

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no ex-
pressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Keith, Clinton.
 Agile game development with Scrum / Clinton Keith.
 p. cm.
 Includes index.
 ISBN 0-321-61852-1 (pbk. : alk. paper) 1. Computer games—Programming. 2. Agile soft-
ware development. 3. Scrum (Computer software development) I. Title.
 QA76.76.C672K45 2010
 005.1—dc22
 2010006513

Copyright © 2010 Clinton Keith

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions,
write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-61852-8
ISBN-10: 0-321-61852-1
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
 Indiana.
First printing, May 2010

xvii

Foreword

the insight that Scrum (indeed, agile software development in general) and
game development were a near-perfect match was no surprise to Clinton Keith.
As the CTO of his studio, he was a pioneer in the pairing of Scrum and game
development. Though some were skeptical, Clint saw the possibilities, and as
a result, he not only created the first game developed using Scrum but also
helped his teams put the fun back into game development.

And why shouldn’t game development be fun as well as profitable? It’s true
that the game industry is well known for aggressive deadlines and that teams
are working with ambiguous requirements in a very fluid marketplace, but that
is exactly the kind of environment where Scrum can help the most. Because
Scrum is iterative and incremental and forces a team to put the game into a
playable state at least every two to four weeks, the team members can see new
features and scenarios develop right before their eyes.

In Agile Game Development with Scrum, Clint shares his experience and
insights with us. He tells us everything we need to know to successfully use
Scrum in the challenging field of game development. In doing so, he provides
an introduction to agile and Scrum and tells us how they can help manage the
increasing complexity facing most game development efforts. He explains how
something as large and integrated as “AAA” console games can be developed
incrementally. Along the way, Clint offers invaluable guidance on getting all
of the specialists who are necessary on a game project to work together in an
agile manner. He even delves into how to use Scrum when working with a
publisher. In providing all of this guidance, Clint doesn’t shy away from the
challenges. Instead, he generously shares his advice so that we can perhaps avoid
some of them.

There is little doubt in my mind that the book you are holding can have
a profound effect on any game project and studio. Once introduced to and
accustomed to Scrum, team members will not want to work any other way.
They will have learned what Clint knew long ago—that Scrum is the best way
to handle the complexity and uncertainty of game development.

— Mike Cohn
Cofounder, Scrum Alliance
and Agile Alliance

xix

Preface

this book was written for game developers who either are using agile meth-
odologies or are curious about what it all means. It condenses much informa-
tion from a number of fields of agile product development and applies it to the
game industry’s unique ecosystem. It’s based on the experiences of dozens of
studios that have shipped games using agile over the past six years.

If you are not in the game industry but curious about it or agile, you should
enjoy this book. Since the book needs to communicate to every discipline,
it doesn’t get bogged down in the specifics of any one of them because, for
example, artists need to understand the challenges and solutions faced by pro-
grammers for cross-discipline teams to work well.

As you can tell from the title, this book focuses on Scrum more than any
other area of agile. Scrum is a discipline-agnostic framework to build an agile
game development process. It doesn’t have any defined art, design, or program-
ming practices. It’s a foundation that allows you and your teams to inspect every
aspect of how you make games and adapt practices to do what works best.

How did agile and game development meet? For me, it started in 2002 at
Sammy Studios. Like many studios, our path to agile came by way of impending
disaster. Sammy Studios was founded in 2002 by a Japanese Pachinko manufac-
turing company. Their goal was to rapidly establish a dominant presence in the
Western game industry. To that end, Sammy Studios was funded and authorized
to do whatever was needed to achieve that goal.

As seasoned project managers, we quickly established a project management
structure that included a license of Microsoft Project Server to help us manage
all the necessary details for our flagship game project called Darkwatch.

The plan for Darkwatch was ambitious. It was meant to rival Halo as the
preeminent first-person console shooter. At the time, we thought that as long
as we had the resources and planning software, little could go wrong that we
couldn’t manage.

It didn’t take long for many things to go wrong. Within a year we were
six months behind schedule and slipping further every day. How was this
happening?

