

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed in initial capital letters
or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and con-
tent particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hart, Johnson M.
 Windows system programming / Johnson M. Hart.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-0-321-65774-9 (hardback : alk. paper)
 1. Application software—Development. 2. Microsoft Windows (Computer file). 3. Applica-
tion program interfaces (Computer software). I. Title.

 QA76.76.A65H373 2010
 005.3—dc22

2009046939

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-65774-9
ISBN-10: 0-321-65774-8
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, February 2010

xxvii

Preface

This book describes application development using the Microsoft Windows Appli-
cation Programming Interface (API), concentrating on the core system services,
including the file system, process and thread management, interprocess communi-
cation, network programming, and synchronization. The examples concentrate on
realistic scenarios, and in many cases they’re based on real applications I’ve en-
countered in practice.

The Win32/Win64 API, or the Windows API, is supported by Microsoft’s family
of 32-bit and 64-bit operating systems; versions currently supported and widely
used include Windows 7, XP, Vista, Server 2003, Server 2008, and CE. Older Win-
dows family members include Windows 2000, NT, Me, 98, and 95; these systems are
obsolete, but many topics in this book still apply to these older systems.

The Windows API is an important factor for application development, fre-
quently replacing the POSIX API (supported by UNIX and Linux) as the preferred
API for applications targeted at desktop, server, and embedded systems now and
for the indefinite future. Many programmers, regardless of experience level, need
to learn the Windows API quickly, and this book is designed for them to do so.

Objectives and Approach

The objectives I’ve set for the book are to explain what Windows is, show how to
use it in realistic situations, and do so as quickly as possible without burdening
you with unnecessary detail. This book is not a reference guide, but it explains the
central features of the most important functions and shows how to use them to-
gether in practical programming situations. Equipped with this knowledge, you
will be able to use the comprehensive Microsoft reference documentation to ex-
plore details, advanced options, and the more obscure functions as requirements
or interests dictate. I have found the Windows API easy to learn using this
approach and have greatly enjoyed developing Windows programs, despite
occasional frustration. This enthusiasm will show through at times, as it should.
This does not mean that I feel that Windows is necessarily better than other
operating system (OS) APIs, but it certainly has many attractive features and im-
proves significantly with each major new release.

Many Windows books spend a great deal of time explaining how processes, virtual
memory, interprocess communication, and preemptive scheduling work without
showing how to use them in realistic situations. A programmer experienced in UNIX,
Linux, IBM MVS, or another OS will be familiar with these concepts and will be

xxviii P R E F A C E

impatient to find out how they are implemented in Windows. Most Windows books
also spend a great deal of space on the important topic of user interface programming.
This book intentionally avoids the user interface, beyond discussing simple character-
based console I/O, in the interest of concentrating on the important core features.

I’ve taken the point of view that Windows is just an OS API, providing a well-
understood set of features. Many programmers, regardless of experience level,
need to learn Windows quickly. Furthermore, understanding the Windows API is
invaluable background for programmers developing for the Microsoft .NET
Framework.

The Windows systems, when compared with other systems, have good, bad,
and average features and quality. Recent releases (Windows 7, Vista, Server
2008) provide new features, such as condition variables, that both improve perfor-
mance and simplify programming. The purpose of this book is to show how to use
those features efficiently and in realistic situations to develop practical, high-
quality, and high-performance applications.

Audience

I’ve enjoyed receiving valuable input, ideas, and feedback from readers in all
areas of the target audience, which includes:

• Anyone who wants to learn about Windows application development quickly,
regardless of previous experience.

• Programmers and software engineers who want to port existing Linux or
UNIX (the POSIX API) applications to Windows. Frequently, the source code
must continue to support POSIX; that is, source code portability is a require-
ment. The book frequently compares Windows, POSIX, and standard C
library functions and programming models.

• Developers starting new projects who are not constrained by the need to port
existing code. Many aspects of program design and implementation are
covered, and Windows functions are used to create useful applications and to
solve common programming problems.

• Application architects and designers who need to understand Windows
capabilities and principles.

• Programmers using COM and the .NET Framework, who will find much of
the information here helpful in understanding topics such as dynamic link
libraries (DLLs), thread usage and models, interfaces, and synchronization.

• Computer science students at the upper-class undergraduate or beginning
graduate level in courses covering systems programming or application devel-

P R E F A C E xxix

opment. This book will also be useful to those who are learning multithreaded
programming or need to build networked applications. This book would be a
useful complementary text to a classic book such as Advanced Programming
in the UNIX Environment (by W. Richard Stevens and Stephen A. Rago) so
that students could compare Windows and UNIX. Students in OS courses will
find this book to be a useful supplement because it illustrates how a commer-
cially important OS provides essential functionality.

The only other assumption, implicit in all the others, is a knowledge of C or C++
programming.

Windows Progress Since the Previous Editions

The first edition of this book, titled Win32 System Programming, was published in
1997 and was updated with the second edition (2000) and the third edition (2004).
Much has changed, and much has stayed the same since these previous editions,
and Windows has been part of ongoing, rapid progress in computing technology.
The outstanding factors to me that explain the fourth edition changes are the
following:

• The Windows API is extremely stable. Programs written in 1997 continue to
run on the latest Windows releases, and Windows skills learned now or even
years ago will be valuable for decades to come.

• Nonetheless, the API has expanded, and there are new features and functions
that are useful and sometimes mandatory. Three examples of many that come
to mind and have been important in my work are (1) the ability to work easily
with large files and large, 64-bit address spaces, (2) thread pools, and (3) the
new condition variables that efficiently solve an important synchronization
problem.

• Windows scales from phones to handheld and embedded devices to laptops
and desktop systems and up to the largest servers.

• Windows has grown and scaled from the modest resources required in 1997
(16MB of RAM and 250MB of free disk space!) to operate efficiently on sys-
tems orders of magnitude larger and faster but often cheaper.

• 64-bit systems, multicore processors, and large file systems are common, and
our application programs must be able to exploit these systems. Frequently,
the programs must also continue to run on 32-bit systems.

xxx P R E F A C E

Changes in the Fourth Edition

This fourth edition presents extensive new material along with updates and reor-
ganization to keep up with recent progress and:

• Covers important new features in Windows 7, Vista, and Server 2008.

• Demonstrates example program operation and performance with screenshots.

• Describes and illustrates techniques to assure that relevant applications scale
to run on 64-bit systems and can use large files. Enhancements throughout
the book address this issue.

• Eliminates discussion of Windows 95, 98, and Me (the “Windows 9x” family), as
well as NT and other obsolete systems. Program examples freely exploit features
supported only in current Windows versions.

• Provides enhanced coverage of threads, synchronization, and parallelism, in-
cluding performance, scalability, and reliability considerations.

• Emphasizes the important role and new features of Windows servers running
high-performance, scalable, multithreaded applications.

• Studies performance implications of different program designs, especially in file
access and multithreaded applications with synchronization and parallel
programs running on multicore systems.

• Addresses source code portability to assure operation on Windows, Linux, and
UNIX systems. Appendix B is enhanced from the previous versions to help
those who need to build code, usually for server applications, that will run on
multiple target platforms.

• Incorporates large quantities of excellent reader and reviewer feedback to fix
defects, improve explanations, improve the organization, and address
numerous details, large and small.

Organization

Chapters are organized topically so that the features required in even a single-
threaded application are covered first, followed by process and thread management
features, and finally network programming in a multithreaded environment. This
organization allows you to advance logically from file systems to memory manage-
ment and file mapping, and then to processes, threads, and synchronization, fol-
lowed by interprocess and network communication and security. This organization
also allows the examples to evolve in a natural way, much as a developer might cre-

P R E F A C E xxxi

ate a simple prototype and then add additional capability. The advanced features,
such as asynchronous I/O and security, appear last.

Within each chapter, after introducing the functionality area, such as process
management or memory-mapped files, we discuss important Windows functions
and their relationships in detail. Illustrative examples follow. Within the text, only
essential program segments are listed; complete projects, programs, include files,
utility functions, and documentation are on the book’s Web site (www.jmhartsoft-
ware.com). Throughout, we identify those features supported only by current Win-
dows versions. Each chapter suggests related additional reading and gives some
exercises. Many exercises address interesting and important issues that did not fit
within the normal text, and others suggest ways for you to explore advanced or spe-
cialized topics.

Chapter 1 is a high-level introduction to the Windows OS family and
Windows. A simple example program shows the basic elements of Windows
programming style and lays the foundation for more advanced Windows features.
Win64 compatibility issues are introduced in Chapter 1 and are included
throughout the book.

Chapters 2 and 3 deal with file systems, console I/O, file locking, and directory
management. Unicode, the extended character set used by Windows, is also
introduced in Chapter 2. Examples include sequential and direct file processing,
directory traversal, and management. Chapter 3 ends with a discussion of
registry management programming, which is analogous in many ways to file and
directory management.

Chapter 4 introduces Windows exception handling, including Structured
Exception Handling (SEH), which is used extensively throughout the book. By
introducing it early, we can use SEH throughout and simplify some programming
tasks and improve quality. Vectored exception handling is also described.

Chapter 5 treats Windows memory management and shows how to use
memory-mapped files both to simplify programming and to improve performance.
This chapter also covers DLLs. An example compares memory-mapped file access
performance and scalability to normal file I/O on both 32-bit and 64-bit systems.

Chapter 6 introduces Windows processes, process management, and simple
process synchronization. Chapter 7 then describes thread management in similar
terms and introduces parallelism to exploit multiprocessor systems. Examples in
each chapter show the many benefits of using threads and processes, including
program simplicity and performance.

