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Foreword

Why do product development projects miss their economic objectives? Studies 
show that 80 to 85 percent of project failures are due to incorrect requirements. 

Experienced developers know that managing requirements is a greater challenge than 
technical execution. And, although we have known this for decades, we really haven’t 
gotten much better at it. Why? At first, we were functionally organized, so we simply 
displaced the problem outside the boundary of engineering—we blamed marketing 
and product management. Later, as we adopted cross-functional teams, we told these 
teams to listen to the voice of the customer and assumed that this would solve the 
problem. 

It didn’t. We never challenged the idea that it was feasible to develop valid require-
ments up front—we just told people to try harder. We just told them to pay more 
attention to what the customer was asking for. We ignored the fact that many cus-
tomers don’t know what they want. We ignored that fact that even when they know 
what they want, they can’t describe it. We ignored the fact that even when they 
can describe it, they often describe a proposed solution rather than the real need. 
For example, customers told us that they wanted suitcases that were easy to carry, 
and asked us to make them lightweight. We did this, but they rejected our elegant 
designs and bought the heavier designs of our competitors—the ones with wheels 
on them! 

The sad truth is that there is no one “voice of the customer.” It is a cacophony of 
voices asking for different things. Even at a single customer, we need to balance 
the needs of technical decision makers, end users, system operators, and financial 
decision makers. All of these actors weigh different attributes differently, and they 
change their weighting as they acquire more experience using the product. We also 
need to understand the needs of distributors, regulators, manufacturing, and field 
service. If we focus only on the user, we could miss what Dean calls the “nonfunc-
tional requirements.” 
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And this problem is dynamic, not static. In the course of our development effort, the 
context constantly changes—competitors introduce new products and customer 
needs evolve. If it is not feasible to develop valid requirements before we begin 
design, what is our alternative? In my opinion, we should start with the belief that 
even the best requirements will contain major errors, and that these errors grow 
exponentially with time. This shifts our focus. Instead of believing that we are hear-
ing a high-fidelity signal coming from the customer, we need to recognize that it is 
a noisy, low-fidelity signal—a signal that must be continually checked for errors. 
Rather than using heavy front-end investment to create perfect requirements, we 
invest in creating processes and infrastructure that can rapidly detect and correct 
poor fits between our solution and the customer’s evolving needs. 

What better test for this alternative approach than the development of large sys-
tems? Many of the methods that work superbly on small projects break down on 
large ones. For example, in small systems, costs and benefits are typically local. Sys-
tem performance does not suffer when a team makes locally optimal decisions. This 
is not true for large systems where we must deal with economic effects that are dis-
persed physically, temporally, and organizationally. 

We need better approaches to understanding and managing software requirements, 
and Dean provides them in this book. He draws ideas from three very useful intel-
lectual pools: classical management practices, agile methods, and lean product 
development. By combining the strengths of these three approaches, he has pro-
duced something that works better than any one approach in isolation. 

First, although it might be unfashionable to say this, classic management practices 
still offer us some very useful methods. Not all of our predecessors were stupid dolts, 
incapable of recognizing a working solution. For decades I have seen relatively sim-
ple concepts like technology and product roadmaps producing great results. They 
ensure that work on technology begins early enough to keep it off the critical path. 
They create strong logical links between technology efforts and the programs that 
they serve. We don’t need to blindly accept all traditional practices, but we’d be fool-
ish to discard everything our predecessors already learned. Dean shows you how to 
apply some of these great ideas at the program and portfolio level. 

Second, the agile community has developed a very powerful set of ideas that has 
already produced impressive results. These methods have grown rapidly for a very 
good reason—they work. Agile decomposes the large batches of the waterfall model 
into a series of time-boxed iterations. These smaller batches dramatically accelerate 
feedback, producing enormous benefits. 
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Since much of agile’s success has occurred in smaller projects, it is natural to ask 
whether it is equally useful in large systems. While I deeply respect the value of 
agile methods, I think Dean is correct in recognizing that these methods must be 
extended to meet the needs of large system development. It is quite risky to assume 
that large system architectures will naturally emerge and that any shortcomings can 
be refactored away. For example, a naval warship is designed for a 30-year operating 
life. Good naval architects anticipate evolving threats, emerging technologies, and 
changing missions. We do not create such systems by letting architecture “emerge.” 
Once we recognize the unique challenge of managing at the system level, we can 
start investing in the organizational infrastructure needed to meet this challenge. 
Dean shows you how to do this with agile method extensions such as architectural 
runways.

Dean also draws upon the ideas of what I call “second-generation lean product 
development.” Many of the initial attempts to use lean in product development 
focused on ideas such as standardization of work and variability reduction. They 
lacked agile’s intrinsic appreciation that developing great new solutions requires 
learning to thrive in the presence of uncertainty. These lean product development 
methods have now evolved, and the results are impressive. For example, today’s 
“kanban” approaches are limiting WIP, accelerating feedback, and making flow vis-
ible to all participants. You can see the influence of these ideas on Dean’s approaches 
at the program and portfolio levels. Dean has also recognized the importance of the 
new emphasis on economics. This emphasis helps us make better decisions and it 
enables us to explain our choices to management in terms they readily understand. 

