THE ADDISON-WESLEY MICROSOFT TECHNOLOOY SERIES

RONALD D. REEVES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business, training
goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data

Reeves, Ron.
Windows 7 device driver / Ronald D. Reeves.
. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-321-67021-2 (pbk. : alk. paper)
ISBN-10: 0-321-67021-3 (pbk. : alk. paper)
1. Microsoft Windows device drivers (Computer programs)
1. Title.
QA76.76.D49R44 2011
005.7'1—dc22
2010039109

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-67021-2
ISBN-10: 0-321-67021-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2010

CONTENTS

Introduction

PART |
Chapter 1

Chapter 2

Preface XV
About the Author XiX

.................................l
DEVICE DRIVER ARCHITECTURE OVERVIEW 3
Objects o ovviiiiiiieeieneeeeeeeeseeeneconnnnnns 7
1.1 Natureof an Object 7
1.2 What Is a Software Object? 8
1.3 Gaining an Understanding 10
1.4 Software Componentsttt 11
Windows Driver Foundation (WDF) Architecture 13
2.1 WDF Component Functions 13
2.2 Design Goals for WDF 14
2.3 Device and Driver Supportin WDF 15
2.4 WDF Driver Model 16
2.5 WDF Object Model 17

2.5.1 Kernel Mode Objects 19
2.5.2 UserMode Objects 19
2.6 Plug and Play and Power Management Support 20
2.6.1 Plug and Play/Power Management State Machine 21
2.7 Integrated I/O Queving and Cancellation 22
2.7.1 CONCUITENCY « o v vttt e e e e 22
272 1/OModel ... 23
273 1/ORequestFlow 24
2.7.4 Device [/ORequests 25
2.7.5 Plug and Play and Power Management Requests 26

.o
Vil CONTENTS

PART I
Chapter 3

2.8 WMI Requests (Kernel Mode Drivers Only) 27
2.9 Driver Frameworks 28
2.9.1 Kernel Mode Framework 29
2.9.2 User Mode Framework 31
2.10 Windows Kernel 32
2.10.1 Reflector 32
2.10.2 Driver Host Process 32
2.10.3 Driver Manager 33
2.11 Tools for Developmentand Testing 33
2.11.1 PREfast for Drivers 34
2.11.2 Static Driver Verification (SDV) 35
2.11.3 Frameworks Verifier 36
2.11.4 Trace Logging .« .« oot 36
2.11.5 Debugger Extensions 37
2.11.6 Serviceability and Versioning 37

USER MODEDRIVERS .. ¢ ccccececccccees 39

Windows 7 User Mode Drivers Overview
and Operation.ccevveesecsccscsscsscssssdl

3.1
3.2

3.3
3.4

3.5

3.6

3.7

Devices Supported in UserMode 42
UMDF Model Overview 43
3.2.1 UMDF Object Model 45
322 UMDF Objects 45
Driver Callback Interfaces 47
UMDF Driver Features 49
3.4.1 Impersonation 50
3.4.2 Device Property Store 50
I/ORequestFlow 51
3.5.1 1/O Request Dispatching 53
3.5.2 Create, Cleanup, and Close Requests 53
3.5.3 Create, Read, Write, and Device |/O Control Requests . . 56
[/O QUEUES . . o v oo e e e 56
3.6.1 Dispatch Type 58
3.6.2 Queues and Power Management 59
I/O Request Objectso 60
3.7.1 Retrieving Buffers from I/O Requests 61
3.7.2 Sending I/O Requests to an I/O Target 61

3.7.3 Creating Buffers for /O Requests 63

N
CONTENTS IX

Chapter 4

3.7.4 Canceled and Suspended Requests 64
3.7.5 Completing /O Requests 66
3.7.6 Adaptive TimeOuts 66
3.8 SelfManaged I/O 67
3.9 Synchronization Issues 68
310 Locks ..o 70
3.11 Plug and Play and Power Management Notification 70
3.12 Device Enumeration and Startup L. 71
3.13 Device PowerDown and Removal 72
3.13.1 Surprise-Removal Sequence 74
3.14 Build, Test, and Debug 75
3.14.1 Installation and Configuration 76
3.14.2 Versioning and Updates 77

Programming Drivers for the User Mode
Driver Frameworkcccciiteececcccsess 79

4.1 Windows I/O Overview 79
4.2 Brief COM Information 81
4.3 UMDF Architecture 82
4.4 Required Driver Functionality 84
4.5 UMDF Sample Drivers 87
4.5.1 Minimal UMDF Driver: The Skeleton Driver 88
4.5.2 Skeleton Driver Classes, Obijects, and Interfaces 89
4.6 Driver Dynamic-link Library and Exports 91
4.6.1 Driver Entry Point: DlIMain 91
4.6.2 Get Class Object: DlIGetClassObject 93
4.7 Functions for COM Support i 95
4.7.1 lUnknown Methods 95
4.7.2 IClassFactory Interface 96
4.7.3 Driver Callback Object 96
4.7 .4 Device Callback Object 100
4.8 Using the Skeleton Driver as a Basis for Development 106
4.8.1 Customize the Exports File 107
4.8.2 Customize the Sources File 107
4.8.3 Customize the INXFile 108
4.8.4 Customize the Comsup.cpp File 108
4.8.5 Add Device-Specific Code to Driver.cpp 109

4.8.6 Add Device-Specific Code to Device.cpp 109

X CONTENTS

Chapter 5

ParT Il
Chapter 6

Using COM to Develop UMDF Driversccc000...111

5.1

5.2

53

Gefting Started 11
5.1.1 COMFundamentals 112
5.1.2 HRESULT 114
Using UMDF COM Objects, 116
5.2.1 Obtaining an Interface on a UMDF Object 17
5.2.2 Reference Counting 119
Basic Infrastructure Implementation 120
531 DIIMain ... 121
5.3.2 DlGetClassObject 121
5.3.3 Driver Object’s Class Factory 122
5.3.4 Implementing a UMDF Callback Object 122
5.3.5 Implementing QuerylInterface, 125

KERNEL MODE DRIVERS « e ccccceoccecesol27

Windows 7 Kernel Mode Drivers
Overview and Operationsccceeeeeesesess.129

6.1
6.2
6.3
6.4
6.5

6.6

6.7

KMDF Supported Devices 129
KMDF Components i, 131
KMDF Driver Structure 132
Comparing KMDF and WDM Drivers 132
Device Objects and DriverRoles 135
6.5.1 Filter Drivers and Filter Device Objects 136
6.5.2 Function Drivers and Functional Device Objects 136
6.5.3 Bus Drivers and Physical Device Objects 137
6.5.4 legacy Device Drivers and Control Device Objects 138
KMDF Object Model 139
6.6.1 Methods, Properties, and Events 139
6.6.2 Object Hierarchy 141
6.6.3 Object Attributes 144
6.6.4 Object Confextt 145
6.6.5 Obiject Creation and Deletion 146
KMDF I/O Model 147
6.7.1 I/ORequestHandler 149
672 1/OQUEUESt 152
6.7.3 I/O Request Objects oo . 154

6.7.4 Retrieving Buffers from I/O Requests 155

.
CONTENTS XI

Chapter 7

Chapter 8

675 1/0Targets . . oo ot 156
6.7.6 Creating Buffers for /O Requests 157
6.7.7 Canceled and Suspended Requests 158
6.7.8 Completing /O Requests 160
6.7.9 SelfManaged I/O 161
6.7.10 Accessing IRPs and WDM Structures 161
Plug and Play and Power Management 163
7.1 Plug and Play and Power Management Overview 163
7.2 Device Enumeration and Startup 164
7.2.1 Startup Sequence for a Function or Filter Device Object . . .165
7.2.2 Startup Sequence for a Physical Device Object 166
7.2.3 Device Power-Down and Removal 167
7.3 WMIRequest Handler 172
7.4 Synchronization Issues 173
7.4.1 Synchronization Scope oL 175
7.4.2 Executionlevel 177
743 locks ... 178
7.4.4 Interaction of Synchronization Mechanisms 179
7.5 Security .. 180
7.5.1 SafeDefaults 180
7.5.2 Parameter Validation 180
7.5.3 Counted UNICODE Strings ooovviiii e 181
7.5.4 Safe Device Naming Techniques 181
Kernel Mode Installation and Build 183
8.1 WDKBuildTools 183
8.2 Build Environment 185
8.3 Building a Project 186
8.4 Building Featured Toaster 187
8.4.1 Makefile and Makefile.inc 187
8.4.2 The Sources File 188
843 TheBuild 190
8.5 Installing a KMDF Drivero vuo... 190
8.5.1 The WDF Codnstaller 191
852 TheINF 191
8.5.3 INFs for KMDF Drivers 192

8.5.4 wdffeatured.inf 192

Xl CONTENTS

Chapter 9

8.6 Catalog Files and Digital Signature 193
8.7 Installing Featured Toaster 194
8.8 Testinga KMDF Driver 196
8.8.1 PREfast 196
8.8.2 Static Driver Verifier 197
883 KMDFLog . ..o ovvii 198
8.8.4 KMDF Verifier 198
8.8.5 Debugging a KMDF Driver 198
8.8.6 Kernel Debugging 200
8.8.7 KMDF Driver Features 201
8.9 Debugging Macros and Routines 203
8.10 WDF Debugger Extension Commands 204
8.11 Using WPP Tracing with a KMDF Driver 205
8.12 Using WinDbg with Featured Toaster 205
8.13 Versioning and Dynamic Binding 208
Programming Drivers for the Kernel
Mode Driver Frameworkcciiiiiiiie.. 211
9.1 Differences Between KMDF and WDM Samples 216
9.2 Macros Used in KMDF Samples 218
9.3 KMDF Driver Structure and Concepts 219
9.3.1 ObjectCreation i, 220
9.3.2 Object Context Areao 221
933 1/OQUEUES . . o v oot 222
934 1/ORequests ...t 224
9.4 A Minimal KMDF Driver: The Simple Toaster 224
9.4.1 Creating a WDF Driver Object: DriverEntry 225
9.4.2 Creating the Device Object, Device Interface, and
/O Queue: EviDriverDeviceAdd 227
9.4.3 Device Object and Device Context Area 229
9.4.4 DeviceInterface 231
9.4.5 Default /O Queve 232
9.4.6 Handling I/O Request: EviloRead, EvtloWrite,
EvtloDevice Control 233
9.5 Sample Software-Only Driver 235
9.5.1 File Create and Close Requests 235
9.5.2 Additional Device Object Attributes 237

