237 2010
 005.13’3—dc22

 2009052592

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-69469-0
ISBN-10: 0-321-69469-4
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, March 2010

xxxi

Foreword

MARK MICHAELIS’S OVERVIEW OF THE C# language has become a standard
reference for developers. In this, its third edition, programmers will find a
thoughtful, well-written guide to the intricacies of one of the world’s most
popular computer languages. Having laid a strong foundation in the ear-
lier editions of this book, Mark adds new chapters that explain the latest
features in both C# and the .NET Framework.

Two of the most important additions to the book cover the latest tools
for parallel programming and the new dynamic features found in C# 4.0.
The addition of dynamic features to the C# language will give developers
access to late-bound languages such as Python and Ruby. Improved sup-
port for COM Interop will allow developers to access Microsoft Office with
an intuitive and easy-to-use syntax that makes these great tools easy to use.
Mark’s coverage of these important topics, along with his explanation of
the latest developments in concurrent development, make this an essential
read for C# developers who want to hone their skills and master the best
and most vital parts of the C# language.

As the community PM for the C# team, I work to stay attuned to the
needs of our community. Again and again I hear the same message: “There
is so much information coming out of Microsoft that I can’t keep up. I need
access to materials that explain the technology, and I need them presented
in a way that I can understand.” Mark Michaelis is a one-man solution to a
C# developer’s search for knowledge about Microsoft’s most recent
technologies.

Forewordxxxii

I first met Mark at a breakfast held in Redmond, Washington, on a clear,
sunny morning in the summer of 2006. It was an early breakfast, and I like
to sleep in late. But I was told Mark was an active community member, and
so I woke up early to meet him. I’m glad I did. The distinct impression he
made on me that morning has remained unchanged over the years.

Mark is a tall, athletic man originally from South Africa, who speaks in
a clear, firm, steady voice with a slight accent that most Americans would
probably find unidentifiable. He competes in Ironman triathlons and has
the lean, active look that one associates with that sport. Cheerful and opti-
mistic, he nevertheless has a businesslike air about him; one has the sense
that he is always trying to find the best way to fit too many activities into a
limited time frame.

Mark makes frequent trips to the Microsoft campus to participate in
reviews of upcoming technology or to consult on a team’s plans for the
future. Flying in from his home in Spokane, Washington, Mark has clearly
defined agendas. He knows why he is on the campus, gives his all to the
work, and looks forward to heading back home to his family in Spokane.
Sometimes he finds time to fit in a quick meeting with me, and I always
enjoy them. He is cheerful and energetic, and nearly always has something
provocative to say about some new technology or program being devel-
oped by Microsoft.

This brief portrait of Mark tells you a good deal about what you can
expect from this book. It is a focused book with a clear agenda written in a
cheerful, no-nonsense manner. Mark works hard to discover the core parts
of the language that need to be explained and then he writes about them in
the same way that he speaks: with a lucid, muscular prose that is easy to
understand and totally devoid of condescension. Mark knows what his
audience needs to hear and he enjoys teaching.

Mark knows not only the C# language, but also the English language.
He knows how to craft a sentence, how to divide his thoughts into para-
graphs and subsections, and how to introduce and summarize a topic. He
consistently finds clear, easy-to-understand ways to explain complex
subjects.

I read the first edition of Mark’s book cover to cover in just a few eve-
nings of concentrated reading. Like the current volume, it is a delight to

Foreword xxxiii

read. Mark selects his topics with care, and explains them in the simplest
possible terms. He knows what needs to be included, and what can be left
out. If he wants to explore an advanced topic, he clearly sets it apart from
the rest of the text. He never shows off by first parading his intellect at the
expense of our desire to understand.

A centrally important part of this new edition of the book continues to
be its coverage of LINQ. For many developers the declarative style of pro-
gramming used by LINQ is a new technology that requires developing
new habits and new ways of thinking.

C# 3.0 contained several new features that enable LINQ. A main goal of
the book is to lay out these features in detail. Explaining LINQ and the
technologies that enable it is no easy task, and Mark has rallied all his for-
midable skills as a writer and teacher to lay this technology out for the
reader in clear and easy-to-understand terms.

All the key technologies that you need to know if you want to under-
stand LINQ are carefully explained in this text. These include

• Partial methods

• Automatic properties

• Object initializers

• Collection initializers

• Anonymous types

• Implicit local variables (var)

• Lambdas

• Extension methods

• Expression trees

• IEnumerable<T> and IQueryable<T>

• LINQ query operators

• Query expressions

The march to an understanding of LINQ begins with Mark’s explana-
tions of important C# 2.0 technologies such as generics and delegates. He
then walks you step by step through the transition from delegates to lamb-
das. He explains why lambdas are part of C# 3.0 and the key role they play

Forewordxxxiv

in LINQ. He also explains extension methods, and the role they play in
implementation of the LINQ query operators.

His coverage of C# 3.0 features culminates in his detailed explanation of
query expressions. He covers the key features of query expressions such as
projections, filtering, ordering, grouping, and other concepts that are cen-
tral to an understanding of LINQ. He winds up his chapter on query
expressions by explaining how they can be converted to the LINQ query
method syntax, which is actually executed by the compiler. By the time
you are done reading about query expressions you will have all the knowl-
edge you need to understand LINQ and to begin using this important tech-
nology in your own programs.

If you want to be a C# developer, or if you want to enhance your C#
programming skills, there is no more useful tool than a well-crafted book
on the subject. You are holding such a book in your hands. A text such as
this can first teach you how the language works, and then live on as a ref-
erence that you use when you need to quickly find answers. For develop-
ers who are looking for ways to stay current on Microsoft’s technologies,
this book can serve as a guide through a fascinating and rapidly changing
landscape. It represents the very best and latest thought on what is fast
becoming the most advanced and most important contemporary
programming language.

—Charlie Calvert
Community Program Manager,
Visual C#, Microsoft
January 2010

xxxv

Preface

THROUGHOUT THE HISTORY of software engineering, the methodology used
to write computer programs has undergone several paradigm shifts, each
building on the foundation of the former by increasing code organization
and decreasing complexity. This book takes you through these same para-
digm shifts.

The beginning chapters take you through sequential programming
structure, in which statements are written in the order in which they are
executed. The problem with this model is that complexity increases expo-
nentially as the requirements increase. To reduce this complexity, code
blocks are moved into methods, creating a structured programming
model. This allows you to call the same code block from multiple locations
within a program, without duplicating code. Even with this construct,
however, programs quickly become unwieldy and require further abstrac-
tion. Object-oriented programming, discussed in Chapter 5, was the
response. In subsequent chapters, you will learn about additional method-
ologies, such as interface-based programming, LINQ (and the transforma-
tion it makes to the collection API), and eventually rudimentary forms of
declarative programming (in Chapter 17) via attributes.

This book has three main functions.

1. It provides comprehensive coverage of the C# language, going
beyond a tutorial and offering a foundation upon which you can
begin effective software development projects.

Prefacexxxvi

 2. For readers already familiar with C#, this book provides insight into
some of the more complex programming paradigms and provides in-
depth coverage of the features introduced in the latest version of the
language, C# 4.0 and .NET Framework 4.

3. It serves as a timeless reference, even after you gain proficiency with
the language.

The key to successfully learning C# is to start coding as soon as possi-
ble. Don’t wait until you are an “expert” in theory; start writing software
immediately. As a believer in iterative development, I hope this book
enables even a novice programmer to begin writing basic C# code by the
end of Chapter 2.

A number of topics are not covered in this book. You won’t find cover-
age of topics such as ASP.NET, ADO.NET, smart client development, dis-
tributed programming, and so on. Although these topics are relevant to the
.NET Framework, to do them justice requires books of their own. Fortu-
nately, Addison-Wesley’s .NET Development Series provides a wealth of
writing on these topics. Essential C# 4.0 focuses on C# and the types within
the Base Class Library. Reading this book will prepare you to focus on and
develop expertise in any of the areas covered by the rest of the series.

Target Audience for This Book

My challenge with this book was to keep advanced developers awake
while not abandoning beginners by using words such as assembly, link,
chain, thread, and fusion, as though the topic was more appropriate for
blacksmiths than for programmers. This book’s primary audience is expe-
rienced developers looking to add another language to their quiver. How-
ever, I have carefully assembled this book to provide significant value to
developers at all levels.

• Beginners: If you are new to programming, this book serves as a
resource to help transition you from an entry-level programmer to a
C# developer, comfortable with any C# programming task that’s
thrown your way. This book not only teaches you syntax, but also

Preface xxxvii

trains you in good programming practices that will serve you
throughout your programming career.

• Structured programmers: Just as it’s best to learn a foreign language
through immersion, learning a computer language is most effective
when you begin using it before you know all the intricacies. In this
vein, this book begins with a tutorial that will be comfortable for
those familiar with structured programming, and by the end of Chap-
ter 4, developers in this category should feel at home writing basic
control flow programs. However, the key to excellence for C# devel-
opers is not memorizing syntax. To transition from simple programs
to enterprise development, the C# developer must think natively in
terms of objects and their relationships. To this end, Chapter 5’s
Beginner Topics introduce classes and object-oriented development.
The role of historically structured programming languages such as C,
COBOL, and FORTRAN is still significant but shrinking, so it
behooves software engineers to become familiar with object-oriented
development. C# is an ideal language for making this transition
because it was designed with object-oriented development as one of
its core tenets.

• Object-based and object-oriented developers: C++ and Java programmers,
and many experienced Visual Basic programmers, fall into this cate-
gory. Many of you are already completely comfortable with semico-
lons and curly braces. A brief glance at the code in Chapter 1 reveals
that at its core, C# is similar to the C and C++ style languages that you
already know.

• C# professionals: For those already versed in C#, this book provides a
convenient reference for less frequently encountered syntax. Further-
more, it provides answers to language details and subtleties that are
seldom addressed. Most importantly, it presents the guidelines and
patterns for programming robust and maintainable code. This book
also aids in the task of teaching C# to others. With the emergence of
C# 3.0 and C# 4.0, some of the most prominent enhancements are:
– Implicitly typed variables (see Chapter 2)
– Extension methods (see Chapter 5)
– Partial methods (see Chapter 5)

Prefacexxxviii

– Anonymous types (see Chapter 11)
– Generics (see Chapter 11)
– Lambda statements and expressions (see Chapter 12)
– Expression trees (see Chapter 12)
– Standard query operators (see Chapter 14)
– Query expressions (see Chapter 15)
– Dynamic programming (Chapter 17)
– Multithreaded programming with the Task Programming Library

(Chapter 18)
– Parallel query processing with PLINQ
– Concurrent collections (Chapter 19)

These topics are covered in detail for those not already familiar with them.
Also pertinent to advanced C# development is the subject of pointers, in
Chapter 21. Even experienced C# developers often do not understand this
topic well.

Features of This Book

Essential C# 4.0 is a language book that adheres to the core C# Language 4.0
Specification. To help you understand the various C# constructs, the book
provides numerous examples demonstrating each feature. Accompanying
each concept are guidelines and best practices, ensuring that code com-
piles, avoids likely pitfalls, and achieves maximum maintainability.

To improve readability, code is specially formatted and chapters are
outlined using mind maps.

Code Samples
The code snippets in most of this text (see sample listing on the next page)
can run on any implementation of the Common Language Infrastructure
(CLI), including the Mono, Rotor, and Microsoft .NET platforms. Platform-
or vendor-specific libraries are seldom used, except when communicating
important concepts relevant only to those platforms (appropriately han-
dling the single-threaded user interface of Windows, for example). Any
code that specifically requires C# 3.0 or 4.0 compliance is called out in the
C# 3.0 and C# 4.0 indexes at the end of the book.

Preface xxxix

Here is a sample code listing.

Listing 1.17: Commenting Your Code

 }
}

The formatting is as follows.

• Comments are shown in italics.

 /* Display a greeting to the console
 using composite formatting. */

• Keywords are shown in bold.

 static void Main()

• Highlighted code calls out specific code snippets that may have
changed from an earlier listing, or demonstrates the concept
described in the text.

class CommentSamples
{
static void Main()

 {

 string firstName; // Variable for storing the first name
 string lastName; // Variable for storing the last name

single-line comment

 System.Console.WriteLine("Hey you!");

 System.Console.Write /* No new line */ (
 "Enter your first name: ");
 firstName = System.Console.ReadLine();

 System.Console.Write /* No new line */ (
 "Enter your last name: ");
 lastName = System.Console.ReadLine();

 /* Display a greeting to the console
 using composite formatting. */
 System.Console.WriteLine("Your full name is {0} {1}.",
 firstName, lastName);
 // This is the end
 // of the program listing

delimited comment inside statement

delimited comment

Prefacexl

Highlighting can appear on an entire line or on just a few characters
within a line.

 System.Console.WriteLine(

• Incomplete listings contain an ellipsis to denote irrelevant code that
has been omitted.

 // ...

• Console output is the output from a particular listing that appears fol-
lowing the listing.

• User input for the program appears in italics.

Although it might have been convenient to provide full code samples
that you could copy into your own programs, doing so would detract you
from learning a particular topic. Therefore, you need to modify the code
samples before you can incorporate them into your programs. The core
omission is error checking, such as exception handling. Also, code samples
do not explicitly include using System statements. You need to assume the
statement throughout all samples.

You can find sample code and bonus mateial at intelliTechture.com/
EssentialCSharp and at informit.com/msdotnetseries.

Mind Maps
Each chapter’s introduction includes a mind map, which serves as an out-
line that provides an at-a-glance reference to each chapter’s content. Here
is an example (taken from Chapter 5).

 System.Console.Write /* No new line */ (

 "Your full name is {0} {1}.",

OUTPUT 1.4:

>HeyYou.exe
Hey you!
Enter your first name: Inigo
Enter your last name: Montoya

Preface xli

The theme of each chapter appears in the mind map’s center. High-level
topics spread out from the core. Mind maps allow you to absorb the flow
from high-level to more detailed concepts easily, with less chance of
encountering very specific knowledge that you might not be looking for.

Helpful Notes
Depending on your level of experience, special code blocks and tabs will
help you navigate through the text.

• Beginner Topics provide definitions or explanations targeted specifi-
cally toward entry-level programmers.

• Advanced Topics enable experienced developers to focus on the
material that is most relevant to them.

• Callout notes highlight key principles in callout boxes so that readers
easily recognize their significance.

• Language Contrast sidebars identify key differences between C# and
its predecessors to aid those familiar with other languages.

Declaring a Property

Naming Conventions

Using Properties with Validation

Read-Only and Write-Only Properties

Access Modifiers on Getters and Setters

Properties as Virtual Fields

Properties and Method Calls Not Allowed
as ref or out Parameter Values

Instance
Fields

Declaring an Instance Field
Accessing an Instance Field
Const and readonly Modifiers

Properties

Static Fields
Static Methods

Static Constructors
Static Classes

Partial Classes
Nested Classes

Classes

2

3 Instance Methods

4

5

Static7

Access Modifiers

9 Special Classes
Declaring and Instantiating a Class1

8 Extension Methods

Declaring a Constructor
Default Constructors

Overloading Constructors
Calling one Constructor Using this

Finalizers

Constructors
& Finalizers6

Prefacexlii

How This Book Is Organized

At a high level, software engineering is about managing complexity, and it
is toward this end that I have organized Essential C# 4.0 Chapters 1–4 intro-
duce structured programming, which enable you to start writing simple
functioning code immediately. Chapters 5–9 present the object-oriented
constructs of C#. Novice readers should focus on fully understanding this
section before they proceed to the more advanced topics found in the
remainder of this book. Chapters 11–13 introduce additional complexity-
reducing constructs, handling common patterns needed by virtually all
modern programs. This leads to dynamic programming with reflection
and attributes, which is used extensively for threading and interoperability
in the chapters that follow.

The book ends with a chapter on the Common Language Infrastructure,
which describes C# within the context of the development platform in
which it operates. This chapter appears at the end because it is not C# spe-
cific and it departs from the syntax and programming style in the rest of
the book. However, this chapter is suitable for reading at any time, perhaps
most appropriately immediately following Chapter 1.

Here is a description of each chapter (in this list, chapter numbers
shown in bold indicate the presence of C# 3.0 or C# 4.0 material).

• Chapter 1—Introducing C#: After presenting the C# HelloWorld pro-
gram, this chapter proceeds to dissect it. This should familiarize read-
ers with the look and feel of a C# program and provide details on how
to compile and debug their own programs. It also touches on the con-
text of a C# program’s execution and its intermediate language.

• Chapter 2—Data Types: Functioning programs manipulate data, and
this chapter introduces the primitive data types of C#. This includes
coverage of two type categories, value types and reference types,
along with conversion between types and support for arrays.

• Chapter 3—Operators and Control Flow: To take advantage of the
iterative capabilities in a computer, you need to know how to include
loops and conditional logic within your program. This chapter also
covers the C# operators, data conversion, and preprocessor
directives.

.

Preface xliii

• Chapter 4—Methods and Parameters: This chapter investigates the
details of methods and their parameters. It includes passing by value,
passing by reference, and returning data via a parameter. In C# 4.0
default parameter support was added and this chapter explains how
to use them.

• Chapter 5—Classes: Given the basic building blocks of a class, this
chapter combines these constructs together to form fully functional
types. Classes form the core of object-oriented technology by defining
the template for an object.

• Chapter 6—Inheritance: Although inheritance is a programming fun-
damental to many developers, C# provides some unique constructs,
such as the new modifier. This chapter discusses the details of the
inheritance syntax, including overriding.

• Chapter 7—Interfaces: This chapter demonstrates how interfaces are
used to define the “versionable” interaction contract between classes.
C# includes both explicit and implicit interface member implementa-
tion, enabling an additional encapsulation level not supported by
most other languages.

• Chapter 8—Value Types: Although not as prevalent as defining refer-
ence types, it is sometimes necessary to define value types that
behave in a fashion similar to the primitive types built into C#. This
chapter describes how to define structures, while exposing the idio-
syncrasies they may introduce.

• Chapter 9—Well-Formed Types: This chapter discusses more advanced
type definition. It explains how to implement operators, such as + and
casts, and describes how to encapsulate multiple classes into a single
library. In addition, the chapter demonstrates defining namespaces
and XML comments, and discusses how to design classes for garbage
collection.

• Chapter 10—Exception Handling: This chapter expands on the excep-
tion-handling introduction from Chapter 4 and describes how excep-
tions follow a hierarchy that enables creating custom exceptions. It
also includes some best practices on exception handling.

Prefacexliv

• Chapter 11—Generics: Generics is perhaps the core feature missing
from C# 1.0. This chapter fully covers this 2.0 feature. In addition, C#
4.0 added support for covariance and contravariance—something
covered in the context of generics in this chapter.

• Chapter 12—Delegates and Lambda Expressions: Delegates begin clearly
distinguishing C# from its predecessors by defining patterns for han-
dling events within code. This virtually eliminates the need for writ-
ing routines that poll. Lambda expressions are the key concept that
make C# 3.0’s LINQ possible. This chapter explains how lambda
expressions build on the delegate construct by providing a more ele-
gant and succinct syntax. This chapter forms the foundation for the
new collection API discussed next.

• Chapter 13—Events: Encapsulated delegates, known as events, are a
core construct of the Common Language Runtime. Anonymous
methods, another C# 2.0 feature, are also presented here.

• Chapter 14—Collection Interfaces with Standard Query Operators: The
simple and yet elegantly powerful changes introduced in C# 3.0 begin
to shine in this chapter as we take a look at the extension methods of
the new Enumerable class. This class makes available an entirely new
collection API known as the standard query operators and discussed
in detail here.

• Chapter 15—LINQ with Query Expressions: Using standard query
operators alone results in some long statements that are hard to deci-
pher. However, query expressions provide an alternative syntax that
matches closely with SQL, as described in this chapter.

• Chapter 16—Building Custom Collections: In building custom APIs that
work against business objects, it is sometimes necessary to create cus-
tom collections. This chapter details how to do this, and in the process
introduces contextual keywords that make custom collection build-
ing easier.

• Chapter 17—Reflection, Attributes, and Dynamic Programming: Object-
oriented programming formed the basis for a paradigm shift in pro-
gram structure in the late 1980s. In a similar way, attributes facilitate
declarative programming and embedded metadata, ushering in a
new paradigm. This chapter looks at attributes and discusses how to

Preface xlv

retrieve them via reflection. It also covers file input and output via the
serialization framework within the Base Class Library. In C# 4.0 a new
keyword, dynamic, was added to the language. This removed all type
checking until runtime, a significant expansion of what can be done
with C#.

• Chapter 18—Multithreading: Most modern programs require the use
of threads to execute long-running tasks while ensuring active
response to simultaneous events. As programs become more sophisti-
cated, they must take additional precautions to protect data in these
advanced environments. Programming multithreaded applications is
complex. This chapter discusses how to work with threads and pro-
vides best practices to avoid the problems that plague multithreaded
applications.

• Chapter 19—Synchronization and Other Multithreading Patterns: Build-
ing on the preceding chapter, this one demonstrates some of the built-
in threading pattern support that can simplify the explicit control of
multithreaded code.

• Chapter 20—Platform Interoperability and Unsafe Code: Given that C# is
a relatively young language, far more code is written in other lan-
guages than in C#. To take advantage of this preexisting code, C#
supports interoperability—the calling of unmanaged code—through
P/Invoke. In addition, C# provides for the use of pointers and direct
memory manipulation. Although code with pointers requires special
privileges to run, it provides the power to interoperate fully with tra-
ditional C-based application programming interfaces.