As you read this book, I suggest paying attention to several things. First, try to under-
stand the reasons why certain of these approaches work, not just what they are. If 
you understand why things work, then you can more easily adapt them to your own 
unique context. Second, treat these ideas as a portfolio of useful patterns rather than 
a rigid set of practices that must be adopted as a group. This will reduce the batch 
size of your adoption process, produce less resistance, and provide faster results. 
Finally, as you use these ideas, strive for balance. You will have a natural tendency to 
prefer certain ideas—they address issues you feel are important, and they feel com-
fortable. You may have given other areas little attention for a long time. Often the 
areas that have received little attention hold great untapped opportunity. 

—Don Reinertsen 
Author of The Principles of Product Development Flow: 

Second Generation Lean Product Development
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Preface

Introduction to the Book

In the past decade, the movement to lighter-weight and increasingly agile meth-
ods has been the most significant change to affect the software enterprise since the 
advent of the waterfall model in the 1970s. Originated by a variety of thought and 
practice leaders and proven in real-world, successful experiments, the methods 
have proven themselves to deliver outstanding benefits on the “big four” measures: 
productivity, quality, morale, and time to market. 

In the past five years, the methods spread virally. Within the larger enterprise,  
the initiatives usually started out with individual teams adopting some or all of the 
practices espoused by the various methods, primarily XP, Scrum, Lean, Kanban 
(later), and various combinations and variants. 

However, as the methods spread to the enterprise level, a number of extensions to 
the basic agile methods were necessary to address the larger process, organizational, 
application scope, and governance challenges of the larger enterprise. 

Not the least of these is the challenge of agile requirements, which is the necessity to 
scale the basic, lightweight practices of team agile—product backlogs, user stories, 
and the like—to the needs of the enterprise’s Program and Portfolio levels. For exam-
ple, agile development practices introduced, adopted, and extended the XP-originated 
“user story” as the primary currency for expressing application requirements. The 
just-in-time application of the user story provided a much leaner approach and 
helped eliminate many waterfall-like practices, such as imposing overly detailed and 
constraining requirements specifications on development teams.

However, as powerful as this innovative concept is, the user story by itself does not 
provide an adequate, nor sufficiently lean, construct for reasoning about investment, 
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system-level requirements, and acceptance testing across the larger software enter-
prise’s project Team, Program, and Portfolio organizational levels. That is the pur-
pose of this book.

This book describes an agile requirements artifact model, corresponding practices, 
suggested roles, and an organizational model that provides a quintessentially lean 
and agile requirements subset for the agile project teams that write and test the code. 
Yet this model also scales to the full needs of the largest software enterprise.

Why Write This Book?
In 2000, after about 25 years of managing software development as an entrepre-
neur and executive, along with my coauthor Don Widrig, I published my first book: 
Managing Software Requirements: A Unified Approach. In 2003, we updated the book 
with a second edition: Managing Software Requirements: A Use Case Approach. These 
are considered to be definitive texts on managing application requirements—a lot 
of copies were sold, and the books have been translated into five languages. More 
importantly, many individuals, teams, and companies told me that these works 
helped them achieve better software outcomes. That was always the goal.

In the following years, I turned my attention to agile development methods. I con-
tinue to be more and more impressed with the power of these innovative methods, 
the quality and productivity results they delivered, and the way in which they reen-
ergized and empowered software teams. Though the methods were developed and 
proven in small team environments, the challenges of building software at scale is 
a more fascinating puzzle—part science, part art, part engineering, part organiza-
tional psychology. As a result, I became engaged in helping a number of larger enter-
prises in adopting and adapting these methods in projects affecting hundreds—and 
then thousands—of software practitioners. Fortunately, with some extensions, the 
methods did scale to the challenge. Based on these experiences, in 2007 I published 
Scaling Software Agility: Best Practices for Large Enterprises, a book designed to help 
larger enterprises achieve the benefits of agile development. 

Scaling Software Agility took a broad view of software methods and didn’t focus 
much on software requirements. Even though the management of requirements 
continued to be a struggle for many agile teams, there were bigger organizational 
and cultural challenges, as well as a number of emerging agile technical practices, 
that needed to be addressed. 

In the past couple of years, the movement to lean thinking in software development 
captured my interest, in part because I have some background in lean manufacturing 
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from earlier days. Generally, lean provides a comprehensive, deeply principled, rig-
orous, and mathematical framework for reasoning about product development 
economics and the increasingly important subset, software development. 

So, my thinking, along with that of many others, evolved further. Many of us started 
to see agile development, especially agile at scale, as a “software instance of lean.” 
In addition, lean scales beyond the software development labs and provides tools 
to address changes in other departments such as deployment, IT, distribution, and 
program and portfolio management. Simply put, lean provides a broader frame-
work for organizational change, and it helps us address these larger challenges. I’m 
a big fan of lean thinking. 

At its core, lean focuses on the value stream and provides philosophies, principles, 
and tools to continually decrease time to market, enhance value delivery, and elimi-
nate waste and delays. As enterprises head down the lean path, it is again beneficial 
to focus on optimizing the understanding and implementation of software require-
ments, because they are the unique carriers—or at least the best proxy—for that 
value stream.