Chapters 8, 9, and 10 give an extended, in-depth treatment of Windows thread
synchronization, thread pools, and performance considerations. These topics are
complex, and the chapters use extended examples and well-understood models to
help you obtain the programming and performance benefits of threads while
avoiding the numerous pitfalls. New material covers new functionality along with

www.jmhartsoftware.com
www.jmhartsoftware.com

xxxii P R E F A C E

performance and scalability issues, which are important when building server-
based applications, including those that will run on multiprocessor systems.

Chapters 11 and 12 are concerned with interprocess and interthread
communication and networking. Chapter 11 concentrates on the features that are
properly part of Windows—namely, anonymous pipes, named pipes, and
mailslots. Chapter 12 discusses Windows Sockets, which allow interoperability
with non-Windows systems using industry-standard protocols, primarily TCP/IP.
Windows Sockets, while not strictly part of the Windows API, provide for network
and Internet communication and interoperability, and the subject matter is
consistent with the rest of the book. A multithreaded client/server system
illustrates how to use interprocess communication along with threads.

Chapter 13 describes how Windows allows server applications, such as the
ones created in Chapters 11 and 12, to be converted to Windows Services that can
be managed as background servers. Some small programming changes will turn
the servers into services.

Chapter 14 shows how to perform asynchronous I/O using overlapped I/O with
events and completion routines. You can achieve much the same thing with threads,
so examples compare the different solutions for simplicity and performance. In par-
ticular, as of Windows Vista, completion routines provide very good performance.
The closely related I/O completion ports are useful for some scalable multithreaded
servers, so this feature is illustrated with the server programs from earlier chap-
ters. The final topic is waitable timers, which require concepts introduced earlier in
the chapter.

Chapter 15 briefly explains Windows object security, showing, in an example,
how to emulate UNIX-style file permissions. Additional examples shows how to
secure processes, threads, and named pipes. Security upgrades can then be
applied to the earlier examples as appropriate.

There are three appendixes. Appendix A describes the example code that you
can download from the book’s Web site (www.jmhartsoftware.com). Appendix B
shows how to create source code that can also be built to run on POSIX (Linux and
UNIX) systems; this requirement is common with server applications and organi-
zations that need to support systems other than just Windows. Appendix C com-
pares the performance of alternative implementations of some of the text
examples so that you can gauge the trade-offs between Windows features, both ba-
sic and advanced.

UNIX and C Library Notes and Tables

Within the text at appropriate points, we contrast Windows style and functional-
ity with the comparable POSIX (UNIX and Linux) and ANSI Standard C library
features. Appendix B reviews source code portability and also contains a table list-

www.jmhartsoftware.com

P R E F A C E xxxiii

ing these comparable functions. This information is included for two principal rea-
sons:

• Many people are familiar with UNIX or Linux and are interested in the com-
parisons between the two systems. If you don’t have a UNIX/Linux back-
ground, feel free to skip those paragraphs in the text, which are indented and
set in a smaller font.

• Source code portability is important to many developers and organizations.

Examples

The examples are designed to:

• Illustrate common, representative, and useful applications of the Windows
functions.

• Correspond to real programming situations encountered in program develop-
ment, consulting, and training. Some of my clients and course participants have
used the code examples as the bases for their own systems. During consulting
activities, I frequently encounter code that is similar to that used in the
examples, and on several occasions I have seen code taken directly or modified
from previous editions. (Feel free to do so yourself; an acknowledgment in your
documentation would be greatly appreciated.) Frequently, this code occurs as
part of COM, .NET, or C++ objects. The examples, subject to time and space con-
straints, are “real-world” examples and solve “real-world” problems.

• Emphasize how the functions actually behave and interact, which is not
always as you might first expect after reading the documentation. Throughout
this book, the text and the examples concentrate on interactions between
functions rather than on the functions themselves.

• Grow and expand, both adding new capability to a previous solution in a
natural manner and exploring alternative implementation techniques.

• Implement UNIX/Linux commands, such as , , , and ,
showing the Windows functions in a familiar context while creating a useful
set of utilities.1 Different implementations of the same command also give us

1 Several commercial and open source products provide complete sets of UNIX/Linux utilities; there is
no intent to supplement them. These examples, although useful, are primarily intended to illustrate
Windows usage. Anyone unfamiliar with UNIX or Linux should not, however, have any difficulty un-
derstanding the programs or their functionality.

xxxiv P R E F A C E

an easy way to compare performance benefits available with advanced
Windows features. Appendix C contains the performance test results.

Examples in the early chapters are usually short, but the later chapters
present longer examples when appropriate.

Exercises at the end of each chapter suggest alternative designs, subjects for
investigation, and additional functionality that is important but beyond the book’s
scope. Some exercises are easy, and a few are very challenging. Frequently, clearly
labeled defective solutions are provided, because fixing the bugs is an excellent
way to sharpen skills.

All examples have been debugged and tested under Windows 7, Vista, Server
2008, XP, and earlier systems. Testing included 32-bit and 64-bit versions. All
programs were also tested on both single-processor and multiprocessor systems
using as many as 16 processors. The client/server applications have been tested
using multiple clients simultaneously interacting with a server. Nonetheless,
there is no guarantee or assurance of program correctness, completeness, or
fitness for any purpose. Undoubtedly, even the simplest examples contain defects
or will fail under some conditions; such is the fate of nearly all software. I will,
however, gratefully appreciate any messages regarding program defects—and,
better still, fixes, and I’ll post this information on the book’s Web site so that
everyone will benefit.

The Web Site

The book’s Web site (www.jmhartsoftware.com) contains a downloadable Exam-
ples file with complete code and projects for all the book’s examples, a number of
exercise solutions, alternative implementations, instructions, and performance
evaluation tests. This material will be updated periodically to include new mate-
rial and corrections.

The Web site also contains book errata, along with additional examples,
reader contributions, additional explanations, and much more. The site also con-
tains PowerPoint slides that can be used for noncommercial instructional pur-
poses. I’ve used these slides numerous times in professional training courses, and
they are also suitable for college courses.

The material will be updated as required when defects are fixed and as new
input is received. If you encounter any difficulties with the programs or any
material in the book, check these locations first because there may already be a fix
or explanation. If that does not answer your question, feel free to send e-mail to

 or .

www.jmhartsoftware.com

P R E F A C E xxxv

Acknowledgments

Numerous people have provided assistance, advice, and encouragement during the
fourth edition’s preparation, and readers have provided many important ideas and
corrections. The Web site acknowledges the significant contributions that have
found their way into the fourth edition, and the first three editions acknowledge
earlier valuable contributions. See the Web site for a complete list.

Three reviewers deserve the highest possible praise and thanks for their
incisive comments, patience, excellent suggestions, and deep expertise. Chris Sells,
Jason Beres, and especially Raymond Chen made contributions that improved the
book immeasurably. To the best of my ability, I’ve revised the text to address their
points and invaluable input.

Numerous friends and colleagues also deserve a note of special thanks; I’ve
learned a lot from them over the years, and many of their ideas have found their
way into the book in one way or another. They’ve also been generous in providing
access to test systems. In particular, I’d like to thank my friends at Sierra Atlantic,
Cilk Arts (now part of Intel), Vault USA, and Rimes Technologies.

Anne H. Smith, the compositor, used her skill, persistence, and patience to
prepare this new edition for publication; the book simply would not have been pos-
sible without her assistance. Anne and her husband, Kerry, also have generously
tested the sample programs on their equipment.

The staff at Addison-Wesley exhibited the professionalism and expertise that
make an author’s work a pleasure. Joan Murray, the editor, and Karen Gettman,
the editor-in-chief, worked with the project from the beginning making sure that
no barriers got in the way and assuring that hardly any schedules slipped. Olivia
Basegio, the editorial assistant, managed the process throughout, and John Fuller
and Elizabeth Ryan from production made the production process seem almost
simple. Anna Popick, the project editor, guided the final editing steps and
schedule. Carol Lallier and Lori Newhouse, the copy editor and proofreader, made
valuable contributions to the book’s readability and consistency.

Johnson (John) M. Hart
jmhart62@gmail.com

December, 2009

181

C H A P T E R

6 Process
Management

A process contains its own independent virtual address space with both code and
data, protected from other processes. Each process, in turn, contains one or more
independently executing threads. A thread running within a process can execute
application code, create new threads, create new independent processes, and man-
age communication and synchronization among the threads.

By creating and managing processes, applications can have multiple, concur-
rent tasks processing files, performing computations, or communicating with
other networked systems. It is even possible to improve application performance
by exploiting multiple CPU processors.

This chapter explains the basics of process management and also introduces
the basic synchronization operations and wait functions that will be important
throughout the rest of the book.

Windows Processes and Threads

Every process contains one or more threads, and the Windows thread is the basic
executable unit; see the next chapter for a threads introduction. Threads are
scheduled on the basis of the usual factors: availability of resources such as CPUs
and physical memory, priority, fairness, and so on. Windows has long supported
multiprocessor systems, so threads can be allocated to separate processors within
a computer.

From the programmer’s perspective, each Windows process includes resources
such as the following components:

• One or more threads.

• A virtual address space that is distinct from other processes’ address spaces.
Note that shared memory-mapped files share physical memory, but the shar-
ing processes will probably use different virtual addresses to access the
mapped file.

182 C H A P T E R 6 P R O C E S S M A N A G E M E N T

• One or more code segments, including code in DLLs.

• One or more data segments containing global variables.

• Environment strings with environment variable information, such as the
current search path.

• The process heap.

• Resources such as open handles and other heaps.

