

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

AirPort, App Store, Apple, the Apple logo, Aqua, Bonjour, the Bonjour logo, Cocoa, Cocoa
Touch, Cover Flow, Dashcode, Finder, FireWire, iMac, Instruments, Interface Builder, iPhone,
iPod, iPod touch, iTunes, the iTunes Logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch,
Objective-C, Quartz, QuickTime, QuickTime logo, Safari, Snow Leopard, Spotlight, and Xcode
are trademarks of Apple, Inc., registered in the U.S. and other countries. OpenGL® or
OpenGL Logo®: OpenGL is a registered trademark of Silicon Graphics, Inc. The YouTube logo
is a trademark of Google, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in
the United States and other countries.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Sadun, Erica.

The iPhone developer’s cookbook : building applications with the iPhone 3.0 SDK / Erica
Sadun. — 2nd ed.

p. cm.

Includes index.

ISBN 978-0-321-65957-6 (pbk. : alk. paper) 1. iPhone (Smartphone)—Programming. 2.
Computer software—Development. 3. Mobile computing. I. Title.

QA76.8.I64S33 2010

004.167—dc22

2009042382

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-65957-6
ISBN-10: 0-321-65957-0

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,
Michigan.

First printing December 2009

Editor-in-Chief
Karen Gettman

Senior Acquisitions
Editor
Chuck Toporek

Senior Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Geneil Breeze

Senior Indexer
Cheryl Lenser

Proofreader
Sheri Cain

Technical Reviewers
Joachim Bean,
Aaron Basil,
Tim Isted,
Mr. X,
Tim Burks,
Daniel Pasco,
Alex C. Schaefer,
John Muchow
(3 Sixty Software,
LLC Founder,
iPhoneDeveloper-
Tips.com),
Roberto Gamboni

Editorial Assistant
Romny French

Cover Designer
Gary Adair

Composition
Jake McFarland

Preface

F ew platforms match the iPhone’s unique developer technologies.The iPhone com-
bines OS X-based mobile computing with an innovative multitouch screen, location
awareness, an onboard accelerometer, and more.When Apple first introduced the

iPhone SDK beta in March 2008, developers responded in droves, bringing Apple’s
servers to its knees. In less than a week, developers downloaded the iPhone SDK more
than 100,000 times.

Since then, more than 50,000 applications have been delivered to the App Store for an
audience that now exceeds 30 million iPhones and more than 20 million iPod touches.As
the iPhone ecosystem continues to grow, The iPhone Developer’s Cookbook will continue to
evolve as an accessible resource for those new to iPhone programming.

What’s New in This Edition?
If you purchased the first edition of this book, you might ask yourself, Why do I need to
buy the new edition, too? The answer is pretty simple: Just compare the size of the two
books.This new edition is more than 200% larger than the original edition.That’s right,
we’ve packed on almost 500 pages of new material so we could cover everything that’s
new to the iPhone 3.0 SDK, as well as expand on some of the topics covered in the first
edition.

Some things you’ll find new to this edition include chapters or coverage on

■ How to use Xcode and Interface Builder

■ An Objective-C jump-start tutorial

■ Core Data for the iPhone

■ MapKit and Core Location

■ Using GameKit beyond games to add chat and Bonjour networking

■ Advanced motion detection including shake-to-undo support

■ The new search display controller class, along with custom table headers and
footers

■ Apple’s new device capabilities specifications

■ In-App purchasing with StoreKit

■ Push notification, both from the client and server side

■ Searching for and playing media from the onboard iPod library

xx Preface

■ Video capture and editing, plus the new AV audio player and recorder classes

■ How to leverage the Accessibility framework, including VoiceOver, in your app

■ And much, much more!

You’ll also notice that we’ve taken your feedback to heart.When the first edition came
out, there was some confusion about who the target audience was for this book.Was it
for new developers or experienced developers? Well, we’ve taken care of that, too.While
this book is for experienced iPhone and Mac developers already familiar with
Objective-C, Xcode, and the Cocoa frameworks, this new edition includes an
“Objective-C Boot Camp” (see Chapter 3), and coverage of Xcode and Interface
Builder, to help developers who have experience working in other languages (or on
other platforms) quickly get oriented into the Mac/iPhone world.

While it is true that one book can’t be everything to everyone, we’re certainly giving
it a shot in this new edition.We hope you like the changes you see throughout this big-
ger book, and if you do, be sure to post a review on Amazon or send me a note
(erica@ericasadun.com).

Audience for This Book
This book is written for experienced developers who want to build apps for the iPhone
and iPod touch.You should already be familiar with Objective-C, the Cocoa frame-
works, and the Xcode Tools.That said, if you’re new to the platform, this new edition of
The iPhone Developer’s Cookbook includes a quick-and-dirty introduction to Objective-C,
along with an intro to the Xcode Tools, to help you quickly get up to speed.

New to the Mac or iPhone?
If you have some C experience, or have spent some time with another object-oriented lan-
guage such as C++ or Java, we included a section in this Preface to help guide you down
the road to being a Mac developer. Be sure to read the section “Your Roadmap to
Mac/iPhone Development,” later in this Preface.

Although each programmer brings different goals and experiences to the table, most
iPhone developers end up solving similar tasks in their development work:

■ “How do I build a table?”

■ “How do I create a secure Keychain entry?”

■ “How do I search the Address Book?”

■ “How do I move between views?”

■ “How do I use Core Location and the iPhone 3GS’s magnetometer?”

And so on. If you’ve asked yourself these questions, then this book is for you. Complete
with clear, fully documented examples, The iPhone Developer’s Cookbook will get you up

xxiWhat You’ll Need

to speed and working with the iPhone SDK in no time. Best of all, all of the code
recipes in the book have been tested—and put to the test in real-world applications—
offering you ready-to-use solutions for the apps you’re building today.

What You’ll Need
It goes without saying that, if you’re planning to build apps for the iPhone or iPod
touch, you’re going to need at least one of those devices to test out your application.The
following list covers the basics of what you need to begin programming for the iPhone
or iPod touch:

■ Apple’s iPhone SDK—The latest version of the iPhone SDK can be down-
loaded from Apple’s iPhone Dev Center (http://developer.apple.com/iphone).You
must join Apple’s (free) developer program before you download; however, if you
plan to sell apps through the App Store, you will need to become a paid iPhone
developer, which costs $99/year for individuals and $299/year for enterprise (i.e.,
corporate) developers. Registered developers receive certificates that allow them to
“sign” and download their applications to their iPhone/iPod touch for testing and
debugging.

University/Student Discounts
Apple also offers a University program for students and educators. If you are a CS student
taking classes at the university level, check with your professor to see if your school is
part of the University Program. For more information about the iPhone Developer University
Program, see http://developer.apple.com/support/iphone/university.

■ An Intel-based Mac running Mac OS X Leopard or Snow Leopard—
Snow Leopard is recommended, as it offers access to Xcode 3.2 with its many new
features like “Build and Analyze.”You need plenty of disk space for development,
and your Mac should have at least 1GB RAM, preferably 2GB or 4GB to help
speed up compile time.

■ An iPhone or iPod touch—Although the iPhone SDK and Xcode include a
simulator for you to test your applications in, you really do need to have an actual
iPhone and/or iPod touch if you’re going to develop for the platform.You can use
the USB cable to tether your unit to the computer and install the software you’ve
built. For real-life App Store deployment, it helps to have several units on-hand,
representing the various hardware generations, so you can test on the same plat-
forms your target audience will use.

■ At least one available USB 2.0 port—This enables you to tether a develop-
ment iPhone or iPod touch to your computer for file transfer and testing.

■ An Internet connection—This connection enables you to test your programs
with a live Wi-Fi connection as well as with an EDGE or 3G service.

http://developer.apple.com/iphone
http://developer.apple.com/support/iphone/university

xxii Preface

1 See http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/OOP_ObjC/

OOP_ObjC.pdf.

■ Familiarity with Objective-C—To program for the iPhone, you need to know
Objective-C 2.0.The language is based on ANSI C with object-oriented exten-
sions, which means you also need to know a bit of C, too. If you have pro-
grammed with Java or C++ and are familiar with C, making the move to
Objective-C is pretty easy. Chapter 3,“Objective-C Boot Camp,” helps you get up
to speed.

Note
Although the SDK supports development for the iPhone and iPod touch, as well as possible
yet-to-be-announced platforms, this book refers to the target platform as iPhone for the
sake of simplicity. When developing for the iPod touch, most of the examples in this book
are applicable; however, certain features such as telephony and onboard speakers are not
applicable to the iPod touch.

Your Roadmap to Mac/iPhone Development
As mentioned earlier, one book can’t be everything to everyone.And try as I might, if
we were to pack everything you’d need to know into this book, you wouldn’t be able to
pick it up.There is, indeed, a lot you need to know to develop for the Mac and iPhone
platforms. If you are just starting out and don’t have any programming experience, your
first course of action should be to take a college-level course in the C programming lan-
guage.While the alphabet might start with the letter A, the root of most programming
languages, and certainly your path as a developer, is C.

Once you know C and how to work with a compiler (something you’ll learn in that
basic C course), the rest should be easy. From there, you’ll hop right on to Objective-C
and learn how to program with that alongside the Cocoa frameworks.To help you along
the way, I’ve put together the flowchart shown in Figure P-1 to point you at some
books of interest.

Once you know C, you’ve got a few options for learning how to program with
Objective-C. For a quick-and-dirty overview of Objective-C, you can turn to Chapter 3
of this book and read the Objective-C Boot Camp. However, if you want a more in-
depth view of the language, you can either read Apple’s own documentation, Object-
Oriented Programming with Objective-C 2.0,1 or you can opt to buy a book such as
Stephen Kochan’s Programming in Objective-C 2.0 (Addison-Wesley, 2009).

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf

xxiiiYour Roadmap to Mac/iPhone Development

College-level
course on C

Do You Know
“Objective-C”?

Familiar with
Cocoa and Xcode?

No Yes

No Yes

No Yes

Do You Know
C?

Figure P-1 What it takes to be an iPhone programmer.

xxiv Preface

2 See the Cocoa Fundamentals Guide (http://developer.apple.com/mac/library/documentation/

Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf) for a head start on Cocoa, and

for Xcode, see A Tour of Xcode (http://developer.apple.com/mac/library/documentation/

DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf).

3 Big Nerd Ranch: http://www.bignerdranch.com.

With the language behind you, next up is tackling Cocoa and the developer tools,
otherwise known as Xcode. For that, you have a few different options.Again, you can
refer to Apple’s own documentation on Cocoa and Xcode,2 or if you prefer books, you
can learn from the best.Aaron Hillegass, founder of the Big Nerd Ranch in Atlanta,3 is
the author of Cocoa Programming for Mac OS X, now in its third edition.Aaron’s book is
highly regarded in Mac developer circles and is the most-recommended book you’ll see
on the cocoa-dev mailing list.To learn more about Xcode, look no further than Fritz
Anderson’s Xcode 3 Unleashed from Sams Publishing.While the current edition doesn’t
cover iPhone-specific features of Xcode (which were introduced with Xcode 3.1), the
book will give you a solid grounding in how to use Xcode as your development
environment.

Note
There are plenty of other books from other publishers on the market, including the best-
selling Beginning iPhone 3 Development, by Dave Marks and Jeff LaMarche (Apress, 2009),
so don’t just limit yourself to one book or publisher.

To truly master Mac development, you need to look at a variety of sources: books, blogs,
mailing lists,Apple’s own documentation, and, best of all, conferences. If you get the
chance to attend WWDC or C4, you’ll know what I’m talking about.The time you
spend at those conferences talking with other developers and in the case of WWDC,
talking with Apple’s engineers, is well worth the expense if you are a serious developer.

How This Book Is Organized
This book offers single-task recipes for the most common issues new iPhone developers
face: laying out interface elements, responding to users, accessing local data sources, and
connecting to the Internet. Each chapter groups related tasks together, allowing you to
jump directly to the solution you’re looking for without having to decide which class or
framework best matches that problem.

The iPhone Developer’s Cookbook offers you “cut-and-paste convenience,” which means
you can freely reuse the source code from recipes in this book for your own applications
and then tweak the code to suit your app’s needs.

http://www.bignerdranch.com
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf

xxvHow This Book Is Organized

Here’s a rundown of what you find in this book’s chapters:

■ Chapter 1, “Introducing the iPhone SDK”—Chapter 1 introduces the
iPhone SDK and explores the iPhone as a delivery platform, limitations and all. It
explains the breakdown of the standard iPhone application and helps you get start-
ed with the iPhone Developer Portal.

■ Chapter 2, “Building Your First Project”—Chapter 2 covers the basics for
building your first Hello World-style applications. It introduces Xcode and Interface
Builder, showing how you can use these tools in your projects.You read about basic
debugging tools, walk through using them, and pick up some tips about handy
compiler directives.You’ll also discover how to create provisioning profiles and use
them to deploy your application to your device, to beta testers, and to App Store.

■ Chapter 3, “Objective-C Boot Camp”—If you’re new to Objective-C as well as
to the iPhone, you’ll appreciate this basic skills chapter. Objective-C is the standard
programming language for both the iPhone and for Mac OS X. It offers a powerful
object-oriented language that lets you build applications that leverage Apple’s Cocoa
and Cocoa Touch frameworks. Chapter 3 introduces the language, provides an
overview of its object-oriented features, discusses memory management skills, and
adds a common class overview to get you started with Objective-C programming.

■ Chapter 4, “Designing Interfaces”—Chapter 4 introduces the iPhone’s library
of visual classes. It surveys these classes and their geometry. In this chapter, you
learn how to work with these visual classes and discover how to handle tasks like
device reorientation.You’ll read about solutions for laying out and customizing
interfaces and learn about hybrid solutions that rely both on Interface Builder-cre-
ated interfaces and Objective-C-centered ones.

■ Chapter 5, “Working with View Controllers”—The iPhone paradigm in a
nutshell is this: small screen, big virtual worlds. In Chapter 5, you discover the vari-
ous view controller classes that enable you to enlarge and order the virtual spaces
your users interact with.You learn how to let these powerful objects perform all
the heavy lifting when navigating between iPhone application screens.

■ Chapter 6, “Assembling Views and Animations”—Chapter 6 introduces
iPhone views, objects that live on your screen.You see how to lay out, create, and
order your views to create backbones for your iPhone applications.You read about
view hierarchies, geometries, and animations, features that bring your iPhone
applications to life.

■ Chapter 7, “Working with Images”—Chapter 7 introduces images, specifically
the UIImage class, and teaches you all the basic know-how you need for working
with iPhone images.You learn how to load, store, and modify image data in your
applications.You see how to add images to views and how to convert views into
images.And you discover how to process image data to create special effects, how

xxvi Preface

to access images on a byte-by-byte basis, and how to take photos with your
iPhone’s built-in camera.

■ Chapter 8, “Gestures and Touches”—On the iPhone, the touch provides the
most important way that users communicate their intent to an application.Touches
are not limited to button presses and keyboard interaction. Chapter 8 introduces
direct manipulation interfaces, multitouch, and more.You see how to create views
that users can drag around the screen and read about distinguishing and interpret-
ing gestures.

■ Chapter 9, “Building and Using Controls”—Control classes provide the basis
for many of the iPhone’s interactive elements, including buttons, text fields, sliders,
and switches.This chapter introduces controls and their use.You read about stan-
dard control interactions and how to customize these objects for your application’s
specific needs.You even learn how to build your own controls from the ground
up, as Chapter 9 creates a custom touch wheel.

■ Chapter 10, “Alerting Users”—The iPhone offers many ways to provide users
with a heads-up, from pop-up dialogs and progress bars to audio pings and status
bar updates. Chapter 10 shows how to build these indications into your applica-
tions and expand your user-alert vocabulary. It introduces standard ways of work-
ing with these pop-up classes and offers solutions that allow you to craft more lin-
ear programs without explicit callbacks.

■ Chapter 11, “Creating and Managing Table Views”—Tables provide a scroll-
ing interaction class that works particularly well on a small, cramped device. Many,
if not most, apps that ship with the iPhone and iPod touch center on tables,
including Settings,YouTube, Stocks, and Weather. Chapter 11 shows how iPhone
tables work, what kinds of tables are available to you as a developer, and how you
can use table features in your own programs.

■ Chapter 12, “Making Connections with GameKit and Bonjour”—
GameKit is Apple’s new ad hoc networking solution for peer-to-peer connectivity.
It’s built on a technology called Bonjour that offers simple, no-configuration com-
munications between devices. Chapter 12 introduces GameKit, allowing you to
build games and utilities that move information back and forth between iPhones
or between an iPhone and a desktop system.This chapter covers standard
GameKit, introduces GameKit Voice for walkie-talkie-style voice chats, and offers
some basic Bonjour programming that extends beyond GameKit limitations,
allowing you to expand your iPhone communications to the desktop.

■ Chapter 13, “Networking”—As an Internet-connected device, the iPhone is
particularly suited to subscribing to Web-based services.Apple has lavished the
platform with a solid grounding in all kinds of network computing services and
their supporting technologies. Chapter 13 surveys common techniques for net-
work computing and offering recipes that simplify day-to-day tasks.You read about

xxviiHow This Book Is Organized

network reachability, synchronous and asynchronous downloads, working with the
iPhone’s secure keychain to meet authentication challenges, and more.

■ Chapter 14, “Device Capabilities”—Each iPhone device represents a meld of
unique, shared, momentary, and persistent properties.These properties include the
device’s current physical orientation, its model name, battery state, and access to
onboard hardware. Chapter 14 looks at the device from its build configuration to
its active onboard sensors. It provides recipes that return a variety of information
items about the unit in use.You read about testing for hardware prerequisites at
runtime and specifying those prerequisites in the application’s Info.plist file.You
discover how to solicit sensor feedback and subscribe to notifications to create
callbacks when those sensor states change.This chapter covers the hardware, file
system, and sensors available on the iPhone device and helps you programmatically
take advantage of those features.

■ Chapter 15, “Audio,Video, and MediaKit”—The iPhone is a media master;
its built-in iPod features expertly handle both audio and video.The iPhone SDK
exposes that functionality to developers.A rich suite of classes simplifies media
handling via playback, search, and recording. Chapter 15 introduces recipes that use
these classes, presenting media to your users and letting your users interact with
that media.You see how to build audio and video players as well as audio and
video recorders.You discover how to browse the iPod library and how to choose
what items to play.