Lean thinking brings us full circle. Once again, it is useful to focus on requirements 
management practices in our agile—and increasingly lean—software development 
paradigm. That’s why I wrote this book.

My hope is that the book will help the individual software practitioner, project 
team, program, and enterprise adopt and adapt agile and lean practices, deliver bet-
ter solutions to their users and stakeholders, and thereby achieve the personal and 
business benefits that success engenders. After all, you can never be to too rich or 
too lean.

How to Read This Book

With this book, I’m hoping to tell a somewhat complex story—how to address 
the challenge of managing software requirements in an agile enterprise that may 
employ just a few developers building a single product to those employing hun-
dreds or even thousands of software practitioners building systems of previously 
unseen complexity—in a practical, straightforward, and understandable manner.

To do so, the book is written in four parts, the last three of which are dedicated to 
describing specific agile requirement practices at increasing levels of sophistication 
and scale. 
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Part I, Overview: The Big Picture of Agile Requirements in the 
Enterprise 

In Part I, we describe an overall process model intended to communicate the “Big 
Picture” of how to apply agile requirements practices at the project Team, Program, 
and Portfolio levels. 

We provide a brief history of software methods, describing the evolution from water-
fall through iterative and incremental development, to agile and lean. We describe 
the big picture of agile requirements—an organization, requirements, and process 
model that works for the team and yet scales to the full needs of the enterprise.

We then provide an overview of the model and illustrate how it can be applied 
in agile requirements for the team, agile requirements for the program, and agile 
requirements for the portfolio. 

If you need an introduction and orientation to the concepts, terms, and general prac-
tices of managing agile requirements, this part is intended to stand alone.

Part II, Agile Requirements for the Team

In Part II, we describe a simple yet comprehensive model for managing require-
ments for agile project teams. This portion of the model is designed to be as light-
weight as possible, quintessentially agile, and to not encumber the agile teams with 
any unnecessary complexity and overhead. We introduce the agile team, user sto-
ries, stakeholders, users and user personas, iterating, agile estimating and velocity, 
acceptance testing, the role of the product owner, and, finally, methods for discover-
ing requirements. 

If your teams are using agile, this comprehensive, explanatory guide to applying agile 
requirements is intended for you.

Part III, Agile Requirements for the Program

Part III is intended for those involved in building more complex systems that often 
require the cooperation of a number of agile teams. We expand the picture and 
introduce additional requirements artifacts, roles, organizational constructs, and 
effective practices designed for this purpose. We describe Vision, product and system 
features, the product Roadmap, the role of the product manager, the Agile Release 
Train, release planning, nonfunctional requirements, techniques for requirements 
analysis, and use cases.
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If you are a developer, tester, manager, team lead, QA, architect, project or program 
manager, or development director/executive involved in building systems of this scope, 
this part is intended for you.

Part IV, Agile Requirements for the Portfolio

In Part IV, we describe the final, Portfolio level, of requirements practices. This level 
is intended to guide enterprises building ever-larger systems of systems, applica-
tion suites, and product portfolios. These often require the coordination and 
cooperation of large numbers (20 or 50 or 100 or more) of agile project teams. We 
introduce additional requirements artifacts, roles, organizational constructs, and 
practices designed for this purpose. We describe the role that larger-scale, inten-
tional, system-level architectures play in agile development. We introduce a kanban 
system for reasoning about how to evolve and, when necessary, rearchitect, such sys-
tems in an agile manner. We also describe some of the legacy thinking in portfolio 
and project management and give some suggestions as to what to do about it. We 
conclude with a chapter describing investment themes, epics, and, finally, one of the 
ultimate objectives—agile portfolio planning.

If you are a program manager, development director, system architect, executive, or 
portfolio manager or planner who is involved in managing investments for a portfolio 
of products, systems, software services, or IT applications, this part is intended for you.
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Chapter 2

The Big Picture of Agile Requirements

This would all be a lot easier to understand if you could just draw me a picture.

—Anonymous senior executive

Effectively implementing a new set of lean and agile requirements principles and 
practices in a project team, program, or enterprise is no small feat. Even the lan-

guage is different and seemingly odd (user stories, sprints, velocity, story points, epics, 
backlog?). In addition, further “leaning” the organization often requires eliminating 
or reducing requirements specifications, design specifications, stage-gated governance 
models (with incumbent requirements reviews), sign-offs (with incumbent delays . . . ), 
implementing work-in-process limits (which may seem counterproductive to those 
who measure “utilization”), and so on. So, there will likely be many challenges. 

Even for the fully committed, it can take six months to a year to introduce and imple-
ment the basic practices and even more time to achieve the multiples of produc-
tivity and quality results that pay the ultimate dividends in customer satisfaction, 
revenue, or market share. To achieve these benefits, we must change many things, 
including virtually all of our former requirements management practices. However, 
many of the existing required artifacts, milestones, and so on, serve as safeguards to 
“help” avoid the types of project problems that software has often experienced. So, 
we have a dilemma—how do we practice this new high-wire act without a safety 
net, when the safety net itself is a big part of the problem?

