

Core Data
for iOS
Developing Data-Driven Applications for
the iPad®, iPhone®, and iPod touch®

Tim Isted
Tom Harrington

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data is on file.

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-67042-7

ISBN-10: 0-321-67042-6

Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana

First printing June 2011

Editor-in-Chief
Mark Taub

Senior Acquisitions Editor
Chuck Toporek

Development Editor
Chuck Toporek

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Indexer
Larry Sweazy

Proofreader
Jennifer Gallant

Technical Reviewers
Jim Correia
Robert McGovern
Mike Swan

Publishing Coordinator
Olivia Basegio

Interior Designer
Gary Adair

Cover Designer
Chuti Prasertsith

Compositor
Gloria Schurick

iii

Part I Introduction

1 An Overview of Core Data on iOS Devices 3

A Little History..3
The Birth of Core Data ..4

Why Use Core Data on iOS? ..4
Relationship Management ..4
Managed Objects and Data Validation ...5
Undo and State Management..5

Core Data iOS and Desktop Differences...5
The Fetched Results Controller ...6

Core Data Case Studies ...6
MoneyWell for iPhone ..6
Calcuccino ...7
Associated Press ...8

2 A Core Data Primer 9

Persisting Objects to Disk ...9
The Core Data Approach ..10

Entities and Managed Objects...10
Relationships..11
Managed Object Contexts ...12
Fetching Objects ..14
Faulting and Uniquing ..14
Persistent Stores and Persistent Store Coordinators15

Examining the Xcode Core Data Templates ..15
The Navigation-Based Project Template..16
The Data Modeler ..16
Setting up the Core Data Stack ...17
Running the Application...20
A Quick Look at the RootViewController Code20

Summary ...21

Table of Contents

iv

3 Modeling Your Data 23

Managed Objects and Entities ..23
Dividing Your Data into Entities ..24

Core Data in Model-Object Terms ..24
Data Normalization ...25
Storing Binary Data ...27

Working with Xcode’s Data Modeler ...28
Creating Entities ..29
Creating Properties ..31
Creating Relationships ..35

Summary ...37

Part II Working with Core Data

4 Basic Storing and Fetching 41

Creating New Managed Objects ...41
Saving the Context ..42

Fetching Saved Managed Objects ...44
Deleting Managed Objects..45
Working with Table Views ..46

The Random Dates Application Project ..47
The Random Dates Data Model ..48
Basic RootViewController Behavior ..49
Fetching the Random Date Objects ..51
Displaying the RandomDate Objects ..52
Deleting the RandomDate Objects..54

Custom Managed Object Sub-Classes...54
Creating and Setting a Custom Class for a Managed Object56

Summary ...60

5 Using NSFetchedResultsController 61

Introducing NSFetchedResultsController ...62
Creating an NSFetchedResultsController ...62
Supplying Information to Table Views...64

The Number of Sections and Rows ...65
Returning the Cell for an Index Path ...67
Returning Information about Sections ...68
Handling Underlying Data Changes...69
Caching Information...72

Using an NSFetchedResultsController in the Random Dates Application..73
Subclassing NSFetchedResultsController ..80

Summary ...85

Core Data for iOS

vContents

6 Working with Managed Objects 87

Basic Managed Object Subclass Files ..87
Creating the Random People Project ..88
Managed Object Class Interfaces...89
Managed Object Class Implementations ..90

Configuring the Random People Application..93
Displaying the Information...95

Data Validation ...99
Validating Individual Properties..99
Validation Based on Other Properties ...101
Validation Prior to Deletion ..104
Fixing the Random People Application ..105

Working with Transient Attributes...105
Modifying the Data Model..106
Adding to the AWPerson Interface and Implementation.................106
Adding a Getter Method for the Transient Property108
Adding a Setter Method for the Transient Property110
Using the UIColor Property...111

Working with Transformable Attributes...113
The Managed Object Lifecycle ...114

Initializing Non-persistent Properties ...114
Summary ...116

7 Working with Predicates 117

Predicate Basics ...117
Creating Predicates Using Format Strings...118
Predicate Variables ...120
Predicate Comparison Operators...122
Key Paths..123

Comparing Strings ..124
Compound Predicates...126

NSCompoundPredicate ...128
Sets and Relationships ..129
Examining SQL Queries ..130
Adding a Search Display Controller ...130

Setting a Fetch Predicate ...132
Modifying the Search Predicate...136
Adding a Search Scope Bar Filter...139

Summary ...141

vi Core Data for iOS

8 Migration and Versioning 143

The Migration Problem...143
Changing the Data Model...144

Multiple Data Model Versions and Lightweight Migration.......................145
Creating Data Model Versions...145
Enabling Lightweight Migration ...146

Renaming Entities and Attributes ..148
Supplying Renaming Identifiers..150
Keeping Track of Multiple Versions ..151

Mapping Models ...152
Custom Entity Migration Policies ..156
Summary ...160

9 Working with Multiple View Controllers and Undo 163

Editing Managed Objects..163
Keeping Track of the Managed Object to Edit164
Updating a Managed Object’s Properties ..168
Validating Managed Objects ...171

Working with Undo..174
Multiple Managed Object Contexts ...175

Merging Changes from Other Managed Object Contexts................178
Changing Managed Object Values Whenever the Control Values

Change...179
Resetting a Managed Object Context ...181
Using the Editor Controller to Add New Objects182

Summary ...183

Part III Building a Simple Core Data Application

10 Sample Application: Note Collector 187

The Note Collector Application ...187
Creating the Note Collector Project..188

The Application Data Model ..188
Modeling an Abstract Entity ...189
Modeling Sub-entities..189
Creating Managed Object Class Files ..190

Configuring the RootViewController...192
Displaying the Contents of a Collection..195

Keeping Track of the Collection to be Displayed196
Examining the Contents of a Raw Data File.....................................200

viiContents

Setting and Editing an Item Name...202
Creating the New View Controller..203

Displaying and Editing Notes...210
Supplying a Pre-Populated Data Store..217

Working with a Data Store in the Application Bundle.....................217
Summary ...219

Part IV Optimizing and Troubleshooting

11 Optimizing for iOS Performance and Memory Requirements 223

Performance, Optimization, and Speed ...224
Data Store Types..224

Binary and Memory Data Stores ...225
SQLite Data Store...225
Monitoring SQLite Stores ..225

Optimizing Fetching...230
Setting Fetch Limits ...230
Optimizing Predicates..231
Pre-Fetching Relationships ..233
Pre-Fetching Any Object..234
Pre-Loading Property Values ...235
NSFetchedResultsController and Sections ..235

Managing Faulting ..235
“Safe” Fault-Free Methods ...236
Preventing Property Loading...237
Batch Faulting..237
Re-faulting Objects ..237

Managing BLOBs...238
Putting BLOBs in the Entity That Uses Them239
Putting BLOBs in a Separate Entity...240
Putting BLOBs in External Files ..242

Monitoring Core Data with Instruments ...245
When Not to Use Core Data...248
Other Memory Management Tips ..248

Don’t Use an Undo Manager If You Don’t Need It249
Resetting the Managed Object Context ..249

Summary ...249

12 Troubleshooting Core Data 251

Your First Core Data Error ..251
The Missing Model ..254
Classes Not Found?..255

viii Core Data for iOS

Core Data Threading Issues ..257
Basics of Core Data Multithreading ..257
Coordinating Data Between Threads ..258
When Threads Collide, or Handling Data Conflicts260
Danger! Temporary ID! ..264

Problems Using Managed Objects ..265
Crashing When Setting Property Values...265
If Custom Accessor Methods Aren’t Called266
Managed Object Invalidated ...267
Faults That Can’t Be Fulfilled ..268

Problems Fetching Objects ...269
Trouble Sorting Data During Fetches ..269
Fetch Results Not Showing Recent Changes.....................................270

Summary ...270

Index 271

Preface

We live in a data-driven world. We consume social data, like email, Twitter, and Facebook,
business data, like share prices, financial forecasts, and bank accounts, and occasionally
we might have a little fun with the more recreational side to life, like brainteasers, or
games involving squawking birds and mock air traffic control, where we expect to be able
to track our progress and rejoice when we beat our previous high scores.

As mobile devices increase in performance, capacity, and capability, we place ever-increas-
ing demands on our phones or tablet devices to consume, save, fetch, search and display
our data. Consumers buy iPhones, iPod touches and iPads with storage capacities unheard
of in handheld or even desktop devices only a few years ago, and they expect to fill those
capacities either with media, or with applications and data.

It’s increasingly difficult to imagine an application with any non-trivial functionality that
doesn’t maintain at least some kind of data store. Even if a Twitter client maintains only a
temporary store of downloaded tweets, it will at least need to keep permanent track of one
or more Twitter account usernames for timeline refresh; calculator applications have
persistent memories for calculated values, or store a history of previous calculations; and,
in order for us to feel a sense of achievement, games store a history of high scores, as well
as a state of play so that we can return immediately to our gun-slinging 3D shoot-‘em-up
just as soon as we finish our FaceTime chat.

For us mobile app developers, the demands are high. Not only do users expect our apps to
store data as efficiently as possible, they expect their applications to run quickly,
smoothly, and without crashing. Given the relatively limited runtime memory capacities
of these mobile devices, dealing with persistent data can quickly become a nightmare.
Mobile devices also introduce the issue of power management, which is rarely a concern
when writing software for desktop computers. An app that eats batteries will not please its
users.

When the iPhone SDK first launched, developers were left to fend for themselves when it
came to data access. Data persistence was possible only via basic file storage, or through
direct access to a SQLite database. SQLite can certainly help out with the limited runtime
memory problems, but generally requires developers to fashion their own persistence layer
to interact with model objects and generate the underlying SQL commands necessary to
save and restore plain data.

Core Data changes all that. From version 3.0 of the iPhone SDK (renamed to iOS as of
version 4.0) onwards, Apple provides us with a ready-made data persistence layer. We
define a schema for the model objects we want to store, then leave Core Data to figure out
what to do to persist our model data to disk. We don’t have to worry about low-level SQL
commands, or the memory meltdowns involved when loading 1GB of data from a single
file. Instead we work with a “data store,” a term that is intentionally vague since details of
managing data files are abstracted away. Developers are free to work with their objects and
leave the file management to the framework.

x Core Data for iOS

If Core Animation is the sexy framework for views, we now have an equally sexy (though
possibly less visually glamorous) framework to help us with our model. By taking away
much of the drudgery of data persistence, we’re left with more time to work on the
features and functionality unique to our applications.

Core Data can be the perfect answer to many data-related prayers, but it comes with a
steep initial learning curve. Because of its ability to work easily with a SQLite database for
its storage, it’s often mistaken for a database itself and, although this is inaccurate, it
certainly helps to have a basic understanding of general database terms and techniques.