• Chapter 21—The Common Language Infrastructure: Fundamentally, C#
is the syntax that was designed as the most effective programming
language on top of the underlying Common Language Infrastructure.
This chapter delves into how C# programs relate to the underlying
runtime and its specifications.

• Appendix A—Downloading and Installing the C# Compiler and the CLI Plat-
form: This appendix provides instructions for setting up a C# compiler
and the platform on which to run the code, Microsoft .NET or Mono.

• Appendix B—Full Source Code Listing: In several cases, a full source code
listing within a chapter would have made the chapter too long. To make

Prefacexlvi

these listings still available to the reader, this appendix includes full list-
ings from Chapters 3, 11, 12, 14, and 17.

• Appendix C—Concurrent Classes from System.Collections.Concur-

rent: This appendix provides overview diagrams of the concurrent
collections that were added in the .NET Framework 4.

• Appendixes D-F: C# 2.0, C# 3.0, C# 4.0 Topics: These appendices pro-
vide a quick reference for any C# 2.0, C# 3.0, or C# 4.0 content. They
are specifically designed to help programmers quickly get up to
speed on C# features.

I hope you find this book to be a great resource in establishing your C#
expertise and that you continue to reference it for the more obscure areas of
C# and its inner workings.

—Mark Michaelis
mark.michaelis.net

83

3
Operators and Control Flow

N THIS CHAPTER, you will learn about operators and control flow state-
ments. Operators provide syntax for performing different calculations

or actions appropriate for the operands within the calculation. Control
flow statements provide the means for conditional logic within a program
or looping over a section of code multiple times. After introducing the if
control flow statement, the chapter looks at the concept of Boolean expres-
sions, which are embedded within many control flow statements. Included
is mention of how integers will not cast (even explicitly) to bool and the

I

2

34

5

6 1

Operators and
Control Flow

Operators

Arithmetic Binary
Operators

Assignment Operators
Increment and
Decrement Operators
Constant Expressions

Boolean Expressions

Bitwise OperatorsControl Flow
Statements

if
while

do-while
for

foreach
switch

Jump
Statements

break
continue

goto

Preprocessor
Directives

#if, #elif, #else, and #endif
#define and #undef

#error and #warning
#pragma

nowarn:<warn list>
#line

#region/#endregion

Chapter 3: Operators and Control Flow84

advantages of this restriction. The chapter ends with a discussion of the C#
“preprocessor” and its accompanying directives.

Operators

Now that you have been introduced to the predefined data types (refer to
Chapter 2), you can begin to learn more about how to use these data types
in combination with operators in order to perform calculations. For exam-
ple, you can make calculations on variables that you have declared.

B E G I N N E R T O P I C

Operators
Operators specify operations within an expression, such as a mathematical
expression, to be performed on a set of values, called operands, to produce
a new value or result. For example, in Listing 3.1 there are two operands,
the numbers 4 and 2, that are combined using the subtraction operator, -.
You assign the result to the variable difference.

Listing 3.1: A Simple Operator Example

difference = 4 – 2;

Operators are generally broken down into three categories: unary,
binary, and ternary, corresponding to the number of operands 1, 2, and 3,
respectively. This section covers some of the most basic unary and binary
operators. Introduction to the ternary operator appears later in the chapter.

Plus and Minus Unary Operators (+, -)
Sometimes you may want to change the sign of a numerical variable. In
these cases, the unary minus operator (-) comes in handy. For example,
Listing 3.2 changes the total current U.S. debt to a negative value to indi-
cate that it is an amount owed.

Listing 3.2: Specifying Negative Values1

//National Debt to the Penny

decimal debt = -11719258192538.99M;

Using the minus operator is equivalent to subtracting the operand from zero.

1. As of August 21, 2009, according to www.treasurydirect.gov.

www.treasurydirect.gov

 Operators 85

The unary plus operator (+) has rarely2 had any effect on a value. It is a
superfluous addition to the C# language and was included for the sake of
symmetry.

Arithmetic Binary Operators (+, -, *, /, %)
Binary operators require two operands in order to process an equation: a
left-hand side operand and a right-hand side operand. Binary operators
also require that the code assign the resultant value to avoid losing it.

The subtraction example in Listing 3.3 is an example of a binary
operator—more specifically, an arithmetic binary operator. The operands
appear on each side of the arithmetic operator and then the calculated
value is assigned. The other arithmetic binary operators are addition (+),
division (/), multiplication (*), and remainder (%; sometimes called the
mod operator).

Listing 3.3: Using Binary Operators

class Division

{

 static void Main()

 {

 int numerator;

 int denominator;

 int quotient;

 int remainder;

 System.Console.Write("Enter the numerator: ");

 numerator = int.Parse(System.Console.ReadLine());

2. The unary + operator is not defined on a short; it is defined on int, uint, long, ulong,
float, double, and decimal. Therefore, using it on a short will convert it to one of these
types as appropriate.

Language Contrast: C++—Operator-Only Statements

Binary operators in C# require an assignment or call; they always return a

new result. Neither operand in a binary operator expression can be modi-

fied. In contrast, C++ will allow a single statement, such as 4+5, to compile

even without an assignment. In C#, call, increment, decrement, and new

object expressions are allowed for operator-only statements.

Chapter 3: Operators and Control Flow86

 System.Console.Write("Enter the denominator: ");

 denominator = int.Parse(System.Console.ReadLine());

 System.Console.WriteLine(

 "{0} / {1} = {2} with remainder {3}",

 numerator, denominator, quotient, remainder);

 }

}

Output 3.1 shows the results of Listing 3.3.

Note the order of associativity when using binary operators. The binary
operator order is from left to right. In contrast, the assignment operator
order is from right to left. On its own, however, associativity does not spec-
ify whether the division will occur before or after the assignment. The
order of precedence defines this. The precedence for the operators used so
far is as follows:

1. *, /, and %

2. + and -
3. =

Therefore, you can assume that the statement behaves as expected, with
the division and remainder operators occurring before the assignment.

If you forget to assign the result of one of these binary operators, you
will receive the compile error shown in Output 3.2.

 quotient = numerator / denominator;

 remainder = numerator % denominator;

OUTPUT 3.1:

Enter the numerator: 23

Enter the denominator: 3

23 / 3 = 7 with remainder 2.

OUTPUT 3.2:

... error CS0201: Only assignment, call, increment, decrement,

and new object expressions can be used as a statement

 Operators 87

B E G I N N E R T O P I C

Associativity and Order of Precedence
As with mathematics, programming languages support the concept of asso-
ciativity. Associativity refers to how operands are grouped and, therefore,
the order in which operators are evaluated. Given a single operator that
appears more than once in an expression, the operator associates the first
duple and then the next operand until all operators are evaluated. For exam-
ple, a-b-c associates as (a-b)-c, and not a-(b-c).

Associativity applies only when all the operators are the same. When
different operators appear within a statement, the order of precedence for
those operators dictates which operators are evaluated first. Order of pre-
cedence, for example, indicates that the multiplication operator be evalu-
ated before the plus operator in the expression a+b*c.

Using the Plus Operator with Strings

Operators can also work with types that are not numeric. For example, it is
possible to use the plus operator to concatenate two or more strings, as
shown in Listing 3.4.

Listing 3.4: Using Binary Operators with Non-Numeric Types

class FortyTwo

{

 static void Main()

 {

 short windSpeed = 42;

 System.Console.WriteLine(

 "The original Tacoma Bridge in Washington\nwas"

 + "brought down by a "

 + windSpeed + " mile/hour wind.");

 }

}

Output 3.3 shows the results of Listing 3.4.

OUTPUT 3.3:

The original Tacoma Bridge in Washington

was brought down by a 42 mile/hour wind.

Chapter 3: Operators and Control Flow88

Because sentence structure varies among languages in different cultures,
developers should be careful not to use the plus operator with strings
that require localization. Composite formatting is preferred (refer to
Chapter 1).

Using Characters in Arithmetic Operations

When introducing the char type in the preceding chapter, I mentioned
that even though it stores characters and not numbers, the char type is an
integral type (“integral” means it is based on an integer). It can partici-
pate in arithmetic operations with other integer types. However, inter-
pretation of the value of the char type is not based on the character stored
within it, but rather on its underlying value. The digit 3, for example,
contains a Unicode value of 0x33 (hexadecimal), which in base 10 is 51.
The digit 4, on the other hand, contains a Unicode value of 0x34, or 52 in
base 10. Adding 3 and 4 in Listing 3.5 results in a hexadecimal value of
0x167, or 103 in base 10, which is equivalent to the letter g.

Listing 3.5: Using the Plus Operator with the char Data Type

int n = '3' + '4';

char c = (char)n;

System.Console.WriteLine(c); // Writes out g.

Output 3.4 shows the results of Listing 3.5.

You can use this trait of character types to determine how far two char-
acters are from one another. For example, the letter f is three characters
away from the letter c. You can determine this value by subtracting the let-
ter c from the letter f, as Listing 3.6 demonstrates.

Listing 3.6: Determining the Character Difference between Two Characters

int distance = 'f' – 'c';

System.Console.WriteLine(distance);

OUTPUT 3.4:

g

 Operators 89

Output 3.5 shows the results of Listing 3.6.

Special Floating-Point Characteristics

The floating-point types, float and double, have some special characteris-
tics, such as the way they handle precision. This section looks at some spe-
cific examples, as well as some unique floating-point type characteristics.

A float, with seven digits of precision, can hold the value 1,234,567
and the value 0.1234567. However, if you add these two floats together, the
result will be rounded to 1234567, because the decimal portion of the
number is past the seven significant digits that a float can hold. This type
of rounding can become significant, especially with repeated calculations
or checks for equality (see the upcoming Advanced Topic, Unexpected
Inequality with Floating-Point Types).

Note that inaccuracies can occur with a simple assignment, such as dou-
ble number = 140.6F. Since the double can hold a more accurate value than
the float can store, the C# compiler will actually evaluate this expression
to double number = 140.600006103516;. 140.600006103516 is 140.6 as a
float, but not quite 140.6 when represented as a double.

A D V A N C E D T O P I C

Unexpected Inequality with Floating-Point Types
The inaccuracies of floats can be very disconcerting when comparing values
for equality, since they can unexpectedly be unequal. Consider Listing 3.7.

Listing 3.7: Unexpected Inequality Due to Floating-Point Inaccuracies

decimal decimalNumber = 4.2M;

double doubleNumber1 = 0.1F * 42F;

double doubleNumber2 = 0.1D * 42D;

float floatNumber = 0.1F * 42F;

Trace.Assert(decimalNumber != (decimal)doubleNumber1);

// Displays: 4.2 != 4.20000006258488

System.Console.WriteLine(

 "{0} != {1}", decimalNumber, (decimal)doubleNumber1);

OUTPUT 3.5:

3

Chapter 3: Operators and Control Flow90

Trace.Assert((double)decimalNumber != doubleNumber1);

// Displays: 4.2 != 4.20000006258488

System.Console.WriteLine(

 "{0} != {1}", (double)decimalNumber, doubleNumber1);

Trace.Assert((float)decimalNumber != floatNumber);

// Displays: (float)4.2M != 4.2F

System.Console.WriteLine(

 "(float){0}M != {1}F",

 (float)decimalNumber, floatNumber);

Trace.Assert(doubleNumber1 != (double)floatNumber);

// Displays: 4.20000006258488 != 4.20000028610229

System.Console.WriteLine(

 "{0} != {1}", doubleNumber1, (double)floatNumber);

Trace.Assert(doubleNumber1 != doubleNumber2);

// Displays: 4.20000006258488 != 4.2

System.Console.WriteLine(

 "{0} != {1}", doubleNumber1, doubleNumber2);

Trace.Assert(floatNumber != doubleNumber2);

// Displays: 4.2F != 4.2D

System.Console.WriteLine(

 "{0}F != {1}D", floatNumber, doubleNumber2);

Trace.Assert((double)4.2F != 4.2D);

// Display: 4.19999980926514 != 4.2

System.Console.WriteLine(

 "{0} != {1}", (double)4.2F, 4.2D);

Trace.Assert(4.2F != 4.2D);

// Display: 4.2F != 4.2D

System.Console.WriteLine(

 "{0}F != {1}D", 4.2F, 4.2D);

Output 3.6 shows the results of Listing 3.7.

OUTPUT 3.6:

4.2 != 4.20000006258488

4.2 != 4.20000006258488

(float)4.2M != 4.2F

4.20000006258488 != 4.20000028610229

4.20000006258488 != 4.2

4.2F != 4.2D

4.19999980926514 != 4.2

4.2F != 4.2D

 Operators 91

The Assert() methods are designed to display a debug dialog whenever
the parameter evaluates to false. However, all of the Assert() statements
in this code listing will evaluate to true. Therefore, in spite of the apparent
equality of the values in the code listing, they are in fact not equivalent due
to the inaccuracies of a float. Furthermore, there is not some compound-
ing rounding error. The C# compiler performs the calculations instead of
the runtime. Even if you simply assign 4.2F rather than a calculation, the
comparisons will remain unequal.

To avoid unexpected results caused by the inaccuracies of floating-
point types, developers should avoid using equality conditionals with
these types. Rather, equality evaluations should include a tolerance. One
easy way to achieve this is to subtract one value (operand) from the other
and then evaluate whether the absolute value of the result is less than the
maximum tolerance. Even better is to use the decimal type in place of the
float type.

You should be aware of some additional unique floating-point charac-
teristics as well. For instance, you would expect that dividing an integer by
zero would result in an error, and it does with precision data types such as
int and decimal. float and double, however, allow for certain special val-
ues. Consider Listing 3.8, and its resultant output, Output 3.7.

Listing 3.8: Dividing a Float by Zero, Displaying NaN

float n=0f;

// Displays: NaN

System.Console.WriteLine(n / 0);

In mathematics, certain mathematical operations are undefined. In C#,
the result of dividing 0F by the value 0 results in “Not a Number,” and all
attempts to print the output of such a number will result in NaN. Similarly,
taking the square root of a negative number (System.Math.Sqrt(-1)) will
result in NaN.

OUTPUT 3.7:

NaN

Chapter 3: Operators and Control Flow92

A floating-point number could overflow its bounds as well. For exam-
ple, the upper bound of a float type is 3.4E38. Should the number over-
flow that bound, the result would be stored as “positive infinity” and the
output of printing the number would be Infinity. Similarly, the lower
bound of a float type is –3.4E38, and assigning a value below that bound
would result in “negative infinity,” which would be represented by the
string -Infinity. Listing 3.9 produces negative and positive infinity,
respectively, and Output 3.8 shows the results.

Listing 3.9: Overflowing the Bounds of a float

// Displays: -Infinity

System.Console.WriteLine(-1f / 0);

// Displays: Infinity

System.Console.WriteLine(3.402823E+38f * 2f);

Further examination of the floating-point number reveals that it can
contain a value very close to zero, without actually containing zero. If the
value exceeds the lower threshold for the float or double type, then the
value of the number can be represented as “negative zero“ or “positive
zero,“ depending on whether the number is negative or positive, and is
represented in output as -0 or 0.

Parenthesis Operator
Parentheses allow you to group operands and operators so that they are
evaluated together. This is important because it provides a means of over-
riding the default order of precedence. For example, the following two
expressions evaluate to something completely different:

(60 / 10) * 2

60 / (10 * 2)

The first expression is equal to 12; the second expression is equal to 3. In
both cases, the parentheses affect the final value of the expression.

Sometimes the parenthesis operator does not actually change the result,
because the order-of-precedence rules apply appropriately. However, it is

OUTPUT 3.8:

-Infinity

Infinity

 Operators 93

often still a good practice to use parentheses to make the code more read-
able. This expression, for example:

fahrenheit = (celsius * 9.0 / 5.0) + 32.0;

is easier to interpret confidently at a glance than this one is:

fahrenheit = celsius * 9.0 / 5.0 + 32.0;

Developers should use parentheses to make code more readable, disam-
biguating expressions explicitly instead of relying on operator precedence.

Assignment Operators (+=, -=, *=, /=, %=)
Chapter 1 discussed the simple assignment operator, which places the
value of the right-hand side of the operator into the variable on the left-
hand side. Other assignment operators combine common binary opera-
tor calculations with the assignment operator. Take Listing 3.10, for
example.

Listing 3.10: Common Increment Calculation

int x;

x = x + 2;

In this assignment, first you calculate the value of x + 2 and then you
assign the calculated value back to x. Since this type of operation is rela-
tively frequent, an assignment operator exists to handle both the calcula-
tion and the assignment with one operator. The += operator increments the
variable on the left-hand side of the operator with the value on the right-
hand side of the operator, as shown in Listing 3.11.

Listing 3.11: Using the += Operator

int x;

x += 2;

This code, therefore, is equivalent to Listing 3.10.
Numerous other combination assignment operators exist to provide

similar functionality. You can use the assignment operator in conjunction
with not only addition, but also subtraction, multiplication, division, and
the remainder operators, as Listing 3.12 demonstrates.

Chapter 3: Operators and Control Flow94

Listing 3.12: Other Assignment Operator Examples

x -= 2;

x /= 2;

x *= 2;

x %= 2;

Increment and Decrement Operators (++, --)
C# includes special operators for incrementing and decrementing coun-
ters. The increment operator, ++, increments a variable by one each time it
is used. In other words, all of the code lines shown in Listing 3.13 are
equivalent.

Listing 3.13: Increment Operator

spaceCount = spaceCount + 1;

spaceCount += 1;

spaceCount++;

Similarly, you can also decrement a variable by one using the decre-
ment operator, --. Therefore, all of the code lines shown in Listing 3.14 are
also equivalent.

Listing 3.14: Decrement Operator

lines = lines - 1;

lines -= 1;

lines--;

B E G I N N E R T O P I C

A Decrement Example in a Loop
The increment and decrement operators are especially prevalent in loops,
such as the while loop described later in the chapter. For example, Listing
3.15 uses the decrement operator in order to iterate backward through
each letter in the alphabet.

Listing 3.15: Displaying Each Character’s ASCII Value in Descending Order

char current;

int asciiValue;

// Set the initial value of current.

 Operators 95

current='z';

do

{

 // Retrieve the ASCII value of current.

 asciiValue = current;

 System.Console.Write("{0}={1}\t", current, asciiValue);

 // Proceed to the previous letter in the alphabet;

}

while(current>='a');

Output 3.9 shows the results of Listing 3.15.

The increment and decrement operators are used to count how many
times to perform a particular operation. Notice also that in this example, the
increment operator is used on a character (char) data type. You can use incre-
ment and decrement operators on various data types as long as some mean-
ing is assigned to the concept of “next“ or “previous“ for that data type.

Just as with the assignment operator, the increment operator also
returns a value. In other words, it is possible to use the assignment opera-
tor simultaneously with the increment or decrement operator (see Listing
3.16 and Output 3.10).

Listing 3.16: Using the Post-Increment Operator

int count;

int result;

count = 0;

System.Console.WriteLine("result = {0} and count = {1}",

 result, count);

 current--;

OUTPUT 3.9:

z=122 y=121 x=120 w=119 v=118 u=117 t=116 s=115 r=114

q=113 p=112 o=111 n=110 m=109 l=108 k=107 j=106 i=105

h=104 g=103 f=102 e=101 d=100 c=99 b=98 a=97

result = count++;

OUTPUT 3.10:

result = 0 and count = 1

Chapter 3: Operators and Control Flow96

You might be surprised that result is assigned the value in count before
count is incremented. In other words, result ends up with a value of 0
even though count ends up with a value of 1.

Where you place the increment or decrement operator determines
whether the assigned value should be the value of the operand before or
after the calculation, which affects how the code functions. If you want the
value of result to include the increment (or decrement) calculation, you
need to place the operator before the variable being incremented, as shown
in Listing 3.17.

Listing 3.17: Using the Pre-Increment Operator

int count;
int result;
count = 0;

System.Console.WriteLine("result = {0} and count = {1}",
 result, count);

Output 3.11 shows the results of Listing 3.17.

In this example, the increment operator appears before the operand so
the value returned is the value assigned to the variable after the increment.
If x is 1, then ++x will return 2. However, if a postfix operator is used, x++,
the value returned by the expression will still be 1. Regardless of whether
the operator is postfix or prefix, the resultant value of x will be incre-
mented. The difference between prefix and postfix behavior appears in
Listing 3.18. The resultant output is shown in Output 3.12.

Listing 3.18: Comparing the Prefix and Postfix Increment Operators

class IncrementExample
{
 public static void Main()
 {
 int x;

result = ++count;

OUTPUT 3.11:

result = 1 and count = 1

 Operators 97

 x = 1;

 // Display 1, 2.

 System.Console.WriteLine("{0}, {1}, {2}", x++, x++, x);

 // x now contains the value 3.

 // Display 4, 5.

 System.Console.WriteLine("{0}, {1}, {2}", ++x, ++x, x);

 // x now contains the value 5.

 // ...

 }

}

As Listing 3.18 demonstrates, where the increment and decrement oper-
ators appear relative to the operand can affect the result returned from the
operator. Pre-increment/decrement operators return the result after incre-
menting/decrementing the operand. Post-increment/decrement operators
return the result before changing the operand. Developers should use
caution when embedding these operators in the middle of a statement.
When in doubt as to what will happen, use these operators independently,
placing them within their own statements. This way, the code is also more
readable and there is no mistaking the intention.