Fortunately, we are now at the point in time where a number of organizations have 
made the transition before us and some common patterns for lean and agile soft-
ware process success have started to emerge. In our discussions with teams, manag-
ers, and executives during this transition, we often struggled to find a language for 
discussion, a set of abstractions, and an appropriate graphic that we could use to 
quickly describe “what your enterprise would look like and how it would work after 
such an agile transformation.”

To do so, we need to be able to describe the new software development and delivery 
process mechanisms, the new teams and organizational units, and some of the roles 
key individuals play in the new agile paradigm. In addition, any such Big Picture 
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should highlight the requirements practices of the model, because those artifacts 
are the proxy for the value stream.

Eventually, and with help from others, we arrived at something that worked reason-
ably well for its purpose.1 We call it the Agile Enterprise Big Picture, and it appears in 
Figure 2–1.

The Big Picture Explained

In this chapter, we’ll explain the Big Picture in a summary format intended to pro-
vide the reader with a quick gestalt of this new, agile, leaner, and yet fully scalable 
software requirements model.
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Figure 2–1  The Agile Enterprise Big Picture

1.	 Special thanks to Matthew Balchin and others at Symbian Software, Ltd., and Juha-Markus 
Aalto of Nokia Corporation. 
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In the remaining chapters of Part I of this book, we’ll describe the basic big-picture 
requirements management practices for the individual Team, Program, and Portfolio 
levels. In Parts II, III, and IV, we’ll further elaborate on the requirements manage-
ment artifacts, roles, and activities at a level of detail suitable for implementation 
and action. 

Big-Picture Highlights

Because this picture serves as both the organizational and process model for our agile 
requirements practices, we’ll have time throughout this book to explore its many 
nuances. However, from an overview perspective, the following highlights emerge.

The Team Level 

At the Team level, agile teams of 7±2 team members define, build, and test user sto-
ries in a series of iterations and releases. In the smallest enterprise, there may be only 
a few such teams. In larger enterprises, groups, or pods, of agile teams work together 
to support building up larger functionality into complete products, features, archi-
tectural components, subsystems, and so on. The responsibility for managing the 
backlog of user stories and other things the team needs to do belongs to the team’s 
product owner.

The Program Level 

At the Program level, the development of larger-scale systems functionality is 
accomplished via multiple teams in a synchronized Agile Release Train (ART). The 
ART is a standard cadence of timeboxed iterations and milestones that are date- and 
quality-fixed, but scope is variable (no iron triangle). The ART produces releases or 
potentially shippable increments (PSIs) at frequent, typically fixed, 60- to 120-day 
time boundaries. These evaluable increments can be released to the customer, or 
not, depending on the customer’s capacity to absorb new product as well as external 
events that can drive timing.

We’ll use the generic product manager label as the title for those who are responsible 
for defining the features of the system at this level, though we’ll also see that many 
other titles can be applied to this role.

The Portfolio Level 

At the Portfolio level, we’ll talk about a mix of investment themes that are used to 
drive the investment priorities for the enterprise. We’ll use that construct to assure 
that the work being performed is the work necessary for the enterprise to deliver on 
its chosen business strategy. Investment themes drive the portfolio vision, which 
will be expressed in as a series of larger, epic-scale initiatives, which will be allocated 
to various release trains over time.
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In the rest of this chapter, we’ll walk through the various elements of the Big Picture 
to describe how it works. While we’ll highlight the requirements value delivery stream, 
we’ll also expose the rest of the picture including the roles, teams, and processes that are 
necessary to deliver value. In this way, we’ll provide a systemic view of our lean and agile 
requirements process that works for teams and yet scales to the full needs of the enterprise.

Big Picture: Team Level

Figure 2–2 summarizes the Team level of the Big Picture.

The Agile Team

The “front line” of software development consists of some number of 
agile teams that implement and test code and collaborate on building 
the larger system. It’s appropriate to start with the team, because in agile, 
the team is the thing, because they write and test all the code that deliv-
ers value to the end user. Since it’s an agile team, each has a maximum 
of seven to nine members and includes all the roles necessary to define/

build/test2 the software for their feature or component. The roles include a Scrum/
Agile Master, product owner, and a small team of dedicated developers, testers and 
(ideally) test automation experts, and maybe a tech lead. 

In its daily work, the team is supported by architects, external QA resources, docu-
mentation specialists, database specialists, source code management (SCM)/build/
infrastructure support personnel, internal IT, and whoever else it takes such that the 
core team is fully capable of defining, developing, testing, and delivering working and 
tested software into the system baseline.
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Figure 2–2  Team level of the Big Picture

2.	 See Chapter 6 of Scaling Software Agility: Best Practices for Large Enterprises [Leffingwell 2007].
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Since testing software is integral to value delivery (teams get no credit for untested 
code), testers are integral to the team. Often the testers are logically part of the QA 
organization but are physically assigned and dedicated to an agile team. In this 
matrix fashion, their primary allegiance is to the team, but as members of the QA 
organization, they can leverage other QA teammates and managers for skills devel-
opment, automation expertise, and any specialty testing capabilities that may be 
necessary at the system level. In any case, it must be clear that the agile team itself is 
responsible for the quality of their work product and that responsibility cannot be 
delegated (or abrogated!) to any other organization, in or out of house.