■ Chapter 16, “Push Notifications”—When developers need to communicate
directly with users, push notifications provide the solution.They deliver messages
directly to the iPhone screen via a special Apple service. Push notifications let the
iPhone display an alert, play a custom sound, or update an application badge. In
this way, off-phone services connect with an iPhone-based client, letting them
know about new data or updates. Chapter 16 introduces push notifications. In this
chapter, you learn how push notifications work and dive into the details needed to
create your own push-based system.

■ Chapter 17, “Using Core Location and MapKit”—Core Location infuses the
iPhone with on-demand geopositioning based on a variety of technologies and
sources. MapKit adds interactive in-application mapping allowing users to view
and manipulate annotated maps.With Core Location and MapKit, you can develop
applications that help users meet up with friends, search for local resources, or pro-
vide location-based streams of personal information. Chapter 17 introduces these
location-aware frameworks and shows you how you can integrate them into your
iPhone applications.

■ Chapter 18, “Connecting to the Address Book”—The iPhone’s Address
Book frameworks allow you to programmatically access and manage the contacts
database. Chapter 18 introduces the Address Book and demonstrates how to use its
frameworks in your applications.You read about accessing information on a con-
tact-by-contact basis, how to modify and update contact information, and how to

xxviii Preface

use predicates to find just the contact you’re interested in.This chapter also covers
the GUI classes that provide interactive solutions for picking, viewing, and modify-
ing contacts.

■ Chapter 19, “A Taste of Core Data”—Core Data offers managed data stores
that can be queried and updated from your application. It provides a Cocoa
Touch-based object interface that brings relational data management out from
SQL queries and into the Objective-C world of iPhone development. Chapter 19
introduces Core Data. It provides just enough recipes to give you a taste of the
technology, offering a jumping off point for further Core Data learning.You learn
how to design managed database stores, add and delete data, and query that data
from your code.

■ Chapter 20, “StoreKit: In-App Purchasing”—New to the 3.0 SDK, StoreKit
offers in-app purchasing that integrates into your software.This chapter introduces
StoreKit and shows you how to use the StoreKit API to create purchasing options
for users. In this chapter, you read about getting started with StoreKit.You learn
how set up products at iTunes Connect and localize their descriptions.And you
see what it takes to create test users and how to work your way through various
development/deployment hurdles.This chapter teaches you how to solicit purchase
requests from users and how to hand over those requests to the store for payment.
This chapter covers the entire StoreKit picture, from product creation to sales.

■ Chapter 21, “Accessibility and Other iPhone OS Services”—Applications
interact with standard iPhone services in a variety of ways.This chapter explores
some of these approaches.Applications can define their interfaces to the iPhone’s
VoiceOver accessibility handler, creating descriptions of their GUI elements.They
can create bundles to work with the built-in Settings applications so that users can
access applications defaults using that interface.Applications can also declare public
URL schemes allowing other iPhone applications to contact them and request
services that they themselves offer.This chapter explores application service inter-
action. It shows you how you implement these features in your applications.You
see how to build these service bridges through code, through Interface Builder,
and through supporting files.

■ Appendix A, “Info.plist Keys”—This appendix gathers together many of the
keys available for the iPhone’s Info.plist file, the file that describes an application to
the iPhone operating system.

About the Sample Code
For the sake of pedagogy, this book’s sample code usually presents itself in a single
main.m file.This is not how people normally develop iPhone or Cocoa applications, or
should be developing them, but it provides a great way of presenting a single big idea. It’s
hard to tell a story when readers must look through 5 or 7 or 9 individual files at once.

xxixAbout the Sample Code

Offering a single file concentrates that story, allowing access to that idea in a single
chunk.

These samples are not intended as stand-alone applications.They are there to demon-
strate a single recipe and a single idea. One main.m file with a central presentation
reveals the implementation story in one place. Readers can study these concentrated
ideas and transfer them into normal application structures, using the standard file struc-
ture and layout.The presentation in this book does not produce code in a standard day-
to-day best practices approach. Instead, it reflects a pedagogical approach that offers con-
cise solutions that you can incorporate back into your work as needed.

Contrast that to Apple’s standard sample code, where you must comb through many
files to build up a mental model of the concepts that are on offer.Those samples are built
as full applications, often doing tasks that are related to but not essential to what you
need to solve. Finding just those relevant portions is a lot of work.The effort may out-
weigh any gains. In this book, there are two exceptions to this one-file rule:

■ First, application-creation walkthroughs use the full file structure created by Xcode
to mirror the reality of what you’d expect to build on your own.The walk-
through folders may therefore contain a dozen or more files at once.

■ Second, standard class and header files are provided when the class itself is the
recipe or provides a precooked utility class. Instead of highlighting a technique,
some recipes offer these precooked class implementations and categories (that is,
extensions to a preexisting class rather than a new class). For those recipes, look for
separate .m and .h files in addition to the skeletal main.m that encapsulates the rest
of the story.

For the most part, the samples for this book use a single application identifier,
com.sadun.helloworld.You need to replace this identifier with one that matches your
provision profile.This book uses one identifier to avoid clogging up your iPhone with
dozens of samples at once. Each sample replaces the previous one, ensuring that
SpringBoard remains relatively uncluttered. If you want to install several samples at once,
simply edit the identifier, adding a unique suffix, such as com.sadun.helloworld.table-
edits.

Getting the Sample Code
The source code for this book can be found at the open source GitHub hosting site at
http://github.com/erica/iphone-3.0-cookbook-/tree.There, you find a chapter-by-
chapter collection of source code that provides working examples of the material cov-
ered in this book.

Sample code is never a fixed target. It continues to evolve as Apple updates its SDK
and the Cocoa Touch libraries. Get involved.You can pitch in by suggesting bug fixes
and corrections as well as by expanding the code that’s on offer. GitHub allows you to
fork repositories and grow them with your own tweaks and features, and share those
back to the main repository. If you come up with a new idea or approach, let us know.

http://github.com/erica/iphone-3.0-cookbook-/tree

xxx Preface

We’d be happy to include great suggestions both at the repository and in the next edi-
tion of this Cookbook.

Getting Git
You can download this Cookbook’s source code using the git version control system.A
Mac OS X implementation of git is available at http://code.google.com/p/git-osx-
installer. Mac OS X git implementations include both command line and GUI solutions,
so hunt around for the version that best suits your development needs.

Getting GitHub
GitHub (http://github.com) is the largest git hosting site, with more than 150,000 pub-
lic repositories. It provides both free hosting for public projects and paid options for pri-
vate projects.With a custom Web interface that includes wiki hosting, issue tracking, and
an emphasis on social networking of project developers, it’s a great place to find new
code or collaborate on existing libraries.You can sign up for a free account at their Web
site, allowing you to copy and modify the Cookbook repository or create your own
open source iPhone projects to share with others.

Contacting the Author
If you have any comments or questions about this book, please drop me an e-mail mes-
sage at erica@ericasadun.com, or stop by www.ericasadun.com for updates about the
book and news for iPhone developers. Please feel free to visit, download software, read
documentation, and leave your comments.

www.ericasadun.com
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://github.com

16
Push Notifications

When developers need to communicate directly with users, push notifications
provide the solution.They deliver messages directly to the iPhone screen via a
special Apple service. Push notifications let the iPhone display an alert, play a

custom sound, or update an application badge. In this way, off-phone services connect
with an iPhone-based client, letting them know about new data or updates. Unlike most
other iPhone development arenas, nearly all the push story takes place off the phone.
Developers must create Web-based services to manage and deploy these updates. In this
chapter, you learn how push notifications work and dive into the details needed to cre-
ate your own push-based system.

Introducing Push Notifications
Push notifications, also called remote notifications, refer to a kind of message sent to iPhones
by an outside service.These push-based services work with any kind of application that
normally checks for information updates. For example, a service might poll for new
direct messages on Twitter or respond to sensors for in-home security systems.When new
information becomes available for a client, the service pushes that update through Apple’s
remote notification system.The notification transmits directly to the phone, which has
registered to receive those updates.

The key to push is that these messages originate from outside the device itself.They
are part of a client-server paradigm that lets Web-based server components communicate
with iPhone clients through an Apple-supplied service.With push, developers can send
nearly instant updates to iPhones that don’t rely on users launching a particular applica-
tion. Instead, processing occurs on the server side of things.When push messages arrive,
the iPhone client can respond by displaying a badge, playing a sound, and/or showing an
alert box.

According to Apple, battery life is the single biggest reason for endorsing push notifi-
cation.When many applications run at once via background processes, these processes can
put an undue burden on a device battery, shortening the amount of time available before
a recharge is needed.With push, applications can learn about new updates even when

656 Chapter 16 Push Notifications

they’re not running.This lets Apple enforce its strict one-third-party-application-at-a-
time policy while at the same time allowing users to receive notifications that are tied to
application state changes.

Moving application logic to a server also limits the client-side complexity. Offsite pro-
cessing provides energy savings for iPhone-based applications.They can now rely on push
rather than using the iPhone’s local CPU resources to monitor and react to important
information changes.

Push’s reason for being is not only tied into local resources. It also offers a valuable
solution for communicating with Web-based services that goes beyond poll-and-update
applications. For example, push might allow you to hook into a recommendation service
that produces restaurant suggestions even when an application isn’t running or to a calen-
dar service that sends you reminder notices about an upcoming appointment. So don’t
think about push solely as a battery saver.Also think about it as a conduit for Web services
as well.

From social networking to monitoring RSS feeds, push lets iPhone users keep on top
of asynchronous data feeds. It offers a powerful solution for connecting iPhone clients to
Web-based systems of all kinds.With push, the services you write can connect to your
installed iPhone base and communicate updates in a clean, functional manner.

How Push Works
Push notifications aren’t just a general way to talk directly to iPhones at will.They are
tied to specific applications and require several security checks.A push server can only
communicate with those iPhones that are running its application, that are online, and that
have opted to receive remote messages. Users have the ultimate say in push updates.They
can allow or disallow that kind of communication, and a well-written application lets
users opt-in and opt-out of the service at will.

The chain of communication between server and client works like this. Push providers
deliver message requests through a central Apple server and via that server to their iPhone
clients. In normal use, the server triggers on some event (like new mail or an upcoming
appointment) and generates notification data aimed at a specific iPhone device. It sends
this message request to the Apple Push Notification Service (APNS).This notification
uses JSON formatting and is limited to 256 bytes each, so the information that can be
pushed through on that message is quite limited.This formatting and size ensures that
APNS limits bandwidth to the tightest possible configuration.

APNS offers a centralized system that negotiates communication with iPhones in the
real world. It passes the message through to the designated iPhone.A handler on the
iPhone decides how to process the message.As Figure 16-1 shows, push providers talk to
APNS, sending their message requests, and APNS talks to phones, relaying those messages
to handlers on the unit.

657Introducing Push Notifications

Push Provider iPhoneAPNS

Figure 16-1 Providers send messages through Apple’s centralized
push notification service to communicate with an iPhone.

Push Provider

Push Provider

Push Provider

iPhone

iPhone

iPhone

iPhone

iPhone

APNS

Figure 16-2 Apple’s Push Notification Service offers many
gateways on its provider-facing side, allowing multiple providers
to connect in parallel. Each push provider may connect to any

number of iPhone devices.

Multiple Provider Support
APNS was built to support multiple provider connections, allowing many services to
communicate with it at once. It offers multiple gateways into the service so that each
push service does not have to wait for availability before sending its message. Figure 16-2
illustrates the many-to-many relationship between providers and iPhones.APNS allows
providers to connect at once through multiple gateways. Each provider can push messages
to many different iPhones.

658 Chapter 16 Push Notifications

Security
Security is a primary component of remote notifications.The push provider must sign up
for a secure sockets layer certificate for each application it works with. Services cannot
communicate with APNS unless they authenticate themselves with this certificate.They
must also provide a unique key called a token that identifies both the phone to message
and the application to notify.

After receiving an authenticated message and device token,APNS contacts the phone
in question. Each iPhone or member of the iPhone family such as the iPod touch must
be online in some way to receive a notification.They can be connected to a cellular data
network or to a Wi-Fi hotspot.APNS establishes a connection with the device and relays
the notification request. If the device is offline and the APNS server cannot make a con-
nection, the notification is queued for later delivery.

Upon receiving the request, the iPhone performs a number of checks. Push requests
are ignored when the user disables push updates for a given application; users can do so in
the Settings application on their iPhone.When updates are allowed, and only then, the
iPhone determines whether the client application is currently running. If so, it sends a
message directly to the running application via the application delegate. If not, it performs
some kind of alert, whether displaying text, playing a sound, or updating a badge.

When an alert displays, users typically have the option to close the alert or tap View. If
they choose View, the iPhone launches the application in question and sends it the notifi-
cation message that it would have received while running. If the user taps Close, the noti-
fication gets ignored and the application does not launch.

This pathway, from server to APNS to iPhone to application, forms the core flow of
push notifications. Each stage moves the message along the way.Although the multiple
steps may sound extensive, in real life the notification arrives almost instantaneously. Once
you set up your certificates, identifiers, and connections, the actual delivery of informa-
tion becomes trivial. Nearly all the work lies in first setting up that chain and then in pro-
ducing the information you want to deliver.

Make sure you treat all application certificates and device tokens as sensitive informa-
tion.When storing these items on your server, you must ensure that they are not generally
accessible. Should this information hit the wild, it could be exploited by third parties.This
would likely result in Apple revoking your SSL push certificate.This would disable all
remote notifications for any apps you have sold and might force you to pull the applica-
tion from the store.

Push Limitations
Push notifications are not reliable. In reality, they can be fairly flaky.Apple does not guar-
antee the delivery of each notification or the order in which notifications arrive. Never
send vital information by push. Reserve this feature for helpful notifications that update
the user, but that the user can miss without consequence.

Items in the push delivery queue may be displaced by new notifications.That means
that notifications may have to compete and may get lost along the way.Although Apple’s

659Provisioning Push

feedback service reports failed deliveries (i.e., messages that cannot be properly sent
through the push service, specifically to applications that have been removed from a
device), you cannot retrieve information regarding bumped notifications. From the APN
service point of view, a lost message was still successfully “delivered.”

Provisioning Push
To start push development, you must visit Apple’s iPhone Developer Program portal.This
portal is located at http://developer.apple.com/iphone/manage/overview/index.action.
Sign in with your iPhone developer credentials to gain access to the site. Here at the por-
tal, you can work through the steps needed to create a new application identifier that can
be associated with a push service.

There’s a fair amount of detail involved. Make sure you hit every point.The following
sections walk you through the process.You see how to create a new identifier, generate a
certificate, and request a special provisioning profile so you can build push-enabled appli-
cations.Without a push-enabled profile, your application will not be able to receive
remote notifications.

Generate a New Application Identifier
At the developer portal, click on App IDs.You’ll find this option in the column on the
left side of the Web page.This opens a page that allows you to create new application
identifiers. Each push service is based on a single identifier, which you must create and
then set to allow remote notification.You cannot use a wild-card identifier with push
applications; every push-enabled app demands a unique identifier.

In the App IDs section, click Add ID; this button appears at the top-right of the Web
page. Once clicked, the site opens a new Create App ID page. Enter a name that describes
your new identifier, such as “My First Push Application” and a new bundle identifier.

These IDs typically use reverse domain patterns like com.domainname.appname, such as
com.sadun.firstpushapp.The identifier must be unique and may not conflict with any
other registered application identifier in Apple’s system.The bundle identifier for your
application (set in the Info.plist file) needs to exactly match the last part of this string. If,
for example, the ID in the portal is XYZZYPLUGH.com.sadun.pushapp, then the bun-
dle identifier of your app should be com.sadun.pushapp.

Click Submit to add the new identifier.This adds the app ID irrevocably to Apple’s
system, where it is now registered to you.You return to the App ID page with its list of
identifiers and are now ready to establish that identifier as push compliant.

Note
Apple does not provide any way to remove an application identifier from the program portal
once it has been created.

http://developer.apple.com/iphone/manage/overview/index.action

660 Chapter 16 Push Notifications

Figure 16-3 Create a new certificate request even though you’ve probably
already done so in the past for your developer and distribution certificates.

Generate Your SSL Certificate
On the App ID page, you can see which identifiers work with push and which do not.
The Apple Push Notification column shows whether push has been enabled for each app
ID.The three states for this column are

n Unavailable (gray) for IDs that are no longer available
n Available (yellow) for apps that can be used with push but that haven’t yet been set

up to do so
n Enabled (green) for apps that are ready for push

You’ll find two dots next to each application identifier—one for Development and
another for Production.These options are configured separately. Locate your new app ID,
make sure the yellow Available for Development is shown, and click Configure.This
option appears in the rightmost column.When clicked, the browser opens a new Config-
ure App ID page that permits you to associate your identifier with the push notification
service.

An Enable Push Notification Services check box appears about halfway down the
page. Check this box to start the certificate creation process. Once checked, the two Con-
figure buttons on the right side of the page become enabled. Click that button.A page of
instructions loads, showing you how to proceed. It guides you through creating a secure
certificate that will be used by your server to sign messages it sends to the APNS.

As instructed, launch the Keychain Access application.This application is located on
your Macintosh in the /Applications/Utilities folder. Once launched, choose Keychain
Access > Certificate Assistant > Request a Certificate From a Certificate Authority (see
Figure 16-3).You need to perform this step again even if you’ve already created previous
requests for your developer and distribution certificates.The new request adds information
that uniquely identifies the SSL certificate.

Once the Certificate Assistant opens, enter your e-mail address and add a recognizable
common name such as First Push App.This common name is important. It will come in

661Provisioning Push

Figure 16-4 The Enabled label appears next to application identifiers that
have been approved for push notification. You must create separate SSL cer-

tificates for development and for production.

handy for the future, so choose one that is easy to identify and that describes your project
accurately.The common name lets you distinguish otherwise similar looking keychain
items from each other in the OS X Keychain Access utility.

After specifying a common name, choose Saved to Disk and click Continue.The Cer-
tificate Assistant prompts you to choose a location to save to (the Desktop is handy). Click
Save, wait for the certificate to be generated, and then click Done. Return to your Web
browser and click Continue.You are now ready to submit the certificate-signing request.