9.5.3 Setting Additional Device Object Attributes 240

CONTENTS X

Chapter 10 Programming Plug and Play and

Chapter 11

Chapter 12

Power Managementccccceeceecccccccnes 243

10.1 Registering Callbacks 243
10.1.1 Sample Code to Register Plug and

Play and Power Callbacks 245

10.2 Managing Power Policy, 248

10.2.1 Code to Set Power Policy 249

10.3 Callbacks for Power-Up and Power-Down 250

10.4 Callback for Wake Signal Support 251

Programming WMI Supportcccc00eeee.. 253

11.1 WMI Architecture o 253
11.2 Registering as a WMI Data Provider 254
11.3 Handling WMIRequests 255
11.4 WMI Requirements for WDM Drivers 256
11.5 WMI Class Names and Base Classes 257
11.6 Fiing WMIEvents 260
11.7 Troubleshooting Specific WMI Problems 265
11.7.1 Driver's WMI Classes Do Not Appear in
the \root\wmi NameSpace 265
11.7.2 Driver's WMI Properties or Methods Cannot
Be Accessed, 266
11.7.3 Driver's WMI Events Are Not Being Received 267
11.7.4 Changes in Security Settings for WMI Requests
Do Not Take Effect 267
11.8 Techniques for Testing WMI Driver Support. 268
11.8.1 WMI IRPs and the System Eventlog 269
11.8.2 WMIWDM Providerlog 269
11.9 WMIEvent Tracing . . .« oo oo 269

Programming KMDF Hardware Driver273

12.1 Support Device Interrupts 274
12.1.1 Creating an Interrupt Object 274
12.1.2 Code to Create an Interrupt Object 275
12.1.3 Enabling and Disabling Interrupts 276
12.1.4 Code to Enable Interrupts 276

12.1.5 Code to Disable Interrupts 277

XiV CONTENTS

12.1.6 PostInterrupt Enable and Pre-Interrupt

Disable Processing 277

12.2 Handling Interrupts 278
12.2.1 Code for Evilnterruptlsr Callback 279
12.2.2 Deferred Processing for Interrupts 281

12.3 Mapping Resources. 283
12.3.1 Code to Map Resources 284
12.3.2 Code to Unmap Resources 288

Chapter 13 Programming Multiple 1/0 Queues and

Programming I/Ociiiitiieennennenses 291
13.1 Introduction to Programming I/O Queves 291
13.2 Creating and Configuring the Queves 293
13.2.1 Code to Create Queues for Write Requests 294
13.2.2 Code to Create Queues for Read Requests 296
13.2.3 Code to Create Queues for Device 1/O
Control Requests 297
13.3 Handling Requests from a Parallel Queve 298
13.3.1 Code to Handle I/O Requests 299
13.3.2 Performing Buffered I/O, 301
13.4 Forwarding Requeststoa Queve 302
13.5 Refrieving Requests from a Manual Queve. 303
13.5.1 Codeto FindaRequest 304
13.6 Reading and Writing the Registry 308
13.6.1 Code to Read and Write the Registry 309
13.7 Watchdog Timer: SelFManaged 1I/O. 312
13.7.1 Self-Managed I/O Device Startup and Restart 313
13.7.2 Self-Managed /O During Device
Power-Down and Removal 314
13.7.3 Implementing a Watchdog Timer 315

Appendix Driver Information Web Sites323
Bibliographyciiiiiiiiiiitiiiiiitiereneneeesss 331

Index.oo.o.oooo.onooooounooooo.no.0000000000000000000333

PREFACE

This book provides the technical guidance and understanding needed to
write device drivers for the new Windows 7 Operating System. It takes this
very complex programming development, and shows how the Windows
Driver Framework has greatly simplified this undertaking. It explains the
hardware and software architecture you must understand as a driver devel-
oper. However, it focuses this around the actual development steps one
must take to develop one or the other of the two types of drivers. Thus, this
book’s approach is a very pragmatic one in that it explains the various soft-
ware APIs and computer and device hardware based upon our actual
device handler development.

There has been great progress in the art of creating and debugging
device drivers. There is now a great deal of object-oriented design tech-
niques associated with the driver frameworks that are available to the
device driver developer. Much of the previous grunt work, thank goodness,
is now being handled by the latest device development framework
Windows Driver Foundation (WDF). We will be covering both the user
mode and kernel mode of device driver development. WDF has excellent
submodels contained within it, called the User Mode Driver Framework
and the Kernel Mode Driver Framework.

It is really great to see a Windows Driver Framework involved in the
creation of Windows Device Drivers. I started working with Windows in
1990 and we primarily used the Win32 System APIs to communicate and
control the Windows Operating System for our applications. We used the
Device Driver Kit (DDK) to create the Windows drivers. Because I had
my own company to create application software, I obviously was very con-
cerned about the time it took to develop application software, and the
robustness of the application. There were more than 2,000 Win32 APIs to
be used for this task.

Then in about 1992, Microsoft came out with the Microsoft
Framework Classes (MFC). In these 600+ classes, most of the Win32
APIs were encapsulated. Of course, prior to this, around 1988, the C++
compiler came out, and Object Oriented Programming started to come

Xv

xvi

PREFACE

into its own. By using the MFC Framework, we could produce more appli-
cation software faster and with better quality. My return on investment
(ROI) went up, and I made more money. This sure made a believer of me
in the use of frameworks. I used MFC until the NET Framework came
out, and for the last nine years I have been using this great collection of
classes. All along, Microsoft was working to bring this same kind of soft-
ware development improvements to developing device drivers. We came
from the DDK, to the Windows Driver Model, to the Windows Driver
Foundation Framework.

Therefore, this book shows how to create Windows 7 Device Drivers
using the Windows Driver Foundation Framework. This should give us
driver developers a little more sanity when meeting our deadlines.

The book is broken into three major parts as follows:

m Part I, “Device Driver Architecture Overview”—This part lays
out the architecture involved in both software and hardware for
device handler development. It also covers the driver development
environment needed for driver development, for both types of driv-
ers that are normally developed—that is, User Mode and Drivers.
This section also covers the two Windows driver frameworks that are
most commonly used for driver device development today, which
are part of the Windows Driver Framework (WDF). These two
Windows Driver Frameworks are the User Mode Driver Framework
(UMDF) and the Kernel Mode Driver Framework (KMDF).

m Part II, “User Mode Drivers”—This part outlines the approach,
design, development, and debug of User Mode Drivers. This part
takes the driver programmer from start to finish in developing User
Mode Drivers. We primarily use the User Mode Driver Framework
for all of this work. The code is done in C++ because it is the best way
to develop these types of drivers. Discussions are based on a USB
User Mode Driver that we will develop using the UMDF. We will use
a USB hardware learning kit from Open Systems Resources,
Inc. (OSR). This provides a hardware simulation to test our User
Mode Drivers. This part is primarily stand-alone and could be read
and used without reading any other parts of the book. However,
you will probably want to read Part I to get a feel for what we are using.

PREFACE XVii

m Part III, “Kernel Mode Drivers”—This part outlines the
approach, design, development, and debug of Kernel Mode
Drivers. The intent again is to take the driver programmer from
start to finish in developing Kernel Mode Drivers. For this section,
we primarily use the Kernel Mode Driver Framework for all of this
work. The code is done in C because this is the best way to develop
these types of drivers. Discussions are based on a Kernel Mode
Driver that we develop using the KMDF. We use a Peripheral
Component Interconnect (PCI) hardware learning kit from OSR.
This provides a hardware simulation to test our Kernel Mode
Drivers. The section is also primarily stand-alone and could be read
and used without reading any other parts of the book. Again, you
will probably want to read Part I to get a feel for what we are using.

ACKNOWLEDGMENTS

I am most grateful to my editor Bernard Goodwin at Pearson Education for
giving me the opportunity to write this book. His support during the prepa-
ration was great. I would also like to thank his assistant Michelle Housley for
her timely fashion in getting me reference books and material. Also, I would
like to thank John Herrin, Video Project Manager at Pearson Education, for
support and help in creating the book video. Thanks to Michael Thurston,
my development editor, for making the book sound very polished.

This page intentionally left blank

INTRODUCTION

Device drivers are where the rubber meets the road, and are very
specialized pieces of software that allow your application programs to com-
municate to the outside world. Any communications your Windows 7
makes to the outside world requires a Device Driver. These devices
include such things as mouse, display, keyboard, CD-ROMS, data acquisi-
tion, data network communication, and printers. However, Microsoft has
written and supplied a great many drivers with the Windows 7 Operating
System. These drivers support most of what we call the standard devices,
and we will not be covering them in this book.

This book is about how we create device drivers for the nonstandard
devices—devices that are not typically found on standard PCs. Quite often,
the market is too small for Microsoft to create a standard device driver for
these types of devices—such things as data acquisition boards, laboratory
equipment, special test equipment, and communications boards.

This discussion will highlight the significant features of interest to the
device driver developers. Figure 1.1 shows a general block diagram of
Windows 7. We develop more detailed block diagrams in the discussions in
various parts of the book.

In Figure 1.1 the user applications don’t call the Windows 7 Operating
System Services directly. They go thru the Win32 subsystem dynamic-
linked libraries (DLL). The User Mode Device Drivers, discussed later, go
through this same communication channel.

The various Windows 7 services that run independently are handled by
the Service Processes. They are typically started by the service control
manager.

The various Windows 7 System Support Processes are not considered
Windows 7 services. They are therefore not started by the service control
manager.

The Windows 7 I/O Manager actually consists of several executive sub-
systems that manage hardware devices, priority interfaces for both the
system and the applications. We cover this in detail in Parts IT and III of
this book.