Teams are typically organized to deliver software features or components. Most enter-
prises will have a mix of both types—some component teams focused on shared infra-
structure, subsystems, and persistent, service-oriented architectural components and 
some feature teams focused on vertical, user-facing, value-delivery initiatives. Agile 
teams are self-organizing and reorganize when necessary based on the work in the 
program backlog. Over time, the makeup of the teams themselves is more dynamic 
than static—static enough to “norm, storm, and perform”3 for reasonable periods of 
time and dynamic enough to flex to the organization’s changing priorities.

Pods of Agile Teams

In addition, within the larger enterprise, there are typically some 
number (three to ten) or so of such teams that cooperate to build 
a larger feature, system, or subsystem (the program domain in 
the Big Picture). Although this isn’t a hard or fast rule, experi-
ence has shown that even for very large systems, the logical par-
titions defined by system or product family architecture tend to 
cause “pods” of developers to be organized around the various 
implementation domains. This implies that perhaps 50 to 100 
people must intensely collaborate on building their “next bigger 
thing” in the hierarchy, which we’ll call a program. As we’ll dis-
cover later, this is also about the maximum size for face-to-face, 
collaborative release planning.

Of course, even that’s an oversimplification for a really large system, 
because there are likely to be a number of such programs, each contributing to the 
portfolio (product portfolio, application suite, systems of system).

3.	 See the Forming–Storming–Norming–Performing model of group development proposed by 
Bruce Tuckman at http://en.wikipedia.org/wiki/Forming-storming-norming-performing.
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Roles in the Agile Team

Product Owner

As we have described, Scrum is the dominant agile method in use, and the product 
owner role is uniquely, if arbitrarily, defined therein. In Scrum, the product owner 
is responsible for determining and prioritizing user requirements and maintain-
ing the product backlog. Moreover, even if a team is not using Scrum, it has been 
our experience that implementing the product owner role—as largely defined by 

Scrum—can deliver a real breakthrough in simplifying the team’s work and organizing 
the entire team around a single, prioritized backlog.

But the product owner’s responsibilities don’t end there. In support of Agile 
Manifesto principle #4—Business people and developers must work together daily 
throughout the project—the product owner is ideally co-located with the team and 
participates daily with the team and its activities.

Scrum/Agile Master

For teams implementing Scrum, the Scrum Master is an important (though 
sometimes transitional4) role. The Scrum Master is the team-based man-
agement/leadership proxy whose role is to assist the team in its transition 
to the new method and continuously facilitate a team dynamic intended to 
maximize performance of the team.

In teams that do not adopt Scrum, a comparable leadership role typically falls to a 
team lead, an internal or external coach, or the team’s line manager. As their skills 
develop, many of these Agile Masters become future leaders by illustrating their abil-
ity to deliver user value and by driving continuously improving agile practices.

Developers and Testers

The rest of the core team includes the developers and testers who write and test 
the code. Since this is an agile team, the team size is typically limited to about 
three to four developers plus one to two testers, who are (ideally) co-located and 
work together to define, build, test, and deliver stories into the code baseline.

Iterations

In agile development, new functionality is built in short timeboxed events called 
iterations (sprints in Scrum). In larger enterprises, agile teams typically adopt a 

4.	 As the teams master the agile process, the role becomes less critical. Some very agile teams, 
even those who have adopted Scrum, no longer have a Scrum Master per se. Everybody knows 
the rules, and they are self-enforced.
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standard iteration length and share start and stop boundaries so that code maturity 
is comparable at each iteration-boundary system integration point.

Each iteration represents a valuable increment of new functionality, accomplished 
via a constantly repeating standard pattern: plan the iteration, build and test stories, 
demonstrate the new functionality to stakeholders, inspect and adapt, repeat. 

The iteration is the “heartbeat of agility” for the team, and teams are almost entirely 
focused on developing new functionality in these short timeboxes. In the Big Pic-
ture, the iteration lengths for all teams are the same since that is the simplest organi-
zational and management model. Although there is no mandated length, most have 
converged on a recommended length of two weeks.

Number of Iterations per “Release”

A series of iterations is used to aggregate larger, system-wide, functionality for 
release (or potential release) to the external users. In the Big Picture, we’ve illus-
trated four development iterations (indicated by a full iteration backlog) followed by 
one hardening (or stabilization) iteration (indicated by an empty backlog) prior to 
each release increment.

This pattern is arbitrary, and there is no fixed rule for how many times a team iter-
ates prior to a potentially shippable increment (PSI). Many teams apply this model 
with four to five development iterations and one hardening iteration per release, 
creating a cadence of a potentially shippable increment about every 90 days. This is 
a fairly natural production rhythm that corresponds to a reasonable external release 
frequency for customers, and it also provides a nice quarterly planning cadence for 
the enterprise itself.

In any case, the length and number of iterations per release increment, and the decision 
as to when to actually release an increment, are left to the judgment of the enterprise. 

User Stories and the Team Backlog

User stories (stories for short) are the general-purpose agile 
substitute for what traditionally has been referred to as 
software requirements (the stuff in the middle of the iron 
triangle of Chapter 1).

