Practices for
Scaling Lean & Agile
Development

Large, Multisite, and Offshore Product Development
with Large-Scale Scrum

Craig Larman

Bas Vodde

Daily

Scrum
(15 min)
(Feature)
Team
+
ScrumMaster
Sprint @ @+ @
Planning “
Part 2 @ .
(2-4 h) Sprint .

Sprint Sprint Product Backlog Retrospective
Planning Backlog Refinement A

Part 1 (5-10% of Sprint) Sprint Joint

(2-4h) Review Retro‘-
(2-4h) spective

[4

@ Potentially
Product Shippable
Owner Product

Increment

Product

Backlog

_— — — =

~ "With feature teams, teams can always work on the highest-value features, there is less delay fo \
delivering value, and coordination issues shift toward the shared code rather than coordination |
through upfront planning, delayed work, and handoff. In the 1960s and 70s this code coordination |

1

)

=~
r ~

was awkward due to weak tools and practices. Modern open-source tools and practices such as

~ TDD and continuous integration make this coordination relatively simple. P
B P
~N "l
Se K system i
\ foccccccccccccce.. ‘
N '
‘e -

tem1_—1 ™ — — — = Component

Item 2 .

Item 3 N7 //

N ;
v]
\ AN .

VAR :

n"-"7 '

;N 7 B .
7 '

v. Y]
A 7\ [
2 N ;
7 N :

7} A

Component
ltem 8 ;
N
A
ltem 12 _ __ >4 component
' C
|/With component teams, a project or feature manager is \I " "e
I used to coordinate and see to completion a feature that ®
'\ spans component teams and functional teams. /l .
Feature system o
_______ —_——==Z Manager gffcccaictoozonea il
/ \ \ o i
With component teams, there e ; b
| is a tendency to select goals | ltem 1 . | Component || : :
| familiar or ‘fast’ for teams, not | ltem 2 N : A .
I for maximizing customer | ltem 3 '
| I < : e
value. For example, | ltem 4 : .
! Component B Team does part ltem 5 '
| _of Item 3 because it mostly | ltem 6 < . | component
I involves Component B work. | B K
| | b o
: This is the “watching the :
\ runner rather than following | Vo
» o / b .
\t\he baton” local optimization. , Component :
e = C g

-

« “With component teams, there is increased delay, as one customer feature is split across multiple >
: component teams for programming, and eventually transferred to a separate testing team for

| Verification. There is handoff waste, and multitasking waste —as one component team may work on
\ several features in parallel, in addition to handling defects related to ‘their’ component.

~

Practices for
Scaling Lean & Agile
Development

This page intentionally left blank

Practices for
Scaling Lean & Agile
Development

Large, Multisite, and Offshore
Product Development
with Large-Scale Scrum

Craig Larman
Bas Vodde

vvAddison-Wesley

Upper Saddle River, N] ¢ Boston e Indianapolis ® San Francisco
New York e Toronto ® Montreal ® London ® Munich ¢ Paris ¢ Madrid
Capetown e Sydney e Tokyo e Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to

your business, training goals, marketing focus, and branding interests. For more information, please

contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Larman, Craig.

Practices for scaling lean & agile development : large, multisite, and offshore product development
with large-scale Scrum / Craig Larman, Bas Vodde.

. cm.

Includes bibliographical references and index.

ISBN 0-321-63640-6 (pbk. : alk. paper)

1. Agile software development. 2. Scrum (Computer software development)

1. Vodde, Bas. II. Title.

QA76.76.D471.3926 2010
005.1—dc22
2009045495

Copyright © 2010 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reﬁroduction, storage ina
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax: (617) 671-3447

ISBN-13: 978-0-321-63640-9
ISBN-10: 0-321-63640-6

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Second printing, January 2012

To our clients, and my friend and co-author Bas

To Lii Yi, Tero Peltola, and the little one

This page intentionally left blank

© oo N o o »» W

11
12
13
14

15

CONTENTS

Introduction 1
Large-Scale Scrum 9

Test 23

Product Management 99
Planning 155
Coordination 189
Requirements & PBIs 215
Design & Architecture 281
Legacy Code 333
Continuous Integration 351
Inspect & Adapt 373
Multisite 413

Offshore 445

Contracts 499

Feature Team Primer 549
Recommended Readings 559
Bibliography 565

List of Experiments 580
Index 589

This page intentionally left blank

Thank you for reading this book! We've tried to make it practical.
Some related articles and pointers are at www.craiglarman.com
and www.odd-e.com. Please contact us for questions.

Basic point of emphasis or Book Title or minor new term. A notice-
able point of emphasis. A major new term in a sentence.
[Bob67] is a reference in the bibliography.

Craig Larman has served as chief scientist at Valtech, an out-
sourcing and consulting group with a division in Bangalore that
applies Scrum, where he and colleagues created agile offshore
development while living in India and also working in China.
Craig was the creator and lead coach for the lean software devel-
opment initiative at Xerox, in addition to consulting and coaching
on large-scale agile and lean adoptions over several years at Nokia
Networks, Schlumberger, Siemens, UBS, and other clients. Origi-
nally from Canada, he has lived off and on in India since 1978.
Craig is the author of Agile and Iterative Development: A Man-
ager’s Guide and Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design & Iterative Development.

After a failed career as a wandering street musician, he built sys-
tems in APL and 4GLs in the 1970s. Starting in the early 1980s he
became interested in artificial intelligence (having little of his
own). Craig has a B.S. and M.S. in computer science from beautiful
Simon Fraser University in Vancouver, Canada.

Along with Bas Vodde, he is also co-author of the companion book
Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum.

Bas Vodde works as a product-development consultant and large-
scale Scrum coach for Odd-e, a small coaching company based in
Singapore. Originally Bas is from Holland, and before settling in
Singapore, he lived and worked in Helsinki (Finland) and Beijing
and Hangzhou (China). Much of his recent work is in Asian coun-

xi

www.craiglarman.com
www.odd-e.com

xii

tries—especially China, Japan, India, the Philippines, and Sin-
gapore—applying agile principles to offshore and multisite
development. For several years he led the agile and Scrum enter-
prise-wide adoption initiative at Nokia Networks. He has been a
member of the leadership team of a very large multisite product
group adopting Scrum. Bas has worked as developer/architect in
multimedia/real-time graphics product development and in
embedded telecommunication systems. He is co-author of the
CppUTest unit-test framework for C/C++ and still spends some
time programming, and coaching agile-development practices such
as refactoring and test-driven development.

Bas rushed through his B.S. in computer science so that he could
write real software. He has been waiting for some university to
give him an honorary Ph.D. but is afraid he will actually have to
work for it. He is a passionate book collector—especially historical
books related to product development and management.

Many thanks for the contributions and reviews from...

Peter Alfvin, Bruce Anderson, Brad Appleton, Tom Arbogast, Alan
Atlas, James Bach, Sujatha Balakrishnan, Gabrielle Benefield,
Bjarte Bogsnes, Mike Bria, Larry Cai, Olivier Cavrel, Pekka
Clark, Mike Cohn, Lisa Crispin, Ward Cunningham, Pete Deemer,
Esther Derby, Jutta Eckstein, Janet Gregory, James Grenning,
Elisabeth Hendrickson, Kenji Hiranabe, Greg Hutchings, Michael
James, Clinton Keith, Joshua Kerievsky, Janne Kohvakka (and
team), Venkatesh Krishnamurthy, Shiv Kumar MN, Kuroiwa-san,
Diana Larsen, Timo Leppénen, Eric Lindley, Steven Mak, Shiva-
kumar Manjunathaswamy, Brian Marick, Bob Martin, Gregory
Melnik, Emerson Mills, John Nolan, Roman Pichler, Mary Pop-
pendieck, Tom Poppendieck, Jukka Savela, Ken Schwaber,
Annapoorani Shanmugam, James Shore, Maarten Smeets, Jeff
Sutherland, Dave Thomas, Ville Valtonen, and Xu Yi.

Current and past Flexible company team members (and review-
ers), including Kati Vilki, Petri Haapio, Lasse Koskela, Paul Nagy,
Ran Nyman, Joonas Reynders, Gabor Gunyho, Sami Lilja, and Ari
Tikka. Current and past IPA LT members (and reviewers), espe-
cially Tero Peltola and Lii Yi.

Bas thanks the support of Sun Yuan through another year of writ-
ing and traveling. Without her support there would be no book.
And thanks Craig for tolerating all the discussion and feedback
and... more debugging of Bas’s writing. No more “rubber chicken”
on this book, what’s next?

Craig thanks Albertina Lourenci for the healthy food so that he
could write well-nourished, and Tom Gilb for his apartment in
London so he could write well-sheltered.

Thanks to Louisa Adair, Raina Chrobak, Chris Guzikowski, Mary
Lou Nohr, and Elizabeth Ryan for publication support.

Layout composed with FrameMaker, diagrams with Omnigraffle.

Main body font is New Century Schoolbook, designed by David
Berlow in 1979, as a variant of the classic Century Schoolbook cre-
ated by Morris Benton in 1919—familiar to most North Americans
as the font they learned to read by, and from the font family
required for all briefs submitted to the Supreme Court of the USA.

Chapter

Book

Introduction 1 15

Large-Scale Scrum 9

Test 23

Product Management 99
Planning 155
Coordination 189
Requirements & PBls 215
Design & Architecture 281
Legacy Code 333
Continuous Integration 351
Inspect & Adapt 373
Multisite 413

Offshore 445

Contracts 499

Feature Team Primer 549
Recommended Readings 559
Bibliography 565

List of Experiments 580
Index 589

INSPECT & ADAPT

The taxpayers are sending congressmen on expensive trips
abroad. It might be worth it—except they keep coming back.
—Will Rogers

We have worked closely in a few enterprise-wide lean or agile adop-
tions over the years, and have collected experiments. Some, covered
later in the Continuous Improvement section, focus on scaling and
multiteam coordination (such as a Joint Retrospective); many others
focus on organizational design and culture. First, a story...