Each thread in a process shares code, global variables, environment strings,
and resources. Each thread is independently scheduled, and a thread has the
following elements:

• A stack for procedure calls, interrupts, exception handlers, and automatic
storage.

• Thread Local Storage (TLS)—An arraylike collection of pointers giving each
thread the ability to allocate storage to create its own unique data environ-
ment.

• An argument on the stack, from the creating thread, which is usually unique
for each thread.

• A context structure, maintained by the kernel, with machine register values.

Figure 6–1 shows a process with several threads. This figure is schematic and
does not indicate actual memory addresses, nor is it drawn to scale.

This chapter shows how to work with processes consisting of a single thread.
Chapter 7 shows how to use multiple threads.

Note: Figure 6–1 is a high-level overview from the programmer’s perspective.
There are numerous technical and implementation details, and interested readers
can find out more in Russinovich, Solomon, and Ionescu, Windows Internals: In-
cluding Windows Server 2008 and Windows Vista.

A UNIX process is comparable to a Windows process.

Threads, in the form of POSIX Pthreads, are now nearly universally available and
used in UNIX and Linux. Pthreads provides features similar to Windows threads,
although Windows provides a broader collection of functions.

Vendors and others have provided various thread implementations for many
years; they are not a new concept. Pthreads is, however, the most widely used
standard, and proprietary implementations are long obsolete. There is an open
source Pthreads library for Windows.

P R O C E S S C R E A T I O N 183

Process Creation

The fundamental Windows process management function is ,
which creates a process with a single thread. Specify the name of an executable
program file as part of the call.

It is common to speak of parent and child processes, but Windows does not ac-
tually maintain these relationships. It is simply convenient to refer to the process
that creates a child process as the parent.

Figure 6–1 A Process and Its Threads

184 C H A P T E R 6 P R O C E S S M A N A G E M E N T

 has 10 parameters to support its flexibility and power.
Initially, it is simplest to use default values. Just as with , it is
appropriate to explain all the parameters. Related functions are
then easier to understand.

Note first that the function does not return a ; rather, two separate
handles, one each for the process and the thread, are returned in a structure spec-
ified in the call. creates a new process with a single primary
thread (which might create additional threads). The example programs are al-
ways very careful to close both of these handles when they are no longer needed in
order to avoid resource leaks; a common defect is to neglect to close the thread
handle. Closing a thread handle, for instance, does not terminate the thread; the

 function only deletes the reference to the thread within the process
that called .

Parameters

Some parameters require extensive explanations in the following sections, and
many are illustrated in the program examples.

 and (this is an and not an
) together specify the executable program and the command line

arguments, as explained in the next section.
 and point to the process and thread security at-

tribute structures. values imply default security and will be used until
Chapter 15, which covers Windows security.

Return: only if the process and thread are successfully
created.

P R O C E S S C R E A T I O N 185

 indicates whether the new process inherits copies of the
calling process’s inheritable open handles (files, mappings, and so on). Inherited
handles have the same attributes as the originals and are discussed in detail in a
later section.

 combines several flags, including the following.

• indicates that the primary thread is in a suspended state
and will run only when the program calls .

• and are mutually exclusive;
don’t set both. The first flag creates a process without a console, and the
second flag gives the new process a console of its own. If neither flag is set, the
process inherits the parent’s console.

• should be set if is defined.

• specifies that the new process is the root of a
new process group. All processes in a group receive a console control signal
(or) if they all share the same console. Console control
handlers were described in Chapter 4 and illustrated in Program 4–5. These
process groups have limited similarities to UNIX process groups and are
described later in the “Generating Console Control Events” section.

Several of the flags control the priority of the new process’s threads. The possi-
ble values are explained in more detail at the end of Chapter 7. For now, just use
the parent’s priority (specify nothing) or .

 points to an environment block for the new process. If ,
the process uses the parent’s environment. The environment block contains name
and value strings, such as the search path.

 specifies the drive and directory for the new process. If , the
parent’s working directory is used.

 is complex and specifies the main window appearance and
standard device handles for the new process. We’ll use two principal techniques to
set the start up information. Programs 6–1, 6–2, 6–3, and others show the proper
sequence of operations, which can be confusing.

• Use the parent’s information, which is obtained from .

• First, clear the associated structure before calling
, and then specify the standard input, output, and error handles by set-

ting the standard handler fields (, ,
and). For this to be effective, also set another mem-
ber, , to , and set all the handles that the
child process will require. Be certain that the handles are inheritable and that

186 C H A P T E R 6 P R O C E S S M A N A G E M E N T

the flag is set. The “Inheritable Han-
dles” subsection gives more information.

 specifies the structure for containing the returned process, thread
handles, and identification. The structure is as follows:

Why do processes and threads need handles in addition to IDs? The ID is
unique to the object for its entire lifetime and in all processes, although the ID is
invalid when the process or thread is destroyed and the ID may be reused. On the
other hand, a given process may have several handles, each having distinct at-
tributes, such as security access. For this reason, some process management func-
tions require IDs, and others require handles. Furthermore, process handles are
required for the general-purpose, handle-based functions. Examples include the
wait functions discussed later in this chapter, which allow waiting on handles for
several different object types, including processes. Just as with file handles, pro-
cess and thread handles should be closed when no longer required.

Note: The new process obtains environment, working directory, and other in-
formation from the call. Once this call is complete, any changes
in the parent will not be reflected in the child process. For example, the parent
might change its working directory after the call, but the child
process working directory will not be affected unless the child changes its own
working directory. The two processes are entirely independent.

The UNIX/Linux and Windows process models are considerably different. First,
Windows has no equivalent to the UNIX function, which makes a copy of the
parent, including the parent’s data space, heap, and stack. is difficult to
emulate exactly in Windows, and while this may seem to be a limitation, is
also difficult to use in a multithreaded UNIX program because there are numer-
ous problems with creating an exact replica of a multithreaded program with ex-
act copies of all threads and synchronization objects, especially on a
multiprocessor computer. Therefore, , by itself, is not really appropriate in
any multithreaded application.

P R O C E S S C R E A T I O N 187

 is, however, similar to the common UNIX sequence of successive
calls to and (or one of five other functions). In contrast to
Windows, the search directories in UNIX are determined entirely by the
environment variable.

As previously mentioned, Windows does not maintain parent-child relationships
among processes. Thus, a child process will continue to run after the creating par-
ent process terminates. Furthermore, there are no UNIX-style process groups in
Windows. There is, however, a limited form of process group that specifies all the
processes to receive a console control event.

Windows processes are identified both by handles and by process IDs, whereas
UNIX has no process handles.

Specifying the Executable Image and the Command Line

Either or specifies the executable image
name. Usually, only is specified, with be-
ing . Nonetheless, there are detailed rules for .

• If is not , it specifies the executable module.
Specify the full path and file name, or use a partial name and the current
drive and directory will be used; there is no additional searching. Include the
file extension, such as or , in the name. This is not a command line,
and it should not be enclosed with quotation marks.

• If the string is , the first white-space-delimited
token in is the program name. If the name does not contain a
full directory path, the search sequence is as follows:

1. The directory of the current process’s image

2. The current directory

3. The Windows system directory, which can be retrieved with

4. The Windows directory, which is retrievable with

5. The directories as specified in the environment variable

The new process can obtain the command line using the usual
mechanism, or it can invoke to obtain the command line as a
single string.

Notice that the command line is not a constant string. A program could modify
its arguments, although it is advisable to make any changes in a copy of the
argument string.

It is not necessary to build the new process with the same UNICODE defini-
tion as that of the parent process. All combinations are possible. Using as

188 C H A P T E R 6 P R O C E S S M A N A G E M E N T

described in Chapter 2 is helpful in developing code for either Unicode or ASCII
operation.

Inheritable Handles

Frequently, a child process requires access to an object referenced by a handle in
the parent; if this handle is inheritable, the child can receive a copy of the parent’s
open handle. The standard input and output handles are frequently shared with
the child in this way, and Program 6-1 is the first of several examples. To make a
handle inheritable so that a child receives and can use a copy requires several
steps.

• The flag on the call determines whether
the child process will inherit copies of the inheritable handles of open files,
processes, and so on. The flag can be regarded as a master switch applying to
all handles.

• It is also necessary to make an individual handle inheritable, which is not the
default. To create an inheritable handle, use a struc-
ture at creation time or duplicate an existing handle.

• The structure has a flag, , that
should be set to . Also, set to .

The following code segment shows how to create an inheritable file or other
handle. In this example, the security descriptor within the security attributes
structure is ; Chapter 15 shows how to include a security descriptor.

A child process still needs to know the value of an inheritable handle, so the
parent needs to communicate handle values to the child using an interprocess
communication (IPC) mechanism or by assigning the handle to standard I/O in
the structure, as in the next example (Program 6–1) and in several
additional examples throughout the book. This is generally the preferred

P R O C E S S C R E A T I O N 189

technique because it allows I/O redirection in a standard way and no changes are
needed in the child program.

Alternatively, nonfile handles and handles that are not used to redirect standard
I/O can be converted to text and placed in a command line or in an environment
variable. This approach is valid if the handle is inheritable because both parent and
child processes identify the handle with the same handle value. Exercise 6–2 suggests
how to demonstrate this, and a solution is presented in the Examples file.

The inherited handles are distinct copies. Therefore, a parent and child might
be accessing the same file using different file pointers. Furthermore, each of the
two processes can and should close its own handle.

Figure 6–2 shows how two processes can have distinct handle tables with two dis-
tinct handles associated with the same file or other object. Process 1 is the parent, and
Process 2 is the child. The handles will have identical values in both processes if the
child’s handle has been inherited, as is the case with Handles 1 and 3.