A D V A N C E D T O P I C

Thread-Safe Incrementing and Decrementing
In spite of the brevity of the increment and decrement operators, these
operators are not atomic. A thread context switch can occur during the exe-
cution of the operator and can cause a race condition. You could use a lock
statement to prevent the race condition. However, for simple increments
and decrements a less expensive alternative is to use the thread-safe Incre-
ment() and Decrement() methods from the System.Threading.Inter-
locked class. These methods rely on processor functions for performing fast
thread-safe increments and decrements (see Chapter 19 for more detail).

OUTPUT 3.12:

1, 2, 3

4, 5, 5

Chapter 3: Operators and Control Flow98

Constant Expressions (const)
The preceding chapter discussed literal values, or values embedded
directly into the code. It is possible to combine multiple literal values in a
constant expression using operators. By definition, a constant expression
is one that the C# compiler can evaluate at compile time (instead of calcu-
lating it when the program runs) because it is composed of constant oper-
ands. For example, the number of seconds in a day can be assigned as a
constant expression whose result can then be used in other expressions.

The const keyword in Listing 3.19 locks the value at compile time. Any
attempt to modify the value later in the code results in a compile error.

Listing 3.19:

Note that even the value assigned to secondsPerWeek is a constant expres-
sion, because the operands in the expression are also constants, so the com-
piler can determine the result.

Introducing Flow Control

Later in this chapter is a code listing (Listing 3.43) that shows a simple way
to view a number in its binary form. Even such a simple program, how-
ever, cannot be written without using control flow statements. Such state-
ments control the execution path of the program. This section discusses
how to change the order of statement execution based on conditional
checks. Later on, you will learn how to execute statement groups repeat-
edly through loop constructs.

A summary of the control flow statements appears in Table 3.1. Note
that the General Syntax Structure column indicates common statement
use, not the complete lexical structure.

// ...
public long Main()
{
 const int secondsPerDay = 60 * 60 * 24;
 const int secondsPerWeek = secondsPerDay * 7;

 // ...
}

Constant

Constant Expression

99

TABLE 3.1: Control Flow Statements

Statement General Syntax Structure Example

if statement if(boolean-expression)

 embedded-statement

if (input == "quit")

{

 System.Console.WriteLine(

 "Game end");

 return;

}

if(boolean-expression)

 embedded-statement

else

 embedded-statement

if (input == "quit")

{

 System.Console.WriteLine(

 "Game end");

 return;

}

else

 GetNextMove();

while statement while(boolean-expression)

 embedded-statement

while(count < total)

{

 System.Console.WriteLine(

 "count = {0}", count);

 count++;

}

Continues

100

Statement General Syntax Structure Example

do while statement do

 embedded-statement

while(boolean-expression);

do

{

 System.Console.WriteLine(

 "Enter name:");

 input =

 System.Console.ReadLine();

}

while(input != "exit");

for statement for(for-initializer;

 boolean-expression;

 for-iterator)

 embedded-statement

for (int count = 1;

 count <= 10;

 count++)

{

 System.Console.WriteLine(

 "count = {0}", count);

}

Foreach statement foreach(type identifier in

 expression)

 embedded-statement

foreach (char letter in email)

{

 if(!insideDomain)

 {

 if (letter == '@')

 {

 insideDomain = true;

 }

 continue;

 }

 System.Console.Write(

 letter);

}

continue statement continue;

TABLE 3.1: Control Flow Statements (Continued)

101

Statement General Syntax Structure Example

switch statement switch(governing-type-expression)

{

 ...

 case const-expression:

 statement-list

 jump-statement

 default:

 statement-list

 jump-statement

}

switch(input)

{

 Case "exit":

 case "quit":

 System.Console.WriteLine(

 "Exiting app....");

 break;

 case "restart":

 Reset();

 goto case "start";

 case "start":

 GetMove();

 break;

break statement break; default:

 System.Console.WriteLine(

 input);

 break;

 }

goto statement goto identifier;

goto case const-expression;

goto default;

TABLE 3.1: Control Flow Statements (Continued)

Chapter 3: Operators and Control Flow102

An embedded-statement in Table 3.1 corresponds to any statement, includ-
ing a code block (but not a declaration statement or a label).

Each C# control flow statement in Table 3.1 appears in the tic-tac-toe3

program found in Appendix B. The program displays the tic-tac-toe board,
prompts each player, and updates with each move.

The remainder of this chapter looks at each statement in more detail.
After covering the if statement, it introduces code blocks, scope, Boolean
expressions, and bitwise operators before continuing with the remaining
control flow statements. Readers who find the table familiar because of C#’s
similarities to other languages can jump ahead to the section titled C# Pre-
processor Directives or skip to the Summary section at the end of the chapter.

if Statement
The if statement is one of the most common statements in C#. It evaluates
a Boolean expression (an expression that returns a Boolean), and if the
result is true, the following statement (or block) is executed. The general
form is as follows:

if(condition)

 consequence

[else

 alternative]

There is also an optional else clause for when the Boolean expression is
false. Listing 3.20 shows an example.

Listing 3.20: if/else Statement Example

class TicTacToe // Declares the TicTacToe class.

{

 static void Main() // Declares the entry point of the program.

 {

 string input;

 // Prompt the user to select a 1- or 2- player game.

 System.Console.Write (

 "1 – Play against the computer\n" +

 "2 – Play against another player.\n" +

 "Choose:"

);

 input = System.Console.ReadLine();

3. Known as noughts and crosses to readers outside the United States.

 Introducing Flow Control 103

 }

}

In Listing 3.20, if the user enters 1, the program displays "Play against
computer selected.". Otherwise, it displays "Play against another

player.".

Nested if
Sometimes code requires multiple if statements. The code in Listing 3.21
first determines whether the user has chosen to exit by entering a number
less than or equal to 0; if not, it checks whether the user knows the maxi-
mum number of turns in tic-tac-toe.

Listing 3.21: Nested if Statements

1 class TicTacToeTrivia

2 {

3 static void Main()

4 {

5 int input; // Declare a variable to store the input.

6

7 System.Console.Write(

8 "What is the maximum number " +

9 "of turns in tic-tac-toe?" +

10 "(Enter 0 to exit.): ");

11

12 // int.Parse() converts the ReadLine()

13 // return to an int data type.

14 input = int.Parse(System.Console.ReadLine());

15

16 if (input <= 0)

17 // Input is less than or equal to 0.

18 System.Console.WriteLine("Exiting...");

19 else

20 if (input < 9)

21 // Input is less than 9.

22 System.Console.WriteLine(

23 "Tic-tac-toe has more than {0}" +

 if(input=="1")

 // The user selected to play the computer.

 System.Console.WriteLine(

 "Play against computer selected.");

 else

 // Default to 2 players (even if user didn't enter 2).

 System.Console.WriteLine(

 "Play against another player.");

Chapter 3: Operators and Control Flow104

24 "maximum turns.", input);

25 else

26 if(input>9)

27 // Input is greater than 9.

28 System.Console.WriteLine(

29 "Tic-tac-toe has fewer than {0}" +

30 "maximum turns.", input);

31 else

32 // Input equals 9.

33 System.Console.WriteLine(

34 "Correct, " +

35 "tic-tac-toe has a max. of 9 turns.");

36 }

37 }

Output 3.13 shows the results of Listing 3.21.

Assume the user enters 9 when prompted at line 14. Here is the execution
path:

1. Line 16: Check if input is less than 0. Since it is not, jump to line 20.

2. Line 20: Check if input is less than 9. Since it is not, jump to line 26.

3. Line 26: Check if input is greater than 9. Since it is not, jump to line 33.

4. Line 33: Display that the answer was correct.

Listing 3.21 contains nested if statements. To clarify the nesting, the
lines are indented. However, as you learned in Chapter 1, whitespace does
not affect the execution path. Without indenting and without newlines, the
execution would be the same. The code that appears in the nested if state-
ment in Listing 3.22 is equivalent to Listing 3.21.

Listing 3.22: if/else Formatted Sequentially

if (input < 0)

 System.Console.WriteLine("Exiting...");

else if (input < 9)

 System.Console.WriteLine(

OUTPUT 3.13:

What’s the maximum number of turns in tic-tac-toe? (Enter 0 to exit.): 9

Correct, tic-tac-toe has a max. of 9 turns.

 Code Blocks ({}) 105

 "Tic-tac-toe has more than {0}" +

 " maximum turns.", input);

else if(input>9)

 System.Console.WriteLine(

 "Tic-tac-toe has less than {0}" +

 " maximum turns.", input);

else

 System.Console.WriteLine(

 "Correct, tic-tac-toe has a maximum of 9 turns.");

Although the latter format is more common, in each situation use the for-
mat that results in the clearest code.

Code Blocks ({})

In the previous if statement examples, only one statement follows if and
else: a single System.Console.WriteLine(), similar to Listing 3.23.

Listing 3.23: if Statement with No Code Block

if(input<9)

With curly braces, however, we can combine statements into a single

calculation in Listing 3.24.

Listing 3.24: if Statement Followed by a Code Block

class CircleAreaCalculator

{

 static void Main()

 {

 double radius; // Declare a variable to store the radius.

 double area; // Declare a variable to store the area.

 System.Console.Write("Enter the radius of the circle: ");

 // double.Parse converts the ReadLine()

 // return to a double.

 radius = double.Parse(System.Console.ReadLine());

 if(radius>=0)

 System.Console.WriteLine("Exiting");

unit called a code block, allowing the execution of multiple statements for
a condition. Take, for example, the highlighted code block in the radius

Chapter 3: Operators and Control Flow106

 else

 {

 System.Console.WriteLine(

 "{0} is not a valid radius.", radius);

 }

 }

}

Output 3.14 shows the results of Listing 3.24.

In this example, the if statement checks whether the radius is positive. If
so, the area of the circle is calculated and displayed; otherwise, an invalid
radius message is displayed.

Notice that in this example, two statements follow the first if. How-
ever, these two statements appear within curly braces. The curly braces
combine the statements into a code block.

If you omit the curly braces that create a code block in Listing 3.24, only
the statement immediately following the Boolean expression executes con-
ditionally. Subsequent statements will execute regardless of the if state-
ment’s Boolean expression. The invalid code is shown in Listing 3.25.

Listing 3.25: Relying on Indentation, Resulting in Invalid Code

if(radius>=0)

 area = 3.14*radius*radius;

 System.Console.WriteLine(// Logic Error!! Needs code block.

 "The area of the circle is: {0}", area);

In C#, indentation is for code readability only. The compiler ignores it,
and therefore, the previous code is semantically equivalent to Listing 3.26.

 {

 // Calculate the area of the circle.

 area = 3.14*radius*radius;

 System.Console.WriteLine(

 "The area of the circle is: {0}", area);

 }

OUTPUT 3.14:

Enter the radius of the circle: 3

The area of the circle is: 28.26

 Scope and Declaration Space 107

Listing 3.26: Semantically Equivalent to Listing 3.25

if(radius>=0)

{

 area = 3.14*radius*radius;

}

System.Console.WriteLine(// Error!! Place within code block.

 "The area of the circle is: {0}", area);

Programmers should take great care to avoid subtle bugs such as this, per-
haps even going so far as to always include a code block after a control
flow statement, even if there is only one statement.

Although unusual, it is possible to have a code block that is not lexically
a direct part of a control flow statement. In other words, placing curly braces
on their own (without a conditional or loop, for example) is legal syntax.

A D V A N C E D T O P I C

Math Constants
In Listing 3.25 and Listing 3.26, the value of pi as 3.14 was hardcoded—a
crude approximation at best. There are much more accurate definitions for
pi and E in the System.Math class. Instead of hardcoding a value, code
should use System.Math.PI and System.Math.E.

Scope and Declaration Space

Scope and declaration space are hierarchical contexts bound by a code
block. Scope is the region of source code in which it is legal to refer to an
item by its unqualified name because the name reference is unique and
unambiguous.

The area in which declaring the name is unique is the declaration space.
C# prevents two local variable declarations with the same name from
appearing in the same declaration space. Similarly, it is not possible to
declare two methods with the signature of Main() within the same class
(declaration scope for the method name includes the full signature). The
scope identifies what within a code block an unqualified name refers to;
the declaration scope specifies the region in which declaring something
with the same name will cause a conflict.

Chapter 3: Operators and Control Flow108

Scope restricts visibility. A local variable, for example, is not visible
outside its defining method. Similarly, code that declares a variable in an
if block makes the variable inaccessible outside the if block (even in the
same method). In Listing 3.27, defining message inside the if statement
restricts its scope to the statement only. To avoid the error, you must
declare the string outside the if statement.

Listing 3.27: Variables Inaccessible Outside Their Scope

class Program
{
 static void Main(string[] args)
 {
 int playerCount;
 System.Console.Write(
 "Enter the number of players (1 or 2):");
 playerCount = int.Parse(System.Console.ReadLine());
 if (playerCount != 1 && playerCount != 2)
 {

 }
 else
 {
 // ...
 }

 }
}

Output 3.15 shows the results of Listing 3.27.

 string message =
 "You entered an invalid number of players.";

 // Error: message is not in scope.
 System.Console.WriteLine(message);

OUTPUT 3.15:

...

...\Program.cs(18,26): error CS0103: The name 'message' does not exist
in the current context

 Boolean Expressions 109

Declaration space cascades down to child (or embedded) code blocks
within a method. The C# compiler prevents the name of a local variable
declared immediately within a method code block (or as a parameter) from
being reused within a child code block. The declaration space is the parent
code block of a variable, including any child blocks within the parent code
block. From Listing 3.27, because args and playerCount are declared within
the method code block, they cannot be used again within declarations any-
where within the method.

Scope is also bound by the parent code block. The name message
applies only within the if block, not outside it. Similarly, playerCount
refers to the same variable throughout the method following where the
variable is declared—including within both the if and else child blocks.

Boolean Expressions

The portion of the if statement within parentheses is the Boolean expres-
sion, sometimes referred to as a conditional. In Listing 3.28, the Boolean
expression is highlighted.

Listing 3.28: Boolean Expression

{
 // Input is less than 9.
 System.Console.WriteLine(
 "Tic-tac-toe has more than {0}" +
 " maximum turns.", input);
}
// ...

Boolean expressions appear within many control flow statements. The
key characteristic is that they always evaluate to true or false. For input<9
to be allowed as a Boolean expression, it must return a bool. The compiler
disallows x=42, for example, because it assigns x, returning the new value,
instead of checking whether x’s value is 42.

if(input < 9)

Chapter 3: Operators and Control Flow110

Relational and Equality Operators
Included in the previous code examples was the use of relational opera-
tors. In those examples, relational operators were used to evaluate user
input. Table 3.2 lists all the relational and equality operators.

Language Contrast: C++—Mistakenly Using = in Place of ==

The significant feature of Boolean expressions in C# is the elimination of a

common coding error that historically appeared in C/C++. In C++, Listing

3.29 is allowed.

Listing 3.29: C++, But Not C#, Allows Assignment as a Boolean Expression

if(input=9) // COMPILE ERROR: Allowed in C++, not in C#.

 System.Console.WriteLine(

 "Correct, tic-tac-toe has a maximum of 9 turns.");

Although this appears to check whether input equals 9, Chapter 1

showed that = represents the assignment operator, not a check for equal-

ity. The return from the assignment operator is the value assigned to the

variable—in this case, 9. However, 9 is an int, and as such it does not

qualify as a Boolean expression and is not allowed by the C# compiler.

TABLE 3.2: Relational and Equality Operators

Operator Description Example

< Less than input<9;

> Greater than input>9;

<= Less than or equal to input<=9;

>= Greater than or equal to input>=9;

== Equality operator input==9;

!= Inequality operator input!=9;

 Boolean Expressions 111

In addition to determining whether a value is greater than or less than
another value, operators are also required to determine equivalency. You
test for equivalence by using equality operators. In C#, the syntax follows
the C/C++/Java pattern with ==. For example, to determine whether
input equals 9 you use input==9. The equality operator uses two equal
signs to distinguish it from the assignment operator, =.

The exclamation point signifies NOT in C#, so to test for inequality you
use the inequality operator, !=.

The relational and equality operators are binary operators, meaning
they compare two operands. More significantly, they always return a Bool-
ean data type. Therefore, you can assign the result of a relational operator
to a bool variable, as shown in Listing 3.30.

Listing 3.30: Assigning the Result of a Relational Operator to a bool

bool result = 70 > 7;

In the tic-tac-toe program (see Appendix B), you use the equality operator
to determine whether a user has quit. The Boolean expression of Listing 3.31
includes an OR (||) logical operator, which the next section discusses in detail.

Listing 3.31: Using the Equality Operator in a Boolean Expression

if (input == "" || input == "quit")

{

 System.Console.WriteLine("Player {0} quit!!", currentPlayer);

 break;

}

Logical Boolean Operators
Logical operators have Boolean operands and return a Boolean result.
Logical operators allow you to combine multiple Boolean expressions to
form other Boolean expressions. The logical operators are ||, &&, and ^,
corresponding to OR, AND, and exclusive OR, respectively.

OR Operator (||)

In Listing 3.31, if the user enters quit or presses the Enter key without typ-
ing in a value, it is assumed that she wants to exit the program. To enable
two ways for the user to resign, you use the logical OR operator, ||.

Chapter 3: Operators and Control Flow112

The || operator evaluates Boolean expressions and returns a true value
if either one of them is true (see Listing 3.32).

Listing 3.32: Using the OR Operator

if((hourOfTheDay > 23) || (hourOfTheDay < 0))

 System.Console.WriteLine("The time you entered is invalid.");

Note that with the Boolean OR operator, it is not necessary to evaluate
both sides of the expression. Like all operators in C#, the OR operators go
from left to right, so if the left portion of the expression evaluates to true,
then the right portion is ignored. Therefore, if hourOfTheDay has the value
33 then (hourOfTheDay > 23) will return true and the OR operator ignores
the second half of the expression—short-circuiting . Short-circuiting an
expression also occurs with the Boolean AND operator.

AND Operator (&&)

The Boolean AND operator, &&, evaluates to true only if both operands evalu-
ate to true. If either operand is false, the combined expression will return false.

Listing 3.33 displays that it is time for work as long as the current hour
is both greater than 10 and less than 24.4 As you saw with the OR operator,
the AND operator will not always evaluate the right side of the expression.
If the left operand returns false, then the overall result will be false
regardless of the right operand, so the runtime ignores the right operand.

Listing 3.33: Using the AND Operator

if ((10 < hourOfTheDay) && (hourOfTheDay < 24))

 System.Console.WriteLine(

 "Hi-Ho, Hi-Ho, it's off to work we go.");

Exclusive OR Operator (^)

The caret symbol, ^, is the “exclusive OR” (XOR) operator. When applied
to two Boolean operands, the XOR operator returns true only if exactly
one of the operands is true, as shown in Table 3.3.

Unlike the Boolean AND and Boolean OR operators, the Boolean XOR
operator does not short-circuit: It always checks both operands, because the
result cannot be determined unless the values of both operands are known.

4. The typical hours that programmers work.

it

 Boolean Expressions 113

Logical Negation Operator (!)
Sometimes called the NOT operator, the logical negation operator, !,
inverts a bool data type to its opposite. This operator is a unary operator,
meaning it requires only one operand. Listing 3.34 demonstrates how it
works, and Output 3.16 shows the results.

Listing 3.34: Using the Logical Negation Operator

bool result;

bool valid = false;

// Displays "result = True".

System.Console.WriteLine("result = {0}", result);

To begin, valid is set to false. You then use the negation operator on
valid and assign a new value to result.

Conditional Operator (?)
In place of an if-else statement used to select one of two values, you can
use the conditional operator. The conditional operator is a question mark
(?), and the general format is as follows:

 conditional? consequence: alternative;

The conditional operator is a ternary operator, because it has three
operands: conditional, consequence, and alternative. If the conditional

TABLE 3.3: Conditional Values for the XOR Operator

Left Operand Right Operand Result

True True False

True False True

False True True

False False False

result = !valid;

OUTPUT 3.16:

result = True

Chapter 3: Operators and Control Flow114

evaluates to true, then the conditional operator returns consequence.
Alternatively, if the conditional evaluates to false, then it returns
alternative.

Listing 3.35 is an example of how to use the conditional operator. The
full listing of this program appears in Appendix B.

Listing 3.35: Conditional Operator

public class TicTacToe

{

 public static string Main()

 {

 // Initially set the currentPlayer to Player 1;

 int currentPlayer = 1;

 // ...

 for (int turn = 1; turn <= 10; turn++)

 {

 // ...

 // Switch players

 }

 }

}

The program swaps the current player. To do this, it checks whether the
current value is 2. This is the conditional portion of the conditional state-
ment. If the result is true, then the conditional operator returns the value 1.
Otherwise, it returns 2. Unlike an if statement, the result of the conditional
operator must be assigned (or passed as a parameter). It cannot appear as
an entire statement on its own.

Use the conditional operator sparingly, because readability is often sac-
rificed and a simple if/else statement may be more appropriate.

Null Coalescing Operator (??)
Starting with C# 2.0, there is a shortcut to the conditional operator when
checking for null. The shortcut is the null coalescing operator, and it eval-
uates an expression for null and returns a second expression if the value
is null.

expression1?? expression2;

 currentPlayer = (currentPlayer == 2) ? 1 : 2;

 Bitwise Operators (<<, >>, |, &, ^, ~) 115

If the expression (expression1) is not null, then expression1 is
returned. In other words, the null coalescing operator returns expression1
directly unless expression1 evaluates to null, in which case expression2
is returned. Unlike the conditional operator, the null coalescing operator is
a binary operator.

Listing 3.36 is an example of how to use the null coalescing operator.

Listing 3.36: Null Coalescing Operator

string fileName;

// ...