INTRODUCGTION

User Service System Support Environment
Applications Processes Processes Subsystems

Win32 Subsystems

User Mode

Kernel Mode

Executive Components

1/0 Manager

Device
Drivers Kernel

Hardware Abstraction Layer (HAL)

Hardware Platform

Figure 1.1 System Overview Windows 7

The Device Driver block shown in the I/O Manager block is primarily
what this book is all about—that is, designing, developing, and testing
Windows 7 Device Drivers. The drivers of course translate user I/O func-
tion calls into hardware device I/O requests.

The Hardware Abstraction Layer (HAL) is a layer of code that isolates
platform-specific hardware differences from the Windows 7 Operating
System. This allows the Windows 7 Operating System to run on different
hardware motherboards. When device driver code is ported to a new plat-
form, in general, only a recompile is necessary. The device driver code
relies on code (macros) within HAL to reference hardware buses and reg-
isters. HAL usage in general is implemented such that inline performance
is achieved.

The Windows 7 performance goals often impact device driver writers.
When system threads and users request service from a device, it’s very
important that the driver code not block execution. In this case, where the
driver request cannot be handled immediately, the request must be

INTRODUCTION 3

queued for subsequent handling. As we will show in later discussions, the
I/O Manager routines available allow us to do this.

Windows 7 gives us a rich architecture for applications to utilize.
However, this richness has a price that device driver authors often have to
pay. Microsoft, realizing this early on some 14 years ago, started develop-
ing the driver development models and framework to aid the device driver
author. The earliest model, the Windows Driver Model (WDM) had a
steep learning curve, but was a good step forward. Microsoft has subse-
quently developed the Windows Driver Foundation (WDF) that makes
developing robust Windows 7 drivers easier to implement and learn. This
book is about developing Windows 7 Device Driver using WDF.

This page intentionally left blank

This page intentionally left blank

OBJECTS

Before we go into the discussion on drivers, we need to first briefly review
objects, which are mentioned extensively throughout the book.

1.1 Nature of an Object

One of the fundamental ideas in software component engineering is the
use of objects. But just what is an object? There doesn’t seem to be a
universally accepted idea as to what an object is. The view that the
computer scientist Grady Booch (1991) takes is that an object is defined
primarily by three characteristics: its state, its behavior, and its identity.
The fundamental unit of analysis, in most cognitive theories, is the
information—processing component. A component is an elementary infor-
mation process that operates on the internal representation of objects or
symbols (Newell & Simon 1972; Sternberg 1977). If we look at the way
these components work, they may translate a sensory input into a concep-
tual representation, transform one conceptual representation into another,
or translate a conceptual representation into a motor output.

The Object Oriented Programming (OOP) techniques for software
have been around now for approximately a quarter of a century. But the
phenomenon is not new. Ancient philosophers, such as Plato and Aristotle,
as well as modern philosophers like Immanuel Kant have been involved in
explaining the meaning of existence in general and determining the
essential characteristics of concepts and objects (Rand 1990). Very recently
Minsky developed a theory of objects, whose behavior closely resembles
processes that take place in the human mind (Minsky 1986). Novak and
Gowin (Novak and Gowin 1984) showed how objects play an important
role in education and cognitive science. Their approach is one in which
concepts are discovered by finding patterns in objects designated by some
name. But wait, we were talking about objects and now we are talking
about concepts. That is because concepts reflect the way we divide the

7

8 CHAPTER 1 OBJECTS

world into classes, and much of what we learn, communicate, and reason
about involves relations among these classes. Concepts are mental repre-
sentations of classes, and their salient function is to promote cognitive
economy. A class then can be seen as a template for generating objects
with similar structure and behavior.

The Object Management Group (OMG) defines a class as follows:

A class is an implementation that can be instantiated to create
multiple objects with the same behavior. An object is an instance
of a class.

From the software point of view, by partitioning the software into

classes, we decrease the amount of information we must perceive, learn,
remember, communicate, and reason about.

1.2 What Is a Software Object?

What is a software object? In 1976, Niklaus Wirth published his book
Algorithins + Data Structures = Programs. The relationship of these two
aspects heightens our awareness of the major parts of a program. In 1986,
J. Craig Cleaveland published his book Data Types. In 1979 Bjarne
Stroustrup had started the work on C with classes. By 1985, the C++
Programming Language had evolved and in 1990 the book The Annotated
C++ Reference Manual was published by Bjarne Stroustrup. In this
discussion, I will only talk about .NET Framework base classes and .NET
Framework library classes with respect to objects, because that seems to
be the main focus of where we are going today.

When Bjarne Stroustrup published the above book on C++ or C with
classes, we started associating the word class and object with the term
abstract data type. But what is the difference between data types and
abstract data types? A data type is a set of values. Some algorithm then oper-
ates upon managing and changing the set of values. An abstract data type has
not only a set of values, but also a set of operations that can be performed
upon the set of values. The main idea behind the abstract data types is the
separation of the use of the data type from its implementation. Figure 1.1
shows the four major parts of an abstract data type. Syntax and semantics
define how an application program will use the abstract data type.
Representation and algorithms show a possible implementation.

1.2 WHAT Is A SOFTWARE OBJECT? 9

Abstract
Data Types
Specification Implementation
Syntax Semantics Representation Algorithms

Figure 1.1 Abstract Data Type

For an abstract data type, we have therefore defined a set of behaviors,
and a range of values that the abstract data type can assume. Using the data
type does not involve knowing the implementation details. Representation
is specified to define how values will be represented in memory. We call
these representations class member variables in VB.NET or C#. The algo-
rithm or programs specify how the operations are implemented. We call
these programs member functions in VB.NET or C#. The semantics spec-
ify what results would be returned for any possible input value for each
member function. The syntax specifies the VB.NET or C# operator sym-
bols or function names, the number and types of all the operands, and the
return values of the member functions. We are therefore creating our own
data object (abstract data type) for the software to work with and use. This
is opposed to only using the data types predefined by the compiler, such as
integer, character, and so on. These abstract data types or objects, as
defined in Grady Booch’s book Object-Oriented Analysis and Design with
Applications, Third Edition (2007), are as follows: “an object represents an
individual, identifiable item, unit, or entity, either real or abstract, with a
well-defined role in the problem domain.”

Another classic book relating to objects is Design Patterns (Gamma
1995). This books points out the elements of reusable object-oriented
software.

10

CHAPTER 1 OBJECTS

1.3 Gaining an Understanding

We have slowly come to the realization of just what properties our program
should have to make it work in solving complex real world problems.
Having a new language like VB.NET or C# and their associated capabili-
ties to create classes and objects was not enough. We realized that just
using the abstract data type or class was not enough. As part of this ongoing
development, the methodology called object-oriented technology evolved
into what is called the object model. The software engineering foundation
whose elements are collectively called the object model encompass the
principles of abstraction, modularity, encapsulation, hierarchy, typing,
concurrency, and persistence. The object model defines the use of these
elements in such a way that they form a synergistic association.

As with any discipline, such as calculus in mathematics, we need a sym-
bolism or notation in which to express the design of the objects. The creation
of the C++ language, as an example, supplied one language notation needed
to write our object-oriented programs. However, we still needed a notation
for the design methodology to express our overall approach to the software
development. In 1991, Grady Booch first published his book Object-
Oriented Analysis and Design with Applications in which he defined a set of
notations. These notations have become the defacto standard for Object
Oriented Design. His second edition does an even better job of describing
the overall Object Oriented Design notation and the object model. In this
second edition, he expresses all examples in terms of the C++ language,
which for a time became the predominate language for object-oriented soft-
ware development. We even have a Windows GUI tool based upon this nota-
tion to aid us in our thinking. This tool by Rational Corporation and Grady
Booch was called ROSE. Quite a change from how calculus and its notation
were initially used. We almost immediately have the same engine we wish to
program on, aiding us in doing the programming. This tool has continued to
evolve and is now called the Universal Modeling Language (UML).

An object (or component) then is an entity based upon abstract data
type theory, implemented as a class in a language such as VB.NET or C#,
and the class incorporates the attributes of the object model. What we have
been describing, however, is just the tip of the iceberg relative to objects.
The description so far has described the static definitions and has not
talked about objects talking with other objects. Let’s just look at one of the
object model attributes: inheritance. Inheritance is our software equiva-
lent of the integrated electronic circuit (IC) manufacturing technique of

1.4 SOFTWARE COMPONENTS l l

large-scale integration (LSI) that allows such tremendous advances in
electronic system creations. Software using inheritance is certainly very
small scale at the present, but the direction is set. Inheritance allows the
creating of a small-scale integration (SSI) black box in software. This SSI
creates an encapsulated software cluster of objects directed toward the
solution of some function needed for the application. We have thus
abstracted away a large amount of the complexity and the programmer
works only with the interfaces of the cluster. The programmer then sends
messages between these clusters, just like the electronic logic designed has
wires between ICs, over which signals are sent.

1.4 Software Components

Although we allude to software components having an analogy to hardware
chips, this is only true in a most general sense. Software components cre-
ated with the rich vocabularies of the programming language, and based
upon the constructs created by the programmer’s mind, have a far greater
range of flexibility and power for problem solving than hardware chips. Of
course, therein lays a great deal of the complexity nature of software
programs. However, the software components ride on top of the hardware
chips adding another complete level of abstraction. The deterministic logic
involved in a complex LSI chip is very impressive. But the LSI chip is very
limited in the possibility of forming any synergist relationship with a
human mental object.

The more we dwell upon the direction of the NET Framework’s
object model, in all its technologies, the more it seems to feel like we are
externalizing the mind’s use of mental object behavior mechanics.
Certainly, the object relationships formed with linking and embedding
of software objects, via interfaces, doesn’t look much like the dendrite
distribution of influences on clusters of neurons. But certainly now, one
software object is starting to effect one or more other software objects to
accomplish its goal.