Click Choose File and navigate to the request you just generated. Select it and click
Choose. Click Generate to build your new SSL push service certificate.This can take a
minute or two, so be patient and do not close the Web page. Once the certificate has been
generated, click Continue. Download the new certificate by clicking Download Now.
Finally, click Done.You return to the App ID page where a new, green Enabled indicator
should appear next to your app ID (see Figure 16-4).Apple also e-mails you a confirma-
tion that your certificate request was approved.

Note
Should you ever need to download your SSL certificate again, click Configure to return to the
Configure App ID page. There, you can click Download to request another copy.

If you plan to run your Push Server from your Macintosh, add the new certificate to your
keychain by double-clicking the downloaded .cer file. It will be added to your login key-
chain and appear in your Certificates. Figure 16-5 shows that you can identify the certifi-
cate by clicking the small triangle next to it to reveal the common name you used when
creating the certificate request.

Push-Specific Provisions
You cannot use wild-card provisions for push-enabled applications. Instead, you must cre-
ate a single provision for just that application.This means that if you intend to create
development, ad hoc, and distribution versions of your app, you must request three new
mobile provision files in addition to whatever provisions you have already created for
other work.

Go to the Provisioning section of the developer portal and choose whether to create a
Development or Distribution profile by clicking the appropriate tab. Click Add Profile to
begin creating your new provision.A Create iPhone Provisioning Profile page opens,
whether for development or distribution.

n Development Provision—For development, enter a profile name such as “My
First Push App Development.” Check the certificate you will be using and choose

662 Chapter 16 Push Notifications

Figure 16-5 Identify which Push Service SSL certificate you are dealing
with by clicking the down arrow. This reveals the common name used to gen-

erate the original certificate request.

your application identifier from the pop-up list. Select the devices you will be using
and click Submit.

n Distribution Provision—For distribution, select App Store or Ad Hoc. Enter a
name for your new provision such as “My First Push App Distribution” or “My
First Push App Ad Hoc.” Choose your application identifier from the pop-up list.
For Ad Hoc distribution only, select the devices to include in your provision. Click
Submit to finish.

It may take a minute or two for your profile to generate.Wait a short while and reload
the page.The provision status should change from Pending to Active. Download your
new provision and add it to Xcode by dragging it onto the Xcode application icon.

Registering Your Application
Signing an application with a push-compatible mobile provision is just the first step to
working with push notifications.The application must request to register itself with the
iPhone’s remote notification system.You do this with a single UIApplication call, as fol-
lows.The application did finish launching delegate method provides a particularly con-
venient place to call this.

[[UIApplication sharedApplication]

registerForRemoteNotificationTypes:types];

663Registering Your Application

This call tells the iPhone OS that your application wants to accept push messages.The
types you pass specify what kinds of alerts your application will receive.The iPhone offers
three types of notifications:

n UIRemoteNotificationTypeBadge—This kind of notification adds a red
badge to your application icon on SpringBoard.

n UIRemoteNotificationTypeSound—Sound notifications let you play
sound files from your application bundle.

n UIRemoteNotificationTypeAlert—This style displays a text alert box
in SpringBoard or any other application with a custom message using the alert
notification.

Choose the types you want to use and or them together.They are bit flags, which com-
bine to tell the notification registration process how you want to proceed. For example,
the following flags allow alerts and badges but not sounds.

types = UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeAlert;

Performing the registration updates user settings.As Figure 16-6 shows, a Notifications
pane gets added to Settings if one has not already been created by another program.Your
application appears as a subpane, offering user control over notification types. Switches
appear only for those notifications that you registered. If your application uses just two
types, then two switches appear in that pane. Figure 16-6 shows an application that has
registered for all three.

To remove your application from active participation in push notifications, send
unregisterForRemoteNotifications.This unregisters your application for all notifica-
tion types and does not take any arguments.

[[UIApplication sharedApplication] unregisterForRemoteNotifications];

Retrieving the Device Token
Your application cannot receive push messages until it generates and delivers a device
token to your server. It must send that device token to the offsite service that pushes the
actual notifications. Recipe 16-1, which follows this section, does not implement server
functionality. It provides only the client software.

A token is tied to one device. In combination with the SSL certificate, it uniquely
identifies the iPhone and can be used to send messages back to the phone in question. Be
aware that device tokens can change after you restore iPhone firmware.

Device tokens are created as a byproduct of registration. Upon receiving a registration
request, the iPhone OS contacts the Apple Push Notification Service. It uses a secure
socket layer (SSL) request. Somewhat obviously, the unit must be connected to the Inter-
net. If it is not, the request will fail.The iPhone forwards the request to APNS and waits
for it to respond with a device token.

APNS builds the device token and returns it to the iPhone OS, which in turn passes it
back to the application via an application delegate callback, namely

application:didRegisterForRemoteNotificationsWithDeviceToken:

664 Chapter 16 Push Notifications

Figure 16-6 Remote notification controls appear for each application that
has registered with the iPhone for push support. These controls are removed

when applications unregister.

Your application must retrieve this token and pass it to the provider component of your
service, where it needs to be stored securely.Anyone who gains access to a device token
and the application’s SSL certificate could spam messages to iPhones.You must treat this
information as sensitive and protect it accordingly.

Note
At times, the token may take time to generate. Consider designing around possible delays
into your application by registering at each application run. Until the token is created and
uploaded to your site, you will not be able to provide remote notifications to your users.

Handling Token Request Errors
At times,APNS is unable to create a token or your device may not be able to
send a request. For example, you cannot generate tokens from the simulator.A
UIApplicationDelegate method application: didFailToRegisterForRemote

➥NotificationsWithError: lets you handle these token request errors. For the most part,
you’ll want to retrieve the error and display it to the user.

// Provide a user explanation for when the registration fails

- (void)application:(UIApplication *)application

didFailToRegisterForRemoteNotificationsWithError:(NSError *)error

{

665Registering Your Application

Push Provider

iPhone

APNS

YES

Application is
running?

Perform notification
(sound, badge, alert)

User taps
action key on

alert

- (void)application:
 (UIApplication *)application
 didReceiveRemoteNotification
 (NSDictionary *)userInfo

NO

Figure 16-7 Visible and audible notification are only presented when the application
is not running. Should the user click on an alert’s action key (normally View), the appli-

cation launches and the payload is sent as a notification to the
UIApplicationDelegate.

UITextView *tv = (UITextView *)[[application keyWindow]

viewWithTag:TEXTVIEWTAG];

NSString *status = [NSString stringWithFormat:

@"%@\nRegistration failed.\n\nError: %@", pushStatus(),

[error localizedDescription]];

tv.text = status;

}

Responding to Notifications
The iPhone uses a set chain of operations (see Figure 16-7) in responding to push notifi-
cations.When an application is running, the notification is sent directly to a
UIApplicationDelegate method, application: didReceiveRemoteNotification:.
The payload, which is sent in JSON format, is converted automatically into an
NSDictionary, and the application is free to use the information in that payload however
it wants.As the application is already running, no further sounds, badges, or alerts are
invoked.

// Handle an actual notification

- (void)application:(UIApplication *)application

didReceiveRemoteNotification:(NSDictionary *)userInfo

{

UITextView *tv = (UITextView *)[[application keyWindow]

666 Chapter 16 Push Notifications

Figure 16-8 Remote alerts can appear in SpringBoard (left) or in third-
party applications (right). Users may Close the alert or, by pressing the action
button on the right, switch to the notifying application. In this case, that appli-
cation is HelloWorld, whose name is clearly seen on the alert. The action but-

ton text is customizable.

viewWithTag:TEXTVIEWTAG];

NSString *status = [NSString stringWithFormat:

@"Notification received:\n%@",[userInfo description]];

tv.text = status;

NSLog(@"%

}

When an application is not running, the iPhone performs all requested notifications that
are allowed by registration and by user settings.These notifications may include playing a
sound, badging the application, and/or displaying an alert. Playing a sound can also trigger
iPhone vibration when a notification is received.

In the case of an alert, all two-buttoned alerts offer a pair of choices.The user can tap
Close (the leftmost button) and close the alert or tap the alert’s action key (the rightmost
button) and launch the app. Upon launching, the application delegate receives the same
remote notification callback that an already-running application would have seen (see
Figure 16-8).Alerts appear on the lock screen when the iPhone is locked.

667Recipe: Push Client Skeleton

Figure 16-9 The Push Client skeleton introduced
in Recipe 16-1 lets users specify which services

they want to register.

Recipe: Push Client Skeleton
Recipe 16-1 introduces a basic client that allows users to register and unregister for push
notifications.The interface (shown in Figure 16-9) uses three switches that control the
services to be registered.When the application launches, it queries the app’s enabled
remote notification types and updates the switches to match.Thereafter, the client keeps
track of registrations and unregistrations, adjusting the switches to keep sync with the real-
ity of the settings.

Two buttons at the top left and right of the interface let users unregister and register their
application.As mentioned earlier in this chapter, unregistering disables all services associ-
ated with the app. It provides a clean sweep. In contrast, registering apps requires flags to
indicate which services are requested.

When requesting new services, the user is always prompted to approve. Figure 16-10
shows the dialog that appears.The user must confirm by explicitly granting the application
permission. If the user does not, by tapping Don’t Allow, the flags remain at their previous
settings.

Unfortunately, the confirmation dialog does not generate a callback when it is dis-
missed, regardless of whether the user agreed or not.To catch this event, you can listen for

668 Chapter 16 Push Notifications

Figure 16-10 Users must explicitly grant
permission for an application to receive

remote notifications.

a general notification (UIApplicationDidBecomeActiveNotification) that gets gener-
ated when the dialog returns control to the application. It’s a hack and is not guaranteed
to work in the long term, but at the time of writing,Apple has not provided any other
way to know when the user responded and how the user responded. In Recipe 16-1, the
confirmationWasHidden: method catches this notification and updates the switches to
match any new registration settings.

Note
The three sound files included in the online sample project (ping1.caf, ping2.caf, and
ping3.caf) let you test sound notifications with real audio.

Recipe 16-1 Push Client Skeleton

#define TEXTVIEWTAG 11

NSString *pushStatus ()

{

Being something of a skeletal system, this push client doesn’t actually respond to push
notifications beyond showing the contents of the user info payload that gets delivered.
Figure 16-9 illustrates the actual payload that was sent in Figure 16-10.This display is
performed in the application: didReceiveRemoteNotification: method in the
application delegate.

669Recipe: Push Client Skeleton

return [[UIApplication sharedApplication]

enabledRemoteNotificationTypes] ?

@"Remote notifications were active for this application" :

@"Remote notifications were not active for this application";

}

@implementation TestBedController

// Fetch the current switch settings

- (NSUInteger) switchSettings

{

NSUInteger which = 0;

if ([(UISwitch *)[self.view viewWithTag:101] isOn])

which = which | UIRemoteNotificationTypeBadge;

if ([(UISwitch *)[self.view viewWithTag:102] isOn])

which = which | UIRemoteNotificationTypeAlert;

if ([(UISwitch *)[self.view viewWithTag:103] isOn])

which = which | UIRemoteNotificationTypeSound;

return which;

}

// Change the switches to match reality

- (void) updateSwitches

{

NSUInteger rntypes = [[UIApplication sharedApplication]

enabledRemoteNotificationTypes];

[(UISwitch *)[self.view viewWithTag:101] setOn:

(rntypes & UIRemoteNotificationTypeBadge)];

[(UISwitch *)[self.view viewWithTag:102] setOn:

(rntypes & UIRemoteNotificationTypeAlert)];

[(UISwitch *)[self.view viewWithTag:103] setOn:

(rntypes & UIRemoteNotificationTypeSound)];

}

// Little hack work-around to catch the end when the

// confirmation dialog goes away. Apple has given this

// the thumbs up for use after I filed a technical query

- (void) confirmationWasHidden: (NSNotification *) notification

{

[[UIApplication sharedApplication]

registerForRemoteNotificationTypes: [self switchSettings]];

[self updateSwitches];

}

// Register application for the services set out by the switches

- (void) doOn

{

670 Chapter 16 Push Notifications

UITextView *tv = (UITextView *)[self.view viewWithTag:TEXTVIEWTAG];

if (![self switchSettings])

{

tv.text = [NSString stringWithFormat:

@"%@\nNothing to register. Skipping.\n\

(Did you mean to press Unregister instead?)",

pushStatus()];

[self updateSwitches];

return;

}

NSString *status = [NSString stringWithFormat:

@"%@\nAttempting registration", pushStatus()];

tv.text = status;

[[UIApplication sharedApplication]

registerForRemoteNotificationTypes:[self switchSettings]];

}

// Unregister application for all push notifications

- (void) doOff

{

UITextView *tv = (UITextView *)[self.view viewWithTag:TEXTVIEWTAG];

NSString *status = [NSString stringWithFormat:

@"%@\nUnregistering.", pushStatus()];

tv.text = status;

[[UIApplication sharedApplication]

unregisterForRemoteNotifications];

[self updateSwitches];

}

- (void)loadView

{

self.view = [[[NSBundle mainBundle] loadNibNamed:@"view" owner:self

options:NULL] objectAtIndex:0];

self.title = @"Push Client";

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Register",

@selector(doOn);

self.navigationItem.leftBarButtonItem = BARBUTTON(@"Unregister",

@selector(doOff);

[self updateSwitches];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(confirmationWasHidden)

name:@"UIApplicationDidBecomeActiveNotification" object:nil];

}

@end

671Recipe: Push Client Skeleton

@interface SampleAppDelegate : NSObject <UIApplicationDelegate>

@end

@implementation SampleAppDelegate

- (void) showString: (NSString *) aString

{

UITextView *tv = (UITextView *)[[[UIApplication sharedApplication]

keyWindow] viewWithTag:TEXTVIEWTAG];

tv.text = aString;

}

// Retrieve the device token

- (void)application:(UIApplication *)application

didRegisterForRemoteNotificationsWithDeviceToken:

(NSData *)deviceToken

{

NSUInteger rntypes = [[UIApplication sharedApplication]

enabledRemoteNotificationTypes];

NSString *results = [NSString stringWithFormat:

@"Badge: %@, Alert:%@, Sound: %@",

(rntypes & UIRemoteNotificationTypeBadge) ? @"Yes" : @"No",

(rntypes & UIRemoteNotificationTypeAlert) ? @"Yes" : @"No",

(rntypes & UIRemoteNotificationTypeSound) ? @"Yes" : @"No"];

NSString *status = [NSString stringWithFormat:

@"%@\nRegistration succeeded.\n\nDevice Token: %@\n%@",

pushStatus(), deviceToken, results];

[self showString:status];

NSLog(@"deviceToken %@", deviceToken);

}

// Provide a user explanation for when the registration fails

- (void)application:(UIApplication *)application

didFailToRegisterForRemoteNotificationsWithError:

(NSError *)error

{

NSString *status = [NSString stringWithFormat:

@"%@\nRegistration failed.\n\nError: %@", pushStatus(),

[error localizedDescription]];

[self showString:status];

NSLog(@"Error in registration. Error: %@", error);

}

// Handle an actual notification

- (void)application:(UIApplication *)application

didReceiveRemoteNotification:(NSDictionary *)userInfo

672 Chapter 16 Push Notifications

{

NSString *status = [NSString stringWithFormat:

@"Notification received:\n%@",[userInfo description]];

[self showString:status];

CFShow([userInfo description]);

}

// Report the notification payload when launched by alert

- (void) launchNotification: (NSNotification *) notification

{

[self performSelector:@selector(showString)

withObject:[[notification userInfo] description]

afterDelay:1.0f];

}

- (void)applicationDidFinishLaunching:(UIApplication *)application {

UIWindow *window = [[UIWindow alloc]

initWithFrame:[[UIScreen mainScreen] bounds]];

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:[[TestBedController alloc] init]];

[window addSubview:nav.view];

[window makeKeyAndVisible];

// Listen for remote notification launches

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(launchNotification)

name:@"UIApplicationDidFinishLaunchingNotification"

object:nil];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 16 and open the project for this recipe.

Building Notification Payloads
Delivering push notification through APNS requires three things: your SSL certificate, a
device ID, and a custom payload with the notification you want to send.The payload uses
JSON formatting.You’ve already read about generating the certificate and producing the
device identifiers, which you need to pass up to your server. Building the JSON payloads
basically involves transforming a small well-defined dictionary into JSON format.

JSON (JavaScript Object Notation) is a simple data interchange format based on key-
value pairs.The JSON Web site (www.json.org) offers a full syntax breakdown of the for-
mat, which allows you to represent values that are strings, numbers, and arrays.The APNS

www.json.org
http://github.com/erica/iphone-3.0-cookbook-

673Building Notification Payloads

aps

 badge : number

 sound : sound file name string

 alert : string

 alert

 body : string

 action-loc-key : string

Figure 16-11 The aps dictionary may contain
one or more notification types including a badge

request, a sound file, and/or an alert.

payload consists of up to 256 bytes, which must contain your complete notification
information.

Notification payloads must include an aps dictionary.This dictionary defines the prop-
erties that produce the sound, badge, and/or alert sent to the user. In addition, you may
add custom dictionaries with any data you need to send to your application so long as
you stay within the 256 byte limit. Figure 16-11 shows the hierarchy for basic (nonlocal-
ized) alerts.

The aps dictionary contains one or more notification types.These include the standard
types you’ve already read about: badges, sounds, and alerts. Badge and sound notifications
each take one argument.The badge is set by a number, the sound by a string that refers to
a file already inside the application bundle. If that file is not found (or the developer passes
default as the argument), a default sound plays for any notification with a sound request.
When a badge request is not included, the iPhone removes any existing badge from the
application icon.

There are two ways to produce an alert.You can pass a string, which defines the mes-
sage to show.This automatically produces a notification with two buttons under that mes-
sage: Close and View.To customize buttons, pass a dictionary instead. Send the message
text as the body and the string to use for the Action key (normally View) as action-loc-
key.This replaces View with whatever text you specify.

To produce an alert with a single OK button, pass null as the argument to action-
loc-key.This creates a special alert style with one button. Just as when a user taps Close,
the OK style alert will not pass any data directly to your application.The app must poll for
any updates when next opened by the user.

Localized Alerts
When working with localized applications, construct your aps > alert dictionary with
two additional keys. Use loc-key to pass a key that is defined in your application’s Local-
izable.strings file.The iPhone looks up the key and replaces it with the string found for
the current localization.

