

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or conse-
quential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Leffingwell, Dean.
 Agile software requirements : lean requirements practices for teams,
programs, and the enterprise / Dean Leffingwell.
 p.  cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-321-63584-6 (hardcover : alk. paper)
 ISBN-10: 0-321-63584-1 (hardcover : alk. paper)
 1. Agile software development. I. Title.
 QA76.76.D47L4386 2011
 005.1—dc22
 2010041221

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For infor-
mation regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-63584-6
ISBN-10: 0-321-63584-1
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, December 2010

To Jenny and Marcy

This page intentionally left blank

			 ix

Contents

Foreword	 xxiii

Preface	 xxvii

Acknowledgments	 xxxiii

About the Author	 xxxv

Overview: The Big Picture	Part I	 1

A Brief History of Software Requirements Methods	Chapter 1	 3
Software Requirements in Context: Decades of

Advancing Software Process Models	 3
Predictive, Waterfall-Like Processes	 5

Problems with the Model	 6
Requirements in the Waterfall Model: The Iron Triangle	 6
And Yet, the Waterfall Model Is Still Amongst Us	 8

Iterative and Incremental Processes	 9
Spiral Model	 10
Rapid Application Development	 10
Rational Unified Process	 11
Requirements in Iterative Processes	 11

Adaptive (Agile) Processes	 12
The Agile Manifesto	 12
Extreme Programming (XP)	 14
Scrum	 15

x	C ontents

Requirements Management in Agile Is Fundamentally Different	 16
Goodbye Iron Triangle	 16
Agile Optimizes ROI Through Incremental Value Delivery	 17

Enterprise-Scale Adaptive Processes	 19
Introduction to Lean Software 	 20

The House of Lean Software	 20
A Systems View of Software Requirements 	 27
Kanban: Another Software Method Emerges	 28

Summary	 28

The Big Picture of Agile Requirements	 3Chapter 2	 1
The Big Picture Explained	 32

Big-Picture Highlights	 33
Big Picture: Team Level	 34

The Agile Team	 34
Roles in the Agile Team	 36
Iterations	 36
User Stories and the Team Backlog	 37

Big Picture: Program Level	 38
Releases and Potentially Shippable Increments	 39
Vision, Features, and the Program Backlog	 40
Release Planning	 41
The Roadmap	 41
Product Management	 42

Big-Picture Elements: Portfolio Level	 43
Investment Themes	 43
Epics and the Portfolio Backlog	 43
Architectural Runway	 44

Summary	 45

Agile Requirements for the Team	 4Chapter 3	 7
Introduction to the Team Level	 47

Why the Discussion on Teams?	 47
Eliminating the Functional Silos	 50

Agile Team Roles and Responsibilities	 50
Product Owner	 51
Scrum Master/Agile Master	 51
Developers	 52
Testers	 53
Other Team/Program Roles	 54

User Stories and the Team Backlog	 55

	C ontents	 xi

Backlog	 55
User Stories	 56
User Story Basics	 57
Tasks		 57

Acceptance Tests	 58
Unit Tests	 60

Real Quality in Real Time	 60
Summary	 61

Agile Requirements for the Program	 6Chapter 4	 3
Introduction to the Program Level	 63
Organizing Agile Teams at Scale	 64

Feature and Component Teams	 65
The System Team	 71
The Release Management Team	 73
Product Management	 74

Vision	 74
Features	 75

New Features Build the Program Backlog	 76
Testing Features	 77

Nonfunctional Requirements 	 77
Nonfunctional Requirements as Backlog Constraints	 78
Testing Nonfunctional Requirements	 79

The Agile Release Train	 80
Releases and Potentially Shippable Increments	 80
Release Planning	 80

Roadmap	 81
Summary	 82

Agile Requirements for the Portfolio	 8Chapter 5	 3
Introduction to the Portfolio Level 	 83
Investment Themes	 84
Portfolio Management Team	 85
Epics and the Portfolio Backlog	 85

Portfolio Backlog	 86
Epics, Features, and Stories	 87
Architectural Runway and Architectural Epics	 88

Implementing Architectural Epics	 89
Architectural Runway: Portfolio, Program, and Project	 90

Summary	 91
Summary of the Full, Enterprise Requirements Information Model 	 91

xii	C ontents

Interlude	 Case Study: Tendril Platform	 93
Background for the Case Study	 93
System Context Diagram	 95

Agile Requirements for the Team 	 9Part II	 7

User Stories	 9Chapter 6	 9
Introduction	 99

User Story Overview	 100
User Stories Help Bridge the Developer–Customer

Communication Gap	 101
User Stories Are Not Requirements	 101

User Story Form	 102
Card, Conversation, and Confirmation	 102
User Story Voice 	 103
User Story Detail	 104
User Story Acceptance Criteria	 104

INVEST in Good User Stories	 105
Independent	 106
Negotiable . . . and Negotiated	 107
Valuable	 107
Estimable	 108
Small		 109
Testable	 111

Splitting User Stories	 111
Spikes	 114

Technical Spikes and Functional Spikes	 114
Guidelines for Spikes	 115

Story Modeling with Index Cards 	 116
Summary	 117

Stakeholders, User Personas, and User Experiences	 11Chapter 7	 9
Stakeholders	 119

System Stakeholders	 120
Project Stakeholders	 120
Voice of the Stakeholder: Product Owner	 120
Levels of Stakeholder Involvement	 121
Building Stakeholder Trust	 122
Stakeholder Interactions	 122

	C ontents	 xiii

Identifying Stakeholders	 122
Identifying Project Stakeholders	 123
Identifying System Stakeholders	 124
Classifying System Stakeholders	 125
Understanding System Stakeholder Needs	 125
Stakeholder/Product Owner Team?	 126

User Personas	 126
Primary and Secondary User Personas	 127
Finding Personas with User Story Role Modeling	 127

Agile and User Experience Development	 129
The User Experience Problem	 129
Low-Fidelity Options for User Interface Development 	 130
User Experience Story Spikes	 130
Centralized User Experience Development	 131
Distributed, Governed User Experience Development Model	 131

Summary	 133

Agile Estimating and Velocity	 13Chapter 8	 5
Introduction	 135

There’s a Method to This Madness	 135
The Goal Is the Same: More Reliable Estimates	 136

Why Estimate? The Business Value of Estimating	 137
Estimating Scope with Story Points	 138
Understanding Story Points: An Exercise	 138

Exercise Part 1: Relative Estimating	 138
Exercise Part 2: Estimating Real Work with Planning Poker	 139
How Much Time Should We Spend Estimating?	 142
A Parable of Estimating Caution: A Story within a Story	 144
Distributed Estimating with Online Planning Poker	 144

An Alternate Technique: Tabletop Relative Estimation	 145
From Scope Estimates to Team Velocity	 146

Exercise Part 3: Establishing Velocity	 146
Caveats on the Relative Estimating Model	 147

Another Parable: Increasing Velocity, Be Careful
What You Ask For	 148

From Velocity to Schedule and Cost	 148
Estimating Schedule	 149
Estimating Cost	 149

Estimating with Ideal Developer Days	 149
A Hybrid Model 	 151

Normalizing Velocity	 152
Summary	 152

xiv	C ontents

Iterating, Backlog, Throughput, and Kanban	 15Chapter 9	 5
Iterating: The Heartbeat of Agility	 155

Iteration Length	 156
Iteration Pattern: Plan, Execute, Review, and Retrospective	 157
Team Backlog	 157
Planning the Iteration	 158
Iteration Commitment 	 159
Executing the Iteration	 164
Tracking and Adjustment	 164
Review and Retrospective	 167
Feature Preview 	 169

Backlog, Lean, and Throughput	 169
Backlog Maturity, Lean, and Little’s Law 	 170
A Blog Story: Is That Well–Formed Product Backlog

Decreasing Your Team’s Agility?	 170
Little’s Law and an Agile Team’s Backlog	 171
Applying Little’s Law to Increase Agility and Decrease

Time to Market	 172
Readers React	 176
Managing Throughput by Controlling Backlog Queue Length	 177

Software Kanban Systems	 179
Kanban System Properties	 179
Classes of Service in Kanban	 180

Summary	 180

Acceptance Testing	 18Chapter 10	 3
Why Write About Testing in an Agile Requirements Book?	 183
Agile Testing Overview	 184
What Is Acceptance Testing?	 187

Story Acceptance Tests	 187
Characteristics of Good Story Acceptance Tests	 188

They Test Good User Stories	 188
They Are Relatively Unambiguous and Test All the Scenarios 	 189
They Persist	 190

Acceptance Test-Driven Development	 190
Acceptance Test Template	 192
Automated Acceptance Testing 	 193

Automated Acceptance Testing Example: The FIT Approach	 194
Unit and Component Testing	 196

Unit Testing	 196
Component Testing	 198

Summary	 199

	C ontents	 xv

Role of the Product Owner	 20Chapter 11	 1
Is This a New Role?	 201
Perspectives on Dual Roles of Product Owner and Product Manager	 202

The Name Game: Experimenting with the
Product Owner Role/Title	 206

Our Conclusion: Apply the Dual Roles	 207
Responsibilities of the Product Owner in the Enterprise	 207

Managing the Backlog	 208
Just-in-Time Story Elaboration	 211
Driving the Iteration	 212
The Problem of Technical Debt and the Value Stream	 216
Co-planning the Release	 217

Five Essential Attributes of a Good Product Owner	 218
Collaboration with Product Managers	 220
Product Owner Bottlenecks: Part-Time Product Owners,

Product Owner Proxies, Product Owner Teams	 221
Product Owner Proxies	 221
Product Owner Teams	 221

Seeding the Product Owner Role in the Enterprise	 222
TradeStation Technologies	 222
CSG Systems	 223
Symbian Software Limited	 223
Discount Tire	 224

Summary	 224

Requirements Discovery Toolkit	 22Chapter 12	 7
The Requirements Workshop	 228

Preparing for the Workshop	 229
Setting the Agenda	 231
Running the Workshop	 232

Brainstorming	 232
Idea Generation	 233
Idea Reduction	 235
Idea Prioritization	 236

Interviews and Questionnaires	 237
Context-Free Questions	 238
Solutions-Context Questions	 238
The Moment of Truth: The Interview	 239
Compiling the Needs Data	 239
A Note on Questionnaires	 240

User Experience Mock-Ups	 241

xvi	C ontents

Forming a Product Council	 243
Competitive Analysis	 244
Customer Change Request Systems	 245

Defect Logs	 246
Use-Case Modeling	 247
Summary	 247

Agile Requirements for the Program 	 24Part III	 9

Vision, Features, and Roadmap	 25Chapter 13	 1
Vision	 251
Expressing the Vision	 252

A Vision Document	 252
The Advanced Data Sheet Approach 	 253
The Preliminary Press Release Approach	 254
The “Feature Backlog with Briefing” Approach 	 255
Communicating Nonfunctional Requirements (System Qualities) 	 255

Features	 255
Expressing Features in User Voice Form	 257

Estimating Features	 257
Estimating Effort	 258
Estimating Cost	 259
Estimating Development Time	 260

Testing Features	 260
Prioritizing Features	 261

Value/Effort as an ROI Proxy: A First Approximation	 262
What’s Wrong with Our Value/Effort ROI Proxy?	 262
Prioritizing Features Based on the Cost of Delay	 263
Introducing Cost of Delay (CoD)	 263
Estimating the Cost of Delay 	 266
Feature Prioritization Evaluation Matrix	 267
All Prioritizations Are Local and Temporal	 268
Achieving Differential Value: The Kano Model of

Customer Satisfaction	 269
The Roadmap	 271

On Confidence and Commitments for Release Next,
Next +1, and More	 273

Summary	 273

	C ontents	 xvii

Role of the Product Manager	 27Chapter 14	 5
Product Manager, Business Analyst? 	 276
Responsibilities of the Product Manager in a Product Company	 276
Business Responsibilities of the Role in the IT/IS Shop	 278
Responsibility Summary	 279
Phases of Product Management Disillusionment in the Pre-Agile

Enterprise	 280
Phase 1: Unbridled Enthusiasm	 281
Phase 2: False Sense of Security	 281
Phase 3: Rude Awakening	 281
Phase 4: Resetting Expectations	 282
Phase 5: The Season of Perpetual Mistrust	 282
Exiting the Season of Perpetual Mistrust	 282

Evolving Product Management in the Agile Enterprise	 283
Understanding Customer Need	 284
Documenting Requirements	 284
Scheduling	 285
Prioritizing Requirements	 285
Validating Requirements	 286
Managing Change	 286
Assessing Status	 287

Responsibilities of the Agile Product Manager	 287
Own the Vision and Release Backlog	 288
Managing Release Content	 290
Maintaining the Roadmap	 295
Building an Effective Product Manager/Product Owner Team	 295

Summary	 297

The Agile Release Train	 29Chapter 15	 9
Introduction to the Agile Release Train	 300

Rationale for the Agile Release Train	 301
Principles of the Agile Release Train	 303

Driving Strategic Alignment	 304
Institutionalizing Product Development Flow	 305
Designing the Agile Release Train	 308
Planning the Release	 308

Release Objectives	 308
Tracking and Managing the Release	 309
Release Retrospective	 310

xviii	C ontents

Measuring Release Predictability	 310
Release Objectives Process Control Band	 312

Releasing	 313
Releasing on the ART Cadence	 313
Releasing Less Frequently Than the ART Cadence	 314
Releasing More Frequently Than the ART Cadence	 316

Summary	 317

Release Planning	 31Chapter 16	 9
Preparing for Release Planning	 319

Release Planning Domain	 320
Planning Attendance	 320
Release Planning Facilitator	 320
Release Planning Checklist	 321