Let’s look at a control object or collection of control objects from an
everyday practical standpoint that we are using in other engineering fields.
One of our early loves is the automobile. We can hardly wait to learn how
to drive one. Notice, we said drive one, any one. We have done such a great
job on our encapsulation and interface exposure that we can learn to drive
any kind and be able to drive any other kind. The automobile object we

12

CHAPTER 1 OBJECTS

interact with has three primary interface controls: steering wheel, throttle,
and brake. We realize that encapsulated within that automobile object is
many internal functions. We can be assured that these control interfaces
will not change from automobile object to automobile object. In other
words, if we go from a General Motors car to a Ford car we can depend on
the same functionality of these control interfaces.

Another characteristic of a software object is persistence. Persistence
of an object is learned very early by a child. Eventually, when we show a
child a toy and then hide it behind our back, the child knows the toy still
exists. The child has now conceptualized the toy object as part of its mental
set of objects. As the programmer does a mental conceptualization of
various software objects, this will lead to a high level of persistence of the
objects in the programmer’s mind. Because one of the main features of
standard software objects is reusability, the efficiency of the programmer
will continue to increase as the standard objects are conceptualized in the
programmer’s mental model.

Polymorphic behavior is another characteristic that can be imple-
mented in a software object. Probably one of the earlier forms that a child
realizes has different behavior, based upon form, is the chair object. The
chair object is polymorphic in that its behavior depends on its form. We
have rocking chairs, kitchen chairs, lounge chairs, and so on. This idea of
form and related behavior has created a whole field of study called
morphology. Certainly, this is a key idea in how we relate cognitively to
various objects. Not only does the clustering of our objects have form rela-
tionships, the internal constructs of the objects have a form relationship.
There is a definite relationship between the logic flow of a program and
the placement of the various meaningful chunks of a program. This is
somewhat different than a pure polymorphic nature of a function, but does
point out that we should be aware of the morphology of our objects and
their parts and placement in our program.

INDEX

A
abstract data types
data types vs., -9
objects (components) based on, 10
ACLs (access control lists), in KMDF, 180
AcquireLock method, IWDFObject, 70
Active Template Library (ATL), UMDF, 85, 112
adaptive time-outs, I/0 requests, 66-67
AddRef method, ITUnknown
defined, 82, 95
implementing, 125
rules for reference counting, 120
UMDF object model, 45
Administrators, privileges of, 180
algorithms, 8-9
Algorithms + Data Structures = Programs
(Wirth), 8
The Annotated C++ Reference Manual
(Stroustrup), 8
applications, UMDF driver architecture,
44, 83
architecture
device driver objects, 7-12
UMDF, 82-84
WDF. See WDF (Windows Driver
Foundation)
Windows 1/0 layered, 79-81
WMI, 253-254
Aristotle, on characteristics of objects and
concepts, 7
ATL (Active Template Library), UMDF,
85, 112
attributes
initializing for KMDF objects, 220-221
initializing for WDFDEVICE, 229-231
of KMDF objects, 144-145
setting, 237, 240-241

automatic forwarding, UMDF drivers config-
uring, 54-55

automobiles, functionality of control interfaces
in, 11-12

B
base classes, WMI, 257-260
behaviors, defining abstract data type, 9
Brooch, Grady, 7
buffers
creating for I/O requests, 63-64, 157-158
performing buffered 1/0, 301-302
retrieving from I/0 requests, 61, 155-156
build.exe, WDK build utility, 183
builds, KMDF
building a project, 186-187
building Toaster example, 187-190
types of, 185-186
WDK build tools, 183-185
builds, UMDF, 75-77
bus drivers, in KMDF
creating, 29
overview of, 135, 137-138

C
C programming language
DDIs (device-driver interfaces), 129
driver development and, 183
C# programming language, abstract data type
behaviors in, 9
C++ How to Program, Seventh Edition (Deitel
2009), 112
C++ programming language
development of, 8
driver development and, 183
object-oriented software development and, 10
supplying notation for writing OOP, 10

333

334 INDEX

C++ template libraries, UMDF drivers using,
112
callbacks
code for registering, 245-248
code for setting self-managed I/O, 315-316
creating and deleting objects, 53-55, 147,
239-240
device callback object, 100-106
driver callback object, 96-100
EvtInterruptDpc callback, 281-282
EvtInterruptIsr callback, 279-281
interfaces for UMDF driver, 47-49
I/O request suspension, 65
Plug and Play support and, 227
power management notification, 71
for power-up/power-down, 250-251
registering for Plug and Play and power
management, 243-245
retrieving buffers from I/O requests, 62
self-managed 1/0, 67-68, 161
surprise removal sequence, 75
UMDF driver implementation and, 122-125
wake signal support, 251-252
cancellation
guidelines for I/O requests, 66-67
integrated I/O queuing and, 22-26
of I/O request, 64-65
CAs (certificate authorities), obtaining signed
catalog file from, 194
catalog files (.cat)
in KMDF driver package, 190
obtaining for driver package, 193-194
certificate authorities (CAs), obtaining signed
catalog file from, 194
checked builds, types of builds, 185
class factories, implementing UMDF drivers
with, 122
class IDs (CLSIDs), used by COM, 112
class member variables, defining abstract data
type representations as, 9
classes
definition of, 8
implementing objects as, 10
Skeleton driver, 89-90
troubleshooting WMI, 265
WMI class name, 257-260

cleanup requests
deleting objects, 147, 239-240
device callback, 105
driver callback, 48
in filter driver, 55
I/0 requests in KMDF, 149-150
UMDF drivers handling, 53-55
client-server model, COM based on, 82
close requests
devices, 105
files, 48, 235-237
in filter driver, 55
UMDF drivers handling, 53-55
CLSIDs (class IDs), used by COM, 112
CMyDriver object, Skeleton driver, 91
CMyDriver::Createlnstance method, 96-98
co-install DLL, WDF, 191
co-installer section, INF file, 76
COM (component object model)
UMDF driver development and, 81-82
UMDF interfaces based on, 45
UMDF objects based on, 19-20, 45
User Mode Driver host process, 44-45
COM (component object model), creating
UMDF drivers
basic infrastructure implementation,
120-126
COM fundamentals and, 112-114
getting started, 111-112
HRESULT, 114-116
overview of, 111
using COM objects, 116-120
COM (component object model), UMDF
support for device callback
object, 100-106
driver callback object, 96-100
IClassFactory methods, 96
TUnknown methods, 95
overview of, 95
COM clients, 116
Complete or CompleteWithInformation method,
IWDFIoRequest, 65-66
components
defined, 7
KMDF, 131-132
software components, 11-12

335

INDEX

WDF, 13-14
WMI exporting information from drivers to
other components, 172-173
Comsup.cpp source file, 95, 108
Comsup.h source file, 95
concurrency
managing in Windows drivers, 22-23
UMDF and, 69
Configure method, device callback objects,
105-106
context. See object context
control device drivers, for legacy (NT 4.0-style)
devices, 29
control device objects
in KMDF, 138-139
overview of, 135
in UMDF, 52
counted UNICODE strings, KMDF security
and, 181
create requests
CreateRequest method, IWDFDevice, 62
driver callback, 4748
files, 235-237
filter drivers, 55
flow of I/O control requests, 56-57
UMDF drivers handling, 53-55
CreateInstance method, IClassFactory
creating driver callback object, 96
defined, 82, 96
implementing, 122
UMDF driver functionality, 87
CreateInstance method, of device callback
object, 101-102
CreateIOQueue method, IWdfDevice,
109
CreatePreallocatedWdfMemory method,
IWd{Driver, 61, 63-64
CreateRequest method, IWDFDevice, 62
CreateWdfMemory method, IWdfDriver, 63-64
CUnknown class, 123
CUnknown method, IUnknown, 95

D

data providers, registering drivers as WMI data
provider, 254-255

data types, abstract data types vs., 8-9

Data Types (Cleaveland), 8
DDIs (device-driver interfaces)
C-language, 129
driver frameworks, 28
in KMDF drivers, 183
in WDM drivers, 14-15
debugger extensions
for KMDF drivers, 204-205
for UMDF drivers, 75
for WDF drivers, 37
in WinDbg, 201
debugging
driver verification, 198
drivers, 198-200
kernel mode drivers, 200-201
macros and routines for, 203
PREfast tool for, 196-197
registry settings and, 201-203
SDV (Static Driver Verifier) tool, 197
symbols file and, 203
trace logging and, 198
WinDbg applied to Toaster example, 205-208
WinDbg commands, 200-201
WPP tracing and, 205
defaults
configuring default I/O queue, 232-233
execution level in KMDF, 177
safe defaults in KMDF security, 180
synchronization scope in KMDF, 238
design
WDF component functions for, 13
WDF goals, 14-15
Design Patterns (Gamma), 9
DestinationDirs section, INF file, 76
device callback object
overview of, 100-106
Skeleton driver, UMDF, 96-100
device driver architecture overview
objects, 7-12
WDF. See WDF (Windows Driver
Foundation)
device I/O requests
code for creating queues for device I/O control
requests, 297-298
code for finding manual requests, 304-308
code for handling, 299-301