674 Chapter 16 Push Notifications

Table 16-1 JSON Payload Samples

Sample Type JSON

Hello message, displays with two buttons. {"aps":{"alert":"hello"}}

Hello message, displays with two buttons,
but built using JSON with an alert diction-
ary.

{"aps":{"alert":{"body":"hello"}}}

Hello message with one OK button. {"aps":{"alert":{"action-loc-

key":null,"body":"hello"}}}

Hello message with two buttons, Close
and Open, the latter being a custom
replacement for View.

{"aps":{"alert":{"action-loc-

key":"Open","body":"hello"}}}

Hello message that adds an application
badge of 3.

{"aps":{"badge":3,"alert":{"body":

"hello"}}}

Play a sound without an alert. {"aps":{"sound":"ping2.caf",

"alert":{}}}

Play sound, display badge, display alert,
use a custom button.

{"aps":{"sound":"ping2.caf",

"badge":2,"alert":{"action-loc-

key":"Open","body":"Hello"}}}

Add a custom payload including an array. {"aps":{"alert":{"body":"Hello"}},

"key1":"value1",

"key2":["a","b","c"]}

At times, localization strings use arguments like %@ and %n$@. Should that hold true for
the localization you are using, you can pass those arguments as an array of strings via loc-
args.As a rule,Apple recommends against using complicated localizations as they can
consume a major portion of your 256-byte bandwidth.

Transforming from Dictionary to JSON
Once you’ve designed your dictionary, you must transform it to JSON.The JSON format
is simple but precise. If you can, use an automated library to convert your dictionary to
the JSON string.There are numerous solutions for this for any number of programming
languages, including JavaScript, Perl, and so on. Here’s a quick rundown of JSON basics.
Table 16-1 offers examples of these rules in action.

n The entire payload is a dictionary. Dictionaries consist of key-value pairs stored
between brackets, that is, {key:value, key:value, key:value, ...}.

n Key-value pairs are separated with commas.
n Strings use double quotes; numbers do not. Reserved words include true, false, and

null. Reserved words are not quoted.
n Arrays consist of a list of items between square brackets, that is, [item, item, item,...].

675Building Notification Payloads

n The following symbols must be escaped in strings by using a backslash literal indica-
tor: ' " \ /.

n You may want to remove carriage returns (\r) and new lines (\n) from your pay-
loads when sending messages.

n Spaces are optional. Save space by omitting them between items.
n The aps dictionary appears within the top-level folder, so the most basic payload

looks something like {aps:{}}.

Custom Data
So long as your payload has room left, keeping in mind your tight byte budget, you can
send additional information in the form of key-value pairs.As Table 16-1 showed, these
custom items can include arrays and dictionaries as well as strings, numbers, and constants.
You define how to use and interpret this additional information.The entire payload dic-
tionary is sent to your application so whatever information you pass along will be available
to the application: didReceiveRemoteNotification: method via the user dictionary.

A dictionary containing custom key-value pairs does not need to provide an alert,
although doing so allows your user to choose to open your application if it isn’t running.
If your application is already launched, the key-value pairs arrive as a part of the payload
dictionary.

Receiving Data on Launch
When your client receives a notification, tapping the action key (by default,View)
launches your application.Then after launching, the iPhone sends your application dele-
gate an optional callback.The delegate recovers its notification dictionary by implement-
ing a method named application:didFinishLaunchingWithOptions:. Unfortunately,
this method might not work properly. So here are both the standard ways of retrieving
notification information plus a work-around.

Normally, the iPhone passes the notification dictionary to the delegate method via the
launch options parameter. For remote notifications, this is the official callback to retrieve
data from an alert-box launch.The didReceiveRemoteNotification: method is not
called when the iPhone receives a notification and the application is not running.

This “finished launching” method is actually designed to handle two completely differ-
ent circumstances. First, it handles these notification alert launches, allowing you to
recover the payload dictionary and use the data that was sent. Second, it works with appli-
cation launches from openURL:. If your app has published a URL scheme, and that
scheme is used by another application, the application delegate handles that launch with
this method.

In either case, the method must return a Boolean value.As a rule, return YES if you
were able to process the request or NO if you were not.This value is actually ignored in
the case of remote notification launches, but you must still return a value.

At the time of writing, implementing this method does not work properly.The appli-
cation will hang without displaying a GUI. Fortunately, there’s an easy work-around that

676 Chapter 16 Push Notifications

does not rely on the callback method.You can, instead, listen for a launch notification and
catch the userInfo dictionary that is sent with it.This solution has the advantage of being
reliable and tested. Keep an eye on Apple’s developer forums (http://devforums.apple.
com) to keep track of when this issue gets fixed.

Start by adding your application delegate as a listener via the default
NSNotificationCenter in your normal applicationDidFinishLaunching method.

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(launchNotification)

name:@”UIApplicationDidFinishLaunchingNotification” object:nil];

Then implement the method for the selector you provided. Here, the application waits for
the GUI to finish loading and then displays the user info dictionary, where the remote
notification data has been stored.

- (void) launchNotification: (NSNotification *) notification

{

[self performSelector:@selector(showString) withObject:
[[notification userInfo] description] afterDelay:1.0f];

}

Between the notification listener and the method callback, you can reliably grab the user
data from remote notifications.This work-around should remain viable regardless of when
and how Apple addresses the didFinishLaunchingWithOptions method.

Note
When your user taps Close and later opens your application, the notification is not sent on
launch. You must check in with your server manually to retrieve any new user information.
Applications are not guaranteed to receive alerts. In addition to tapping Close, the alert may
simply get lost. Always design your application so that it doesn’t rely solely on receiving
push notifications to update itself and its data.

Recipe: Sending Notifications
The notification process involves several steps (see Figure 16-12). First, you build your
JSON payload, which you just read about in the previous section. Next, you retrieve the
SSL certificate and the device token for the unit you want to send to. How you store
these is left up to you, but you must remember that these are sensitive pieces of informa-
tion. Open a secure connection to the APNS server. Finally, you handshake with the
server, send the notification package, and close the connection.

This is the most basic way of communicating and assumes you have just one payload to
send. In fact, you can establish a session and send many packets at a time; however, that is
left as an exercise for the reader as is creating services in languages other than Objective-
C.The Apple Developer Forums (devforums.apple.com) host ongoing discussions about
push providers and offer an excellent jumping off point for finding sample code for PHP,
Perl, and other languages.

http://devforums.apple.com
http://devforums.apple.com

677Recipe: Sending Notifications

Build JSON Payload(s)

Retrieve Device Token(s)
and SSL Certificate

Establish connection
with APNS

Handshake, Send
notification package(s)

Figure 16-12 The steps for sending remote
notifications.

Be aware that APNS may react badly to a rapid series of connections that are repeatedly
established and torn down. If you have multiple notifications to send at once, go ahead
and send them during a single session. Otherwise,APNS might confuse your push deliver-
ies with a denial of service attack.

Recipe 16-2 demonstrates how to send a single payload to APNS, showing the steps
needed to implement the fourth and final box in Figure 16-12.The recipe is built around
code developed by Stefan Hafeneger and uses Apple’s ioSock sample source code.

The individual server setups vary greatly depending on your security, databases, organi-
zation, and programming language. Recipe 16-2 demonstrates a minimum of what is
required to implement this functionality and serves as a template for your own server
implementation in whatever form this might take.

Sandbox and Production
Apple provides both sandbox (development) and production (distribution) environments
for push notification.You must create separate SSL certificates for each.The sandbox helps
you develop and test your application before submitting to App Store. It works with a
smaller set of servers and is not meant for large-scale testing.The production system is
reserved for deployed applications that have been accepted to App Store.

n The Sandbox servers are located at gateway.sandbox.push.apple.com, port 2195.
n The Production servers are located at gateway.push.apple.com, port 2195.

Recipe 16-2 Pushing Payloads to the APNS Server

// Adapted from code by Stefan Hafeneger

- (BOOL) push: (NSString *) payload

{

678 Chapter 16 Push Notifications

otSocket socket;

SSLContextRef context;

SecKeychainRef keychain;

SecIdentityRef identity;

SecCertificateRef certificate;

OSStatus result;

// Ensure device token

if (!self.deviceTokenID)

{

printf("Error: Device Token is nil\n");

return NO;

}

// Ensure certificate

if (!self.certificateData)

{

printf("Error: Certificate Data is nil\n");

return NO;

}

// Establish connection to server.

PeerSpec peer;

result = MakeServerConnection("gateway.sandbox.push.apple.com",

2195, &socket, &peer);

if (result)

{

printf("Error creating server connection\n");

return NO;

}

// Create new SSL context.

result = SSLNewContext(false, &context);

if (result)

{

printf("Error creating SSL context\n");

return NO;

}

// Set callback functions for SSL context.

result = SSLSetIOFuncs(context, SocketRead, SocketWrite);

if (result)

{

printf("Error setting SSL context callback functions\n");

return NO;

}

679Recipe: Sending Notifications

// Set SSL context connection.

result = SSLSetConnection(context, socket);

if (result)

{

printf("Error setting the SSL context connection\n");

return NO;

}

// Set server domain name.

result = SSLSetPeerDomainName(context,

"gateway.sandbox.push.apple.com", 30);

if (result)

{

printf("Error setting the server domain name\n");

return NO;

}

// Open keychain.

result = SecKeychainCopyDefault(&keychain);

if (result)

{

printf("Error accessing keychain\n");

return NO;

}

// Create certificate from data

CSSM_DATA data;

data.Data = (uint8 *)[self.certificateData bytes];

data.Length = [self.certificateData length];

result = SecCertificateCreateFromData(&data, CSSM_CERT_X_509v3,

CSSM_CERT_ENCODING_BER, &certificate);

if (result)

{

printf("Error creating certificate from data\n");

return NO;

}

// Create identity.

result = SecIdentityCreateWithCertificate(keychain, certificate,

&identity);

if (result)

{

printf("Error creating identity from certificate\n");

return NO;

}

// Set client certificate.

680 Chapter 16 Push Notifications

CFArrayRef certificates = CFArrayCreate(NULL,

(const void **)&identity, 1, NULL);

result = SSLSetCertificate(context, certificates);

if (result)

{

printf("Error setting the client certificate\n");

return NO;

}

CFRelease(certificates);

// Perform SSL handshake.

do {result = SSLHandshake(context);}

while(result == errSSLWouldBlock);

// Convert string into device token data.

NSMutableData *deviceToken = [NSMutableData data];

unsigned value;

NSScanner *scanner = [NSScanner

scannerWithString:self.deviceTokenID];

while(![scanner isAtEnd]) {

[scanner scanHexInt:&value];

value = htonl(value);

[deviceToken appendBytes:&value length:sizeof(value)];

}

// Create C input variables.

char *deviceTokenBinary = (char *)[deviceToken bytes];

char *payloadBinary = (char *)[payload UTF8String];

size_t payloadLength = strlen(payloadBinary);

// Prepare message

uint8_t command = 0;

char message[293];

char *pointer = message;

uint16_t networkTokenLength = htons(32);

uint16_t networkPayloadLength = htons(payloadLength);

// Compose message.

memcpy(pointer, &command, sizeof(uint8_t));

pointer += sizeof(uint8_t);

memcpy(pointer, &networkTokenLength, sizeof(uint16_t));

pointer += sizeof(uint16_t);

memcpy(pointer, deviceTokenBinary, 32);

pointer += 32;

memcpy(pointer, &networkPayloadLength, sizeof(uint16_t));

681Recipe: Push in Action

pointer += sizeof(uint16_t);

memcpy(pointer, payloadBinary, payloadLength);

pointer += payloadLength;

// Send message over SSL.

size_t processed = 0;

result = SSLWrite(context, &message, (pointer - message),

&processed);

if (result)

{

printf("Error sending message via SSL.\n");

return NO;

}

else

{

printf("Message sent.\n");

return YES;

}

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 16 and open the project for this recipe.

Recipe: Push in Action
Once you set up a client such as the one discussed in Recipe 16-1 and routines like
Recipe 16-2 that let you send notifications, it’s time to think about deploying an actual
service. Recipe 16-3 introduces a Twitter client that repeatedly scans a search.twitter.com
RSS feed and pushes notifications whenever a new tweet is found (see Figure 16-13).

This code is built around the push routine from Recipe 16-2 and the XML parser
from Recipe 13-13.This utility pulls down Twitter search data as an XML tree and finds
the first tree node of the type “entry,” which is how Twitter stores each tweet.

Next, it creates a string by combining the poster name (from the “name” leaf) and the
post contents (from the “title” leaf). It then adds a JSON-escaped version of this string to
the aps > alert dictionary as the message body.The alert sound and one-button style are
fixed in the main aps payload dictionary.

The application runs in a loop with a time delay set by a command-line argument.
Every n seconds (determined by the second command-line argument), it polls, parses, and
checks for a new tweet, and if it finds one, pushes it out through APNS. Figure 16-13
shows this utility in action, displaying a tweet alert on the client iPhone.

http://github.com/erica/iphone-3.0-cookbook-

682 Chapter 16 Push Notifications

Figure 16-13 Twitter provides an ideal way to
test a polled RSS feed.

Recipe 16-3 Wrapping Remote Notifications into a Simple Twitter Utility

#define TWEET_FILE [NSHomeDirectory()\

stringByAppendingPathComponent:@".tweet"]

#define URL_STRING \

@"http://search.twitter.com/search.atom?q=+ericasadun"

#define SHOW_TICK NO

#define CAL_FORMAT @%Y-%m-%dT%H:%M:%SZ"

int main (int argc, const char * argv[]) {

if (argc < 2)

{

printf("Usage: %s delay-in-seconds\n", argv[0]);

exit(-1);

}

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

// Fetch certificate and device information from the current

// directory as set up with pushutil

char wd[256];

getwd(wd);

683Recipe: Push in Action

NSString *cwd = [NSString stringWithCString:wd];

NSArray *contents = [[NSFileManager defaultManager]

directoryContentsAtPath:cwd];

NSArray *dfiles = [contents pathsMatchingExtensions:

[NSArray arrayWithObject:@"devices"]];

if (![dfiles count])

{

printf("Error retrieving device token\n");

exit(-1);

}

NSDictionary *dict = [NSDictionary dictionaryWithContentsOfFile:

[cwd stringByAppendingPathComponent:[dfiles lastObject]]];

if (!dict || ([[dict allKeys] count] < 1))

{

printf("Error retrieving device token\n");

exit(-1);

}

[APNSHelper sharedInstance].deviceTokenID = [dict objectForKey:

[[dict allKeys] objectAtIndex:0]];

NSArray *certs = [contents pathsMatchingExtensions:

[NSArray arrayWithObject:@"cer"]];

if ([certs count] < 1)

{

printf("Error finding SSL certificate\n");

exit(-1);

}

NSString *certPath = [certs lastObject];

NSData *dCert = [NSData dataWithContentsOfFile:certPath];

if (!dCert)

{

printf("Error retrieving SSL certificate\n");

exit(-1);

}

[APNSHelper sharedInstance].certificateData = dCert;

// Set up delay

int delay = atoi(argv[1]);

printf("Initializing with delay of %d\n", delay);

// Set up dictionaries

NSMutableDictionary *mainDict = [NSMutableDictionary dictionary];

NSMutableDictionary *payloadDict =

[NSMutableDictionary dictionary];

NSMutableDictionary *alertDict = [NSMutableDictionary dictionary];

684 Chapter 16 Push Notifications

[mainDict setObject:payloadDict forKey:@"aps"];

[payloadDict setObject:alertDict forKey:@"alert"];

[payloadDict setObject:@"ping1.caf" forKey:@"sound"];

[alertDict setObject:[NSNull null] forKey:@"action-loc-key"];

while (1 > 0)

{

NSAutoreleasePool *wadingpool =

[[NSAutoreleasePool alloc] init];

TreeNode *root = [[XMLParser sharedInstance] parseXMLFromURL:

[NSURL URLWithString:URL_STRING]];

TreeNode *found = [root objectForKey:@"entry"];

if (found)

{

// Recover the string to tweet

NSString *tweetString = [NSString stringWithFormat:

@"%@-%@", [found leafForKey:@"name"],

[found leafForKey:@"title"]];

// Recover pubbed date

NSString *dateString = [found leafForKey:@"published"];

NSCalendarDate *date = [NSCalendarDate dateWithString:

dateString calendarFormat:CAL_FORMAT];

// Recover stored date

NSString *prevDateString = [NSString

stringWithContentsOfFile: TWEET_FILE

encoding:NSUTF8StringEncoding error:nil];

NSCalendarDate *pDate = [NSCalendarDate dateWithString:

prevDateString calendarFormat:CAL_FORMAT];

// Tweet only if there is either no stored date or

// the dates are not equal

if (!pDate || ![pDate isEqualToDate:date])

{

// Update with the new tweet information

NSLog(@"\nNew tweet from %\n \"%@\"\n\n",

[found leafForKey:@"name"],

[found leafForKey:@"title"]);

// Store the tweet time

[dateString writeToFile:TWEET_FILE atomically:YES

encoding:NSUTF8StringEncoding error:nil];

685Feedback Service

// push it

[alertDict setObject:jsonescape(tweetString)

forKey:@"body"];

[[APNSHelper sharedInstance] push: [JSONHelper

jsonWithDict:mainDict]];

}

}

root = nil;

found = nil;

[wadingpool drain];

[NSThread sleepForTimeInterval:(double) delay];

if (SHOW_TICK) printf("tick\n");

}

[pool drain];

return 0;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 16 and open the project for this recipe.

Feedback Service
Apps don’t live forever. Users add, remove, and replace applications on their iPhones all
the time. From an APNS point of view, it’s pointless to deliver notifications to iPhones
that no longer host your application.As a push provider, it’s your duty to remove inactive
device tokens from your active support list.As Apple puts it,“APNS monitors providers
for their diligence in checking the feedback service and refraining from sending push
notifications to nonexistent applications on devices.” Big Brother is watching.

Apple provides a simple way to manage inactive device tokens.When users uninstall
apps from a device, push notifications begin to fail.Apple tracks these failures and provides
reports from its APNS feedback server.The APNS feedback service lists devices that failed
to receive notifications.As a provider, you need to fetch this report on a periodic basis and
weed through your device tokens.

