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PREFACE

This book provides the technical guidance and understanding needed to
write device drivers for the new Windows 7 Operating System. It takes this
very complex programming development, and shows how the Windows
Driver Framework has greatly simplified this undertaking. It explains the
hardware and software architecture you must understand as a driver devel-
oper. However, it focuses this around the actual development steps one
must take to develop one or the other of the two types of drivers. Thus, this
book’s approach is a very pragmatic one in that it explains the various soft-
ware APIs and computer and device hardware based upon our actual
device handler development.

There has been great progress in the art of creating and debugging
device drivers. There is now a great deal of object-oriented design tech-
niques associated with the driver frameworks that are available to the
device driver developer. Much of the previous grunt work, thank goodness,
is now being handled by the latest device development framework
Windows Driver Foundation (WDF). We will be covering both the user
mode and kernel mode of device driver development. WDF has excellent
submodels contained within it, called the User Mode Driver Framework
and the Kernel Mode Driver Framework.

It is really great to see a Windows Driver Framework involved in the
creation of Windows Device Drivers. I started working with Windows in
1990 and we primarily used the Win32 System APIs to communicate and
control the Windows Operating System for our applications. We used the
Device Driver Kit (DDK) to create the Windows drivers. Because I had
my own company to create application software, I obviously was very con-
cerned about the time it took to develop application software, and the
robustness of the application. There were more than 2,000 Win32 APIs to
be used for this task.

Then in about 1992, Microsoft came out with the Microsoft
Framework Classes (MFC). In these 600+ classes, most of the Win32
APIs were encapsulated. Of course, prior to this, around 1988, the C++
compiler came out, and Object Oriented Programming started to come

Xv
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into its own. By using the MFC Framework, we could produce more appli-
cation software faster and with better quality. My return on investment
(ROI) went up, and I made more money. This sure made a believer of me
in the use of frameworks. I used MFC until the NET Framework came
out, and for the last nine years I have been using this great collection of
classes. All along, Microsoft was working to bring this same kind of soft-
ware development improvements to developing device drivers. We came
from the DDK, to the Windows Driver Model, to the Windows Driver
Foundation Framework.

Therefore, this book shows how to create Windows 7 Device Drivers
using the Windows Driver Foundation Framework. This should give us
driver developers a little more sanity when meeting our deadlines.

The book is broken into three major parts as follows:

m Part I, “Device Driver Architecture Overview”—This part lays
out the architecture involved in both software and hardware for
device handler development. It also covers the driver development
environment needed for driver development, for both types of driv-
ers that are normally developed—that is, User Mode and Drivers.
This section also covers the two Windows driver frameworks that are
most commonly used for driver device development today, which
are part of the Windows Driver Framework (WDF). These two
Windows Driver Frameworks are the User Mode Driver Framework
(UMDF) and the Kernel Mode Driver Framework (KMDF).

m Part II, “User Mode Drivers”—This part outlines the approach,
design, development, and debug of User Mode Drivers. This part
takes the driver programmer from start to finish in developing User
Mode Drivers. We primarily use the User Mode Driver Framework
for all of this work. The code is done in C++ because it is the best way
to develop these types of drivers. Discussions are based on a USB
User Mode Driver that we will develop using the UMDF. We will use
a USB hardware learning kit from Open Systems Resources,
Inc. (OSR). This provides a hardware simulation to test our User
Mode Drivers. This part is primarily stand-alone and could be read
and used without reading any other parts of the book. However,
you will probably want to read Part I to get a feel for what we are using.
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m Part III, “Kernel Mode Drivers”—This part outlines the
approach, design, development, and debug of Kernel Mode
Drivers. The intent again is to take the driver programmer from
start to finish in developing Kernel Mode Drivers. For this section,
we primarily use the Kernel Mode Driver Framework for all of this
work. The code is done in C because this is the best way to develop
these types of drivers. Discussions are based on a Kernel Mode
Driver that we develop using the KMDF. We use a Peripheral
Component Interconnect (PCI) hardware learning kit from OSR.
This provides a hardware simulation to test our Kernel Mode
Drivers. The section is also primarily stand-alone and could be read
and used without reading any other parts of the book. Again, you
will probably want to read Part I to get a feel for what we are using.
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INTRODUCTION

Device drivers are where the rubber meets the road, and are very
specialized pieces of software that allow your application programs to com-
municate to the outside world. Any communications your Windows 7
makes to the outside world requires a Device Driver. These devices
include such things as mouse, display, keyboard, CD-ROMS, data acquisi-
tion, data network communication, and printers. However, Microsoft has
written and supplied a great many drivers with the Windows 7 Operating
System. These drivers support most of what we call the standard devices,
and we will not be covering them in this book.