We were coaching in Europe and met with a manager who had been
assigned the agile transformation responsibility; he wanted to show
us his plan and ask for feedback. He presented a Gantt chart of his
planned transformation: many stages of precise duration all in
sequence, milestones, specific managers assigned to tasks along the
way, cost estimates, and more. According to the plan, in twenty-
seven months the group would have transformed to ‘agile.” The
detail was impressive—it was also the wrong approach.

Our colleague had confused doing agile and being agile. And he was
applying command-and-control management thinking combined
with predictive planning—in essence, traditional management
‘agile’ adoption. Fortunately, within a few minutes of chatting, the
plan was jettisoned and his view shifted to serving the teams, using
a backlog, and adaptive planning.

This misunderstanding to agile or lean adoption is common in corpo-
rations that (1) mandate a top-down ‘transformation,” (2) think this
is another change project with an end (“we have now finished chang-

Chapter

373

ing to lean—you get the bonus”), or (3) have a centralized group
responsible for pushing processes.

Adopt lean and agile principles the same way as applying
them: With experiments, adaptation, self-organization,
and a focus on the value-add work by applying Go See.

At a time when all of us are struggling to implement lean pro-
duction and lean management, often with complex programs on
an organization-wide basis, it is helpful to learn that the cre-

ators of lean had no grand plan and no company-wide program
to install it. [SF09]

“Our agile adoption would be so much better if only we had manage-
ment support.” We have heard that many times, but be careful what
you wish for—you might get it! In one enterprise that got official
“everyone do agile” management support after an informal adoption
had been going on for several years, we hear the complaint, “I wish
we never had management support; now people are doing things for
the wrong reasons.”

Why? In some organizations the culture is

0 management phones in their support but does not deeply learn
lean thinking or agile principles1

0 management ‘drives’ change by setting targets and offering
bonuses; in this case, the agile adoption targets

0 management directs a centralized process group to “push out
the new process”

1. At one of our clients a senior manager asked, “What is the total cost
of ownership of adopting lean thinking?”

374

Then, what happens is a superficial cargo-cult agile and lean adop-
tion, with widespread game playing, resentment, hidden resistance,
and misunderstanding... another management fad that will pass
away if ignored long enough. Perhaps there is a target: “60% of the
teams have a ScrumMaster within the year,” and managers get a
bonus if that is ‘true.” Then, existing project or line managers are
relabeled as ScrumMasters. Or, “Every product should have a Prod-
uct Backlog.” The existing work breakdown structure of tasks is cop-
ied into a spreadsheet called the backlog. Nothing has really
changed, and indeed things may be getting worse because of more
disruption and gaming.

Avoid forcing—When coaching we encourage: volunteering; do not
force any agile or lean approach onto people; people should be left the
choice to think and experiment. Create a culture of coaching for those
that want to experiment.

Focus—Strive to achieve skill and demonstrate excellence in the
adopting groups, with concentrated long-term, high-quality support.
The best, most sticky adoptions we have seen had this approach.

In contrast to the prior case, we have also seen groups with a high-
quality management culture that cultivated genuine improvement.

We recall one client (at a bank) where the leadership team quickly
dove deep into reading many books on agile principles, studied and
applied systems thinking, all attended a ScrumMaster training with
their team members, talked with hands-on experts, used agile
coaches, and applied Go See. Quickly after starting, this group had
made deep changes in organizational design and there was tangible
improvement in the flow of value to users.

For ScrumMasters and other coaches the implication is: Only lobby
for top-down support when you think the leadership team is seri-
ously interested in learning and in organizational redesign.

375

376

One of our colleagues in an agile-coaching group observed, “This
company has tried to use processes to compensate for a lack of com-
petence of its employees.”

The first agile value, and the previous story about the effective agile
adoption at a bank, reminds us of its veracity—people, not processes,
are the first-order effect for success [Cockburn99].2 A group cannot
‘process’ its way out of a deep hole dug by problems with the individ-
uals in engineering and management—‘agile’ will solve nothing in
that case.

So, focus on cultivating and hiring extraordinarily talented people.
But, no false dichotomy... as object-pioneer Grady Booch wrote:

People are more important than any process. ... Good people
with good process will outperform good people with no process
every time. [Booch96]

It is difficult to get a man to understand something when his
Jjob depends on not understanding it.—Upton Sinclair

We were in Norway, dining on [utefisk with a colleague. He said, “My
company has hired consultants for a lean initiative. They are identi-
fying redundant employees and firing them.”

This is a perversion of lean thinking. Lean has nothing to do with
terminating ‘redundant’ employees, nor with lean-by-consultants.
The English name ‘lean’ was not chosen to imply removing the fat
from an organization. Rather, it was chosen? to contrast mass manu-

2. An inefficient process with large batches, queues, and handoff is
itself a major force for failure, but it comes from people and their
mindsets. Toyota says, “build people, then build products.”

3. By John Krafcik while working on a graduate degree at MIT; Mr.
Krafcik was the first American engineer hired by NUMMI, the Toy-
ota-GM joint venture in California.

facturing with lean manufacturing—working in small batches and
with less effort to produce goods.

Toyota strives to provide long-term job safety. This is part of the first
pillar of lean thinking: Respect for People. And it is also intimately
connected to the second pillar: Continuous Improvement. Who is
going to strive for continuous improvement in the organization when
the likely outcome is job termination? Yet, this does not imply role
safety—which inhibits improving the system. For example, project-
manager role disappears in Scrum; we have seen people then shift to
hands-on engineering or product management.

Personal safety—In Los Angeles one December morning we waited
in a room to meet with a team we had been invited (by higher-level
managers) to coach for a few weeks. Soon they showed up. We wel-
comed them and asked, “What are the problems you’d most like to
work on? Maybe we can help a little.” There was a long silence—peo-
ple were uncomfortable to openly discuss problems. So, below the
extreme case of job loss, there is the issue of personal safety and
improvement. In the Crystal Clear agile method, it is identified as
one of seven key properties set up by the best teams:

Personal Safety is important because with it, the team can
discover and repair their weaknesses. Without it, they won’t
speak up, and the weaknesses will continue to damage the team.

[Cockburn04]

A book we sometimes suggest to ScrumMasters (and others) is The
Five Dysfunctions of a Team [Lencioni02]. The first two of these dys-
functions are absence of trust and fear of conflict. An improving
Scrum team must resolve this. See the recommended readings for
material that might help.

Offshoring is another context that we regularly see personal safety
problems; a company terminates employees in higher-cost regions
and shifts more work offshore. This impacts motivation and collabo-
ration between people in different regions.

In a new large-scale Scrum adoption initiative, ScrumMasters and
others need to be mindful of these dynamics: Is Scrum or lean devel-
opment going to be viewed as a mechanism to ‘streamline’ and ter-
minate overhead? And whereas in little companies active opposition

377

378

to the system is common, in large product companies there is often a
sense of disempowerment and reduced personal safety to challenge
the existing organization. Then, for instance, people complain that
Scrum Retrospectives are ritualistic, useless, or dead. Or perhaps
even worse, people develop a passive-aggressive attitude in response
to this ‘streamlining,” with subtle negative consequences.

It takes active ongoing encouragement from the leadership to keep
kaizen mindset alive. As Toyota CEO Katsuaki Watanabe said:

The root of the Toyota Way is to be dissatisfied with the status
quo; you have to ask constantly, “Why are we doing this?”

[SRO7]

Toyota has taken decades to cultivate a lean culture; similar
patience is needed elsewhere. Further, Toyota rapidly expanded in
the 1990s and then experienced more difficulty in spreading and
sustaining a lean-thinking culture, especially in their satellite
plants. It is easy to start losing that culture without ongoing con-
stancy of purpose by lean-thinking manager-teachers [Womack09].

y : Daily stand-ups and visual management
[focd Thinking, Good can be installed in days. But it takes

o d e years to a develop an enterprise of people
that know, teach, and apply agile and
lean thinking. It is worth it—there lies the great leverage for sus-
tained improvement. Hence the Toyota message, build people, then
build products.

Be agile rather than do agile was the theme of the Agile chapter in
the companion book. Agile is not a practice; it is a set of values and
principles. Some of the clients we work with misunderstand this and

establish a large-scale transformation project that is measured in
terms of observed practices, such as,

having a Product doing a daily stand- working in time-
Backlog up boxed iterations
having information doing planning writing user stories
radiators on walls poker

To be clear, we recommend trying these practices—indeed, the next
suggestion emphasizes that doing concrete agile or lean practices is
very important. But there is a big difference between a genuine
jelled self-managing team that wants to hold a daily stand-up so
that they can coordinate, and a group that has been told to have a
Daily Scrum—especially if that is on someone’s checklist of “prac-
tices in place that prove we are doing agile.”

It is common to find groups where all these practices are observed,
but where there is only superficial adoption or understanding and
little or no agility.

Similarly, we recently visited a large outsourcing client in India that
was “doing lean.” We asked what that meant. Answer: Using a soft-
ware tool to measure their WIP levels, and trying to reduce it.

“We understand the Agile Manifesto and lean thinking, and focus on
the big ideas—we understand that all practices are just context
dependent. And the standard tools don’t work in our context,
because we're different. We have very lean analyst teams, compo-
nent teams, and test teams, each focusing on their flow.”