On the other hand, the handle values may be distinct. For example, there are
two handles for File D, where Process 2 obtained a handle by calling
rather than by inheritance. Also, as is the case with Files B and E, one process
may have a handle to an object while the other does not. This would be the case
when the child process creates the handle. Finally, while not shown in the figure, a
process can have multiple handles to refer to the same object.

Figure 6–2 Process Handle Tables

Parent

Process 1’s

Object Table

Child

Process 2’s

Object Table

File A

File B

File C

File D

File E

Handle 1

Handle 2

Handle 3

Handle 4

Inheritable Inherited Handle 1

Handle 2

Handle 3

Handle 4CreateFile

CreateFile

Inherited

Not Inheritable

Not Inheritable

Inheritable

190 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Process Identities

A process can obtain the identity and handle of a new child process from the
 structure. Closing the child handle does not, of course,

destroy the child process; it destroys only the parent’s access to the child. A pair of
functions obtain current process identification.

 actually returns a pseudohandle and is not inheritable.
This value can be used whenever a process needs its own handle. You create a real
process handle from a process ID, including the one returned by

, by using the function. As is the case with all sharable
objects, the open call will fail if you do not have sufficient security rights.

Parameters

 determines the handle’s access to the process. Some of the
values are as follows.

• —This flag enables processes to wait for the process to
terminate using the wait functions described later in this chapter.

• —All the access flags are set.

• —It is possible to terminate the process with the
 function.

• —The handle can be used by
 and to obtain process information.

Return: A process handle, or on failure

D U P L I C A T I N G H A N D L E S 191

 specifies whether the new process handle is inheritable.
 is the identifier of the process to be opened, and the returned

process handle will reference this process.
Finally, a running process can determine the full pathname of the executable

used to run it with or , using a
 value for the parameter. A call with a non-null value will

return the DLL’s file name, not that of the file that uses the DLL.

Duplicating Handles

The parent and child processes may require different access to an object identified
by a handle that the child inherits. A process may also need a real, inheritable
process handle—rather than the pseudohandle produced by

—for use by a child process. To address this issue, the parent process can
create a duplicate handle with the desired access and inheritability. Here is the
function to duplicate handles:

Upon completion, receives a copy of the original handle,
. is a handle in the process indicated by

 and must have access;
 will fail if the source handle does not exist in the source process.

The new handle, which is pointed to by , is valid in the target pro-
cess, . Note that three processes are involved, including the
calling process. Frequently, these target and source processes are the calling process,
and the handle is obtained from . Also notice that it is possible,
but generally not advisable, to create a handle in another process; if you do this, you
then need a mechanism for informing the other process of the new handle’s identity.

 can be used for any handle type.

192 C H A P T E R 6 P R O C E S S M A N A G E M E N T

If is not overridden by in
, it has many possible values (see MSDN).

 is any combination of two flags.

• causes the source handle to be closed and can be
specified if the source handle is no longer useful. This option also assures that
the reference count to the underlying file (or other object) remains constant.

• uses the access rights of the duplicated handle,
and is ignored.

Reminder: The Windows kernel maintains a reference count for all objects;
this count represents the number of distinct handles referring to the object. This
count is not available to the application program. An object cannot be destroyed
(e.g., deleting a file) until the last handle is closed and the reference count
becomes zero. Inherited and duplicate handles are both distinct from the original
handles and are represented in the reference count. Program 6–1, later in the
chapter, uses inheritable handles.

Next, we learn how to determine whether a process has terminated.

Exiting and Terminating a Process

After a process has finished its work, the process (actually, a thread running in
the process) can call with an exit code.

This function does not return. Rather, the calling process and all its threads
terminate. Termination handlers are ignored, but there will be detach calls to

 (see Chapter 5). The exit code is associated with the process. A
from the main program, with a return value, will have the same effect as calling

 with the return value as the exit code.
Another process can use to determine the exit code.

E X I T I N G A N D T E R M I N A T I N G A P R O C E S S 193

The process identified by must have
 access (see , discussed earlier). points to the

 that receives the value. One possible value is , meaning that
the process has not terminated.

Finally, one process can terminate another process if the handle has
 access. The terminating function also specifies the exit code.

Caution: Before exiting from a process, be certain to free all resources that
might be shared with other processes. In particular, the synchronization resources
of Chapter 8 (mutexes, semaphores, and events) must be treated carefully. SEH
(Chapter 4) can be helpful in this regard, and the call can be in the
handler. However, and handlers are not executed when

 is called, so it is not a good idea to exit from inside a program.
 is especially risky because the terminated process will not

have an opportunity to execute its SEH or DLL functions. Console
control handlers (Chapter 4 and later in this chapter) are a limited alternative,
allowing one process to send a signal to another process, which can then shut
itself down cleanly.

Program 6–3 shows a technique whereby processes cooperate. One process
sends a shutdown request to a second process, which proceeds to perform an
orderly shutdown.

UNIX processes have a process ID, or , comparable to the Windows process ID.
 is similar to , but there are no Windows

equivalents to and because Windows has no process parents or
UNIX-like groups.

Conversely, UNIX does not have process handles, so it has no functions compara-
ble to or .

194 C H A P T E R 6 P R O C E S S M A N A G E M E N T

UNIX allows open file descriptors to be used after an if the file descriptor
does not have the flag set. This applies only to file descriptors,
which are then comparable to inheritable file handles.

UNIX , actually in the C library, is similar to ; to terminate
another process, signal it with .

Waiting for a Process to Terminate

The simplest, and most limited, method to synchronize with another process is to
wait for that process to complete. The general-purpose Windows wait functions in-
troduced here have several interesting features.

• The functions can wait for many different types of objects; process handles are
just the first use of the wait functions.

• The functions can wait for a single process, the first of several specified
processes, or all processes in a collection to complete.

• There is an optional time-out period.

The two general-purpose wait functions wait for synchronization objects to
become signaled. The system sets a process handle, for example, to the signaled
state when the process terminates or is terminated. The wait functions, which will
get lots of future use, are as follows:

Return: The cause of the wait completion, or for an
error (use for more information).

E N V I R O N M E N T B L O C K S A N D S T R I N G S 195

Specify either a single process handle () or an array of distinct object
handles in the array referenced by . , the size of the array,
should not exceed (defined as 64 in).

 is the time-out period in milliseconds. A value of 0 means
that the function returns immediately after testing the state of the specified
objects, thus allowing a program to poll for process termination. Use
for no time-out to wait until a process terminates.

, a parameter of the second function, specifies (if) that it is
necessary to wait for all processes, rather than only one, to terminate.

The possible successful return values for this function are as follows.

• means that the handle is signaled in the case of
 or all objects are simultaneously signaled in the

special case of with set to .

• , where ≤ . Subtract
from the return value to determine which process terminated when waiting
for any of a collection of processes to terminate. If several handles are sig-
naled, the returned value is the minimum of the signaled handle indices.

 is a possible base value when using mutex handles; see
Chapter 8.

• indicates that the time-out period elapsed before the wait
could be satisfied by signaled handle(s).

• indicates that the call failed; for example, the handle may not
have access.

• is not possible with processes. This value is discussed in
Chapter 8 along with mutex handles.

Determine the exit code of a process using , as
described in the preceding section.

Environment Blocks and Strings

Figure 6–1 includes the process environment block. The environment block
contains a sequence of strings of the form

196 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Each environment string, being a string, is -terminated, and the entire
block of strings is itself -terminated. is one example of a commonly
used environment variable.

To pass the parent’s environment to a child process, set to
 in the call. Any process, in turn, can interrogate or modify

its environment variables or add new environment variables to the block.
The two functions used to get and set variables are as follows:

 is the variable name. On setting a value, the variable is added to the
block if it does not exist and if the value is not . If, on the other hand, the
value is , the variable is removed from the block. The “ ” character cannot
appear in an environment variable name, since it’s used as a separator.

There are additional requirements. Most importantly, the environment block
strings must be sorted alphabetically by name (case-insensitive, Unicode order).
See MSDN for more details.

 returns the length of the value string, or on
failure. If the buffer is not long enough, as indicated by , then
the return value is the number of characters actually required to hold the complete
string. Recall that (Chapter 2) uses a similar mechanism.

Process Security

Normally, gives rights. There are, however,
several specific rights, including , ,

, , , and
. In particular, it can be useful to limit rights

to the parent process given the frequently mentioned dangers of terminating a run-
ning process. Chapter 15 describes security attributes for processes and other objects.

UNIX waits for process termination using and , but there are no
time-outs even though can poll (there is a nonblocking option). These
functions wait only for child processes, and there is no equivalent to the multiple

E X A M P L E : P A R A L L E L P A T T E R N S E A R C H I N G 197

wait on a collection of processes, although it is possible to wait for all processes in
a process group. One slight difference is that the exit code is returned with
and , so there is no need for a separate function equivalent to

.

UNIX also supports environment strings similar to those in Windows. (in
the C library) has the same functionality as except
that the programmer must be sure to have a sufficiently large buffer. ,

, and (not in the C library) are different ways to add, change,
and remove variables and their values, with functionality equivalent to

.

Example: Parallel Pattern Searching

Now is the time to put Windows processes to the test. This example, ,
creates processes to search for patterns in files, one process per search file. The
simple pattern search program is modeled after the UNIX utility, although
the technique would apply to any program that uses standard output. The search
program should be regarded as a black box and is simply an executable program
to be controlled by a parent process; however, the project and executable
() are in the Examples file.