// ...

In this listing, we use the null coalescing operator to set fullName to
“default.txt” if fileName is null. If fileName is not null, fullName is simply
assigned the value of fileName.

Bitwise Operators (<<, >>, |, &, ^, ~)

An additional set of operators that is common to virtually all program-
ming languages is the set of operators for manipulating values in their
binary formats: the bit operators.

B E G I N N E R T O P I C

Bits and Bytes
All values within a computer are represented in a binary format of 1s and 0s,
called binary digits (bits). Bits are grouped together in sets of eight, called
bytes. In a byte, each successive bit corresponds to a value of 2 raised to a
power, starting from 20 on the right, to 27 on the left, as shown in Figure 3.1.

Figure 3.1: Corresponding Placeholder Values

In many instances, particularly when dealing with low-level or system
services, information is retrieved as binary data. In order to manipulate these
devices and services, you need to perform manipulations of binary data.

string fullName = fileName??"default.txt";

0 0 0 0 0 0 0 0

27 26 25 24 23 22 21 20

Chapter 3: Operators and Control Flow116

As shown in Figure 3.2, each box corresponds to a value of 2 raised to
the power shown. The value of the byte (8-bit number) is the sum of the
powers of 2 of all of the eight bits that are set to 1.

Figure 3.2: Calculating the Value of an Unsigned Byte

The binary translation just described is significantly different for signed
numbers. Signed numbers (long, short, int) are represented using a 2s
complement notation. This is so that addition continues to work when
adding a negative number to a positive number as though both were posi-
tive operands. With this notation, negative numbers behave differently
than positive numbers. Negative numbers are identified by a 1 in the left-
most location. If the leftmost location contains a 1, you add the locations
with 0s rather than the locations with 1s. Each location corresponds to the
negative power of 2 value. Furthermore, from the result, it is also neces-
sary to subtract 1. This is demonstrated in Figure 3.3.

Figure 3.3: Calculating the Value of a Signed Byte

Therefore, 1111 1111 1111 1111 corresponds to –1 and 1111 1111 1111
1001 holds the value –7. 1000 0000 0000 0000 corresponds to the lowest
negative value that a 16-bit integer can hold.

Shift Operators (<<, >>, <<=, >>=)
Sometimes you want to shift the binary value of a number to the right or
left. In executing a left shift, all bits in a number’s binary representation are
shifted to the left by the number of locations specified by the operand on the
right of the shift operator. Zeroes are then used to backfill the locations on
the right side of the binary number. A right-shift operator does almost the

0 0 0 0 0 1 1 1

7= 4 + 2 + 1

1 1 1 1 1 0 0 1

-7 = -4 -2 +0 -1

 Bitwise Operators (<<, >>, |, &, ^, ~) 117

same thing in the opposite direction. However, if the number is negative,
then the values used to backfill the left side of the binary number are ones
and not zeroes. The shift operators are >> and <<, the right-shift and left-
shift operators, respectively. In addition, there are combined shift and
assignment operators, <<= and >>=.

Consider the following example. Suppose you had the int value -7,
which would have a binary representation of 1111 1111 1111 1111 1111
1111 1111 1001. In Listing 3.37, you right-shift the binary representation
of the number –7 by two locations.

Listing 3.37: Using the Right-Shift Operator

int x;

x = (-7 >> 2); // 11111111111111111111111111111001 becomes

 // 11111111111111111111111111111110

// Write out "x is -2."

System.Console.WriteLine("x = {0}.", x);

Output 3.17 shows the results of Listing 3.37.

Because of the right shift, the value of the bit in the rightmost location has
“dropped off” the edge and the negative bit indicator on the left shifts by
two locations to be replaced with 1s. The result is -2.

Bitwise Operators (&, |, ^)
In some instances, you might need to perform logical operations, such as
AND, OR, and XOR, on a bit-by-bit basis for two operands. You do this via
the &, |, and ^ operators, respectively.

B E G I N N E R T O P I C

Logical Operators Explained
If you have two numbers, as shown in Figure 3.4, the bitwise operations will
compare the values of the locations beginning at the leftmost significant

OUTPUT 3.17:

x = -2.

Chapter 3: Operators and Control Flow118

value and continuing right until the end. The value of “1” in a location is
treated as “true,”and the value of “0” in a location is treated as “false.”

Figure 3.4: The Numbers 12 and 7 Represented in Binary

Therefore, the bitwise AND of the two values in Figure 3.4 would be the
bit-by-bit comparison of bits in the first operand (12) with the bits in the
second operand (7), resulting in the binary value 000000100, which is 4.
Alternatively, a bitwise OR of the two values would produce 00001111, the
binary equivalent of 15. The XOR result would be 00001011, or decimal 11.

Listing 3.38 demonstrates how to use these bitwise operators. The
results of Listing 3.38 appear in Output 3.18.

Listing 3.38: Using Bitwise Operators

byte and, or, xor;

and = 12 & 7; // and = 4

or = 12 | 7; // or = 15

xor = 12 ^ 7; // xor = 11

System.Console.WriteLine(

 "and = {0} \nor = {1}\nxor = {2}"

 and, or, xor);

In Listing 3.38, the value 7 is the mask; it is used to expose or eliminate spe-
cific bits within the first operand using the particular operator expression.

In order to convert a number to its binary representation, you need to
iterate across each bit in a number. Listing 3.39 is an example of a program

OUTPUT 3.18:

and = 4

or = 15

xor = 11

0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 1

12:

7:

 Bitwise Operators (<<, >>, |, &, ^, ~) 119

that converts an integer to a string of its binary representation. The results
of Listing 3.39 appear in Output 3.19.

Listing 3.39: Getting a String Representation of a Binary Display

public class BinaryConverter

{

 public static void Main()

 {

 const int size = 64;

 ulong value;

 char bit;

 System.Console.Write ("Enter an integer: ");

 // Use long.Parse() so as to support negative numbers

 // Assumes unchecked assignment to ulong.

 value = (ulong)long.Parse(System.Console.ReadLine());

 // Set initial mask to 100....

 ulong mask = 1ul << size - 1;

 for (int count = 0; count < size; count++)

 {

 bit = ((mask & value) > 0) ? '1': '0';

 System.Console.Write(bit);

 // Shift mask one location over to the right

 mask >>= 1;

 }

 System.Console.WriteLine();

 }

}

Notice that within each iteration of the for loop (discussed shortly), you
use the right-shift assignment operator to create a mask corresponding to
each bit in value. By using the & bit operator to mask a particular bit, you
can determine whether the bit is set. If the mask returns a positive result,
you set the corresponding bit to 1; otherwise, it is set to 0. In this way, you
create a string representing the binary value of an unsigned long.

OUTPUT 3.19:

Enter an integer: 42

00101010

Chapter 3: Operators and Control Flow120

Bitwise Assignment Operators (&=, |=, ^=)
Not surprisingly, you can combine these bitwise operators with assign-
ment operators as follows: &=, |=, and ̂ =. As a result, you could take a vari-
able, OR it with a number, and assign the result back to the original
variable, which Listing 3.40 demonstrates.

Listing 3.40: Using Logical Assignment Operators

byte and, or, xor;

and = 12;

or = 12;

xor = 12;

System.Console.WriteLine(

 "and = {0} \nor = {1} \nxor = {2}",

 and, or, xor);

The results of Listing 3.40 appear in Output 3.20.

Combining a bitmap with a mask using something like fields &= mask
clears the bits in fields that are not set in the mask. The opposite, fields
&= ~mask, clears out the bits in fields that are set in mask.

Bitwise Complement Operator (~)
The bitwise complement operator takes the complement of each bit in the
operand, where the operand can be an int, uint, long, or ulong. ~1, there-
fore, returns 1111 1111 1111 1111 1111 1111 1111 1110 and ~(1<<31)
returns 0111 1111 1111 1111 1111 1111 1111 1111.

and &= 7; // and = 4

or |= 7; // or = 15

xor ̂ = 7; // xor = 11

OUTPUT 3.20:

and = 4

or = 15

xor = 11

 Control Flow Statements, Continued 121

Control Flow Statements, Continued

With the additional coverage of Boolean expressions, it’s time to consider
more of the control flow statements supported by C#. As indicated in the
introduction to this chapter, many of these statements will be familiar to
experienced programmers, so you can skim this section for information
specific to C#. Note in particular the foreach loop, as this may be new to
many programmers.

The while and do/while Loops
Until now, you have learned how to write programs that do something
only once. However, one of the important capabilities of the computer is
that it can perform the same operation multiple times. In order to do this,
you need to create an instruction loop. The first instruction loop I will dis-
cuss is the while loop. The general form of the while statement is as
follows:

while(boolean-expression)

 statement

The computer will repeatedly execute statement as long as boolean-
expression evaluates to true. If the expression evaluates to false, then
code execution continues at the instruction following statement. (Note that
statement will continue to execute even if it causes boolean-expression to
be false. It isn’t until the boolean-expression is reevaluated within the
while condition that the loop exits.) The Fibonacci calculator shown in
Listing 3.41 demonstrates the while loop.

Listing 3.41: while Loop Example

class FibonacciCalculator

{

 static void Main()

 {

 decimal current;

 decimal previous;

 decimal temp;

 decimal input;

 System.Console.Write("Enter a positive integer:");

Chapter 3: Operators and Control Flow122

 // decimal.Parse convert the ReadLine to a decimal.

 input = decimal.Parse(System.Console.ReadLine());

 // Initialize current and previous to 1, the first

 // two numbers in the Fibonacci series.

 current = previous = 1;

 // While the current Fibonacci number in the series is

 // less than the value input by the user.

 System.Console.WriteLine(

 "The Fibonacci number following this is {0}",

 current);

 }

}

A Fibonacci number is a member of the Fibonacci series, which
includes all numbers that are the sum of the previous two numbers in the
series, beginning with 1 and 1. In Listing 3.41, you prompt the user for an
integer. Then you use a while loop to find the Fibonacci number that is
greater than the number the user entered.

B E G I N N E R T O P I C

When to Use a while Loop
The remainder of this chapter considers other types of statements that
cause a block of code to execute repeatedly. The term loop refers to the
block of code that is to be executed within the while statement, since the
code is executed in a “loop” until the exit condition is achieved. It is impor-
tant to understand which loop construct to select. You use a while con-
struct to iterate while the condition evaluates to true. A for loop is used
most appropriately whenever the number of repetitions is known, such as
counting from 0 to n. A do/while is similar to a while loop, except that it
will always loop at least once.

 while(current <= input)

 {

 temp = current;

 current = previous + current;

 previous = temp;

 }

 Control Flow Statements, Continued 123

The do/while loop is very similar to the while loop except that a do/
while loop is preferred when the number of repetitions is from 1 to n and n
is indeterminate when iterating begins. This pattern occurs most com-
monly when repeatedly prompting a user for input. Listing 3.42 is taken
from the tic-tac-toe program.

Listing 3.42: do/while Loop Example

// Repeatedly request player to move until he

// enter a valid position on the board.

do

{

 valid = false;

 // Request a move from the current player.

 System.Console.Write(

 "\nplayer {O}: Enter move:", currentplayer);

 input = System.Console.ReadLine();

 // Check the current player's input.

 // ...

} while (!valid);

In Listing 3.42, you always initialize valid to false at the beginning of
each iteration, or loop repetition. Next, you prompt and retrieve the num-
ber the user input. Although not shown here, you then check whether the
input was correct, and if it was, you assign valid equal to true. Since the
code uses a do/while statement rather than a while statement, the user
will be prompted for input at least once.

The general form of the do/while loop is as follows:

 do

 statement

 while(boolean-expression);

As with all the control flow statements, the code blocks are not part of
the general form. However, a code block is generally used in place of a sin-
gle statement in order to allow multiple statements.

Chapter 3: Operators and Control Flow124

The for Loop
Increment and decrement operators are frequently used within a for
loop. The for loop iterates a code block until a specified condition is
reached in a way similar to the while loop. The difference is that the for
loop has built-in syntax for initializing, incrementing, and testing the
value of a counter.

Listing 3.43 shows the for loop used to display an integer in binary
form. The results of this listing appear in Output 3.21.

Listing 3.43: Using the for Loop

public class BinaryConverter
{
 public static void Main()
 {
 const int size = 64;
 ulong value;
 char bit;

 System.Console.Write ("Enter an integer: ");
 // Use long.Parse() so as to support negative numbers
 // Assumes unchecked assignment to ulong.
 value = (ulong)long.Parse(System.Console.ReadLine());

 // Set initial mask to 100....
 ulong mask = 1ul << size - 1;
 for (int count = 0; count < size; count++)
 {
 bit = ((mask & value) > 0) ? '1': '0';
 System.Console.Write(bit);
 // Shift mask one location over to the right
 mask >>= 1;
 }
 }
}

Listing 3.43 performs a bit mask 64 times, once for each bit in the num-
ber. The for loop declares and initializes the variable count, escapes once
the count reaches 64, and increments the count during each iteration. Each

OUTPUT 3.21:

Enter an integer: -42
11010110

 Control Flow Statements, Continued 125

expression within the for loop corresponds to a statement. (It is easy to
remember that the separation character between expressions is a semico-
lon and not a comma, because each expression could be a statement.)

You write a for loop generically as follows:

 for(initial; boolean-expression; loop)

 statement

Here is a breakdown of the for loop.

• The initial expression performs operations that precede the first
iteration. In Listing 3.43, it declares and initializes the variable count.
The initial expression does not have to be a declaration of a new
variable. It is possible, for example, to declare the variable beforehand
and simply initialize it in the for loop. Variables declared here, how-
ever, are bound within the scope of the for statement.

• The boolean-expression portion of the for loop specifies an end con-
dition. The loop exits when this condition is false in a manner similar
to the while loop’s termination. The for loop will repeat only as long
as boolean-expression evaluates to true. In the preceding example,
the loop exits when count increments to 64.

• The loop expression executes after each iteration. In the preceding
example, count++ executes after the right shift of the mask (mask >>=
1), but before the Boolean expression is evaluated. During the sixty-
fourth iteration, count increments to 64, causing boolean-expression
to be false and, therefore, terminating the loop. Because each expres-
sion may be thought of as a separate statement, each expression in the
for loop is separated by a semicolon.

• The statement portion of the for loop is the code that executes while
the conditional expression remains true.

If you wrote out each for loop execution step in pseudocode without
using a for loop expression, it would look like this:

1. Declare and initialize count to 0.

2. Verify that count is less than 64.

Chapter 3: Operators and Control Flow126

3. Calculate bit and display it.

4. Shift the mask.

5. Increment count by one.

6. If count<64, then jump back to line 3.

The for statement doesn’t require any of the elements between paren-
theses. for(;;){ ... } is perfectly valid; although there still needs to be a
means to escape from the loop to avoid executing infinitely. Similarly, the
initial and loop expressions can be a complex expression involving multi-
ple subexpressions, as shown in Listing 3.44.

Listing 3.44: for Loop Using Multiple Expressions

{

 System.Console.Write("{0}{1}{2}\t",

 x, (x>y? '>' : '<'), y);

}

The results of Listing 3.44 appear in Output 3.22.

In this case, the comma behaves exactly as it does in a declaration state-
ment, one that declares and initializes multiple variables. However, pro-
grammers should avoid complex expressions such as this one because they
are difficult to read and understand.

Generically, you can write the for loop as a while loop, as shown here:

 initial;

 while(boolean-expression)

 {

 statement;

 loop;

 }

for(int x=0, y=5; ((x<=5) && (y>=0)); y--, x++)

OUTPUT 3.22:

0<5 1<4 2<3 3>2 4>1 5>0

 Control Flow Statements, Continued 127

B E G I N N E R T O P I C

Choosing between for and while Loops
Although you can use the two statements interchangeably, generally you
would use the for loop whenever there is some type of counter, and the
total number of iterations is known when the loop is initialized. In con-
trast, you would typically use the while loop when iterations are not based
on a count or when the number of iterations is indeterminate when iterat-
ing commences.

The foreach Loop
The last loop statement within the C# language is foreach. foreach is
designed to iterate through a collection of items, setting a variable to repre-
sent each item in turn. During the loop, operations may be performed on
the item. One feature of the foreach loop is that it is not possible to acci-
dentally miscount and iterate over the end of the collection.

The general form of the foreach statement is as follows:

 foreach(type variable in collection)

 statement;

Here is a breakdown of the foreach statement.

• type is used to declare the data type of the variable for each item
within the collection.

• variable is a read-only variable into which the foreach construct will
automatically assign the next item within the collection. The scope of
the variable is limited to the foreach loop.

• collection is an expression, such as an array, representing multiple
items.

• statement is the code that executes for each iteration within the
foreach loop.

Consider the foreach loop in the context of the simple example shown
in Listing 3.45.

Chapter 3: Operators and Control Flow128

Listing 3.45: Determining Remaining Moves Using the foreach Loop

class TicTacToe // Declares the TicTacToe class.

{

 static void Main() // Declares the entry point of the program.

 {

 // Hardcode initial board as follows

 // ---+---+---

 // 1 | 2 | 3

 // ---+---+---

 // 4 | 5 | 6

 // ---+---+---

 // 7 | 8 | 9

 // ---+---+---

 char[] cells = {

 '1', '2', '3', '4', '5', '6', '7', '8', '9'

 };

 System.Console.Write(

 "The available moves are as follows: ");

 // Write out the initial available moves

 }

}

Output 3.23 shows the results of Listing 3.45.

When the execution engine reaches the foreach statement, it assigns to the
variable cell the first item in the cells array—in this case, the value '1'. It
then executes the code within the foreach statement block. The if state-
ment determines whether the value of cell is 'O' or 'X'. If it is neither,
then the value of cell is written out to the console. The next iteration then
assigns the next array value to cell, and so on.

 foreach (char cell in cells)

 {

 if (cell != 'O' && cell != 'X')

 {

 System.Console.Write("{0} ", cell);

 }

 }

OUTPUT 3.23:

The available moves are as follows: 1 2 3 4 5 6 7 8 9

 Control Flow Statements, Continued 129

It is important to note that the compiler prevents modification of the
variable (cell) during the execution of a foreach loop.

B E G I N N E R T O P I C

Where the switch Statement Is More Appropriate
Sometimes you might compare the same value in several continuous if
statements, as shown with the input variable in Listing 3.46.

Listing 3.46: Checking the Player’s Input with an if Statement

// ...

bool valid = false;

// Check the current player's input.

if((input == "1") ||

 (input == "2") ||

 (input == "3") ||

 (input == "4") ||

 (input == "5") ||

 (input == "6") ||

 (input == "7") ||

 (input == "8") ||

 (input == "9"))

{

 // Save/move as the player directed.

 // ...

 valid = true;

}

else if((input == "") || (input == "quit"))

{

 valid = true;

}

else

{

 System.Console.WriteLine(

 "\nERROR: Enter a Value from 1-9."

 + "Push ENTER to quit");

}

// ...

Chapter 3: Operators and Control Flow130

This code validates the text entered to ensure that it is a valid tic-tac-toe
move. If the value of input were 9, for example, the program would have
to perform nine different evaluations. It would be preferable to jump to the
correct code after only one evaluation. To enable this, you use a switch
statement.

The switch Statement
Given a variable to compare and a list of constant values to compare
against, the switch statement is simpler to read and code than the if state-
ment. The switch statement looks like this:

 switch(test-expression)

 {

 [case option-constant:

 statement

 [default:

 statement]

 }

Here is a breakdown of the switch statement.

• test-expression returns a value that is compatible with the govern-
ing types. Allowable governing data types are sbyte, byte, short,
ushort, int, uint, long, ulong, char, string, and an enum type (cov-
ered in Chapter 8).

• constant is any constant expression compatible with the data type of
the governing type.

• statement is one or more statements to be executed when the govern-
ing type expression equals the constant value. The statement or state-
ments must have no reachable endpoint. In other words, the statement,
or last of the statements if there are more than one, must be a jump
statement such as a break, return, or goto statement. If the switch
statement appears within a loop, then continue is also allowed.

A switch statement should have at least one case statement or a default
statement. In other words, switch(x){} will generate a warning.

Listing 3.47, with a switch statement, is semantically equivalent to the
series of if statements in Listing 3.46.

 Control Flow Statements, Continued 131

Listing 3.47: Replacing the if Statement with a switch Statement

static bool ValidateAndMove(

 int[] playerPositions, int currentPlayer, string input)

{

 bool valid = false;

 // Check the current player's input.

 switch (input)

 {

 case "1" :

 case "2" :

 case "3" :

 case "4" :

 case "5" :

 case "6" :

 case "7" :

 case "8" :

 case "9" :

 // Save/move as the player directed.

 ...

 valid = true;

 break;

 case "" :

 case "quit" :

 valid = true;

 break;

 default :

 // If none of the other case statements

 // is encountered then the text is invalid.

 System.Console.WriteLine(

 "\nERROR: Enter a value from 1-9."

 + "Push ENTER to quit");

 break;

 }

 return valid;

}

In Listing 3.47, input is the governing type expression. Since input is a
string, all of the constants are strings. If the value of input is 1, 2, ... 9, then
the move is valid and you change the appropriate cell to match that of the
current user’s token (X or O). Once execution encounters a break state-
ment, it immediately jumps to the instruction following the switch
statement.

Chapter 3: Operators and Control Flow132

The next portion of the switch looks for "" or "quit", and sets valid to
true if input equals one of these values. Ultimately, the default label is
executed if no prior case constant was equivalent to the governing type.

There are several things to note about the switch statement.

• Placing nothing within the switch block will generate a compiler
warning, but the statement will still compile.