Originally developed within the constructs of XP, user sto-
ries are now endemic to agile development in general and are 
typically taught in Scrum, XP, and most other agile imple-
mentations. In agile, user stories are the primary objects that 
carry the customer’s requirements through the value stream—
from needs analysis though code and implementation.
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As opposed to requirements (which by common definition represent something the 
system must do to fulfill a business need or contractual obligation), user stories are 
brief statements of intent that describe something the system needs to do for some 
user. As commonly taught, the user story often takes a standard user-voice form of 
the following:

As a <user role>, I can <activity> so that <business value>.

With this form, the team learns to focus on both the user’s role and the business ben-
efit that the new functionality provides. This construct is integral to agile’s intense 
focus on value delivery.

Team Backlog

The team’s backlog (typically called a project or product backlog) consists of all the 
user stories the team has identified for implementation. Each team has its own back-
log, which is maintained and prioritized by the team’s product owner. Although 
there may be other things in the team’s backlog as well—defects, refactors, infra-
structure work, and so on—the yet-to-be-implemented user stories are the primary 
focus of the team.

Identifying, maintaining, prioritizing, scheduling, elaborating, 
implementing, testing, and accepting user stories is the primary 
requirements management process at work in the agile enterprise.

Therefore, we will spend much of the rest of this book further describing processes 
and practices around user stories.

Tasks

For more detailed tracking of the activities involved in delivering stories, teams typ-
ically decompose stories into tasks that must be accomplished by individual team 
members in order to complete the story. Indeed, some agile training uses the task 
object as the basic estimating and tracking metaphor.

However, the iteration tracking focus should be at the story level, because this keeps 
the team focused on business value, rather than individual tasks. Tasks provide a 
micro–work breakdown structure that teams can use (or not) to facilitate coordi-
nating, estimating, tracking status, and assigning individual responsibilities to help 
assure completion of the stories—and thereby—the iteration.

Big Picture: Program Level

Figure 2–3 summarizes the Program level of the Big Picture.
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Figure 2–3  The Program level of the Big Picture

Here, we find additional organizational constructs, roles, processes, and require-
ments artifacts suited for building larger-scale systems, applications, products, and 
suites of products.

Releases and Potentially Shippable Increments

Although the goal of every iteration is to pro-
duce a shippable increment of software, teams 
(especially larger-scale enterprise teams) find 
that it may simply not be practical or appropri-
ate to ship an increment at each iteration bound-
ary. For example, during the course of a series of 
iterations, the team may accumulate some tech-
nical debt that needs to be addressed before ship-
ment. Technical debt may include things such as 
defects to be resolved, minor code refactoring, 

deferred system-wide testing for performance, reliability, or standards compliance, 
or finalization of user documentation. Hardening iterations (indicated by an itera-
tion with an empty backlog) are included in the Big Picture to provide the time 
necessary for these additional activities.

Moreover, there are legitimate business reasons why not every increment should be 
shipped to the customer. These include the following:

Potential interference with a customer’s licensing and service agreements��
Potential for customer overhead and business disruption for installation, ��
user training, and so on
Potential for disrupting customer’s existing operations with minor regres-��
sions or defects
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For these and other reasons, most programs aggregate a series of iterations into a 
potentially shippable increment, which can be released, or not, based on the then-
current business context.

Vision, Features, and the Program Backlog

Within the enterprise, the product manage-
ment (or possibly program management 
or business analyst) function is primar-
ily responsible for maintaining the Vision 
of the products, systems, or application in 
their domain of influence.

The Vision answers the big questions for 
the system, application, or product, includ-
ing the following.

What problem does this particular solution solve?��
What features and benefits does it provide?��
For whom does it provide it?��
What performance, reliability, and so on, does it deliver?��
What platforms, standards, applications, and so on, will it support?��

The Primary Content of the Vision Is a Set of Features

A Vision may be maintained in a document, in a backlog repository, or even in a 
simple briefing or presentation form. But no matter the form, the prime content 
of the Vision document is a prioritized set of features intended to deliver benefits to 
the users.

Nonfunctional Requirements

In addition, the Vision must also contain the various nonfunctional requirements, 
such as reliability, accuracy, performance, quality, compatibility standards, and so 
on, that are necessary for the system to meet its objectives.

Undelivered Features Fill the Program Backlog

In a manner similar to the team’s backlog, which contains primarily stories, the pro-
gram (or release) backlog contains the set of desired and prioritized features that 
have not yet been implemented. The program backlog may or may not also contain 
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estimates for the features. However, any estimates at this scale are coarse-grained 
and imprecise, which prevents any temptation to over-invest in inventory of too-
early feature elaboration and estimation. 

Release Planning

In accordance with emerging agile enterprise practices, each release increment time-
box has a kickoff release planning session that the enterprise uses to set the company 
context and to align the teams to common business objectives for the release. The 
input to the release planning session is the current Vision, along with a set of objec-
tives and a desired, prioritized feature set for the upcoming release.