Although the number of Core Data classes is relatively small, it’s necessary to make use of
most of them before you can do anything at all with the framework. It’s hard to under-
stand terms like “managed object context” before you understand “managed object,” or
“persistent store,” but in order to make use of a managed object, you need a managed
object context, and a persistent store. Getting over the initial leap of faith in a basic Core
Data stack can seem a sizeable obstacle in making use of the framework.

This book teaches Core Data from the ground up. You’ll learn about these primary classes
in the framework, seeing how they interact to provide amazing functionality with very
little configuration and tweaking. You’ll find out how to store and fetch data, look at best
practices for providing data to the staple view of many data-driven apps, UITableView, and
discover how easy it can be to perform data validation to ensure data integrity. Finally,
you’ll look at ways to troubleshoot your Core Data applications, or enhance data-related
performance bottlenecks.

By the end of the book, you’ll have a thorough understanding of the framework and its
classes, and probably be left wondering how you ever managed without it.

Audience for This Book

Aimed at intermediate to advanced iOS developers, the book assumes that you have a
reasonable working knowledge of programming iOS applications. In particular, you should
be comfortable working with Apple’s basic developer tools (Xcode), the Objective-C
language, and the Cocoa Touch framework.

It is not assumed that you have already worked with Core Data on the desktop, although
the vast majority of the information included in this book applies to Core Data in general,
both on iOS devices, and under Mac OS X (10.4 or later). Once you’ve mastered Core Data
on iOS, you’ll be able to use the same tools (Xcode’s data modeler) and much of the same
code (with the exception of NSFetchedResultsController, which is iOS-only) to build
Core Data applications on the desktop.

xiPreface

Who Should Read this Book

If you write iOS applications, you’ll probably have data persistence needs. If you need to
work with anything other than the most trivial data storage, you’ll likely find it easier to
work with Core Data than to create your own file-based or low-level SQLite-based persis-
tence layer. If you need to work with Core Data, you should read this book.

If you’ve never used Core Data before, this book will teach you what you need to know to
get started. Once you’ve mastered the fundamentals of the framework, including the iOS-
specific NSFetchedResultsController, and walked through the construction of a complete
Core Data-based application, you’ll find performance tips and troubleshooting information.

If you’ve already been using Core Data for a while, and keep wondering why your app
crashes when you work with large numbers of model objects, or can’t figure out why
you’re suffering a performance hit in certain situations, this book will help clear up any
mysteries with the fundamentals of the framework, and help you use Apple’s developer
tools to isolate the sources of those problems.

Who Shouldn’t Read This Book

Core Data is definitely not the easiest to understand of the Cocoa Touch frameworks. If
you’ve never created an iOS application before, or struggle to remember the difference
between a UIView and a UIViewController, you’ll have problems working through this
book.

Although the first few chapters aim to flatten the learning curve as much as possible, it’s
assumed that you have a solid understanding of both the Objective-C language, and the
Cocoa Touch framework. If you don’t, you’d be better looking at a suitable introductory
iOS programming book.

It’s also worth noting that Core Data is commonly mistaken for a database. Although Core
Data can use SQLite, it’s not by any means a SQLite wrapper nor is it designed for typical
database usage. If what you really need is a database, Core Data may not be the right solu-
tion and this book might not be appropriate.

Finally, if you’re looking for creative visual interface inspiration, or suggestions for stun-
ning data representations, you might prefer to look elsewhere. The sample applications in
this book are specifically designed with interfaces that are as simple as possible to help
you learn the Core Data framework with minimal distractions. For this reason, all the
sample projects are for iPhones or iPod touches, and don’t include iPad-specific resources.
Equally, if you’re looking for tips to beautify table views or design jaw-dropping custom
views, you’ll likely be disappointed.

Do bear in mind, however, that just because many of the sample projects in this book
make use of the more traditional data display controls (i.e., table views), you can use Core
Data in any situation where you need easy and efficient access to data. Need to store a list
of high scores to draw in an OpenGL view for a game? Core Data makes that easy (well,
the storage part anyway). Need to store enough information to draw icons that represent
the weather for the next 24 hours? Core Data can help with that too.

xii Core Data for iOS

What You Need to Know

The book also assumes that you’re familiar and comfortable with Xcode and programming
in Objective-C. You won’t find any primers on how to define a method, or how to install
and launch Xcode; there are plenty of entry-level books for newbies and converts from
other platforms and programming environments, and if you’re messing around with data
models and such, we can assume that you’ve already got that grounding.

As with any iOS development, you’ll need at least a free Apple developer account. To test
your applications on real devices, or sell on the App Store, you’ll need a paid iOS devel-
oper account ($99 per year at the time of writing). Go to developer.apple.com/
devcenter/ios to register for access to all of the relevant updates for iOS, as well as Xcode,
developer documentation, sample code, and even the session videos from Apple’s annual
World Wide Developer Conference. Without a paid account it’s still possible to develop
iOS code, but you’ll only be able to run this code on the iPhone Simulator. While the
Simulator is extremely useful, it’s no substitute for getting your code on a real iOS device.

Core Data can support a number of different persistent store types, the inner workings of
which it mostly hides from the developer. By far the most common type on iOS devices is
the SQLite store, which saves persistent data into a SQLite database. You don’t need to
know anything about SQLite to read this book, but if you’re already a database super-user,
you’ll probably know that there is some controversy about the pronunciation of SQLite.
D. Richard Hipp, the creator of SQLite, pronounces it “like a mineral”, pronouncing Ess-
Queue-Ell-Ite as one might pronounce “pyrite” or “kryptonite”.1 Hipp does not insist on
this pronunciation though, and in practice the vast majority of Mac and iOS developers
we’ve encountered pronounce it Sequel-ite. For this reason we’ve chosen the latter
pronunciation, so you’ll find we talk about “a SQLite store” rather than “an SQLite store.”

How This Book is Organized

The book offers a comprehensive discussion of Apple’s Core Data framework as it applies
on iOS devices, building a firm grounding in the subject before covering more advanced
and real-world examples of its use. Many of the chapters in the book are divided into two
parts—you start by learning the relevant information, and then cement your understand-
ing by putting the knowledge into practice with a sample project.

Chapter 10 walks you through the complete construction of a Core Data-based note
taking application, from start to finish. If you want to jump straight in and find out
what’s possible with Core Data, you might like to begin with Chapter 10 to whet your
appetite, then return to the beginning of the book to find out how it all works.

1 Hipp discussed “SQLite” pronunciation at the C4[2] conference in September 2008. His presentation
can be viewed at http://www.viddler.com/explore/rentzsch/videos/25/

http://www.viddler.com/explore/rentzsch/videos/25/

xiiiPreface

. Part I: Introduction

Apple’s Core Data framework presents a unified and powerful solution to storing an
application’s data. This book offers a comprehensive reference for the framework and
its use in versions of iOS from iPhone SDK 3.0 onwards. As well as covering Core
Data basics, this section discusses more general topics like object modeling and data
persistence, and demonstrates how to build an object model using Xcode’s data
modeling tool.

. Chapter 1: An Overview of Core Data on iOS Devices

This first chapter introduces Core Data as a framework to fit into the MVC-
pattern for development of applications for iOS. It gives a brief outline of its
history as the Enterprise Objects Framework for web development, before
discussing when, how and why Core Data is useful. It explains how there is
little difference between working with Core Data on the desktop and on iOS,
with the notable exception of the lack of support for Bindings on iOS. The
overview finishes by showcasing a few real-world examples of Core Data use in
publicly-available iOS applications, including MoneyWell for iPhone,
Calcuccino and the Associated Press news application.

. Chapter 2: A Core Data Primer

Having given a high-level overview in Chapter 1, this chapter delves deeper
and introduces the key features in Core Data, covering the interaction between
Managed Object Contexts, Managed Objects and the underlying Persistent
Stores. It also introduces the framework classes behind these and explains how
impressive functionality can be achieved with very little code, often without
the need to subclass the basic framework classes. The chapter continues by
explaining the process of writing applications that use Core Data. It concludes
by taking a look at what is happening behind-the-scenes in Apple’s Xcode
template projects for Core Data iOS applications.

. Chapter 3: Modeling Your Data

This chapter introduces general ideas behind data modeling. Having expressed
clearly that Core Data is not in itself a database, the chapter does discuss basic
relational database techniques and relevant best practices (for example, data
normalization that applies to object model design). This chapter also explains
how data stored in a relational database can be mapped into a relational object
model for use in object-oriented programming languages and concludes with a
demonstration of how an object model is defined for Core Data using the Data
Model editor in Xcode.

. Part II: Working with Core Data

The second part of the book focuses on a discussion of topics that apply to most
applications wanting to make use of Core Data on iOS. Each facet of the framework
or its related technologies is given a separate chapter so it is possible either to read
this part of the book in order, building knowledge in incremental steps, or to pick

xiv

out the chapters that are of particular interest. Each of these chapters is divided into
two sections: the first introduces the particular feature or functionality, discusses
why and when it might be useful, then walks through the relevant classes and
methods; the second section is written in a tutorial format that starts by adding a
basic feature to a simple application, before building on more advanced functional-
ity. The aim of these tutorial sections is to enable you to learn by doing, but in such
a way that you relate the same techniques to your own applications.

. Chapter 4: Basic Storing and Fetching

This chapter guides you through the process of building a simple iPhone appli-
cation that uses a UITableView to display managed objects. It includes more
information about managed object contexts, and how they relate to the under-
lying data—a good understanding of managed object contexts is absolutely
fundamental to using Core Data effectively. This chapter explains what
contexts are, how to use them, where a context ‘comes from’ and how they
interact with each other and the data store. The project for this chapter
features a simple Add button to add objects that are fetched and displayed in a
table view; to keep it simple for now, each object is pre-populated with
randomly-generated information.

. Chapter 5: Using NSFetchedResultsController

This chapter demonstrates how to make use of the Fetched Results Controller,
an object unique to iOS, to handle much of the functionality necessary to
fetch and display objects in a table view. It explains why memory usage is so
important on iOS, and how a fetched results controller works to keep to a
minimum the number of objects held in memory at any one time.

. Chapter 6: Working with Managed Objects

This chapter introduces the functionality provided by NSManagedObject, such
as basic data validation. Although it frequently isn’t necessary to subclass
NSManagedObject, this chapter explains why, when and how to do so. You’ll
learn about the lifecycle of managed objects, and look at different types of
modeled properties. The chapter covers features offered by Objective-C 2.0 to
simplify accessor method code and finishes by looking at custom validation
logic.

. Chapter 7: Working with Predicates

This chapter begins with the basics of creating an NSPredicate, discussing
simple predicate format strings. You’ll learn how to use predicates to match
against scalar values like numbers or dates, and also how to match objects,
particularly across relationships, such as when fetching employees who work
in a specific department. There’s a whole section dedicated to working with
strings, including information on case sensitivity, and you’ll see how to
examine the raw SQL that Core Data generates to query a SQLite store.