• default does not have to appear last within the switch statement.
case statements appearing after default are evaluated.

• When you use multiple constants for one case statement, they should
appear consecutively, as shown in Listing 3.47.

• The compiler requires a jump statement (usually a break).

Jump Statements

It is possible to alter the execution path of a loop. In fact, with jump state-
ments, it is possible to escape out of the loop or to skip the remaining por-
tion of an iteration and begin with the next iteration, even when the
conditional expression remains true. This section considers some of the
ways to jump the execution path from one location to another.

The break Statement
To escape out of a loop or a switch statement, C# uses a break state-
ment. Whenever the break statement is encountered, the execution path

Language Contrast: C++—switch Statement Fall-through

Unlike C++, C# does not allow a switch statement to fall through from one

case block to the next if the case includes a statement. A jump statement

is always required following the statement within a case. The C# founders

believed it was better to be explicit and require the jump statement in favor

of code readability. If programmers want to use a fall-through semantic,

they may do so explicitly with a goto statement, as demonstrated in the

section The goto Statement, later in this chapter.

 Jump Statements 133

immediately jumps to the first instruction following the loop. Listing 3.48
examines the foreach loop from the tic-tac-toe program.

Listing 3.48: Using break to Escape Once a Winner Is Found

class TicTacToe // Declares the TicTacToe class.

{

 static void Main() // Declares the entry point of the program.

 {

 int winner=0;

 // Stores locations each player has moved.

 int[] playerPositions = {0,0};

 // Hardcoded board position

 // X | 2 | O

 // ---+---+---

 // O | O | 6

 // ---+---+---

 // X | X | X

 playerPositions[0] = 449;

 playerPositions[1] = 28;

 // Determine if there is a winner

 int[] winningMasks = {

 7, 56, 448, 73, 146, 292, 84, 273 };

 // Iterate through each winning mask to determine

 // if there is a winner.

 if ((mask & playerPositions[0]) == mask)

 {

 winner = 1;

 }

 else if ((mask & playerPositions[1]) == mask)

 {

 winner = 2;

 }

 System.Console.WriteLine(

 "Player {0} was the winner", winner);

 }

}

Output 3.24 shows the results of Listing 3.48.

 foreach (int mask in winningMasks)

 {

 break;

 break;

 }

Chapter 3: Operators and Control Flow134

Listing 3.48 uses a break statement when a player holds a winning posi-
tion. The break statement forces its enclosing loop (or a switch statement)
to cease execution, and the program moves to the next line outside the
loop. For this listing, if the bit comparison returns true (if the board holds
a winning position), the break statement causes execution to jump and dis-
play the winner.

B E G I N N E R T O P I C

Bitwise Operators for Positions
The tic-tac-toe example uses the bitwise operators (Appendix B) to deter-
mine which player wins the game. First, the code saves the positions of
each player into a bitmap called playerPositions. (It uses an array so that
the positions for both players can be saved.)

To begin, both playerPositions are 0. As each player moves, the bit
corresponding to the move is set. If, for example, the player selects cell 3,
shifter is set to 3 – 1. The code subtracts 1 because C# is zero-based and
you need to adjust for 0 as the first position instead of 1. Next, the code
sets position, the bit corresponding to cell 3, using the shift operator
000000000000001 << shifter, where shifter now has a value of 2. Lastly,
it sets playerPositions for the current player (subtracting 1 again to shift
to zero-based) to 0000000000000100. Listing 3.49 uses |= so that previous
moves are combined with the current move.

Listing 3.49: Setting the Bit That Corresponds to Each Player’s Move

int shifter; // The number of places to shift

 // over in order to set a bit.

int position; // The bit which is to be set.

// int.Parse() converts "input" to an integer.

// "int.Parse(input) – 1" because arrays

// are zero-based.

shifter = int.Parse(input) - 1;

// Shift mask of 00000000000000000000000000000001

// over by cellLocations.

OUTPUT 3.24:

Player 1 was the winner

 Jump Statements 135

position = 1 << shifter;

// Take the current player cells and OR them to set the

// new position as well.

// Since currentPlayer is either 1 or 2,

// subtract one to use currentPlayer as an

// index in a 0-based array.

playerPositions[currentPlayer-1] |= position;

Later in the program, you can iterate over each mask corresponding to
winning positions on the board to determine whether the current player
has a winning position, as shown in Listing 3.48.

The continue Statement
In some instances, you may have a series of statements within a loop. If
you determine that some conditions warrant executing only a portion of
these statements for some iterations, you use the continue statement to
jump to the end of the current iteration and begin the next iteration. The
C# continue statement allows you to exit the current iteration (regardless
of which additional statements remain) and jump to the loop conditional.
At that point, if the loop conditional remains true, the loop will continue
execution.

Listing 3.50 uses the continue statement so that only the letters of the
domain portion of an email are displayed. Output 3.25 shows the results of
Listing 3.50.

Listing 3.50: Determining the Domain of an Email Address

class EmailDomain

{

 static void Main()

 {

 string email;

 bool insideDomain = false;

 System.Console.WriteLine("Enter an email address: ");

 email = System.Console.ReadLine();

 System.Console.Write("The email domain is: ");

 // Iterate through each letter in the email address.

 foreach (char letter in email)

 {

Chapter 3: Operators and Control Flow136

 if (!insideDomain)

 {

 if (letter == '@')

 {

 insideDomain = true;

 }

 continue;

 }

 System.Console.Write(letter);

 }

 }

}

In Listing 3.50, if you are not yet inside the domain portion of the email
address, you need to use a continue statement to jump to the next charac-
ter in the email address.

In general, you can use an if statement in place of a continue state-
ment, and this is usually more readable. The problem with the continue
statement is that it provides multiple exit points within the iteration, and
this compromises readability. In Listing 3.51, the sample has been rewrit-
ten, replacing the continue statement with the if/else construct to dem-
onstrate a more readable version that does not use the continue statement.

Listing 3.51: Replacing a continue with an if Statement

foreach (char letter in email)

{

 if (insideDomain)

 {

 System.Console.Write(letter);

 }

 else

 {

 if (letter == '@')

 {

 insideDomain = true;

 }

 }

}

OUTPUT 3.25:

Enter an email address:

mark@dotnetprogramming.com

The email domain is: dotnetprogramming.com

 Jump Statements 137

The goto Statement
With the advent of object-oriented programming and the prevalence of
well-structured code, the existence of a goto statement within C# seems
like an aberration to many experienced programmers. However, C# sup-
ports goto, and it is the only method for supporting fall-through within a
switch statement. In Listing 3.52, if the /out option is set, code execution
jumps to the default case using the goto statement; similarly for/f.

Listing 3.52: Demonstrating a switch with goto Statements

// ...

static void Main(string[] args)

{

 bool isOutputSet = false;

 bool isFiltered = false;

 foreach (string option in args)

 {

 switch (option)

 {

 case "/out":

 isOutputSet = true;

 isFiltered = false;

 case "/f":

 isFiltered = true;

 isRecursive = false;

 default:

 if (isRecursive)

 {

 // Recurse down the hierarchy

 // ...

 }

 else if (isFiltered)

 {

 // Add option to list of filters.

 // ...

 }

 break;

 }

 }

 // ...

}

 goto default;

 goto default;

Chapter 3: Operators and Control Flow138

Output 3.26 shows the results of Listing 3.52.

As demonstrated in Listing 3.52, goto statements are ugly. In this particu-
lar example, this is the only way to get the desired behavior of a switch state-
ment. Although you can use goto statements outside switch statements,
they generally cause poor program structure and you should deprecate them
in favor of a more readable construct. Note also that you cannot use a goto
statement to jump from outside a switch statement into a label within a
switch statement. More generally, C# prevents using goto into something,
and allows its use only within or out of something. By making this restriction,
C# avoids most of the serious goto abuses available in other languages.

C# Preprocessor Directives

Control flow statements evaluate conditional expressions at runtime. In
contrast, the C# preprocessor is invoked during compilation. The prepro-
cessor commands are directives to the C# compiler, specifying the sections
of code to compile or identifying how to handle specific errors and warn-
ings within the code. C# preprocessor commands can also provide direc-
tives to C# editors regarding the organization of code.

OUTPUT 3.26:

C:\SAMPLES>Generate /out fizbottle.bin /f "*.xml" "*.wsdl"

Language Contrast: C++—Preprocessing

Languages such as C and C++ contain a preprocessor, a separate utility

from the compiler that sweeps over code, performing actions based on

special tokens. Preprocessor directives generally tell the compiler how to

compile the code in a file and do not participate in the compilation process

itself. In contrast, the C# compiler handles preprocessor directives as part

of the regular lexical analysis of the source code. As a result, C# does not

support preprocessor macros beyond defining a constant. In fact, the term

preprocessor is generally a misnomer for C#.

 C# Preprocessor Directives 139

Each preprocessor directive begins with a hash symbol (#), and all
preprocessor directives must appear on one line. A newline rather than a
semicolon indicates the end of the directive.

A list of each preprocessor directive appears in Table 3.4.

TABLE 3.4: Preprocessor Directives

Statement or
Expression General Syntax Structure Example

#if directive #if preprocessor-expression

 code

#endif

#if CSHARP2

 Console.Clear();

#endif

#elif directive #if preprocessor-expression1

 code

#elif preprocessor-expression2

 code

#endif

#if LINUX

...

#elif WINDOWS

...

#endif

#else directive #if

 code

#else

 code

#endif

#if CSHARP1

...

#else

...

#endif

#define directive #define conditional-symbol #define CSHARP2

#undef directive #undef conditional-symbol #undef CSHARP2

#error directive #error preproc-message #error Buggy

implementation

#warning

directive
#warning preproc-message #warning Needs

code review

#pragma directive #pragma warning #pragma warning

disable 1030

#line directive #line org-line new-line

#line default

#line 467

"TicTacToe.cs"

...

#line default

#region directive #region pre-proc-message

 code

#endregion

#region Methods

 ...

#endregion

Chapter 3: Operators and Control Flow140

Excluding and Including Code (#if, #elif, #else, #endif)
Perhaps the most common use of preprocessor directives is in controlling
when and how code is included. For example, to write code that could be
compiled by both C# 2.0 and later compilers and the prior version 1.2 com-
pilers, you use a preprocessor directive to exclude C# 2.0-specific code
when compiling with a 1.2 compiler. You can see this in the tic-tac-toe
example and in Listing 3.53.

Listing 3.53: Excluding C# 2.0 Code from a C# 1.x Compiler

#if CSHARP2

System.Console.Clear();

#endif

In this case, you call the System.Console.Clear() method, which is avail-
able only in the 2.0 CLI version and later. Using the #if and #endif prepro-
cessor directives, this line of code will be compiled only if the preprocessor
symbol CSHARP2 is defined.

Another use of the preprocessor directive would be to handle differ-
ences among platforms, such as surrounding Windows- and Linux-specific
APIs with WINDOWS and LINUX #if directives. Developers often use these
directives in place of multiline comments (/*...*/) because they are easier
to remove by defining the appropriate symbol or via a search and replace.
A final common use of the directives is for debugging. If you surround code
with an #if DEBUG, you will remove the code from a release build on most
IDEs. The IDEs define the DEBUG symbol by default in a debug compile and
RELEASE by default for release builds.

To handle an else-if condition, you can use the #elif directive within
the #if directive, instead of creating two entirely separate #if blocks, as
shown in Listing 3.54.

Listing 3.54: Using #if, #elif, and #endif Directives

#if LINUX

...

#elif WINDOWS

...

#endif

 C# Preprocessor Directives 141

Defining Preprocessor Symbols (#define, #undef)
You can define a preprocessor symbol in two ways. The first is with the
#define directive, as shown in Listing 3.55.

Listing 3.55: A #define Example

#define CSHARP2

The second method uses the define option when compiling for .NET,
as shown in Output 3.27.

Output 3.28 shows the same functionality using the Mono compiler.

To add multiple definitions, separate them with a semicolon. The
advantage of the define complier option is that no source code changes are
required, so you may use the same source files to produce two different
binaries.

To undefine a symbol you use the #undef directive in the same way you
use #define.

Emitting Errors and Warnings (#error, #warning)
Sometimes you may want to flag a potential problem with your code. You
do this by inserting #error and #warning directives to emit an error or
warning, respectively. Listing 3.56 uses the tic-tac-toe sample to warn that
the code does not yet prevent players from entering the same move multi-
ple times. The results of Listing 3.56 appear in Output 3.29.

OUTPUT 3.27:

>csc.exe /define:CSHARP2 TicTacToe.cs

OUTPUT 3.28:

>mcs.exe -define:CSHARP2 TicTacToe.cs

Chapter 3: Operators and Control Flow142

Listing 3.56: Defining a Warning with #warning

#warning "Same move allowed multiple times."

By including the #warning directive, you ensure that the compiler will
report a warning, as shown in Output 3.29. This particular warning is a
way of flagging the fact that there is a potential enhancement or bug
within the code. It could be a simple way of reminding the developer of a
pending task.

Turning Off Warning Messages (#pragma)
Warnings are helpful because they point to code that could potentially be
troublesome. However, sometimes it is preferred to turn off particular
warnings explicitly because they can be ignored legitimately. C# 2.0 and
later compilers provide the preprocessor #pragma directive for just this
purpose (see Listing 3.57).

Listing 3.57: Using the Preprocessor #pragma Directive to Disable the #warning Directive

#pragma warning disable 1030

Note that warning numbers are prefixed with the letters CS in the compiler
output. However, this prefix is not used in the #pragma warning directive.
The number corresponds to the warning error number emitted by the com-
piler when there is no preprocessor command.

To reenable the warning, #pragma supports the restore option follow-
ing the warning, as shown in Listing 3.58.

Listing 3.58: Using the Preprocessor #pragma Directive to Restore a Warning

#pragma warning restore 1030

OUTPUT 3.29:

Performing main compilation...

...\tictactoe.cs(471,16): warning CS1030: #warning: ’"Same move allowed

multiple times."’

Build complete -- 0 errors, 1 warnings

 C# Preprocessor Directives 143

In combination, these two directives can surround a particular block of
code where the warning is explicitly determined to be irrelevant.

Perhaps one of the most common warnings to disable is CS1591, as this
appears when you elect to generate XML documentation using the /doc
compiler option, but you neglect to document all of the public items within
your program.

nowarn:<warn list> Option
In addition to the #pragma directive, C# compilers generally support the
nowarn:<warn list> option. This achieves the same result as #pragma,
except that instead of adding it to the source code, you can insert the com-
mand as a compiler option. In addition, the nowarn option affects the entire
compilation, and the #pragma option affects only the file in which it
appears. Turning off the CS1591 warning, for example, would appear on
the command line as shown in Output 3.30.

Specifying Line Numbers (#line)
The #line directive controls on which line number the C# compiler reports
an error or warning. It is used predominantly by utilities and designers
that emit C# code. In Listing 3.59, the actual line numbers within the file
appear on the left.

Listing 3.59: The #line Preprocessor Directive

124 #line 113 "TicTacToe.cs"

125 #warning "Same move allowed multiple times."

126 #line default

Including the #line directive causes the compiler to report the warning
found on line 125 as though it was on line 113, as shown in the compiler
error message shown in Output 3.31.

OUTPUT 3.30:

> csc /doc:generate.xml /nowarn:1591 /out:generate.exe Program.cs

Chapter 3: Operators and Control Flow144

Following the #line directive with default reverses the effect of all prior
#line directives and instructs the compiler to report true line numbers
rather than the ones designated by previous uses of the #line directive.

Hints for Visual Editors (#region, #endregion)
C# contains two preprocessor directives, #region and #endregion, that are
useful only within the context of visual code editors. Code editors, such as
the one in the Microsoft Visual Studio .NET IDE, can search through
source code and find these directives to provide editor features when writ-
ing code. C# allows you to declare a region of code using the #region
directive. You must pair the #region directive with a matching #endregion
directive, both of which may optionally include a descriptive string follow-
ing the directive. In addition, you may nest regions within one another.

Again, Listing 3.60 shows the tic-tac-toe program as an example.

Listing 3.60: A #region and #endregion Preprocessor Directive

...

#region Display Tic-tac-toe Board

#if CSHARP2

 System.Console.Clear();

#endif

// Display the current board;

border = 0; // set the first border (border[0] = "|")

// Display the top line of dashes.

// ("\n---+---+---\n")

System.Console.Write(borders[2]);

foreach (char cell in cells)

{

 // Write out a cell value and the border that comes after it.

 System.Console.Write(" {0} {1}", cell, borders[border]);

 // Increment to the next border;

OUTPUT 3.31:

Performing main compilation...

.../tictactoe.cs(113,18): warning CS1030: #warning: ’"Same move allowed

multiple times."’

Build complete -- 0 errors, 1 warnings

 Summary 145

 border++;

 // Reset border to 0 if it is 3.

 if (border == 3)

 {

 border = 0;

 }

}

#endregion Display Tic-tac-toe Board

...

One example of how these preprocessor directives are used is with
Microsoft Visual Studio .NET. Visual Studio .NET examines the code and
provides a tree control to open and collapse the code (on the left-hand side
of the code editor window) that matches the region demarcated by the
#region directives (see Figure 3.5).

SUMMARY

This chapter began with an introduction to the C# operators related to
assignment and arithmetic. Next, you used the operators along with the
const keyword to declare constant expressions. Coverage of all of the C#

Figure 3.5: Collapsed Region in Microsoft Visual Studio .NET

Chapter 3: Operators and Control Flow146

operators was not sequential, however. Before discussing the relational and
logical comparison operators, the chapter introduced the if statement and
the important concepts of code blocks and scope. To close out the coverage
of operators I discussed the bitwise operators, especially regarding masks.

Operator precedence was discussed earlier in the chapter, but Table 3.5
summarizes the order of precedence across all operators, including several
that are not yet covered.

* Rows appear in order of precedence from highest to lowest.

TABLE 3.5: Operator Order of Precedence*

Category Operators

Primary x.y f(x) a[x] x++ x-- new

typeof(T) checked(x) unchecked(x) default(T)

delegate{} ()

Unary + - ! ~ ++x --x (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational and type
testing

< > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Null coalescing ??

Conditional ?:

Assignment = => *= /= %= += -= <<= >>= &= ^= |=

 Summary 147

Given coverage of most of the operators, the next topic was control flow
statements. The last sections of the chapter detailed the preprocessor direc-
tives and the bit operators, which included code blocks, scope, Boolean
expressions, and bitwise operators.

Perhaps one of the best ways to review all of the content covered in
Chapters 1–3 is to look at the tic-tac-toe program found in Appendix B. By
reviewing the program, you can see one way in which you can combine all
that you have learned into a complete program.