This book is about how we create device drivers for the nonstandard
devices—devices that are not typically found on standard PCs. Quite often,
the market is too small for Microsoft to create a standard device driver for
these types of devices—such things as data acquisition boards, laboratory
equipment, special test equipment, and communications boards.

This discussion will highlight the significant features of interest to the
device driver developers. Figure 1.1 shows a general block diagram of
Windows 7. We develop more detailed block diagrams in the discussions in
various parts of the book.

In Figure 1.1 the user applications don’t call the Windows 7 Operating
System Services directly. They go thru the Win32 subsystem dynamic-
linked libraries (DLL). The User Mode Device Drivers, discussed later, go
through this same communication channel.

The various Windows 7 services that run independently are handled by
the Service Processes. They are typically started by the service control
manager.

The various Windows 7 System Support Processes are not considered
Windows 7 services. They are therefore not started by the service control
manager.

The Windows 7 I/O Manager actually consists of several executive sub-
systems that manage hardware devices, priority interfaces for both the
system and the applications. We cover this in detail in Parts IT and III of
this book.
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User Service System Support Environment
Applications Processes Processes Subsystems

Win32 Subsystems

User Mode

Kernel Mode

Executive Components

1/0 Manager

Device
Drivers Kernel

Hardware Abstraction Layer (HAL)

Hardware Platform

Figure 1.1 System Overview Windows 7

The Device Driver block shown in the I/O Manager block is primarily
what this book is all about—that is, designing, developing, and testing
Windows 7 Device Drivers. The drivers of course translate user I/O func-
tion calls into hardware device I/O requests.

The Hardware Abstraction Layer (HAL) is a layer of code that isolates
platform-specific hardware differences from the Windows 7 Operating
System. This allows the Windows 7 Operating System to run on different
hardware motherboards. When device driver code is ported to a new plat-
form, in general, only a recompile is necessary. The device driver code
relies on code (macros) within HAL to reference hardware buses and reg-
isters. HAL usage in general is implemented such that inline performance
is achieved.

The Windows 7 performance goals often impact device driver writers.
When system threads and users request service from a device, it’s very
important that the driver code not block execution. In this case, where the
driver request cannot be handled immediately, the request must be
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queued for subsequent handling. As we will show in later discussions, the
I/O Manager routines available allow us to do this.

Windows 7 gives us a rich architecture for applications to utilize.
However, this richness has a price that device driver authors often have to
pay. Microsoft, realizing this early on some 14 years ago, started develop-
ing the driver development models and framework to aid the device driver
author. The earliest model, the Windows Driver Model (WDM) had a
steep learning curve, but was a good step forward. Microsoft has subse-
quently developed the Windows Driver Foundation (WDF) that makes
developing robust Windows 7 drivers easier to implement and learn. This
book is about developing Windows 7 Device Driver using WDF.
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OBJECTS

Before we go into the discussion on drivers, we need to first briefly review
objects, which are mentioned extensively throughout the book.

1.1 Nature of an Object

One of the fundamental ideas in software component engineering is the
use of objects. But just what is an object? There doesn’t seem to be a
universally accepted idea as to what an object is. The view that the
computer scientist Grady Booch (1991) takes is that an object is defined
primarily by three characteristics: its state, its behavior, and its identity.
The fundamental unit of analysis, in most cognitive theories, is the
information—processing component. A component is an elementary infor-
mation process that operates on the internal representation of objects or
symbols (Newell & Simon 1972; Sternberg 1977). If we look at the way
these components work, they may translate a sensory input into a concep-
tual representation, transform one conceptual representation into another,
or translate a conceptual representation into a motor output.