Core Data for iOS

xvPreface

. Chapter 8: Migration and Versioning

This chapter looks at how to use the provided versioning and migration func-
tionality to maintain compatibility between old and new versions of an appli-
cation’s data model. By default, an application built around a newer model
version won’t be able to open an older version’s model; through using auto-
matic migration, the user can continue to work with their old data even after
an application upgrade has occurred. You’ll learn about both simple migration,
where the Core Data framework itself works out how one data model version
relates to another, as well as custom migration using mapping models and
entity migration policies.

. Chapter 9: Working with Multiple View Controllers and Undo

To keep the examples as simple as possible, and to minimize distractions, the
previous projects up to this point have made use of only a single view
controller. In this chapter, you’ll see how to keep track of managed object
contexts across multiple view controllers, and how to use editing view
controllers to change values on existing managed objects. You’ll learn how to
work with multiple managed object contexts, and find out how to refer to
managed objects across these multiple contexts, before finding out how simple
it is to make use of the automatic Undo functionality provided by Core Data.

. Part III: Building a Simple Core Data Application

The third part of the book takes the reader through building a complete application
using Core Data.

. Chapter 10: Sample Application: Note Collector

This chapter puts your Core Data knowledge into context by walking through
the creation of a more substantial application than you’ve worked with so far.
You’ll see how to work with abstract entities, entity inheritance and multiple
view controllers to create a fully functional note-taking application that stores
notes and organizes them in collections.

You’ll learn how to examine a raw SQLite file to peek at what Core Data is
doing, and find out how to include a pre-populated data store so that users of
the application see some sample data when they launch the application for the
first time. You’ll also look at one way to persist application state across
launches, seeing how to archive the managed object information necessary to
recreate a navigation-based stack of view controllers.

. Part IV: Optimizing and Troubleshooting

The final part of the book looks at performance issues, optimization for the
restricted memory requirements of iOS devices, and at debugging tools to aid in
developing with Core Data on iOS.

xvi

. Chapter 11: Optimizing for iOS Performance and Memory Requirements

This chapter is all about performance, optimization, and speed. You’ll learn
some simple tricks to help your application run faster and be more responsive
for the user without consuming all available memory or running down the
battery. This chapter assumes you already understand about retain counts and
when objects are deallocated, which affects your memory usage but which are
not directly related to Core Data.

. Chapter 12: Troubleshooting Core Data

When things go amiss with Core Data the symptoms and error messages can
seem obscure, even if you’ve been using it for a while. You can’t very well fix
your code if you don’t understand what’s wrong. In this chapter, you’ll look at
ways to help you diagnose and fix some of the most common Core Data prob-
lems. Keep in mind that Core Data can be affected by problems that are not
specific to Core Data; for example, memory management errors can affect any
Cocoa object, and managed objects are no exception. This chapter focuses on
problems specifically related to Core Data.

Although the book is designed to be read in order, each chapter is mostly self-contained,
so feel free to skip around to learn about specific topics. Some of the example projects in
each chapter require code from a previous chapter as a starting point; if you need to grab
a ready-made project from an earlier chapter, the sample code for the book is available
online.

About the Sample Code and Coding Style

All of the source code necessary to run the examples in this book is provided inline within
chapters; in order to fit within the confines of a page, the code may have rather more
newline characters than you might expect.

Because of the nature of the subject, the code includes a large number of accessor
methods. As this book is likely to be read both by developers who prefer using full acces-
sor methods and lots of nested square brackets, as well as those who have embraced
Objective-C 2.0 dot syntax, we felt it important to include examples demonstrating both
styles. The included code therefore uses a mixture of both traditional method calls and
dot notation throughout the example listings. Feel free to substitute according to your
own coding preferences.

The complete source code for the projects in this book is available as a downloadable disk
image (.dmg), which you can get by clicking on the Resources tab on the book’s catalog
page:

http://www.informit.com/title/9780321670427

The disk image contains a README file along with folders containing the projects for each
chapter.

Apple shipped Xcode 4 (with substantial changes over Xcode 3) just before this book went

Core Data for iOS

http://www.informit.com/title/9780321670427

xvii

to press. The screenshots in the book are taken from Xcode 4, but if you’re still using
Xcode 3, it should be relatively straightforward to work out any differences. We’ve added
Xcode 3-specific instructions in the text anywhere that there might be confusion over
major differences.

Although Mac OS X Lion had been announced, it hadn’t yet shipped publicly when this
book was published, so the screenshots are taken from Mac OS X Snow Leopard, which is
the current required environment for iOS (i.e., iPhone, iPad, and iPod touch) develop-
ment. For Core Data development for iOS, you don’t need anything else: all the libraries,
headers, and documentation are included with the Xcode tools and the iOS SDK.

Acknowledgments from Tim Isted
Although writing a book notoriously takes longer than expected, I’ve certainly pushed the
boundaries on this one. I have a vivid memory of the moment the words “Core Data”
appeared on a slide at Apple’s announcement of iPhone SDK 3.0. Half an hour later,
Chuck and I were discussing the outline for a book dedicated to Core Data on iPhone.
That was back in June 2009.

Since then, the iPhone OS has become iOS, the iPad was released, iPhone 4 appeared,
multitasking was introduced, Xcode 4 went public, and the goal posts kept moving. It’s
hard to pick a time to publish a book on something that changes so frequently, but
putting overall iOS changes aside, the Core Data framework (and certainly its API) has
remained fairly stable, probably due to its earlier existence on the Mac. This book would
never have made it were it not for the wonderfully patient and encouraging editorial guid-
ance Chuck Toporek has given me, not to mention his personal friendship. Together we
hope we’ve ensured it should remain useful across the inevitable series of major iOS
version releases that will occur the moment the book hits the shelves.

After a few lengthy pauses for me to deal with various nasty bouts of illness among my
close family, Tom Harrington agreed to come on board to help get the book out before iOS
became obsolete. His work specifically on the two performance chapters, together with his
contributions across the whole book, has taken it up so many notches.

The four anonymous (for the most part) technical reviewers have been fantastic. It’s all
too easy to become blinkered as an Indie developer and I thank the reviewers for saving
me from too many of those “I’ve always done it like this” moments.

Finally, I can never thank enough the friends I have throughout the Mac/iOS developer
community. It’s a wonderful team to be a part of.

Preface

xviii

Acknowledgments from Tom Harrington
I’d like to thank my wife Carey for encouraging me to embark on a career that appealed to
me but seemed too risky to jump into. After the dot-com boom in 2001, Carey was the
one who suggested there might be more interesting things to do than look for another
day job. I never expected to run my own business and would not have done so without
Carey’s help. I’ve been independent ever since and have never looked back.

I’d also like to thank Tim Isted and Chuck Toporek for giving me the opportunity to work
on this book, and to Marcus Zarra for introducing me to Tim in the first place. Also, this
book would not have been possible without the technical reviewers who help make Tim
and I look good.

About the Authors

Tim Isted
Tim Isted has been writing software for Macintosh computers since 1995. He also builds
web applications using Rails, PHP, and .NET and has been known to develop for Windows
machines too. Also a professional musician and singing teacher, he tries to divide his time
fairly equally between conducting, accompanying, teaching, and writing software.
Previous musings on Core Data for desktop development can be found on his blog at
www.timisted.net, and he is also co-organizer of NSConference, a new Mac developer
conference taking place in both Europe and the USA.

Tom Harrington

Tom Harrington switched from writing software for embedded systems and Linux to Mac
OS X in 2002 when he started Atomic Bird, LLC. After six years of developing highly
regarded Mac software he moved to iPhone in 2008. He develops iOS software on a
contract basis for a variety of clients. Tom also organizes iOS developer events in
Colorado. When not writing software he can often be found on his mountain bike. His
website is www.atomicbird.com.

Core Data for iOS

www.timisted.net
www.atomicbird.com

CHAPTER 2

A Core Data Primer

IN THIS CHAPTER

. Persisting Objects to Disk

. The Core Data Approach

. Examining the Xcode Core Data
Templates

In order to get the most out of Core Data, it’s extremely
important to have a firm understanding of its fundamental
operations. Over the course of this chapter, you’ll learn the
key terms and features of the different parts of a Core Data-
based application.

Before looking at the Core Data terms, though, take a
moment to think about how you might work with persisted
data in an application without using Core Data.

Persisting Objects to Disk
When you’re working with data to be saved in an applica-
tion, you typically have collections of objects, maybe held
in arrays, sets or dictionaries, which need to be archived to
disk. When it comes time to save the data, you might
encode or serialize those objects ready to be saved into a
binary file or, for small datasets, store them in a .plist file.

As an alternative to working with binary files, and before
Core Data came to iOS, developers could also make direct
use of SQLite, a simple and very lightweight database, avail-
able on iOS devices since the early versions of iPhone OS.
When writing an application that made use of large collec-
tions of objects, it would make sense to store those items in
a database, offering huge increases in speed when saving
and fetching objects.

SQLite, as its name implies, is based around the Structured
Query Language, or SQL. You talk to an SQL database by
issuing commands to, for example, insert or select (fetch)
data. If you only need a specific object from the database,
you can issue a command to fetch just that object; you

10 CHAPTER 2 A Core Data Primer

don’t need to worry about the efficiency and performance issues with loading an entire
binary file from disk just to get hold of a particular object.

In order to work with SQLite, however, you need to make heavy use of procedural C APIs,
writing lengthy portions of code to handle data access. To save an object into a SQLite
database, for example, you would need to write out a string containing an SQL INSERT
statement, populate that string with the values held by the object’s instance variables,
convert the string to a C-string, before finally passing it to a C function.

The Core Data Approach
Core Data, on the other hand, combines all the speed and efficiency of database storage
with the object-oriented goodness of object serialization.

Entities and Managed Objects

When you create your model objects, instead of starting out by writing the .h @interface
for the class, you typically begin by modeling your entities, using the Xcode Data Modeler.
An entity corresponds to one type of object, such as a Patient or Doctor object, and sets
out the attributes for that entity, such as firstName and lastName. You use the data
modeler to set which attributes will be persisted to disk, along with various other features
such as the type of data that an attribute will hold, data validation requirements, or
whether an attribute is optional or required.

When you work with actual instances of model objects, such as a specific Patient object,
you’re dealing with an instance of a managed object. These objects will either be instances
of the NSManagedObject class, or a custom subclass of NSManagedObject. If you don’t
specify a custom subclass in the modeler, you would typically access the attributes of the
object through Key Value Coding (KVC), using code like that in Listing 2.1.