Release Planning Narrative, Day 1	 322
Opening	 323
Business Context	 323
Solution Vision	 324
Architecture Vision	 324
Team Planning Breakouts	 325
Draft Plan Review	 327
Managers’ Review and Problem Solving Meeting	 328

Release Planning Narrative, Day 2	 328
Opening	 330
Planning Adjustments: A United Front	 330
Planning Continues: Team Planning Breakouts Session II	 330
Establishing Release Objectives	 330
Final Release Plans Review	 332
Addressing Risks and Impediments	 333
The Commitment	 334
Planning Retrospective	 335
Final Instructions to Teams	 336

Stretch Goals	 336
Summary	 338

Nonfunctional Requirements	 33Chapter 17	 9
Modeling Nonfunctional Requirements	 340

Expressing Nonfunctional Requirements as User Stories	 342
Exploring Nonfunctional Requirements	 342

Usability	 343
Reliability	 344

	C ontents	 xix

Performance	 345
Supportability (Maintainability) 	 345
Design Constraints 	 345

Persisting Nonfunctional Requirements	 347
Testing Nonfunctional Requirements	 348

Usability	 350
Reliability	 350
Security	 351
Performance	 352
Supportability and Design Constraints	 352

Template for an NFR Specification	 352
Summary	 354

Requirements Analysis Toolkit	 35Chapter 18	 5
Activity Diagrams	 357
Sample Reports	 358
Pseudocode	 358
Decision Tables and Decision Trees	 359
Finite State Machines	 361
Message Sequence Diagrams	 364

Limitations of MSDs	 364
Entity-Relationship Diagrams	 365
Use-Case Modeling	 366
Summary	 366

Use Cases	 36Chapter 19	 7
The Problems with User Stories and Backlog Items	 368
Five Good Reason to Still Use Use Cases 	 368
Use Case Basics	 369

Use Case Actors	 370
Use Case Structure	 370
A Step-by-Step Guide to Building the Use Case Model	 372

A Use Case Example	 375
Applying Use Cases	 377

Tips for Applying Use Cases in Agile	 378
Use Cases in the Agile Requirements Information Model	 378
Summary	 379

xx	C ontents

Agile Requirements for the Portfolio 	 38Part IV	 1

Agile Architecture	 38Chapter 20	 3
Introduction to the Portfolio Level of the Big Picture	 383
Systems Architecture in Enterprise-Class Systems	 384

Does All Architecture Emerge in Agile?	 385
The Need for Intentional Architecture	 386
Business Drivers for Architectural Epics	 387
Role of the System Architect in the Agile Enterprise	 388

Eight Principles of Agile Architecture	 390
Principle #1: The Teams That Code the System Design the System	 390
Principle #2: Build the Simplest Architecture That Can

Possibly Work	 391
Principle #3: When in Doubt, Code or Model It Out	 392
Principle #4: They Build It, They Test It	 395
Principle #5: The Bigger the System, the Longer the Runway	 395
Principle #6: System Architecture Is a Role Collaboration	 396
Principle #7: There Is No Monopoly on Innovation	 397
Principle #8: Implement Architectural Flow	 399

Implementing Architectural Epics	 399
Case A: Big, but Incremental; the System Always Runs	 400
Case B: Big, but Not Entirely Incremental; the System Takes

an Occasional Break	 401
Case C: Really Big and Not Incremental; the System Runs

When Needed; Do No Harm	 402
Splitting Architecture Epics	 403
Summary	 405

Rearchitecting with Flow	 40Chapter 21	 7
Architectural Epic Kanban System	 408

Objectives of the Kanban System	 408
Overview of the Architectural Epic Kanban System	 409

Queue Descriptions	 410
Architecture Epic State Descriptions	 411

1. The Funnel: Problem/Solution Needs Identification	 412
Sources of New Architectural Epics	 413
Activities: Ranking the Epic	 414
Work-in-Process Limits	 415
Decision Authority	 415

	C ontents	 xxi

2. Backlog	 415
Activities: Cadence-Based Review, Discussion, and Peer Rating	 415
Prioritization and Rating System	 417
Weighted Rating and Decision Criteria	 417
Pull from Transition to Analysis	 418
Work-in-Process Limits	 418

3. Analysis	 418
Activities	 418
Collaboration with Development	 419
Collaboration with the Business: Solution Management,

Product Management, Business Analysts	 420
Work-in-Process Limits	 420
Architectural Epic Business Case Template	 420
Decision Authority	 422

4. Implementation	 423
Implementation Path A: Transition to Development	 423
Implementation Path B: Create a New Team	 424
Implementation Path C: Outsourced Development	 425
Implementation Path D: Purchase a Solution 	 425
Work in Process Limits	 426

Summary	 427

Moving to Agile Portfolio Management	 42Chapter 22	 9
Portfolio Management	 429
When Agile Teams Meet the PMO: Two Ships Pass in the Night 	 431
Legacy Mind-Sets Inhibit Enterprise Agility	 432

The Problem Is Not “Theirs”; It Is “Ours”	 432
Legacy Mind-Sets in Portfolio Management	 433
Eight Recommendations for Moving to Agile Portfolio

Management	 436
Rethinking Investment Funding	 436
Rethinking Change Management	 440
Rethinking Governance and Oversight	 442

Summary: On to Agile Portfolio Planning	 447

Investment Themes, Epics, and Portfolio Planning	 44Chapter 23	 9
Investment Themes	 450

Communicating Investment Themes	 451
Why Investment Mix Rather Than Backlog Priority?	 451

Epics		 452
Subepics	 453

xxii	C ontents

Expressing Epics	 453
Discriminating Epics, Features, and Stories	 454
Types of Epics	 456

Identifying and Prioritizing Business Epics: A Kanban System
for Portfolio Planning	 456

Overview 	 457
State Diagram View	 458
The Funnel: Problem/Solution Needs Identification	 459
Backlog	 461
Analysis	 463
Implementation	 467

Summary	 467

Conclusion	 46Chapter 24	 9
Further Information	 470

Appendix A	Context-Free Interview	 471

Appendix B	 Vision Document Template	 475

Appendix C	 Release Planning Readiness Checklist 	 485

Appendix D	Agile Requirements Enterprise Backlog Meta-model	 489

Bibliography	 491

Index		 495

			 xxiii

Foreword

Why do product development projects miss their economic objectives? Studies
show that 80 to 85 percent of project failures are due to incorrect requirements.

Experienced developers know that managing requirements is a greater challenge than
technical execution. And, although we have known this for decades, we really haven’t
gotten much better at it. Why? At first, we were functionally organized, so we simply
displaced the problem outside the boundary of engineering—we blamed marketing
and product management. Later, as we adopted cross-functional teams, we told these
teams to listen to the voice of the customer and assumed that this would solve the
problem.

It didn’t. We never challenged the idea that it was feasible to develop valid require-
ments up front—we just told people to try harder. We just told them to pay more
attention to what the customer was asking for. We ignored the fact that many cus-
tomers don’t know what they want. We ignored that fact that even when they know
what they want, they can’t describe it. We ignored the fact that even when they
can describe it, they often describe a proposed solution rather than the real need.
For example, customers told us that they wanted suitcases that were easy to carry,
and asked us to make them lightweight. We did this, but they rejected our elegant
designs and bought the heavier designs of our competitors—the ones with wheels
on them!

The sad truth is that there is no one “voice of the customer.” It is a cacophony of
voices asking for different things. Even at a single customer, we need to balance
the needs of technical decision makers, end users, system operators, and financial
decision makers. All of these actors weigh different attributes differently, and they
change their weighting as they acquire more experience using the product. We also
need to understand the needs of distributors, regulators, manufacturing, and field
service. If we focus only on the user, we could miss what Dean calls the “nonfunc-
tional requirements.”

xxiv	F oreword

And this problem is dynamic, not static. In the course of our development effort, the
context constantly changes—competitors introduce new products and customer
needs evolve. If it is not feasible to develop valid requirements before we begin
design, what is our alternative? In my opinion, we should start with the belief that
even the best requirements will contain major errors, and that these errors grow
exponentially with time. This shifts our focus. Instead of believing that we are hear-
ing a high-fidelity signal coming from the customer, we need to recognize that it is
a noisy, low-fidelity signal—a signal that must be continually checked for errors.
Rather than using heavy front-end investment to create perfect requirements, we
invest in creating processes and infrastructure that can rapidly detect and correct
poor fits between our solution and the customer’s evolving needs.

What better test for this alternative approach than the development of large sys-
tems? Many of the methods that work superbly on small projects break down on
large ones. For example, in small systems, costs and benefits are typically local. Sys-
tem performance does not suffer when a team makes locally optimal decisions. This
is not true for large systems where we must deal with economic effects that are dis-
persed physically, temporally, and organizationally.

We need better approaches to understanding and managing software requirements,
and Dean provides them in this book. He draws ideas from three very useful intel-
lectual pools: classical management practices, agile methods, and lean product
development. By combining the strengths of these three approaches, he has pro-
duced something that works better than any one approach in isolation.

First, although it might be unfashionable to say this, classic management practices
still offer us some very useful methods. Not all of our predecessors were stupid dolts,
incapable of recognizing a working solution. For decades I have seen relatively sim-
ple concepts like technology and product roadmaps producing great results. They
ensure that work on technology begins early enough to keep it off the critical path.
They create strong logical links between technology efforts and the programs that
they serve. We don’t need to blindly accept all traditional practices, but we’d be fool-
ish to discard everything our predecessors already learned. Dean shows you how to
apply some of these great ideas at the program and portfolio level.

Second, the agile community has developed a very powerful set of ideas that has
already produced impressive results. These methods have grown rapidly for a very
good reason—they work. Agile decomposes the large batches of the waterfall model
into a series of time-boxed iterations. These smaller batches dramatically accelerate
feedback, producing enormous benefits.

	F oreword	 xxv

Since much of agile’s success has occurred in smaller projects, it is natural to ask
whether it is equally useful in large systems. While I deeply respect the value of
agile methods, I think Dean is correct in recognizing that these methods must be
extended to meet the needs of large system development. It is quite risky to assume
that large system architectures will naturally emerge and that any shortcomings can
be refactored away. For example, a naval warship is designed for a 30-year operating
life. Good naval architects anticipate evolving threats, emerging technologies, and
changing missions. We do not create such systems by letting architecture “emerge.”
Once we recognize the unique challenge of managing at the system level, we can
start investing in the organizational infrastructure needed to meet this challenge.
Dean shows you how to do this with agile method extensions such as architectural
runways.

Dean also draws upon the ideas of what I call “second-generation lean product
development.” Many of the initial attempts to use lean in product development
focused on ideas such as standardization of work and variability reduction. They
lacked agile’s intrinsic appreciation that developing great new solutions requires
learning to thrive in the presence of uncertainty. These lean product development
methods have now evolved, and the results are impressive. For example, today’s
“kanban” approaches are limiting WIP, accelerating feedback, and making flow vis-
ible to all participants. You can see the influence of these ideas on Dean’s approaches
at the program and portfolio levels. Dean has also recognized the importance of the
new emphasis on economics. This emphasis helps us make better decisions and it
enables us to explain our choices to management in terms they readily understand.

As you read this book, I suggest paying attention to several things. First, try to under-
stand the reasons why certain of these approaches work, not just what they are. If
you understand why things work, then you can more easily adapt them to your own
unique context. Second, treat these ideas as a portfolio of useful patterns rather than
a rigid set of practices that must be adopted as a group. This will reduce the batch
size of your adoption process, produce less resistance, and provide faster results.
Finally, as you use these ideas, strive for balance. You will have a natural tendency to
prefer certain ideas—they address issues you feel are important, and they feel com-
fortable. You may have given other areas little attention for a long time. Often the
areas that have received little attention hold great untapped opportunity.

—Don Reinertsen
Author of The Principles of Product Development Flow:

Second Generation Lean Product Development

This page intentionally left blank

			 xxvii

Preface

Introduction to the Book

In the past decade, the movement to lighter-weight and increasingly agile meth-
ods has been the most significant change to affect the software enterprise since the
advent of the waterfall model in the 1970s. Originated by a variety of thought and
practice leaders and proven in real-world, successful experiments, the methods
have proven themselves to deliver outstanding benefits on the “big four” measures:
productivity, quality, morale, and time to market.

In the past five years, the methods spread virally. Within the larger enterprise,
the initiatives usually started out with individual teams adopting some or all of the
practices espoused by the various methods, primarily XP, Scrum, Lean, Kanban
(later), and various combinations and variants.

However, as the methods spread to the enterprise level, a number of extensions to
the basic agile methods were necessary to address the larger process, organizational,
application scope, and governance challenges of the larger enterprise.

Not the least of these is the challenge of agile requirements, which is the necessity to
scale the basic, lightweight practices of team agile—product backlogs, user stories,
and the like—to the needs of the enterprise’s Program and Portfolio levels. For exam-
ple, agile development practices introduced, adopted, and extended the XP-originated
“user story” as the primary currency for expressing application requirements. The
just-in-time application of the user story provided a much leaner approach and
helped eliminate many waterfall-like practices, such as imposing overly detailed and
constraining requirements specifications on development teams.

However, as powerful as this innovative concept is, the user story by itself does not
provide an adequate, nor sufficiently lean, construct for reasoning about investment,

xxviii	 Preface

system-level requirements, and acceptance testing across the larger software enter-
prise’s project Team, Program, and Portfolio organizational levels. That is the pur-
pose of this book.

This book describes an agile requirements artifact model, corresponding practices,
suggested roles, and an organizational model that provides a quintessentially lean
and agile requirements subset for the agile project teams that write and test the code.
Yet this model also scales to the full needs of the largest software enterprise.