The feedback server hosts sandbox and production addresses, just like the notification
server.You find these at feedback.push.apple.com (port 2196) and feedback.sandbox.push.
apple.com.You contact the server with a production SSL certificate and shake hands in
the same way you do to send notifications.After the handshake, read your results.The
server sends data immediately without any further explicit commands on your side.

The feedback data consists of 38 bytes.This includes the time (4 bytes), the token
length (2 bytes), and the token itself (32 bytes).The timestamp tells you when APNS first

http://github.com/erica/iphone-3.0-cookbook-

686 Chapter 16 Push Notifications

determined that the application no longer existed on the device.This uses a standard
UNIX epoch, namely seconds since Midnight, January 1st, 1970.The device token is
stored in binary format.You need to convert it to a hex representation to match it to your
device tokens if you use strings to store token data.At the time of writing this book, you
can ignore the length bytes.They are always 0 and 32, referring to the 32-byte length of
the device token.

// Retrieve message from SSL.

size_t processed = 0;

char buffer[38];

do

{

// Fetch the next item

result = SSLRead(context, buffer, 38, &processed);

if (result) break;

// Recover Date from data

char *b = buffer;

NSTimeInterval ti = ((unsigned char)b[0] << 24) +

((unsigned char)b[1] << 16) +

((unsigned char)b[2] << 8) +

(unsigned char)b[3];

NSDate *date = [NSDate dateWithTimeIntervalSince1970:ti];

// Recover Device ID

NSMutableString *deviceID = [NSMutableString string];

b += 6;

for (int i = 0; i < 32; i++) [

deviceID appendFormat:@"%02x", (unsigned char)b[i]];

// Add dictionary to results

[results addObject:

[NSDictionary dictionaryWithObject:date

forKey:deviceID]];

} while (processed > 0);

Note
Search your Xcode Organizer Console for “aps” to locate APNS error messages.

Designing for Push
When designing for push, keep scaling in mind. Normal computing doesn’t need to scale.
When coding is done, an app runs on a device using the local CPU. Should a developer
deploy an extra 10,000 copies, there’s no further investment involved other than increased
technical support.

687Summary

Push computing does scale.Whether you have 10,000 or 100,000 or 1,000,000 users
matters.That’s because developers must provide the service layer that handles the opera-
tions for every unit sold.The more users supported, the greater the costs will be. Consider
that these services need to be completely reliable and that consumers will not be tolerant
of extended downtimes.

Consider an application with just 10,000 users. It might service a million uses per day,
assuming update checks every 15 minutes. More time-critical uses might demand checks
every few minutes or even several times a minute.As the computational burden builds, so
do the hosting costs.While cloud computing provides an excellent match to these kinds
of needs, that kind of solution comes with a real price in development, maintenance, and
day-to-day operations.

On top of reliability, add in security concerns. Many polled services require secure cre-
dentials.Those credentials must be uploaded to the service for remote use rather than
being stored solely on the device. Even if the service in question does not use that kind of
authentication, the device token that allows your service to contact a specific phone is
sensitive in itself. Should that identifier be stolen, it could let spammers send unsolicited
alerts.Any developer who enters this arena must take these possible threats seriously and
provide highly secure solutions for storing and protecting information.

These concerns, when taken together, point to the fact that push notifications are seri-
ous business. Some small development houses may completely opt out of being push
providers for apps that depend on new information notifications. Between infrastructure
and security concerns, the work it will take to properly offer this kind of service may
price itself out of reach for those developers.Third party providers like Key Lime Tie
(keylimetie.com) and Urban Airship (urbanairship.com) offer ready-to-use Push infra-
stracture with affordable pricing plans.They handle the remote notification deployment
for you.

On the other hand, many developers may employ push for occasional opt-in notifica-
tions, such as alerting users that upgrades are now available in the App Store or to send
tips about using the product. How tolerant iPhone users will be of this kind of use
remains to be seen.

Summary
In this chapter, you saw push notifications both from a client-building point of view and
as a provider.You learned about the kinds of notifications you can send and how to create
the payload that moves those notifications to the device.You discovered registering and
unregistering devices and how users can opt in and out from the service.You saw how to
create a provider utility that pushes new Twitter items.

Much of the push story lies outside this chapter. It’s up to you to set up a server and
deal with security, bandwidth, and scaling issues.The reality of deployment is that there
are many platforms and languages that can be used that go beyond the Objective-C
sample code shown here. Regardless, the concepts discussed and recipes shown in this

688 Chapter 16 Push Notifications

chapter give you a good stepping off point.You know what the issues are and how things
have to work. Now it’s up to you to put them to good use.

n The big wins of notifications are their instant updates and immediate presentation.
Like SMS messages, they’re hard to overlook when they arrive on your iPhone.
There’s nothing wrong in opting out of push if your application does not demand
that kind of immediacy.

n Guard your SSL certificate and device tokens.Although it’s too early to say how
Apple will respond to security breaches, experience suggests that it will be messy
and unpleasant.

n Don’t leave users without service when you have promised to provide it to them.
Build a timeline into your business plan that anticipates what it will take to keep
delivering notifications over time and how you will fund this. Consumers will not
be tolerant of extended downtimes; your service must be completely reliable.

n Build to scale.Although your application may not initially have tens of thousands of
users, you must anticipate a successful app launch as well as a modest one. Create a
system that can grow along with your user base.

Symbols
+ (plus), class methods, 101
- (dash), method declarations, 98
2.x support, adding to image selection, 263
3.1 support, adding to image selection, 263
@ (at) symbol, 92, 103

A
ABAddressBookCopyArrayOfAllPeople()

function, 724
ABAdressBookCreate() function, 724
Abbott, Jay, 86
ABContact class, 738
ABContactsHelper class, 738
ABGroup class, 738
ABGroupAddMember() function, 737
ABGroupCreate() function, 736
ABGroupRemoveMember() function, 737
ABPeoplePickerNavigationController class,

742, 744
ABPeoplePickerNavigationControllerDelegate

protocol, 743
ABPersonHasImageData() function, 733
ABRecordCopyValue() function, 728
ABRecordRef type, 724-725
ABRecordSetValue() function, 726, 730
ABUnknownPersonViewController, 750-752
accelerometer

detecting shakes, 605-608
locating “up,” 597-599
moving onscreen objects, 599-601

AccelerometerHelper class, 605
access points (Wi-Fi), 690
accessibility (VoiceOver)

adding from code, 802-803
adding with Interface Builder, 799-802
common VoiceOver gestures, 805-806
overview, 799
testing on iPhone, 803-804, 806
testing with simulator, 803

accessing
Address Book image data, 741-742
arrays, 133
camera, 148
device information, 589-590, 592-593
FTP sites, 586-587
SDKAPIs from Xcode, 50-51

sets, 135
substrings, 128-129

accessor methods, 105
accessory views

check marks in table cells, 446-448
disclosure accessories in table cells,

449-451
accounts, test accounts (StoreKit)

creating, 781-782
signing into, 790

action sheets
displaying text in, 405-406
menus, creating, 403-405
pop-ups versus, 403

actions
adding, 162
connecting buttons to, 347

ad hoc distributions, 83
applications, building, 84
artwork, adding, 84-85
devices, registering, 83
entitlement files, 83
mobile provisions, building, 83

Address Book
ABContact class, 738
ABContactsHelper class, 738
ABGroup class, 738
ABRecordRef type, 724-725
ABUnknownPersonViewController,

750-752
AddressBookUI framework, 724
contacts

adding, 747-748
adding random contact art, 752-754
limiting contact picker properties,

745-747
modifying, 748-750
picking people, 742-745
searching for, 735

groups, 736-738
images, 733-734, 741-742
overview, 723
properties

address and instant message
properties, 730-733

date properties, 726-730
multivalue record properties,

727-730

records
adding, 734
creating, 734
deleting, 735-736
multivalue record properties,

727-730
retrieving and setting ABRecord

strings, 725-726
referencing, 724
searching, 738-740

address book controllers, 150
address properties (Address Book), 730-733
AddressBookUI framework, 724
addSubview method, 29
affine transform of UIView, 233-234
alert sounds, creating, 418
alerts, 391, 673. See also progress indicators

application badges, updating, 416-417
audio alerts, 417-420
classes for, 394
creating, 391-392
delegate methods in, 392-394
displaying, 190-191, 394
localized alerts, 673
modal alerts, creating with run loops,

396-399
network activity indicators, 415-416
no-button alerts, creating, 394-396
orientable scroll-down alerts, creating,

412-415
requesting text input via, 399-402
tappable overlays, creating, 411-412
variadic arguments with, 402-403
volume alert, displaying, 420-421

allApplicationSubviews() function, 214
allocating memory, 94
allSubviews() function, 214
alternating table cell colors, 439-441
animations. See also transitions

in buttons, 351-354
view animations

bouncing views, 248-250
building UIView animation blocks,

236-237
callbacks, 237
Core Animation calls, 244-246
Core Animation transitions,

242-244

826 accessing

curl transitions, 246-247
fading views in and out, 237-238
flipping views, 240-241
image view animations, 250-251
overview, 236
swapping views, 239-240

annotations
map annotations

adding, 710
annotation views, 710-712
creating, 710
MapAnnotation class, 709-710
responding to annotation button

taps, 712-716
user location annotations, 707-708

APNS (Apple Push Notification Service), 656
App Store

compiling clean builds for, 80-81
debugging uploads, 81-82

appending strings, 126
Apple Push Notification Service (APNS), 656
application approval for in-app purchase

items (StoreKit), 785-786
application badges, updating, 416-417
application bundles, 257

components, 26-27
application folder hierarchy, 22-23
executable, 23
icon and default images, 25-26
Info.plist files, 23-25
NIB files, 26

loading images from, 258
application delegate, 20-21
application identifiers

editing, 66-67
generating for push notifications, 659
registering, 15

application limits, platform differences, 11
application registration for push notifica-

tions, 662-663
error handling, 664-665
responding to notifications, 665-666
retrieving device tokens, 663-664

applications. See also projects
IPA archives, 27
overview, 17-18
sandboxes, 27
sharing keychains between, 575-577

skeleton, 18-22
submitting for review, 787

applying image processing, 293-295
aps dictionary, 673-675
archiving, persistence through, 314-315
arguments, variadic arguments with alerts,

402-403
arrays, 133

accessing, 133
converting strings to, 128
converting to strings, 134
creating, 133
NSArray class, 97
NSMutableArray class, 97
for table sections, creating, 468-469
testing, 134
view controller arrays, loading, 198

artwork, adding to ad hoc distributions,
84-85

assembling applications
application skeleton, 18-19

application delegate, 20-21
main.m file, 19-20
view controller, 21-22

overview, 17-18
assigning

data sources for tables, 425-426
delegates for tables, 426
properties, 109

retained, 113-114
self-assigning, 112

asynchronous downloads, 560-565
at (@) symbol, 92, 103
atomic methods, 109
attributes

Core Data, 758
of properties, 109-110

audio
handling interruptions, 621-622
ignoring lock events, 622-624
iPod library contents, filtering,

645-649
looping, 618-620
picking, 641-645
playing, 611, 615-618

catching end of playback, 614
initializing audio players, 611-612
monitoring audio levels, 613

827audio

with MPMusicPlayerController
class, 649-653

scrubbing audio, 614
recording, 624-628

with Audio Queues, 629-634
audio alerts, 417

alert sounds, creating, 418
system sounds, creating, 417-420
vibration, creating, 418

audio players, initializing, 611-612
Audio Queues, 417, 629-634
Audio Services, 418-420
authentication challenges, handling,

565-566
autorelease memory management, 58
autorelease objects

creating, 111-112
explained, 110-111
lifetime of, 112
retaining, 112-113

autorelease pools, 19-20
autosizing, 176-179

text editors, 372
availability, checking, 555-557. See also

reachability
availability date, setting, 781
AVAudioPlayer class, 417, 611. See also audio

catching end of playback, 614
initializing audio players, 611-612
monitoring audio levels, 613
playing audio, 615-618
scrubbing audio, 614

AVAudioRecorder class, 624
AVAudioSession class, 624

B
background color of tables, changing,

430-432
background images for tables, creating,

432-433
badges, 673

application badges, updating, 416-417
Ballard, Kevin, 388
bar button items, 347
bars, 146-147
battery state, monitoring, 594-595

behavior limits, platform differences, 12
bitmaps, 291

applying image processing, 293-295
drawing into bitmap contexts, 291-293
image-processing limitations, 295-297
testing touches against bitmap alpha

levels, 309-311
Bluetooth, GameKit and, 495

limitations, 496-497
Bonjour, 495

GameKit sessions and, 496, 498
iPhone servers

creating, 515-520
Mac clients, creating, 520-523

names and ports, registering, 528-529
scanning for services, 540-543

BonjourHelper class, 528-537
bookmarks, 76-77
bouncing views, 248-250
bounded movement, 306-307
bounded views, moving randomly, 231-232
breakpoints, 53-55
Britten, Ben, 629
browsing parse trees, 580-582
buffers, NSData class, 136
built-in controls in table cells, 441-443
Bundle Seed IDs, 16
buttons, 344-345

adding in Interface Builder, 345-347
animation in, 351-354
connecting to actions, 347
custom buttons

building in Xcode, 348-351
creating, 346-347

multiline button text, 351
in segmented controls, 362-363
toggle buttons, 354-356

C
C programming language, 91, 116
C strings, converting to/from, 127
caching, 768

memory management, 59
monitoring with Instruments

application, 62-64
calculating lines, 323-325

828 audio

callbacks
adding to protocols, 123
animation callbacks, 237
optional callbacks, 123-124

camera. See also images
accessing, 148
capturing time-lapse photos, 273-275
custom camera overlays, 275, 277-278
model differences, 7
selecting and customizing images from

camera roll, 265-267
snapping photos and writing to photo

album, 268-270
camera roll, selecting and customizing

images from, 265-268
canceling peer picker alerts, 499
capability requirements, adding, 590-592
capturing

colors, 165
time-lapse photos, 273-275

Carbon, explained, 117
case (of strings), changing, 129
catching end of audio playback, 614
categories, explained, 120-121
cell tower positioning, 690
cells (table)

adding, 453
alternating colors, 439-441
building custom, 435-439
with built-in controls, 441-443
check marks in, 446-448
deleting, 451-456
disclosure accessories in, 449-451
removing selection highlights, 448-449
reordering, 456-457
retaining state, 443-445
returning from sections, 470
reusing, 425, 428
selection color, setting, 429
swiping, 453
types of, 433-435
visualizing reuse, 445-446

centering landscape views, 234-235
certificates, 14
CFShow function, 105
CGFont class, 388
CGRect structure, 223-224, 227
CGRectCreateDictionaryRepresentation()

function, 223

CGRectFromString() function, 223, 313
CGRectGetCenter() function, 227
CGRectInset() function, 223
CGRectIntersectsRect() function, 223
CGRectMake function, 223
CGRectMoveToCenter() function, 227
CGRectZero() function, 223
chat, 512-515
check marks in table cells, 446-448
chevrons, 449-451
child-view undo support, 316
choices, views for, 145
chunked data for asynchronous

downloads, 562
circles, detecting, 325-327
circular hit test, 308
Clang static analyzer, 64-65, 98
class headers, inspecting, 163
class methods, 101
classes. See also Foundation classes

for alerts, 394
explained, 92-93
extending, 120-121
hierarchy, 102-103
implementing, 100
logging information, 103-105
naming in Cocoa Touch, 92
for progress indicators, 406-407

clean builds, 80-81
clearing console log, 56-57
CLHeading class, 698
client mode (peer pickers), 500, 502
client skeleton example (push notifications),

667-672
clients

in GameKit, 498
Mac clients, creating for iPhone

Bonjour servers, 520-523
clipboard for simulator, 48, 524-525
CLLocation class, properties, 694-695
closing connections with BonjourHelper

class, 530
Cocoa, explained, 117. See also Foundation

classes
Cocoa Touch

class names, 92
definition of, 4-5
explained, 117

829Cocoa Touch

CocoaDev Web site, 816
code, adding VoiceOver accessibility from,

802-803
code signing identity, setting, 67-68
code-based temperature converter example,

166-169
collapsing methods, 77
collections, 133-136

arrays, 133-134
dictionaries, 134-135
fast enumeration, 101
memory management, 135
sets, 135
writing to files, 135-136

color
background color of tables, changing,

430-432
capturing, 165
selection color for table cells,

setting, 429
of table cells, alternating, 439-441

com.yourcompany, overriding, 86
comparing dates, 131
compiler directives

explained, 73-74
iPhone-specific definitions,

recovering, 74-75
pragma marks, 76-77
runtime checks, 75-76

compiler warnings
message forwarding, 140
treating as errors, 98

compiling
applications, 68-69
clean builds for App Store, 80-81

complex data, sending via GameKit, 510-512
compound predicates in fetch requests

(Core Data), 771
computing speed and distance, 696-697
configurations, creating/editing distribution

configurations, 78-79
conforming to protocols, 124-125
connecting buttons to actions, 347
connection process, GameKit peers,

498-500, 502
connections

adding, 163-164
asynchronous downloads, 560-565

authentication challenges, handling,
565-566

closing with BonjourHelper class, 530
connectivity changes, scanning for,

549-552
data uploads, 572-575
FTP access, 586-587
GameKitHelper class, 503-504
IP and host information, retrieving,

552-555
network activity indicators, 415-416
network status, checking, 545-547
online connections, creating with

GameKit, 537-540
peer-to-peer connections. See

Bonjour; GameKit
POST requests, uploading via,

569-572
site availability, checking, 555-557
synchronous downloads, 557-560
UIDevice class, extending for

reachability, 547-549
WiFi connections with

BonjourHelper class, 528-537
connectivity changes, scanning for, 549-552
console

clearing log, 56-57
running, 55-56

Console tab (Organizer), 72
constraining movement, 305, 307
consumable purchases, 784
Contact Add button, 344
contacts (Address Book)

ABUnknownPersonViewController,
750-752

adding, 747-748
adding random contact art, 752-754
limiting contact picker properties,