LISTING 2.1 Accessing the attributes of a managed object

NSManagedObject *aPatientObject; // Assuming this has already been fetched

NSString *firstName = [aPatientObject valueForKey:@”firstName”];

NSString *lastName = [aPatientObject valueForKey:@”lastName”];

[aPatientObject setValue:@”Pain killers” forKey:@”currentMedication”];

[aPatientObject setValue:@”Headache” forKey:@”currentIllness”];

If you choose to do so, you can also provide your own subclass of NSManagedObject, to
expose accessor methods and/or properties for your managed object, so you could use the
code shown in Listing 2.2. You’ll look at this in more detail in Chapter 6, “Working with
Managed Objects.”

11The Core Data Approach

LISTING 2.2 Using a custom subclass of NSManagedObject

Patient *aPatientObject; // Assuming this has already been fetched

NSString *firstName = [aPatientObject firstName];

NSString *lastName = aPatientObject.lastName;

[aPatientObject setCurrentMedication:@”Pain killers”];

aPatientObject.currentIllness = @”Headache”;

You could also still access the values of the object using valueForKey:, etc., if you wish.

Relationships

The Data Modeler is also the place where you define the relationships between your enti-
ties. As an example, a Patient object would have a relationship to a Doctor, and the
Doctor would have a relationship to the Patient, as shown in Figure 2.1.

2

When modeling relationships, you typically think in relational database terms, such as
one-to-one, one-to-many, and many-to-many. In the example shown in Figure 2.1, a patient
has only one doctor, but a doctor has many patients, so the doctor-patient relationship is
one-to-many.

If the doctor-patient relationship is one-to-many, the inverse relationship (patient-doctor)
is obviously many-to-one. When you model these relationships in the Data Modeler, you
need to model them both, explicitly, and set one as the inverse of the other. By setting the
inverse relationship explicitly, Core Data ensures the integrity of your data is automati-
cally maintained; if you set a patient to have a particular doctor, the patient will also be
added to the doctor’s list of patients without you having to do it yourself.

FIGURE 2.1 A Patient-Doctor relationship

12

You specify a name for each relationship, so that they are exposed in a similar way to an
entity’s attributes. Again, you can either work with KVC methods, or provide your own
accessors and property declarations in a custom subclass, using code like that in Listing 2.3.

LISTING 2.3 Working with relationships

Patient *aPatientObject; // Assuming this has already been fetched

Doctor *aDoctorObject = [aPatientObject valueForKey:@”doctor”];

Patient *anotherPatientObject; // also already fetched

anotherPatientObject.doctor = aDoctorObject;

// The inverse relationship is automatically set too

NSLog(@”Doctor’s patients = %@”, [aDoctorObject patients]);

/* Outputs:

Doctor’s patients = (

aPatientObject,

anotherPatientObject,

etc...

)

*/

It’s important to note that Core Data doesn’t maintain any order in collections of objects,
including to-many relationships. You’ll see later in the book how objects probably won’t
be returned to you in the order in which you input them. If order is important, you’ll
need to keep track of it yourself, perhaps using an ascending numerical index property for
each object.

If you’re used to working with databases such as MySQL, PostgreSQL, or MS SQL Server
(maybe with web-based applications in Ruby/Rails, PHP, ASP.NET, etc.), you’re probably
used to every record in the database having a unique id of some sort. When you work with
Core Data, you don’t need to model any kind of unique identifier, nor do you have to
deal with join tables between related records. Core Data handles this in the background;
all you have to do is to define the relationships between objects, and the framework will
decide how best to generate the underlying mechanisms, behind the scenes.

Managed Object Contexts

So far, the code in this chapter has assumed that you’ve fetched an object “from some-
where.” When you’re working with managed objects and Core Data, you’re working
within a certain context, known as the Managed Object Context. This context keeps track of
the persistent storage of your data on disk (which on iOS is probably a SQLite store) and
acts as a kind of container for the objects that you work with.

CHAPTER 2 A Core Data Primer

13The Core Data Approach

2

Conceptually, it’s a bit like working with a document object in a desktop application—the
document represents the data stored on disk. It loads the data from disk when a document
is opened, perhaps allowing you to display the contents in a window on screen. It keeps
track of changes to the document, likely holding them in memory, and is then responsible
for writing those changes to disk when it’s time to save the data.

The Managed Object Context (MOC) works in a similar way. It is responsible for fetching
the data from the store when needed, keeping track of the changes made to objects in
memory, and then writing those changes back to disk when told to save. Unless you
specifically tell the MOC to save, any changes you make to any managed objects in that
context will be temporary, and won’t affect the underlying data on disk.

Unlike a normal document object, however, you are able to work with more than one
managed object context at a time, even though they all relate to the same underlying data.
You might, for example, load the same patient object into two different contexts, and
make changes to the patient in one of the contexts (as shown in Figure 2.2). The object in
the other context would be unaffected by these changes, unless you chose to save the first
context. At that point, a notification would be sent to inform you that another context
had changed the data, and you could reload the second context if you wanted to.

Although it’s less common to work with multiple contexts on iOS than it is on the
desktop, you typically use a separate context if you’re working with objects in the back-
ground, such as pulling information from an online source and saving it into your local
app’s data. If you choose to use the automatic Undo handling offered by managed object
contexts, you might set up a second context to work with an individual object, handling
undo for any changes to individual attributes as separate actions. When it was time to
save that object back into your primary context, the act of saving all those changes would
count as one undo action in the primary context, allowing the user to undo all the
changes in one go if they wanted to. You’ll see examples of this in later chapters.

FIGURE 2.2 Managed Object Contexts and their Managed Objects

14 CHAPTER 2 A Core Data Primer

Fetching Objects

The managed object context is also the medium through which you fetch objects from
disk, using NSFetchRequest objects. A fetch request has at minimum the name of an
entity; if you wanted to fetch all the patient records from the persistent store, you would
create a fetch request object, specify the Patient entity to be retrieved, and tell the MOC
to execute that fetch request. The MOC returns the results back to you as an array. Again,
it’s important to note that the order in that array probably won’t be the same as the order
in which you stored the objects, or the same as the next time you execute the fetch
request, unless you request the results to be sorted in a particular order.

To fetch specific objects, or objects that match certain criteria, you can specify a fetch pred-
icate; to sort the results in a certain order, you can provide an array of sort descriptors. You
might choose to fetch all the patient records for a particular doctor, sorting them by last
name. Or, if you had previously stored a numerical index on each patient as they were
stored, you could ask for the results to be sorted by that index so that they would be
returned to you in the same order each time.

Faulting and Uniquing

Core Data also works hard to optimize performance and keep memory usage to a
minimum, using a technique called faulting.

Consider what could happen if you loaded a Patient record into memory; in order that
you have access to that patient’s Doctor object, it might seem that you’d want to have the
Doctor object loaded as well. And, since you might need to access the other patients
related to that doctor, you should probably load all those Patient objects too. With this
behavior, what you thought was a single-object fetch could turn into a fetch of thousands
of objects—every related object would need to be fetched, possibly resulting in fetching
your entire dataset.

To solve this problem, Core Data doesn’t fetch all the relationships on an object. It simply
returns you the managed object that you asked for, with the relationships set to faults. If
you try and access one of those relationships, such as asking for the name of the patient’s
doctor, the “fault will fire” and Core Data will fetch the requested object for you. And, as
before, the relationships on a newly fetched doctor object will also be set to faults, ready
to fire when you need to access any of the related objects. All of this happens automati-
cally, without you needing to worry about it.

A managed object context will also ensure that if an object has already been loaded, it will
always return the existing instance in any subsequent fetches. Consider the code in
Listing 2.4.

LISTING 2.4 Fetching unique objects

Patient *firstPatient; // From one fetch request

Doctor *firstPatientsDoctor = firstPatient.doctor;

15Examining the Xcode Core Data Templates

2

Patient *secondPatient; // From a second fetch request

Doctor *secondPatientsDoctor = secondPatient.doctor;

/* If the two patients share the same doctor, then the doctor instance

returned after each fault fires will be the same instance: */

if(firstPatientsDoctor == secondPatientsDoctor)

{

NSLog(@”Patients share a doctor!”);

}

This is known as uniquing—you will only ever be given one object instance in any
managed object context for, say, a particular Patient.

Persistent Stores and Persistent Store Coordinators

The underlying data is held on disk in a persistent store. On an iOS device, this is usually a
SQLite store. You can also choose to use a binary store or even your own custom atomic
store type, but these require the entire object graph to be loaded into memory, which can
quickly become a problem on a device with limited resources.

You never need to communicate directly with a persistent store, or worry about how it is
storing data. Instead, you rely on the relationship between the managed object context
and a persistent store coordinator.

The persistent store coordinator acts as a mediator to the managed object contexts; it’s
also possible to have a coordinator talk to multiple persistent stores on disk, meaning that
the coordinator would expose the union of those stores to be accessed by the managed
object contexts.

You won’t typically need to worry too much about persistent stores and coordinators
unless you want to work with multiple stores or define your own store type. In the next
section, you’ll see the code from the Xcode template project that sets up the persistent
store for you. Once this is dealt with, you’ll spend most of your time concentrating on the
managed objects, held within managed object contexts.

Examining the Xcode Core Data Templates
Now that you have a better idea of Core Data terminology, let’s take a look inside a standard
Core Data template project for an iOS application to see how all of this works in practice.

16 CHAPTER 2 A Core Data Primer

The Navigation-Based Project Template

The Xcode project templates for the Navigation-based, Split View-based, Utility and
Window-based applications all offer the option to Use Core Data, as shown in Figure 2.3.

To follow the rest of this chapter, launch Xcode and choose File > New > New Project
(Shift-„-N), then select the Navigation-based Application template. Call the project
TemplateProject, and tick the Use Core Data checkbox.

When the project window appears, you’ll see that there are some extra items compared to
a standard project. First, the project links to the CoreData.framework. Second, there is an
item called TemplateProject.xcdatamodeld. This defines the structure of your data model,
which you build visually using the Xcode Data Modeler. Click on the file to open it.

There are two ways to view a data model in Xcode 4—as a Table or a Graph, as shown in
Figure 2.4.

NOTE

Xcode 3 has only one editor mode, which combines the Table and Graph into a single
view.

The Data Modeler

At the top-left of the editor, you’ll see a list of Entities. In the template file, there is a single
entity, called Event. If you select this entity for display using the Table editor style, you’ll
see a list of the entity’s attributes, relationships and fetched properties.

FIGURE 2.3 The New Project Window

17Examining the Xcode Core Data Templates

2

FIGURE 2.4 The two Editor Styles in the Xcode 4 Data Modeler

The Event entity has a single attribute listed, called timeStamp. If you click this attribute to
select it, and look in Xcode 4’s Data Model Inspector (Option-„-3), you’ll see that its Type
is set to Date.

This inspector offers a number of other options relating to that attribute. For example, this
is where you can choose to validate the data that is stored, or mark an attribute as being
optional; these options are covered in Chapter 3, “Modeling Your Data.”