In addition to seeing shallow practice adoption, we have seen the
opposite: A claim to follow agile or lean thinking but no (or little)
application of any concrete tools and practices. This is associated
with relabeling existing ways of working as agile/lean, when in fact
very little has changed or improved.

What happens if there is genuine effort to adopt many agile or lean
practices or tools? For example, test-driven development, visual
management of WIP (perhaps combined with a limited-WIP policy),

379

reduction in handoff, and more? This doing creates a concrete frame-
work for learning and kaizen, and a force for deep transformation.
Without that concreteness, it is easy to (1) miss subtle insights and
context-dependent lessons, (2) miss discovering benefits of these
tools, and (3) avoid really improving.

In Agile Software Development, Alistair Cockburn [Cockburn07] dis-
cussed the shu, ha, ri model of stages of skill development in Aikido
and its applicability to practices-versus-principles in agile adoption.
This parallels the apprentice, journeyman, master model. People
need to walk before they can run—they cannot become masters
without first spending time with tools, mastering them by the book,
and experiencing different contexts.

The kaizen cycle starts with learning and applying a standard prac-
tice* for similar reasons and because improvement should be
against a baseline of insight gained by practice. And there is similar
advice in Scrum...

Rule changes should only be entertained if and only if the
ScrumMaster is convinced that the Team and everyone involved
understands how Scrum works in enough depth that they will
be skillful and mindful in changing the rules. [Schwaber04]

No false dichotomy—Principles without practices lead nowhere;
practices without principles, theory, and context lead to misappli-
cation and waste. Adopt principles and practices together: think-
ing tools and action tools are complementary.

Framing the adoption of lean thinking or agile principles as a trans-
formation or change project leads to the notion

4. Discussed in the Lean Thinking chapter of the companion book.

380

Q it is a project, with an end

— rather than lifelong continuous improvement based on
experimentation and growing problem-solving skills

0 it is something that people do
— rather than a change in mindset, culture, and paradigm

Q it is something to define and direct by managers

So, rather than framing this as “the agile change project,” experi-
ment with framing it as...

One of the pillars of lean thinking is continuous improvement; lean
adoption is not a project with an end. Similarly, a group has never
finished adopting Scrum; the framework implies inspect-and-adapt
every iteration, without stop. Therefore, do not establish an agile
change project; rather, build a permanent system for improvement.?
And rather than framing what managers do as managing “the agile
change project,” experiment with framing what they do as...

Sometimes, phrases are influential. Consider the difference between
manage the agile transformation and impediments service.

In the latter case, in the lifelong agile or lean journey (it is not a
project), the team members and Product Owner create an impedi-
ments backlog of their impediments—policies, structures, environ-
ment, tools, and more. The role of managers—in the context of agile
adoption—is to help the teams and Product Owner by never-ending
impediments service—working to remove impediments forever.

This change in behavior—and phrasing—is a shift from top-down or
command-and-control to bottom-up service.

5. There is an analogy here to the transition from project-mindset to
continuous product development discussed in the Organization
chapter in the companion book.

381

382

It leads to more Go See behavior by managers and the chance to
serve as teachers rather than controllers or planners. For example,
many team members will not even realize something is an organiza-
tional design impediment; lean-thinking manager-teachers have an
opportunity to help them learn to see this.

Iterative and adaptive; pull from the backlog—This is also a shift
from predictive to adaptive planning. In this model, agile adoption is
based on (1) a prioritized impediments backlog, (2) short impedi-
ment-service cycles® executed by managers, and (3) adaptive itera-
tive planning based on a re-prioritized backlog each cycle. Who
knows what will be done in the next impediments-service cycle?—As
with Scrum, the impediments backlog is emergent and continually
re-prioritized.

There is no predictive planning, schedule, milestones, targets, or Gantt
chart with the “agile adoption schedule.” Rather, Scrum and agile adop-
tion is iterative and adaptive, just as regular agile development.

Prioritization and impediments backlog owner?—An official backlog
owner is probably not needed. Instead, experiment with this: Every
team, when they add an impediment to the backlog, give it a prior-
ity. Then, prioritize based on (1) number of teams that raise the
same impediment, and (2) average priority of the impediment.

Avoid ‘impediments’ added from quality and management areas—
Some years ago, in China, we were coaching a Scrum-adopting prod-
uct group that had an impediments backlog. All the original impedi-
ments came from hands-on workers. But after some time, quality
managers and department managers started to add their own
‘impediments.” These were not impediments of flow of value to cus-
tomers, nor impediments from the value-worker viewpoint; rather,
they were ‘impediments’ such as “not conforming to centralized pro-

6. As in Scrum-for-development, some management groups use time-
boxed cycles to improve cadence, to address the Student Syndrome
problem, and to motivate splitting large impediments into smaller
ones—with smaller incremental solutions. But do not assume all the
practices of Scrum (such as timeboxing) will successfully apply in
non-development contexts, such as this.

cess practice <X>.” Avoid that; the important work is the value
stream of the teams and Product Owner, and removing their impedi-
ments. All that said, ...

Avoid ‘impediments’ added from hands-on workers—If you ask a typ-
ical existing team of testers or a component team, “What is the best
team structure?” They will say, “Our current structure, of course!” It
is common that people—arguably even more so in non-management
positions—have not developed systems-thinking or lean-thinking
skills, nor have they studied organizational design, team, or prod-
uct-development research. Toyota (and management thought lead-
ers) have emphasized the vital role of managers who have this kind
of knowledge, educate others, and improve the system with insight.
Suppose there was a recent shift to feature teams and early testing,
and then ex-test-team members added an ‘impediment’ to the back-
log: “the testers should be in a separate group, and avoid testing
early so that it can be done efficiently at the end.” ScrumMasters
and manager-teachers have a responsibility to debug these local-
optimization thinking mistakes, and clarify problems that genuinely
impede the flow of value. It is easy to fall into the trap of local subop-
timization thinking—watching the runner rather than following the
baton, forgetting gemba and Go See. We make this mistake too. Test-
ing our ideas against people educated in systems thinking can help.

Managers add system impediments—Building on this last point,
there are system weaknesses to the value stream (usually in policies
and organizational structure) that team members are unlikely to
grasp or consider candidates for change. Managers have a pivotal
role in identifying and removing these. The Organization chapter in
the companion book centered on these weaknesses.

Add impediments from the Product Owner and product manage-
ment—The value stream is within the teams and in the work of the
Product Owner and product management. Invite product manage-
ment to impediments backlog workshops.

Accept the priority given by the hands-on workers—At one of our cli-
ents in Greece, we facilitated an initial impediments backlog cre-
ation workshop with team members. After all the voting, what was
their number one impediment?—A slow network. For years that had
been the dominant issue (it inhibited integration, for instance), but
no one in management had done anything about it—the priority of

383

this and other impediments had never been this clear. Now, with a
list of 50 prioritized impediments, the number one issue was unam-
biguous. To their credit, the management team—that had agreed to
move to the model of impediments service—accepted its priority and
within a few months, problem solved. This also built trust and coop-
eration because the teams saw managers genuinely helping solve
their key problems.

Create the initial impediments backlog in a workshop—We have
helped set up many impediment services for management teams,
and have found the following approach useful to start it off:

1. Convene a workshop
with hands-on people
from teams, the Prod-
uct Owner, and other
product managers. In '
other words, focus on gemba—where the value work is. Start
with brain-writing impediments on cards, in pairs.

2. Next, form larger
groups from four or
five pairs. The groups
discuss, merge, and
refine the impedi-
ments into a new set of
cards. Use the floor.

3. Combine the refined cards from all
groups into a central floor area. Do
affinity clustering to group them.
Remove duplicates. Then, do dot
voting by all participants. Finally,
lay out all the cards in (dot voted)
priority order. Discuss and refine—
final tweaking.

384

4. Use visual management. Set up the
backlog on a wall outside the office of a
senior manager. (This photo shows a day-
one backlog with no ‘service’ yet). For
example, in Greece it was set up near the
office of the head of the development cen-
= ter. During impediments-service Sprint
=== Planning, or at other times, managers
volunteer for an impediment, write their
> ‘ name on the card, and move it to the mid-

dle WIP column.

Rather than “manage agile transformation,” help agile-adopting
teams and product management with impediments service.

Thinking and acting outside the box is possible but hard when
everyone is inside it. Lean thinking, agile principles, self-organizing
teams, test-driven development, feature teams, manager-teachers...
these are mindset, culture, and behavior changes—and to be sticky
or meaningful, these kinds of changes require human infection from
experts through long-term face-to-face coaching.

In the most successful adoptions we have seen, the organization
established internal coaches supplemented with external coaches
(both were important), and emphasized lots of hands-on mentoring
from these agents-of-change during the real work.

Rewards work. An economist wrote in his blog a story to prove this:
His son still wore diapers to bed each night. The economist told his
son, “If you don’t wet your diapers tonight, tomorrow I'll buy you the
toy you want.” The next morning, the father went into his son’s
room. His son had successfully fulfilled the goal and was looking for-
ward to the reward. He had removed his diaper the previous night.
The bed was all wet, but his diaper was dry.

385

386

The Organization chapter of the companion book summarized the
hard facts that performance-based incentives lead to gaming, opac-
ity, and a weakening of the system. We have seen their deleterious
effect in promoting “fake agile” adoptions in several groups. Avoid
that—and avoid “agile adoption” target setting. The quality guru W.
Edward Deming, in his 14 points for management [Deming82], sum-
marized this in number...