The Object Oriented Programming (OOP) techniques for software
have been around now for approximately a quarter of a century. But the
phenomenon is not new. Ancient philosophers, such as Plato and Aristotle,
as well as modern philosophers like Immanuel Kant have been involved in
explaining the meaning of existence in general and determining the
essential characteristics of concepts and objects (Rand 1990). Very recently
Minsky developed a theory of objects, whose behavior closely resembles
processes that take place in the human mind (Minsky 1986). Novak and
Gowin (Novak and Gowin 1984) showed how objects play an important
role in education and cognitive science. Their approach is one in which
concepts are discovered by finding patterns in objects designated by some
name. But wait, we were talking about objects and now we are talking
about concepts. That is because concepts reflect the way we divide the

7
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world into classes, and much of what we learn, communicate, and reason
about involves relations among these classes. Concepts are mental repre-
sentations of classes, and their salient function is to promote cognitive
economy. A class then can be seen as a template for generating objects
with similar structure and behavior.

The Object Management Group (OMG) defines a class as follows:

A class is an implementation that can be instantiated to create
multiple objects with the same behavior. An object is an instance
of a class.

From the software point of view, by partitioning the software into

classes, we decrease the amount of information we must perceive, learn,
remember, communicate, and reason about.

1.2 What Is a Software Object?

What is a software object? In 1976, Niklaus Wirth published his book
Algorithins + Data Structures = Programs. The relationship of these two
aspects heightens our awareness of the major parts of a program. In 1986,
J. Craig Cleaveland published his book Data Types. In 1979 Bjarne
Stroustrup had started the work on C with classes. By 1985, the C++
Programming Language had evolved and in 1990 the book The Annotated
C++ Reference Manual was published by Bjarne Stroustrup. In this
discussion, I will only talk about .NET Framework base classes and .NET
Framework library classes with respect to objects, because that seems to
be the main focus of where we are going today.

When Bjarne Stroustrup published the above book on C++ or C with
classes, we started associating the word class and object with the term
abstract data type. But what is the difference between data types and
abstract data types? A data type is a set of values. Some algorithm then oper-
ates upon managing and changing the set of values. An abstract data type has
not only a set of values, but also a set of operations that can be performed
upon the set of values. The main idea behind the abstract data types is the
separation of the use of the data type from its implementation. Figure 1.1
shows the four major parts of an abstract data type. Syntax and semantics
define how an application program will use the abstract data type.
Representation and algorithms show a possible implementation.
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Abstract
Data Types
Specification Implementation
Syntax Semantics Representation Algorithms

Figure 1.1 Abstract Data Type

For an abstract data type, we have therefore defined a set of behaviors,
and a range of values that the abstract data type can assume. Using the data
type does not involve knowing the implementation details. Representation
is specified to define how values will be represented in memory. We call
these representations class member variables in VB.NET or C#. The algo-
rithm or programs specify how the operations are implemented. We call
these programs member functions in VB.NET or C#. The semantics spec-
ify what results would be returned for any possible input value for each
member function. The syntax specifies the VB.NET or C# operator sym-
bols or function names, the number and types of all the operands, and the
return values of the member functions. We are therefore creating our own
data object (abstract data type) for the software to work with and use. This
is opposed to only using the data types predefined by the compiler, such as
integer, character, and so on. These abstract data types or objects, as
defined in Grady Booch’s book Object-Oriented Analysis and Design with
Applications, Third Edition (2007), are as follows: “an object represents an
individual, identifiable item, unit, or entity, either real or abstract, with a
well-defined role in the problem domain.”

Another classic book relating to objects is Design Patterns (Gamma
1995). This books points out the elements of reusable object-oriented
software.
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1.3 Gaining an Understanding

We have slowly come to the realization of just what properties our program
should have to make it work in solving complex real world problems.
Having a new language like VB.NET or C# and their associated capabili-
ties to create classes and objects was not enough. We realized that just
using the abstract data type or class was not enough. As part of this ongoing
development, the methodology called object-oriented technology evolved
into what is called the object model. The software engineering foundation
whose elements are collectively called the object model encompass the
principles of abstraction, modularity, encapsulation, hierarchy, typing,
concurrency, and persistence. The object model defines the use of these
elements in such a way that they form a synergistic association.