Why Write This Book?
In 2000, after about 25 years of managing software development as an entrepre-
neur and executive, along with my coauthor Don Widrig, I published my first book:
Managing Software Requirements: A Unified Approach. In 2003, we updated the book
with a second edition: Managing Software Requirements: A Use Case Approach. These
are considered to be definitive texts on managing application requirements—a lot
of copies were sold, and the books have been translated into five languages. More
importantly, many individuals, teams, and companies told me that these works
helped them achieve better software outcomes. That was always the goal.

In the following years, I turned my attention to agile development methods. I con-
tinue to be more and more impressed with the power of these innovative methods,
the quality and productivity results they delivered, and the way in which they reen-
ergized and empowered software teams. Though the methods were developed and
proven in small team environments, the challenges of building software at scale is
a more fascinating puzzle—part science, part art, part engineering, part organiza-
tional psychology. As a result, I became engaged in helping a number of larger enter-
prises in adopting and adapting these methods in projects affecting hundreds—and
then thousands—of software practitioners. Fortunately, with some extensions, the
methods did scale to the challenge. Based on these experiences, in 2007 I published
Scaling Software Agility: Best Practices for Large Enterprises, a book designed to help
larger enterprises achieve the benefits of agile development.

Scaling Software Agility took a broad view of software methods and didn’t focus
much on software requirements. Even though the management of requirements
continued to be a struggle for many agile teams, there were bigger organizational
and cultural challenges, as well as a number of emerging agile technical practices,
that needed to be addressed.

In the past couple of years, the movement to lean thinking in software development
captured my interest, in part because I have some background in lean manufacturing

	 Preface	 xxix

from earlier days. Generally, lean provides a comprehensive, deeply principled, rig-
orous, and mathematical framework for reasoning about product development
economics and the increasingly important subset, software development.

So, my thinking, along with that of many others, evolved further. Many of us started
to see agile development, especially agile at scale, as a “software instance of lean.”
In addition, lean scales beyond the software development labs and provides tools
to address changes in other departments such as deployment, IT, distribution, and
program and portfolio management. Simply put, lean provides a broader frame-
work for organizational change, and it helps us address these larger challenges. I’m
a big fan of lean thinking.

At its core, lean focuses on the value stream and provides philosophies, principles,
and tools to continually decrease time to market, enhance value delivery, and elimi-
nate waste and delays. As enterprises head down the lean path, it is again beneficial
to focus on optimizing the understanding and implementation of software require-
ments, because they are the unique carriers—or at least the best proxy—for that
value stream.

Lean thinking brings us full circle. Once again, it is useful to focus on requirements
management practices in our agile—and increasingly lean—software development
paradigm. That’s why I wrote this book.

My hope is that the book will help the individual software practitioner, project
team, program, and enterprise adopt and adapt agile and lean practices, deliver bet-
ter solutions to their users and stakeholders, and thereby achieve the personal and
business benefits that success engenders. After all, you can never be to too rich or
too lean.

How to Read This Book

With this book, I’m hoping to tell a somewhat complex story—how to address
the challenge of managing software requirements in an agile enterprise that may
employ just a few developers building a single product to those employing hun-
dreds or even thousands of software practitioners building systems of previously
unseen complexity—in a practical, straightforward, and understandable manner.

To do so, the book is written in four parts, the last three of which are dedicated to
describing specific agile requirement practices at increasing levels of sophistication
and scale.

xxx	 Preface

Part I, Overview: The Big Picture of Agile Requirements in the
Enterprise

In Part I, we describe an overall process model intended to communicate the “Big
Picture” of how to apply agile requirements practices at the project Team, Program,
and Portfolio levels.

We provide a brief history of software methods, describing the evolution from water-
fall through iterative and incremental development, to agile and lean. We describe
the big picture of agile requirements—an organization, requirements, and process
model that works for the team and yet scales to the full needs of the enterprise.

We then provide an overview of the model and illustrate how it can be applied
in agile requirements for the team, agile requirements for the program, and agile
requirements for the portfolio.

If you need an introduction and orientation to the concepts, terms, and general prac-
tices of managing agile requirements, this part is intended to stand alone.

Part II, Agile Requirements for the Team

In Part II, we describe a simple yet comprehensive model for managing require-
ments for agile project teams. This portion of the model is designed to be as light-
weight as possible, quintessentially agile, and to not encumber the agile teams with
any unnecessary complexity and overhead. We introduce the agile team, user sto-
ries, stakeholders, users and user personas, iterating, agile estimating and velocity,
acceptance testing, the role of the product owner, and, finally, methods for discover-
ing requirements.

If your teams are using agile, this comprehensive, explanatory guide to applying agile
requirements is intended for you.

Part III, Agile Requirements for the Program

Part III is intended for those involved in building more complex systems that often
require the cooperation of a number of agile teams. We expand the picture and
introduce additional requirements artifacts, roles, organizational constructs, and
effective practices designed for this purpose. We describe Vision, product and system
features, the product Roadmap, the role of the product manager, the Agile Release
Train, release planning, nonfunctional requirements, techniques for requirements
analysis, and use cases.

	 Preface	 xxxi

If you are a developer, tester, manager, team lead, QA, architect, project or program
manager, or development director/executive involved in building systems of this scope,
this part is intended for you.

Part IV, Agile Requirements for the Portfolio

In Part IV, we describe the final, Portfolio level, of requirements practices. This level
is intended to guide enterprises building ever-larger systems of systems, applica-
tion suites, and product portfolios. These often require the coordination and
cooperation of large numbers (20 or 50 or 100 or more) of agile project teams. We
introduce additional requirements artifacts, roles, organizational constructs, and
practices designed for this purpose. We describe the role that larger-scale, inten-
tional, system-level architectures play in agile development. We introduce a kanban
system for reasoning about how to evolve and, when necessary, rearchitect, such sys-
tems in an agile manner. We also describe some of the legacy thinking in portfolio
and project management and give some suggestions as to what to do about it. We
conclude with a chapter describing investment themes, epics, and, finally, one of the
ultimate objectives—agile portfolio planning.

If you are a program manager, development director, system architect, executive, or
portfolio manager or planner who is involved in managing investments for a portfolio
of products, systems, software services, or IT applications, this part is intended for you.

This page intentionally left blank

			 31

Chapter 2

The Big Picture of Agile Requirements

This would all be a lot easier to understand if you could just draw me a picture.

—Anonymous senior executive

Effectively implementing a new set of lean and agile requirements principles and
practices in a project team, program, or enterprise is no small feat. Even the lan-

guage is different and seemingly odd (user stories, sprints, velocity, story points, epics,
backlog?). In addition, further “leaning” the organization often requires eliminating
or reducing requirements specifications, design specifications, stage-gated governance
models (with incumbent requirements reviews), sign-offs (with incumbent delays . . . ),
implementing work-in-process limits (which may seem counterproductive to those
who measure “utilization”), and so on. So, there will likely be many challenges.

Even for the fully committed, it can take six months to a year to introduce and imple-
ment the basic practices and even more time to achieve the multiples of produc-
tivity and quality results that pay the ultimate dividends in customer satisfaction,
revenue, or market share. To achieve these benefits, we must change many things,
including virtually all of our former requirements management practices. However,
many of the existing required artifacts, milestones, and so on, serve as safeguards to
“help” avoid the types of project problems that software has often experienced. So,
we have a dilemma—how do we practice this new high-wire act without a safety
net, when the safety net itself is a big part of the problem?

Fortunately, we are now at the point in time where a number of organizations have
made the transition before us and some common patterns for lean and agile soft-
ware process success have started to emerge. In our discussions with teams, manag-
ers, and executives during this transition, we often struggled to find a language for
discussion, a set of abstractions, and an appropriate graphic that we could use to
quickly describe “what your enterprise would look like and how it would work after
such an agile transformation.”

To do so, we need to be able to describe the new software development and delivery
process mechanisms, the new teams and organizational units, and some of the roles
key individuals play in the new agile paradigm. In addition, any such Big Picture

32	C hapter 2   T he Big Picture of Agile Requirements

should highlight the requirements practices of the model, because those artifacts
are the proxy for the value stream.

Eventually, and with help from others, we arrived at something that worked reason-
ably well for its purpose.1 We call it the Agile Enterprise Big Picture, and it appears in
Figure 2–1.

The Big Picture Explained

In this chapter, we’ll explain the Big Picture in a summary format intended to pro-
vide the reader with a quick gestalt of this new, agile, leaner, and yet fully scalable
software requirements model.

Systems, applications, products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Epics Span
Releases

Architecture
Evolves

Continuously

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Po
rt

fo
lio

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Po
rt

fo
lio

 B
ac

kl
og

Release Theme and Objectives

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

NFRs

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Product
Owner

Scrum/Agile
Master

Te
am

 B
ac

kl
og

Te
am

 B
ac

kl
og

Agile Teams

Developers and Testers

Pl
an

D
em

o

Pl
an

D
em

o

Stories

Iterations lterations

Stories

Release Management

Product
Management

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

Feature 3

Feature 4

doc

doc

kl

Vision

Figure 2–1  The Agile Enterprise Big Picture

1.	 Special thanks to Matthew Balchin and others at Symbian Software, Ltd., and Juha-Markus
Aalto of Nokia Corporation.

		T he Big Picture Explained	 33

In the remaining chapters of Part I of this book, we’ll describe the basic big-picture
requirements management practices for the individual Team, Program, and Portfolio
levels. In Parts II, III, and IV, we’ll further elaborate on the requirements manage-
ment artifacts, roles, and activities at a level of detail suitable for implementation
and action.

Big-Picture Highlights

Because this picture serves as both the organizational and process model for our agile
requirements practices, we’ll have time throughout this book to explore its many
nuances. However, from an overview perspective, the following highlights emerge.

The Team Level

At the Team level, agile teams of 7±2 team members define, build, and test user sto-
ries in a series of iterations and releases. In the smallest enterprise, there may be only
a few such teams. In larger enterprises, groups, or pods, of agile teams work together
to support building up larger functionality into complete products, features, archi-
tectural components, subsystems, and so on. The responsibility for managing the
backlog of user stories and other things the team needs to do belongs to the team’s
product owner.

The Program Level

At the Program level, the development of larger-scale systems functionality is
accomplished via multiple teams in a synchronized Agile Release Train (ART). The
ART is a standard cadence of timeboxed iterations and milestones that are date- and
quality-fixed, but scope is variable (no iron triangle). The ART produces releases or
potentially shippable increments (PSIs) at frequent, typically fixed, 60- to 120-day
time boundaries. These evaluable increments can be released to the customer, or
not, depending on the customer’s capacity to absorb new product as well as external
events that can drive timing.

We’ll use the generic product manager label as the title for those who are responsible
for defining the features of the system at this level, though we’ll also see that many
other titles can be applied to this role.

The Portfolio Level

At the Portfolio level, we’ll talk about a mix of investment themes that are used to
drive the investment priorities for the enterprise. We’ll use that construct to assure
that the work being performed is the work necessary for the enterprise to deliver on
its chosen business strategy. Investment themes drive the portfolio vision, which
will be expressed in as a series of larger, epic-scale initiatives, which will be allocated
to various release trains over time.

34	C hapter 2   T he Big Picture of Agile Requirements

In the rest of this chapter, we’ll walk through the various elements of the Big Picture
to describe how it works. While we’ll highlight the requirements value delivery stream,
we’ll also expose the rest of the picture including the roles, teams, and processes that are
necessary to deliver value. In this way, we’ll provide a systemic view of our lean and agile
requirements process that works for teams and yet scales to the full needs of the enterprise.

Big Picture: Team Level

Figure 2–2 summarizes the Team level of the Big Picture.

The Agile Team

The “front line” of software development consists of some number of
agile teams that implement and test code and collaborate on building
the larger system. It’s appropriate to start with the team, because in agile,
the team is the thing, because they write and test all the code that deliv-
ers value to the end user. Since it’s an agile team, each has a maximum
of seven to nine members and includes all the roles necessary to define/

build/test2 the software for their feature or component. The roles include a Scrum/
Agile Master, product owner, and a small team of dedicated developers, testers and
(ideally) test automation experts, and maybe a tech lead.

In its daily work, the team is supported by architects, external QA resources, docu-
mentation specialists, database specialists, source code management (SCM)/build/
infrastructure support personnel, internal IT, and whoever else it takes such that the
core team is fully capable of defining, developing, testing, and delivering working and
tested software into the system baseline.

Features and Components
Stories Fit in
Iterations

(Implemented by)
Tasks

Te
am

Spikes Are
Research,
Design,
Refactor
Stories

H

H

H

H

Te
am

 B
ac

kl
og

Te
am

 B
ac

kl
og

Agile Teams

NFRs

Pl
an

D
em

o

Pl
an

D
em

o

Stories

lterations lterations

Stories
Product
Owner

Scrum/Agile
Master

Developers and Testers

Figure 2–2  Team level of the Big Picture

2.	 See Chapter 6 of Scaling Software Agility: Best Practices for Large Enterprises [Leffingwell 2007].

Developers and Testers
(Four to Six)

Agile Team
Product
Owner

Scrum/Agile
Master

		 Big Picture: Team Level	 35

Since testing software is integral to value delivery (teams get no credit for untested
code), testers are integral to the team. Often the testers are logically part of the QA
organization but are physically assigned and dedicated to an agile team. In this
matrix fashion, their primary allegiance is to the team, but as members of the QA
organization, they can leverage other QA teammates and managers for skills devel-
opment, automation expertise, and any specialty testing capabilities that may be
necessary at the system level. In any case, it must be clear that the agile team itself is
responsible for the quality of their work product and that responsibility cannot be
delegated (or abrogated!) to any other organization, in or out of house.

Teams are typically organized to deliver software features or components. Most enter-
prises will have a mix of both types—some component teams focused on shared infra-
structure, subsystems, and persistent, service-oriented architectural components and
some feature teams focused on vertical, user-facing, value-delivery initiatives. Agile
teams are self-organizing and reorganize when necessary based on the work in the
program backlog. Over time, the makeup of the teams themselves is more dynamic
than static—static enough to “norm, storm, and perform”3 for reasonable periods of
time and dynamic enough to flex to the organization’s changing priorities.