The command line to the program is of the form

The program, Program 6–1, performs the following processing:

• Each input file, to , is searched using a separate process running the
same executable. The program creates a command line of the form

.

• The temporary file handle, specified to be inheritable, is assigned to the
 field in the new process’s start-up information structure.

• Using , the program waits for all search processes
to complete.

• As soon as all searches are complete, the results (temporary files) are
displayed in order, one at a time. A process to execute the utility (Program
2–3) outputs the temporary file.

• is limited to (64) han-
dles, so the program calls it multiple times.

• The program uses the process exit code to determine whether a specific
process detected the pattern.

198 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Figure 6–3 shows the processing performed by Program 6–1, and Run 6–1 shows
program execution and timing results.

Program 6–1 Parallel Searching

Figure 6–3 File Searching Using Multiple Processes

Parent Process

ExitProcess

grep pattern argv [3]

argv [1], argv [2], ..., argv [N+1]

for (i = 1; i <= N; i++) {
StartUp.hStdOut =

CreateFile (Temp [i])
CreateProcess (grep pattern

argv [i+1])
}

WaitForMultipleObjects;

···

/* Display search results */

for (i = 1; i <= N; i++) {
CreateProcess (cat Temp [i])
WaitForSingleObject;

}
ExitProcess

grep pattern argv

ExitProcess

grep pattern argv [2]

ExitProcess

·
·
·

All Searches

Complete

[N+1]

E X A M P L E : P A R A L L E L P A T T E R N S E A R C H I N G 199

200 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Run 6–1 Parallel Searching

P R O C E S S E S I N A M U L T I P R O C E S S O R E N V I R O N M E N T 201

Run 6–1 shows execution for large and small files, and the run con-
trasts sequential execution with parallel execution to perform the
same task. The test computer has four processors; a single or dual processor com-
puter will give different timing results. Notes after the run explain the test opera-
tion and results.

Run 6–1 uses files and obtains results as follows:

• The small file test searches two Examples files, and
, which contain names of U.S. presidents and English monarchs,

along with their dates of birth, death, and term in office. The “i” at the right
end of each line is a visual cue and has no other meaning. The same is true of
the “x” at the end of the -generated files.

• The large file test searches four -generated files, each with 10 mil-
lion 64-byte records. The search is for a specific record number (), and
each file has a different random key (the first 8 bytes).

• is more than four times faster than four sequential executions
(Real Time is 15 seconds compared to 77 seconds), so the multiple processes
gain even more performance than expected, despite the process creation over-
head.

• is Program 6–2, the next example. Notice, however, that the
system time is zero, as the time applies to itself, not the grep pro-
cesses that it creates.

Processes in a Multiprocessor Environment

In Program 6–1, the processes and their primary (and only) threads run almost
totally independently of one another. The only dependence is created at the end of
the parent process as it waits for all the processes to complete so that the output
files can be processed sequentially. Therefore, the Windows scheduler can and will
run the process threads concurrently on the separate processors of a multiprocessor
computer. As Run 6–1 shows, this can result in substantial performance improve-
ment when performance is measured as elapsed time to execute the program, and
no explicit program actions are required to get the performance improvement.

The performance improvement is not linear in terms of the number of proces-
sors due to overhead costs and the need to output the results sequentially. None-
theless, the improvements are worthwhile and result automatically as a
consequence of the program design, which delegates independent computational
tasks to independent processes.

It is possible, however, to constrain the processes to specific processors if you
wish to be sure that other processors are free to be allocated to other critical tasks.

202 C H A P T E R 6 P R O C E S S M A N A G E M E N T

This can be accomplished using the processor affinity mask (see Chapter 9) for a
process or thread.

Finally, it is possible to create independent threads within a process, and
these threads will also be scheduled on separate processors. Chapter 7 describes
threads and related performance issues.

Process Execution Times

You can determine the amount of time that a process has consumed (elapsed, ker-
nel, and user times) using the function.

The process handle can refer to a process that is still running or to one that
has terminated. Elapsed time can be computed by subtracting the creation time
from the exit time, as shown in the next example. The type is a 64-bit
item; create a union with a to perform the subtraction.

Chapter 3’s example showed how to convert and display file times, al-
though the kernel and user times are elapsed times rather than calendar times.

 is similar and requires a thread handle for a parameter.

Example: Process Execution Times

The next example (Program 6–2) implements the familiar (time print) util-
ity that is similar to the UNIX command (is supported by the Windows
command prompt, so a different name is appropriate). prints elapsed (or
real), user, and system times.

This program uses , a Windows function that returns the
complete command line as a single string rather than individual strings.

The program also uses a utility function, , to scan the command line
and skip past the executable name. is in the Examples file.

E X A M P L E : P R O C E S S E X E C U T I O N T I M E S 203

Program 6–2 Process Times

204 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Using the Command

 was useful to compare different programming solutions, such as the various
Caesar cipher () and sorting utilities, including (Program 2–3) and
(Program 5–5). Appendix C summarizes and briefly analyzes some additional re-
sults, and there are other examples throughout the book.

Notice that measuring a program such as (Program 6–1) gives kernel
and user times only for the parent process. Job objects, described near the end of
this chapter, allow you to collect information on a collection of processes. Run 6–1
and Appendix C show that, on a multiprocessor computer, performance can
improve as the separate processes, or more accurately, threads, run on different
processors. There can also be performance gains if the files are on different
physical drives. On the other hand, you cannot always count on such performance
gains; for example, there might be resource contention or disk thrashing that
could impact performance negatively.

Generating Console Control Events

Terminating a process can cause problems because the terminated process cannot
clean up. SEH does not help because there is no general method for one process to
cause an exception in another.1 Console control events, however, allow one
process to send a console control signal, or event, to another process in certain
limited circumstances. Program 4–5 illustrated how a process can set up a
handler to catch such a signal, and the handler could generate an exception. In
that example, the user generated a signal from the user interface.

It is possible, then, for a process to generate a signal event in another specified
process or set of processes. Recall the creation flag value,

. If this flag is set, the new process ID identifies a
group of processes, and the new process is the root of the group. All new processes
created by the parent are in this new group until another call
uses the flag.

One process can generate a or in a speci-
fied process group, identifying the group with the root process ID. The target pro-
cesses must have the same console as that of the process generating the event. In
particular, the calling process cannot be created with its own console (using the

 or flag).

1 Chapter 10 shows an indirect way for one thread to cause an exception in another thread, and the
same technique is applicable between threads in different processes.

E X A M P L E : S I M P L E J O B M A N A G E M E N T 205

The first parameter, then, must be one of either or
. The second parameter identifies the process group.

Example: Simple Job Management

UNIX shells provide commands to execute processes in the background and to ob-
tain their current status. This section develops a simple “job shell”2 with a similar
set of commands. The commands are as follows.

• uses the remaining part of the command line as the command for a
new process, or job, but the command returns immediately rather than
waiting for the new process to complete. The new process is optionally given
its own console, or is detached, so that it has no console at all. Using a new
console avoids console contention with and other jobs. This approach is
similar to running a UNIX command with the option at the end.

• lists the current active jobs, giving the job numbers and process IDs.
This is similar to the UNIX command of the same name.

• terminates a job. This implementation uses the
function, which, as previously stated, does not provide a clean shutdown.
There is also an option to send a console control signal.

It is straightforward to create additional commands for operations such as
suspending and resuming existing jobs.

Because the shell, which maintains the job list, may terminate, the shell
employs a user-specific shared file to contain the process IDs, the command, and
related information. In this way, the shell can restart and the job list will still be
intact. Furthermore, several shells can run concurrently. You could place this
information in the registry rather than in a temporary file (see Exercise 6–9).

Concurrency issues will arise. Several processes, running from separate com-
mand prompts, might perform job control simultaneously. The job management
functions use file locking (Chapter 3) on the job list file so that a user can invoke

2 Do not confuse these “jobs” with the Windows job objects described later. The jobs here are managed
entirely from the programs developed in this section.

206 C H A P T E R 6 P R O C E S S M A N A G E M E N T

job management from separate shells or processes. Also, Exercise 6–8 identifies a
defect caused by job id reuse and suggests a fix.

The full program in the Examples file has a number of additional features, not
shown in the listings, such as the ability to take command input from a file.

 will be the basis for a more general “service shell” in Chapter 13 (Program
13–3). Windows services are background processes, usually servers, that can be
controlled with start, stop, pause, and other commands.

Creating a Background Job

Program 6–3 is the job shell that prompts the user for one of three commands and
then carries out the command. This program uses a collection of job management
functions, which are shown in Programs 6–4, 6–5, and 6–6. Run 6–6 then demon-
strates how to use the system.

Program 6–3 Create, List, and Kill Background Jobs

E X A M P L E : S I M P L E J O B M A N A G E M E N T 207

208 C H A P T E R 6 P R O C E S S M A N A G E M E N T

E X A M P L E : S I M P L E J O B M A N A G E M E N T 209

Notice how the command creates the process in the suspended state
and then calls the job management function, (Program 6–4), to
get a new job number and to register the job and its associated process. If the job
cannot be registered for any reason, the job’s process is terminated immediately.
Normally, the job number is generated correctly, and the primary thread is
resumed and allowed to run.

Getting a Job Number

The next three programs show three individual job management functions. These
functions are all included in a single source file, .

The first, Program 6–4, shows the function. Notice the use of
file locking with a completion handler to unlock the file. This technique protects
against exceptions and inadvertent transfers around the unlock call. Such a trans-
fer might be inserted accidentally during code maintenance even if the original
program is correct. Also notice how the record past the end of the file is locked in
the event that the file needs to be expanded with a new record.