11. Eliminate management by objective. Eliminate manage-
ment by numbers, numerical goals. Substitute leadership.

At some clients we have worked with, the introduction of kaizen gets
mixed up with their prior management culture, such as competitive
incentives. Then, teams or individuals are offered rewards if they
improve more than others. This leads to a competitive rather than
cooperative culture, in which parties are less willing to share or help
others since they might ‘lose’ individually.

‘Easy’ agile adoption is an existing weak organizational design not
meaningfully changed, and a thin veneer of practices painted on:
managers relabeled as ScrumMasters, existing component/analyst/
testing teams get their own “Product Backlog” and hold a daily
stand-up meeting every week, and more. There is no significant
improvement, and people do not take continuous improvement seri-
ously—or worse, they think, “the agile adoption is finished.”

On the other hand, Scrum emphasizes the art of the possible. It may
be that minor modifications are the current limits of change because
of limits in mindset.” These will not meaningfully enhance the value
flow to customers, but perhaps (1) adding prioritized backlogs, (2)
working in short timeboxes, (3) lowering WIP, (4) holding standups,

7. Sometimes, people have invested years in sequential life cycle pro-
cesses and the existing team structures; they will not easily consider
the possibility it was not ideal for flow of value.

and (5) reducing multi-tasking will help fractionally. It is a first step
before deeper change and improvement. Then, we suggest...

If you’re going through hell, keep going.—Winston Churchill

The mandate to improve is a lofty goal, and can scare off people from
experimenting. What if the improvement...doesn’t? Kaneyoshi
Kusunoki, a student of Taiichi Ohno and executive vice-president at
Toyota, said about kaizen and management support:

A defining characteristic of the corporate culture at Toyota is
that managers don’t scold you for taking initiative, for taking a
chance and screwing up. Rather, they’ll scold you for not trying
something new, for not taking a chance. Leaders aren’t there to
judge. They’re there to encourage people. That’s what I've always
tried to do. Trial and error is what it’s all about! [SF09]

Developing problem-solving skills through many experiments is cen-
tral to lean thinking. The only bad experiment is the one not tried!

The real measure of success is the number of experiments that
can be crowded into 24 hours.—Thomas Edison

In this light, the Try... and Avoid... ideas in this and the companion
book are just experiments—and also because systems are too com-
plex and variable to assume prescriptive advice will work.

The mandate “adopt agile development” is daunting and large. The
mandate “do continuous integration” reflects command-and-control,
forcing practices. An alternative to both these approaches is to foster
the kaizen mindset encouraged in lean thinking: People are encour-
aged to experiment and are supported with coaching and education.
For example, a ScrumMaster can explore with teams the problems
associated with delayed integration, describe continuous integration
as an alternative, and arrange coaching if the teams want to try it.

387

388

Survey decades of management and product-development trends,
and some patterns emerge. Possibly the dominant one is

1. difficulties exist due to system weaknesses in organizational
design, poor engineering skill, and ineffective management

2. try new ‘thing’ to address a problem (insert: MDD, PMI certifi-
cation, Kanban, CMMI, Scrum, SOA, agile, next-generation
lean, ...)

3. do not address the systemic issues; try ‘thing’ superficially
4. after two years, abandon ‘thing’ because “it doesn’t work here”

5. go to step 2

We see this in some groups trying Scrum. Scrum is a simple frame-
work that acts as a mirror: Rather than fixing problems, it increases
visibility of systemic weaknesses, inviting inspect-and-adapt with
experiments. In some groups, rather than fixing the system, it is
easier to try the next thing... “Let’s call in new consultants specializ-
ing in Scrum failure, and then adopt...next-generation lean.”

This is not about IBM or Accenture per se; it is about

0 the misconception that agile is a process or practice

0 shifting responsibility for agile/lean success to an external con-
sulting group

From this stems the notion it can be bought and installed—and
there are companies happy to take your money claiming so. Plus, it
is related to the misunderstandings summarized in the False Dichot-
omies chapter of the companion book: agile means iterative develop-
ment, Scrum means daily stand-ups, and so forth.

“We're starting to do agile. What tool should we buy for agile project
management?” This is a question we hear often; our suggestion is
always the same—and we mean this even for the very large-scale
cases: “Avoid any special agile tools until several years after starting
the adoption. Keep it simple. Use the wall or, in the most complex
solution, a simple spreadsheet and wiki.” Why?

Problems from system weakness cannot be solved with processes or
tools. Worse, attempting to quick fix systemic problems with tools
creates an illusion of control or change but no real improvement...
Executive: “What is the agile transformation progress?” Agile-
change manager: “We have installed <AgileToolX> and three of the
projects are using it. Come take a look at the burndown charts...”

Avoid the lure of “tools to do agile management” for at least several
years after starting to adopt agile or lean development, so that peo-
ple’s focus can be where it belongs: on the system. By removing all
crutches and quick-fix illusory solutions, people may—just possi-
bly—be prompted to squarely face the important but hard issues:
competent individuals, interactions, organizational design, the illu-
sion of command-and-control, and so on.

If you automate a mess, you will get an automated mess.—anon

We are not suggesting agile-management tools are poor—or good.
This is about focusing on important things first and avoiding the
dysfunctions that accompany management-reporting tools.

After <N> years? Prefer free tools so that the cost of experimenting
is low and there are fewer barriers to discarding tools. We have
heard the following several times: “We can’t stop using tool (or pro-
cess) X because we have invested so much in it.”

We have seen thousand-person multisite development groups suc-
cessfully apply large-scale Scrum with some Excel spreadsheets for
their Product Backlog and Release Burndown chart. Indeed, they
are almost certainly better off for doing so; it keeps their attention
more on fixing the system.

389

390

Also, there is a more subtle, pernicious danger with agile-manage-
ment tools. These are the fifth and eleventh agile principles:

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
Job done.

11. The best architectures, requirements, and designs emerge
from self-organizing teams.

A theme in Scrum (and other agile methods) is self-managing teams,
as covered in the Teams chapter in the companion book. And the
fifth principle emphasizes trust and support, which is quite different
from monitoring people’s work. So what?

The agile-management tools we have seen emphasize tracking and
displaying individual and team tasks and Sprint Backlogs to manag-
ers—almost the antithesis of these principles. In Scrum, the team’s
tasks (the Sprint Backlog) are created by the team to help them self-
manage, not to report their status to others. As the well-known team
researcher, Richard Hackman, explains, “In self-managing teams,
the responsibility of tracking the progress is delegated towards the
team” [HackmanO02]. Since the team is self-managing, they are not
to be tracked or monitored; such tools are a slippery slope that may
reinforce a traditional command-and-control culture rather than a
culture of self-management.

We know a coach who works for an ‘agile’ tool vendor. He told us that
they had been joking about adding a “real Scrum” button to their
tool. This button would turn off all the non-Scrum and unnecessary
features that were requested by their traditional-management cli-
ents...and there would be almost nothing left in the tool.

There is a well-known case of a company where project managers
inspected daily the Sprint Burndown charts of teams, and “solved
the problem” when the charts did not go down. Ken Schwaber—the
Scrum co-creator—was visiting and noticed that all the burndown
charts had almost no deviation between the burndown and ideal
lines. Eventually he discovered that a team kept two charts: a fake
one for the managers so that they would stop interfering, and a real
one to support self-management.

Computerized management-reporting tools can also take people
away from gemba and the practice of Go See. Lean thinking empha-
sizes—to understand what is really happening—go with your feet
and see with your eyes at the real place of work, help solve problems
there, and build relationships with the workers there.

Finally, these tools are optimized for reporting—not for success,
improvement, or a better flow of value. What meaningful problem do
they solve?

Over the years that we have been involved in the transition to fea-
ture teams from component teams (in large groups involving hun-
dreds of people), we have seen several strategies—and not always
smooth. In Feature Teams in the companion book we shared two:

0 big-bang reorganization

0 gradual expansion of component teams’ responsibility

The first strategy can work better than one might expect, but not
many organizations want to take that plunge because the change is
big and they consider it risky. Plus, it is a challenge in a 20-year-old
multisite product group with 100 long-established component teams.
The second strategy does not work that well, because it creates both
the drawbacks of feature and component teams.

Another strategy we have experimented with (not described in the
companion book) is the gradual introduction of feature teams,
applied only to the most important new customer features.

For instance, take the most important new feature, item-1. Form one
new cross-component and cross-functional feature team, Team Red
(Figure 11.1), by extracting only a few members out of existing com-
ponent and single-function teams (such as analysis and testing). The
old teams remain, slightly smaller, and Team Red is born: starting
life by working on item-1. In this way, new high-value work benefits

391

Figure 11.1 a
gradual transition
from component to
feature teams,
focusing on the
most important
features

392

from the speed and simplicity of feature teams, while change impact
is softened.

| from component

I'teams A, B, and C,
-=N and from analysis,
| architecture, and

-
-

\testing groups)
N e e e e - = -
Product System
Owner N
\
Iltem 1 \
Comp A PR » | Component
item 2 | —> \ Team \: \ A
tasks for A 4 N
tasks for B \
ltem 3 \
tasks for A 1 \
tasks for B - CompB) _ _ _.)\ | Component
Item 4 Team B
tasks for A
tasks for C \
\
CompC \ _ __) | Component
Team C

Note!—Team Red is not a temporary project group formed only for
the purpose of feature-M. We are not suggesting the traditional
practice of resource management with resource pools for short-term
work groups. Rather, Team Red is a new stable team that will stay
together for years; feature-M is but the first of many features they
will eventually do.

Disadvantages—This approach also has drawbacks. The first,
broadly, is conflicts caused by having two ‘competing’ organizations
in place at the same time...

0 feature teams change code that component teams own

0 the analysis and architecture groups lose ‘control’ over deciding
how to implement a feature, and the test group over the testing

The second drawback is that this approach is slow—mnot a major
problem for big product groups that are around for a long time!