336

INDEX

device I/O requests (contd.)
KMDF, 150
UMDF drivers, 56-57
WDF architecture, 25-26
device objects (DOs), KMDF
bus drivers and PDOs, 135, 137-138
filter drivers and FDO, 135-136
function drivers and functional device objects,
135-137
legacy drivers and control device objects,
138-139
overview of, 135-136
power-down and removal of FDOs, 168-169
power-down and removal of PDOs, 169-170
startup sequence for FDOs, 165-166
startup sequence for PDOs, 166-167
device property store, UMDF, 50-51
device scope
KMDF synchronization, 175, 238
UMDF synchronization, 69-70
WDF architecture, 23
device usage model, KMD driver samples listed
by, 213-215
Device.cpp, adding device-specific code to, 109
device-driver interfaces. See DDIs (device-driver
interfaces)
devices
control device objects in. See control device
objects
creating device interface, 231-232
enumeration and startup in KMDF, 164
enumeration and startup in UMDF, 71-72
filters. See filter DOs (filter device objects)
functional device objects. See FDOs
(functional device objects)
initializing device context area, 229-231
KMDF supported, 129-131
physical device objects. See PDOs (physical
device objects)
power-down and removal in KMDF, 168-170
power-down and removal in UMDF, 72-75
safe naming techniques, 181
setting attributes, 237, 240-241
startup sequence for, 165-167
support for device interrupts, 274
support in WDF, 15-16

supported in User Mode, 42
surprise removal sequence in KMDF, 170-172
DIFx (Driver Install Frameworks), 14
digital signatures, 193-194
direct memory access (DMA), 42
Dirs, optional files in builds, 184
dispatch execution level, KMDF synchronization,
178
dispatch types
handling WMI requests, 255-256
I/0 queues, 58-59, 153-154
KMDF supported, 291-292
DLL_PROCESS_ATTACH, 91-92
DLL_PROCESS_DETACH, 91-92
DIlGetClassObject function, UMDF
defined, 49
driver functionality, 84-86
implementing UMDF driver infrastructure,
121-122
overview of, 93-95
DIIMain export
as driver entry main point, 91-92
implementing UMDF driver infrastructure,
121
UMDF driver functionality and, 84-86
DLLs (dynamic-link libraries)
in KMDF driver package, 190
UMDF as, 33, 82-83
UMDF driver functionality and, 84-85
WDF debugger extensions in, 37
WMI providers and, 253
DMA (direct memory access), 42
DMDF. See KMDF (Kernel Mode Driver
Framework)
DOs. See device objects (DOs)
down device object, I/O requests, 52
DPC, deferred processing of interrupts, 281
driver callback object
creating, 98-100
implementing UMDF driver with class factory,
122
UMDF functions supporting COM, 96-100
driver frameworks, WDF, 28-32
driver host process, in Windows kernel, 32
driver information, web sites for, 323-330
Driver Install Frameworks (DIFx), 14

INDEX 337

driver manager

in UMDF driver architecture, 43—44,

83-84

in Windows kernel, 33
driver model, KMDF, 129-131
driver model, UMDF, 43-45
driver model, WDF

functions of, 13-14

overview of, 16-17

support for Windows 7, 15-16
driver roles, KMDF, 135-136
driver signing, WDF, 14
driver.cpp file

adding device-specific code to, 109

creating driver callback object, 98
DriverEntry object

creating, 225-227

in KMDF drivers, 132
dynamic binding, in KMDF, 208
dynamic testing, in KMDF, 196
dynamic-link libraries. See DLLs (dynamic-link

libraries)

E
Echo driver, UMDF, 42, 88
enumeration

KMDF devices, 164

UMDF devices, 71-72
ERROR_CANCELLED, I/O requests, 65
errors, detecting with PREfast utility, 34-35
ETW (Event Tracing for Windows)

defined, 14

Kernel Mode Drivers using, 36-37

UMDF drivers using, 75
events

drivers implementing callback interfaces for

important, 47-49
driver’s WMI events are not being received,
267

firing WMI events, 260265

KMDF object model, 139-141

trace events, 269-271

WDF object model, 18

WMI system event log, 269
EvtCleanupCallback routine, 147, 239-240
EvtDestroyCallback routine, 147

EvtDevicePrepareHardware, 283
EvtDeviceReleaseHardware, 283
EvtDriverDeviceAdd callback
managing power policy, 248-249
Plug and Play support and, 227
registering callbacks, 243
EvtInterruptDisable callback, 277
EvtInterruptDpc callback, 281-282
EvtInterruptEnable callback, 276-277
EvtInterruptlsr callback, 279-281
Evtlo* callback, 132
execution levels, KMDF
interaction with synchronization scope,
179-180
overview of, 177-178
setting, 239
Exports.def file, 107
extensions. See debugger extensions

F
Facility field, HRESULT, 114-115
FAILED macro, HRESULT, 115-117
FDOs (functional device objects)
overview of, 135-137
power-down and removal, 168-169, 250
startup sequence for, 165-166
features
KMDF driver, 215-216
UMDF driver, 49-51
fields, HRESULT, 114-115
file close request, I/0 requests in KMDF,
235-237
file create request, I/0 requests in KMDF,
235-237
filter DOs (filter device objects)
overview of, 135-136
power managed queues and, 152-153
filter drivers
create, cleanup, and close in, 55
KMDF supporting creation of, 29
UMDF drivers identifying themselves as, 55
flags, WDK, 186
frameworks, WDF
component functions for, 13-14
verifier, 36

free builds, types of builds, 185

338

INDEX

functional device objects. See FDOs (functional
device objects)
function drivers
KMDF, 29, 135-137
UMDF, 55
FxDevicelnit, 102-105
FxWdfDriver, 118

G
GetDefaultloTarget method, IWDFDevice,
61-62
globally unique identifiers. See GUIDs (globally
unique identifiers)
GUIDs (globally unique identifiers)
guidgen.exe, 258
used by COM, 112-113
WMI and, 172

H
HAL (Hardware Abstraction Layer), 2
hardware resources
code for mapping, 284-288
code for unmapping, 285-289
mapping, 283-284
hierarchical arrangement
of KMDF objects, 141-144
of objects, 18
host process, UMDF driver architecture, 43-45,
82-84
HRESULT
overview of, 114-116
testing for simple success or failure, 117

I

IClassFactory interface, UMDF
defined, 82
driver support for, 49, 85-87
implementing UMDF driver infrastructure,

122

methods, 96

IDevicelnitialize interface, 109

IDriverEntry interface, UMDF
device enumeration and startup, 72
driver support for, 48-50, 85-87
methods, 98
Skeleton driver, 90-91

IDWFxx interfacesUMDF, 4647
IFileCallbackCleanup interface, UMDF
defined, 48
device callback object, 105
handling cleanup and close in function drivers,
55
handling cleanup request, 53-55
IFileCallbackClose interface, UMDF
defined, 48
device callback object, 105
handling cleanup and close in function drivers,
55
handling cleanup request, 53-55
IFR (in-flight recorder), 36
IIDs (interface IDs)
implementing QueryInterface, 125
used by COM, 112-113
IImpersonateCallback interface, UMDF, 50
Impersonate method, IWDFIoRequest, 50
impersonation, UMDF driver, 50
INF files
creating device interface, 231
for KMDF drivers, 190-193
specifying maximum impersonation level of
UMDF driver, 50
for UMDF drivers, 76-77
using Skeleton driver as basis for development,
108
for WDF drivers, 14
in-flight recorder (IFR), 36
in-flight requests, suspending, 160
inheritance, software using, 10-11
Initialize method
adding device-specific code to Device.cpp,
109
device callback object, 102-105
installation
KMDF drivers, 190-193
in Toaster example, 194-196
UMDF drivers, 76-77
WDF drivers, 14
integrated I/O queuing and cancellation, WDF,
2996, 117
interface IDs (IIDs)
implementing QueryInterface, 125
used by COM, 112-113

INDEX 339

interface pointers, COM
obtaining interface on UMDF object with,
117-118
overview of, 113-114
reference counting and, 120
interfaces
COM, 82, 113
creating device interface for Simple Toaster
example, 231-232
obtaining on UMDF objects, 117-119
Skeleton driver, 90-91
UMDF, 45-47
ways to create device interfaces, 231-232
internal device I/O request, KMDF, 150
internal trace logging, 36-37
interrupt request level (IRLQ), 23
interrupts
code for creating, 275-276
code for enabling, 276-277
code for EvtInterruptDpc callback, 281-282
creating, 274-275
deferred processing of, 281
enabling/disabling, 276
handling, 278-279
overview of, 273
post- interrupt enable and pre-interrupt
disable processing, 277-278
support for, 274
writing Kernel Mode Drivers for handling, 42
InterruptService routines, 278
INX files
optional files in builds, 184

using Skeleton driver as basis for development,

108
I/O manager
defined, 1-2
in Windows kernel, 32-33
I/O mapped resources, 283-284
/O model, KMDF
accessing IRPs and WDM structures, 161-162
cancelling/suspending requests, 158-160
completing requests, 160-161
creating buffers for requests, 157-158
integrated queuing and cancellation,
22-26, 111
overview of, 147-149
queues, 152-154

request handler, 149-151
request objects, 154
retrieving buffers from requests, 155-156
self-managed callbacks, 161
targets, 156-157
Windows layered architecture for, 79-81
I/0 queues
adding device-specific code to Device.cpp, 109
configuring, 293-294
integrated I/O queuing and cancellation,
22-26, 47-49
programming. See programming I/O queues
I/0 queues, KMDF
configuring, 222-223
dispatch types and, 153-154
power management and, 152-153
WDFQUEUE Object, 152
I/0 queues, UMDF
callback interfaces, 47
dispatch types, 58-59
dispatching I/O request to UMDF driver, 53
overview of, 56-58
power management and, 59-60
I/O queues, WDF
integrated queuing and cancellation, 22-26,
279-281
interfaces for UMDF object types, 20
I/O request packets. See IRPs (I/O request
packets)
I/0O requests
code for finding, 304-308
code for handling device I/O requests,
299-301
forwarding requests to queues, 302-303
retrieving requests from manual queues,
303-304
WMI, 255-256
I/O requests, KMDF
cancelling/suspending, 158-160
completing, 160-161
configuring, 224
creating, cleaning up, and closing, 149-150
file create and close requests, 235-237
flow of requests through request handler, 151
handling in Simple Toaster example, 233-235
reading, writing, device I/O control, and
internal device I/O control, 150

340

INDEX

I/O requests, KMDF (contd.)

request handler, 149-151

request objects, 154

retrieving buffers from, 155-156
I/0 requests, UMDF

adaptive time-outs, 66-67

canceled and suspended, 64-66

completing, 66

creating buffers for, 63-64

I/O queues and, 56-60

overview of, 51-56, 60-61

retrieving buffers from, 61

self-managed 1/0, 67-68

sending to I/O target, 61-63
I/0O requests, WDF

driver frameworks, 28-30

driver model, 16

integrated queuing and cancellation, 22-26,

232-233

overview of, 24-25
I/O target

creating buffers for I/O requests, 63-64

in KMDF, 156-157

sending I/O requests to, 61-63
IObjectCleanup interface, 48
IOCTL requests, parameter validation and,