There’s also a subtle defect in this function; a code comment identifies it, and
Exercise 6–8 suggests a fix.

Program 6–4 Creating New Job Information

210 C H A P T E R 6 P R O C E S S M A N A G E M E N T

E X A M P L E : S I M P L E J O B M A N A G E M E N T 211

Listing Background Jobs

Program 6–5 shows the job management function.

Program 6–5 Displaying Active Jobs

212 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Finding a Job in the Job List File

Program 6–6 shows the final job management function, , which
obtains the process ID of a specified job number. The process ID, in turn, can be
used by the calling program to obtain a handle and other process status infor-
mation.

Program 6–6 Getting the Process ID from a Job Number

E X A M P L E : S I M P L E J O B M A N A G E M E N T 213

Run 6–6 Managing Multiple Processes

214 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Run 6–6 shows the job shell managing several jobs using , , and
 (Chapter 5). Notes on Run 6–6 include:

• This run uses the same four 640MB files (, etc.) as Run 6–1.

• You can quit and reenter and see the same jobs.

• A “Done” job is listed only once.

• The job uses the option, so the results appear in a separate console
(not shown in the screenshot).

• and the job contend for the main console, so some output
can overlap, although the problem does not occur in this example.

Job Objects

You can collect processes together into job objects where the processes can be
controlled together, and you can specify resource limits for all the job object
member processes and maintain accounting information.

The first step is to create an empty job object with , which
takes two arguments, a name and security attributes, and returns a job object
handle. There is also an function to use with a named object.

 destroys the job object.
 simply adds a process specified by a process

handle to a job object; there are just two parameters. A process cannot be a
member of more than one job, so fails if the
process associated with the handle is already a member of some job. A process
that is added to a job inherits all the limits associated with the job and adds its
accounting information to the job, such as the processor time used.

By default, a new child process created by a process in the job will also belong
to the job unless the flag is specified in the

 argument to .
Finally, you can specify control limits on the processes in a job using

.

E X A M P L E : U S I N G J O B O B J E C T S 215

• is a handle for an existing job object.

• specifies the information class for the limits
you wish to set. There are five values;
is one value and is used to specify information such as the total and per-
process time limits, working set size limits,3 limits on the number of active
processes, priority, and processor affinity (the processors of a multiprocessor
computer that can be used by threads in the job processes).

• points to the actual information required by the
preceding parameter. There is a different structure for each class.

• allows you to get the total
time (user, kernel, and elapsed) of the processes in a job.

• will terminate all processes in
the job object when you close the last handle referring to the object.

• The last parameter is the length of the preceding structure.

 obtains the current limits. Other information
classes impose limits on the user interface, I/O completion ports (see Chapter 14),
security, and job termination.

Example: Using Job Objects

Program 6–7, , illustrates using job objects to limit process exe-
cution time and to obtain user time statistics. is a simple exten-
sion of that adds a command line time limit argument, in seconds. This
limit applies to every process that manages.

When you list the running processes, you will also see the total number of pro-
cesses and the total user time on a four-processor computer.

Caution: The term “job” is used two ways here, which is confusing. First, the
program uses Windows job objects to monitor all the individual processes. Then,
borrowing some UNIX terminology, the program also regards each managed pro-
cess to be a “job.”

First, we’ll modify the usual order and show Run 6–7, which runs the command:

3 The working set is the set of virtual address space pages that the OS determines must be loaded in
memory before any thread in the process is ready to run. This subject is covered in most OS texts.

216 C H A P T E R 6 P R O C E S S M A N A G E M E N T

to limit each process to a minute. The example then runs to shell commands:

as in Run 6–6. Note how the command counts the processes that cre-
ates as well as those that creates to search the files, resulting in seven
processes total. There is also a lot of contention for the console, mixing output
from several processes, so you might want to run this example with the option.

There are also a few unexpected results, which are described for further inves-
tigation in Exercise 6–12.

Program 6–7 gives the listing; it’s an extension of
 (Program 6–3), so the listing is shortened to show the new code. There are

Run 6–7 Monitoring Processes with a Job Object

E X A M P L E : U S I N G J O B O B J E C T S 217

some deviations from the MSDN documentation, which are described in Exercise
6–12 for investigation.

Program 6–7 Monitoring Processes with a Job Object

218 C H A P T E R 6 P R O C E S S M A N A G E M E N T

S U M M A R Y 219

Summary

Windows provides a straightforward mechanism for managing processes and
synchronizing their execution. Examples have shown how to manage the parallel
execution of multiple processes and how to obtain information about execution
times. Windows does not maintain a parent-child relationship among processes, so
the programmer must manage this information if it is required, although job
objects provide a convenient way to group processes.

Looking Ahead

Threads, which are independent units of execution within a process, are described
in the next chapter. Thread management is similar in some ways to process man-
agement, and there are exit codes, termination, and waiting on thread handles. To
illustrate this similarity, (Program 6–1) is reimplemented with threads in
Chapter 7’s first example program.

Chapter 8 then introduces synchronization, which coordinates operation
between threads in the same or different processes.

220 C H A P T E R 6 P R O C E S S M A N A G E M E N T

Exercises

6–1. Extend Program 6–1 () so that it accepts command line options and
not just the pattern.

6–2. Rather than pass the temporary file name to the child process in Program
6–1, convert the inheritable file handle to a (a requires 4
bytes in Win32; investigate the Win64 size) and then to a character
string. Pass this string to the child process on the command line. The child
process, in turn, must convert the character string back to a handle value to
use for output. The and programs in the Examples file
illustrate this technique. Is this technique advisable, or is it poor practice,
in your opinion?

6–3. Program 6–1 waits for all processes to complete before listing the results. It
is impossible to determine the order in which the processes actually
complete within the current program. Modify the program so that it can
also determine the termination order. Hint: Modify the call to

 so that it returns after each individual process
terminates. An alternative would be to sort by the process termination
times.

6–4. The temporary files in Program 6–1 must be deleted explicitly. Can you use
 when creating the temporary files so that

deletion is not required?

6–5. Determine any performance advantages (compared with sequential
execution) on different multiprocessor systems or when the files are on sep-
arate or network drives. Appendix C presents some partial results, as does
Run 6–1.

6–6. Can you find a way to collect the user and kernel time required by ?
It may be necessary to modify to use job objects.

6–7. Enhance the function (Program 6–5) so that it reports the
exit code of any completed job. Also, give the times (elapsed, kernel, and us-
er) used so far by all jobs.

6–8. The job management functions have a defect that is difficult to fix. Suppose
that a job is killed and the executive reuses its process ID before the process
ID is removed from the job management file. There could be an

 on the process ID that now refers to a totally different process. The fix
requires creating a helper process that holds duplicated handles for every
created process so that the ID will not be reused. Another technique would
be to include the process start time in the job management file. This time

E X E R C I S E S 221

should be the same as the process start time of the process obtained from
the process ID. Note: Process IDs will be reused quickly. UNIX, however, in-
crements a counter to get a new process ID, and IDs will repeat only after
the 32-bit counter wraps around. Therefore, Windows programs cannot as-
sume that IDs will not, for all practical purposes, be reused.

6–9. Modify so that job information is maintained in the registry
rather than in a temporary file.

6–10. Enhance so that the command will include a count of the
number of handles that each job is using. Hint: Use

 (see MSDN).

6–11. (in the listing) currently terminates a process if there is
no room in the table for a new entry. Enhance the program to reserve a ta-
ble location before creating the process, so as to avoid .

6–12. exhibits several anomalies and defects. Investigate and
fix or explain them, if possible.

• Run 6–7 shows seven total processes, all active, after the first two jobs
are started. This value is correct (do you agree?). After the jobs termi-
nate, there are now 10 processes, none of which are active. Is this a bug
(if so, is the bug in the program or in Windows?), or is the number cor-
rect?

• Program 6–7 shows plausible user time results in seconds (do you
agree?). It obtains these results by dividing the total user time by
1,000,000, implying that the time is returned in microseconds. MSDN,
however, says that the time is in 100 ns units, so the division should be
by 10,000,000. Investigate. Is MSDN wrong?

• Does the limit on process time actually work, and is the program imple-
mented correctly? (Program 5–1) is a time-consuming program
for experimentation.