By breaking the features into stories and applying the agreed-to iteration cadence 
and knowledge of their velocity, the teams plan the release, typically in a group set-
ting. During this process, the teams work out their interdependencies and design 
the release by laying stories into the iterations available within the PSI timebox. 
They also negotiate scope trade-offs with product management, using the physics 
of their known velocity and estimates for the new stories to determine what can 
and can’t be done. In addition to the plan itself, another primary result of this 
process is a commitment to a set of release objectives, along with a prioritized 
feature set.

Thereafter, the teams endeavor to meet their commitment by satisfying the primary 
objectives of the release, even if it turns out that not every feature makes the deadline.

The Roadmap

The results of release planning are used 
to update the (product or solution) Road-
map, which provides a sense of how the 
enterprise hopes to deliver increasing 
value over time.

The Roadmap consists of a series of 
planned release dates, each of which has 
a theme, a set of objectives, and a priori-
tized feature set. The “next” release on 
the Roadmap is committed to the enter-
prise, based on the work done in the most 
recent release planning session. Releases 
beyond the next one are not committed, 
and their scope is fuzzy at best.

November

Release 1 Release 2 Release 3

• First Distributed Game

August

Release 2

• First Two Games Available

Release 2

May

Release 1

• Feasibility Proof on Mobile 
   Platform

An Updated, Themed, and Prioritized “Plan of Intent”

• Brickyard Port Started
 (Stretch Goal to Complete)
• Distributed Platform
 Demo
• All GUIs for Both Games
 Demonstrable
• New Features (See
 Prioritized List)
• Demo of Beemer Game

• Road Rage Ported (part I)
Features

• Beemer Game in Alpha

• Road Rage Completed
Features

• (Single User)
• Brickyard Ported (Single
 User)
• Road Rage Multiuser
 Demonstrable
• First Multiuser Game
 Feature for Road Rage
• New Features (See
 Prioritized List)

Features
• Multiuser Road Rage First
 Release
• Brickyard Ported
   Multiuser Demo
• New Features for Both
 Games (See Prioritized
 List)
• Beemer Game to E3
 Tradeshow?



42	C hapter 2   T he Big Picture of Agile Requirements

The Roadmap, then, represents the enterprise’s current “plan of intent” for the next 
and future releases. However, it is subject to change—as development facts, business 
priorities, and customers need change—and therefore release plans beyond the next 
release should not generally be used to create any external commitments.

Product Management

In agile, there can be a challenge with the apparently overlapping 
responsibilities of the product manager and the product owner. 
For example, in Scrum, the product owner is responsible for the 
following:

representing the interests of everyone with a stake in the 
resulting project . . . achieves initial and ongoing funding 
by creating the initial requirements, return on investment 
objectives, and release plans.5

In some smaller organizational contexts, that definition works adequately, and 
one or two product owners are all that are needed to define and prioritize software 
requirements. However, in the larger software enterprise, the set of responsibilities 
imbued in the Scrum product owner is more typically a much broader set of respon-
sibilities shared between team and technology-based product owners and market or 
program-based product managers, who carry out their traditional responsibilities of 
both defining the product and presenting the solution to the marketplace.

However, we also note that the title of the person who plays this role may vary by 
industry segment, as shown in Table 2–1.

Responsibilities of the Agile Product Manager in the Enterprise

No matter the title (we’ll continue to use product manager generically), when an 
agile transition is afoot, the person playing that role must fulfill the following pri-
mary responsibilities:

Own the Vision and program (release) backlog��
Manage release content��
Maintain the product Roadmap��
Build an effective product manager/product owner team��

5.	 [Schwaber 2007]
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Table 2–1  Product Manager Role May Have Different Titles

Industry Segment Common Title for the Role

Information systems/information technology 
(IS/IT)

Business owner, business analyst, project or program 
manager

Embedded systems Product, project, or program manager

Independent software vendor Product manager

Big-Picture Elements: Portfolio Level

Figure 2–4 summarizes the Portfolio level of the Big Picture.

At the top of the Big Picture, we find the portfolio management function, which 
includes those individuals, teams, and organizations dedicated to managing the 
investments of the enterprise in accordance with the enterprise business strategy. 
We also find two new artifact types, investment themes and epics, which together cre-
ate the portfolio vision. 

Investment Themes

A set of investment themes establishes the relative investment objectives for 
the enterprise or business unit. These themes drive the vision for all pro-
grams, and new epics are derived from these themes. The derivation of these 
decisions is the responsibility of the portfolio managers, either line-of-busi-
ness owners, product councils, or others who have fiduciary responsibilities 
to their stakeholders. 

The result of the decision process is a set of themes—key product value proposi-
tions that provide marketplace differentiation and competitive advantage. Themes have 
a much longer life span than epics, and a set of themes may be largely unchanged for 
up to a year or more.

Epics and the Portfolio Backlog

Epics represent the highest-level expression of a customer need. Epics are develop-
ment initiatives that are intended to deliver the value of an investment theme and 
are identified, prioritized, estimated, and maintained in the portfolio backlog. Prior 
to release planning, epics are decomposed into specific features, which in turn are 
converted into more detailed stories for implementation.
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Epics Span
Releases

Architecture
Evolves

Continuously
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Portfolio Vision
Epic 1

Epic 3
Architectural Runway

Epic 4

Epic 2

doc

doc

Figure 2–4   Portfolio level of the Big Picture

Epics may be expressed in bullet form, in user-voice story form, as a sentence 
or two, in video, in a prototype, or indeed in any form of expression suitable to 
express the intent of the product initiative. With epics, clearly, the objective is 
strategic intent, not specificity. In other words, the epic need only be described in 
detail sufficient to initiate a further discussion about what types of features an epic 
implies.