Xcode 4’s Graph editor style offers a visual representation of the entities in your object
model. At present, there is only a single entity in the model, but if there were more than
one, you would see the relationships between the entities represented by lines and arrows
connecting the two, as in Figure 2.5.

Setting up the Core Data Stack

When working with data held in a persistent store, you will need to have built up a stack
of objects; at the bottom is the actual persistent store on disk, then comes a persistent
store controller to liaise between the store and the next level, the managed object context,
as shown in Figure 2.6.

It’s also possible to have more than one persistent store under the one coordinator, as well
as multiple managed object contexts (as discussed earlier in the chapter).

18 CHAPTER 2 A Core Data Primer

FIGURE 2.5 Relationships between objects in the Object Graph

Managed Object
NSManagedObject

Managed Object Context
NSManagedObjectContext

Managed Object
NSManagedObject

Managed Object
NSManagedObject

Managed Object
NSManagedObject

Persistent Store Coordinator
NSPersistentStoreCoordinator

(uses a managed object model)

Persistent Store
NSPersistentStore

Persistent Store
NSPersistentStore

Managed Object Context
NSManagedObjectContext

FIGURE 2.6 The Core Data Stack

Let’s examine the template code provided to set up this Core Data stack. Open the
TemplateProjectAppDelegate.h interface file, and you’ll find that there are a number of
property declarations defined for the app delegate, as shown in Listing 2.5 (the Xcode 4
templates make use of the modern runtime feature of synthesizing the corresponding
instance variables).

19Examining the Xcode Core Data Templates

2

LISTING 2.5 The app delegate interface

@interface TemplateProjectAppDelegate : NSObject <UIApplicationDelegate> {

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain, readonly) NSManagedObjectContext

*managedObjectContext;

@property (nonatomic, retain, readonly) NSManagedObjectModel *managedObjectModel;

@property (nonatomic, retain, readonly) NSPersistentStoreCoordinator

*persistentStoreCoordinator;

- (void)saveContext;

- (NSURL *)applicationDocumentsDirectory;

@property (nonatomic, retain) IBOutlet UINavigationController *navigationController;

@end

The app delegate keeps track of the managed object model, which is the information
contained within the TemplateProject.xcdatamodeld file. It also has a reference to a
persistent store coordinator, along with a managed object context. The
applicationDocumentsDirectory is used to determine where the data will be held on disk.

Switch to the TemplateProjectAppDelegate.m interface file and scroll through the various
methods that are provided. Near the bottom, you’ll find the
applicationDocumentsDirectory method. As the name implies, it simply returns the path
to the application’s documents directory.

Next find the persistentStoreCoordinator method. This method sets up a persistent
store coordinator, to access a SQLite store file called TemplateProject.sqlite, located in
the application’s documents directory. The persistent store is initialized using the model
provided by the managedObjectModel method, so jump to this method next.

The managedObjectModel method returns an NSManagedObjectModel object created from a
file called TemplateProject.momd. When you compile the project, the
TemplateProject.xcdatamodeld data model is compiled into this .momd resource and
stored in the application’s bundle.

It’s also possible to create an NSManagedObjectModel by merging all the available model
files using the class method mergedModelFromBundles:, or by merging selected models
using modelByMergingModels:. Although there is only a single model file (it’s actually a
model bundle) in this template application, it is possible to split your model into multiple
.xcdatamodeld files, if you wish.

20 CHAPTER 2 A Core Data Primer

At the top of the stack, you’ll find the managedObjectContext method. This method sets up
the context using the persistent store coordinator. If you look in the awakeFromNib method,
towards the top of the file, you’ll find that it sets a property on the RootViewController for
a managedObjectContext. It is at this point that the chain is triggered to set up the
managed object model, persistent store coordinator and finally the context.

NOTE

In earlier versions of Xcode, the template code may be slightly different; for example,
setting up the managed object model by merging the models in the main bundle, and
setting the RootViewController’s managedObjectContext property from within
application:didFinishLaunching:.

Lastly, the applicationWillTerminate: method calls a saveContext method, which checks
to see whether any changes have been made to objects in the managed object context,
and tries to save those changes if so. This means that the persistent store will be updated
with changes from the context when the application exits. Some versions of the project
template also call saveContext from applicationDidEnterBackground:, so that the store
will be updated if the user switches to a different application under iOS 4 multitasking.

You probably won’t need to modify the code in these methods unless you need to work
with multiple stores or custom store types. Once the managed object context has been set
up, it’s passed to the root view controller. This view controller has the code that actually
performs the relevant fetches to display the data in a table view, and it’s this sort of code
that you will typically be writing most of the time when you’re working with Core Data.
In Chapter 4, “Basic Storing and Fetching,” you’ll start writing your own code to populate
a table view with information from a Core Data store.

Running the Application

To see the functionality you get from the basic project template, build and run the appli-
cation. You’ll find that you can add to a list of Events; the table view shows these,
outputting the values of the events’ timeStamp attributes. Note that you can remove items
from the table view using the Edit button, or by swiping your finger across a row.

A Quick Look at the RootViewController Code

To get an idea of how this all works, open up the RootViewController.m implementation
file. The template application makes use of a Fetched Results Controller to simplify working
with fetched objects and table views. This object is created lazily and told to fetch when
it’s needed by one of the table view data source methods.

NOTE

In earlier versions of Xcode, the template file creates the FetchedResultsController
and executes a fetch at the end of the view controller’s viewDidLoad method.

21Examining the Xcode Core Data Templates

2

If you look at the code that generates the fetchedResultsController lazily, you’ll see that
it’s set to use the Event entity and given sort descriptors to sort by the timeStamp attribute.

The methods to display the contents in the table view are the standard table view data
source methods; for the numberOfSections... and numberOfRows... methods, the
template code just queries the fetched results controller object. To display the information
in the cellForRowAtIndexPath: method, a configureCell:atIndexPath: method is used.
Notice how simple it is to get hold of the managed object at the selected index. The code
to display the time stamp is shown in Listing 2.6.

LISTING 2.6 Displaying the timestamp in the cell

NSManagedObject *managedObject = [self.fetchedResultsController

objectAtIndexPath:indexPath];

cell.textLabel.text = [[managedObject valueForKey:@”timeStamp”] description];

The fetched results controller returns the object at the specified index, and the code just
queries that returned object for the description of its timeStamp key.

The commitEditingStyle:forRowAtIndexPath: method simply tells the managed object
context to delete the object at the specified index path, and then asks the context to save.

FIGURE 2.7 The Template Application in the Simulator

22 CHAPTER 2 A Core Data Primer

This will mean that the object deleted from the table view will also be deleted from the
persistent store.

Lastly, find the insertNewObject method that gets called when the user tries to add an
object to the table view, and you’ll see that the procedure is:

. Get a pointer to a managed object context.

. Decide which entity you need to use to create a new object.

. Insert a new object for that entity, into the managed object context.

. Set the relevant values on the new object.

. Tell the context to save.

When the context saves, the new object is written to the persistent store. It’s as simple as
that! Note that the template files are deliberately verbose—it’s common to accomplish the
above using only two or three lines of code.

Summary
Now that you have an idea of how a Core Data application is constructed, it’s time to start
learning how to use the individual parts of the Core Data framework. In the next chapter,
you’ll see best practices for constructing managed object models from the point of view of
memory and performance considerations.

Although the Apple-provided template application makes use of a fetched results
controller, it’s a good idea to see how objects are fetched manually. Chapter 4, “Basic
Storing and Fetching,” demonstrates how to work directly with managed object contexts
and fetch requests to display objects in a table view. Chapter 5, “Using
NSFetchedResultsController,” then shows how to take advantage of the memory optimiza-
tion and performance benefits offered by the fetch results controller.

SYMBOLS
” (quotation marks), substituting without

strings, 119
#ifdef directive, 218
= (equality) operators, 124
@dynamic keyword, 58, 91
@end keyword, 107

A
Abstract checkbox, 31
abstract entity models, 189
AbstractItem entity, 232
abstract sub-entity models, 189-190
accessing

managed objects, 10
relational database systems, 3

accessor methods
customizing, 91-93
lazy, 109
non-transient properties, 109
troubleshooting, 266-267

actions, deleting undo, 181
Add Attribute button, 31
add button (+), 227
Add button, viewing, 50
Add (+) button (Xcode), 31
Add Entity button, 29
adding

attributes, 148, 242
AWPerson interfaces, 106-108
convenience methods, 94
delegate methods, 77
editor controllers, 182-183
entities, 148
frameworks, 256
ImageFilename property, 242
objects, 96
outlets to view controllers, 164
persistent stores, 146
PrimitiveAccessors categories, 110
properties, 166, 196
RandomDate objects, 50
relationships to entities, 35-37
Search Bars, 139-141
Search Display Controllers, 130-141
SQLDebug arguments, 227

Index

support to managed object contexts, 176
transient eyeColor property declarations,

108
addNewPerson method, 183
addNewRandomDate method, 50, 58, 75
allocating

memory. See memory
objects, 114

AND operator, 128
APIs (application programming interfaces), 10
application:didFinishLaunchingWithOptions:

method, 174
application programming interfaces. See APIs

(application programming interfaces)
applications, 3

Associated Press, 7
Calcuccino, 7
contact-management, 27
data models, 188-192
delegates, 254
iPhone screens, 26
MoneyWell case study, 6-7
Note Collector, 187-188

AbstractItem entity, 232
BLOBs (Binary Large OBjects), 239
configuring RootViewController, 192-195
data models, 188-192
editing notes, 210-217
naming items, 202-210
SQLite debug level 1, 228
supplying pre-populated data stores,

217-219
viewing collection contents, 195-202

Random Dates, 47-48
NSFetchedResultsController, 73-85
section index titles, 82
table views, 80

Random People
adding Search Display Controllers,

130-141
configuring, 93-98
creating, 88-89
customizing migration, 151
editing managed objects, 163-173
managed object subclass files, 88
troubleshooting, 105
undo support, 174-175

running, 20
Template, 21
testing, 135

applicationWillTerminate: method, 20
applying

Boolean attributes, 90
Data Modelers (Xcode), 10, 28-37
managed objects, 87
NSFetchedResultsController, 61
predicates, 117
relationships, 12
sort descriptors, 45
table views, 46-54
transformable attributes, 113-114
transient attributes, 105-113
UIColor properties, 111-113

archives, 9
arguments, 226

SQLDebug, configuring, 228
validation methods, 100
XCode, 228

Arguments Passed On Launch section, 227
arrays, 9, 128
arrows, relationships, 36
assigning attributes, 42
Associated Press application, 7
atomic binary data stores, 224
attaching instruments, 246
Attribute Inspector, 204
attributes

adding, 148, 242
assigning, 42
Boolean, applying, 90
configuring, 42
custom managed object subclasses, 55
data, 27
Data Modelers (Xcode), 32
Decimal, 34
eyeColorData, 107
fullName, 107
Integer16, 34
managed objects, accessing, 10
naming, 33
optional, 32
orderDate, 33
persistent, 92
renaming, 148-152
String, 35
testAttribute, 144
transformable, 34, 113-114
Transient, 32
transient, applying, 105-113
types, 34
yearOfBirth, 156