Pods of Agile Teams

In addition, within the larger enterprise, there are typically some
number (three to ten) or so of such teams that cooperate to build
a larger feature, system, or subsystem (the program domain in
the Big Picture). Although this isn’t a hard or fast rule, experi-
ence has shown that even for very large systems, the logical par-
titions defined by system or product family architecture tend to
cause “pods” of developers to be organized around the various
implementation domains. This implies that perhaps 50 to 100
people must intensely collaborate on building their “next bigger
thing” in the hierarchy, which we’ll call a program. As we’ll dis-
cover later, this is also about the maximum size for face-to-face,
collaborative release planning.

Of course, even that’s an oversimplification for a really large system,
because there are likely to be a number of such programs, each contributing to the
portfolio (product portfolio, application suite, systems of system).

3.	 See the Forming–Storming–Norming–Performing model of group development proposed by
Bruce Tuckman at http://en.wikipedia.org/wiki/Forming-storming-norming-performing.

Product
Owner

Scrum/Agile
Master

Agile Teams

Developers and Testers

http://en.wikipedia.org/wiki/Forming-storming-norming-performing

36	C hapter 2   T he Big Picture of Agile Requirements

Roles in the Agile Team

Product Owner

As we have described, Scrum is the dominant agile method in use, and the product
owner role is uniquely, if arbitrarily, defined therein. In Scrum, the product owner
is responsible for determining and prioritizing user requirements and maintain-
ing the product backlog. Moreover, even if a team is not using Scrum, it has been
our experience that implementing the product owner role—as largely defined by

Scrum—can deliver a real breakthrough in simplifying the team’s work and organizing
the entire team around a single, prioritized backlog.

But the product owner’s responsibilities don’t end there. In support of Agile
Manifesto principle #4—Business people and developers must work together daily
throughout the project—the product owner is ideally co-located with the team and
participates daily with the team and its activities.

Scrum/Agile Master

For teams implementing Scrum, the Scrum Master is an important (though
sometimes transitional4) role. The Scrum Master is the team-based man-
agement/leadership proxy whose role is to assist the team in its transition
to the new method and continuously facilitate a team dynamic intended to
maximize performance of the team.

In teams that do not adopt Scrum, a comparable leadership role typically falls to a
team lead, an internal or external coach, or the team’s line manager. As their skills
develop, many of these Agile Masters become future leaders by illustrating their abil-
ity to deliver user value and by driving continuously improving agile practices.

Developers and Testers

The rest of the core team includes the developers and testers who write and test
the code. Since this is an agile team, the team size is typically limited to about
three to four developers plus one to two testers, who are (ideally) co-located and
work together to define, build, test, and deliver stories into the code baseline.

Iterations

In agile development, new functionality is built in short timeboxed events called
iterations (sprints in Scrum). In larger enterprises, agile teams typically adopt a

4.	 As the teams master the agile process, the role becomes less critical. Some very agile teams,
even those who have adopted Scrum, no longer have a Scrum Master per se. Everybody knows
the rules, and they are self-enforced.

Product
Owner

Scrum/Agile
Master

Developers and Testers
(Four to Six)

		 Big Picture: Team Level	 37

standard iteration length and share start and stop boundaries so that code maturity
is comparable at each iteration-boundary system integration point.

Each iteration represents a valuable increment of new functionality, accomplished
via a constantly repeating standard pattern: plan the iteration, build and test stories,
demonstrate the new functionality to stakeholders, inspect and adapt, repeat.

The iteration is the “heartbeat of agility” for the team, and teams are almost entirely
focused on developing new functionality in these short timeboxes. In the Big Pic-
ture, the iteration lengths for all teams are the same since that is the simplest organi-
zational and management model. Although there is no mandated length, most have
converged on a recommended length of two weeks.

Number of Iterations per “Release”

A series of iterations is used to aggregate larger, system-wide, functionality for
release (or potential release) to the external users. In the Big Picture, we’ve illus-
trated four development iterations (indicated by a full iteration backlog) followed by
one hardening (or stabilization) iteration (indicated by an empty backlog) prior to
each release increment.

This pattern is arbitrary, and there is no fixed rule for how many times a team iter-
ates prior to a potentially shippable increment (PSI). Many teams apply this model
with four to five development iterations and one hardening iteration per release,
creating a cadence of a potentially shippable increment about every 90 days. This is
a fairly natural production rhythm that corresponds to a reasonable external release
frequency for customers, and it also provides a nice quarterly planning cadence for
the enterprise itself.

In any case, the length and number of iterations per release increment, and the decision
as to when to actually release an increment, are left to the judgment of the enterprise.

User Stories and the Team Backlog

User stories (stories for short) are the general-purpose agile
substitute for what traditionally has been referred to as
software requirements (the stuff in the middle of the iron
triangle of Chapter 1).

Originally developed within the constructs of XP, user sto-
ries are now endemic to agile development in general and are
typically taught in Scrum, XP, and most other agile imple-
mentations. In agile, user stories are the primary objects that
carry the customer’s requirements through the value stream—
from needs analysis though code and implementation.

Te
am

Te
am

 B
ac

kl
og

Te
am

 B
ac

kl
og

Agile Teams

NFRs

Stories

Stories
Product
Owner

Scrum/Agile
Master

Developers and Testers

38	C hapter 2   T he Big Picture of Agile Requirements

As opposed to requirements (which by common definition represent something the
system must do to fulfill a business need or contractual obligation), user stories are
brief statements of intent that describe something the system needs to do for some
user. As commonly taught, the user story often takes a standard user-voice form of
the following:

As a <user role>, I can <activity> so that <business value>.

With this form, the team learns to focus on both the user’s role and the business ben-
efit that the new functionality provides. This construct is integral to agile’s intense
focus on value delivery.

Team Backlog

The team’s backlog (typically called a project or product backlog) consists of all the
user stories the team has identified for implementation. Each team has its own back-
log, which is maintained and prioritized by the team’s product owner. Although
there may be other things in the team’s backlog as well—defects, refactors, infra-
structure work, and so on—the yet-to-be-implemented user stories are the primary
focus of the team.

Identifying, maintaining, prioritizing, scheduling, elaborating,
implementing, testing, and accepting user stories is the primary
requirements management process at work in the agile enterprise.

Therefore, we will spend much of the rest of this book further describing processes
and practices around user stories.

Tasks

For more detailed tracking of the activities involved in delivering stories, teams typ-
ically decompose stories into tasks that must be accomplished by individual team
members in order to complete the story. Indeed, some agile training uses the task
object as the basic estimating and tracking metaphor.

However, the iteration tracking focus should be at the story level, because this keeps
the team focused on business value, rather than individual tasks. Tasks provide a
micro–work breakdown structure that teams can use (or not) to facilitate coordi-
nating, estimating, tracking status, and assigning individual responsibilities to help
assure completion of the stories—and thereby—the iteration.

Big Picture: Program Level

Figure 2–3 summarizes the Program level of the Big Picture.

		 Big Picture: Program Level	 39

Systems, Applications, Products

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Features
Fit in

Releases

Re
le

as
e

Pl
an

ni
ng

Pr
og

ra
m

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Feature 3

Feature 4

Roadmap

Vision

Release Management

Product
Management

Figure 2–3  The Program level of the Big Picture

Here, we find additional organizational constructs, roles, processes, and require-
ments artifacts suited for building larger-scale systems, applications, products, and
suites of products.

Releases and Potentially Shippable Increments

Although the goal of every iteration is to pro-
duce a shippable increment of software, teams
(especially larger-scale enterprise teams) find
that it may simply not be practical or appropri-
ate to ship an increment at each iteration bound-
ary. For example, during the course of a series of
iterations, the team may accumulate some tech-
nical debt that needs to be addressed before ship-
ment. Technical debt may include things such as
defects to be resolved, minor code refactoring,

deferred system-wide testing for performance, reliability, or standards compliance,
or finalization of user documentation. Hardening iterations (indicated by an itera-
tion with an empty backlog) are included in the Big Picture to provide the time
necessary for these additional activities.

Moreover, there are legitimate business reasons why not every increment should be
shipped to the customer. These include the following:

Potential interference with a customer’s licensing and service agreements��
Potential for customer overhead and business disruption for installation, ��
user training, and so on
Potential for disrupting customer’s existing operations with minor regres-��
sions or defects

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

40	C hapter 2   T he Big Picture of Agile Requirements

For these and other reasons, most programs aggregate a series of iterations into a
potentially shippable increment, which can be released, or not, based on the then-
current business context.

Vision, Features, and the Program Backlog

Within the enterprise, the product manage-
ment (or possibly program management
or business analyst) function is primar-
ily responsible for maintaining the Vision
of the products, systems, or application in
their domain of influence.

The Vision answers the big questions for
the system, application, or product, includ-
ing the following.

What problem does this particular solution solve?��
What features and benefits does it provide?��
For whom does it provide it?��
What performance, reliability, and so on, does it deliver?��
What platforms, standards, applications, and so on, will it support?��

The Primary Content of the Vision Is a Set of Features

A Vision may be maintained in a document, in a backlog repository, or even in a
simple briefing or presentation form. But no matter the form, the prime content
of the Vision document is a prioritized set of features intended to deliver benefits to
the users.

Nonfunctional Requirements

In addition, the Vision must also contain the various nonfunctional requirements,
such as reliability, accuracy, performance, quality, compatibility standards, and so
on, that are necessary for the system to meet its objectives.

Undelivered Features Fill the Program Backlog

In a manner similar to the team’s backlog, which contains primarily stories, the pro-
gram (or release) backlog contains the set of desired and prioritized features that
have not yet been implemented. The program backlog may or may not also contain

Te
am

 B
ac

kl
og

System Team

Re
le

as
e

Pl
an

ni
ng

Nonfunctional
Requirements

Feature 1

Feature 2

Release Planning

Arch 1

Re
le

as
e

(o
r P

SI
)

Pr
og

ra
m

 B
ac

kl
og

Release Theme and Objectives

Roadmap

Vision

		 Big Picture: Program Level	 41

estimates for the features. However, any estimates at this scale are coarse-grained
and imprecise, which prevents any temptation to over-invest in inventory of too-
early feature elaboration and estimation.

Release Planning

In accordance with emerging agile enterprise practices, each release increment time-
box has a kickoff release planning session that the enterprise uses to set the company
context and to align the teams to common business objectives for the release. The
input to the release planning session is the current Vision, along with a set of objec-
tives and a desired, prioritized feature set for the upcoming release.

By breaking the features into stories and applying the agreed-to iteration cadence
and knowledge of their velocity, the teams plan the release, typically in a group set-
ting. During this process, the teams work out their interdependencies and design
the release by laying stories into the iterations available within the PSI timebox.
They also negotiate scope trade-offs with product management, using the physics
of their known velocity and estimates for the new stories to determine what can
and can’t be done. In addition to the plan itself, another primary result of this
process is a commitment to a set of release objectives, along with a prioritized
feature set.

Thereafter, the teams endeavor to meet their commitment by satisfying the primary
objectives of the release, even if it turns out that not every feature makes the deadline.

The Roadmap

The results of release planning are used
to update the (product or solution) Road-
map, which provides a sense of how the
enterprise hopes to deliver increasing
value over time.

The Roadmap consists of a series of
planned release dates, each of which has
a theme, a set of objectives, and a priori-
tized feature set. The “next” release on
the Roadmap is committed to the enter-
prise, based on the work done in the most
recent release planning session. Releases
beyond the next one are not committed,
and their scope is fuzzy at best.

November

Release 1 Release 2 Release 3

• First Distributed Game

August

Release 2

• First Two Games Available

Release 2

May

Release 1

• Feasibility Proof on Mobile
 Platform

An Updated, Themed, and Prioritized “Plan of Intent”

• Brickyard Port Started
 (Stretch Goal to Complete)
• Distributed Platform
 Demo
• All GUIs for Both Games
 Demonstrable
• New Features (See
 Prioritized List)
• Demo of Beemer Game

• Road Rage Ported (part I)
Features

• Beemer Game in Alpha

• Road Rage Completed
Features

• (Single User)
• Brickyard Ported (Single
 User)
• Road Rage Multiuser
 Demonstrable
• First Multiuser Game
 Feature for Road Rage
• New Features (See
 Prioritized List)

Features
• Multiuser Road Rage First
 Release
• Brickyard Ported
 Multiuser Demo
• New Features for Both
 Games (See Prioritized
 List)
• Beemer Game to E3
 Tradeshow?

42	C hapter 2   T he Big Picture of Agile Requirements

The Roadmap, then, represents the enterprise’s current “plan of intent” for the next
and future releases. However, it is subject to change—as development facts, business
priorities, and customers need change—and therefore release plans beyond the next
release should not generally be used to create any external commitments.

Product Management

In agile, there can be a challenge with the apparently overlapping
responsibilities of the product manager and the product owner.
For example, in Scrum, the product owner is responsible for the
following:

representing the interests of everyone with a stake in the
resulting project . . . achieves initial and ongoing funding
by creating the initial requirements, return on investment
objectives, and release plans.5

In some smaller organizational contexts, that definition works adequately, and
one or two product owners are all that are needed to define and prioritize software
requirements. However, in the larger software enterprise, the set of responsibilities
imbued in the Scrum product owner is more typically a much broader set of respon-
sibilities shared between team and technology-based product owners and market or
program-based product managers, who carry out their traditional responsibilities of
both defining the product and presenting the solution to the marketplace.

However, we also note that the title of the person who plays this role may vary by
industry segment, as shown in Table 2–1.