As with any discipline, such as calculus in mathematics, we need a sym-
bolism or notation in which to express the design of the objects. The creation
of the C++ language, as an example, supplied one language notation needed
to write our object-oriented programs. However, we still needed a notation
for the design methodology to express our overall approach to the software
development. In 1991, Grady Booch first published his book Object-
Oriented Analysis and Design with Applications in which he defined a set of
notations. These notations have become the defacto standard for Object
Oriented Design. His second edition does an even better job of describing
the overall Object Oriented Design notation and the object model. In this
second edition, he expresses all examples in terms of the C++ language,
which for a time became the predominate language for object-oriented soft-
ware development. We even have a Windows GUI tool based upon this nota-
tion to aid us in our thinking. This tool by Rational Corporation and Grady
Booch was called ROSE. Quite a change from how calculus and its notation
were initially used. We almost immediately have the same engine we wish to
program on, aiding us in doing the programming. This tool has continued to
evolve and is now called the Universal Modeling Language (UML).

An object (or component) then is an entity based upon abstract data
type theory, implemented as a class in a language such as VB.NET or C#,
and the class incorporates the attributes of the object model. What we have
been describing, however, is just the tip of the iceberg relative to objects.
The description so far has described the static definitions and has not
talked about objects talking with other objects. Let’s just look at one of the
object model attributes: inheritance. Inheritance is our software equiva-
lent of the integrated electronic circuit (IC) manufacturing technique of
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large-scale integration (LSI) that allows such tremendous advances in
electronic system creations. Software using inheritance is certainly very
small scale at the present, but the direction is set. Inheritance allows the
creating of a small-scale integration (SSI) black box in software. This SSI
creates an encapsulated software cluster of objects directed toward the
solution of some function needed for the application. We have thus
abstracted away a large amount of the complexity and the programmer
works only with the interfaces of the cluster. The programmer then sends
messages between these clusters, just like the electronic logic designed has
wires between ICs, over which signals are sent.

1.4 Software Components

Although we allude to software components having an analogy to hardware
chips, this is only true in a most general sense. Software components cre-
ated with the rich vocabularies of the programming language, and based
upon the constructs created by the programmer’s mind, have a far greater
range of flexibility and power for problem solving than hardware chips. Of
course, therein lays a great deal of the complexity nature of software
programs. However, the software components ride on top of the hardware
chips adding another complete level of abstraction. The deterministic logic
involved in a complex LSI chip is very impressive. But the LSI chip is very
limited in the possibility of forming any synergist relationship with a
human mental object.

The more we dwell upon the direction of the NET Framework’s
object model, in all its technologies, the more it seems to feel like we are
externalizing the mind’s use of mental object behavior mechanics.
Certainly, the object relationships formed with linking and embedding
of software objects, via interfaces, doesn’t look much like the dendrite
distribution of influences on clusters of neurons. But certainly now, one
software object is starting to effect one or more other software objects to
accomplish its goal.

Let’s look at a control object or collection of control objects from an
everyday practical standpoint that we are using in other engineering fields.
One of our early loves is the automobile. We can hardly wait to learn how
to drive one. Notice, we said drive one, any one. We have done such a great
job on our encapsulation and interface exposure that we can learn to drive
any kind and be able to drive any other kind. The automobile object we
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interact with has three primary interface controls: steering wheel, throttle,
and brake. We realize that encapsulated within that automobile object is
many internal functions. We can be assured that these control interfaces
will not change from automobile object to automobile object. In other
words, if we go from a General Motors car to a Ford car we can depend on
the same functionality of these control interfaces.

Another characteristic of a software object is persistence. Persistence
of an object is learned very early by a child. Eventually, when we show a
child a toy and then hide it behind our back, the child knows the toy still
exists. The child has now conceptualized the toy object as part of its mental
set of objects. As the programmer does a mental conceptualization of
various software objects, this will lead to a high level of persistence of the
objects in the programmer’s mind. Because one of the main features of
standard software objects is reusability, the efficiency of the programmer
will continue to increase as the standard objects are conceptualized in the
programmer’s mental model.

Polymorphic behavior is another characteristic that can be imple-
mented in a software object. Probably one of the earlier forms that a child
realizes has different behavior, based upon form, is the chair object. The
chair object is polymorphic in that its behavior depends on its form. We
have rocking chairs, kitchen chairs, lounge chairs, and so on. This idea of
form and related behavior has created a whole field of study called
morphology. Certainly, this is a key idea in how we relate cognitively to
various objects. Not only does the clustering of our objects have form rela-
tionships, the internal constructs of the objects have a form relationship.
There is a definite relationship between the logic flow of a program and
the placement of the various meaningful chunks of a program. This is
somewhat different than a pure polymorphic nature of a function, but does
point out that we should be aware of the morphology of our objects and
their parts and placement in our program.
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