Attributes Inspector, 212
auto-generated AWPerson class interface, 89
automaticallyNotifiesObserversForKey: method,

91
automatic grouping functionality, 68
automatic undo support, 174
AWAbstractItem entity, 195
AWAbstractItem.h file, 191
awakeFromFetch method, 115
awakeFromInsert method, 115
awakeFromSnapshotEvents: method, 115
AWCollectionViewController, 196
AWNoteEditorViewController, 211
AWNoteEditorViewController.h file, 211
AWNote.h file, 191
AWPersonEditorViewController, 176, 182
AWPerson interfaces, adding, 106-108
AWStringEditorVCDelegate protocol, 203
AWStringEditorViewController class, 203
AWStringEditorViewController.h file, 203

B
background colors, 112
batches

faulting, 237
fetching, 62
rows, loading, 62

behavior
migration, customizing, 156
overriding, 80
RootViewController class, 49-51

binary data storage, 27-28, 225
binary files, 9
Binary Large OBjects. See BLOBs
Bindings, 5
bitwise operators, predicates, 123
blank documents, 29
BLOBs (Binary Large OBjects)

entities, 239-242
external files, 242-244
management, 238-244
migration, 244

Boolean attributes, applying, 90
bundles, xcdatamodeld, 146

C
caching, 63

NSFetchedResultsController, 72
objects, 234
specifying, 84

Calcuccino, 7
canBecomeFirstResponder method, 174
Cancel button, 205
canceling edited strings, 207

applications272

cancelPerson: method, 171
cascading objects, 46
case studies

Associated Press application, 7
Calcuccino, 7
MoneyWell for iPhone, 6-7

categories, adding PrimitiveAccessors, 110
cellForRowAtIndexPath: method, 21

modifying, 59
cells

backgrounds, formatting colors, 112
contents, viewing, 193
index paths, returning, 66
timestamps, viewing, 21

C language, APIs (application programming
interfaces), 10

classes
AWStringEditorViewController, 203
customizing, 56-59
factory methods, 55
files, creating, 190-192
managed objects

implementation, 90-93
interfaces, 89-90

not found errors, 255-256
NSCompoundPredicate, 128
NSEntityDescription, 42
NSFetchedResultsController, 6
NSManagedObject, 11
NSObject, 23
NSPredicate, 118, 126, 231
RandomDate, 58
RootViewController, 49-51
specifying, 30
subclasses, customizing, 11

clearing fetch predicates, 135-136
code, RootViewController, 21-22
collections, 9

contents, viewing, 195-202
items, placing inside, 199
tracking, 196
view controllers, initializing, 198

collisions, threading, 260-264
colors, 111

backgrounds, 112
commands

Copy (Xcode), 106
Paste (Xcode), 106

commitEditingStyle:forRowAtIndexPath:
method, 22

comparing strings, 124-126
comparison operators, predicates, 122-123

How can we make this index more useful? Email us at indexes@samspublishing.com

compound predicates, 126-129
conditions, specifying predicates, 126
configureCell:atIndexPath: method, 21, 97
configuring

attributes, 42
controls, 213
currentPerson property, 165
custom classes for managed objects, 56-59
Delete Rule, 36
fetching

limits, 230-231
predicates, 132-135

Fetch Predicates, 44
items, naming, 202-210
managed object values, 168
Random People application, 93-98
RootViewController, 192-195
SQLDebug arguments, 228
stacks, 17-20
strings, first responders, 206
undo managers, 180

conflicts, handling, 260-264
connections, Search Display Controllers, 132
consoles, Xcode, 252
contact-management applications, 27
contents

cells, viewing, 193
collections, viewing, 195-202

contexts
editing, 180
managed objects

editing, 177
resetting, 181-182

MOC (Managed Object Context), 12-13
multiple managed object, 175-183
objects, modifying, 69-72
saving, 42-43

contextual menus for attributes (Xcode), 106
controllers

editors, adding objects, 182-183
fetched results, 6, 68, 192
main view, loading, 254
NSFetchedResultsController, 62. See also

NSFetchedResultsController
RootViewController code, 21-22
Search Display Controllers, adding, 130-141
views

adding outlets to, 164
creating, 203-210
generating, 166
initializing, 176, 198
multiple, 163
viewing, 167

controllers 273

controls, configuring, 213
convenience methods, adding, 94
convention, adding, 152
converting objects, 237-238
coordinators, persistent stores, 15
Copy command (Xcode), 106
copying pre-populated data stores, 218
Core Data, when not to use, 248
crashes, 43, 252, 265-266. See also

troubleshooting
creating. See formatting
currentPerson property, 165
customizing

accessor methods, 91-93
classes, 56-59
entities, 156-160
migration, 151
order of section of index titles, 82
sections, returning index titles, 81
subclasses, 11

custom managed object subclasses
attributes, 55
interfaces, 55

D
databases, 10

normalization, 25
relational database systems, 3
SQL (Structured Query Language), 4
storage, 10

data conflicts, handling, 260-264
Data Modeler (Xcode), 10, 16-18

applying, 28-37
describing entities, 23-24
fetch requests, editing, 121
relationships, 11-12

Data Model Inspector (Xcode), 30, 149
data models, applications, 188-192
data normalization, 25-26
data source methods, 64-72
data stores, types, 224-230
data validation. See validation
dateFilterPredicate method, 140
datePickerValueDidChange: method, 180
dates

filters, 140
validation, 100

debugging, 226. See also troubleshooting
Decimal attribute, 34
declaring relationships, 107
decreased property, 92
Default text field, 33

defining
entities, 35
relationships, 4
store types, 15

delegates
applications, 254
methods

adding, 77
writing, 95

deleteCacheWithName: method, 72
deleteObject: method, 45
Delete Rule, 36
deleting

managed objects, 45-46
objects, 76
RandomDate objects, 53
undo actions, 181
validation prior to, 104

denying objects, 46
design, data models, 24-28
desktops, differences between Core Data iOS

and, 5-6
Destination drop-down box, 36
detail disclosure indicators, 167
Detection options, 212
devices, overview of, 3
dictionaries

sets of, 9
troubleshooting, 129

DidChangeContent method, 69
didChangeObject method, 78
directives, #ifdef, 218
directories, Documents, 149
disks, persisting objects to, 9-10
displaying. See viewing
dividing data into entities, 24-28
documents, blank, 29
Documents directory, 149
Done button, 205

E
Edit button, 54
editing

contexts, 180
enabling, 215
fetch requests, 121
items, naming, 202-210
managed objects, 163-173, 177
notes, 210-217
preventing, 136
strings, saving, 207

controls, configuring274

editingContext property, 176
editors

controllers, adding objects, 182-183
Graph, 17, 31, 106
mapping models, 154
notes, interfaces, 211
Table, 31

Edit Scheme window, 226
efficiency of databases, 10
enabling

debugging, 226
editing, 215
lightweight migration, 146-148

Enterprise Objects Framework. See EOF
Entities, 16
entities

abstract, models, 189
AbstractItem, 232
adding, 148
AWAbstractItem, 195
BLOBs (Binary Large OBjects), 239-242
creating, 29-31, 34
customizing, 156-160
dividing data into, 24-28
Event, 145
managed objects and, 10-11, 23-24
modifying, 149
renaming, 148-152

Entity Inspector, 31, 56
Entity list, 29
Entity Mappings list, 156
environment variables, 226
EOF (Enterprise Objects Framework), 3
equality (=) operators, 124
errors, 43

executeFetchRequest:error:, 45
migration, 143-145
troubleshooting, 251-256. See also

troubleshooting
validation, 103

evaluating statements, 117. See also
predicates

Event entities, 145
Executables section, 228
executeFetchRequest:error:, 45
executing fetch requests, 44, 63, 122
expressions, NSPredicate class, 126
Extensible Markup Language. See XML
external files, BLOBs (Binary Large OBjects),

242-244
eyeColorData attribute, 107

How can we make this index more useful? Email us at indexes@samspublishing.com

F
factory method classes, 55
faulting, 14-15

batches, 237
management, 235-238
objects, re-faulting, 237-238
troubleshooting, 268-269

fetchedResultsController lazy accessor, 134
fetched results controllers, 6
fetching, 41

batches, 62
data, 10
limits, configuring, 230-231
managed objects, saving, 44-45
NSFetchedResultsController, 61
objects, 14

persistent stores, 118
troubleshooting, 269-270

optimizing, 230-235
predicates

clearing, 135-136
configuring, 132-135

properties, 31, 113
RandomDate objects, 51-52
requests

editing, 121
executing, 44, 63, 122
formatting, 44
monitoring, 247
predicates, 117. See also predicates
storing, 120

results, 75, 192
sorting, 113

fetchLimit property, 230
Fetch Predicates, configuring, 44
fetchRandomDates method, 73
fields, text, 214
files

AWAbstractItem.h, 191
AWNoteEditorViewController.h, 211
AWNote.h, 191
AWStringEditorViewController.h, 203
binary, 9
BLOBs (Binary Large OBjects), 242-244
classes, creating, 190-192
LightweightMigrationTestAppDelegate.m,

146
Managed Object Class, 57
managed objects, subclasses, 87-93
MigrationTest.xcdatamodeld, 144

files 275

raw data, viewing, 200-202
RootViewController.h, 166
support, searching, 149

filters
dates, 140
Search Bars, adding, 139-141

first responders
strings, 206
view controllers, 174

for loops, compound predicates, 128
Format Specifiers section, 118
format strings, creating predicates, 118-120
formatting

custom classes for managed objects, 56-59
entities, 29-31, 34
items, 194
managed objects, 41-43
NSFetchedResultsController, 62-64
objects, 10, 43
predicates, 118-120
properties, 31-35
Random People application, 88-89
relationships, 35-37
stacks, 17-20
subclasses, 54-59
view controllers, 203-210

frameworks, 3
adding, 256
EOF (Enterprise Objects Framework), 3

freeing up memory, 224
fullName attribute, 107
fullName property, 93
functionality, 4, 25

automatic grouping, 68
of Core Data, 4
Note Collector application, 210. See also

Note Collector application
undo, 163
validation, 98

G
generating view controllers, 166
getter methods

implementation, 92
transient properties, adding, 108

Graph editor, 17, 31, 106

H
handling

data conflicts, 260-264
tap on accessory buttons, 206

Handling Underlying Data Changes section, 63
headers

files, importing model class files, 192
sections, 68

hiding keyboards, 166
history of Core Data, 3-4

I
identifiers, renaming, 150
IDs, managed objects, 264
ImageFilename property, adding, 242
implementation

accessor methods, customizing, 91-93
AWPerson interfaces, adding, 106-108
classes, managed objects, 90-93
data source methods, 75
getter methods, 92
setter methods, 91

importing model class files, 192
Indexed checkbox, 32
indexes

paths, returning cells, 66
titles, 68, 79, 81

infinite loops, 101
inheritance, NSEntityMigrationPolicy, 156
initializing

managed objects, troubleshooting, 265-266
non-persistent properties, 114-116
stacks, 253
view controllers, 176, 198

init method, 178
in-memory data stores, 224
IN operator, 129
insertNewObject method, 22, 193
instances, variables, 73
instantiation, fetched results controller sub-

classes, 81
instruments, monitoring with, 245-248
Integer16 attribute, 34
Interface Builder, 5, 213
Interface Editor, 5
interfaces