745-747
modifying, 748-750
picking people, 742-745
searching for, 735

content length for asynchronous
downloads, 562

contents controllers, 149
contexts (Core Data)

creating, 760-761
inserting entities into, 761-763

830 CocoaDev Web site

controller behavior
delegation, 30-31
notifications, 33
overview, 30
target-actions, 32

controls, 145-146, 341
buttons, 344-345

adding in Interface Builder, 345-347
animation in, 351-354
building in Xcode, 348-351
connecting to actions, 347
creating custom buttons, 346-347
multiline button text, 351

events, 341-344
page indicators, 376-383
remove controls, displaying/

dismissing, 452
segmented controls, 362-363
sending events, 364
sliders, custom slider thumbs, 356-361
subclassing UIControl class, 363-366
switches, 354-356
in table cells, 441-443
text fields

dismissing keyboards, 366-369
text entry filtering, 374-376

text views
creating text editors, 371-374
dismissing keyboards, 370-371
smart labels, 387-388

toolbars
creating in Interface Builder,

384-385
creating in Xcode, 385-386
tips for, 387

types of, 341
convenience methods, 111
conversion method, defining, 165-166
converting

aps dictionary to JSON, 674-675
arrays to strings, 134
C strings, 127
Interface Builder files to Objective-C,

51-53
strings to arrays, 128
XML data to tree data structures,

577-582
coordinate systems, 224

Core Animation
calls, 244-246
transitions, 242-244

Core Data
contexts, creating, 760-761
explained, 757-758
header files, generating, 759-760
model files, creating/editing, 758
objects

creating, 761-763
removing, 765-767
retrieving, 763-764

search tables example, 770-772
table data sources example, 767-770
table editing example, 773-775
table undo/redo support example,

775-778
Core Foundation

explained, 117
memory management, 116-117

Core Graphics, masking reflections with,
253-255

Core Location
cell tower positioning, 690
computing speed and distance, 696-697
detecting direction of north, 698-700
GPS positioning, 690
hybrid positioning approaches, 691
Internet provider positioning, 691
model differences, 8
overview, 689
SkyHook Wi-Fi positioning, 690
tracking latitude and longitude

code listing, 693
location properties, 694-695
step-by-step process, 691-692

tracking speed, 695-696
counting table sections/rows, 469-470
Cox, Brad J., 91
Crash Logs tab (Organizer), 72-73
credentials, 566-569
cross-promotion, 815
curl transitions, 246-247
custom buttons. See also buttons

building in Xcode, 348-351
creating, 346-347

custom camera overlays, 275, 277-278
custom getters/setters, creating, 107-109

831custom getters/setters

custom key-value pairs in notification
payloads, 675

custom modal controllers example, 199-201
custom overlays for progress indicators,

creating, 409-411
custom popping options example (navigation

controllers), 197-199
custom settings bundles, adding, 806-807

avoiding sensitive information, 808
checking user defaults, 813-814
creating custom settings page, 810-813
defining settings bundle, 809
Llama Settings project, 813
Settings app, 807
settings schema, 808

custom slider thumbs, 356-361
custom table cells, building, 435-439
custom templates, creating, 86-88
custom undo routine, 318-319
customized paged scroller example, 379-383
customizing

images from camera roll, 265-268
selected table cells, 439
table headers/footers, 474-476
toolbars, 56-57
Xcode identities, 85-86

cylinder roll example (picker views), 484-487

D
dash (-), method declarations, 98
data access limits, platform differences, 10
data display, views for, 144
data handling, GameKitHelper class, 504-505
data length, checking in GameKit, 523-527
data retrieval via pasteboards, 525
data sharing via pasteboards, 524
data source methods, building searchable,

465-466
data sources, 34-35

explained, 122
for tables

assigning, 425-426
methods, 427-428

data storage via pasteboards, 524
data structures for table sections, creating,

468-469
data uploads, 572-575

date properties (Address Book), 726-730
date/time

entering in tables, 487-490
formatting, 490-493
NSDate class, 131-132
NSDateFormatter class, 132

deallocating objects, 117-119
example, 119
retained properties, 118
variables, 118

debugger, 53
breakpoints, 53-55
console, 55-57
customizing toolbars, 56-57
objects, inspecting, 55
opening, 53
running, 53
zombies, enabling, 57

debugging
App Store uploads, 81-82
tethered debugging, overview, 6-7

declaring
interfaces, 92
methods, 98-99
optional callbacks, 123-124
URL, 815-816

default settings, checking user defaults,
813-814

Default.png files, 25-26
defining

conversion method, 165-166
protocols, 122-123
settings bundle, 809

delays
in registering purchases (StoreKit), 794
in system sounds, 419

delegate methods
alerts, 392-394
assigning for tables, 426
table searches, 467
table sections, 472

delegation, 30-31, 122
delete rules (Core Data), 766
deleting. See removing
deployment

application identifiers, editing, 66-67
code signing identity, setting, 67-68
compiling applications, 68

832 custom key-value pairs in notification payloads

development provisions, installing, 66
signing applications, 68-69

deselecting table cells, 448
deserializing property lists, 510-512
Detail Disclosure button, 344
Detail pane (Xcode projects), 41-42
detecting

circles, 325-327
device orientation, 601-603
direction of north, 698-700
leaks with Instruments application,

59-60, 62
multitouch, 327-329
shakes

with accelerometer, 605-608
with motion events, 603-604

developer portal
overview, 13
provisioning, 16
registering application identifiers, 15
registering devices, 14-15
requesting certificates, 14
setting up teams, 13-14

developer programs. See also developer
portal

Enterprise Developer Program, 2
Online Developer Program, 2
registering for, 3
Standard Developer Program, 2
table of, 1-2
University Developer Program, 3

development devices, 5
development process for push

notifications, 659
application identifier, generating, 659
push-specific provisions, 661-662
SSL certificate, generating, 660-661

development provisions, installing, 66
device capability requirements, adding,

590-592
device information, accessing, 589-590,

592-593
device orientation, detecting, 601-603
device tokens

managing inactive, 685-686
retrieving, 663-664

devices, registering, 14-15, 83
Devices list (Organizer), 71

dictionaries, 133-135
creating, 134
listing keys, 135
removing objects, 135
replacing objects, 134
searching, 134

direct manipulation interfaces. See also
touches

calculating lines, 323-325
detecting circles, 325-327
gesture distinction, 329-333
interactive resize and rotation,

333-338
multitouch, 303-304, 327-329
persistence, 311-315
simple direct manipulation interface,

304-305
touch-based painting, 321-323
undo support, 316-320

direction of north, detecting, 698-700
direction sensing

locating “up,” 597-599
moving onscreen objects, 599-601

directives. See compiler directives
disabling proximity sensor, 596-597
disclosure accessories in table cells,

449-451
disconnections

BonjourHelper class, 530
GameKitHelper class, 503-504

disk space, checking, 608-609
dismissing

keyboards, 366-371
remove controls, 452

displaying
alerts, 190-191, 394
data, views for, 144
images in scrollable view, 278-280
multiimage paged scroll, 280-281
remove controls, 452
text in action sheets, 405-406
volume alert, 420-421
peer picker, 498-499

distance, computing, 696-697
distribution configurations, creating/editing,

78-79. See also ad hoc distributions
Documents folder, saving images to,

270-271

833Documents folder

dot notation, 105
double-taps, 330
downloads

asynchronous downloads, 560-565
iPhone SDK, 3
synchronous downloads, 557-560

draggable views, creating, 304-305
drags, 330
drawing

into bitmap contexts, 291-293
touch-based painting, 321-323

duplex connections with BonjourHelper
class, 530

dynamic typing, explained, 96-98

E
e-mailing images, 272-273
editing

Address Book contacts, 748-750
application identifiers, 66-67
distribution configurations, 78-79
main.m (hybrid temperature converter

example), 172-173
model files (Core Data), 758
navigation bar, 159
simulator library, 48
tables in Core Data, 773-775
video, 639-641
view controller implementation,

171-172
views, 44-45

editor windows (Xcode projects), 42
efficiency of custom slider thumbs, 358
embedding images onto scrollers, 278-280
enabling

accessibility, 802
interactions, 160
proximity sensor, 596-597
reorientation, 175-176
simulated elements, 160
zombies, 57

energy limits, platform differences, 11
Enterprise Developer Program, 2
entities (Core Data), 758

header files, generating, 759-760
inserting into contexts, 761-763

entitlement files, 83

epochs, 131
error handling for device token requests,

664-665
errors, treating warnings as, 98
evaluating autosize option, 178-179
events

control events, 341-344
motion events, detecting shakes,

603-604
sending from controls, 364

executable, 23
extending

classes, 120-121
UIDevice class for reachability,

547-549
extracting

numbers from strings, 130
view hierarchy tree, 213

F
fading views, 237-238
fast enumeration of collections, 101
feedback service for push notifications,

685-686
fetch requests (Core Data), 763-764
fetch results (Core Data)

search tables example, 770-772
table data sources example, 767-770

file extensions, 19
file management, 136-138
file system size, checking, 608-609
File Transfer Protocol (FTP), accessing sites,

586-587
files

executable, 23
file types, 19
Info.plist, 23-25
IPA archives, 27
NIB files, 26
writing collections to, 135-136
writing/reading strings, 127-128

filtering
iPod library contents, 645-649
text entries, 374-376

finding
Address Book contacts, 735
best location match, 704-707

834 dot notation

fixpng utility, 10-11
flipping views, 240-241
FlipView interface, 241
font table example, 428-430
FontLabel, 388
footers for tables, customizing, 474-476
form data uploads, 572-575
format specifiers for strings, 104
formatting date/time, 490-493
Foundation, explained, 117
Foundation classes, 125-126

collections, 133-136
dates, 131-132
file management, 136-138
index paths, 132
NSData, 136
numbers, 131
strings, 126-130
timers, 132
URLs, building, 136

frames. See views
free space, checking, 608-609
freeform group tables, 473, 477-480
FTP (File Transfer Protocol), accessing sites,

586-587
FTPHelper class, 586-587

G
GameKit, 495

Bluetooth and, 495-497
clients, 498
complex data, sending, 510-512
limitations, overcoming, 523-527
online connections, creating, 537-540
peers, 498

connection process, 498-500, 502
state changes, 503

sending/receiving data, 502
servers, 498
sessions, 496, 498
status logs, monitoring, 509-510
Voice Chat, 512-515

GameKitHelper class, creating, 503, 505-509
connections/disconnections, 503-504
data handling, 504-505

gaming with BonjourHelper class, 528-537
Garbage Collection, 12

geocoding, 717-720
reverse geocoding, 700-702

geometry
interface design, 151

keyboards, 154-155
navigation bars/toolbars/tab bars,

153-154
status bar, 151-152
text fields, 155
UIScreen class, 155

view geometry, 222-223
coordinate systems, 224
frames, 223-224
transforms, 224

gesture distinction, 329-333
getters

creating custom, 107-109
explained, 106-107

GKPeerPickerController class, 151, 498
GKSession class, 500
GKVoiceChatService class, 512
GPS positioning, 690
Graphics Convert application, 11
grayscale images, 298-299
grouped tables, creating, 473, 477-480
groups (Address Book), 736-738
guides, adding, 184

H
.h file extension, 19
handler methods, adding, 816-817
hardware requirements, 3
header files, 92

Core Data, generating, 759-760
importing, 93
viewing side-by-side with method

file, 88
header titles for table sections, creating,

470-471
headers for tables, customizing, 474-476
Hewitt, Joe, 281
hiding status bar, 152
hierarchies, view, 211-213
hints, accessibility, 801
Hockenberry, Craig, 814
host information, retrieving, 552-555
hybrid positioning approaches, 691

835hybrid positioning approaches

hybrid temperature converter example, 170
adapting template, 170
adding view controller, 170
designing interface, 171
editing main.m, 172-173
editing view controller

implementation, 171-172
running application, 173

I
IB (Interface Builder). See Interface Builder
icon.png files, 25-26
id type, 99
identities (Xcode), customizing, 85-86
ignoring lock events, 622-624
iLime service, 793
image backdrops, creating, 160
Image Picker, 150, 263
image processing

applying, 293-295
limitations, 295-297

image view animations, 250-251
ImageHelper class, 260-261
images

adding random contact art, 752-754
Address Book images, 733-734

accessing image data, 741-742
background images for tables, creating,

432-433
bitmaps, 291

applying image processing, 293-295
drawing into bitmap contexts,

291-293
image-processing limitations,

295-297
creating from scratch, 281-285
custom camera overlays, 275, 277-278
e-mailing, 272-273
grayscale, 298-299
loading

from application bundle, 258
with ImageHelper class, 260-261
from photo album, 260, 262-265
from sandbox, 258-259
from URLs, 259-260

photo orientation, 288-290

saving to Documents folder, 270-271
screenshots, 290-291
scroll views

creating multiimage paged scroll,
280-281

displaying images in scrollable view,
278-280

selecting and customizing from
camera roll, 265-268

snapping photos with iPhone and
writing to photo album, 268-270

sources, 257-258
thumbnails, creating, 285-288
time-lapse photos, capturing, 273-275
uploading to TwitPic, 572-575

importing header files, 93
in-app purchase items (StoreKit), creating,

782-786
adding item details, 784-785
application approval, 785-786
pricing section, 783-784
submitting purchase GUI

screenshot, 785
inactive device tokens, managing, 685-686
index path access (Core Data), 767
index paths, 132, 425
index titles (Core Data), 768
indexed characters of strings, 126
indexed substrings, requesting, 128
indexes for table sections, creating, 471-472
Info Dark button, 344
Info Light button, 344
Info.plist files, 23-25

list of keys, 821-824
inheriting methods, 98
initializing audio players, 611-612
inserting entities into contexts (Core Data),

761-763
inspecting

class headers, 163
objects in debugger, 55

installing development provisions, 66
instance methods. See methods
instance variables, 91
instances, 94
instant message properties (Address Book),

730-733

836 hybrid temperature converter example

Instruments application
definition of, 4
detecting leaks, 59-60, 62
monitoring caching, 62-64

interaction limits, platform differences, 11
interactions, enabling, 160
interactive resize and rotation, 333-338
Interface Builder

adding buttons, 345-347
adding VoiceOver accessibility from,

799-802
converting to Objective-C, 51-53
custom table cells, building, 435-439
definition of, 4
tab bar controllers in, 207-208
table cells with built-in controls,

441-443
temperature converter example,

156-159
adding connections, 163-164
adding labels, 160
adding media to, 157
adding outlets/actions, 162
capturing colors, 165
creating image backdrops, 160
creating new project, 156
defining conversion method,

165-166
editing navigation bar, 159
enabling simulated elements, 160
inspecting class header, 163
replacing main view, 159-160
running application, 166
testing interface, 161

tips for, 184-185
toolbars, creating, 384-385
views, editing, 44-45
.xib files, opening, 43-44

interface creation, 155-156
code-based example, 166-169
hybrid example, 170

adapting template, 170
adding view controller, 170
designing interface, 171
editing main.m, 172-173
editing view controller

implementation, 171-172
running application, 173

Interface Builder example, 156-159
adding connections, 163-164
adding labels, 160
adding media to, 157
adding outlets/actions, 162
capturing colors, 165
creating image backdrops, 160
creating new project, 156
defining conversion method,

165-166
editing navigation bar, 159
enabling simulated elements, 160
inspecting class header, 163
replacing main view, 159-160
running application, 166
testing interface, 161

loading .xib files from code example,
173-174

interface design, 143
bars, 146-147
controls, 145-146
geometry, 151-155
hybrid temperature converter

example, 171
Interface Builder tips, 184-185
pickers, 146
progress indicators, 147
for rotation, 174-175

autosizing, 176-179
enabling reorientation, 175-176
moving views, 179-180, 182
swapping views, 183

tables, 146
UIView class, 143-144
UIWindow class, 143-144
view controllers, 147-148

address book controllers, 150
GKPeerPickerController class, 151
media player controllers, 151
MFMailComposeViewController

class, 150
table controllers, 149-150
UIImagePickerController class, 150
UINavigationController class,

148-149
UITabBarController class, 149
UIViewController class, 148

837interface design

views
displaying data, 144
making choices, 145

interfaces
declaring, 92
FlipView, 241

Internet, downloading images from, 257
Internet provider positioning, 691
interruptions to audio, handling, 621-622
IP information, retrieving, 552-555
IPA archives, 27
iPhone deployment. See deployment
iPhone developer programs

Enterprise Developer Program, 2
Online Developer Program, 2
registering for, 3
Standard Developer Program, 2
table of, 1-2
University Developer Program, 3

iPhone Development Tools list (Organizer), 71
iPhone model differences

OpenGL ES, 9
cameras, 7
core location differences, 8
microphones, 7-8
overview, 7
processor speeds, 9
speakers, 7-8
telephony, 8
vibration support and proximity, 9

iPhone platform limitations
application limits, 11
behavior limits, 12
data access limits, 10
energy limits, 11
interaction limits, 11
memory limits, 10
overview, 9
storage limits, 10

iPhone SDK Simulator. See Simulator
iPhone SDK. See SDK (Software

Developer’s Kit)
iPhone servers

creating with Bonjour, 515-520
Mac clients, creating, 520-523

iPhone-specific definitions, recovering, 74-75
iPod library contents, filtering, 645-649
item details for in-app purchase items

(StoreKit), 784-785
iTunes Connect, registering for, 3

J–K
JSON (JavaScript Object Notation), 672

converting aps dictionary to, 674-675
payload samples, 674

key-value pairs, custom data in notification
payloads, 675

keyboards
dismissing, 366-371
geometry of, 154-155

keychain
persistence of data, 567
sharing between applications, 575-577
storing user credentials, 566-569

KeychainItemWrapper class, 567
keys, dictionary keys, listing, 135
Kosmaczewski, Adrian, 51
Krasner, Glenn, 29

L
labels

accessibility, 800-801
adding, 160
smart labels, 387-388

landscape views, centering, 234-235
languages for item details (StoreKit),

784-785
latitude and longitude, tracking, 691

code listing, 693
location properties, 694-695
step-by-step process, 692

launching applications, receiving notification
data, 675-676

laying out table views, 424
layout guides, adding, 184
leaks, memory management, 58-62
length of strings, 126
Library folder, 259
limitations

of iPhone SDK, 12-13
platform limitations, 9-12
Simulator limitations, 5-6

limiting contact picker properties (Address
Book), 745-747

lines, calculating, 323-325
listing dictionary keys, 135
Llama Settings project, 813