597

A
Abandoned mutexes 281

 function 114–115

flag 247
 function 417

Access
rights 521
tokens 520, 543

Access control entries (ACEs) 521, 525–
527, 535–537, 542

Access control lists (ACLs) 521, 525–527,
535–537, 542, 543

Access control lists, discretionary
(DACLs) 520

 flag 537
 flag 537

ACE see Access control entries
ACL see Access control lists

 word 526
 value 536

 flag 536

function 311
 function 310

 function 526
 function 526

 function 543
Address space 132

function 128
414

Alertable
I/O 492
wait functions 494–495

function 524, 543
 function 53

Anonymous pipes 380
APC see Asynchronous Procedure Calls
Application portability 372, 549

Asynchronous I/O 482
with threads 500–501

Asynchronous Procedure Calls
(APCs) 366–371

Asynchronous thread cancellation 371
Attributes

directory 72–74
file 70–74

B
 keyword 162

Based pointers 161, 162
 Microsoft C

function 231–232
247

Berkeley Sockets 411, 412, 447
Binary search tree 143–144

 function 415
Boss/worker model 236–237
Broadcast mechanisms 401

C
C library 10–11

in threads 231–232
cache 263–265
Callback function 319–324

 function 390
 C library function 143

486
 function 502

file concatenation program 41, 197
program run 43
UNIX command 41

Caesar Cipher program run 45
file encryption program 44
performance 581

 program 45
 program 157

program 173
program run 174

Index

598 I N D E X

performance 581
program 497
program run 499

performance 581

performance 581
program run 159

performance 581

performance 581

performance 581
program 488
program run 491

CDFS see CD_ROM File System
CD-ROM File System (CDFS) 26

 program 539
 parameter 469

 type 34
Character types 34–36

program 528
UNIX command 528

 program run 531
 function 109

Client connections to named pipes 387
Client/server

command line processor 393–400
model 236, 384
named pipe connection 389

program 393
program run 401

393

program 424
program run 425

 UNIX function 74
 function 18, 31, 71, 151

 function 469
 function 418

 function 344
Closing files 31–32
COM 167

 program 435
 function 73

 function 543

Completion routines 492–495
Condition variable (CV) model 337–342
Condition variable predicates 337
condition variables 362

 pathname 40
 function 419

function 388, 483
 pathname 40

Console
control events 204–205
control handlers 124–126, 185
I/O 40–53

 function 53
 function 108

 function 470
 function 19, 47, 48

Copying files 46–48
 function 543

Co-routines 254
 UNIX command 13

C library program 13
performance 578

performance 579
program run 20
Windows program 19

 performance 579

performance 579
Windows file copying program 17

 performance 579
 flag 30

 flag 30
 flag 185

 flag 185,
204

 flag 185, 228
 function 49

 function 287, 485
 function 28–31, 71, 483

 function 150–151
 function 47, 71

 function 165
 function 506,

507
 function 404

 function 279–280
 function 385, 483

I N D E X 599

 function 380

function 541
 function 184–186, 204,

247
 function 228

 function 284
 function 226–228

 function 344
 function 501

Creating
directories 49
files 28–31

 (CS) 302, 336, 343
guidelines 294–295
locking and unlocking 307
objects 269, 281–284
Spin Counts 308–309

CS see
 flags 126, 204

program 126
program run 128

CV see Condition variable

D
DACL see Discretionary access control list

 value 536
 flag 527

Datagrams 445–447
Deadlocks 281–284

 C++ storage modifier 169
 function 542

 function 46
 function 469

Deleting
directories 49
files 46–48

 flag 185, 204
 function 65

Directories
attributes 72–74
creating 49
deleting 49
managing and setting 50–51
moving 46–49
naming 27–28
setting 187

 function 388
DLL see Dynamic link libraries

 storage modifier 169
 storage modifier 169

 function 175
Drive names 27

 flag 192
 flag 192

 function 191
Duplicating handles 191

 prefix 9, 29
 type 29

Dynamic
data structures 131
link libraries (DLLs) 149, 167–175
memory management 131–134

E
 floating point masks 109

 flags 52
 Microsoft C function 231

 function 270
 block 185, 195–196

Environment strings 195–196
 return value 493

 return value 486
 return

value 388
 flag 89

Errors 110–112
 UNIX directory 87

Event handle 485, 496

program 290
program run 292

Events 287–289, 336
38

102
Exception handlers 101–111

 program 121
 exception codes 106, 110,

111, 113
 return values 104, 129

111
107, 129

 structure 107
 UNIX functions 187

 UNIX function 187
Executable image 187

 function 192, 228, 230
 function 228

Explicit linking 170–172

600 I N D E X

Exporting and importing interfaces 169–
170

Extended I/O 492–495

F
FAT see File Allocation Table

 C library function 32
 UNIX function 85

 C library function 16
Fibers 253–255
FIFO UNIX named pipe 392
File Allocation Table (FAT) file system 26

 C library objects 32
File handle 33, 61, 82, 150
File mapping objects 150–154
File permissions

changing 538
reading 537

 flags 30–??, 71, 73
 position flag 61

 position flag 61
 position flag 61

 flags 30, ??–31, 63, 386
 flag 483, 485,

492
 flag 152

 flag 152
 flag 152

 flag 29, 404
 flag 29

Files
attributes 70–74
closing 31–32
copying 46–48
creating 28–31
deleting 46–48
handles 31
locking 81–86
memory-mapped 131
moving 46–49
naming 27–28, 74
opening 28–31
paging 135
pointers 60–62
reading 32–33
resizing 64
searching for 70–71
systems 25–26
writing 33

72, 202, 456, 460

 function 73
 function 72

 program 147

exception filtering program run 124
function program 123

Filter expressions 103–104
113

 structure 70
 function 64, 70–71

 function 71
Floating-point exceptions 108–110

 function 153
 C library function 32

 UNIX function 186
 function 38

 C library function 34
 C library function 143

 function 53
 function 172

 C library function 32
 flag 65

 C library function 34

G

function 124, 205
Generic characters 34–36

29
for named pipes 540

29
for named pipes 540

 function 537
 function 536

 function 202
 function 64

 function 50
 function 190

 function 190
 function 229

 function 229
 function 63

 function 196
 function 105–106

function 106
 function 192–193

 function 229
 function 73

I N D E X 601

function 71
 function 535

 function 64
 function 64

 function 72
 function 73

 function 72

function 541
 function 19, 38

 function 404
 function 172, 191

 function 191
 function 172

function 387
 function 388

 function 486
 function 247

function 541
 function 172

 function 318,
330

 function 134, 142
 function 229

function 250
 function 202

function 507

function 523

function 536

function 525, 536

function 525, 536

function 543
 function 72

 function 185
 function 40

 function 187
 function 134

 function 74
 function 74

 function 229
 function 248

 function 202
 function 543

 function 524
 function 187

Global storage 266
Granularity, locking 295

 UNIX command 197

performance 583
program run 200
search program 198

performance 583
program run 235
search program 233

 performance 583

value 536
Growable and nongrowable heaps 137
Guarded code blocks 102–104

H
HAL see Hardware Abstraction Layer

 variable type 18
Handlers

exception 101–111
termination 113–117

Handles 7, 39
duplicating 191
inheritable 188–189
pseudo 190

hard link 47
Hardware Abstraction Layer (HAL) 5
Heap handle 137, 138

 flag 106,
136, 138, 140, 141

 flag 136, 138, 140,
141

 flag 140
 flag 138, 140

 function 106, 138
 function 142

 function 106, 136
 function 137

 function 139, 171
 function 141, 142, 284

 function 139

602 I N D E X

Heaps 134–143
growable and nongrowable 137
synchronizing 284

 function 140
 function 142, 284

 function 142
 function 142

247
 data item 62

 handle 171
 registry keys 88
 function 418
 function 418

huge files 60

I
I/O

alertable 492
asynchronous 482
completion ports 316, 505–509
console 40–53
extended 492–495
overlapped 447, 483–486
standard 40, 51, 188

247
Implicit linking 168–170

 flag 416
Inheritance, handles 191

 function 521, 526

function 362

function 265, 269, 309

 function 271

function 523
 function 524

 function 310, 318,
319

 function 531
 function 532

In-process servers 434
Interfaces, exporting and importing 169–

170
Interlocked functions 265, 296–297

function 297
 function 265

 function 296

 function 296
 function 265

Internet protocol 414
Interprocess communication (IPC)

one-way 188
two-way 384–392

134, 387, 506
414

IP address 416
IPC see Interprocess communication

 function 535

function 535
 function 535

J
Job

management 205
objects 214–215

displaying active jobs program 211
new job information function 209
process ID program 212

 program run 216

background job program 206
program run 213

K
Kernel objects 8, 541
Key handle 89

 flag 89
 flag 89

 flag 89
 flag 89

L
202

Microsoft C data type 62
 statement 114

 function 270
Linking

explicit 170–172
implicit 168–170
run-time 170–172

Linux xxvii
 function 416

 function 171
 function 171

Local storage 266

I N D E X 603

 function 73
 flag 82

 flag 82
 function 81–82

 locate the server function 407
 data type 62

 function 523–524
 data item 62

 prefix 29
 prefix 30
 prefix 29

 type 35
 program 530

listing Registry program 92
program run 96

file listing program 75
program run 78

M
 flag 404

Mailslots 401–405
 service entry program 455

 function 543
 function 543

 macro 413
 C library function 143

Managing directories 50–51
Mapping, file 152–155

 function 84, 152
 function 152

Master-slave scheduling 255
 buffer length 51, 74

195
 mask 109

Memory architecture 263
Memory barrier 263–268, 278
Memory block in heap 140
Memory management 131–134

performance 297
Memory map size 152
Memory-mapped files 131, 149–155

 type 422
Message waiting 294
Microsoft Visual C++ 547

 UNIX function 392
 UNIX function 154
 UNIX argument 32
 word 51

Models
boss/worker 236–237
client/server 236, 384
condition variable (CV) 337–342
pipeline 236
producer/consumer 331, 340
threading 236–243
work crew 236

 function 48–49
 flags 49

 function 48–49
Moving

directories 46–49
files 46–49

 flag 421

function 294
492

Multiple threads 340
Multiprocessor 5, 181, 201, 215
Multistage pipeline program 354

 UNIX function 154
Mutex 279–284, 336

granularity 295
guidelines 294

Mutual exclusion object 279–284

N
Named

pipes 384–392
sockets 416

Naming
conventions 9
directories 27–28
drives 27
files 27–28

 named pipe flags 391
Nongrowable heap size 136

 flag 247
NT File System (NTFS) 26
NT services 453

O
Objects 195

waiting for 294
 word 82, 484

 word 82, 152, 484
Open systems 6–7

 UNIX function 32
 flag 30

604 I N D E X

 flag 30
 UNIX function 74

 function 151
Opening files 28–31

 function 280
 function 190

 function 467
 function 284

 function 469
 function 229

 function 502
Operating systems

functionality 1–5
standards 6–7

 function 41
Overlapped I/O 447, 483–486

 structure 82, 484–485
536

P
 flag 150

 flag 150
 flag 150

Paging files 135
Parallelism, program 244

 environment variable 187
Pathnames 27–28

 function 392
Peer-to-peer scheduling 255
Performance 297, 302–303
Periodic signal program 503
Permissions 527–528