APIs (application programming interfaces),
10. See also APIs

AWPerson, adding, 106-108
classes, managed objects, 89-90
custom managed object subclasses, 55
note editors, 211
updating, 165

Inverse drop-down box, 36
inverse relationships, 4, 11, 36

files276

iOS
optimizing, 223
use of Core Data on, 4-5

iPhones
application screens, 26
MoneyWell case study, 6-7
OS 3.0, table views, 67

itemName property, 193
items

collections, placing inside, 199
creating, 194
naming, 202-210

J
join tables, 24

K
keyboards, hiding, 166
key paths, predicates, 123-124
Key-Value-Coding. See KVC
Key-Value-Observing. See KVO
keywords

as attribute names, 33
@dynamic, 58, 91
@end, 107

KVC (Key-Value-Coding), 5, 10, 42, 54, 91
KVO (Key-Value-Observing), 5

notifications, 91

L
lazy accessor methods, 109
lifecycles, managed objects, 114-116
lightweight migration, 145-148
LightweightMigrationTestAppDelegate.m file,

146
LIMIT parameter, 230
limits, configuring fetching, 230-231
lists

Entity, 29
Entity Mappings, 156

loading
main view controllers, 254
properties, preventing, 237
rows, 62

loops
for, compound predicates, 128
infinite, 101

M
Mac OS X 10.4 Tiger, 3
main view controllers, loading, 254

How can we make this index more useful? Email us at indexes@samspublishing.com

Managed Object Class file, 57
Managed Object Context. See MOC (Managed

Object Context)
managedObjectContext method, 20
managedObjectContext property, passing, 49
managedObjectModel method, 19
managed objects

accessing, 10
applying, 87
attributes, configuring, 42
binary data storage, 27-28
classes

creating files, 190-192
implementation, 90-93
interfaces, 89-90

conflicts, 263
contexts

editing, 177
resetting, 181-182

creating, 41-43
and data validation, 5
deleting, 45-46
editing, 163-173
and entities, 23-24
entities and, 10-11
IDs, 264
invalidation, 267-268
lifecycles, 114-116
MOC (Managed Object Context), 12-13
multiple contexts, 175-183
multithreading, 257
predicates, 117. See also predicates
properties, updating, 168-170
saving, fetching, 44-45
subclasses, 54-59, 87-93
tracking, 164-168
transformable attributes, 113-114
transient attributes, 105-113
troubleshooting, 265-269
validation, 99-105, 171-173
values

configuring, 168
modifying, 179

management
BLOBs (Binary Large OBjects), 238-244
contact-management applications, 27
faulting, 235-238
memory, 248-249
relationships, 4
state, 5

managers, configuring undo, 180

managers, configuring undo 277

many-to-many relationships, 4, 24
mapping

models, 151-155
modifying, 157
object-relational, 3
PersonToPerson, 156

memory
BLOBs (Binary Large OBjects), 238
data stores, 225
freeing up, 224
management, 248-249
performance, 27
requirements, 223

merging changes from one context to another,
176-178

messages
crashes, 265
errors, 103, 252
willSave, 110

methods
accessor

customizing, 91-93
lazy, 109
non-transient properties, 109
troubleshooting, 266-267

addNewPerson, 183
addNewRandomDate, 50, 58, 75
application:didFinishLaunchingWithOptions:,

174
applicationWillTerminate:, 20
automaticallyNotifiesObserversForKey:, 91
awakeFromFetch, 115
awakeFromInsert, 115
awakeFromSnapshotEvents:, 115
canBecomeFirstResponder, 174
cancelPerson:, 171
cellForRowAtIndexPath:, 21, 59
commitEditingStyle:forRowAtIndexPath:, 22
ConfigureCell:atIndexPath:, 21
configureCell:atIndexPath:, 97
convenience, adding, 94
dateFilterPredicate, 140
datePickerValueDidChange:, 180
delegates

adding, 77
writing, 95

deleteCacheWithName:, 72
deleteObject:, 45
DidChangeContent, 69
didChangeObject, 78
fetchRandomDates, 73
getter, adding for transient properties, 108

init, 178
insertNewObject, 22, 193
managedObjectContext, 20
managedObjectModel, 19
NSFetchedResultsControllerDelegate, 69
persistentStoreCoordinator, 19
predicateForSearchString:, 139, 140
primitiveValueForKey:, 92
refreshObject:mergeChanges:, 237
RootViewController.m, 159
safe fault-free, 236-237
save:, 46
saveContext, 20
savePerson:, 171
sectionIndexTitleForSectionName:, 81-82
setCurrentPerson:, 177, 182
setRelationshipKeyPathsForPrefetching:,

234
setter, adding for transient properties,

110-111
tableView:didSelectRowAtIndexPath:, 199
textFieldShouldEndEditing, 100
textFieldShouldReturn:, 205
userDidSaveStringEditorVC:... callback, 209
validateValue:ForKey:error:, 102
viewDidLoad, 50, 74, 96, 168
viewWillDisappear:, 168, 181
WillChange, 69

migration, 143
BLOBs (Binary Large OBjects), 244
lightweight, 145-148
models, mapping, 151-155
overview of, 143-145
policies, custom entities, 156-160
summaries, 155

MigrationTest.xcdatamodeld file, 144
MOC (Managed Object Context), 12-13
models, 3

abstract entities, 189
abstract sub-entities, 189-190
applications, 188-192
entities, dividing data into, 24-28
mapping, 151-155
modifying, 106, 144-145
naming, 152
objects, 10, 41
Random Dates data, 48
Random People application, 89
relationships, 11
terminology, 24-25

modifying
addNewRandomDate method, 58

many-to-many relationships278

cellForRowAtIndexPath: method, 59
entities, 149
lightweight migration, 148
managed object values, 179
mapping, 157
models, 106, 144-145
objects, 69-72
persistent properties, 111
predicates, searching, 136-139
sections, 70

MoneyWell for iPhone case study, 6-7
monitoring

with instruments, 245-248
SQLite data stores, 225-227

multiple data model versions, 145-148
multiple managed object contexts, 175-183
multiple search words, creating predicates for,

137
multiple view controllers, 163
multitasking, 43
multithreading, 257-258

N
naming. See also renaming

attributes, 33
entities, modifying, 149
items, 202-210
models, 152
relationships, 36
RootViewController, 195

Navigation-based project templates (Xcode),
16-17

New File sheet, 28
New Project window, 16
NeXT, 3
No Action Delete Rule, 46
non-persistent properties, initializing, 114-116
normalization, 25-26
Note Collector application, 187-188

AbstractItem entity, 232
BLOBs (Binary Large OBjects), 239
collection contents, viewing, 195-202
data models, 188-192
items, naming, 202-210
notes, editing, 210-217
pre-populated data stores, supplying,

217-219
RootViewController, configuring, 192-195
SQLite debug level 1, 228

How can we make this index more useful? Email us at indexes@samspublishing.com

notes
editing, 210-217
editors, interfaces, 211

not found errors, classes, 255-256
notifications

KVO (Key-Value-Observing), 91
registering, 180

NSCompoundPredicate class, 128
NSEntityDescription class, 42
NSEntityMigrationPolicy

inheritance, 156
objects, 156

NSError objects, 45
NSFetchedResultsChangeDelete, 71
NSFetchedResultsChangeInsert, 71
NSFetchedResultsChangeMove, 71
NSFetchedResultsChangeUpdate, 71
NSFetchedResultsController class, 6

applying, 61
caching, 72
creating, 62-64
data source methods, 64-72
instances, variables, 73
overview of, 62
Random Dates application, 73-85
sections, 235
subclasses, 80-85

NSFetchedResultsControllerDelegate methods,
69

NSInferMappingModelAutomaticallyOption, 147
NSManagedObject class, 11
NSManagedObject subclass, 56, 191
NSMergeByPropertyObjectTrumpMergePolicy,

262
NSMergeByPropertyStoreTrumpMergePolicy,

262
NSMigratePersistentStoresAutomaticallyOption,

147
NSObject class, 23
NSOverwriteMergePolicy, 262
NSPredicate class, 118, 126, 231
NSRollbackMergePolicy, 263
nullifying objects, 46

O
object-relational mapping, 3
objects

adding, 96
allocating, 114
BLOB (Binary Large OBject) management,

238-244
caching, 234

objects 279

cascading, 46
contexts, modifying, 69-72
converting, 237-238
creating, 43
deleting, 76
denying, 46
disk, persisting to, 9-10
editor controllers, 182-183
EOF (Enterprise Objects Framework), 3
fetching, 14
managed. See managed objects
models, 10, 41
modifying, 71
NSEntityMigrationPolicy, 156
nullifying, 46
object-relational mapping, 3
persistent stores, fetching, 118
pre-fetching, 234-235
RandomDate

adding, 50
deleting, 53
fetching, 51-52
viewing, 52-53

re-faulting, 237-238
relationship management, 4
releasing, 114
serialization, 10
SQLite data stores, 225
troubleshooting, 269-270
unique, fetching, 14

one-to-many relationships, 4
one-to-one relationships, 4
operators

AND, 128
IN, 129
equality (=), 124
OR, 128
predicates

bitwise, 123
comparison, 122-123

optimizing
fetching, 230-235
iOS, 223
performance, 224
predicates, 231-233

optional attributes, 32
options

Detection, 212
NSInferMappingModelAutomaticallyOption,

147
NSMigratePersistentStoresAutomatically-

Option, 147

orderDate attribute, 33
order of section of index titles, customizing, 82
OR operator, 128
overriding behavior, 80