Responsibilities of the Agile Product Manager in the Enterprise

No matter the title (we’ll continue to use product manager generically), when an
agile transition is afoot, the person playing that role must fulfill the following pri-
mary responsibilities:

Own the Vision and program (release) backlog��
Manage release content��
Maintain the product Roadmap��
Build an effective product manager/product owner team��

5.	 [Schwaber 2007]

Pr
og

ra
m

 B
ac

kl
og

Product
Management

Vision

		 Big-Picture Elements: Portfolio Level	 43

Table 2–1  Product Manager Role May Have Different Titles

Industry Segment Common Title for the Role

Information systems/information technology
(IS/IT)

Business owner, business analyst, project or program
manager

Embedded systems Product, project, or program manager

Independent software vendor Product manager

Big-Picture Elements: Portfolio Level

Figure 2–4 summarizes the Portfolio level of the Big Picture.

At the top of the Big Picture, we find the portfolio management function, which
includes those individuals, teams, and organizations dedicated to managing the
investments of the enterprise in accordance with the enterprise business strategy.
We also find two new artifact types, investment themes and epics, which together cre-
ate the portfolio vision.

Investment Themes

A set of investment themes establishes the relative investment objectives for
the enterprise or business unit. These themes drive the vision for all pro-
grams, and new epics are derived from these themes. The derivation of these
decisions is the responsibility of the portfolio managers, either line-of-busi-
ness owners, product councils, or others who have fiduciary responsibilities
to their stakeholders.

The result of the decision process is a set of themes—key product value proposi-
tions that provide marketplace differentiation and competitive advantage. Themes have
a much longer life span than epics, and a set of themes may be largely unchanged for
up to a year or more.

Epics and the Portfolio Backlog

Epics represent the highest-level expression of a customer need. Epics are develop-
ment initiatives that are intended to deliver the value of an investment theme and
are identified, prioritized, estimated, and maintained in the portfolio backlog. Prior
to release planning, epics are decomposed into specific features, which in turn are
converted into more detailed stories for implementation.

Po
rt

fo
lio

 B
ac

kl
og

Investment
Themes

PortfolioManagement

44	C hapter 2   T he Big Picture of Agile Requirements

Epics Span
Releases

Architecture
Evolves

Continuously

Po
rt

fo
lio

Po
rt

fo
lio

 B
ac

kl
og

Investment
Themes

PortfolioManagement

Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

doc

doc

Figure 2–4   Portfolio level of the Big Picture

Epics may be expressed in bullet form, in user-voice story form, as a sentence
or two, in video, in a prototype, or indeed in any form of expression suitable to
express the intent of the product initiative. With epics, clearly, the objective is
strategic intent, not specificity. In other words, the epic need only be described in
detail sufficient to initiate a further discussion about what types of features an epic
implies.

Architectural Runway

In Chapter 1, we described how design
(architecture) and requirements are sim-
ply two sides of the same coin—the “what”
and the “how.” In this book, we’ll have time

to explore this topic in more detail, and we’ll provide some discriminators that
help us think about the differences in architecture and requirements, as well as the
commonalities. However, even though this book focuses on requirements, we can’t
ignore architecture, because experience tells us that teams that build some amount
of architectural runway, which is the ability to implement new features without
excessive refactoring, will eventually emerge as the winners in the marketplace. So,
any effective treatment of agile requirements must address the topic of architecture
as well.

Therefore, system architecture is a first-class citizen of the Big Picture and is a rou-
tine portfolio investment consideration for the agile enterprise.

Epic 3
Architectural Runway

Epic 4

		S ummary	 45

Summary

In this chapter, we introduced the Big Picture as the basic requirements artifact,
process, and organizational model for managing software requirements in a lean
and agile manner. For agile teams, the model uses the minimum number of arti-
facts, roles, and practices that are necessary for a team to be effective. However, the
model expands as needed to the Program and Portfolio levels, in each case provid-
ing the leanest possible approach to managing software requirements, even as teams
of teams build larger and larger systems of systems. In the next few chapters, we’ll
elaborate on each of these levels.

This page intentionally left blank

			 495

Index

A
Acceptable spikes, 115
Acceptance criteria for user stories, 104–105
Acceptance Test-Driven Development

(ATDD), 173, 190–191
Acceptance tests, 183

automated, 193–195
characteristics, 188–190
checklist, 192–193
component testing, 198
defining, 187
features, 77, 187
importance, 183–184
overview, 184–187
story, 187–190
teams for, 58–59
test-driven development, 190–191
tester responsibilities, 53
unit testing, 196–198
and user stories, 103

Accepted risk category in release planning, 334
Accuracy

estimate predictions, 136
in reliability, 344
in usability, 350

Achievability in SMART acronym, 163
Activities

in kanban system analysis, 463
RUP, 11
system stakeholder, 125
in user stories, 104

Activity diagrams, 357
Actors in use cases, 370–371, 373–374

Adaptive processes, 12
Agile Manifesto, 12–14
enterprise-scale, 19
Extreme Programming, 14–15
requirements management, 16–19
Scrum, 15

Agenda for requirements workshops, 231
Aggregate behavior in use case modeling, 247
Agile Estimating and Planning (Cohn), 138, 262
Agile Manifesto, 12–14, 23–24, 80–81
Agile Masters, 36
Agile Product Management with Scrum

(Pichler), 204
Agile Release Train (ART), 33, 80–82, 299

decentralized rolling-wave planning,
445–446

designing, 308
introduction, 300–301
principles, 303–304
product development flow, 305–307
rationale, 301–303
releases, 290–291

frequency, 313–317
planning, 308–309
predictability, 310–313
retrospective, 310
tracking and managing, 309–310

strategic alignment, 304–305
Agile Testing (Crispin and Gregory), 185–186
Agility

and legacy mind-sets, 432
Little’s law for, 172–175

Alignment in Agile Release Train, 304–305
Alternate flows in use cases, 375

496	I ndex

Alternate scenarios in use cases, 368, 371
Alternatives and Competition section in

vision documents, 479
Amazon Architecture, 392–393
Analysis

kanban system, 411, 463–466
rearchitecting with flow, 418–422
requirements. See Requirements analysis

Analyst’s Summary for interviews, 240
Anderson, David, 179–180
Andres, Cynthia, 14
Annual funding, 440–441
Annual planning, 445–447
Applicable Standards section in vision

documents, 482
Application standards, 346
Architects

kanban system analysis, 464
responsibilities, 54
system, 388–390

Architectural epics, 88–89, 384
analysis, 418–422
backlog, 415–418
business case templates, 420–421
business drivers for, 387–388
implementing, 89–90, 423–426
Kanban system objectives, 408–409
overview, 409–410
queue descriptions, 410–411
ranking, 414–415
sources, 413–414
splitting, 403–405
state descriptions, 411–412
systems architecture, 399–403

Architectural flow, 384, 399
Architectural governance, 386, 388
Architectural runways, 44, 88–91, 383, 395–396
Architectural work in process (AWIP),

408–409
Architecture

architectural flow principle, 399
architectural runway principle, 395–396

coding and modeling principle, 392–394
emergence of, 385–386
innovation principle, 397–399
portfolio level, 383–384
principles overview, 390
role collaboration principle, 396–397
simplicity principle, 391–392
splitting architecture epics, 403–405
systems, 384–390
team coding principle, 390–391
testing principle, 395
vision for, 324

ART. See Agile Release Train (ART)
Assessing release status , 287, 289
Assumptions and Dependencies section in

vision documents, 481
ATDD (Acceptance Test-Driven

Development), 173, 190–191
Attendance for release planning, 320
Attitudes of product managers, 280–283
Attributes of product owners, 218–220
Automated tests, 186, 193–195
Availability issues in reliability, 344
AWIP (architectural work in process), 408–409

B
Backlogs, 33, 43, 383

benefits, 169–170
blog story, 170–171
as business drivers, 387
changing and eliminating, 178
epics, 85–87, 453, 461–463
features, 76, 255
investment themes in, 451–452
in iteration, 157–158, 169
kanban system, 411, 415–418, 461–463
Little’s law in, 171–175
meta-model, 489
nonfunctional requirements, 78–79, 341, 348
prioritizing, 209–211
problems with, 368
product development flow, 306

		I ndex	 497

product managers for, 289–290
product owners for, 208–211
program level, 40–41
reader reactions to, 176–177
rearchitecting with flow, 415–418
and throughput, 177
user stories in, 38, 55–56

Baker, Steven, 432
Balchin, Mathew, 224
Bartleman, John, 222
Basic features in Kano model, 270
Basic flows in use cases, 371, 375
Batch sizes

lean software, 26
Little’s law, 109
product development flow, 306
user stories, 110–111

Beck, Kent
simplicity, 392
TDD, 190
XP, 14, 100

Beedle, Mike, 221
Berra, Yogi, 47
Best practices and standards, 346
Beyond Budgeting: How Managers Can

Break Free from the Annual Performance
Trap, 450

Bias in interviews, 238
Bibliography, 491–494
Big, up-front design (BUFD) requirements, 11
Big Picture, 31–32

highlights, 33–34
overview, 32–33
portfolio level, 43–44
program level, 38–43
team level, 34–38

Big visible information radiator (BVIR),
164–165

Black, Keith, 69, 222
Black-box testing, 351–352
Boehm, Barry, 10
Bottom-up, team-based estimating, 259

Brainstorming
idea generation, 233–234
idea prioritization, 236–237
idea reduction, 235–236
online, 237
requirements discovery, 232–237

Breakouts in team planning, 325–327, 330
Breaks in system building, 401–402
Broad brushstroke iteration approach, 160–161
Budgeting in investment themes, 450–451
BUFD (big, up-front design) requirements, 11
Build step in define/build/test sequence, 49
Burndown charts

in iteration, 164
release, 309
task hours, 162

Business Analysis Planning and Monitoring
knowledge area, product manager
responsibilities in, 278

Business analysts. See also Product managers
rearchitecting with flow analysis, 420
responsibilities, 201, 203, 276

Business cases
epics, 464–466
investment funding, 438
kanban system rearchitecting with flow

analysis, 420–421
in vision, 253

Business context in release planning, 323–324
Business drivers for architectural epics,

387–388
Business epics, 89, 449–450, 452–453

backlog, 461–463
business case templates, 464–466
expressing, 453–454
vs. features and stories, 454–456
identifying and prioritizing, 456–467
kanban system, 456
ranking, 460
sources, 459–460
subepics, 453
types, 456

498	I ndex

Business-facing tests, 185
Business plans in investment funding, 438
Business rules in user story splitting

pattern, 112
Business sense of product owners, 219
Business systems analysts, 206
Business team collaboration for rearchitecting

with flow analysis, 420
Business value

in backlog ratings, 417, 462
of estimates, 137
for release objectives, 331–332

BVIR (big visible information radiator),
164–165

C
Cadence

description, 26
product development flow, 307

Cadence-based reviews, 415–416, 461–463
Cadence calendars in iteration, 168
Calendars in iteration, 168, 215–216
Capacity in performance, 345
Cards

acceptance tests, 58–59
user stories, 102–103, 116–117, 211

Cargill, Tom, 339
Case studies. See Tendril case study
Centralized annual planning, 445–447
Centralized development in user experience,

131–132
Change management

portfolio management, 430
product managers for, 286
in requirements discovery, 245–246
rethinking, 440–442

Changing requirements, 16
Chaos report survey, 6
Chapman, Chris, 224
Chief engineer role in iteration, 161
Cho, Fuijo, 155

Classes of service
investment themes, 452
kanban system, 180

Classifying system stakeholders, 125
Clean Code: A Handbook of Agile Software

Craftsmanship (Martin), 346
Cleland-Huang, Jane, 262
Co-development and Alliances knowledge

area, product manager responsibilities
in, 277

Co-location of teams, 71
Co-planning releases, 217–218
Cockburn, Alistair, 367–369
CoD. See Cost of Delay (CoD)
Code

in architecture principles, 392–394
developer responsibilities, 52
team, 390–391

Cohn, Mike
Agile Estimating and Planning, 138, 262
product owners, 219, 221
Scrum guidance, 205
Succeeding with Agile: Software Development

Using Scrum, 219
User Stories Applied, 100, 103

Collaboration
kanban system analysis, 464
product owners, 220, 296–297
rearchitecting with flow analysis, 419–420
role collaboration principle, 396–397

Collective team judgment, 141
Collins, James, 449
Commercialization phase, product manager

responsibilities in, 277
Commitment

estimates, 137
iteration, 159–163, 214
in release planning, 273, 292–293, 334–335

Common infrastructure as business driver, 388
Common usage model, 413

		I ndex	 499

Communication
investment themes, 451
product owner skills for, 219
with product owners, 294
for requirements analysis, 355–356
user stories for, 101
vision, 289

Competitive analysis
in requirements discovery, 244–245
in vision documents, 479

Complexity
story points, 138
in user stories, 110, 112

Component teams, 35, 65–66, 68–71
Component tests, 186, 198
Compound stories, 111–114
Conditions of satisfaction in user stories, 103
Confidence for releases, 273
Confirmation

acceptance tests, 59
user stories, 103, 211

Constraints
backlog. See Backlogs
nonfunctional requirements, 340–341,

345–347
WIP, 26

Construction phase in RUP, 11
Context

in release planning, 323–324
use cases for, 367

Context diagrams, 95
Context-free interviews, 238, 471–474
Continuous content delivery, 441–442
Continuous improvement, 24
Continuous integration, 72
Conversation

acceptance tests, 58
user stories, 103, 211

Cooper, Alan, 127
Cooper, James, 409
Corporate best practices and standards, 346

Cost and Pricing section in vision
documents, 481

Cost of Delay (CoD)
backlog ratings, 417
estimating, 266–267
introduction, 263–266
kanban system, 411
lean software, 25

Costs
as business driver, 388
business epic savings, 459
estimates, 137, 149, 259
predicting, 311
and queue size, 175
and velocity, 148