180-181

IPnpCallback interface, UMDF

adding device-specific code to Device.cpp, 109

driver callback, 4748

power management notification, 71

surprise removal sequence, 74-75
IPnpCallbackHardware interface, UMDF

driver callback, 4748

power management notification, 71

surprise removal sequence, 75
IPnpCallbackSelfManagedIo interface, UMDF

driver callback, 4748

self-managed 1/O callbacks, 67-68
IQueueCallbackCreate interface

create, cleanup, and close in filter drivers, 55

create request in function drivers, 55

driver callback, 4748

handling create requests, 53-55
IQueueCallbackDefaultloHandler interface, 48
IQueueCallbackDeviceloControl interface, 49
IQueueCallbackloResume interface, 49

IQueueCallbackIoStop interface, UMDF
defined, 49
I/O request suspension, 65
power-managed queues, 59
IQueueCallbackRead interface, UMDF, 47-49
IQueueCallbackWrite interface, UMDF, 49
IRequestCallbackCancel interface, UMDF
defined, 49
I/O request cancellation, 65
retrieving buffers from I/O requests, 62
IRequestCallbackCompletion interface, UMDF,
62
IRequestCallbackRequestCompletion interface,
UMDEF, 49
IRLQ (interrupt request level), 23
IRP_M]_SYSTEM_CONTROL requests,
172-173, 255-256
IRPs (I/0 request packets)
accessing from KMDF, 161-162
creating in Windows kernel, 32-33
handling WMI requests, 255-256
I/O request flow to UMDF driver and, 52-53
overview of, 23-24
Windows 1/0 architecture and, 81
WMI IRPs and system event log, 269
IsEqualID function, comparing I1Ds, 125-126
IUnknown interface, COM
as core COM interface, 112
defined, 82
device callback objects and, 105
implementing UMDF callback objects,
123-125
method names, 95
IWDFDevice interface, UMDF
creating targets, 62
device callback object, 105
self-managed 1/O callbacks, 67-68
sending I/O requests to I/O target, 61-62
Skeleton driver, 91
IWDF Devicelnitialize interface, UMDF
configuring automatic forwarding, 54-55
create, cleanup, and close in filter drivers, 55
device callback object and, 102-105
driver callback object and, 98
Skeleton driver, 91
UMDF driver creating property store,
50-51

341

INDEX

IWdfDriver interface, UMDF

creating buffers for I/O requests, 63-64

creating driver callback object, 98

retrieving buffers from I/O requests, 61

Skeleton driver, 91
IWDFFileHandleTargetFactory interface, 62
IWdfIoQueue interface, UMDF

device callback object, 105

overview of, 56-58

Start method, 60

Stop method, 60

StopSynchronously method, 60
IWDFIoRequest interface, UMDF

impersonation requests, 50

I/O request cancellation, 65

UMDF driver impersonation requests, 66
IWDFIoTarget interface, UMDF, 61-62
IWDFIoTargetStateManagement interface,

UMDF, 63
IWDFloRequest interface, UMDF, 60-61
IWDFMemory interface, UMDF, 61
IWDFNamedPropertyStore interface, UMDF,
50-51

IWDFObject interface, drivers, 70
IWDFoRequest interface, UMDF, 62
IWDFUsbTargetFactory interface, UMDF, 62

K
Kant, Immanuel, 7
KD, for kernel debugging, 199
Kernel Mode Driver Framework. See KMDF
(Kernel Mode Driver Framework)
kernel mode drivers
debugging, 200-201
internal trace logging for, 36-37
UMDF driver architecture and, 43, 45, 82-84
WDF component functions for, 13-14
WMI requests for, 27
writing, 42
KMDF (Kernel Mode Driver Framework)
bus drivers and physical device objects, 135,
137-138
comparing KMDF drivers with WDM drivers,
132-135
components of, 131-132
design goals for WDF, 15
device and driver support in WDF, 15-16

device objects and driver roles, 135-136

driver structure, 132

filter drivers and filter device objects, 135-136

function drivers and functional device objects,
135-137

internal trace logging for, 36-37

I/0 model. See I/0 model, KMDF

legacy drivers and control device objects,
138-139

object model. See object model, KMDF

overview of, 129

plug and play and power management support.
See Plug and Play and power
management

programming drivers for. See programming
KMDF drivers

programming hardware drivers. See program-
ming KMDF hardware drivers

supported devices and driver types, 129-131

understanding, 28-30

WDF component functions for, 14

WDF driver model, 16-17

KMDF installation and build

building a project, 186-187

building Toaster example, 187-190

catalog files and digital signatures, 193-194

debugger extensions, 204-205

debugging drivers, 198-200

debugging kernel mode drivers, 200-201

driver verification, 198

installing drivers, 190-193

installing Toaster example, 194-196

macros and routines for debugging, 203

overview of, 183

PREfast debugging tool, 196-197

registry settings and debugging features,
201-203

SDV (Static Driver Verifier) tool, 197

symbols file and debugging features, 203

testing approaches, 196

trace logging, 198

types of builds, 185-186

versioning and dynamic binding and, 208-209

WDK build tools, 183-185

WinDbg applied to Toaster example, 205-208

WPP tracing and, 205

KMDF Verifier, 198

342

INDEX

L
legacy drivers, in KMDF, 138-139
lines of code, comparing KMDF drivers with
WDM drivers, 134
LocalService security context, UMDF drivers, 50
locking constraint, UMDF, 23, 69
locks
comparing KMDF drivers with WDM drivers,
134
KMDF drivers, 178-179
UMDF drivers, 70
LockServer method, IClassFactory, 96, 122
logs
system event log, 269
trace logging. See trace logging
WMI WDM provider log, 269

M
macros
for debugging in KMDF, 203
for declaring object context, 221-222
initializing context area and attributes for
device objects, 230-231
used in KMDF samples, 218-219
using HRESULT, 115-117
makefile
required files in builds, 184
in Toaster sample, 187-188
Makefile.inc
optional files in builds, 184
in Toaster sample, 187-188
managed object format (.mof) resource
files, 184
manual dispatch type
code for finding manual requests, 304-308
creating manual queues, 294
I/O queues and, 59
KMDF and, 154, 291-292
retrieving requests from manual queues,
303-304
mapping hardware resources
code for, 284-288
overview of, 283-284
MarkCancelable method, IWDFIoRequest, 65
member functions, abstract data type algorithms
as, 9

memory
creating buffers for I/O requests, 6364
retrieving buffers from I/O requests, 61
memory—mapped resources, 284
methods
COM, 113
KMDF objects, 139-141
return from COM, 114-116
unable to access driver's WMI method, 266
WDF objects, 18
.mof (managed object format) resource files, 184
morphology, of objects, 12

N
names
KMD driver samples listed by, 211-212
security of KMDF names, 181
simplifying GUID, 112-113
network-connected devices, UMDF support for, 42
no scope
KMDF, 175, 238
UMDF., 70
WDF, 23
nonpaged pools, writing kernel mode drivers
for, 42
nonpower—managed queues, UMDF, 60
notations, Object Oriented Design, 10
NT_SUCCESS macro, 115
NTSTATUS, converting into HRESULT,
116-117
NTTARGETFILES statement, 107

O
OBG (Object Management Group), 8
object context
initializing device context area, 229-231
in KMDF object model, 145-146
programming KMDF drivers and, 221-222
Object Management Group (OBG), 8§
object model
classes incorporating attributes of, 10
defined, 10
inheritance as attribute of, 10-11
software components, 11-12
UMDF, 45
WDF, 17-20

343

INDEX

object model, KMDF
creating objects, 146-147, 220-221
deleting objects, 146-147, 239-240
driver structure and concepts and, 219
hierarchical structure of, 141-144
methods, properties, and events, 139-141
object attributes, 144-145
object context, 145-146, 221-222
object types, 18-19
overview of, 139
setting object attributes, 144-145, 237,
240-241
types of objects, 142-144
Object-Oriented Analysis and Design with
Applications, Third Edition (Booch),
9,10
Object Oriented Programming (OOP)
evolution into object model, 10
software techniques, 7
objects
COM, 112-113
creating driver objects, 225-227
defining software, 8-9
driver callback, 4749
nature of, 7-8
Skeleton driver, 90-91
software components, 11-12
UMDF driver, 45-47
understanding, 10-11
OnCancel method, IRequestCallbackCancel,
62, 65
OnCompletion method,
IRequestCallbackCompletion, 62
OnCreateFile method, IQueueCallbackCreate,
UMDF create request in function
drivers, 55
OnDelnitialize method, IDriverEntry,
85, 98
OnDeviceAdd method, IDriverEntry
adding device-specific code to Driver.cpp, 109
creating driver callback object, 98-100
device enumeration and startup, 72
UMDF driver functionality, 85-87
OnImpersonation method, UMDF drivers, 50
Onlnitialize method, IDriverEntry, 85-87, 98
OnloStop method, IQueueCallbackloStop,
59, 65

OnReleaseHardware method,
IPnpCallbackHardware, 75
OnSurpriseRemoval method, IPnpCallback, 47,
74-75
OOP (Object Oriented Programming)
evolution into object model, 10
software techniques, 7
Operation, in KMDF object model, 139