907

Index

16-bit characters, 41
42 as strings versus as inte-

gers, 187

; (semicolons)
statements without, 10–11
whitespace, 11–12

 ~ (bitwise complement)
operator, 120

 # (hash) symbol, 139
 - (minus) operator, 84–92
 + (plus) operator, 84–92
 = (simple assignment) oper-

ator, 14
 _ (underscore), 15
!= (inequality) operator, 110,

370
! (logical notation) operator,

113
% (remainder) operator, 85
&& (AND) operator, 112, 373
' (single quote), 42
() (cast operator), 375–376
* (multiplication) operator,

85
+ (addition) operator, 85,

371–373
++ (increment) operator,

94–97
- - (decrement) operator,

94–97
/ (division) operator, 85

/// (three-forward-slash),
387

< (less than) operator, 110
<= (less than or equal to)

operator, 110
== (equality) operator, 110,

370
> (greater than) operator, 110
>= (greater than or equal to)

operator, 110
? (conditional) operator,

113–114
?? (null coalescing) operator,

114–115
@ symbol, 45
\ (backslash), 42
\n (newline) character, 42, 48
^ (exclusive OR) operator,

112
{} (code blocks), 105–107
|| (OR) operator, 111–112,

373
constraints, 450

A
abstract classes, inheritance,

293–299
abstract members, 294

declaring, 297
accessibility modifiers, 381
accessing

arrays, 70

CAS (Code Access
Security), 659, 852

class instances with Me
keyword, 214

instance fields, 210–211
members, referent types,

839
metadata, reflection,

652–662
security code, 25

access modifiers, 220–222
circumventing, 852
classes, 380–381
on getters and setters,

231–232
private, 275
protected, 276

acronyms, common C#,
862–863

actions, System.Action,
483–484

Active Template Library
(ATL), 278

adding
comments, 20–23
items to Dictionary<TKey,

TValue>, 623
operators, 371–373

addition (+) operator, 85,
371–373

Add() method, 543
addresses, pointers and,

830–839

Index908

aggregation
multiple inheritance, 280
single inheritance, 279

aliasing, 164–165
qualifiers, namespaces,

384–385
allocating data on call stacks,

836
AllowMultiple parameter,

674
ambiguity, avoiding,

213–217
AND operator (&&), 112, 373
anonymous functions, 486
anonymous methods,

480–482
internals, 494–495
parameterless, 482

anonymous types, 245–246
arrays, initializing, 545–546
collection interfaces,

536–538
generating, 542–543
implicit local variables, 54
projection to, 558
within query expressions,

593
APIs (application program-

ming interfaces)
encapsulation, 826–828
VirtualAllocEx(),

declaring, 818–819
wrappers, simplifying calls

with, 828–829
APMs (Asynchronous Pro-

gramming Models),
783–797

TPL (Task Parallel Library),
calling, 791–796

AppDomain, unhandled
exceptions on, 744–746

applicable calls, 185
applications

domains, CLI (Common
Language
Infrastructure),
854–855

HelloWorld program, 2–4,
28–30

single instance, 766–767
task-related finalization

exceptions suppressed
during shutdown, 717

applying
arrays, 70–76
bitwise operators, 118
characters in arithmetic

operations, 88–89
factory inheritance, 451
FlagsAttribute, 354–355
generic classes, 427–429
lambda expressions as

data, 498–499
post-increment operators,

95
pre-increment operators,

96
SafeHandle, 823–824
strings, 50
StructLayoutAttribute

for sequential layout,
820–821

System.Threading.Interl
ocked class, 761–763

validation to properties,
228–229

variables, 12–16
variance in delegates, 485
weak references, 391–393

ArgumentNullException,
407

arithmetic operators, 85
arrays, 64–80

accessing, 70
anonymous types,

initializing, 545–546
applying, 70–76
assigning, 66–70
common errors, 78–80
declaring, 65–66, 70
errors, 69
foreach loops, 546–547
instance methods, 75–76
instantiation, 66–70
length of, 72
methods, 73–75
parameters, 173–176
redimensioning, 75

strings as, 76–78
support for covariance and

contravariance in,
462–463

as operators, 302
assemblies, 3

attributes, 665
CLI (Common Language

Infrastructure),
855–858

metadata reflection,
652–662

multimode, building,
856n5

referencing, 377–381
targets, modifying, 378–379

Assert() methods, 91
assigning

arrays, 66–70
indexer property names,

632–633
null to strings, 51
pointers, 834–837
variables, 13, 14–16

assignment operators, 92–98
binary operators,

combining, 373
bitwise, 120

associating
data in classes, 250
XML comments with

programming
constructs, 386–388

associativity, order of, 86
Asynchronous Delegate

Invocation, 797–801
asynchronous operations

with
System.Threading.Thr
ead, 738–740

Asynchronous Program-
ming Models,
Se APMs

AsyncState property, 710
ATL (Active Template

Library), 278
atomicity, 704–705, 752
attributes, 663–688

assemblies, 665

Index 909

command-line, 881–888
constructors, initializing,

668–673
custom, 666–667
FlagsAttribute, 354–355,

675
limiting, 674
metadata reflection,

652–662
predefined, 676–677
return, specifying, 666
searching, 667–668
serialization, 680–682
System.ConditionalAttri

bute, 677–679
System.NonSerializable,

682–683
System.ObsoleteAttribut

e, 679–680
System.Runtime.Serializ

ation.OptionalField
Attribute, 686

ThreadStaticAttribute,
775–777

automatically implemented
properties, 225–227

AutoResetEvent, sema-
phores over, 772

availability of types, 380
Average function, 585
avoiding

ambiguity, 213–217
copying, 345
deadlock, 759, 764–765
equality conditionals, 91
string types, 759–760
synchronization, 760
this type, 759–760
typeof types, 759–760
unboxing, 345
unnecessary locking,

765–766

B
BackgroundWorker class pat-

terns, 804–809
backslash (\), 42
base classes, 204

constraints, 444–445
overriding, 281–293

refactoring, 271
Base Class Library. See BCL
base interfaces, using in class

declarations, 320
base members, 291–292
base types, casting between

derived
types, 272–273

BCL (Base Class Library), 25
CLI (Common Language

Infrastructure), 860
behaviors, dynamic data

type, 690–693
benefits of generics, 430–431
best practices, synchroniza-

tion design, 674
binary operators, 85, 371–373
BinarySearch() method, 75,

620
Binary Tree and Pair, full

source code listings,
876–881

BinaryTree<T> class with no
constraints, declaring,
439

binding, dynamic, 694
bits, 115
bitwise operators, 115–121

assignment, 120
complement (~) operator,

120
blocks

catch, general, 409–410
code blocks, 831
code blocks (), 105–107
System.Exception,

195–196
unchecked, 418

Boolean expressions,
109–115

Boolean types, 40–41
boxing, 339–346
break statements, 132–135
BubbleSort() method,

470–472
buffers

overflow bugs, 72
overruns, 72

building
custom collections, 611–612

multimode assemblies,
856n5

bytes, 115

C
C#

acronyms, 862–863
CLI (Common Language

Infrastructure),
compiling to machine
code, 847–849

compilers
downloading, 865
installing, 865–867

custom collection
interfaces, 612–613

delegate instantiation,
477–480

general catch blocks in,
409–410

LINQ, projection using
query expressions,
592–593

overview of, 1–2
preprocessor directives,

138–145
properties, 48
syntax fundamentals, 4–12
VirtualAllocEx()APIs,

declaring, 818–819
without generics, 422–439

C++
array declaration, 66
buffer overflow bugs, 72
delete operator, 208
deterministic destruction,

399, 850
dispatch method calls

during
construction, 286

global methods, 158
global variables and

functions, 248
header files, 160
implicit overriding, 283
multiple inheritance, 278
operators, errors, 110
pointers, declaring, 833
preprocessing, 138
pure virtual functions, 297

Index910

C++ (contd.)
struct defines type with

public
members, 337

switch statements, 132
templates, 442
var, 540
Variant, 540
void*, 540
void as data types, 52

calculating
pi, 725
values, 115

callbacks, invoking, 787
caller variables, matching

parameter
names, 168

calling
APMs (Asynchronous

Programming
Models), 784–786,
791–796

applicable, 185
binary operators, 372–373
call sites, 168
constructors, 237,

 243–244
external functions, 826–828
methods, 150–156
object initializers, 240
SelectMany() method,

580–582
stacks, 168

allocating data on, 836
exceptions, 412

wrappers, simplifying
APIs with, 828–829

cancellation
cooperative, 719
parallel loops, 729–734
tasks, 718–722

CancellationToken-
Source.Token
property, 731

CAS (Code Access Security),
659, 852

case sensitivity, 2
casting

between base and derived
types, 272–273

within inheritance chains,
274

inside generic methods,
456–457

cast operator (()), 58, 375–376
catch blocks

general, 409–410
System.Exception,

195–196
catching exceptions,

191–192, 196,
407–408, 411

categories of types, 55–57,
332–339

CD-ROM drives, 274
Cell type, 427
centralizing initialization,

244–245
chains, casting within inheri-

tance, 274
characters

arithmetic operations,
applying, 88–89

escape, 42, 43
newline (\n), 42, 48
Unicode, 41–43

char types, 41
checked conversions, 59–61,

417–419
checking

for null, 513–514
types, 851

child classes, 205
child collections, creating,

578
CIL (Common Intermediate

Language), 23
boxing code in, 340
CLI (Common Language

Infrastructure), 858
dynamic data type, 693
and ILDASM, 27–30
out variable

implementation,
496–498

representation of generics,
463–464

System.SerializableAttr
ibute, 687–688

circular wait condition, 765

class, iterators, 645
classes, 201–202

abstract, inheritance,
293–299

access modifiers, 220–222,
380–381

associated data, 250
BackgroundWorker

patterns, 804–809
base, 204

constraints, 444–445
overriding, 281–293
refactoring, 271

BinaryTree<T>, declaring
with no constraints,
439

concrete, 293
concurrent collection,

773–774
concurrent from

Systems.Collections
.Concurrent, 895–898

ConsoleListControl, 307
constructors, 236–247
declaring, 205–209
defining, 206
definitions, 7
deriving, 270
encapsulation, 258–260
exceptions, inheritance, 192
extension methods,

256–258
generics, 427–429, 661–662
hierarchies, 204, 473n1
inner, 262
instances

fields, 209–211
methods, 211–212

instantiating, 205–209
interfaces

compared with, 328–329
duplicating, 433–434

iterators, creating multiple
in, 648–649

libraries, 377–378, 378
LinkedList<T>, 629
List<T>, 617–621
members, 209
Monitor, synchronization,

754–758

Index 911

nested, 260–262, 265
object-oriented

programming,
203–205

partial, 262–267
primary collections,

617–630
properties, 222–236
Queue<T>, 629
sealed, 281
SortedDictionary<TKey,

TValue>, 626–628
SortedList<T>, 626–628
Stack, 422, 425
Stack<T>, 628
static, 255
static members, 247–256
System.Threading.Interl

ocked, 761–763
System.Threading.WaitHa

ndle, 768–769
this keyword, 213–220

clauses
into, query continuation

with, 605–606
Let, 600–602
query expressions, 590
where, converting

expression trees to,
499

cleanup, resources, 790–791,
823–824

well-formed types, 393–400
Clear() method, 75
CLI (Common Language

Infrastructure),
1, 24, 843–844

application domains,
854–855

assemblies, 855–858
BCL (Base Class Library),

860
C#, compiling to machine

code, 847–849
CIL (Common

Intermediate
Language), 858

CLS (Common Language
Specification),
859–860

CTS (Common Type
System), 858–859

defining, 844–845
implementation, 845–846
manifests, 855–858
metadata, 860–861
modules, 855–858
P/Invoke, 816–830
runtime, 849–854

CLS (Common Language
Specification), 24

CLI (Common Language
Infrastructure),
859–860

CLU language, 635
clusters, 635
code

access security, 25
Binary Tree and Pair,

876–881
CAS (code access security),

659
CIL, boxing in, 340
command-line attributes,

881–888
comments, 20–23
conventions, events,

526–528
declaration space, 107–109
HelloWorld program, 2–4
invalid, indentation, 106
machine, 844, 847–849
management, 24
multithreading. See

multithreading
paths, 159
P/Invoke, 816–830
ProductSerialNumber,

874–876
pseudocode, executing, 752
reusing, 378
scope, 107–109
styles, avoiding ambiguity,

213–217
Tic-Tac-Toe, 869–874
unsafe, 831–832
values, hardcoding, 35–37
virtual computer detection

using P/Invoke,
888–894

whitespace, formatting,
11–12

Code Access Security (CAS),
659, 852

code blocks (), 105–107
collections

concurrent, 773–774
custom, building, 611–612
dictionary, 622–626
IComparable<T> interfaces,

614–617
IDictionary<TKey,

TValue> interface,
614–617

IList<T> interface,
614–617

index operators, 630–634
initializers, 240–241,

543–546
interfaces, 612–613

anonymous types,
536–538

IEnumerable<T>,
546–552

implicitly typed local
variables, 538–540

with standard query
operators,
535–536

iterators, 634–650
linked lists, 629–630
null, returning, 634
primary collections classes,

617–630
queues, 629
sorting, 626–628
stacks, 628

Collect() method, 391
COM

controlling, 813
DLL registration, 858

combining binary operators
and assignment opera-
tors, 373

command-line
arguments to Main()

methods, passing, 166
attributes, full source code

listings, 881–888
options, 76

Index912

CommandLineHandler.Try-
Parse() method, 671

comments, 20–23
delimited, 21
single-line, 22
XML, 385–389

common errors, arrays,
78–80

Common Intermediate
Language. See CIL

Common Language Infra-
structure. See CLI

Common Language Specifi-
cation. See CLS

CompareTo() method, 442
ComparisonHandler-Com-

patible method,
478–479

compatibility, types between
enums, 349–350

compilers
C#

downloading, 865
installing, 865–867

extracting XML data, 385n2
compiling

case sensitivity, 2
C# to machine code,

847–849
HelloWorld program, 3–4
JIT (just-in-time) compilers,

848
LINQ query expressions,

607
static compilation versus

dynamic
programming,
695–696

string concatenation, 45
computers, virtual, 816
concatenation of strings

compile time, 45
Concat() standard query

operator, 584
concrete classes, 293
concurrent classes from

Systems.Collections.
Concurrent, 895–898

concurrent collection classes,
773–774

conditional (?) operator,
113–114

conditionals, 109. See also
Boolean expressions

conditions, removing, 765
connecting

publishers, 511–512
subscribers, 511–512

console executable, 378
ConsoleListControl class,

307
consoles, input and output,

16–20
ConsoleSyncObject, 797
constants

expressions, 98
mathematics, 107

const fields, 258–259
constraints

base classes, 444–445
constructors, 446–447, 451
generics, 439–457
inheritance, 447–448, 450
interfaces, 442–444
limitations, 449–452
multiple, 446
struct/class, 445

constructors
attributes, initializing,

668–673
calling, 237, 243–244
classes, 236–247
constraints, 446–447, 451
declaring, 237–238
default, 239
defining, 434–435
inheritance, 292–293
overloading, 241–242
static, 253–254

constructs
metadata reflection,

652–662
programming, associating

XML comments with,
386–388

contextual keywords, 6–7
Continuation Passing Style.

See CPS
continue statements,

135–136

ContinueWith() method,
711–715, 717, 795–796

contravariance, generics,
457–463

control flow, 83–84
statements, 121–132

controlling
COM, 813
threads, 706–738

conventions
code, events, 526–528
naming. See naming

conventions
conversion
as operators, 302
checked, 59–61, 417–419
C# to CIL, 847
customizing, 274
between data types, 58–64
between enums and

strings, 348, 350–351
expression trees to SQL

where clauses, 499
generics to type

parameters, 457
implicit, 62, 273
interfaces between

implementing
classes and, 318

numbers to Booleans, 61
numeric conversion with

TryParse() method,
198–199

operators, 375
guidelines for, 377
implementation, 376

strings, 63
unchecked, 59–61, 417–419

cooperative cancellation,
719

copying, avoiding, 345
Copy() method, 257
CopyTo() method, 617
CountdownEvent, 772
Count() function, 585
counting elements with

Count() method, 561
Count property, 617
covariance, 438

generics, 457–463

Index 913

IEnumewrable<out T>,
485n2

C pointers, declaring, 833
CPS (Continuation Passing

Style), 787–789
CTS (Common Type

System), 858–859
Current Programming with

Windows, 801n1
custom attributes, 666–667
custom collections

building, 611–612
IComparable<T> interfaces,

614–617
IDictionary<TKey,

TValue> interface,
614–617

IList<T> interface,
614–617

index operators, 630–634
interfaces, 612–613
iterators, 634–650
linked lists, 629–630
null, returning, 634
primary collections classes,

617–630
queues, 629
sorting, 626–628
stacks, 628

custom dynamic object
implementation,
696–699

customizing
conversions, defining, 274
event implementation,

532–533
exceptions, defining,

414–419
LINQ, 585
serialization, 683–684

D
data

allocating on call stacks,
836

to and from an alternate
thread, passing,
799–801

fixing, 835
persistence, 217

retrieval from files, 218
DataStore() method, 545
data types, 13–14, 31–32,

40–57
arrays, 64–80
categories of, 55–57
conversions between,

58–64
delegates, 472–473
dynamic, principles and

behaviors, 690–693
fundamental numeric

types, 32–40
nullable modifiers, 57–58
null keyword, 51–52
parameters, 818–819
short, 33
strings, 43–51
System.Text.

StringBuilder, 51
void keyword, 52–55

deadlock, 705–706, 760
avoiding, 759, 764–765

decimal types, 34–35
declaration space, 107–109
declaring

abstract members, 297
arrays, 65–66, 70
BinaryTree<T> class with

no constraints, 439
classes, 8, 205–209
constant fields, 258
constructors, 237–238
delegates

data types, 475
with method returns, 522

events, 525–526
external functions, 817
fields as volatile,

760–761
finalizers, 393
generics

classes, 430
delegate types, 529
interfaces, 432
multiple type parameters,

436
instance fields, 209–210
interfaces, constraints,

443–444

jagged arrays, 71
Main() method, 9–10
methods, 157–161, 159–160
parameters, 159
pointers, 832–834
properties, 223–225
static constructors, 253–254
static properties, 254
two-dimensional arrays, 68
Type alias, 164
variables, 13, 14

applying anonymous
methods, 481

of the Class Type, 206
VirtualAllocEx() APIs,

818–819
Win32 APIs, 818n1

decorating properties, 663,
664

decrement (- -) operator,
94–97

default constructors, 239
default() operators, 68, 338,

435
default values, specifying,

435–436
deferred execution

with LINQ query
expressions, 593–598

standard query operators,
562–566

defining
abstract classes, 294
abstract members, 295
cast operators, 275, 375
classes, 7, 206
CLI (Common Language

Infrastructure),
844–845

constructors, 434–435
custom conversions, 274
custom exceptions, 414–419
delegates, types, 474–475
enums, 347
finalizers, 393–395, 434–435
generic methods, 453
index operators, 631–632
inheritance, 269–270
interfaces, 307
iterators, 636

Index914

defining (contd.)
namespaces, well-formed

types, 382–385
nested classes, 260, 265
objects, 206
preprocessor symbols, 141
properties, 224
publishers, events, 510–511
simple generic classes,

429–430
specialized Stack classes,

425
struct, 334
subroutines, 53
subscriber methods,

508–510
types, 7–8

delegates
class hierarchies, 473n1
data types, 472–473
events, 528–530
instantiating, 475–480
internals, 473–474
invoking, 512–513
multicast, 508

coding observer patterns
with, 508–523

internals, 518–519
operators, 514–516
overview of, 470–480
passing, 829
types, defining,

474–475
variance, applying, 485

delete operator, 208
deleting whitespace, 12
delimited comments, 21

XML, 387
delimiters, statements, 10
dereferencing

pointers, 837–839
reference types, 334

deriving
base types, casting

between, 272–273
inheritance, 270–281
one interface from another,

318
preventing, 281

design, synchronization best
practices, 674

destruction, deterministic,
208, 399, 850

detecting virtual computers
using P/Invoke,
888–894

deterministic destruction,
208, 399, 850

deterministic finalization,
395–398

diagrams
interfaces, 325
sequences, 520
Venn, 568

dialog boxes, Windows Error
Reporting, 715

dictionary collections,
622–626

directives
import, wildcards in, 162
preprocessor, C#, 138–145
using, 161–168

disambiguation, multiple
Main() methods, 167

dispatch method calls dur-
ing construction, 286

Dispose() method, 397
disposing tasks, 723–724
distinct members, 606–607
Distinct() standard query

operator, 584
dividing float by zero, 91
division (/) operator, 85
documentation, generating

XML, 388–389
domains, applications,

854–855
double type, 36
do/while loops, 121–123
downloading C# compilers,

865
Duffy, Joe, 801n1
duplicating interfaces,

433–434
dynamic binding, 694
dynamic data type principles

and behaviors, 690–693
dynamic objects

custom implementation,
696–699

programming with,
688–699

reflection, invoking,
689–690

dynamic programming,
static compilation ver-
sus, 695–696

E
EAPs (Event-based Asyn-

chronous Patterns),
801–804

editors, visual hints for,
144–145

Eject() method, 274
emitting errors, 141–142
empty catch block internals,

411
empty collections, return-

ing, 634
enabling Intellisense, 592
encapsulation, 203

APIs, 826–828
circumventing, 852
classes, 258–260
information hiding, 220
objects group data with

methods, 208–209
publication, 524–535
subscriptions, 523–524
of types, 379–380

enums
defining, 347
flags, 351–355
FlagsAttribute, 354–355
string conversion, 350–351
type compatibility

between, 349–350
value types, 346–355

equality conditionals, avoid-
ing, 91

equality (==) operators,
110–111, 370

Equals() method, overrid-
ing, 361–369

errors
arrays, 69, 78–80
emitting, 141–142
handling

C# 3.0, 519–520
P/Invoke, 821–823

infinite recursion, 178

Index 915

methods, 186–199
operators, 110
reporting, 196
trapping, 187–192

escape sequences, 42
Event-based Asynchronous

Patterns. See EAPs
events, 507–508

code conventions, 526–528
declaring, 525–526
delegates, 528–530
generics, 528–530
implementation,

customizing, 532–533
internals, 530–523
multicast delegates, coding

observer patterns
with, 508–523

notifications
firing, 527–528
with multiple threads,

763–764
overview of, 523–533
publishers, defining,

510–511
reset, 768–771

exceptions
catching, 191–192, 196,

407–408, 411
class inheritance, 192
customizing, defining,

414–419
error handling, 186–199
general catch blocks,

409–410
handling, 405–419

background worker
patterns, 808–809

subscribers, 520
unhandled exception

handling on Task,
715–718

hiding, 411–412
inner, 415
multiple types, 405–407
reports, 412
rethrowing, 197, 413
serializable, 416
throwing, 406–407
types, 193–194

unhandled exceptions on
AppDomain, 744–746

exclusive OR (^) operator,
112

executing
deferred

with LINQ query
expressions,
593–598

standard query
operators, 562–566

implicit execution,
implementing,
607–608

iterations in Parallel,
724–734

management, 23–30
ManualResetEvent

synchronization, 770
pseudocode, 752
threads, 704. See also

multithreading
time, 24
VES (Virtual Execution

System), 844
explicit cast, 58–59
explicit member implemen-

tation, 314–315
exponential notation, 37
exposing Async methods,

810
expressions. See also LINQ

Boolean, 109–115
constants, 98
lambda, 401, 486–505
queries

LINQ, 589–590
PLINQ (Parallel LINQ),

736
trees, 498–505

converting to SQL where
clauses, 499

object graphs, 499–501
viewing, 503–505

typeof, 654–655
Extensible Markup

Language. See XML
extensions

interfaces, 322–323
IQueryable<T>, 585

methods, 256–258, 278
external functions, calling,

826–828
extracting XML data, 385n2

F
factory inheritance, 451
false operator, 373–375
FCL (Framework Class

Library), 860
fields
const, 258–259
instances, 209–211, 249
static, 248–250
virtual, properties as,