Costs per story point, 259
Cottmeyer, Mike, 69
Cranky Product Manager, 205
Crispin, Lisa, 183, 185–186, 192
Criteria for user stories, 104–105
Critical category in idea prioritization,

236–237
Critiquing products, acceptance tests for, 185
CSG Systems, 223
Cumulative voting in idea prioritization, 236
Cunningham, Ward, 119, 194, 391
Customer & Market Research knowledge area,

product manager responsibilities in, 277
Customer change request systems, 245–246
Customer needs, product managers for, 284
Customer satisfaction

Kano model of, 269–271
in requirements management, 16

D
Daily stand-ups, 165
Data entry in user stories, 113
Data sheet approach for vision, 253–254
Data variations in user stories, 112
Data view in UML, 394
Dates, release, 271, 311

500	I ndex

Davis, Alan M., 361–362
Dealing with Darwin (Moore), 3
Debt in iteration, 216–217
Decentralized control, 27, 307
Decentralized rolling-wave planning, 445–447
Decision authority

business epics, 461
funnel queues, 415
kanban system analysis, 466
rearchitecting with flow analysis, 422

Decision criteria in backlog ratings, 417, 462
Decision-making workshops, 232
Decision tables and decision trees, 359–361
Decisiveness of product owners, 219
Decreased complexity in user stories, 110
Defect logs in requirements discovery, 246
Defects

backlogs for, 208
in reliability, 344

Define/build/test sequence, 49
Defining features, 235–236
Degradation modes in performance, 345
Delay cost

backlog ratings, 417
estimating, 266–267
introduction, 263–266
kanban system, 411
lean software, 25

Delighters in Kano model, 270
Delivering releases, 293
Deming, W. Edwards

process descriptions, 1
quotas, 97
system aim, 381
system contributions, 249
systems, 27

Demonstrable spikes, 115
Demonstration in iteration, 167
Denne, Mark, 262
Dependencies in user stories, 106, 110–111
Deployment, program level, 64
Deployment view in UML, 394

Descriptions in use cases, 371
Design constraints

nonfunctional requirements, 340, 345–347
testing, 352

Detail in user stories, 104
Developer-customer communication gap,

user stories for, 101
Developer role and responsibilities, 36, 52
Development

constraints on, 346
infrastructure building, 72–73
iterations, 37, 300
kanban system analysis, 464
product manager responsibilities, 276–277
releases, 314–316

Development management needs, 124
Development team

iteration planning meeting preparation
responsibilities, 159

rearchitecting with flow analysis, 419
Development time estimates, 260
Development WIP, 409
Differential value in optimization, 269–271
Discount Tire, 224
Discovery-based models, 9, 11
Discovery phase, product manager

responsibilities in, 276
Disillusionment phases of product managers,

280–283
Disruptive technology for architectural

epics, 413
Distributed but governed user experience,

131–133
Distributed teams for iteration plans, 163
Do no harm refactoring approach, 89
Documentation Requirements section in

vision documents, 483
Documenting requirements, product

managers for, 284
Domains in release planning, 320
Draft plan reviews for release planning,

327–328

		I ndex	 501

Drivers for architectural epics, 387–388
Duplicate investment and architectural

epics, 413
Duplication of effort as business driver, 388

E
Eclipse foundation, 11
Economic view in product development flow,

25, 305
Effort estimates, 258–259
Elaboration phase in RUP, 11
Elicitation knowledge area, product manager

responsibilities in, 278
Emotional response in usability, 350
Energy independence case study. See Tendril

case study
Enterprise Analysis knowledge area, product

manager responsibilities in, 279
Enterprise-class systems, systems architecture

in, 384–390
Enterprise-scale adaptive processes, 19
Entity-relationship diagrams (ERDs), 365
Epics

architectural. See Architectural epics
business. See Business epics
and portfolio backlogs, 43, 85–87

ERDs (entity-relationship diagrams), 365
“Establishing an Agile Portfolio to Align

IT Investments with Business Needs”
(Baker), 432

Estimable spikes, 115
Estimating

business value of, 137
cautions, 144, 147
cost, 137, 149, 259
Cost of Delay, 266–267
development time, 260
effort, 258–259
features, 257–260
goals of, 136–137
hybrid models, 151–152

with ideal developer days, 149–151
introduction, 135–136
in INVEST model, 108–109
investment funding, 439–440
with planning poker, 139–142, 144–145
relative, 138–139, 145–147, 258
schedules, 149
story points for, 138, 259
tabletop relative, 145–146
time devoted to, 142–144
velocity, 146–149

Exception conditions in use cases, 375
Exciters in Kano model, 270
Execute phase in iteration, 157
Executing iteration, 164, 214–215
Executive stakeholders in kanban system

analysis, 464
Exemplary Use Cases section in vision

documents, 482
Existing product offerings, investment in, 85
Exit conditions in use cases, 372, 375
Expectations of system stakeholders, 125
Expedite service class in kanban system, 180
Exploring Requirements: Quality Before Design

(Gause and Weinberg), 238
Exponential effect on Lambda, 174
External releases, 300
Extreme Programming (XP), 14–15, 100

F
Facilitation by product owners, 121
Facilitators

release planning, 320–321
requirements workshops, 230–231

Fact-based governance, 444–445
False sense of security phase, product

manager attitude in, 281
Fawcett, Jennifer, 220, 296
Feature prioritization evaluation matrix,

267–268
Feature sets in planned release dates, 271

502	I ndex

Features
acceptance tests, 77, 187
vs. epics and stories, 454–456
estimating, 257–260
in iteration, 169
overview, 255–257
portfolio level, 87
prioritizing, 261–271
program level, 40–41
teams, 34–35, 66–71, 75–77
testing, 77, 260–261
voice, 257

Feedback in product development flow,
26–27, 307

Fibonacci estimating sequence, 110
Finding user personas, 127–129
Finite state machines (FSMs), 361–363
First degree system stakeholders, 125
FIT (Framework for Integrated Tests)

method, 194–195
FitNesse component, 194
Fixed delivery dates in kanban system, 180
Fixed features in Roadmap, 272
Fixed requirements scope assumption, 7
Flow

architecture principle, 399
events in use cases, 371, 374–375
in kanban system, 179–180
product development, 25–27, 305–307
rearchitecting with flow. See Rearchitecting

with flow
Follow-up in requirements workshops, 232
Forming-Storming-Norming-Performing

model, 35
Fowler, Martin, 100
Framework for Integrated Tests (FIT)

method, 194–195
FSMs (finite state machines), 361–363
Functional silos, 50
Functional spikes, 114–115
Functional tests, 186

Functionality
in FURPS acronym, 339
predicting, 311

Funnel queues, 410, 412–415, 459–461
FURPS acronym, 339–340
Futures, investment in, 85

G
Gat, Israel, 136, 429
Gause, Donald, 238
General availability firewalls, 316
Get it done belief in legacy mind-sets,

434–436
Global optimization, 304
Global WIP, 409
Glossary section in vision documents, 483
Goals

of estimating, 136–137
lean software, 22–23
Scrum Masters/Agile Masters

responsibilities, 52
stretch, 336–337

Good to Great (Collins), 449
Gottesdiener, Ellen, 176
Governance

architectural, 386, 388
portfolio management, 430
rethinking, 442–447

Gregory, Janet, 183, 185–186, 192
Gross estimates, 258
Gross profit, 18
Grouping ideas, 235
Guide to the Business Analysis Body of

Knowledge, 278
Gustafsson, Bjorn, 176

H
Hackathons, 398–399
Hardening iterations, 37, 39, 300, 398
Help section in vision documents, 483
Hendrickson, Elizabeth, 194
High, Timothy, 388

		I ndex	 503

High Delay Cost First approach in Cost of
Delay, 264–265

Highsmith, Jim, 67
History of software requirements methods,

3–5
adaptive processes, 12–19
iterative methods, 9–12
lean software, 20–28
waterfall software process model, 5–9

Http Unit testing, 198
Hybrid estimating model, 151–152

I
Ideal developer days (IDDs), 149–151
Ideas in brainstorming

generation, 233–234
prioritization, 236–237
reduction, 235–236

Identifying
epics, 456–467
stakeholders, 122–125

IIBA (International Institute of Business
Analysts), 278

Impediments
program level, 64
in release planning, 333–334
Scrum Masters/Agile Masters

responsibilities, 52
Implementation

architectural epics, 89–90
kanban system, 411, 467
rearchitecting with flow, 423–426

Implementation view in UML, 394
Implementing Lean Software (Poppendieck

and Poppendieck), 20
Important category in idea prioritization,

236–237
Imposed standards as constraints, 346–347
Improvement

kanban system opportunities, 180
Scrum Masters/Agile Masters

responsibilities, 52

Inception phase in RUP, 11
Increased throughput in user stories, 109–110
Incremental delivery, 17, 444–445
Incremental funding, 440–441
Incremental system building, 400
Independence in INVEST model, 106, 110–111
Index cards for user stories, 116–117
Infrastructure enablers, 384
Infrastructure work, backlogs for, 208
Initiative and queue size, 175
Inmates are Running the Asylum, The

(Cooper), 127
Innovation as business driver, 388
Innovation principle, 397–399
Installation section in vision documents, 482
Installation Guides section in vision

documents, 483
Intangible service class in kanban system, 180
Integration in product development flow, 307
Intentional architecture, 386–387
Interactions, stakeholder, 122
Interface development in user experience, 130
Internal releases, 300
International Institute of Business Analysts

(IIBA), 278
Interviews in requirements discovery,

237–240
Introduction section in vision documents, 477
INVEST model attributes for user stories, 105

estimable, 108–109
independent, 106
negotiable, 107
small, 109–111
testable, 111
valuable, 107–108

Investment funding
portfolio management, 430
rethinking, 436–440

Investment themes, 33, 43, 383, 450–451
vs. backlogs, 451–452
communicating, 451
overview, 84

504	I ndex

Involvement levels of stakeholders, 121
Iron triangle

eliminating in agile, 16
in iteration, 160
waterfall model, 6–8

IS/IT shops, product manager responsibilities
in, 278–279

Iteration, 9, 33, 155–156
backlogs for, 210
calendars in, 168, 215–216
commitment, 159–163, 214
demonstration, 167
demos, 294
executing, 164, 214–215
feature preview, 169
just-in-time story elaboration, 211–212
length, 156
pattern, 157
planning phase, 157–159, 163, 213–214
product owners driving of, 212–216
Rapid Application Development, 10
Rational Unified Process, 11
requirements, 11–12
retrospective, 157, 167, 215
reviews, 167, 215
spiral method, 10
team backlog in, 157–158
team level, 36–37
technical debt and value stream, 216–217
tracking and adjustment in, 164–167
unit testing in, 197–198

J
Jeffries, Ron, 58, 102
Just get it done belief, 434–436
Just-in-time story elaboration, 211–212

K
Kaizen, 24
Kanban system, 28, 179, 408

analysis, 418–422, 463–466
architectural epics, 413–415

backlogs, 411, 415–418, 461–463
classes of service, 180
funnel queues, 412–415, 459–461
implementation, 411, 423–426, 467
objectives, 408–409
overview, 409–410, 457–458
portfolio planning, 456–467
properties, 179–180
queue descriptions, 410–411
state descriptions, 411–413
state diagram views, 458–459

Kano, Noriaki, 269
Kano model of customer satisfaction, 269–271
Kay, Alan, 251
Key product value propositions, 43
Key User Needs section in vision

documents, 479
Knowledge areas, product manager

responsibilities in, 277–279
Knowledge in story points, 138
Kolsky, Amir, 191
Kouzina, Olga, 176
Kroll, Per, 377
Kruchten, Philippe, 393

L
Labeling and Packaging section in vision

documents, 483
Lambda in Little’s law, 172–173
Larman, Craig, 19, 21–22, 67–68
Last responsible moment (LRM), 253
Lawrence, Richard, 111
Leadership

in lean software, 24
product owners, 121

Lean-Agile Software Development: Achieving
Enterprise Agility (Shalloway), 20, 256

Lean Software and Systems Consortium, 20
Lean software overview, 20

continuous improvement, 24
house of, 20–22
kanban, 28

		I ndex	 505

management support, 24–25
product development flow, 25–27
respect for people, 23
sustainably delivering value fast goal, 22–23
systems view, 27

Lean Software Strategies (Middleton and
Sutton), 20

Leffingwell, Dean
acceptance tests, 183
features, 75
finite state machines, 362
Managing Software Requirements: A Use

Case Approach, 255, 340, 369
requirements vs. design, 385
Scaling Software Agility: Best Practices for

Large Enterprises, 16, 19, 65, 88, 387.
Legacy mind-sets in portfolio management,

432–436
Length of queue in backlog, 174–175
Length of time in queue in backlog ratings, 417
Licensing, Security, and Installation section in

vision documents, 482
Lifecycle phases

product manager responsibilities in,
276–277

RUP, 11
Lightweight business cases

epics, 464–466
investment funding, 438
rearchitecting with flow analysis, 420–421

Limited WIP Society, 179
Linear effect on Lambda, 174
Linear features in Kano model, 270
Little’s law

for agility and time to market, 172–175
in backlog, 171–175
batch size in, 109
in blog story, 170–171
queues, 26
reliability of, 177

Local optimization, 304
Local prioritizations of features, 268–269

Logical view in UML, 394
Logistics in requirements workshops, 229
Low-fidelity interface development, 130
LRM (last responsible moment), 253
Lulls in idea generation, 234

M
Maintainability in nonfunctional

requirements, 345
Management support, 24–25
Managers’ review meeting in release

planning, 328
Managing Software Requirements: A Use Case

Approach (Leffingwell and Widrig), 255,
340, 369

Managing the Design Factory (Reinertsen), 20
Marick, Brian, 185
Market/customer-facing product

managers, 206
Market Demographics section in vision

documents, 478
Marketing and ART cadence, 315–316
Marketing requirements documents (MRDs),