Official agreement on changes to the organization chart for a reorga-
nization to cross-component and cross-functional teams can take a
long time—especially in long-established large groups. In the groups
we work with, the successful strategy is to not wait for that, but to
immediately and informally create new cross-functional Scrum
teams by dispersing the old teams. The existing line managers (say,
a test manager) then have people ‘reporting’ to them from multiple
teams. Usually, after some months, the organization chart catches

up.

What about the prior line managers, such as the test-group line
manager? They may become line managers of several new cross-
functional cross-component Scrum teams.3

Before adopting agile development, most groups had project manag-
ers or line managers. In some, during early days of agile adoption,
rather than supporting the emergence of self-managing teams (the
11th agile principle) with a real ScrumMaster, the managers relabel
themselves ScrumMasters of their in-line teams—often to meet a
top-down target to do Scrum. Avoid that, since a ScrumMaster is not
the team’s line or project manager and has no authority over the
team they serve; there would be a conflict between having authority
and no authority.

On the other hand, some line managers can serve as excellent real
ScrumMasters—they may have the right skills and servant-oriented
character, they may have some influence in the organization, and
this role increases their focus on improving the system. How to

8. This assumes that the new teams report to a line manager, which is
not required by law nor in a self-managing organization; see the rec-
ommended readings in the Organization chapter of the companion
book for companies that do not organize in a hierarchy.

393

394

resolve? In some groups at Xerox, for example, a line manager of
team-A offers to serve as a ScrumMaster for out-of-line team-B;
team-B decides on the offer. The two points are (1) it is an out-of-line
team, and (2) ScrumMasters are chosen by the team, not imposed.

ScrumMasters remove barriers for teams. At Valtech India, when
we saw the cube farm on the left, we arranged to gut the interior of
the building, and create team areas with plenty of whiteboards.

before after

Although Scrum allows iterations of up to four weeks, this is seldom
advised or practiced. The Scrum Guide suggests:

Tip: When a Team begins Scrum, two-week Sprints allow it to
learn without wallowing in uncertainty. [Schwaber09a]

When we started coaching large-scale groups in Scrum, we assumed
that four-week iterations would be useful to gradually “lower the
waters in the lake.” What we discovered, however, was that four
weeks is just long enough to maintain old habits: sequential life
cycle practices, the existing single-function teams, and handoff
between groups. Consequently, there was no strong force for out-of-
the-box thinking or transformation to a profoundly different organi-
zational design with concurrent engineering, continuous integra-
tion, feature teams, and so on.

But, two-week iterations—with the goal of getting items really done
according to done—do not readily allow for old habits. Things have
got to change—dramatically.

A similar suggestion, for other good reasons, is found in the first
book on scaling agile development:

Although you may have heard otherwise, the larger the team is,
the more important short cycles are. The reason is simple—if a
large team takes a completely wrong course from the entirety of
its three-month development cycle, the cost of correcting the
course will be enormous. And even if the team took the correct
course, it wouldn’t benefit from the frequent feedback that is
possible with short development cycles. [Eckstein04]

Figure 11.2 shows a common-style Sprint Backlog, with one row of
task cards for each Product Backlog item, and three columns: to do,
underway (meaning, WIP), and complete (meaning, done).

Figure 11.2 Sprint
Backlog—rows for
each item, columns
for to do, underway
(meaning, WIP),
and complete.

395

396

In the early days of a big-group adoption, a coach will notice—by
looking at this display and in the behavior of the team—two symp-
toms of old habits:

0 Many tasks cards at the same time are in the underway col-
umn—there is high WIP.

0 Key point—task cards for multiple backlog items are in the
WIP column because people are thinking “I only do my special
tasks.”

For example, “I am an interaction designer. I have finished my inter-
action design tasks for item-1. Therefore, no more tasks for me in
item-1, so I will start on my interaction design tasks for item-2.”

Team members have primary specialities, and will do tasks in those
areas, but when those are finished, the idea is for team members to
take on other tasks of the current item in progress, in less familiar
areas—perhaps in an area of secondary speciality. This both reduces
WIP and increases multi-area learning.

A visual management technique to encourage this is illustrated in
Figure 11.3. Now, the Sprint Backlog is spread across a set of flip
chart posters. Each Product Backlog item has task cards on a sepa-
rate poster—and each poster has the three common columns: o do,
WIP, done. Now—key point—the team displays only one or two post-
ers on the wall at a time;” the other posters (items) are out of sight.
Then, the whole team focuses on getting one item at a time done,
increasing learning and reducing WIP.

9. Two items may be in progress either because each is so unusually
small that the entire team cannot realistically work on one item
together or because something is blocked.

When there are tens of thousands of people in a company, it is useful
to convey a consistent introductory message to everyone. One tech-
nique is written material, but that is low-impact—few read it, and
the nuance of “bringing Scrum to life” is lost.

Frequent one-day large-audience seminar introductions (say, 200+
people at a time) make a bigger impact—due to immediacy, Q&A,
and especially the many ‘discussions’ that take place during coffee
and lunch breaks. These seminars break the ice and add some steam.

Figure 11.3 one flip
chart for each item

397

Figure 11.4 OST
early-days agile
adoption events:
Budapest and
Bangalore

398

- From India to Hungary to the USA,

_ l we have seen the positive impact of

. using Open Space Technology (OST)
_ [Owen97] during the early days of

large-scale Scrum adoption within

JI groups. We usually serve as facilita-

tor, starting by announcing the

theme of “agile adoption at companyX,” explaining the time-space
board, and briefly sharing the OST principles and laws.

OST is a meeting technique that encourages emergence and self-
organization; it is highly complementary to agile principles and
Scrum, and we encourage groups to experiment with it in multiple
contexts: early days, Scrum-of-Scrum meetings, and more.

During the first few years
of Scrum adoption at one of
our clients, we helped orga-
nize an annual internal
Scrum Gathering in which
hundreds of people from around the globe came together to share
stories and tips, listen to expert speakers, and so forth. This sus-
tained and added momentum to the adoption.

In some of the enterprise-wide adoptions that we have seen, an
internal agile or lean coaching group was established, consisting of
hands-on agile experts who go and work with directly with teams.
Try that.

Form a cross-functional coaching group to learn the diversity of per-
spectives and issues and to build support for change in more diverse
areas. For example, include product management, software develop-
ment, hardware development, field service, sales, manufacturing,
marketing, and more. That said, in the early days of adoption, the
focus is typically within R&D and product management, so the orig-
inal scope of coaches is usually limited to these areas.

Caution—Avoid a group that has formal authority to mandate prac-
tices, policies, and processes. Rather, create a group that focuses on
coaching people interested in adopting agile or lean development.

Genuine learning and change of behavior within a product group
takes a lot of coaching and time. Plus, misunderstandings are easily
created without sufficient coaching. We have seen product groups
flounder because they received only a smattering of occasional edu-
cation. It is better to concentrate the attention of the internal coach-
ing group—supplemented with external coaches—on a few products.
Only move on to new groups after solid mastery in old groups.

Good external agile or lean coaches are worthwhile because they
bring fresh perspectives and ideas, sometimes have more credibility
than internal coaches (even if not justified) and can therefore make
a quicker change-impact, and they can “speak the unspeakable.”
Also, ...

399

400

When external coaches visit, pair them with internal coaches. There
are several advantages, including

Q learning from each other—for example, the external coach will
learn things about the enterprise—policies, politics, and so
forth—that would otherwise be difficult or slow to grasp

Q increased learning in the broader coaching network—the two
coaches connect each other to broader networks (internal and
external) which share and learn from one another

Big companies often have a centralized process or improvement
group. The people working in this area sometimes drift away from
doing hands-on development and become PowerPoint process con-
sultants. Avoid people like that in an agile or lean adoption initia-
tive. Similarly, watch out for consultants or coaches who may not
have read the foreword to the four agile values:

We are uncovering better ways of developing software by doing
it and helping others do it. (emphasis added)

Some ‘agile’ consultants do not directly develop software with the
teams—coaching agility and lean thinking at gemba. Rather than
doing it with hands-on developers and practicing Go See, they sit in
rooms presenting or reviewing process diagrams that may have lit-
tle to do with what is really happening, or they write emails specu-
lating about problems and their solutions. Managers and
consultants may be pleased with the agile PowerPoint process, but
the reality on the ground is different.

Instead, develop a cadre of internal and external agile/lean coaches
who apply Go See and who are masters of the real value work (pro-
gramming, testing, ...). These coaches and consultants spend most
time with engineers while coaching, and only occasionally leave
gemba to meet with senior management—bringing their insight of
what is really happening at gemba.

For example: At one of our clients the focus is on lean development
plus agile engineering practices. In collaboration with management,
we set up (and coached) the following curriculum for development
people (organized by team). There are intervals of several weeks to
several months between each step:

1. Short warm-up e-learning (web-based) courses that focus on
basic concepts and terminology related to lean thinking.

2. Lean development-1 (LD-1): Five days in classroom with class
projects, with an emphasis on hands-on doing.

3. LD-2: Five days in a structured workshop with teams, applying
the skills from LD-1 to their real products, and learning some
new skills. A coach mentors. The workshop is in a separate
location from their normal work environment.

4. LD-3: For five days, a coach visits the team at their normal
work area, reinforcing LD-1 and LD-2 skills in the context of
their day-to-day work, doing pair work, and facilitating work-
shops (such as Sprint Planning).

5. LD-4: Same as LD-3.

Thousands of people are involved in this multiyear coaching
endeavor, and the leadership’s commitment to in-depth meaningful
lean and agile coaching is an illustration of the foundation of the
Toyota Way: manager-teachers who have long-term constancy of
purpose with lean thinking.