232–234
volatile, declaring as,

760–761
filenames, must match class

names (Java), 4
files

data retrieval, 218
header, 160
loading, 216
XML, 22–23, 388–389. See

also XML
filtering

LINQ query expressions,
598–599

with
System.Linq.Enumera
ble.Where(), 562

with Where() methods,
556–557

finalization
deterministic, 395–398
garbage collection and,

398–399
guidelines, 400
task-related, 717

finalizers, 241, 393–395
defining, 434–435

FindAll() method,
621–622

firing event notifications,
527–528

fixing data, 835
flags, enums, 351–355
FlagsAttribute, 354–355,

675

Index916

floating-point types, 33–34
inequality with, 89–92
special characteristics of, 89

flow. See control flow
foreach loops

with IEnumerable<T>,
547–551

without IEnumerable<T>,
551–552

foreach loops, 127–130
with arrays, 546–547
collections, iterating over,

613
modifying, 552
parallel execution of, 727

for loops, 124–127
format items, 19
Format() method, 46
formatting

code, avoiding ambiguity,
213–217

indentation, 12
Java

lowercase, 9
uppercase, 9

numbers as hexadecimal,
38–39

PLINQ (Parallel LINQ),
736–738

round-trip, 39–40
single instance

applications, 766–767
whitespace, 11–12

Forms, Windows, 809–811
Framework Class Library

(FCL), 860
f-reachable objects, 390
from clause, 590
full outer joins, 569
full source code listings
Binary Tree and Pair,

876–881
command-line attributes,

881–888
ProductSerialNumber,

874–876
Tic-Tac-Toe, 869–874
virtual computer detection

using P/Invoke,
888–894

functions
anonymous, 486
Average, 585
Count(), 585
external

calling, 826–828
declaring, 817

global variables and, 248
Max(), 585
Min(), 585
pointers, passing delegates,

829
pure virtual, 297
Sum(), 585

fundamental numeric types,
32–40

G
garbage collection, 25,

849–851
and finalization, 398–399
well-formed types, 390–393

general catch blocks, 409–410
generating

anonymous types, 542–543
XML documentation files,

388–389
generics, 421

benefits of, 430–431
catch, 194
classes, 427–429
collection interface

hierarchies, 613
constraints, 439–457
contravariance, 457–463
covariance, 457–463
C# without, 422–439
events, 528–530
interfaces, 432–433
internals, 463–467
lazy loading and, 401
methods, 453–457
structs, 432–433
types, 427–439

nested, 438–439
reflection, 660–662
Tuple, 437–438

GetHashCode() method,
overriding, 358–361

GetSummary() member, 296
getters, access modifiers,

231–232
GetType() member, 653–654
GhostDoc, 389n3
global variables and func-

tions, 248
goto statements, 137–138
graphs, objects, 499–501
greater than (>) operator, 110
greater than or equal to (>=)

operator, 110
groupby clause, 590
GroupBy() method, group-

ing results with,
575–577

grouping
LINQ query expressions,

602–605
results with GroupBy()

method, 575–577
statements into methods,

150
GroupJoin() method,

577–580
guidelines

for conversion operators,
377

for exception handling,
411–413

finalization, 400
P/Invoke, 829–830

H
handling

errors
C# 3.0, 519–520
methods, 186–199
P/Invoke, 821–823

exceptions, 405–419
background worker

patterns, 808–809
subscribers, 520
unhandled exception

handling on Task,
715–718

hardcoding values, 35–37
hash symbol (#), 139
header files, 160

Index 917

heaps, reference types, 333
HelloWorld program, 2–4

CIL output for, 28–30
hexidecimal notation, 38
hiding

exceptions, 411–412
information, 220

hierarchies
classes, 204, 473n1
collections, 613

hints for visual editors,
144–145

hold and wait condition, 764
hooking up background

worker patterns,
807–808

I
ICollection<T> interface,

616–617
IComparable<T> interface,

443, 614–617
IComparer<T> interface,sort-

ing, 614–615
identifiers, 6–7

keywords used as, 7
type parameters, 429

IDictionary<TKey,
TValue> interface,
614–617

IDisposable interface, using
explicitly in place of
SafeHandle, 825–826

Id property, 710
IEnumerable<T>

collections interfaces,
546–552

foreach loops with,
547–551

foreach loops without,
551–552

IEnumewrable<out T>,
covariance, 485n2

if statements, 102–103
followed by code blocks (),

105
ILDASM, CIL and, 27–30
IList<T> interface, 614–617
immutable anonymous

types, 541

immutable strings, 16, 49–51
immutable value types, 336
implementing

CLI (Common Language
Infrastructure),
845–846

conversion operators, 376
custom dynamic objects,

696–699
Equals() method, 366
events, customizing,

532–533
explicit member, 314–315
generic interfaces, 432
GetHashCode() method,

359
implicit execution,

607–608
implicit member, 315–316
interfaces, 308–312,

312–318, 433–434
multiple interface

inheritance, 324–326
new operator, 238
one-to-many relationships,

577–580
outer joins, 579
virtual methods, 283

implicit base type casting,
273

implicit conversion, 62, 273
cast operators, 376

implicit execution, imple-
menting, 607–608

implicitly typed local vari-
ables, 53–55, 538–540

implicit member implemen-
tation, 315–316

implicit overriding, 283
import directive, wildcards

in, 162
incompatibilities, 6n6
increment (++) operator,

94–97
indentation

formatting, 12
invalid code, 106

indexer property names,
assigning, 632–633

index operators, 630–634

items to Dictionary<TKey,
TValue>, adding, 623

indiscriminate synchroniza-
tion, 758

inequality (!=) operator, 110,
370

inequality with floating-
point types, 89–92

inferencing types, 454–455
infinite recursion errors, 178
infinity, negative, 92
information hiding, 220
infrastructure, languages,

23–30. See also CLI
inheritance, 203, 269–270

abstract classes, 293–299
as operators, 302
base classes, overriding,

281–293
chains, casting within, 274
constraints, 447–448, 450
definitions, 269–270
derivation, 270–281
exceptions, classes, 192
factory, 451
interfaces, 318–321
is operators, 301
methods, 271
multiple, 278
multiple interfaces,

321–322, 324–326
polymorphism, 297–299
single, 278–281
System.Object, 299–301
types, 205
value types, 338–339

initializers
collection, 240–241,

543–546
objects, 239–241

initializing
anonymous type arrays,

545–546
attributes through

constructors, 668–673
centralizing, 244–245
jagged arrays, 70
lazy initialization, well-

formed types, 400–402
structs, 336–337

Index918

initializing (contd.)
three-dimensional arrays,

69
two-dimensional arrays, 69

inner classes, 262
inner exceptions, 415
inner joins, 568

with Join() method,
performing, 572–575

input, consoles, 16–20
installing C# compilers,

865–867
instances

array methods, 75–76
custom attributes,

retrieving, 670
fields, 209–211, 249
methods, 47, 211–212
single applications,

766–767
instantiating, 9

arrays, 66–70
classes, 205–209
delegates, 475–480
generics

based on reference types,
465–467

based on value types,
464–465

integers
types, 32–33
values, overflowing, 59

Intellisense, enabling, 592
interfaces, 305–307

collection, 535–536. See also
collection interfaces

compared with classes,
328–329

constraints, 442–444
conversion between

implementing
classes and, 318

custom collections, 612–613
defining, 307
diagramming, 325
duplicating, 433–434
explicit member

implementation,
314–315

extension methods on,
322–323

generics, 432–433
ICollection<T>, 616–617
IComparable<T>, 443,

614–617
IComparer<T>, 614–615
IDictionary<TKey,

TValue>, 614–617
IDisposable, using

explicitly in place of
SafeHandle, 825–826

IList<T>, 614–617
implementation, 312–318
implicit member

implementation,
315–316

inheritance, 318–321
multiple inheritance,

321–322, 324–326
Parallel.For() API, 726
polymorphism through,

307–312
support, 440
value types, 338–339
versioning, 327–328
VirtualAllocEx(),

declaring, 818–819
Windows UI

programming,
809–813

internals
anonymous methods,

494–495
delegates, 473–474
events, 530–523
generics, 463–467
lambda expressions,

494–495
multicast delegates,

518–519
properties, 235–236

interoperability of lan-
guages, 25

Intersect() standard query
operator, 584

into clauses, query continu-
ation with, 605–606

in type parameter, enabling
contravariance with,
460–462

invalid code, indenting, 106
invalid reference types, 833

invoking
callbacks, 787
delegates, 512–513, 522
members, 655–660
P/Invoke (Platform

Invoke), 816–830
reflection, dynamic objects,

689–690
sequential invocation,

516–517
using statements, 397

IQueryable<T>, 585
IsCompleted property, 710
is operators, 301
items, formatting, 19
iterations
Dictionary<Tkey,

TValue>, 624
executing in Parallel,

724–734
foreach loops, modifying,

552
over foreach loops, 613

iterators
class, 645
classes, creating multiple

in, 648–649
collections, 634–650
defining, 636
examples of, 641–643
overview of, 646–648
and state, 639–641
struct, 645
syntax, 636–637
values, yielding, 637–639
yield break, 645–646
yield statements, 649

J
jagged arrays. See also arrays

declaring, 71
initializing, 70

Java
array declaration, 66
exception specifiers, 408
filenames must match class

names, 4
generics, 467
implicit overriding, 283
inner classes, 262

Index 919

virtual methods by default,
282

wildcards in import
directive, 162

JavaScript
var, 540
Variant, 540
void*, 540

JIT (just-in-time) compilers,
848

jitting, 24
Join() method, performing

with inner joins,
572–575

joins, 568, 569
jump statements, 132–138
just-in-time (JIT) compilers,

848

K
keywords, 4–6

contextual, 6–7
lock, 757–758
Me, accessing class

instances with, 214
new, 67
null, 51–52
string, 163n2
this, classes, 213–220
used as identifiers, 7
var, 53
void, 52–55
yield, 6n5

Knoppix, 867

L
lambdas

expressions, 401, 486–505
statements, 486–489

languages, 158
accessing class instances

with Me keyword,
214

buffer overflow bugs, 72
CIL (Common

Intermediate
Language), 23

COM DLL registration, 858
delete operator, 208

deterministic destruction,
399, 850

dispatch method calls
during construction,
286

exception specifiers, 408
generics, 467
global variables and

functions, 248
header files, 160
implicit overriding, 283
infrastructure, 23–30
inner classes, 262
interoperability, 25
Java

filename must match
class names, 4

main() is all lowercase, 9
multiple inheritance, 278
operator errors, 110
origin of iterators, 635
preprocessing, 138
project scope Imports

directive, 162
pure virtual functions, 297
redimensioning arrays, 75
returning void, 53
short data types, 33
string concatenation at

compile time, 45
struct defines type with

public members, 337
templates, 442
UML (Unified Modeling

Language), 325n1
virtual methods by default,

282
Visual Basic line-based

statements, 10
void*, 540
void as data types, 52
wildcards in import

directive, 162
last in, first out (LIFO), 422
lazy initialization, well-

formed types, 400–402
left outer joins, 568
length

of arrays, 72
strings, 48–49

less than (<) operator, 110
less than or equal to (<=)

operator, 110
Let clause, 600–602
libraries

class, 378
classes, 377–378

LIFO (last in, first out), 422
limiting

attributes, 674
constraints, 449–452

line-based statements, 10
lines, specifying numbers,

143–144
linked lists, collections,

629–630
LinkedList<T> class, 629
LINQ

customizing, 585
distinct members,

606–607
implicit execution,

implementing,
607–608

Let clause, 600–602
queries

continuation with into
clauses, 605–606

running in parallel,
734–738

query expressions, 589–590
compiling, 607
deferred execution with,

593–598
filtering, 598–599
grouping, 602–605
as method invocations,

608–609
overview of, 590–592
projection using, 592–593
sorting, 599–600

Linux, 867
Liskov, Barbara, 635
List<T> class, 617–621
literals

strings, 44–46
values, 35, 68

loading files, 216
local storage, threads,

774–777

Index920

local variables, 13
implicitly typed, 53–55,

538–540
multiple threads, 753–753

lock keyword, 757–758
ConsoleSyncObject, 797
objects, selecting, 758–759

locks, avoiding unnecessary,
765–766

lock statements, value types
in, 343

logical Boolean operators,
111–113

logical notation (!) operator,
113

logical operators, 117–118
logs, exceptions, 412
long-running threads,

722–723
loops
for, 124–127
decrement (- -) operators,

94
do/while, 121–123
foreach, 127–130

with arrays, 546–547
with IEnumerable<T>,

547–551
iterating over, 613
modifying, 552
parallel execution of, 727
without

IEnumerable<T>,
551–552

parallel, canceling, 729–734
while, 121–123
yield returns, placing in,

643–645
lowercase, Java, 9

M
machine code, 844, 847–849
Main() method, 8

declarations, 9–10
parameters, 165–168
returns, 165–168

managing
code, 24
execution, 23–30

resources, 823–824
threads, 740–742

manifests, CLI (Common
Language
Infrastructure), 855–858

ManualResetEvent, 768–771
ManualResetEventSLim,

768–771
many-to-many relation-

ships, 569
matching caller variables

with parameter names,
168

mathematics constants, 107
Max() function, 585
Me keyword, accessing class

instances with, 214
members

abstract, 294
base, 291–292
classes, 209
distinct, 606–607
explicit member

implementation,
314–315

GetSummary(), 296
GetType(), 653–654
implicit member

implementation,
315–316

invoking, 655–660
object, overriding,

357–369
private, 220
referent types, accessing,

839
static, 247–256
System.Object, 299–301
variables, 209

messages, turning off warn-
ing (#pragma), 142–143

metadata, 25
CLI (Common Language

Infrastructure),
860–861

reflection, 652–662
methodImpAttribute,

avoiding
synchronization, 760

methods, 149–150

Add(), 543
anonymous, 480–482

internals, 494–495
parameterless, 482

arrays, 73–75
Assert(), 91
BinarySearch(), 75, 620
BubbleSort(), 470–472
calling, 150–156
Clear(), 75
Collect(), 391
CommandLineHandler.TryP

arse(), 671
CompareTo(), 442
ComparisonHandler-

Compatible, 478–479
ContinueWith(), 711–715,

717, 795–796
Copy(), 257
CopyTo(), 617
Count(), counting

elements with, 561
DataStore(), 545
declaring, 157–161
Dispose(), 397
Eject(), 274
Equals(), overriding,

361–369
error handling, 186–199
extension, 256–258
extensions, 278
FindAll(), 621–622
Format(), 46
generics, 453–457

casting inside, 456–457
determining support for,

661–662
GetHashCode(),

overriding, 358–361
GroupBy(), grouping

results with, 575–577
GroupJoin(), 577–580
inheritance, 271
instances, 47, 75–76,

211–212
Join(), performing inner

joins with, 572–575
Main(), 8. See also Main()

method
declarations, 9–10

Index 921

multiple Main(),
disambiguation, 167

optional parameters,
182–185

OrderBy(), sorting with,
566–572

overloading, 179–182
overview of, 150–152
parameters, 168–176
partial, 264–267
Pop(), 422
Pulse(), 756
Push(), 422
query expressions as

invocations, 608–609
recursion, 176–179
refactoring into, 158
resolution, 185
returns, 155–156, 522–523
Run(), 285
Select(), 557–560, 734
SelectMany(), 580–582
SetName(), 213
starting, 707
static, 251–253
Store(), 216
strings, 46–47
stringStatic, 46
subscriber, defining,

508–510
System.Console.ReadKey(

), 18
System.Console.ReadLine

(), 16
System.Console.Write(),

18–20
System.Threading.Interl

ocked, 762
ThenBy(), sorting with,

566–572
ToString(), overriding,

358
ToUpper(), 50
TryParse(), 63, 198–199
type names, 154
for unsafe code, 831
Where(), filtering with,

556–557
Min() function, 585
minus (-) operator, 84–92

models, APMs (Asynchro-
nous Programming
Models), 783–797

modifiers
access, 220–222, 852
accessibility, 381
new, 286–291
nullable, 57–58
readonly, 259
sealed, 291
virtual, 282–286

modifying
foreach loops, 552
targets, assemblies,

378–379
values, variables, 15

modules, 378
CLI (Common Language

Infrastructure),
855–858

Monitor class synchroniza-
tion, 754–758

Mono compilers, 3n4,
866–867

MTA (Multithreaded Apart-
ment), 813

multicast delegates, 508
coding observer patterns

with, 508–523
internals, 518–519

multidimensional array
errors, 69

multimode assemblies,
building, 856n5

multiple constraints, 446
multiple duplication of inter-

faces, 433–434
multiple exception types,

405–407
multiple inheritance, 278
multiple interface inheri-

tance, 321–322
implementing, 324–326

multiple iterators, creating,
648–649

multiple Main() methods,
disambiguation, 167

multiple threads
event notification with,

763–764

and local variables,
753–753

thread-safe, 752
multiple type parameters,

436
multiplication (*) operator,

85
Multithreaded Apartment

(MTA), 813
multithreading, 701–706

before .NET Framework 4,
738–743

uncertainty, 706
unhandled exceptions on

AppDomain, 744–746
mutual exclusion condition,

764

N
names

indexer property,
assigning, 632–633

parameters, 184, 674–676
type methods, 154

namespaces, 152–154, 161
aliasing, 164–165
alias qualifiers, 384–385
nesting, 383
well-formed types,

defining, 382–385
naming conventions

parameter types, 431
properties, 228–229
types, 7

NDoc, 389n4
negative infinity, 92
nesting

classes, 260–262, 265
delegate data types,

declaring, 475
generic types, 438–439
if statements, 103–105
namespaces, 383
using declaratives, 163

.NET, 865–866
Framework,

multithreading before
version 4, 738–743

garbage collection, 849–850

Index922

.NET (contd.)
garbage collection in,

390–391
lazy initialization, 401
versioning, 26–27

new keyword, 67
newline (\n) characters, 42,

48
new modifiers, 286–291
new operator

implementation, 238
value types, 337

NGEN tool, 848
no preemption condition,

764
notation

exponential, 37
hexidecimal, 38

notifications, events
firing, 527–528
with multiple threads,

763–764
Novell, 3n4
nowarn:<warn list> option,

143
null

checking for, 513–514
returning, 634

nullable modifiers, 57–58
nullable value types,

425–427
null coalescing (??) operator,

114–115
null keyword, 51–52
numbers

to Booleans, conversion, 61
conversion with

TryParse() method,
198–199

hexidecimal, formatting,
38–39

lines, specifying, 143–144
types, 32–40

O
object members, overrid-

ing, 357–369
object-oriented program-

ming, classes, 203–205

objects
associated data, 250
CTS (Common Type

System), 859
defining, 206
dynamic

implementing custom,
696–699

invoking reflection,
689–690

programming with,
688–699

f-reachable, 390
graphs, 499–501
group data with methods,

208–209
initializers, 239–241
lock, selecting, 758–759
resurrecting, 399–400

observers, 508
patterns, coding multicast

delegates with,
508–523

OfType<T> () standard
query operator, 584

omitting parameter types
from statement
lambdas, 488

one-to-many relationships,
569

implementing, 577–580
operands, 84, 92
operators, 83–84, 84–98

AND (&&), 112, 373
adding, 371–373
addition (+), 85, 371–373
arithmetic, 85
as, 302
assignment, 92–98, 120
binary, 371–373
bitwise, 115–121
bitwise complement (~),

120
cast, 58, 275
cast (), 375–376
conditional (?), 113–114
constraints, 449
conversion, 375, 377
decrement (- -), 94–97
default(), 68, 338, 435

delegates, 514–516
delete, 208
division (/), 85
equality (==), 110–111, 370
errors, 110
exclusive OR (^), 112
false, 373–375
greater than (>), 110
greater than or equal to

(>=), 110
increment (++), 94–97
index, 623, 630–634
inequality (!=), 110, 370
is, 301
less than (<), 110
less than or equal to (<=),

110
logical, 117–118
logical Boolean, 111–113
logical notation (!), 113
minus (-), 84–92
multiplication (*), 85
new

implementation, 238
value types, 337

null coalescing (??),
114–115

OR (||), 111–112, 373, 450
overloading, 369–377
parenthesis, 92–98
plus (+), 84–92
postfix increment, 96
post-increment, 95
precedence, 86
prefix increment, 96
pre-increment, 96
remainder (%), 85
shift, 116–117
simple assignment (=), 14
standard query, 535–536.