251–252, 281
Marketing stakeholder guidelines, 123
Martens, Ryan, 70, 390
Martin, James, 10
Martin, Robert, 110, 346
Mean time between failures (MTBF)

issues, 344
Mean time to repair (MTTR) issues, 344
Measurability in SMART acronym, 163
Measuring workflow in kanban system,

179–180
Meet-after boards in iteration, 166
Message sequence diagrams (MSDs), 364–365
Metrics review in iteration, 168
Middleton, Peter, 20
Milestones

legacy mind-sets, 434–436
rethinking, 444–445

Minimum guarantees in use cases, 372

506	I ndex

Minimum marketable feature (MMF) in
Kano model, 270–271

Mitigated risk category in release
planning, 334

Modeling principle in architecture, 392–394
Models in kanban system, 180
Monson-Haefel, Richard, 407
Moore, Geoffrey, 3
Motivation and queue size, 175
MRDs (marketing requirements documents),

251–252, 281
MSDs (message sequence diagrams), 364–365
MTBF (mean time between failures)

issues, 344
MTTR (mean time to repair) issues, 344
Mugridge, Rick, 194
Must-have features in Kano model, 270

N
Names in use cases, 370–371, 374
Needs

compiling, 239–240
product managers for, 284
stakeholders, 125–126

Negotiability of user stories, 107
Net ratings for backlogs, 462
New opportunities in business epics, 459
New products

as business drivers, 387
investment in, 85

Next + 1 releases, 273
97 Things Every Software Architect Should

Know (Monson-Haefel), 407
Nonfunctional requirements (NFRs), 77–78,

339–340
and backlogs, 78–79, 341, 348
constraints, 340–341, 345–347
examples, 342–343
modeling, 340–342
performance, 345
persistent, 347–348
program level, 40, 77–80

reliability, 344
supportability, 345
templates, 352–354
testing, 79–80, 348–352
usability, 343–344
as user stories, 342
in vision, 255, 290

Nonfunctional Requirements section in
vision documents, 482

Normalizing velocity, 152
Number of iterations per release, 37

O
Objective-based commitment in iteration, 161
Objectives of releases, 292–293, 308–309,

312–313, 330–332
Ohno, Taiichi, 22, 319
On-site customers, 201
$100 test, 236
Online brainstorming, 237
Online Help section in vision documents, 483
Opaque transparent firewalls, 316
Operations

guidelines, 123
user story splitting pattern, 113

Optimization, 269–271, 304
Order-taker mentality, 433–435
Out-of-the-box thinking in requirements

workshops, 230
Outlines in use case flows, 374–375
Outsourced development in rearchitecting

with flow implementation, 425
Oversight

portfolio management, 430
rethinking, 442–447

Owned risk category in release planning, 334

P
Parkolla, Mikko, 429–430
Partner stakeholders, 123
Partnerships in product manager/product

owner team, 296–297

		I ndex	 507

Paying down technical debt, 217
Peer ratings for backlogs, 415–416, 461–463
People, respect for, 23
People, Teams, & Culture knowledge area,

product manager responsibilities in, 277
Performance

in FURPS acronym, 340
nonfunctional requirements, 345
testing, 352

Perpetual Mistrust phase, product manager
attitude in, 282–283

Persistent acceptance tests, 190
Persistent nonfunctional requirements,

347–348
Personas, 126

finding, 127–129
primary and secondary, 127

Phases of product manager disillusionment,
280–283

Pichler, Roman, 204
Planned release dates in Roadmap, 271
Planning

centralized annual vs. decentralized rolling-
wave, 445–447

investment funding, 439–440
in legacy mind-sets, 434–435
product development flow, 307
releases. See Release planning

Planning phase in iteration, 157–159, 163,
213–214

Planning poker, estimating with, 139–142,
144–145

Plans of intent, 42, 272, 295
PMBOK (Project Management Body of

Knowledge), 442–443
PMO (project management office), 85,

430–431
Pods of agile teams, 33, 35
Policies in kanban system, 180
Poppendieck, Mary, 20, 22–23, 164
Poppendieck, Tom, 20, 22–23, 164

Portfolio backlogs, 383
as business drivers, 387
epics in, 43, 86–87, 453
product development flow, 306

Portfolio level, 33–34
architectural runways, 88–91
backlogs, 86–87
epics, 85–91
features and stories, 87
introduction, 83–84, 383–384
investment themes, 84
portfolio management team, 85
summary, 43–44

Portfolio management
change management, 440–442
epics identification and prioritization for,

456–467
governance and oversight, 442–447
investment funding, 436–440
legacy mind-sets, 432–436
overview, 429–431
project management office, 430–431
team decisions, 85

Portfolio vision in business epics, 459
Portfolio WIP, 409
Potentially shippable increments (PSIs)

in ART, 80, 300–301, 314–317
program level, 33
in releases, 37, 39–40
in system building, 401–402

PRDs (product requirements documents),
251–252, 281

Preconditions in use cases, 372, 375
Predictability of releases, 310–313
Predictions in estimates, 136
Predisposition in interviews, 238
Preliminary press release approach in

vision, 254
Primary user personas, 127–128
Principles of Agile Architecture, 390–399
Principles of Product Development Flow

(Reinertsen), 20, 25, 262

508	I ndex

Prioritization
backlog ratings, 417, 462
backlogs, 209–211
epics, 456–467
estimates, 137
features, 261–271
ideas, 236–237
in iteration, 214
product managers for, 285
in Roadmap, 272

Problem solving meeting in release
planning, 328

Process control band, 312
Process, Execution, Metrics knowledge area,

product manager responsibilities in,
277–278

Process review in iteration, 168
Process view in UML, 394
Product backlogs, 38
Product champions, 201
Product companies, product manager

responsibilities in, 276–278
Product councils in requirements discovery,

243–244
Product Development and Management

Association, 276
Product development flow, 25–27, 305–307
Product Features section in vision

documents, 481
Product Management and Product Owner Role

in Large Scale Agile Software Development
(Parkolla), 429

Product management in kanban system
analysis, 464

Product managers, 33, 74, 275
change management, 286
customer needs, 284
documenting requirements, 284
evolution of, 283
phases of disillusionment, 280–283
prioritizing requirements, 285
product owner collaboration, 220, 295–297

program level, 42–43
rearchitecting with flow analysis, 420
release management, 290–294
responsibilities, 276–280, 286–287
Roadmap, 295
scheduling, 285
status assessment, 287
validating requirements, 286
vision, 288–290

Product Overview section in vision
documents, 480

Product owners, 33
attributes, 218–220
backlog management, 208–211
bottlenecks, 221
communication with, 294
CSG Systems, 223
description, 120
Discount Tire, 224
dual roles, 207
emergence of, 201–202
iteration driving, 212–216
iteration planning meeting preparation

responsibilities, 159
just-in-time story elaboration, 211–212
product manager collaboration, 220,

295–297
proxies, 221
release planning, 217–218
responsibilities, 51, 202–208
role/title, 206–207
roles, 36
Scrum, 15
Symbian Software, 223–224
teams, 221
technical debt and value stream, 216–217
TradeStation Technologies, 222–223

Product Position Statement section in vision
documents, 480–481

Product requirements documents (PRDs),
251–252, 281

		I ndex	 509

Product/technology councils in rearchitecting
with flow analysis, 422

Production requirements workshops, 232
Productivity in usability, 350
Program backlogs

features for, 76
product development flow, 306

Program level, 33
architectural epics, 90
ART, 80–82
introduction, 63–64
nonfunctional requirements, 77–80
product managers, 42–43
program managers, 275
release planning, 41
releases and PSIs, 39–40
Roadmap, 41–42, 64
summary, 38–39
teams. See Teams and team level
vision, features, and program backlog, 40–41

Programming support, acceptance tests
for, 185

Progress tracking in iteration, 164–167
Project backlogs, 38
Project-free, continuous content delivery,

441–442
Project Management Body of Knowledge

(PMBOK), 442–443
Project management office (PMO), 85,

430–431
Project Management tool, iteration tracking

with, 166–167
Project plans in investment funding, 438
Project-specific information for requirements

workshops, 230
Project stakeholders, 120
Proxies, product owner, 221
Pruning ideas, 235
Pseudocode, 358–359
PSIs (potentially shippable increments)

in ART, 80, 300–301, 314–317
program level, 33

in releases, 37, 39–40
in system building, 401–402

Purchased solutions for rearchitecting with
flow implementation, 425–426

Q
Qualities, testing, 79–80, 186–187
Quality

agile, 17
predicting, 310–311
and queue size, 175
unit tests, 60
waterfall model, 8

Quality assurance
QA and deployment teams, 71
responsibilities, 54
system, 72

Quality Function Deployment technique, 245
Quality management at program level, 64
Quantitative review in iteration, 168
Questionnaires in requirements discovery,

240–241
Questions in interviews, 238–239
Queues. See also Backlogs

analysis, 418–422
backlog blog story, 170–171
funnel, 410, 412–415, 459–461
in kanban system, 410–411
lean software, 25–26
length, 174–175, 177
in product development flow, 306

R
Rally Software Development, 90, 245–246
Ranking

architectural epics, 414–415
business epics, 460

Rapid Application Development (RAD), 10
Ratings for backlogs, 415–417, 461–463
Rational Unified Process (RUP), 11, 252–253,

367, 393
Realized features, 76
Rearchitecting system portions, 387

510	I ndex

Rearchitecting with flow, 407–408
analysis, 418–422
architectural epics, 413–415
backlogs, 415–418
funnel queues, 412–415
implementation, 423–426
kanban system, 408–412

Recall in usability, 350
Refactors, backlogs for, 208
References section in vision documents, 478
Refining use cases, 375
Regulations as constraints, 346–347
Reinertsen, Donald G.

on AWIP, 408
batch size, 299
Managing the Design Factory, 20
Principles of Product Development Flow,

20, 25, 262
prioritizing work, 263
on queues, 155, 175

Relationships in use cases, 374
Relative estimating, 138–139, 145–147, 258
Release backlogs in product development

flow, 306
Release levels, program managers at, 275
Release management

product managers for, 290–294
program level, 64

Release management teams (RMTs), 73–74, 294
Release planning, 299

ART, 80–81, 308–309
attendance, 320
checklist, 321–322, 485–488
Day 1, 322–323

architecture vision, 324
business context, 323–324
draft plan reviews, 327–328
managers’ review and problem solving

meeting, 328
opening meeting, 323
team planning breakouts, 325–327

Day 2, 328–329
adjustments, 330

commitment, 334–335
final instructions to teams, 336
final review, 332–333
opening meeting, 330
release objectives, 330–332
retrospective, 335–336
risks and impediments, 333–334
solution vision, 324
team planning breakouts, 330

domains, 320
facilitators, 320–321
preparing for, 319
product manager role, 290–293
product owner role, 217–218
program level, 41
stretch goals, 336–337

Release teams, 71
Release train domains, 308
Releases, 33, 39–40

ART. See Agile Release Train (ART)
commitment, 292–293
frequency, 313–317
managing, 309–310
objectives, 292–293, 308–309, 312–313,

330–332
planning. See Release planning
predictability, 310–313
PSIs, 80
retrospective, 310
Roadmap for, 273
tracking, 293–294, 309–310

Relevancy in SMART acronym, 163
Reliability

in FURPS acronym, 340
nonfunctional requirements, 344
testing, 350–351

Reliable estimates, 136
Reports, requirements analysis, 358
Requirements

backlog meta-model, 489
nonfunctional. See Nonfunctional

requirements (NFRs)
user stories as, 101–102

		I ndex	 511

Requirements analysis, 355–356
activity diagrams, 357
decision tables and decision trees, 359–361
entity-relationship diagrams, 365
finite state machines, 361–363
message sequence diagrams, 364–365
pseudocode, 358–359
sample reports, 358
use case modeling, 366

Requirements Analysis knowledge area,
product manager responsibilities in, 279

Requirements analysts, 206
Requirements architects, 206
Requirements discovery, 227–228

brainstorming, 232–237
competitive analysis, 244–245
customer change request systems, 245–246
defect logs, 246
interviews, 237–240
product councils, 243–244
questionnaires, 240–241
use case modeling, 247
user experience mock-ups, 241–243
workshops, 228–232

Requirements Management and
Communication knowledge area,
product manager responsibilities in, 279

Requirements view in UML, 393
Research and development, 267
Resetting expectations phase, product

manager attitude in, 282
Resolved risk category in release planning, 334
Resource management at program level, 64
Resource utilization in performance, 345
Respect for people, 23
Response time in performance, 345
Responsibilities

product managers, 42–43, 276–280
product owners, 51, 202–208
teams, 50–54

Resynchronization, 26

Retrospective
iteration, 157, 167, 215
release planning, 335–336
releases, 310

Return on investment (ROI)
incremental value delivery for, 17
for prioritizing features, 261–263

Review in iteration, 157, 167, 215
Risks and risk reduction

in backlog ratings, 417
backlogs for, 210
in Cost of Delay, 267
and queue size, 175
in release planning, 333–334

RMT (release management team), 73–74, 294
Roadmaps, 271–272

for architectural epics, 413
description, 81–82
product managers for, 295
program level, 41–42, 64
for releases, 273

ROAM categories in release planning, 334
ROI (return on investment)

incremental value delivery for, 17
for prioritizing features, 261–263

Role collaboration principle
rearchitecting with flow analysis, 419–420
system architecture, 396–397

Roles
product owners, 36, 207
teams, 36, 50–54
in user stories, 104

Rolling-wave planning, 445–447
Roof in lean software, 22–23
Royce, Winston, 5–6
Rude Awakening phase, product manager

attitude in, 281
Rules, responsibility for, 52
Runways, architectural, 44, 88–91, 383,