 C library function 16
 flag 414

 flags 386
Pipeline model 236
Pipes

anonymous 380
named 384–392
summary 405

Pointers
based 161, 162
file 60–62

POSIX xxvii, 5–7, 549–555

function 508
Predefined data types 8

 program 54
 function 53

Priority and scheduling 246–249

Process
components 181–182
console 185
creation 183–186
environment 195
handle inheritance 188–189
identities 190–191
priority 185
priority and scheduling 246–249
single 195
synchronization 194–195, 268–293
waiting for completion 194–195

 flags 190, 191, 247
 structure 186,

190
 function 529

Processor affinity 318, 329–331
Producer and consumer program 274
Producer/consumer model 331, 340
Program event logging 461
Program parallelism 244

 Pthreads functions 231, 281,
288, 311, 339

Pthreads 362
application portability 372
condition variables 288, 339
in POSIX 230, 256, 280
open source implementation 376

 function 288, 338, 340

program 55
program run 56
UNIX command 55

Q
 C library function 159

 data item 62

function 215
 function 471

 queue management
functions 349, 363

Queues
definitions 348
in a multistage pipeline 352–354
management functions 349, 363
object 348–349

 function 367

I N D E X 605

R
Race conditions 267

 function 110–113
 UNIX function 33

 function 52, 55
 UNIX function 74

 function 32–33, 380, 386, 483
 function 493

 program 537
Reading files 32–33

 C library function 143
247

 function 423

program 66
program run 69

 function 420
 function 446
 program run 383

524
 flags 91

 registry data type 92
 registry data type 92

 registry data type 92
 registry data type 92

 function 89
 function 90

 function 91
 function 92

 command 86
 function 90
 function 91

 function 92
Registry 86–88

key management 89–91
 function 89

 function 92
 function 92

 function 280
 function 285, 342

function 311
 function 310

 function 49

function 128
 function 31

program 39
 function 112

 function 288
 function 185, 230

Run-time linking 170–172

S
SACL see System ACLs
SANs see Storage area networks

 UNIX function 137
Scheduling 255
SCM see Service Control Manager
Searching for a file 70–71

 flag 150
Secure Socket Layer 434
Secure Sockets Layer 451
Security

attributes 531
attributes initialization program 532
identifiers (SIDs) 523–525
kernel object 541
user object 541
Windows objects 519

Security descriptors 520–527, 542–543
reading and changing 535–537

 structure 188,
519–520

 structure 522
SEH see Structured Exception Handling
Semaphore 284–287, 342
Semaphore Throttle 313–315

 function 420
 program 443
 program 438

 function 446
Sequential file processing 13

 program 510

program 395
program run 400

Servers, in-process 434

program 427
program run 433

Service Control Manager (SCM) 454
 flag 469
 flag 469

 flag 469
 structure 457–459

 object 456
 flag 469

 array 455

606 I N D E X

 functions 455–460
Services

control handler 460–461
control handler registration 456
control manager 454
control program 472
controlling 470
controls 460
creating 468–469
debugging 477
deleting 468–469
opening 467
setting status 456
starting 469
state 459
status query 471
type 458
wrapper program 462

program 472
program run 476

 function 455
 function 457

 word ??–458
 function 124

 function 51–52

function 271, 309
 function 50

 function 64
 function 196

 function 288, 340
 function 73

 function 60, 61, 62, 485
 function 535

 function 72
 function 73

function 214

function 541
 function 404

function 387
 function 247

function 541
 function 250,

330

function 523

function 527

function 525

function 521

function 543
 function 457

 function 40
 function 330

function 250
 function 248

249
Setting directories 50–51

 function 502
Shared

memory in UNIX 154
variables 271–273

 function 417
SID management 543

 flag 524
SIDs see Security identifiers
Signaled state 230
Signaling producer and consumer

program 290
 (SOAW)

function 337, 339, 342–344, 492
Signals 125, 185

in UNIX 113
 program 274
 program run 277

operation 476
 program 462
 program run 466

 listing 467
64-bit file addresses 59–60

 function 202
 function 253

function 362

function 363
 function 494

I N D E X 607

Slim Reader/Writer (SRW) Locks 309–311
 comparison 310

SMP see Symmetric multiprocessing
SOAW see

 flag 445
 structure 415

 structure 416
 function 414

 flag 415, 420
Socket-based

client program 424
server program 427

Sockets
Berkeley 412, 447
binding 415–416
client functions 419–422, 423
closing 417
connecting to client 417
connecting to server 419–420
creating 414
disconnecting 417
initialization 413
message receive 422–423
server functions 414–419, 426

 UNIX command 143

binary search tree program 145
program run 148

program 159
program run 161

based pointers program 163
creating the index program 165
program run 166

merge-sort program 239
program run 242, 243

Sparse file 64
Spin Counts 271, 297, 308–309

 mailslot client program 406
SRW see Slim Reader/Writer

 data type 136
SSL see Secure Sockets Layer
Stack unwind 116
Standard

I/O 40, 51, 188
input 188

 function pointer 227
 flag 185

 function 470

function 454
 UNIX function 74

 data structure 337

program run 315
thread statistics program 303

 program run 322
 program run 305, 312

Status functions for named pipes 387
 exception

code 141
 exception code 106,

141
 flag 40
 flag 40

 flag 40
 process status 193, 229

Storage area networks (SANs) 26
Storage, local and global 266
Strings, environment 195–196
Structured Exception Handling

(SEH) 101–102, 117
Structures, overlapped 484–485

 function 230
Symmetric multiprocessing (SMP) 181,

264

 queue definitions 348
 threshold barrier definitions

program 345
Synchronization 246–249

heap 284
objects 492
performance impact 302–303
processes 194–195
processes and threads 268–293

 flag 190
synchronous cancellation 371
System

ACLs (SACLs) 520, 543
error codes 19
include files 9

 function 73

T
35

 type 34
TCP/IP 412, 414

608 I N D E X

Temporary file names 74
 function 193, 205

 function 228, 230
Termination handlers 113–117

program run 347
 test program 345

 threshold barrier handle 344
 threshold barrier implementa-

tion program 345
Thread Local Storage (TLS) 182, 225, 245–

246
Thread pool 312–323
Thread stack 372

flag 248
 flag 248

 flags 248
 thread argument 228

Threadpool timers 505
Threads

common mistakes 251–252
creating 226–228
file locking 81–86
identity 229
local storage (TLS) 225
models 236–243
overview 223–224
primary 184
priority and scheduling 246–249
resuming 229–230
single 181–182
states 249–251
statistics program 303
storage 225–226, 245–246
suspending 229–230
synchronization 246–249, 268–293
terminating 228
waiting for termination 230
with asynchronous I/O 500–501
with the C library 231–232

Thread-safe
code 259–268
DLL program 438
DLL program with state structure 443
libraries 232

 multistage pipeline
program 354

 program run 360
 program run 361

 program run 366
Threshold barrier object 344–348

 UNIX command 202
 program 503

Timed waits 252

performance 575
process times program 203

Timers
waitable 501–503

TLS see Thread Local Storage
 flag 245

 function 246
 function 246

 function 246
 function 246

 function 36

program 79
program run 79

program 118
program run 120

 function 390, 483
 flag 30

102

function 270
Try-except blocks 102–104, 113–116
Try-finally blocks 113–116

U
UCT see Universal Coordinated Time
UDF see Universal Disk Format

 data type 62
Unicode 34–36
Unicode UTF-16 34
Universal Coordinated Time (UCT) 72
Universal Disk Format (UDF) 26

 UNIX function 49
 function 83

 function 153
Unwinding stacks 116

 UNIX function 74

V
 C library function 53
 C library function 53

 C library function 53
Value management 91–92

I N D E X 609

Variables, environment 195–196
128

 exercise run 180
Virtual

address space 132
memory manager 133
memory space allocation 152

Visual C++ 9, 22
 storage modifier 262, 265, 374

W
Wait

for messages and objects 294
functions 494–495

 return value 195, 281
 return value 195

 return value 195
 return value 195

Waitable timers 501–503
 function 194–

195, 230, 279, 288

function 494
 function 194–

195, 230, 279
 function 494

Waiting for a process 194–195
 function 388

function 363

 function 363
36

 type 34
Win16 compatibility 9

 file 9, 541
Windows

API 2
condition variables 362–365
principles 7–9
sockets 412, 447, 448
support 5, 181
versions 3

Windows 2003 Server 31
 file 18, 9

 file 9, 29, 107, 195
Winsock 411

API 412
Initialization 413

Work crew model 236
 UNIX function 33

 permission 536
 function 52

 function 33, 483
 function 493

Writing files 33
413

 function 413
 structure 413

 function 413
 function 413

	Preface
	CHAPTER 6 Process Management
	Windows Processes and Threads
	Process Creation
	Process Identities
	Duplicating Handles
	Exiting and Terminating a Process
	Waiting for a Process to Terminate
	Environment Blocks and Strings
	Example: Parallel Pattern Searching
	Processes in a Multiprocessor Environment
	Process Execution Times
	Example: Process Execution Times
	Generating Console Control Events
	Example: Simple Job Management
	Example: Using Job Objects
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