“Let’s write an internal agile cookbook so that all the people can bet-
ter adopt agile development in our company.” It sounds like a good
idea: more efficient, more harmonized, ... But we have seen—
through Go See with the teams—the subtler dynamics at play...

0 It reduces critical thinking—people assume that if something
is written in a corporate-sanctioned guide, then it is good.

401

402

It reduces challenging the status quo—people assume that
what is written in corporate guides should be accepted or fol-
lowed, rather than challenged.

It reduces learning, especially good agile/lean learning—high-
quality agile, lean, and Scrum teachings have been written in
books by founding thought leaders; but rather than study these
original sources for good learning, people assume that second-
ary corporate guides contain reliable insight.

(Related to prior point) it increases misrepresentation—in the
interest of ‘harmonization, internal process writers revise
these systems... “let’s remove self-organizing teams from our
agile description—people won’t like that.”

It reinforces the corporate illusion that system problems can be
solved with processes and process documentation.

If there is an internal group that only writes documentation,
and the people in this group do not do hands-on agile coaching,
then (1) what is written is undesirable because it is not based
on experience, and (2) it perpetuates more overhead work away
from gemba.

A group at Toyota described their early documentation effort, and
what Taiichi Ohno thought of that:

So we went to work on preparing a systematic description of our
[Toyota] production methodology. ... Ohno, of course, hated that
kind of deskwork. If he saw people poring over written work like
that, he'd tell them to get out onto the plant floor. So the team
couldn’t do its work within his sight... [SF09]

This section has two categories:

0 multiteam coordination, such as a Joint Retrospective

0 other general experiments

An iteration ends with an individual team Sprint Retrospective,
where the focus is team-level improvement actions. In large-scale
Scrum there is the bigger system to inspect and adapt. For this,
experiment with Joint Retrospectives each iteration.

When?—Since the iteration ends with a team retrospective, most of
our clients hold this early in the first week of the subsequent itera-
tion—when the issues of the previous iteration and recent team-
level retrospectives are still fresh in mind.

| iteration . |

I 'I 4 | -
team-level Sprint Joint Retrospective
Retrospectives

Who?—In general, one or two representatives from each team. Since
ScrumMasters are closely involved in understanding and helping
improve the system, they are good candidates. However, avoid
ScrumMaster-only meetings; this gives the wrong impression that
ScrumMasters are solely responsible for improvement (rather than
other team members too), and it increases bias during the workshop.

Scope of teams?—This depends on the scale: If there is only one
small 10- or 20-team group at one site, one Joint Retrospective with
representatives from all teams suffices. If it is larger and there are
requirement areas, then each area is a good scope for a retrospective.
Because many issues are site specific, a site-level retrospective is
also useful: one in Curitiba, one in Chengdu, and so on. Finally, for
larger groups, experiment with a top-level Joint Retrospective
(above the site and requirement areas); in this case, it is most often
a multisite retrospective.

403

404

Where?—Use a big room,
with lots of whiteboards
since there may be doz-
ens of people in a Joint
Retrospective. See the
Multisite chapter for tips
in that case.

How?—As with any retrospective, variety of workshop activities over
time is a guiding principle. Broad suggestions:

0 Try Open Space Technology [Owen97], World Café [BIO5], and
Future Search [WJ00] for Joint Retrospectives.

0 Apply the diverge-merge pattern—useful in any large work-
shop.

What?—Too often, a retrospective focuses only on problems. Experi-
ment with sharing what is going well for a site or team, that others
may try. This is the yokoten—spread practices laterally—approach
used at Toyota. A joint retrospective is also a time to review and
change existing coordination working agreements.

Major (expensive) improvement ideas are added to the Product
Backlog so that they are visible to—and prioritized by—the Product
Owner. This is even more important when there are intermediate
Joint Retrospectives below the overall product level. For example,
suppose there are 20 teams in Curitiba (Brazil) and 20 teams in
Chengdu (China). Each sub-group holds its own site-level retrospec-
tive and identifies the same major improvement goal. These need to
flow into a common list, the backlog, to prevent duplication and so
that the Product Owner sees cross-site problems.

And who takes on this work? An existing feature team.

Note—This relates to other suggestions in this and the companion
book. If the improvement goal involves common software, this leads
to a feature team working on shared infrastructure (see Feature
Teams in the companion). If it involves creating common test-auto-

mation testware, this leads to a feature team doing test automation
(see the Test chapter).

External-to-team working agreements usually define how teams
agree to work together; for instance, holding a joint design work-
shop. They may or may not be product-wide; a subset of teams that
work together frequently can have their own agreement. They are
defined or evolved in Joint Retrospectives.

A Joint Retrospective is vital to inspect and adapt the system-level
ways of working. Similarly, a Joint Review is pivotal to focus on
inspect-and-adapt for the overall product. At one of our large-group
clients, the last day of the iteration runs as follows:

1. Product-level Joint Review—The overall Product Owner (PO)
and supporting PO representatives are in meeting rooms
around the world, all linked together with video conferencing
and shared desktop technology. There are also representatives
from various teams.!® What is presented? A subset of items
that are of special or overall interest to the entire product
group. What is discussed? Issues relevant to the overall prod-
uct.

2. Single-team Sprint Review or multiteam Joint Reviews—When
a supporting PO representative is served by only one team, a
standard Sprint Review occurs. When the PO representative is
served by several teams or the Area PO is involved, we have
seen clients either (1) stagger the Sprint Reviews so that the
PO representative or Area PO meets separately with each, and
(2) a Joint Review with several teams together.

3. Single-team Sprint Retrospectives.

10. With the exception of Joint Retrospectives, we discourage Scrum-
Masters from acting as representatives, to avoid giving the wrong
impression that they are the team representative or manager.

405

406

A review bazaar—A Sprint Review involves conversation, not only a
demonstration of the product; nevertheless, showing the running
system is important. One technique applicable to a Joint Sprint
Review is a bazaar [Schatz05], analogous to a science fair: A large
room has multiple areas, each staffed by team representatives,
where the features developed by a team are shown and discussed.
Members of the Product Owner Team and Scrum teams visit areas
of interest.

If an individual team has its own separate Sprint Review, there is a
danger—one that we have seen in action—that the team focuses on
‘their’ result instead of the overall product created by all teams
together. This leads to a loss of systems focus and an increase in
local sub-optimization. Avoid that. However, a Joint Review does not
review all items developed during the iteration (since there are so
many), and the team that developed a feature might need detailed
feedback from their Product Owner. If separate reviews are held,
people need to watch out for a loss of product-level focus.

Very large product groups become large because their default
response to delivery-speed problems is to hire more people. Avoid
that, and in contrast, apply the lean-thinking strategy of removing
waste to improve the flow of value—reducing handoffs, WIP, and so
forth. Note that the approach is more subtractive than additive.
Often, this waste removal does not even incur additional capital
investment or operating expense.

And yet, spending more money
(“increasing cost”) can contribute to
improving—without using it to hire
| more people. For example, when I
(Craig here) started working at
Valtech India, I noticed that people
had only one small monitor.

- - Research suggests improvements if
people have more than one [Atwood08], so we bought a second moni-
tor for everyone.

Other common—and valuable—examples include hiring expert
coaches who mentor people, and classroom education with great
teachers.

One metaphor for continual improve-
ment—sometimes used in lean think-
ing—is the lake and rocks. 11

How to work toward flow of value to
customers and continually improve? Do
this by gradually lowering the waters
in the lake. The water level symbolizes
the amount of inventory, WIP, batch
size, handoff, or cycle time. 12 That is, gradually decrease their size.
As they grow smaller—as the water level lowers—new rocks hidden
below the surface of the water are revealed. These represent the
weaknesses and impediments in the system.

For example, perhaps a group first moves from a long two-year
sequential life cycle to a four-week timeboxed iterative cycle. Some
outstanding weaknesses in the system—the biggest rocks—will
become painfully obvious; for instance, lack of automated tests and
efficient integration. The group works on these big visible rocks;
eventually they shrink in size. Then, as discussed in the “Try...Two-

11. This metaphor was also presented in Queuing Theory and Lean
Thinking in the companion book.
12. These are interrelated; for example, a big batch means more WIP.

407

408

week iterations to break waterfall habits” section on page 394, the
cycle time is lowered to two weeks to confront deeper problems.

Especially in large traditional groups there is a massive pile of rocks.
The scale of improvement work can seem overwhelming. The strat-
egy behind this metaphor makes the work tractable, while also sig-
nifying that kaizen is never finished.

It takes study and practice to become an effective ScrumMaster—at
the very least a year. And a ScrumMaster ought to focus on organi-
zational change—and that requires long-term constancy of purpose.

If the role is rotated quickly within a team, that necessary period of
practice is missing and the organizational-improvement focus is
missing or diminished. Therefore, do not rotate the position quickly.

On the other hand, a learning self-managing team should not be for-
ever reliant on one person for this skill, and different team members
should eventually have the opportunity or challenge to grow as
ScrumMaster. Rotate the role—very slowly.

“We know that performance appraisals and performance-based
incentives weaken the system, but we can’t do anything about
them—they’re mandated by HR.” We hear variations of this from
some people who then want to give up trying to improve the system.
But Scrum encourages the art of the possible. With creativity, the
harm from various policies can often be reduced. And possibly some-
time in the future, eliminated.

For example, Bas used to work in an organization that mandated
performance reviews, targets, and bonuses. When he met with peo-
ple that reported to him, instead of focusing on performance in their
‘normal’ work, they set targets related to learning, such as reading
books and giving presentations. During the next review, they talked
about the learning and how it applied at work. One person told Bas

that nobody believed it when he told friends that he got a bonus for
reading books.