P
parameters, LIMIT, 230
Parent Entity, 30
parsers, tokens, 118
passing managedObjectContext properties, 49
Paste command (Xcode), 106
paths

indexes, returning cells, 66
key, predicates, 123-124

performance
memory, 27
monitoring, 245-248
optimizing, 224
requirements, 223

persistent attributes, 92
persistentStoreCoordinator method, 19
persistent stores, 15, 43, 105. See also storage

adding, 146
coordinators, 257
objects, fetching, 118

persisting objects to disk, 9-10
PersonToPerson mapping, 156
policies, migration, 156-160
predicateForSearchString: method, 139-140
predicates

applying, 117
bitwise operators, 123
comparison operators, 122-123
compound, 126-129
conditions, specifying, 126
creating, 118-120
fetching

clearing, 135-136
configuring, 132-135

key paths, 123-124
optimizing, 231-233
overview of, 117-124
relationships, 129-130
searching, modifying, 136-139
sets, 129-130
SQL queries, 130
strings, comparing, 124-126
variables, 120-122

pre-fetching. See also fetching
objects, 234-235
relationships, 233-234

objects280

pre-loading property values, 235
pre-populated data stores, supplying, 217-219
preventing

editing, 136
property loading, 237

PrimitiveAccessors categories, adding, 110
primitiveValueForKey: method, 92
programming RootViewController code, 21-22
project templates, 252
properties

adding, 166
collections, tracking, 196
creating, 31-35
decreased, 92
editingContext, 176
fetching, 31, 113
fetchLimit, 230
fullName, 93
ImageFilename, adding, 242
itemName, 193
loading, preventing, 237
managed objects, updating, 168-170
non-persistent, initializing, 114-116
sorting, 113
specifying, 114
synthesizing, 197, 204
testing, 129
transient, 105
UIColor, applying, 111-113
undoManager, 174
validation, 99-104
values

pre-loading, 235
troubleshooting, 265-266

protocols, AWStringEditorVCDelegate, 203

Q
queries

fetched results, 68
SQL predicates, 130

quotation marks (“), substituting without
strings, 119

R
RandomDate class, 58
RandomDate objects

adding, 50
deleting, 53
fetching, 51-52
viewing, 52-53

How can we make this index more useful? Email us at indexes@samspublishing.com

Random Dates application, 47-48
NSFetchedResultsController, 73-85
section index titles, 82
table views, 80

Random People application
configuring, 93-98
creating, 88-89
managed objects

editing, 163-173
subclass files, 88

migration, customizing, 151
Search Display Controllers, adding, 130-141
troubleshooting, 105
undo support, 174-175

raw data files, viewing, 200-202
redo, registering notifications, 180
reducing memory usage, 224
re-faulting objects, 237-238
referential integrity, 4
Refractor tool (Xcode), 195
refreshObject:mergeChanges: method, 237
registering undo/redo notifications, 180
relational database systems, 3
Relationship inspector, 35
relationships, 25

applying, 12
arrows, 36
creating, 35-37
Data Modelers (Xcode), 11-12
declaring, 107
management, 4
naming, 36
predicates, 129-130
pre-fetching, 233-234
superCollection, 192

releasing objects, 114
remove button (-), 228
renaming

attributes, 148-152
entities, 148-152
identifiers, 150
RootViewController, 195

requests
fetching

editing, 121
executing, 44, 63, 122
formatting, 44
monitoring, 247

NSFetchedResultsController, 61
requirements

memory, 223
performance, 223
validation, 10

requirements 281

resetting contexts, managed objects, 181-182
results

fetched results controllers, 6
fetching, 75, 192
NSFetchedResultsController, 61
troubleshooting, 270

returning
cells, index paths, 66
custom section index titles, 81
information about sections, 68-69

RootViewController class
behavior, 49-51
Note Collector application, configuring,

192-195
renaming, 195

RootViewController code, 21-22
RootViewController.h file, 166
RootViewController.m method, 159
rows

loading, 62
table views, 65-67

rules, 41
Delete Rule, 36, 46
object validation, 5
relationships, 4

running applications, 20

S
safe fault-free methods, 236-237
sample applications, Note Collector, 187-188
saveContext method, 20
save: method, 46
savePerson: method, 171
saving

contexts, 42-43
edited strings, 207
managed objects, fetching, 44-45
objects, 43
strings, editing, 207

screens, iPhone applications, 26
Search Bars, adding, 139-141
Search Display Controllers, adding, 130-141
searching

predicates, modifying, 136-139
support files, 149

sectional table views, 65
sectionIndexTitleForSectionName: method,

81-82
sections

customizing, returning index titles, 81
Format Specifiers, 118
headers, 68

index titles, 81
information about, returning, 68-69
modifying, 70
NSFetchedResultsController, 235
sorting, 170
table views, 65-67

selecting
instruments, 246
key paths in Xcode 3, 124

serialization, objects, 10
setCurrentPerson: method, 177, 182
setRelationshipKeyPathsForPrefetching:

method, 234
sets

dictionaries, 9
predicates, 129-130

setter methods
implementation, 91
transient properties, adding, 110-111

Simulator, 21, 252
Size Inspector, 212
sizes, fetching, 231
sort descriptors, 45, 74
sorting

fetching, 113
properties, 113
sections, 170
troubleshooting, 269-270
years, 159

specifying
caching, 84
classes, 30
conditions, predicates, 126
entities, 24
inverse relationships, 36
properties, 114

speed, optimizing, 224
SQL (Structured Query Language), 4, 10, 130
SQLDebug argument, configuring, 228
SQLite, 4, 10

BLOBs (Binary Large OBjects), 238
data store, 224-227

stacks
formatting, 17-20
initializing, 253

startup, troubleshooting, 254-255
state management, 5
statements, predicates, 117. See also

predicates
storage, 41

binary data, 27-28
databases, 10

resetting contexts, managed objects282

data store types, 224-230
fetch requests in data models, 120
incompatibility, 145
persistent stores, 105

String attribute, 35
String Programming Guide, 118
strings

comparing, 124-126
editing, saving, 207
first responders, configuring, 206
predicates, creating, 118-120
substituting, 119

Structured Query Language. See SQL
subclasses. See also classes

customizing, 11
managed objects, 54-59, 87-93
NSFetchedResultsController, 80-85
NSManagedObject, 191
UIViewController, 210

sub-entities, abstract models, 189-190
sub-predicates, 128. See also predicates
substituting strings, 119
substitution variables, 120-121
summaries, migration, 155
superCollection relationships, 192
supplying pre-populated data stores, 217-219
support

data stores, 224-230
files, searching, 149
managed object contexts, adding, 176
undo, 174-175

synthesizing properties, 197, 204

T
Table editor, 31
tables

databases, 24. See also databases
join, 24
SQL (Structured Query Language), 130
views

applying, 46-54
data source methods, 64-72
NSFetchedResultsController, 62
Random Dates application, 80
rows, 65-67
Search Display Controllers, 131
sections, 65-67
writing delegate methods, 95

tableView:didSelectRowAtIndexPath: method,
199

Template application, 21

How can we make this index more useful? Email us at indexes@samspublishing.com

TemplateProjectAppDelegate.h interface file, 18
templates

NSManagedObject subclass, 56
projects, 252
Xcode, 15-22

temporary object IDs, 265
terminology, models, 24-25
testAttribute attribute, 144
testing

applications, 135
MigrationTest.xcdatamodeld file, 144
properties, 129

text, fields, 214
textFieldShouldEndEditing method, 100
textFieldShouldReturn: method, 205
threading

collisions, 260-264
multithreading, 257-258
troubleshooting, 257-265

timestamps, viewing, 21
titles

indexes, 68, 79, 81
root view controllers, 168, 198

tokens, predicates, 118
tools, Refractor (Xcode), 195
tracking

changes, 13
collections, 196
managed objects, 164-168
versions, 151

Transformable attribute, 34
transformable attributes, 113-114
Transient attributes, 32
transient attributes, applying, 105-113
triggering KVO (Key-Value-Observing) notifica-

tions, 91
troubleshooting, 251

accessor methods, 266-267
dictionaries, 129
errors, 251-256
faulting, 268-269
iPhone OS 3.0, table views, 67
managed objects, 265-269
migration, 143-145
not found errors, classes, 255-256
objects, fetching, 269-270
Random People application, 105
results, 270
startup, 254-255
threading, 257-265

troubleshooting 283

types
attributes, 34
data stores, 224-230
instruments, 245

U
UIColor properties, applying, 111-113
UIViewController subclass, 210
Undefined type, 34
undo

actions, deleting, 181
functionality, 163
managers, configuring, 180
notifications, registering, 180
stacks, 5
support, 174-175

undoManager property, 174
uniquing, 14-15
updating

interfaces, 165
properties, managed objects, 168-170

userDidSaveStringEditorVC:... callback method,
209

User Info area, 31
userInfo key, 207

V
validateValue:ForKey:error: method, 102
validation

dates, 100
errors, 103
functionality, 98
managed objects, 99-105, 171-173
managed objects and data, 5
prior to deletion, 104
properties, 99-104
requirements, 10

values
managed objects

configuring, 168
modifying, 179

properties
pre-loading, 235
troubleshooting, 265-266

validation, 100
variables

environment, 226
instances, NSFetchedResultsController, 73
predicates, 120-122
substitution, 120

versioning, 143
multiple data model, 145-148
tracking, 151

Versioning area, 31
viewDidLoad method, 50, 74, 96, 168
viewing

Add button, 50
cells, 193
collections, 195-202
iPhone applications, 26
note editors, 215
notes, 210-217
RandomDate objects, 52-53
raw data files, 200-202
timestamps, 21
view controllers, 167

views
controllers

adding outlets to, 164
creating, 203-210
as first responders, 174
generating, 166
initializing, 176, 198
multiple, 163
viewing, 167

tables
applying, 46-54
data source methods, 64-72
NSFetchedResultsController, 62. See

also NSFetchedResultsController
Random Dates application, 80
rows, 65-67
sections, 65-67
writing delegate methods, 95

viewWillDisappear: method, 168, 181

W
WebObjects, 3
WillChange method, 69
willSave message, 110
windows

Edit Scheme, 226
New Project, 16

writing delegate methods, 95

X
xcdatamodeld bundles, 146
Xcode, 5

Add (+) button, 31
arguments, 228
Calcuccino, 7

types284

consoles, 252
contextual menus for attributes, 106
Data Modeler, 10, 16-18. See also Data

Modelers (Xcode)
applying, 28-37
describing entities, 23-24
editing fetch requests, 121

Data Model Inspector, 30
key paths, selecting, 124
migration summaries, 155
MoneyWell, 6-7
Refractor tool, 195
templates, 15-22

XML (Extensible Markup Language), 4

Y
yearOfBirth attribute, 156
years, sorting, 159

Z
zeros, iPhone OS 3.0, troubleshooting table

views, 67

How can we make this index more useful? Email us at indexes@samspublishing.com

zeros, iPhone OS 3.0, troubleshooting table views 285

	Table of Contents
	2 A Core Data Primer
	Persisting Objects to Disk
	The Core Data Approach
	Examining the Xcode Core Data Templates
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