Architectural Runway

In Chapter 1, we described how design 
(architecture) and requirements are sim-
ply two sides of the same coin—the “what” 
and the “how.” In this book, we’ll have time 

to explore this topic in more detail, and we’ll provide some discriminators that 
help us think about the differences in architecture and requirements, as well as the 
commonalities. However, even though this book focuses on requirements, we can’t 
ignore architecture, because experience tells us that teams that build some amount 
of architectural runway, which is the ability to implement new features without 
excessive refactoring, will eventually emerge as the winners in the marketplace. So, 
any effective treatment of agile requirements must address the topic of architecture 
as well.

Therefore, system architecture is a first-class citizen of the Big Picture and is a rou-
tine portfolio investment consideration for the agile enterprise.

Epic 3
Architectural Runway

Epic 4
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Summary

In this chapter, we introduced the Big Picture as the basic requirements artifact, 
process, and organizational model for managing software requirements in a lean 
and agile manner. For agile teams, the model uses the minimum number of arti-
facts, roles, and practices that are necessary for a team to be effective. However, the 
model expands as needed to the Program and Portfolio levels, in each case provid-
ing the leanest possible approach to managing software requirements, even as teams 
of teams build larger and larger systems of systems. In the next few chapters, we’ll 
elaborate on each of these levels.
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testing, 188–189
for user personas, 127–129
voice, 103–104, 257

User Stories Applied (Cohn), 100, 103
User value

in architectural epics, 384
in backlog ratings, 417
backlogs for, 210
in Cost of Delay, 266–267

User voice
features, 257
user stories, 103–104

Utilization
in legacy mind-sets, 434–435
in performance, 345

V
Validating requirements, product managers 

for, 286
Value

in architectural epics, 384
in backlog ratings, 417, 462
in Cost of Delay, 266–267
of estimates, 137
in INVEST model, 107–108
in prioritizing features, 269–271
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in release objectives, 331–332
in user stories, 104

Value chain, 23
Value/effort ROI proxy, 262
Value stream in iteration, 216–217
Variability

lean software, 26
product development flow, 306
and queue size, 175

Variable features in Roadmap, 272
Velocity, 136

establishing, 146–149
feature estimates, 257
increasing, 148
normalizing, 152
schedule and cost connections, 148

Velocity-based commitment in iteration, 
160–162

Views in UML, 393–394
Vision

communicating, 289
data sheet approach, 253–254
feature backlog with briefing approach, 255
nonfunctional requirements, 255
overview, 251–252
portfolio, 459
preliminary press release approach, 254
product managers for, 288–290
program level, 40, 64
release planning, 324
teams, 74–75
vision documents, 252–253

Vision document template, 475–477
Assumptions and Dependencies 

section, 481
Documentation Requirements section, 483
Exemplary Use Cases section, 482
Glossary section, 483
Introduction section, 477
Nonfunctional Requirements section, 482
Product Features section, 481

Stakeholders section, 480–481
User Description section, 478–479

Vodde, Bas, 19, 21–22, 67–68
Vogels, Werner, 392
Voice

features, 257
user stories, 103–104

Volume of story points, 138
Von Neumann, John, 355

W
Wake, Bill

INVEST acronym, 105
SMART acronym, 162–163
on user stories, 101

Warm-up materials in requirements 
workshops, 230

Waterfall model, 5–6
current use, 8–9
problems, 6
requirements, 6–8

Weighted Shortest Job First (WSJF) 
prioritization

backlog ratings, 417
in Cost of Delay, 265–267
epic ratings, 462
for features, 290
for requirements, 285

Weinberg, Gerald, 238
White-box testing, 351
Widget engineering mind-set, 433–435
Widrig, Don, 227

acceptance tests, 183
Managing Software Requirements: A Use 

Case Approach, 255, 340, 369
Wiegers, Karl E., 262
Wikis, 348
Wireframe models, 242–243
Work breakdown structure in investment 

funding, 439–440
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Work-in-process (WIP)
backlog ratings, 418, 463
business epics, 461
funnel queues, 415
in kanban system, 179, 464
lean software, 26
product development flow, 306–307
rearchitecting with flow, 420, 426

Work items, 56
Workflow

kanban system, 179–180
user story splitting pattern, 112

Working software in systems architecture, 386

Workshops, requirements, 228–232
Write-the-test-first approach, 111
Writing Effective Use Cases (Cockburn), 369
WSJF. See Weighted Shortest Job First (WSJF) 

prioritization

X
XML Unit testing, 198
XP (Extreme Programming), 14–15, 100

Z
Zamora, Mauricio, 223, 390


	Contents
	Foreword
	Preface
	Chapter 2 The Big Picture of Agile Requirements
	The Big Picture Explained
	Big Picture: Team Level
	Big Picture: Program Level
	Big-Picture Elements: Portfolio Level
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z