Similarly, if performance-based rewards are mandated, perhaps
they can be shifted to team-based goals so that there is a reduction
in competition and an increase in cooperation.

Gandhi (at least as reported by his grandson Arun) once said, “We
need to be the change we wish to see in the world.” This is equally
applicable to the world of work—an agile adoption needs agile adop-
tees. Scrum and lean development cannot be successfully adopted
with command-and-control management, predictive planning, or
process recipes or “best practices” coming from ivory towers.

Even when those involved in an agile adoption have a conducive
mindset, a repeating problem we have seen is a lack of Go See
behavior, and therefore, a lack of insight into the real problems and
useful solutions. How many product leaders or process engineers
spend time regularly sitting with developers while doing the real
hands-on work? Without that experience, initiatives have little use-
ful impact; they can also focus in the wrong area—on management-
level ‘improvements’ rather than at gemba.

Scrum, lean, agile development: these are never finished being
adopted. Agile is not a change project. Rather, continuous improve-
ment is a pillar of lean thinking, coupled to the idea that the people
best suited to create improvement experiments are the workers.

Naturally, hands-on workers at gemba also have limitations. All peo-
ple—including us—get stuck in inside-the-box behaviors and beliefs
that inhibit challenging the status quo. So, in a lean enterprise,
manager-teachers who deeply understand lean thinking, who have
constancy of purpose, and who inspire kaizen mindset in others are
a key positive force to promote and sustain a culture of agility.

But meaningful change and improvement cannot rely on manager-
teachers; it relies on...us.

409

410

The Birth of Lean, edited by Shimokawa and Fujimoto, offers a
glimpse into the evolution and adoption of lean production and
thinking at Toyota. For example: “At a time when all of us are
struggling to implement lean production and lean management,
often with complex programs on an organization-wide basis, it
is helpful to learn that the creators of lean had no grand plan
and no company-wide program to install it.”

Fearless Change: Patterns for Introducing New Ideas by Mary
Lynn Manns and Linda Rising comes from authors with experi-
ence in change initiatives and knowledge of agile development;
they emphasize a bottom-up approach to change.

The site www.solonline.org, from the Society for Organizational
Learning, contains many learning resources and recommended
readings related to organizational improvement.

Taiichi Ohno, in his Workplace Management, conveys a sense of
the importance—for creating a lean culture—of leaders who
truly grasp lean thinking, and relentlessly coach others in this.

There are several good (and more bad) books on team building;
some are of the better ones are recommended in the Teams
chapter of the companion book. Two mentioned in this chapter
include The Five Dysfunctions of a Team and QOuvercoming the
Five Dysfunctions of a Team by Patrick Lencioni.

Teamwork Is an Individual Skill: Getting Your Work Done
When Sharing Responsibility by Chris Avery emphasizes tak-
ing personal responsibility for creating an effective team, and
shares tips for how to do so.

The Fifth Discipline: The Art & Practice of The Learning Orga-
nization by Peter Senge, is a classic in systems thinking, learn-
ing, and the qualities needed by effective leaders for
sustainable, high-impact organizational improvement.

Agile Retrospectives: Making Good Teams Great by Esther
Derby and Diana Larsen covers core retrospective skills. And
Project Retrospectives by Norm Kerth explores how to do retro-
spectives with larger groups.

www.solonline.org

0 Agile Coaching by Rachel Davies and Liz Sedley captures
many practical tips for ScrumMasters and other agile coaches,
from two experienced coaches.

411

A

acceptance test-driven development
coach 56

compared to test-driven development 47

definition 42
for requirements 271
for UAT 463
in iteration 48
is not testing 47
offshore 462
overview 44
recommended reading 96
adapters 327
adoption
agile curriculum 401
avoid cookbooks 401
large-group introductions 397
Open Space 398
overview 373
project 380
targets 385
Adzic, Gojko 49
agile modeling 268, 292, 303
in design workshops 289
ambassador
activities in coordination 194
multisite 432
offshore 455
analysis
see requirements
analysis group 234
Ancona, Deborah 193
andon 359
appraisals
CMMI 480
appraisers
CMMI 494
Arbogast, Tom 499
architect
active master programmers 288, 302
astronauts 302
avoid handing off to programmers 308
avoid separate review of work 312
coaches during design workshops 299
impact if not programming 286

INDEX

PowerPoint 285, 302

program spikes 308

programmer in tiger team 308

teaches during code reviews 312
architecture

analysis 301

and customer-centric features 307

build vertical slices 305

Community of Practice 313

design 301

documentation 310

see SAD workshops

group 234

integrity 293

outdated 302

question finality 301

see also design

spikes 308

versus growing, gardening 282
Area Backlog 15, 133, 215, 221, 555
Area Product Owner 15, 133, 135, 136, 215,
423, 555
artifacts

see documentation
A-TDD

see acceptance test-driven development
attrition 468, 469

B

backlog grooming

see Product Backlog refinement
best practices 4, 492
branching 358
browser wars 334
bug-free code 39
build speed 361
business advantages 100
business analyst

not the Product Owner 124
business manager

as Product Owner 121
business rules 52

589

C

C++ unit testing 73
career paths 342
cargo cult 2
Carmel, Erran 413
certifications
agile 493
CMMI 480
change management
contracts 521
change project 380
changes
large ones 369
chief engineer 128, 191
chief Product Owner 135
clean up your neighborhood 346
ClearCase
avoid 362, 441
CMMI
appraisers 494
overview 480
coaches
avoid coaches who aren’t hands-on 400
external 399
external and internal 400
offshore 469
coaching
internal group 399
code
HTLM-ize it 317
is the design 282
multisite 438
reviews 312
coffee 86
Cohn, Mike 195
collaboration 116
co-located team 413
commitments 190, 335
committer role 314
communicate in code 211
communication barriers 209
Communities of Practice
design/architecture 313
for communication 208
general 207

590

multisite 433
Community of Practice
testing 35
competition between teams 198
component guardians 314
component teams
drawbacks 553
to feature teams 391
Concordion 57
continuous integration
developer practice 352
how frequently? 356
misconceptions 351
multisite 424
overview 351
continuous integration system
multi-stage 364
overview 65, 359
scaling 361
scaling example 366
continuous product development 157
contract game 106
contract negotiation 106
contracts
acceptance 522
agile 518
appreciate lawyer point of view 502
change management 521
collaborate with lawyers 516
collaboration 116
common misunderstandings 504
contract game 106
deliverables 525
delivery 519
fixed price 527
fixed-price fixed-scope 531
hybrid pricing 530
incentives, rewards, penalties 514
internal 190
key agile insights 500
lawyer education 501, 509, 511, 513
liability 524
multi-phase models 539
multi-phase variable-model 543
offshore 494

overview 499
payment timing 526
pay-per-use pricing 529
progressive 536
release contract 106
scope 519
silo mentality 505
target-cost 520, 540
termination 522
thinking about 500
time and materials 527
traditional assumptions 504
value-based pricing 528
variable-price variable-scope 536
warranty 525
cookbooks 401
coordination
centralized 200
cross-department 190
decentralized 206
meetings 200
responsibility for 196
ScrumMaster’s responsibilities 197
team is responsible for 194
thinking about 189
travelers 207
coordinator 190
coordinator, ambassador, and scout 193
copy-paste 336
CppUTest 73
craftsmanship 337, 339
cross-department coordinator 190
cross-functional teams 191
cubicles 209
Cucumber 57
culture
multisite 437
overview 468
Cunningham, Ward 57
customer documentation 192
customer-facing test 42
customers 145

D
Daily Scrum 14, 124
defect tracking 39
defects
(to fix) in Product Backlog 225
zero tolerance 39
Definition of Done 15, 170, 178
demo preparation 59
department interfaces 190
dependency injection 318, 319, 320
design
multisite 435
overview 281
see also architecture
sending offshore 316
thinking about 282
walking skeleton 305
design patterns 316
design workshops
at the start 296
each iteration 295
in team room 297
joint for multiple teams 298
overview 289
developer testing 72
development skills 335, 339
discuss-develop-deliver cycle 44
dispersed team 413, 416, 419, 420, 472
distributed teams 413, 416
documentation
architectural 310
offshore 461, 462
requirements
done
see Definition of Done
dual targeting 76
duplication
between requirements and tests 56
between tests 66
code 82

E

education
for all teams 401

591

embedded software
learning tests for new hardware 80
testing 77
environment mapping 211
epic
see splitting
terminology 222
estimation
Monte Carlo simulation 184
multisite 429
overview 181
value 139
examples for requirements 50, 245
experiments 2
exploratory testing 62
external coordinator 195
Extreme Programming
see XP

F
false dichotomies 2
Feathers, Michael 73
feature 222
feature screening 216
feature teams
as automation team 38
choosing 554
dispersed 420
from component teams 391
in large-scale Scrum 12
multisite 418
overview 549
transition 555
vs component teams 551
vs project groups 552
Fit 57
FitNesse 57
fixed-price contracts
see contracts
flexibility and specialization 551
Fowler, Martin 351
FPGA 322

function-to-function-pointer refactoring 78

FURPS+ 231

592

G
Git 358
Grenning, James 97
grooming
see Product Backlog refinement
growing vs building 355