395–396
RUP (Rational Unified Process), 11, 252–253,

367, 393

512	I ndex

S
SaaS (software as a service) application, 90,

314
Sales stakeholder guidelines, 123
Sample reports in requirements analysis, 358
SATs (story acceptance tests), 187–190
Scalability in performance, 345
Scale, team organization at, 64
Scaling Lean and Agile Development (Larman

and Vodde), 19
Scaling Software Agility (Leffingwell), 16, 19,

65, 88, 387
Scheduled features, 290
Schedules

estimating, 137, 149
myths, 135
product managers for, 285
and velocity, 148

Schwaber, Ken, 202, 221
Scope

in architectural epics, 384
in business epics, 453
of releases, 290
story points for, 138
in waterfall model, 7

Scotland, Karl, 176
Scrum/Agile Masters, 15, 34

responsibilities, 51–52
roles, 36

Scrum Alliance, 15
Scrum Certified Product Owner courses, 204
Scrum of Scrums planning checkpoints,

326–327
Scrum project management method, 15

product owners, 202–204
story of, 24

SDS (system design specification), 281
Second degree system stakeholders, 125
Secondary user personas, 127–128
Security

in reliability, 344
testing, 351–352

Security section in vision documents, 482
Security stakeholder guidelines, 124
Sense of balance in product manager/product

owner teams, 296
Separation of development from releases and

marketing, 315–316
Sequencing in prioritizing features, 262–263
Shakespeare, William, 63, 99, 135, 183, 201
Shalloway, Alan, 20, 256
Shortest Job First in Cost of Delay, 263–264
Silos, functional, 50
Simplicity in architecture, 391–392
Size

backlog ratings, 417
queue, 174–175
in user stories, 110–111

Sliger, Michele, 443
Small attribute in INVEST model, 109–111
SMART acronym, 162–163
Smart energy grids. See Tendril case study
Software as a service (SaaS) application,

90, 314
Software by Numbers (Denne and Cleland-

Huang), 262
Software kanban. See Kanban system
Software Project Manager’s Bridge to Agility

(Sliger), 443
Software Requirements (Wiegers), 262
Software requirements history, 3–5

adaptive processes, 12–19
iterative methods, 9–12
lean software, 20–28
waterfall software process model, 5–9

Software requirements specifications (SRSs),
251–252

Solely emergent architectures, 386
Solution Assessment and Validation

knowledge area, product manager
responsibilities in, 279

Solution management, 276
kanban system analysis, 464
rearchitecting with flow analysis, 420

		I ndex	 513

Solution/product/technology-facing product
owners, 206

Solution vision in release planning, 324
Solutions-context questions in interviews,

238–239
Sources

architectural epics, 413–414
business epics, 459–460

Special requirements in use cases, 372
Specialist responsibilities, 54
Specificity in SMART acronym, 163
Spikes, 114

guidelines, 115–116
technical and functional, 114–115
user experience, 130

Spiral model of development, 10
Splitting

architecture epics, 403–405
user stories, 111–114

Sponsor guidelines, 124
Sprint status boards, 165
Sprints, Scrum, 15, 36
SRSs (software requirements specifications),

251–252
Stakeholder/product owner teams, 126
Stakeholders, 119

identifying, 122–125
interactions, 122
interviews, 237–238
involvement levels, 121
kanban system analysis, 464
product owners, 120
project, 120
requirements workshops, 229
system, 120
trust, 122
in use cases, 372

Stakeholders section in vision documents,
480–481

Standard service class in kanban system, 180
Standards as constraints, 346–347
Standish Group, 6

Starbucks backlog blog story, 170–171
State descriptions in kanban system, 411–413
State diagram views, 458–459
State transition diagrams, 362–363
Statements of intent, 38
Steering committees, 73
Sterling, Chris, 177
Stories

vs. features and epics, 454–456
just-in-time story elaboration, 211–212
portfolio level, 87
user. See User stories

Story acceptance tests (SATs), 59, 187–190
Story points, 138, 257, 259
Story spikes in user experience, 130
Story time in iteration, 169
Strategic alignment in ART, 304–305
Strategic intent in epics, 44
Strategic investment themes, 450
Strategy, Planning, and Decision Making

knowledge area, product manager
responsibilities in, 277

Strategic product themes, 450
Stretch goals in release planning, 336–337
Stretch objectives in iteration, 160
Subepics, 453
Subjective review in iteration, 168
Subsystems in use cases, 368, 372
Succeeding with Agile: Software Development

Using Scrum (Cohn), 219
Success guarantees in use cases, 372
Summary of Capabilities section in vision

documents, 481
Support stakeholder guidelines, 124
Supportability

in FURPS acronym, 340
nonfunctional requirements, 345
testing, 352

Supporting roles, 54
Sustainably delivering value fast goal, 22–23
Sutton, James, 20
Symbian Software, 223–224

514	I ndex

Synchronization
lean software, 26
product development flow, 307

System acceptance tests, 186
System architecture, 383
System context diagrams, 95
System design specification (SDS), 281
System qualities

tests, 80, 186–187
user story splitting pattern, 113
in vision, 255

System Requirements section in vision
documents, 482

System stakeholders, 120
classifying, 125
identifying, 124
needs of, 125–126

System teams, 71–73
Systems architecture, 384–385

architectural epics, 387–388, 399–403
business drivers, 387–388
emergence of, 385–386
intentional, 386–387
system architect role, 388–390

Systems in use cases, 368, 370, 372
Systems view in lean software, 27

T
Tabletop relative estimation, 145–147
Task-based commitment in iteration, 162–163
Tasks, team level, 38, 57–58
TDD (test-driven development), 60, 190–191
Team backlogs

in iteration, 157–158
product development flow, 306
user stories in, 38, 55–56

Team-based estimating, 259
Teams and team level

acceptance tests, 58–59
architectural epics, 90–91
coding by, 390–391
features, 34–35

and functional silos, 50
importance, 47–49
iterations, 36–37
overview, 34–35
planning breakouts, 325–327, 330
pods, 35
product owners, 221
program level

co-location, 71
component, 65–66, 68–71
features, 66–71, 75–77
organization at scale, 64
product management, 74
release management, 73–74
system, 71–73
vision, 74–75

rearchitecting with flow implementation,
424, 426

roles and responsibilities, 33, 36, 50–54
tasks, 38, 57–58
user stories, 37–38, 56–57

Technical debt, 39
backlogs for, 208
iteration, 216–217

Technical foundation of product owners, 219
Technical spikes, 114–115
Technological changes as business driver, 387
Technology and Intellectual Property

knowledge area, product manager
responsibilities in, 277

Technology-facing tests, 185
Technology Roadmaps, 413
Templates

business cases, 420–421, 464–466
nonfunctional requirements, 352–354
vision documents, 475–477

Temporal prioritizations of features, 268–269
Tendril case study, 93

activity diagrams, 357
background, 93–94
sample reports, 358
system context diagrams, 95

		I ndex	 515

system stakeholders, 125–126
use case example, 375–377
user personas, 128–129

Tendril end-to-end solution, 94
Test-driven development (TDD), 60, 190–191
Testability of user stories, 111
Tester roles and responsibilities, 36, 53
Testing principle in architecture, 395
Tests

acceptance. See Acceptance tests
in define/build/test sequence, 49
features, 77, 260–261
nonfunctional requirements, 79–80,

348–352
performance, 352
reliability, 350–351
security, 351–352
supportability and design constraints, 352
system-level, 72
system qualities, 80
teams, 58–60
usability, 350
user stories, 188–189

Themes
investment, 33, 43, 84, 383, 450–452
planned release dates, 271

Third degree system stakeholders, 125
Thomas, M., 7
Throughput

and backlog queue length, 177
in performance, 345
in user stories, 109–110

Time
in architectural epics, 384
in business epics, 453

Time to market, Little’s law for, 172–175
Time value

in backlog ratings, 417, 462
backlogs for, 210
in Cost of Delay, 267

Timeboxed tasks in SMART acronym, 163
Toyota Production System (TPS), 20

Toyota Way, The (Liker), 20
Tracking

in iteration, 164–167
releases, 293–294, 309–310

TradeStation Securities trading system, 68–69
TradeStation Technologies product owners,

222–223
Training time, 343
Transitions phase in RUP, 11
Transparent firewalls, 316
Trust

product manager/product owner team,
296–297

in software development, 386
stakeholders, 122

Trustworthiness of product owners, 219
Tuckman, Bruce, 35
Tyranny of the urgent iteration, 169

U
UML (Unified Modeling Language), 393–394
Unambiguous acceptance tests, 189
Unbridled enthusiasm phase, product

manager attitude in, 281
Uncertainty

in product development flow, 307
story points, 138

Undelivered features, 40–41
Unified Modeling Language (UML), 393–394
Unit tests

in agile testing matrix, 186
in iteration, 197–198
overview, 196–197
purpose, 60

United management fronts for releases, 330
Unscheduled features, 290
Usability

in FURPS acronym, 339
nonfunctional requirements, 343–344
testing, 350

Use-case view in UML, 393

516	I ndex

Use cases
applying, 377–378
basics, 369–370
benefits, 368–369
example, 375–377
model building for, 372–375
overview, 367–368
requirements analysis, 366
requirements discovery, 247
requirements model, 378–379
structure, 370–371
user story splitting pattern, 113
vision documents, 482

Useful category in idea prioritization, 236–237
User Description section in vision

documents, 478–479
User Environment section in vision

documents, 479
User experience (UX) design, 129–130

centralized development, 131–132
distributed but governed, 131–133
interface development, 130
story spikes, 130

User experience mock-ups in requirements
discovery, 241–243

User interaction, use cases for, 368
User interviews in requirements discovery,

237–238
User Manual section in vision documents, 483
User/Market Demographics section in vision

documents, 478
User personas, 126

finding, 127–129
primary and secondary, 127

User Personas section in vision
documents, 478

User stories, 33
acceptance criteria, 104–105
backlogs for, 208
basics, 57

cards, conversation, and confirmation,
102–103, 116–117, 121

detail, 104
for developer-customer communication

gap, 101
introduction, 99–100
INVEST model, 105–111
nonfunctional requirements as, 342
overview, 100–101
problems with, 368
as requirements, 101–102
size and Lambda, 174
spikes, 114–116
splitting, 111–114
teams, 37–38, 56–57
testing, 188–189
for user personas, 127–129
voice, 103–104, 257

User Stories Applied (Cohn), 100, 103
User value

in architectural epics, 384
in backlog ratings, 417
backlogs for, 210
in Cost of Delay, 266–267

User voice
features, 257
user stories, 103–104

Utilization
in legacy mind-sets, 434–435
in performance, 345

V
Validating requirements, product managers

for, 286
Value

in architectural epics, 384
in backlog ratings, 417, 462
in Cost of Delay, 266–267
of estimates, 137
in INVEST model, 107–108
in prioritizing features, 269–271

		I ndex	 517

in release objectives, 331–332
in user stories, 104

Value chain, 23
Value/effort ROI proxy, 262
Value stream in iteration, 216–217
Variability

lean software, 26
product development flow, 306
and queue size, 175

Variable features in Roadmap, 272
Velocity, 136

establishing, 146–149
feature estimates, 257
increasing, 148
normalizing, 152
schedule and cost connections, 148

Velocity-based commitment in iteration,
160–162

Views in UML, 393–394
Vision

communicating, 289
data sheet approach, 253–254
feature backlog with briefing approach, 255
nonfunctional requirements, 255
overview, 251–252
portfolio, 459
preliminary press release approach, 254
product managers for, 288–290
program level, 40, 64
release planning, 324
teams, 74–75
vision documents, 252–253

Vision document template, 475–477
Assumptions and Dependencies

section, 481
Documentation Requirements section, 483
Exemplary Use Cases section, 482
Glossary section, 483
Introduction section, 477
Nonfunctional Requirements section, 482
Product Features section, 481

Stakeholders section, 480–481
User Description section, 478–479

Vodde, Bas, 19, 21–22, 67–68
Vogels, Werner, 392
Voice

features, 257
user stories, 103–104

Volume of story points, 138
Von Neumann, John, 355

W
Wake, Bill

INVEST acronym, 105
SMART acronym, 162–163
on user stories, 101

Warm-up materials in requirements
workshops, 230

Waterfall model, 5–6
current use, 8–9
problems, 6
requirements, 6–8

Weighted Shortest Job First (WSJF)
prioritization

backlog ratings, 417
in Cost of Delay, 265–267
epic ratings, 462
for features, 290
for requirements, 285

Weinberg, Gerald, 238
White-box testing, 351
Widget engineering mind-set, 433–435
Widrig, Don, 227

acceptance tests, 183
Managing Software Requirements: A Use

Case Approach, 255, 340, 369
Wiegers, Karl E., 262
Wikis, 348
Wireframe models, 242–243
Work breakdown structure in investment

funding, 439–440

518	I ndex

Work-in-process (WIP)
backlog ratings, 418, 463
business epics, 461
funnel queues, 415
in kanban system, 179, 464
lean software, 26
product development flow, 306–307
rearchitecting with flow, 420, 426

Work items, 56
Workflow

kanban system, 179–180
user story splitting pattern, 112

Working software in systems architecture, 386

Workshops, requirements, 228–232
Write-the-test-first approach, 111
Writing Effective Use Cases (Cockburn), 369
WSJF. See Weighted Shortest Job First (WSJF)

prioritization

X
XML Unit testing, 198
XP (Extreme Programming), 14–15, 100

Z
Zamora, Mauricio, 223, 390

	Contents
	Foreword
	Preface
	Chapter 2 The Big Picture of Agile Requirements
	The Big Picture Explained
	Big Picture: Team Level
	Big Picture: Program Level
	Big-Picture Elements: Portfolio Level
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