838 interface design

loading
images

from application bundle, 258
with ImageHelper class, 260-261
from photo album, 260, 262-265
from sandbox, 258-259
from URLs, 259-260

view controller arrays, 198
.xib files from code, 173-174

localization for item details (StoreKit),
784-785

localized alerts, 673
location properties (CLLocation object),

694-695
locations

geocoding, 717-720
map annotations, 710-716
user location annotations, 707-708
viewing, 703-707

lock events, ignoring, 622-624
log files, monitoring, 509-510
logging class information, 103-105
looping audio, 618-620
loops, run loops, creating modal alerts with,

396-399

M
.m file extension, 19
Mac clients for iPhone Bonjour servers,

creating, 520-523
mail composition, 150
main view, replacing, 159-160
main.m file

autorelease pools, 19-20
hybrid temperature converter

example, editing, 172-173
purpose of, 19
UIApplicationMain function, 20

managed contexts. See contexts (Core Data)
map annotations

adding, 710
annotation views, 710-712
creating, 710
geocoding, 717-720
MapAnnotation class, 709-710
responding to annotation button taps,

712-716

MapAnnotation class, 709-710
MapKit. See also map annotations

reverse geocoding, 700-702
user location annotations, 707-708
viewing locations, 703-707

masking reflections with Core Graphics,
253-255

measurements in interface design, 151
keyboards, 154-155
navigation bars/toolbars/tab bars,

153-154
status bar, 151-152
text fields, 155
UIScreen class, 155

media. See also audio; video
adding to projects, 157
adding to views, 184

media player controllers, 151
Media Queries

creating, 645-649
types of, 645

memory limits, platform differences, 10
memory management, 58

allocating memory, 94
autorelease, 58
autorelease object lifetime, 112
caching, 59

monitoring with Instruments
application, 62-64

Clang static analyzer, 64-65
collections, 135
Core Foundation, 116-117
creating autorelease objects, 111-112
creating objects, 110-111, 115-116
deallocating objects, 117-119
explained, 110
high retain counts, 115
leaks, 58-62
releasing memory, 94-95
properties and, 105-106
retained properties, 113-114
retaining autorelease objects, 112-113

menus
creating, 403-405
scrolling, 405
two-item menu example (navigation

controllers), 192-193

839menus

message forwarding
compiler warnings, 140
explained, 138
implementing, 139
method signatures, building, 139
multiple inheritance, 140-141
undocumented methods of, 141

message tracking, 35
messages, sending to nil, 100. See also alerts
method files, viewing side-by-side with

header file, 88
method signatures, building, 139
methods, 91

accessor methods, 105
class methods, 101
collapsing, 77
data source methods for tables, 427-428
declaring, 98-99
delegate methods

in alerts, 392-394
for table searches, 467
for table sections, 472

dynamic typing, 96-98
explained, 93, 95-96
frame utility methods, 227-231
for group tables, 478
implementing, 99
inheriting, 98
nesting invocations, 100
for picker views, 482
searchable data source methods,

building, 465-466
variadic arguments with alerts,

402-403
MFMailComposeViewController class, 150
MFMailComposeViewControllerDelegate

protocol, 272
microphones, model differences, 7-8
MKAnnotation class, 709
MKAnnotationView class, 711
MKMapView class, 144
MKPlaceMark class, 701
MKReverseGeocoder class, 701
MKReverseGeocoderDelegate class, 701
MKUserLocation class, 707
mobile provisions

building, 83
definition of, 23

modal alerts, creating with run loops,
396-399

modal controllers, 190
custom example, 199-201

model differences
OpenGL ES, 9
cameras, 7
core location differences, 8
microphones, 7-8
overview, 7
processor speeds, 9
speakers, 7-8
telephony, 8
vibration support and proximity, 9

model files (Core Data), creating/editing, 758
model-view-controller design pattern. See

MVC (model-view-controller) design pattern
models (MVC)

data sources, 34-35
message tracking, 35
overview, 34
UIApplication class, 35

modifying Address Book contacts, 748-750
momentary views, pushing, 198-199
monitoring

audio levels, 613
battery state, 594-595
caching with Instruments application,

62-64
status logs, 509-510

motion events, detecting shakes, 603-604
movement, constraining, 305, 307
movies. See video
moving

bounded views, 231-232
objects, 185
onscreen objects with accelerometer,

599-601
views, 179-180, 182

MPMediaItem class, 642-644
MPMediaPickerController class, 151,

641, 647
MPMoviePlayer class, 634-636
MPMoviePlayerController class, 151,

634, 653
MPMusicPlayerController class, 151,

649-653
multiimage paged scroll, creating, 280-281

840 message forwarding

multiline button text, 351
multimedia. See audio; video
multiple buttons in segmented controls,

362-363
multiple inheritance, message forwarding,

140-141
multiple item purchases (StoreKit), 794
multiple provider support for push

notifications, 657
multitouch, 303-304

detecting, 327-329
multivalue record properties (Address Book),

727-730
multiwheel tables, building, 480-484
music. See audio
mutable arrays, 97, 133
mutable buffers, 136
mutable dictionaries, 134
mutable strings, 130
MVC (model-view-controller) design pattern

controller behavior
delegation, 30-31
notifications, 33
overview, 30
target-actions, 32

message tracking, 35
models, 34-35
overview, 28-29
view classes, 29-30

N
names (Bonjour), registering, 528-529
naming

classes in Cocoa Touch, 92
views, 184, 219-222

navigating between view controllers example
(navigation controllers), 195-197

navigation applications, 37
navigation bars, 146-147

editing, 159
geometry of, 153-154
undo support, 316-317

navigation controllers, 148-149, 187
custom modal controllers example,

199-201
custom popping options example,

197-199

modal controllers, 190
navigating between view controllers

example, 195-197
persistence example, 204-207
pushing/popping, 188-189
segmented control example, 193-195
setup, 187-188
tab bars

example, 201-204
in Interface Builder, 207-208

two-item menu example, 192-193
UINavigationItem class, 189-190

nesting method invocations, 100
network activity indicators, 415-416
network connections. See connections
network status, checking, 545-547
NeXTStep operating system, 91
NIB files, 26
nil, 100
no-button alerts, 394-396
non-consumable purchases, 783
north, detecting direction of, 698-700
notification payloads

building, 672
converting aps dictionary to JSON,

674-675
custom key-value pairs, 675
localized alerts, 673
notification types, 673
receiving data on launch, 675-676

sending, 676-681
notifications. See push notifications
NSArray class, 97, 133-134
NSBundle class, 137
NSData class, 136
NSDate class, 131-132
NSDateFormatter class, 132, 490
NSDictionary class, 134-135
NSFetchedResultsController class, 150, 764
NSFileManager class, 136-138, 608
NSHomeDirectory() function, 259
NSIndexPath class, 132
NSKeyedArchiver class, 314
NSKeyedUnarchiver class, 314
NSLog function, 103-105
NSMutableArray class, 97, 133
NSMutableData class, 136
NSMutableDictionary class, 134

841NSMutableDictionary class

NSMutableString class, 130
NSNetServiceBrowser class, 520, 540
NSNotificationCenter class, 33, 426
NSNumber class, 131
NSObject class, 94, 102
NSOperation class, 570
NSOperationQueue class, 570
NSSet class, 135
NSString class, 92, 103, 126-130

accessing substrings, 128-129
building strings, 126
changing case, 129
converting to/from C strings, 127
extracting numbers from strings, 130
indexed characters, 126
length of strings, 126
mutable strings, 130
search/replace with, 129
testing strings, 130
writing to/reading from files, 127-128

NSStringFromCGRect() function, 223, 313
NSTimeInterval class, 131
NSTimer class, 132
NSUndoManager class, 457
NSURL class, 136
NSURLConnection class, 557
NSURLCredential class, 565
NSURLRequest class, 569
NSUserDefaults class, 806
NSXMLParser class, 577
numbers

extracting from strings, 130
NSNumber class, 131

O
object layout, viewing, 185
object-oriented programming, 28, 91-92
Objective-C

categories, 120-121
classes

explained, 92-93
hierarchy, 102-103
logging information, 103-105

collections, 101
converting Interface Builder files to,

51-53
dynamic typing, 96-98

explained, 91-92
Foundation classes, 125-126

collections, 133-136
dates, 131-132
file management, 136-138
index paths, 132
NSData, 136
numbers, 131
strings, 126-130
timers, 132
URLs, building, 136

header files, 92
memory management, 94-95

autorelease object lifetime, 112
Core Foundation, 116-117
creating autorelease objects,

111-112
creating objects, 110-111, 115-116
deallocating objects, 117-119
explained, 110
high retain counts, 115
retained properties, 113-114
retaining autorelease objects,

112-113
message forwarding, 138-141
methods, 93-101
objects, 92-94
properties, 105-110
protocols, 122-125
singletons, 119-120

objects. See also specific objects
autorelease objects, 111-113
creating, 93-94, 110-111, 115-116
deallocating, 117-119
explained, 92-93
inspecting in debugger, 55
moving, 185
retain counts, 95

online connections, creating with GameKit,
537-540

Online Developer Program, 2
onscreen objects, moving with

accelerometer, 599-601
OpenAL audio, 629
OpenGL ES, 9, 37
opening

debugger, 53
.xib files, 43-44

842 NSMutableString class

operation queues, 570
operations, 570
optional callbacks, 123-124
Organizer, 69

Console tab, 72
Crash Log tab, 72-73
Devices list, 71
iPhone Development Tools list, 71
Projects and Sources list, 70
Screenshot tab, 73
Summary tab, 71-72

orientable scroll-down alerts, 412-415
orientation

designing for rotation, 174-175
autosizing, 176-179
enabling reorientation, 175-176
moving views, 179-182
swapping views, 183

device orientation, detecting, 601-603
of photos

fixing, 288-290
test images, adding, 290

of status bar, 152
outlets, 162
overcoming GameKit limitations, 523-527
overlays

custom overlays
creating for progress indicators,

409-411
custom camera overlays, 275-278

orientable scroll-down alerts, 412-415
tappable overlays, 411-412

P
page indicators

adding, 376-378
customized paged scroller example,

379-383
parse trees

browsing, 580-582
building, 578

passwords, storing in keychain, 566-569
pasteboards, 524-525
pathToView() function, 214
payloads. See notification payloads
payments (StoreKit), responding to, 791-792
peer pickers, 151

peer-to-peer connections. See Bonjour;
GameKit

peers in GameKit, 498
connection process, 498-502
state changes, 503

people picker (Address Book), 742-745
performance of Media Queries, 647-649
persistence, 311

of keychain data, 567
navigation controllers example,

204-207
persistence through archiving,

314-315
recovering state, 313-314
storing state, 312-313
in text editors, 371

phases of touches, 302
phone calls, 621-622
photo album, 257. See also images

loading images from, 260-265
writing photos to, 268-270

picker views
building multiwheel tables, 480-484
cylinder roll example, 484-487
date/time, entering, 487-490

pickers, 146
picking

audio, 641-645
GameKit peers, 498-502
people (Address Book), 742-745
video, 639-640

platform limitations
application limits, 11
behavior limits, 12
data access limits, 10
energy limits, 11
interaction limits, 11
memory limits, 10
overview, 9
storage limits, 10

playing
audio, 611-618

catching end of playback, 614
ignoring lock events, 622-624
initializing audio players, 611-612
looping audio, 618-620
monitoring audio levels, 613
resuming after interruption,

621-622

843playing

scrubbing audio, 614
with MPMusicPlayerController

class, 649-653
video with MPMoviePlayer, 634-636

plus (+) class methods, 101
pngcrush utility, 10
pop-ups, 403
Pope, Stephen, 29
popping navigation controllers, 188-189,

197-199
populating tables, 427
ports (Bonjour), registering, 528-529
positioning

cell tower positioning, 690
GPS positioning, 690
hybrid approaches, 691
Internet provider positioning, 691
SkyHook Wi-Fi positioning, 690

POST requests, uploading via, 569-572
pragma marks, 76-77
predicates

in fetch requests (Core Data), 770-772
in Media Queries, 646-647
in table searches, 466

preferences tables, 473, 477-480
pricing section for in-app purchase items

(StoreKit), 783-784
processor speeds, 9
production environments for push

notifications, 677
progress indicators, 147

classes for, 406-407
creating, 407-409
custom overlays, 409-411

projects
adding media to, 157
compiling, 68
creating, 37-39

Detail pane, 41-42
editing views, 44-45
editor windows, 42
from scratch, 48-52
opening .xib files, 43-44
project files, list of, 43
running in simulator, 46
styles of, 37-38
Xcode project window, 40-41

signing compiled, 68-69

Projects and Sources list (Organizer), 70
properties. See also specific properties

AddressBook properties
address and instant message

properties, 730-733
date properties, 726-730
multivalue record properties,

727-730
attributes, 109-110
of CLLocation object, 694-695
creating, 106-107
custom getters/setters, 107-109
dot notation, 105
explained, 105
memory management, 105-106
of MPMediaItem class, 643-644
of MPMoviePlayerController

class, 653
retained properties

assigning values to, 113-114
cautions about, 114
deallocating objects, 118
reassigning, 114

self-assigning, 112
of text fields, 367-368
of UIDatePicker class, 487
of UIView class, 235-236

property lists, serializing/deserializing,
510-512

protocols
adding callbacks, 123
conforming to, 124-125
declaring optional callbacks, 123-124
defining, 122-123
explained, 122
implementing optional callbacks, 124
incorporating, 123

provisioning, 16
mobile provisions, 83
push-specific provisions, 661-662

proxies, 43
proximity sensor, enabling/disabling,

596-597
purchase GUI (StoreKit)

creating, 787-789
screenshot for in-app purchase items,

submitting, 785

844 playing

purchase models (StoreKit)
application submission, 787
explained, 779-781
in-app purchase items, creating,

782-786
purchase GUI, creating, 787-789
purchasing items, 789-794
test accounts, creating, 781-782
validating receipts, 794-796

purchase types (StoreKit), 783
purchasing items (StoreKit), 789-794

multiple items, 794
registering purchases, 792-794
responding to payments, 791-792
restoring purchases, 793-794
signing into test accounts, 790

push notifications, 33
advantages of, 655-656
application registration, 662-663

error handling, 664-665
responding to notifications,

665-666
retrieving device tokens, 663-664

building notification payloads, 672
converting aps dictionary to JSON,

674-675
custom key-value pairs, 675
localized alerts, 673
notification types, 673
receiving data on launch, 675-676

client skeleton example, 667-672
designing for, 686-687
development process

application identifier, generating, 659
push-specific provisions, 661-662
SSL certificate, generating, 660-661

explained, 656
feedback service, 685-686
limitations of, 658-659
multiple provider support, 657
security, 658
sending notification payloads, 676-681
table notifications, 426
Twitter client example, 681-685

push-specific provisions, 661-662
pushing

navigation controllers, 188-189
temporary views, 198-199

Q–R
querying subviews, 214-215
queues, 417, 629-634

random contact art, adding, 752-754
ranges, generating substrings from, 129
reachability, extending UIDevice class for,

547-549. See also availability
read-only properties, 106-107
read-write properties, 106
reading

with BonjourHelper class, 530
image data, 258

loading image files with
ImageHelper class, 260-261

loading images from application
bundle, 258

loading images from photo album,
260-265

loading images from sandbox,
258-259

loading images from URLs,
259-260

strings from files, 127-128
reassigning retained properties, 114
receipts (StoreKit), validating, 794-796
receivers, 99
receiving

GameKit data, 502
notification data on launch, 675-676

recording
audio, 624-634
video, 636-639

records (Address Book)
adding, 734
creating, 734
deleting, 735-736
multivalue record properties, 727-730
retrieving and setting ABRecord

strings, 725-726
recovering

iPhone-specific definitions, 74-75
state, 313-314
view hierarchy tree, 213

redo/undo support
in Core Data, 775-778
Redo buttons, adding to tables,

458-460

845redo/undo support

referencing system address book, 724
reflections

adding to views, 251-252
masking with Core Graphics, 253-255

registration
application identifiers, 15
Bonjour names and ports, 528-529
devices, 14-15, 83
for developer programs, 3
for iTunes Connect, 3
purchases (StoreKit), 792-794
for push notifications, 662-666
registering schemes

adding handler method, 816-817
declaring URL, 815-816

undos, 317-318
relationships (Core Data), 758, 766
releasing memory, 94-95
reliable mode, sending/receiving data, 502
remote notifications. See push notifications
remove controls, 452
removing

Address Book records, 735-736
breakpoints, 55
dictionary objects, 135
objects (Core Data), 765-767
selection highlights in table cells,

448-449
simulator data, 48
subviews, 216
table cells, 451-456
tree data structures, 582

reordering
subviews, 216
table cells, 456-457

reorientation, enabling, 175-176
replacing

dictionary objects, 134
main view, 159-160
search/replace, 129

requesting
certificates, 14
indexed substrings, 128

requirements, device capability
requirements, 590-592

resizing
frames, 225-226
text editors, 372

responder chain, 603-604
responding

to annotation button taps, 712-716
to payments (StoreKit), 791-792
to push notifications, 665-666
to URL scheme requests, 818-819

restoring purchases (StoreKit), 793-794
resuming audio playback after interruption,

621-622
retain counts, 95, 115
retaining

autorelease objects, 112-113
properties, 109, 113-114, 118

retrieving
ABRecord strings, 725-726
data via pasteboards, 525
device tokens, 663-664
IP and host information, 552-555
objects (Core Data), 763-764
views, 217-218

returning
control to calling application, 817-818
table cells from sections, 470

reusing table cells, 425, 428, 445-446
reverse geocoding, 700-702
review, submitting applications for, 787
root view controllers, 156
rotation

designing for, 174-175
autosizing, 176-179
enabling reorientation, 175-176
moving views, 179-182
swapping views, 183

interactive resize and rotation,
333-338

Rounded Rectangle button, 344
rows in tables, counting, 469-470
run loops, 396-399
running

console, 55-56
debugger, 53
projects in simulator, 46

runtime checks, 75-76

846 referencing system address book

S
sandbox

loading images from, 258-259
overview, 27, 257
sandbox environments for push

notifications, 677
sandbox files, 47

saving images to Documents folder, 270-271
.sb file extension, 28
scaling for push notifications, 686-687
scanning

for Bonjour services, 540-543
for connectivity changes, 549-552

screen
screen orientation for scroll-down

alerts, 412-415
UIScreen class, 155

Screenshot tab (Organizer), 73
screenshots, 290-291, 785
scroll-down alerts, 412-415
scrolling

changing background color based on,
431-432

menus, 405
scroll views

creating multiimage paged scroll,
280-281

displaying images in scrollable view,
278-280

scrubbing audio, 614
SDK (Software Developer’s Kit), 3

Cocoa Touch, 4-5
development devices, 5
downloading, 3
hardware requirements, 3
IB (Interface Builder), 4
Instruments, 4
limitations of, 12-13
SDK APIs, accessing from Xcode,