See also collection
interfaces; standard
query operators

true, 373–375
unary, 373–375

optional parameters, 182–185
options

command-line, 76
nowarn:<warn list>, 143
parallel, 731–734

Index 923

OrderBy() method, sorting
with ThenBy() method,
566–572

order of associativity, 86
origin of iterators, 635
OR (||) operator, 111–112,

373
constraints, 450

outer joins, 568
implementing, 579

outer variables, 495–496
out parameter values,

234–235
output

consoles, 16–20
parameters, 171–173

out type parameter, enabling
covariance with,
458–460

overflowing
bounds of a float, 92
integer values, 59

overloading
constructors, 241–242
methods, 179–182
operators, 369–377
System.Threading.Interl

ocked class methods,
762

overriding
base classes, 281–293
Equals() method, 361–369
GetHashCode() method,

358–361
implicit, 283
object members, 357–369
properties, 282
ToString() method, 358

overruns, buffer, 72

P
parallel

exception handling with
System.AggregateExc
eption, 728–729

iterations, executing in,
724–734

loops, canceling, 729–734
results and options,

731–734

Parallel.For() API, 726
Parallel LINQ (PLINQ),

559–560, 703, 736–738
parameterized types, 427
parameterless anonymous

methods, 482
parameterless statement

lambdas, 488
parameters, 149–150
AllowMultiple, 674
arrays, 173–176
data types, 818–819
declaring, 159
Main() method, 165–168
methods, 155, 168–176
named, 184, 674–676
optional, 182–185
output, 171–173
references, 170–171
single input, statement

lambdas with, 489
types, 429, 660–661
in, 460–462
inferring, 454–455
multiple, 436
naming conventions, 431
out, 458–460

values, 168–169
variables, defining index

operators, 633–634
parent classes, 205
parenthesis operator, 92–98
partial classes, 262–267
partial methods, 264–267
pass-by references, 522
passing

anonymous methods,
480–481

command-line arguments
to Main() methods,
166

data to and from an
alternate thread,
799–801

delegates, 486–487,
489–490, 829

states between APM
(Synchronous
Programming Model)
methods, 789–790

paths, code, 159
patterns
BackgroundWorker class,

804–809
EAPs (Event-based

Asynchronous
Patterns), 801–804

observers, coding multicast
delegates with,
508–523

publish-subscribe, 508
performance, 853–854

synchronization, affect on,
758

performing inner joins with
Join() method,
572–575

permanent values, 259
permissions, CAS (code

access security), 659
persistence, data, 217
pi, calculating, 725
P/Invoke (Platform Invoke),

816–830
errors, handling, 821–823
virtual computer detection

using, 888–894
placeholders, 19

values, 115
Platform Invoke. See P/

Invoke
platform portability, 852–853
platforms, 865–867

portability, 25
PLINQ (Parallel LINQ),

559–560, 703, 736–738
plus (+) operator, 84–92
pointers

and addresses, 830–839
assigning, 834–837
declaring, 832–834
dereferencing, 837–839
functions, passing

delegates, 829
polymorphism, 205

inheritance, 297–299
through interfaces,

307–312
pools, threads, 706, 742–743
Pop() method, 422

Index924

portability
platform, 852–853
platforms, 25

postfix increment operators,
96

post-increment operators,
applying, 95

precedence, operators, 86
predefined attributes,

676–677
predefined types, 31
prefix increment operators,

96
pre-increment operators,

applying, 96
preprocessor directives, C#,

138–145
preventing

covariance maintains
homogeneity, 457

derivation, 281
primary collections classes,

617–630
primitives, 31
principles, dynamic data

type, 690–693
private access modifiers,

275
private members, 220
ProductSerialNumber,

874–876
programming

APMs (Asynchronous
Programming
Models), 783–797

Binary Tree and Pair,
876–881

command-line attributes,
881–888

comments, 20–23
constructs, associating

XML comments with,
386–388

dynamic, static
compilation versus,
695–696

with dynamic objects,
688–699

HelloWorld program,
2–4

object-oriented, classes,
203–205

ProductSerialNumber,
874–876

Tic-Tac-Toe, 869–874
values, hardcoding, 35–37
virtual computer detection

using P/Invoke,
888–894

Windows UI, 809–813
programs

CIL output for, 28–30
HelloWorld, 2–4

projecting
LINQ query expressions,

592–593
with Select() method,

557–560
project scope Imports

directive, 162
properties

attributes, 663, 664
automatically

implemented, 225–227
C#, 48
classes, 222–236
Count, 617
declaring, 223–225
defining, 224
indexer property names,

assigning, 632–633
internals, 235–236
lazy loading, 402
naming conventions,

228–229
overriding, 282
read-only, 230–231
static, 254–256
validation, applying,

228–229
as virtual fields, 232–234
write-only, 230–231

protected access modifiers,
276

pseudocode, executing, 752
publication, encapsulating,

524–535
public constants, 259
publishers

connecting, 511–512

events
defining, 510–511

publish-subscribe patterns,
508

Pulse() method, 756
pure virtual functions, 297
Push() method, 422

Q
qualifiers, aliasing

namespaces,
384–385

quantum, 704
queries. See also LINQ

continuation with into
clauses, 605–606

LINQ, 589–590, 734–738
PLINQ (Parallel LINQ),

559–560, 736–738
standard query operators.

See standard query
operators

queues, collections, 629
Queue<T> class, 629

R
RCW (runtime callable

wrapper), 813
readonly modifiers, 259
read-only properties,

230–231
recursion

infinite recursion errors,
178

methods, 176–179
redimensioning arrays, 75
reentrant (locks), 765
refactoring

base classes, 271
into methods, 158

references
assemblies, 377–381
parameters, 170–171
pass-by, 522
root, 390
strong, 391
types, 56–57, 169–170,

333–336, 465–467
weak, 391–393

Index 925

referent types, 832
members, accessing, 839

reflection, 652–662
dynamic objects, invoking,

689–690
on generic types, 660–662

ref parameter values,
234–235, 819–820

registering
COM DLL, 858
for unhandled exceptions,

744–745
relational operators, 110–111
relationships

many-to-many, 569
one-to-many, 569, 577–580

remainder (%) operator, 85
removing

conditions, 765
whitespace, 12

reports
errors, 196
exceptions, 412

reserved words, 4. See also
keywords

reset events, 768–771
resolution, methods, 185
resources

cleanup, 393–400, 790–791
managing, 823–824
utilization, 400

results
GroupBy() method,

575–577
parallel, 731–734
tasks, returning, 709

resurrecting objects, 399–400
rethrowing exceptions, 197,

413
retrieving

attributes, 667–668
specific attributes, 669

return attributes, specifying,
666

returning
empty collections, 634
null, 634
task results, 709
void, 53

returns
Main() method, 165–168

methods, 159–160, 522–523
yield returns, placing in

loops, 643–645
return statements, 160
return values, 15
reusing code, 378
Reverse() standard query

operator, 584
reversing strings, 77
right outer joins, 569
root references, 390
round-trip formatting, 39–40
Run() method, 285
running
HelloWorld program, 3–4
LINQ queries in parallel,

734–738
Parallel LINQ (PLINQ)

queries, 559–560
threads, 706–738

canceling tasks, 718–722
disposing tasks, 723–724
long-running threads,

722–723
unhandled exception

handling on Task,
715–718

runtime, 24
arrays, defining array size

at, 68
CLI (Common Language

Infrastructure),
849–854

metadata, reflection,
652–662

virtual methods, 283
runtime callable wrapper

(RCW), 813

S
SafeHandle, applying,

823–824
safety, types, 25, 541, 851
scope, 107–109, 155
sealed classes, 281
sealed modifiers, 291
searching

attributes, 667–668
List<T> class, 619

security
access, 25

CAS (Code Access
Security), 659, 852

select clause, 590
selecting lock objects,

758–759
SelectMany() method, call-

ing, 580–582
Select() method, 734

projecting with, 557–560
SemaphoreSlim, 772
semaphores over

AutoResetEvent, 772
semicolons (;)

statements without, 10–11
whitespace, 11–12

SequenceEquals() standard
query operator, 584

sequences
deferred execution, 565
escape, 42
invocation, 516–517
layout,

StructLayoutAttribu
te for, 820–821

multithreading, 703. See
also multithreading

serialization
attributes, 680–682
customizing, 683–684
exceptions, 416
versioning, 684–687

SetName() method, 213
setters, access modifiers,

231–232
shift operators, 116–117
short data types, 33
shutdown, applications, 717
signatures, APMs (Asyn-

chronous Program-
ming Models), 786–787

Silverlight, 536n1
simple assignment (=) opera-

tors, 14
simple generic classes, defin-

ing, 429–430
simplifying API calls with

wrappers, 828–829
single inheritance, 278–281
single input parameters,

statement lambdas
with, 489

Index926

single instance applications,
creating, 766–767

single-line comments, 22
single-line XML comments,

386–387
single quote ('), 42
sites, call, 168
sizing

arrays at runtime, 68
types, 752

SortedDictionary<TKey,
TValue> class, 626–628

SortedList<T> class,
626–628

sorting
collections, 626–628
IComparer<T> interface,

614–615
LINQ query expressions,

599–600
with OrderBy() method

and ThenBy() method,
566–572

space, declaring, 107–109
specialized Stack classes,

defining, 425
specializing types, 205
specifiers, exceptions, 408
specifying

constraints, 455
default values, 435–436
line numbers, 143–144
literals, 36
multiple constraints, 446
parameters by name, 184
return attributes, 666

SQL
query expressions, 592
where clauses, converting

expression trees to,
499

Stack class, 422
specialized, defining, 425

stacks
calling, 168, 836
collections, 628
unwinding, 168

Stack<T> class, 628
standard query operators,

552–586, 582–586

collection interfaces with,
535–536. See also
collection interfaces

Count() method,
counting elements
with, 561

deferred execution,
562–566

grouping results with
GroupBy() method,
575–577

implementing one-to-
many relationships,
577–580

performing inner joins
with Join() method,
572–575

Select() method,
projecting with,
557–560

sorting with OrderBy()
method and ThenBy()
method, 566–572

Where() method, filtering
with, 556–557

starting methods, 707
statements, 10
Assert(), 92
break, 132–135
continue, 135–136
control flow, 121–132
delimiters, 10
goto, 137–138
groups into methods, 150
if, 102–103, 105
jump, 132–138
lambdas, 486–489
line-based, 10
lock, 343
versus method calls, 156
nested if, 103–105
return, 160
switch, 130–132, 160
System.Console.Write-

Line(), 10
Throw, 196
using, 217n1, 395–398
without semicolons (;),

10–11
yield, 649

states
APM (Synchronous

Programming Model)
methods, passing
between, 789–790

callbacks, invoking,
787

iterators and, 639–641
unsynchronized, 750

STAThreadAttribute, con-
trolling COM threading
models with, 813

static classes, 255
static compilation versus

dynamic programming,
695–696

static constructors,
253–254

static fields, 248–250
static members, 247–256
static methods, 251–253
static properties, 254–256
Status property, 710
storage, local, 774–777
Store() method, 216
string keyword, 163n2
strings, 43–51

applying, 50
as arrays, 76–78
concatenation at compile

time, 45
conversion, 63
enums, 350–351
immutable, 16, 49–51
length, 48–49
literals, 44–46
methods, 46–47
plus (+) operator, using

with, 87–88
reversing, 77

stringStatic methods, 46
string type, avoiding,

759–760
strong references, 391
struct
class constraints, 445
defining, 334
generics, 432–433
initializing, 336–337
iterators, 645

Index 927

StructLayoutAttribute for
sequential layout,
applying, 820–821

styles
code, avoiding ambiguity,

213–217
CPS (Continuation Passing

Style), 787–789
subroutines, defining, 53
subscribers

connecting, 511–512
exceptions, handling, 520
methods, defining, 508–510

subscriptions, encapsulating,
523–524

subtypes, 204
Sum() function, 585
super types, 204
support, interfaces, 440
switch statements, 130–132,

160
synchronization

design best practices, 674
lock,

ConsoleSyncObject,
797

methodImpAttribute,
avoiding, 760

Monitor class, 754–758
threads, 750–777
types, 766–774
when to provide, 765

syntax, 1–2
fundamentals, 4–12
iterators, 636–637

System.Action, 483–484
System.ArgumentExcep-

tion, 405
System.AsyncCallback,

787–789
System.AttributeUsageAt-

tribute, 673–674
System.Collections.

Generic.
ICollection<T>, 544

System.Collec-
tions.Generics
namespace, 153

System.Collections
namespace, 153

System.Collection.Stack,
423

System.ConditionalAt-
tribute, 677–679

System.Console.ReadKey()
method, 18

System.Console.Read-
Line() method, 16

System.Console.Write-
Line() statement, 10

System.Console.Write()
method, 18–20

System.Data namespace, 153
System-defined delegates:

Func, 483–485
System.Drawing namespace,

153
System.Exception

catch blocks, 195–196
use of, 412

System.IO namespace, 153
System.Linq.Enumera-

ble.Where(), 562
System.Linq namespace, 153
System.Linq.Queryable,

585
System namespace, 153
System.NonSerializable

attribute, 682–683
System.Object inheritance,

299–301
System.ObsoleteAttrib-

ute, 679–680
System.Runtime.Compil-

erServices.
CompilerGeneratedAt-
tribute, 236

System.Runtime.Serial-
ization.Optional-
FieldAttribute, 686

Systems.Collections.Con-
current, 895–898

System.SerializableAt-
tribute, 687–688

Systems.Timer.Timer, 780
System.Text namespace, 153
System.Text.String-

Builder data type, 51
System.Threading.Inter-

locked class, 761–763

System.Threading.Mutex,
766–767

System.Threading
namespace, 153

System.Threading.Tasks
namespace, 153

System.Threading.Thread,
738–740

System.Threading.Wait-
Handle class, 768–769

System.Type, accessing
metadata, 653–655

System.Web namespace, 154
System.Web.Services

namespace, 154
System.Windows.Forms

namespace, 154
System.Xml namespace, 154

T
targets, modifying assem-

blies, 378–379
Task.CurrentID property,

711
Task Parallel Library (TPL),

703
task-related finalization, 717
tasks

canceling, 718–722
disposing, 723–724
results, returning, 709

templates, C++, 442
text, comments, 20–23
ThenBy() method, sorting

with OrderBy()
method, 566–572

thermostat, 508n1
this keyword, 213–220
this type, avoiding, 759–760
ThreadLocal<T>, 774–775
threads. See also multithread-

ing
controlling, 706–738
data to and from an

alternate, passing,
799–801

local storage, 774–777
long-running, 722–723
managing, 740–742

Index928

threads (contd.)
multiple. See multiple

threads
overview of, 703–706
pools, 706, 742–743
running, 706–738

canceling tasks, 718–722
disposing tasks, 723–724
long-running threads,

722–723
unhandled exception

handling on Task,
715–718

synchronization, 750–777
thread-safe, 752

incrementing and
decremeting, 96

ThreadStaticAttribute,
775–777

three-dimensional arrays,
initializing, 69

three-forward-slash (///),
387

throwing exceptions,
406–407

Throw statement, 196
Tic-Tac-Toe, 869–874
timers, 778–783
time slices, 704
torn reads, 753
ToString() method, over-

riding, 358
ToUpper() method, 50
TPL (Task Parallel Library),

703
APMs (Asynchronous

Programming
Models), calling,
791–796

trapping errors, 187–192
trees, expressions,

498–505
object graphs, 499–501
viewing, 503–505

troubleshooting arrays, 69,
78–80

true operator, 373–375
TryParse() method, 63

numeric conversion with,
198–199

Tuple generic types, 437–438
turning off warning

messages (#pragma),
142–143

two-dimensional arrays. See
also arrays

declaring, 68
initializing, 69

Type alias, declaring, 164
typeof expressions, 654–655
typeof type, avoiding,

759–760
types

aliasing, 164–165
anonymous, 245–246

collection interfaces,
536–538

implicit local variables,
54

projection to, 558
base, casting between

derived and, 272–273
Boolean, 40–41
categories of, 55–57,

332–339
Cell, 427
char, 41
checking, 851
comments, 21–22
compatibility between

enums, 349–350
conversion without

casting, 62
data, 13–14. See also data

types
delegates, 472–473
parameters, 818–819

decimal, 34–35
definitions, 7–8
delegates, defining,

474–475
encapsulation of, 379–380
enums, defining, 348
exceptions, 193–194
floating-point, 33–34

inequality with, 89–92

special characteristics of,
89

generics, 427–439
nested, 438–439
reflection, 660–662
Tuple, 437–438

inferencing, 454–455
inheritance, 205
integers, 32–33
metadata, reflection,

652–662
multiple exception, 405–407
names, methods, 154
numeric, 32–40
parameterized, 427
parameters, 429
in, 460–462
determining type of,

660–661
multiple, 436
naming conventions, 431
out, 458–460

predefined, 31
references, 56–57, 169–170,

333–336, 465–467
referent, 832, 839
safety, 25, 541, 851
sizes, 752
specializing, 205
string, avoiding, 759–760
synchronization, 766–774
this, avoiding, 759–760
typeof, avoiding, 759–760
underlying

unboxing, 342
verifying, 301

unmanaged, 833
values, 55–56, 169–170, 331,

332
boxing, 339–346
enums, 346–355
inheritance, 338–339
instantiating generics

based on, 464–465
interfaces, 338–339
nullable, 425–427

well-formed, 357. See also
well-formed types

Index 929

U
UML (Unified Modeling

Language), 204, 325n1
unary operators, 373–375

minus (-), 84–92
plus (+), 84–92

unboxing, 339, 342
avoiding, 345

uncertainty, multithreading,
706

unchecked conversions,
59–61, 417–419

underlying types
unboxing, 342
verifying, 301

underscore (_), 15
unhandled exceptions

on AppDomain, 744–746
handling on Task, 715–718

Unicode characters, 41–43
Unified Modeling Language.

See UML
Union() standard query

operator, 584
unmanaged types, 833
unnecessary locking, avoid-

ing, 765–766
unsafe code, 831–832
unsynchronized states, 750
unwinding stacks, 168
updating CommandLineHan-

dler.TryParse()
method, 671

uppercase, Java, 9
using directive, 161–168
using statements, 217n1,

395–398
utilization of resources, 400

V
validation, applying proper-

ties, 228–229
values

calculating, 115
CTS (Common Type

System), 859
default, specifying,

435–436
hardcoding, 35–37

hexidecimal notation, 38
integers, overflowing, 59
iterators, yielding, 637–639
literals, 35, 68
parameters, 168–169
permanent, 259
placeholders, 115
types, 55–56, 169–170, 331,

332
boxing, 339–346
enums, 346–355
inheritance, 338–339
instantiating generics

based on, 464–465
interfaces, 338–339
nullable, 425–427

variables, modifying, 15
variables

applying, 12–16
assigning, 13, 14–16
declaring, 13, 14

applying anonymous
methods, 481

of the Class Type, 206
implicitly typed local,

53–55
local, 13

implicitly typed, 538–540
multiple threads,

753–753
members, 209
outer, 495–496
parameters, defining index

operators, 633–634
values, modifying, 15

variance, applying
delegates, 485

var keyword, 53
Venn diagrams, 568
verbatim string literals, 44
verifying underlying types,

301
versioning

interfaces, 327–328
.NET, 26–27
serialization, 684–687

VES (Virtual Execution
System), 24, 844

viewing expression trees,
503–505

VirtualAllocEx() APIs,
declaring, 818–819

virtual computers, 816
detection using P/Invoke,

888–894
Virtual Execution System.

See VES
virtual fields, properties as,

232–234
virtual modifiers, 282–286
Visual Basic

accessing class instances
with Me keyword, 214

global methods, 158
global variables and

functions, 248
line-based statements, 10
redimensioning arrays, 75
var, 540
Variant, 540
void*, 540

Visual Basic.NET, project
scope Imports directive,
162

visual editors, hints for,
144–145

Visual Studio, XML com-
ments in, 386

void keyword, 52–55
volatile, declaring fields

as, 760–761

W
weak references, 391–393
well-formed types, 357

accessibility modifiers, 381
assemblies, referencing,

377–381
garbage collection, 390–393
lazy initialization, 400–402
namespaces, defining,

382–385
object members,

overriding, 357–369
operators, overloading,

369–377
resource cleanup, 393–400
XML comments, 385–389

where clauses, converting
expression trees to, 499

Index930

Where() method, filtering
with, 556–557

while loops, 121–123
whitespace, formatting,

11–12
wildcards in import direc-

tive, 162
Win32 APIs, declaring,

818n1
Windows

Error Reporting dialog box,
715

executable, 378
Forms, 809–811
Presentation Foundation

(WPF), 811–813
UI programming, 809–813

WPF (Windows Presenta-
tion Foundation),
811–813

wrappers
RCW (runtime callable

wrapper), 813
simplifying API calls with,

828–829
write-only properties,

230–231
writing

comments, 20–23
output to consoles, 18–20

www.pinvoke.net, 818n1

X
XML (Extensible Markup

Language), 22–23
comments, 385–389
delimited comments, 22
documentation files,

generating, 388–389

single-line comments, 22
XOR (exclusive OR) opera-

tor, 112

Y
yield break, iterators,

645–646
yielding iterator values,

637–639
yield keyword, 6n5
yield returns, placing in

loops, 643–645
yield statements, 649

www.pinvoke.net

	Foreword
	Preface
	3 Operators and Control Flow
	Operators
	Plus and Minus Unary Operators (+, -)
	Arithmetic Binary Operators (+, -, *, /, %)
	Parenthesis Operator
	Assignment Operators (+=, -=, *=, /=, %=)
	Increment and Decrement Operators (++, --)
	Constant Expressions (const)

	Introducing Flow Control
	if Statement
	Nested if

	Code Blocks ({})
	Scope and Declaration Space
	Boolean Expressions
	Relational and Equality Operators
	Logical Boolean Operators
	Logical Negation Operator (!)
	Conditional Operator (?)
	Null Coalescing Operator (??)

	Bitwise Operators (<<, >>, |, &, ^, ~)
	Shift Operators (<<, >>, <<=, >>=)
	Bitwise Operators (&, |, ^)
	Bitwise Assignment Operators (&=, |=, ^=)
	Bitwise Complement Operator (~)

	Control Flow Statements, Continued
	The while and do/while Loops
	The for Loop
	The foreach Loop
	The switch Statement

	Jump Statements
	The break Statement
	The continue Statement
	The goto Statement

	C# Preprocessor Directives
	Excluding and Including Code (#if, #elif, #else, #endif)
	Defining Preprocessor Symbols (#define, #undef)
	Emitting Errors and Warnings (#error, #warning)
	Turning Off Warning Messages (#pragma)
	nowarn:<warn list> Option
	Specifying Line Numbers (#line)
	Hints for Visual Editors (#region, #endregion)

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