P
PAGED_CODE macro, 218
parallel dispatch type
creating parallel queues, 294
handling requests from parallel queues,
298-299
I/O queues and, 58
KMDF supported, 154, 291-292
parameter validation, KMDF security, 180-181
parent/child relationships, in KMDF object
model, 141-144
passive execution level, KMDF synchronization,
177
PCIDRY driver. See also programming KMDF
hardware drivers, 273
PDOs (physical device objects)
in KMDF, 137-138
overview of, 135
power-down and removal, 169-170
power managed queues and, 152-153
power-up/power-down, 251
startup sequence for, 166-167
performance goals, impacting device driver
authors, 2-3
persistence, implementing in software object, 12
PFD (PREFAST for Drivers). See PREfast
debugging tool
physical device objects. See PDOs (physical
device objects)
Plato, on characteristics of objects and concepts, 7
Plug and Play and power management
flow of I/O control requests, 56-57
integrated I/O queuing and cancellation,
29-96. 55
I/O queues and, 59-60
overview of, 20-22
programming. See Programming Plug and Play

and power management

344 INDEX

Plug and Play and power management (contd.)
UMDF notification, 70-71
UMDF support for, 31
WDF driver model including, 16
WDF support for, 20-22
Plug and Play and power management, in
KMDF
counted UNICODE strings, 181
device enumeration and startup, 164
execution levels, 177-178
interactions of synchronization mechanisms,
179-180
I/O queues and, 152-153
locks, 178-179
overview of, 163-164
parameter validation, 180-181
power down and removal of filter DOs,
168-169
power down and removal of physical DOs,
169-170
safe defaults, 180
safe device naming techniques, 181
security, 180
startup sequence for function and filter DOs,
165-166
startup sequence for physical DOs, 166-167
support for, 29-30
surprise removal sequence, 170-172
synchronization issues, 173-175
synchronization scope, 175-177
WMI request handler, 172-173
Plug and Play callback interface, 47-48
policies
power management and, 244-245, 248-249
sample code for setting power policy,
249-250

polymorphic behavior, implementing in software

object, 12
power down

callbacks for, 250-251

of filter DOs, 168—169

overview of, 167

of physical DOs, 169-170

self-managed I/O during device power down
and removal, 314

surprise removal sequence, 170-172

UMDF device, 72-74

power management. See Plug and Play and

power management

power up, callbacks for, 250251
power—managed queues, UMDF, 59
PREfast debugging tool

source code analysis with, 196-197
UMDF drivers using, 76
WDF testing tool, 34-35

privileges, administrators, 180
programming I/O queues

buffered I/O and, 301-302

code for creating and initializing watchdog
timer, 316-317

code for creating queues for device I/O control
requests, 297-298

code for creating queues for read requests,
296-297

code for creating queues for write requests,
294-296

code for deleting watchdog timer, 320-321

code for finding requests, 304-308

code for handling device I/O requests,
299-301

code for reading/writing the registry, 309-312

code for restarting watchdog timer, 319-320

code for setting self-managed I/O callbacks,
315-316

code for starting watchdog timer, 317

code for stopping watchdog timer, 318

creating and configuring, 293-294

forwarding requests to queues, 302-303

handling requests from parallel queues,
298-299

implementing watchdog timers, 315

overview of, 291-293

reading/writing the registry, 308-309

retrieving requests from manual queues,
303-304

self-managed I/O device startup and restart,
313-314

self-managed I/O during device power down
and removal, 314

watchdog timer for self-managed 1/0, 312-313

programming KMDF drivers

creating objects, 220-221

INDEX 345

driver structure and concepts and, 219

I/O queues, 222-223

I/O requests, 224

macros used in KMDF samples, 218-219

object context areas, 221-222

overview of, 211

samples listed by device usage model, 213-215

samples listed by features supported, 215-216

samples listed by name, 211-212

WDM samples compared with KMDF
samples, 216-218

programming KMDF drivers, in Featured
Toaster example

deleting objects, 239-240

file create and close requests, 235-237

overview of, 235

setting device object attributes, 237, 240-241

setting execution levels, 239

setting synchronization scope, 238

programming KMDF drivers, in Simple Toaster
example

configuring default I/O queue, 232-233

creating device interface, 231-232

creating DriverEntry object, 225-227

initializing device context area, 229-231

I/O request handler, 233-235

overview of, 224

programming KMDF hardware drivers

code for creating interrupts, 275-276

code for enabling interrupts, 276-277

code for EvtInterruptDpc callback, 281-282

code for EvtInterruptIsr callback, 279-281

code for mapping resources, 284-288

code for unmapping resources, 288-289

creating interrupts, 274-275

deferred processing for interrupts, 281

enabling/disabling interrupts, 276

handling interrupts, 278-279

mapping resources, 283-284

overview of, 273

post-interrupt enable and pre-interrupt disable
processing, 277-278

supporting device interrupts, 274

programming Plug and Play and power
management

callback for wake signal support, 251-252

callbacks for power-up/power-down, 250-251
managing power policy, 248-249
overview of, 243
registering callbacks, 243-245
sample code for callbacks, 245-248
sample code for setting power policy,
249-250
programming UMDF drivers
brief COM information, 81-82
driver DDL and exports, 91-95
functions for COM support. See COM
(component object model), UMDF
support for
overview of, 79
required driver functionality, 84-87
sample drivers, 87-91
UMDF architecture, 82-84
using Skeleton driver as basis for development,
106-110
Windows I/O, 79-81
programming WMI support
class names and base classes, 257-260
event tracing, 269-271
firing events, 260-265
handling WMI requests, 255-256
overview of, 253
registering driver as WMI data provider,
254-255
requirements for WDM drivers,
256-257
testing driver support, 268-269
troubleshooting, 265-268
WMI architecture and, 253-254
properties
KMDF object model, 139-141
unable to access driver’s WMI properties, 266
WDF object model, 18

Q
QI (query-interface), COM, 82
QueryIClassFactory method, IClassFactory, 96
query-interface (QI), COM, 82
QueryInterface method, IClassFactory, 96
QueryInterface method, IUnknown

defined, 82, 95

device callback object, 106

346

INDEX

Querylnterface method, IUnknown (contd.)
implementing, 125-126
obtaining interface on UMDF object, 117, 119
obtaining interface pointer in COM, 113
UMDF object model, 45
QueryIUnknown method, IUnknown
defined, 95
device callback object, 105
queue scope
KMDF, 175, 238
WDF, 23
queues, I/0. See I/O queues

R
.rc (resource files), optional files in builds, 184
read requests
code for creating queues for, 206-297
creating manual queues, 294
flow of I/O control requests, 56-57
KMDF I/O requests, 150
reference counting
implementing UMDF callback objects, 125
overview of, 119-120
reflector
I/O request flow to UMDF driver, 52, 83-84
in UMDF driver architecture, 43-44
in Windows kernel, 32
registry
code for reading/writing, 309-312
KMDF debugging features and, 201-203
reading/writing, 308-309
Release method, ITUnknown
defined, 82, 95
implementing, 125
rules for reference counting, 120
UMDF object model, 45
ReleaseLock method, IWDFObject, 70
removal, KMDF devices
filter DOs, 168-169
overview of, 167
physical DOs, 169-170
surprise removal sequence, 170-172
removal, of devices, 314
removal, UMDF device
overview of, 72-74
surprise removal sequence, 74-75

representations, abstract data type, 8-9
requests. See I/O requests
resource files (.rc), optional files in builds, 184
RetrieveDevicePropertyStore method,
IWDF Devicelnitialize, 50-51

Return code field, HRESULT, 114-115
\root\wmi class, 265-266
ROSE tool, 10
routines, for debugging in KMDF, 203
run-time environment

UMDF driver architecture, 43

using UMDF COM objects in, 116-120

S
S_FALSE return value, HRESULT, 115-116
S_OK return value, HRESULT, 55, 115-116
SDDL (security description definition
language), 181
SDV (Static Driver Verifier) tool
compile-time unit-testing with, 197
overview of, 35-36
PFD helping to prepare for, 35
security, KMDF
counted UNICODE strings, 181
overview of, 180
parameter validation, 180-181
safe defaults, 180
safe device naming techniques, 181
security, WMI, 267
security description definition language (SDDL),
181
self-managed 1/0
callbacks in KMDF, 161
callbacks in UMDF, 67-68
code for creating and initializing watchdog
timer, 316-317
code for deleting watchdog timer, 320-321
code for restarting watchdog timer, 319-320
code for setting self-managed I/O callbacks,
315-316
code for starting watchdog timer, 317
code for stopping watchdog timer, 318
during device power-down and removal, 314
device startup and restart, 313-314
implementing watchdog timers, 315
watchdog timer for, 312-313

INDEX 347

semantics, abstract data type, 8-9
sequential dispatch type
I/O queues and, 58
KMDF support for, 154, 291-292
service control manager, 1-2
Service Processes, 1-2
serviceability, WDF support for, 37-38
SetFilter method
IDevicelnitialize, 109
IWDFDevicelnitialize, 55
SetLockingConstraint method,
IWdfDevicelnitialize, 105
Severity field, HRESULT, 114-115
Skeleton driver, UMDF
as basis for development, 106-110
classes, objects and interfaces, 89-90
component source files, 89
defined, 42, 88
device callback object, 96-106
overview of, 88
small-scale integration (SSI) in software, 11
software
defining objects, 8-9
gaining understanding, 10-11
on nature of objects, 7-8
software-only drivers, UMDF supporting, 42
source code files
analysis with PREfast tool, 196-197
required files in builds, 184
sources files
required files in builds, 184
in Toaster sample, 188-189
using Skeleton driver as basis for
development, 107
SOURCES statement, customizing Sources
file, 107
spin locks, in KMDF synchronization, 179-180
SSI (small-scale integration) in software, 11
Standard Template Library (STL), UMDF
drivers, 112
Start method, IWDFIoQueue, 60
startup
for functions and filter DOs, 165-166
KMDF devices, 164
for physical DOs, 166-167

self-managed 1/0 for, 313-314
UMDF devices, 71-72
state machine, 21-22
state variables, 134
static analysis, 14
Static Driver Verifier. See SDV (Static Driver
Verifier)
static testing, KMDF approaches to testing, 196
STL (Standard Template Library), UMDF
drivers, 112
Stop method, IWDFIoQueue, 60
StopSynchronously method,
IWDFIoQueue, 60
strict timing loops, kernel mode drivers for, 42
strings, preventing string handling errors in
KMDF, 181
SUCCEEDED macro, HRESULT,
115-117
Support Processes, 1-2
surprise removal sequence
KMDF devices, 170-172
UMDF devices, 74-75
suspension, of I/O requests, 65-67
symbols file, KMDF debugging and, 203
synchronization, KMDF
comparing KMDF drivers with WDM
drivers, 134
execution levels, 177-178, 239
interactions of synchronization mechanisms,
179-180
issues, 173-175
locks, 178-179
scope, 175-177
scope options, 238
setting synchronization scope for Featured
Toaster example, 238
synchronization, UMDF
issues, 68-70
overview of, 69
synchronization scope
KMDF and, 175-177
options for, 238
WDF and, 23
syntax, abstract data type, -9
system event log, 269