H

Hackman, Richard 198

hardware 317

hardware abstraction layer 320, 321
hardware design 322

hardware simulators 71

Hetzel, Bill 29

Hohmann, Luke 152

I
impediments

backlog 381

service 381
improvement 373
incentives 514
incremental handoff 179
infrastructure work 128, 168
inspect-adapt

overview 373

product management 148
interaction design

see Ul design
interaction design group 234
interface API design 323, 324, 326
INVEST test 247
ISTQB 32
iteration planning

see Sprint Planning

J

jidoka 353

JIT modeling 295

joint design workshop 298

joint requirement workshops 246
joint Scrum meetings 205

joint Sprint Retrospective 15, 17, 403

joint Sprint Review 17, 405

K
Klarck, Pekka 57

L

lake and rocks metaphor 407
language 456
large-scale Scrum
artifacts 13
definition 9
framework-1 10
framework-2 15
overview 9, 10
roles 12
law of communication paths 199
law of the inverse relationship between size and
skill 339
lead Product Owner
overall 135
learning debt 336
learning tests 79
Lecht, Charles 334
legacy code
awareness 342
lethal 347
overview 333
solution 343
line manager 393

M

maintainable tests 65
Marick, Brian 27
Martin, Bob 57
matrix organization 31
MDA 291
MDD 291
meetings

multisite 428, 431, 435
Meszaros, Gerard 36
milestone 108
mocks 318, 321
modeling

agile 292
avoid extremists 303
just-in-time 295
requirements
tools 291
Monte Carlo simulation 184
moving skeletons 368
multisite
ambassador 432
avoid ClearCase 441
centrifugal forces 413
coding style 438
Communities of Practice 433
continuous integration 424
culture 437
design 435
dispersed vs. distributed 416
estimation 429
feature team 418
is non-trivial 415
matchmakers 435
meetings 425, 431, 435
one iteration per product, not site 417
Open Space 430
overview 413
partner sites 423
planning poker 429
Scrum of Scrums 430
shared space 209
site organization 417
teams 420
thinking about 414
tools 438, 439
transition to feature teams 421
video culture 425, 428
visits 432
myriad coordination methods 199

N

Netscape 334

non-functional requirements
in Product Backlog 225
see FURPS+

593

0 choose good programmers 479

offshore choosing 475
acceptance TDD 462 four-year programmers 477
ambassador 455 improve together 480
certification 480 poor environment 477
CMMI 480 top-heavy management 476
CMMI appraisers 494 outsourcing
coaches 469 and legacy code 341
contracts 494 choosing a partner 475
culture 468 overview 445
design problems 316 overall product focus 193, 198
documentation 461, 462 overall Product Owner 135
domain and vision workshop 460 overburden 337
educate customers 446
educate Sales 448 P
feature teams 470
kickoff workshop 448 PBI 215

PDMA 152

language 456
matchmakers 450

onshore partnership 469
onshore Product Owner 457
overview 445

partnership 470

planning 470

remove barriers 450
requirements 462, 465

penalties 514
personal safety 376
Pichler, Roman 152
planning
infrastructure 168
iteration 163
overview 155
research and learning 166

requirements workshop 458 Sprint 163

ScrumMaster 468 planning poker

Sprint Retrospective 456 multisite 429

Sprint Review 454 platform departments 191

team visits onshore 457 platform development 128, 168

teams 466 Poppendieck, Mary 4

titles 467 potentially shippable 26

tools 495 potentially shippable product increment 14, 170

translator on team 455 PowerPoint architects 302

UAT 463, 464 practices

UI design 461 context dependent 4

video sessions 451 pricing

visits both ways 454 contracts and outsourcing 527
Open Space prioritization

for agile adoption 398 avoid categories 143

multisite 430 of Product Backlog 139

overview 204 of value 139, 141
outsourcer Product Backlog

avoid factories and factory mindset 478 Area Backlog 215

594

avoid tasks 237
avoid team-level backlogs 238
creation 155
items 215
major improvement goals 404
one per product 132
only one per product 13
PBI 215
prioritization 139, 141
refinement 166
themes 216
visual management 229
Product Backlog refinement
for A-TDD 49
initial 155, 158
joint or asynchronous 166
overview 15
workshop 243
product management
avoid short-term focus 123

changes when adopting Scrum 104

collaboration with R&D 116

contract negotiation 106

inspect-adapt 148

overview 99

traditional assumptions 117
product manager 120, 126, 128
Product Owner 120, 122, 135

Area 15, 133, 135, 136, 215

avoid too inward 124

chief 135

fake 123

has business authority 121

help from Team 147

interaction with other POs 131

lead 135

looks outward 124

not just an analyst 124
offshore development 457
overall 135

overview 12, 120

PO Team 17, 136, 137, 236
proxy 135

representative 135, 138
supporting PO 134, 135

us-them versus Team 125

Product Owner representative 135, 138
Product Owner Team 17, 136, 137, 236

profit 141
program manager 190
project managers 196, 393
projects

prefer product view 127, 157
prototypes 304
proxies 327
proxy Product Owner 135
punching holes 210

R

refactoring
large ones 369
Reinertsen, Donald 4
relative value points 139
release contract 106
release planning 155, 158
Release Sprint 175, 177
release train 180
requirement areas 133, 215
for non-functionals 70
overview 555
vs development areas 556
requirements
acceptance TDD 271
artifacts 229
by example 245
clarifying by writing tests 49
customer-centric 236
meta-models 232, 233
multiple descriptions 56
non-functional 225
offshore 462
offshore to onshore 465
offshore workshop 458
overview 215
splitting 217, 247
tables 245
tool 462
requirements workshop
A-TDD workshop agenda 54

595

for Product Backlog refinement 243
overview 240
so-called optimizing 51

research

fake 228
in Product Backlog 227
planning it 166

rewards 385, 514
risk 141
Robot Framework

architecture 87
calling C code 90
example using 83
introduction 57
test library 86
types of tables 86

room

see team room

rubber chicken 354

S

SAD workshop 310

safety (personal) 376

SAGE 338

salary 342

scenario 249

Schwaber, Ken 9

Scientific Management, critique 4
scout activities 194

Scrum

see large-scale Scrum

Scrum 2.0 9
Scrum of Scrums

596

alternatives
Open Space 204
Town Hall 205
format 201
multisite 430
overview 200
rotate representatives 203

rotate representatives too frequently 203

ScrumMaster’s role 203
status to management 202
two parts 202

ScrumMaster
avoid representing team 434
in large-scale Scrum 13
not project manager 393
offshore 468
slow rotation 408
Second Life 209
secret toolbox 336
shared space 208
simulation layers 321
Slim 57
small changes 355
specialization 550
spikes 308
splitting requirements 217, 247
splitting user stories
see splitting requirements
Sprint Backlog 13
Sprint Planning 163
in large-scale Scrum 14, 17
multisite issues 165
part one 163
part two 166
Sprint Retrospective
in large-scale Scrum 15
joint 17, 403, 433
multisite 433
offshore 456
Sprint Review
bazaar 206
in large-scale Scrum 15, 17
joint 17, 405
multisite 454
offshore 454
show tests 59
team level 406
stakeholders 141
stop and fix 38
stories
see user stories
story points 181
strategic alignment 141
stubs 318, 321

supporting Product Owner 134, 135

T

tables for requirements 245
target-cost contracts 520
targets 385
task-coordinator activities 194
tasks
in Product Backlog 237
Taylor, Frederick 4
TDD
see test-driven development
Team (in Scrum) 12
team room 297, 394
team size 192
teams
cross-functional 234
technical debt 336
technical writing 34
test 23
test automation team 37
test department 30
test education 34
test independence 29
test sessions 64
test smells 36
test tools
commercial 40
conventional 57
wrap conventional tools 58
test-driven development
better architecture 319
coach 74
internal 75
overview 74
tester certification 32
testing
and Product Owner 51
assumptions 24, 26
before release 42
classifications 27
customer-facing 28, 42
developer 28, 72
in Sprint Planning 41
in Sprint Review 42
keyword-driven 83
legacy code 346

manual 60, 61
meaning of 24
on the hardware 317
overview 40
skills 96
specialization 33
terminology 26
thinking about 24
through the UI 67
traditional 46
UAT 463, 464
using walls 52
testing community 35
tests
automated 60
deleting 66
distill 55
expensive 71
long-running 70
non-automatable 62
non-functional 69
on development environment 76
on real hardware 77
performance 70
refactoring 81
reliability 70
table format 53
user-acceptance 59
workflow 54
testware 37
themes 216
tiger team 308
TMM 32
tools
agile management 389
for modeling 291
for requirements 273
multisite 438, 439
offshore 495
requirements offshore 462
testing 40, 56, 57
Town Hall meeting 205
TPI 32
traceability 67, 68, 229
tracer code 305

597

transformation project 380

transition
component teams to feature teams 391
overview 373
to feature teams 421

travelers 207

trivializing programming 341

TTCN 57

U
UAT 463
pre-UAT 464
with A-TDD 463
UI design
importance of 300
offshore 461
UML 291, 295
Undone Unit 31, 177
Undone Work 173, 177, 179, 225, 226
unit testing
overview 72
rules for 73
unit tests
slow 83
use case 249
user stories
formats 271
history 223, 271
overview 266
question their use
splitting
term 222
user-acceptance test 59
see UAT

A

value 139, 141

velocity 184

video sessions 451

video technology 425

virtual shared space 209
virtualization of hardware 71
visual management 229, 367

598

W

walking skeleton 305
weakly-typed interfaces 324
whiteboards 290
wikis 275, 440, 462
wishful thinking 337
workflow test 54
working agreements
cross-team 405
for coordination 212
workshops
design 289, 295, 296, 297
initial Product Backlog refinement 158
joint 246
joint design 298
multisite 428
requirements 54, 240, 243
SAD 310

XP 303
xUnit 76

	Contents
	11 Inspect & Adapt
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