50-51
Shark, 4
Simulator, 4-6
Xcode, 4

search display controllers, 149, 464-465
search tables, Core Data for, 770-772
searchable data source methods, 465-466

searching
Address Book, 738-740
Address Book contacts, 735
dictionaries, 134
search/replace, 129
tables

delegate methods, 467
search display controller, building,

464-465
searchable data source methods,

building, 465-466
section groups (Core Data), 768
section key paths (Core Data), 767
sectioned tables, 467

building with Core Data, 769
counting, 469-470
data structure, creating, 468-469
delegate methods with, 472
header titles, creating, 470-471
indexes, creating, 471-472
returning cells from, 470

security
for push notifications, 658, 686-687
Security framework, 567
user credentials, storing in keychain,

566-569
segmented controls, 193-195, 362-363
selected table cells, customizing, 439
selecting

images from camera roll, 265-268
from stacked views, 184

selection color for table cells, 429
selection highlights in table cells, removing,

448-449
selectors, 93
self variable, 99
self-assigning properties, 112
sending

complex data via GameKit, 510-512
events from controls, 364
GameKit data, 502
messages to nil, 100
notification payloads, 676-681

serializing property lists, 510-512
server mode (peer pickers), 500, 502

847server mode (peer pickers)

servers
in GameKit, 498
iPhone servers

creating with Bonjour, 515-520
Mac clients, creating, 520-523

Web servers, 582-586
services, URL-based

adding handler method, 816-817
cross-promotion, 815
declaring URL, 815-816
implementing custom schemes, 818
overview, 814
responding to URL scheme requests,

818-819
returning control to calling

application, 817-818
service downsides, 815
URL schemes, 814-815

session objects, creating, 500
sessions in GameKit, 496-498
sets, 133-135
setters

creating custom, 107-109
explained, 106-107

setting ABRecord strings, 725-726
Settings app, 807
settings schema, 808
shake-controlled undo support, 319-320, 458
shakes, detecting

with accelerometer, 605-608
with motion events, 603-604

sharing keychains between applications,
575-577

sharing data via pasteboards, 524
Shark, 4
showAlert() function, 190-191
side-by-side code, viewing, 88
signatures, method signatures, 139
signing

compiled applications, 68-69
into test accounts (StoreKit), 790

simple direct manipulation interface,
304-305

simulated elements, enabling, 160
Simulator

clipboard for, 48
definition of, 4
explained, 46-48

limitations, 5-6
running projects in, 46

singletons, 101, 119-120
site availability, checking, 555-557
sizing

frames, 225-226
interactive resize and rotation,

333-338
SkyHook Wi-Fi positioning, 690
sleep mode, ignoring, 622-624
sliders, custom slider thumbs, 356-361
Smalltalk, 28, 91
smart labels, 387-388
Software Developer’s Kit. See SDK
sorting tables, 462-463
sound. See audio
source files

application delegate, 20-21
main.m, 19-20
overview, 18-19
view controller, 21-22

speakers, 7-8
speed

computing, 696-697
for Media Queries, 647-649
tracking, 695-696

springs, 176
sqlite3 utility, 762
SSL certificates, generating for push

notifications, 660-661
stacked views, selecting from, 184
Standard Developer Program, 2
state

recovering, 313-314
state changes in GameKit peers, 503
storing, 312-313
of table cells, retaining, 443-445

static analyzer, 64-65
static typing, 96
status bar, 151-152
status logs, monitoring, 509-510
storage limits, 10
StoreKit

application submission, 787
explained, 779-781
in-app purchase items

adding item details, 784-785
application approval, 785-786

848 servers

creating, 782-786
pricing section, 783-784
submitting purchase GUI

screenshot, 785
purchase GUI, 787-789
purchasing items, 789-794
test accounts, 781-782
validating receipts, 794-796

storing
data via pasteboards, 524
state, 312-313
user credentials in keychain, 566-569

stretching views, 349
strings. See also NSString class

ABRecord strings, 725-726
converting arrays to, 134
format specifiers, 104

struts, 176
subclassing UIControl class, 363-366
submitting

applications for review, 787
purchase GUI screenshot

(StoreKit), 785
subscription purchases, 784
substrings, accessing, 128-129
subviews

adding, 216
querying, 214-215
removing, 216
reordering, 216
view callbacks, 216-217

Summary tab (Organizer), 71-72
swapping views, 183, 239-240
swipes, 329, 453
switches, 354-356
symbolication, 73
synchronize method, 807
synchronous downloads, 557-560
sysctl() method, 592-593
sysctlbyname() method, 592-593
System Audio services, 417-418
System Configuration framework, 546
system information, 589-590, 592-593
system sounds

creating, 417-420
delays, 419

T
tab bars, 149

geometry of, 153-154
in Interface Builder, 207-208
navigation controllers example,

201-204
persistence example, 204-207
Tab bar applications, 37

table controllers, 149-150
table notifications, 426
tables, 146

background color, 430-432
background image, 432-433
cells. See cells (table)
creating, 424
data sources, 427-428, 767-770
date/time, entering, 487-490
editing in Core Data, 773-775
font table example, 428-430
group tables, 477-480
grouped tables, 473
headers/footers, 474-476
multiwheel tables, 480-484
populating, 427
searching

delegate methods, 467
search display controller, building,

464-465
searchable data source methods,

building, 465-466
sections, 467

counting, 469-470
data structure, creating, 468-469
delegate methods with, 472
header titles, creating, 470-471
indexes, creating, 471-472
returning cells from, 470

sorting, 462-463
UITableView class, 423-426
UITableViewController class, 424
undo support, 457-462

adding Undo/Redo buttons,
458-460

in Core Data, 775-778
shake-to-edit, 458

tagging views, 173-174, 217-218
tappable overlays, 411-412
taps, 329

849taps

target-actions, 32
target settings, 83
TCPConnection class, 515
TCPServer class, 515
teams, 13-14
tearing down tree data structures, 582
telephony, 8
temperature converter example

code-based, 166-169
hybrid

adapting template, 170
adding view controller, 170
designing interface, 171
editing main.m, 172-173
editing view controller

implementation, 171-172
running application, 173

Interface Builder, 156-159
adding connections, 163-164
adding labels, 160
adding media to, 157
adding outlets/actions, 162
capturing colors, 165
creating image backdrops, 160
creating new project, 156
defining conversion method,

165-166
editing navigation bar, 159
enabling simulated elements, 160
inspecting class header, 163
replacing main view, 159-160
running application, 166
testing interface, 161

loading .xib files, 173-174
templates

adapting, 170
creating custom, 86-88
creating projects, 37-39

Detail pane, 41-42
editing views, 44-45
editor windows, 42
opening .xib files, 43-44
project files, list of, 43
running in simulator, 46
Xcode project window, 40-41

moving views, 180-182
temporary views, pushing, 198-199

testing
accessibility, 803-806
arrays, 134
interface, 161
network status, 545-547
strings, 130
test accounts (StoreKit)

creating, 781-782
signing into, 790

test images, adding, 290
touches, 307-308

circular hit test, 308
testing against bitmap alpha levels,

309-311
tethering, 6-7
text

displaying in action sheets, 405-406
multiline button text, 351
text fields

geometry of, 155
keyboards, dismissing, 366-369
properties, 367-368
text entry filtering, 374-376

text input, requesting via alerts,
399-402

text editors, 371-374
text views

keyboards, dismissing, 370-371
smart labels, 387-388
text editors, creating, 371-374

thumbnails, creating from images, 285-288
thumbs (sliders), 356
time-lapse photos, capturing, 273-275
time/date

entering in tables, 487-490
formatting, 490-493

timers, NSTimer class, 132
timestamp property (CLLocation object), 695
To Do List view hierarchy, 212-213
toggle buttons, 354-356
Toll Free Bridging, 117
toolbars, 146-147

creating
in Interface Builder, 384-385
tips for, 387
in Xcode, 385-386

customizing, 56-57
geometry of, 153-154

850 target-actions

touch wheels, 363-366
touch-based painting, 321-323
touches

calculating lines, 323-325
constraining movement, 305-307
detecting circles, 325-327
gesture distinction, 329-333
interactive resize and rotation,

333-338
methods, 302-303
multitouch, 303-304, 327-329
overview, 301-302
persistence, 311-315
phases, 302
simple direct manipulation interface,

304-305
testing, 307-311
touch-based painting, 321-323
touching views, 303
tracking, 364
undo support

child-view undo support, 316
creating undo managers, 316
custom undo routine, 318-319
navigation bars, 316-317
registering undos, 317-318
shake-controlled undo support,

319-320
tracking

latitude and longitude
code listing, 693
location properties, 694-695
step-by-step process, 691-692

speed, 695-696
touches, 364

transaction observers, 789
transforming views, 224, 232

affine transform of UIView, 233-234
centering landscape views, 234-235

transitions (view)
Core Animation calls, 244-246
Core Animation transitions, 242-244
curl transitions, 246-247

transparency, animating transparency
changes in views, 237-238

tree data structures, converting XML data to,
577-582

troubleshooting
device orientation sensing, 602
enabling interactions, 160

TwitPic, uploading images to, 572-575
Twitter client example (push notifications),

681-685
Twitterrific, 814
two-item menu example (navigation

controllers), 192-193

U
UDIDs (unique device identifiers), 14
UIAcceleration class

locating “up,” 597-599
moving onscreen objects, 599-601

UIAccelerometerDelegate protocol, 597
UIAccessibility protocol, 802
UIActionSheet class, 145, 391, 394,

403-405
UIActivityIndicatorView class, 147, 406-407
UIAlertView class, 145, 391-394
UIApplication class, 35, 119
UIApplicationMain function, 20
UIBarButtonItem class, 145, 347
UIButton class, 145, 344-345, 351
UIControl class. See also controls

control events, 341-344
subclassing, 363-366
types of controls, 341

UIDatePicker class, 146, 487-490
UIDevice class, 119-121, 589-590

battery state, monitoring, 594-595
device orientation, detecting, 601-603
enabling/disabling proximity sensor,

596-597
extending for reachability, 547-549
retrieving IP and host information,

552-555
UIEdgeInsetsInsetRect() function, 231
UIImage class. See images
UIImageJPEGRepresentation() function, 270
UIImageOrientation class, 288-290
UIImagePickerController class, 148-150,

262-267, 638
UIImagePNGRepresentation() function, 270
UIImageView class, 144
UIImageWriteToSavedPhotosAlbum()

function, 268

851UIImageWriteToSavedPhotosAlbum() function

UILabel class, 144, 387
UINavigationBar class, 146
UINavigationController class, 30, 148-149,

187. See also navigation controllers
UINavigationItem class, 189-190
UIPageControl class, 146, 376-378
UIPasteboard class, 524
UIPickerView class, 146, 480-482
UIProgressView class, 147, 406-409
UIResponder class, 102
UIScreen class, 155
UIScrollView class, 144
UISearchBar class, 147, 464
UISearchDisplayController class, 464
UISegmentedControl class, 146,

193-195, 362
UISlider class, 146, 356-361
UISwitch class, 146, 354
UITabBar class, 147
UITabBarController class, 30, 149, 201
UITableView class, 30, 146, 423.

See also tables
UITableViewCellStyleDefault class, 433
UITableViewCellStyleSubtitle class, 433
UITableViewCellStyleValue1 class, 434
UITableViewCellStyleValue2 class, 434
UITableViewController class, 149, 424

font table example, 428
populating tables, 427
views, laying out, 424

UITextField class, 146
keyboards, dismissing, 366-369
text entry filtering, 374-376

UITextInputTraits protocol, 367
UITextView class, 144

keyboards, dismissing, 370-371
smart labels, 387-388
text editors, creating, 371-374

UIToolbar class, 147
UITouchPhaseBegan class, 302
UITouchPhaseCancelled class, 302
UITouchPhaseEnded class, 302
UITouchPhaseMoved class, 302
UITouchPhaseStationary class, 302
UIVideoEditorController class, 640
UIView class, 29, 143-144. See also views
UIViewController class, 29-30, 148
UIWebView class, 144

UIWindow class, 143-144
undo support

child-view undo support, 316
in Core Data, 775-778
creating undo managers, 316
custom undo routine, 318-319
navigation bars, 316-317
registering undos, 317-318
shake-controlled undo support,

319-320
in tables, 457-462

adding Undo/Redo buttons,
458-460

shake-to-edit, 458
in text editors, 371
Undo buttons, adding to tables,

458-460
undo managers, creating, 316

unique device identifiers (UDIDs), 14
University Developer Program, 3
unreliable mode, sending/receiving

data, 502
updating

application badges, 416-417
fetch requests (Core Data), 764
loadView method, 174

uploading
form data, 572-575
via POST requests, 569-572

uploads to App Store, debugging, 81-82
Urban Airship, 793
URL-based services, creating

adding handler method, 816-817
cross-promotion, 815
declaring URL, 815-816
implementing custom schemes, 818
overview, 814
responding to URL scheme requests,

818-819
returning control to calling

application, 817-818
service downsides, 815
URL schemes, 814-815

URLs
building, 136
loading images from, 259-260

user credentials, storing in keychain,
566-569

852 UILabel class

user defaults, checking, 813-814
user interface design. See interface design
user location annotations, 707-708
utilities, 10-11, 38

V
validating

receipts (StoreKit), 794-796
text entries, 374-376

variables, deallocating objects, 118
variadic arguments, 402-403
vibration, 9, 418-420
video

editing, 639-641
picking, 639-640
playing, 634-636
recording, 636-639

view callbacks, 216-217
view classes, 29-30
view controllers, 21-22, 147-148. See also

navigation controllers
adding, 170
address book controllers, 150
alerts, displaying, 190-191
arrays, loading, 198
custom modal controllers example,

199-201
editing implementation, 171-172
GKPeerPickerController class, 151
media player controllers, 151
MFMailComposeViewController

class, 150
root view controller, 156
table controllers, 149-150
UIImagePickerController class, 150
UINavigationController class, 148-149
UITabBarController class, 149
UIViewController class, 148

view-based applications, 38
viewing

locations
finding best location match,

704-707
overview, 703-704

object layout, 185
side-by-side code, 88

views, 143-144
adding media to, 184
animations

bouncing views, 248-250
building UIView animation blocks,

236-237
callbacks, 237
Core Animation calls, 244-246
Core Animation transitions,

242-244
curl transitions, 246-247
fading views in and out, 237-238
flipping views, 240-241
image view animations, 250-251
overview, 236
swapping views, 239-240

annotation views, 710-712
bounded views, moving randomly,

231-232
creating, 50
display and interaction traits, 235-236
displaying data, 144
draggable views, 304-305
editing, 44-45
fading in and out, 237-238
flipping, 240-241
frames

adjusting sizes, 225-226
CGRect structure, 223-224, 227
overview, 224-225
utility methods, 227-231

geometry
keyboards, 154-155
navigation bars/toolbars/tab bars,

153-154
status bar, 151-152
text fields, 155
UIScreen class, 155

main view, replacing, 159-160
making choices, 145
moving, 179-182
naming, 184, 219-222
picker views, 484-487
reflections

creating, 251-252
masking with Core Graphics,

253-255

853views

retrieving, 217-218
scroll views

creating multiimage paged scroll,
280-281

displaying images in scrollable view,
278-280

stacked views, 184
stretching, 349
subviews

adding, 216
querying, 214-215
removing, 216
reordering, 216
view callbacks, 216-217

swapping, 183, 239-240
table views, 424
tagging, 173-174, 217-218
temporary views, 198-199
touch-based painting, 321-323
touching, 303
transforming, 232

affine transform of UIView,
233-234

centering landscape views, 234-235
transitions

Core Animation calls, 244-246
Core Animation transitions,

242-244
curl transitions, 246-247

view geometry, 222-223
coordinate systems, 224
frame rectangles, 223-224
transforms, 224

view hierarchies, 211-212
recovering view hierarchy tree, 213
To Do List view hierarchy, 212-213

visualizing cell reuse, 445-446
Voice Chat (GameKit), 512-515
Voice Control, 799
VoiceOver accessibility

adding from code, 802-803
adding with Interface Builder, 799

enabling accessibility, 802
hints, 801
labels, 800-801
traits, 802

common VoiceOver gestures, 805-806

overview, 799
testing on iPhone, 803-806
testing with simulator, 803

volume alert, 420-421
Vulcano, Emanuele, 816

W
warnings, treating as errors, 98
Web servers, 582-586
Web sites, authentication challenges,

565-566
wheel tables, 480-484
WiFi connections, 528-537
window-based applications, 38
writing

collections to files, 135-136
photos to photo album, 268-270
strings to files, 127-128

WWDR intermediate certificate, 14

X–Y–Z
.xcdatamodel files, 758
Xcode

accessing SDKAPIs, 50-51
building custom buttons, 348-351
compiler directives, 73-76
debugger

breakpoints, 53-55
console, 55-57
customizing toolbars, 56-57
inspecting objects, 55
opening, 53
running, 53
zombies, 57

definition of, 4
projects

creating, 37-39
creating from scratch, 48-52
Detail pane, 41-42
editing views, 44-45
editor windows, 42
opening .xib files, 43-44
project files, list of, 43
project window, 40-41
running in simulator, 46

854 views

side-by-side code, viewing, 88
templates. See templates
toolbars, 385-386

Xcode identities, customizing, 85-86
Xcode Organizer. See Organizer
.xib files, 19

loading from code, 173-174
opening, 43-44

XML data, converting to tree data structures,
577-582

XMLParser class, 578

Yahoo Geocoding API, 717

zombies, enabling, 57

855zombies

	Preface
	16 Push Notifications
	Introducing Push Notifications
	Provisioning Push
	Registering Your Application
	Recipe: Push Client Skeleton
	Building Notification Payloads
	Recipe: Sending Notifications
	Recipe: Push in Action
	Feedback Service
	Designing for Push
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Y–Z