348

INDEX
T device enumeration and startup, 71-72
TARGETNAME statement, customizing sources device power-down and removal, 72-75
file, 107 devices supported, 42

targets, I/O
creating buffers for I/O requests, 63-64
KMDF, 156-157
sending I/O requests to, 61-63
template libraries, UMDF drivers using
C++, 112
testing. See also debugging
KMDF approaches to, 196
UMDF drivers, 75-77
WDF component functions for, 14
WDF tools for, 33-38
WMI driver support, 268-269
timers. See watchdog timer
Toaster sample
building, 190
installing, 194-196
makefile and Makefile.inc, 187-188
sources files in, 188-189
WinDbg applied to, 205-208
trace logging
KMDF, 198
WDF component functions for, 14
WDF support for, 36-37
WMI, 269-271
WPP, 205
troubleshooting WMI
changes in WMI security settings not taking
effects, 267
driver’s WMI events are not being received,
267
overview of, 265-268
unable to access driver's WMI properties and
methods, 266

U
UMDF (User Mode Driver Framework)
build, test and debug, 75-77
COM support. See COM (component object
model), UMDF support for
design goals for WDF, 15
developing drivers with COM. See COM
(component object model), creating
UMDF drivers
device and driver support in WDF, 15-16

driver callback interfaces, 47-49
driver features, 49-51
driver model, 43-45
integrated I/O queuing and cancellation,
22-26, 179-180
interfaces for object types, 19-20
internal trace logging for, 36-37
I/0 queues, 56-60
I/O request flow, 51-56
I/O request objects, 60-67
KMDF vs., 41
locking constraint, 23
locks, 70
object model, 45
objects, 45-47
overview of, 28, 41
Plug and Play and power management
notification, 70-71
Plug and Play and power management
support, 20-22
programming drivers for. See programming
UMDF drivers
self-managed 1/O, 67-68
synchronization issues, 68-70
understanding, 31-32
WDF component functions for, 14
WDF driver model, 16-17
when to use User Mode Drivers, 129
in Windows kernel, 32-33
UML (Universal Modeling Language), 10
UNICODE, counted UNICODE strings, 181
unit testing, with SDV (Static Driver Verifier),
197
Universal Modeling Language (UML), 10
Universal Serial Bus (USB) devices, 42
UnmarkCancelable method, IWDFIoRequest,
65
UNREFERENCED_PARAMETER macro,
218-219
up device object, 52
updates, UMDF drivers, 77
USB (Universal Serial Bus) devices, 42
USB/Echo Driver, UMDF, 42
USB/Filter driver, UMDF, 42, 88

INDEX 349

USB/FX2_Driver, UMDF, 42
User Mode DDI, 33
User Mode Driver Framework. See UMDF
(User Mode Driver Framework)

user mode drivers

host process, 44-45

when to use User Mode Drivers, 129
uuidgen.exe, 258

A%
values, of data types vs. abstract data types, 8
VB.NET programming language, 9
verification, using Static Driver Verifier
for, 35-36
Verifier, KMDF, 198
versioning
KMDF drivers and, 208—209
UMDF drivers and, 77
WDF driver model including, 16
WDF support for, 14, 37-38
VTable pointers, COM, 114

w
wait locks, in KMDF synchronization, 179
wake signal support, 251-252
watchdog timer
code for deleting watchdog timer, 320-321
code for restarting watchdog timer, 319-320
code for setting self-managed I/O callbacks,
315-316
code for starting watchdog timer, 317
code for stopping watchdog timer, 318
implementing watchdog timers, 315
for self-managed 1/0, 312-313
self-managed 1/0 device startup and restart,
313-314
self-managed I/O during device power down
and removal, 314
Whbemtest, testing WMI support, 268
WDF (Windows Driver Foundation)
co-install DLL, 191
component functions, 13-14
defined, 3
design goals for, 14-15
device and driver support in, 15-16
driver frameworks, 28-32
driver model, 16-17

execution levels, 177-178
installation package, 190
integrated I/O queuing and cancellation,
22-26, 88
KMD driver samples listed by device usage,
213-214
KMD driver samples listed by features
supported, 215-216
KMD driver samples listed by name, 211-212
locks, 178-179
object model, 17-20
obtaining interface on UMDF object,
117-118
Plug and Play and power management
support, 20-22, 163
synchronization scope, 175-177
Windows kernel, 32—-33
WMI requests for kernel mode drivers only, 27
WDF (Windows Driver Foundation), develop-
ment and testing tools
debugger extensions, 37
defined, 13
frameworks verifier, 36
overview of, 33-34
PREfast debugging tool, 34-35
serviceability and versioning, 37-38
Static Driver Verifier (SDV), 35-36
trace logging, 36-37
Wdf section, INF file, 76
WDF_IO_QUEUE_CONFIG, 223
WdfDefault, 54-55
WDFDEVICE
creating and initializing, 227, 316-317
initializing context area and attributes for,
229-231
KMDF driver structure and concepts, 219
WDFDRIVER
creating, 226
KMDF driver structure and concepts, 219
as root object of KMDF object model, 141
WDFINTERRUPT, 274
WDFIOTARGET object, 156-157
WdfKd.dll, 37
WDFMEMORY Object, 155-158
WDFQUEUE Object, 152, 219
WDFREQUEST Object, 154, 224
WdfTrue, 54-55

350

INDEX

WDFWMIINSTANCE, 173
WDK (Windows Driver Kit)
building UMDF drivers with, 75
flags, 186
functions, 13-14
KMDF distributed via, 131
PFD tool in, 34-35
WDM (Windows Driver Model)
accessing WDM structures from KMDF,
161-162
comparing KMDF drivers with WDM drivers,
132-135
complexity and limitations of, 14-15
defined, 3
KMDF and, 183
KMDF as replacement for, 129-130
power state changes and, 163
signing WDF drivers same way as drivers
in, 14
WDM samples compared with KMDF
samples, 216-218
WMI requirements for WDM drivers,
256-257
WMI WDM provider log, 269
web sites, for driver information, 323-330
WinDbg
applied to Toaster example, 205-208
kernel debugging, 199-200
symbols files and, 203
types of commands, 200-201
WindDbg, 199
Windows Driver Foundation. See WDF
(Windows Driver Foundation)
Windows Driver Kit. See WDK (Windows Driver
Kit)
Windows Driver Model. See WDM (Windows
Driver Model)
Windows Internals, Fifth Edition (Russinovich
and Solomon), 79
Windows I/O architecture, 79-81

Windows kernel
UMDF, 43-44, 83
WDF, 32-33
Windows Management Instrumentation. See
WMI (Windows Management
Instrumentation)
Windows Software Trace Preprocessor. See WPP
(Windows Software Trace Preprocessor)
WMI (Windows Management Instrumentation)
architecture data flow, 54-55, 253-254
class names and base classes, 257-260
event tracing, 269-271
exporting information from drivers to other
components, 172-173
firing events, 260-265
for Kernel Mode Drivers only, 27
programming support for. See programming
WMI support
registering driver as WMI data provider,
254-255
request handling, 255-256
requirements for WDM drivers, 256-257
testing driver support, 268-269
troubleshooting, 265-268
Wmic, testing WMI support in driver, 268
WmiEvent class, 258, 260
Wmimofck, testing WMI support in driver, 268
wmiprov.log, 269
WPP (Windows Software Trace Preprocessor)
applying to KMDF drivers, 205
kernel mode drivers using, 36-37
KMDF trace logging based on, 198
write requests
code for creating queues for, 294-296
creating parallel queues, 294
flow of I/O control requests, 56-57
KMDF I/O requests, 150
options for, 234
wudfdd.h, 123
WudfExt.dll, 37

A
\A 4

Addison
Wesley

THIS PRODUCT

Register the Addison-Wesley, Exam Registering your products can unlock
Cram, Prentice Hall, Que, and the following benefits:

Sams products you own to unlock ® Access to supplemental content,
great benefits. including bonus chapters,

source code, or project files.
e A coupon to be used on your
next purchase.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter Registration benefits vary by product.
the 10- or 13-digit ISBN that appears Benefits will be listed on your Account
on the back cover of your product. page under Registered Products.

/ N\

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

informiT.com

THE TRUSTED TECHNOLOGY LEARNING SOURCE

SAFARI BOOKS ONLINE

Iniorm -com THE TRUSTED TECHNOLOGY LEARNING SOURCE

InformlIT is a brand of Pearson and the online presence
e for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from
the tech community.

#Addison-Wesley Cisco Press ExaAMycRAM IBM e 3§ PRENTICE g4MS§ | Safari”

Press. ~ ¢e HALL &S T S onine

LearniT at InformiT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

e |earn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

e Access FREE podcasts from experts at informit.com/podcasts.

e Read the latest author articles and sample chapters at
informit.com/articles.

e Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

e (et tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

. i :
Tul

in'ormIT-com THE TRUSTED TECHNOLOGY LEARNING SOURCE

#Addison-Wesley Cisco Press EXAMCRAM IBM U@ 3§ PRENTICE gAM§E | Safari’

Press. T ¢e PALL FTETE T T

=3

u

=

Try Safari Books Online FREE

Get online access to 5,000+ Books and Videos

Safari

Books Online

FREE TRIAL—GET STARTED TODAY!
www.informit.com/safaritrial

Find trusted answers, fast

Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques

In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

. ! sas () WILEY

www.informit.com/safaritrial

FREE Online
Edition

Your purchase of Windows 7 Device Driver includes access to a free online edition for
45 days through the Safari Books Online subscription service. Nearly every
Addison-Wesley Professional book is available online through Safari Books Online,
along with more than 5,000 other technical books and videos from publishers such as
Cisco Press, Exam Cram, IBM Press, O'Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code:

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition, Sa fa rl
please e-mail customer-service@safaribooksonline.com N

Books Online

S -+ sas (R WILEY

www.informit.com/safarifree

	Contents
	Preface
	Introduction
	Chapter 1 Objects
	1.1 Nature of an Object
	1.2 What Is a Software Object?
	1.3 Gaining an Understanding
	1.4 Software Components

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