Disciplines were working on separate plans:●● Each discipline had
goals that permitted them to work separately much of the time. For
example, the animation technology was being developed according

Preface xx

to a plan that called for many unique features to be developed before
any were proven. This resulted in the animation programmer working
on limbs that could be severed while the animators were still trying
to make simple transitions work. Correcting these problems required
major overhauls of the schedule on a regular basis.

The build was always broken: ●● It took exceptional effort to get
the latest version of the game working. The Electronic Entertainment
Expo (E3) demos took more than a month of debugging and hacking
to produce a build that was acceptable. Even then, the game had to be
run by a developer who had to frequently reboot the demo machine.

Estimates and schedules were always too optimistic: ●● Every
scheduled item, from small tasks to major milestone deliverables,
seemed to be late. Unanticipated work was either completed on
personal time or put off for the future. This led to many nights and
weekends of overtime work.

Management was constantly “putting out fires” and never ●●

had time to address the larger picture: We managers selected
one of the many problems to fix each week and organized large
meetings that lasted most of a day in an attempt to solve it. Our list of
problems grew faster than our ability to solve them. We never had the
time to look to the future and guide the project.

The list goes on, and the problems continued to grow. Most problems were
caused by our inability to foresee many of the project details necessary to justify
our comprehensive plan’s assumptions beyond even a month. The bottom line
was that our planning methodology was wrong.

 Eventually our Japanese parent company interceded with major staff
changes. The message was clear: Since management was given every possible
resource we wanted, any problems were our own fault, and we were given short
notice to correct them. Not only our jobs but also the existence of the studio
hung in the balance.

It was in these desperate times that I began researching alternative project
management methods. Agile practices such as Scrum and Extreme Program-
ming (XP) were not unknown to us. The original CTO of Sammy had us try
XP, and a project lead was experimenting with some Scrum practices. After
reading a book about Scrum (Schwaber and Beedle 2002), I became convinced
that it could be used in our environment.

Upon discovering Scrum, we felt that we had found a framework to lever-
age the talent and passion of game development teams. It was challenging. The

Preface xxi

rules of Scrum were biased toward teams of programmers creating IT projects.
Some things didn’t work.

This began an endless series of discoveries about what agile meant and
what worked for game developers. I began speaking about agile game develop-
ment in 2005. This was around the time that studios were developing titles for
Xbox 360 and PlayStation 3. Teams of more than 100 people were becoming
the norm, and project failures cost in the tens of millions. Unfortunately, many
took the agile message too far and perceived it as a silver bullet for some.

In 2008, after speaking with hundreds of developers at dozens of studios, I
decided that I enjoyed helping game developers adopt agile enough to become
a full-time independent coach. I now coach many studio teams a year and teach
developers how to be ScrumMasters in public classes. My experiences working
with and learning from these developers have led to this book.

organization
Part I, “The Problem and the Solution,” begins with the history of the game in-
dustry. How have the industry’s products and methodologies for development
changed? What has led us to bloated budgets, schedules that are never met, and
project overtime death marches? It concludes with an overview of agile and
how the problems of managing the development of games can benefit from
agile’s values.

Part II, “Scrum and Agile Planning,” describes Scrum, its roles and prac-
tices, and how it’s applied to game development. It describes how a game’s
vision, features, and progress are communicated, planned, and iterated over the
short and long term.

Part III, “Agile Game Development,” describes how agile is used over the
full course of a game development project, including where some of the Scrum
practices can be supplemented with lean principles and kanban practices for
production. It explores agile teams and how Scrum can be scaled to large staffs,
which might be distributed across the globe. Part III concludes by examining
how teams continuously improve their velocity by decreasing the time required
to iterate on every aspect of building a game.

Part IV, “Agile Disciplines,” explains how each of the widely diverse dis-
ciplines work together on an agile team. It describes the role of leadership for
each discipline and how each one maps to Scrum roles.

Part V, “Getting Started,” details the challenges and solutions of introducing
agile practices to your studio and publisher. Overcoming cultural inertia and

Preface xxii

integrating agile principles into a studio’s unique processes—without destroy-
ing the benefits—can take time, and there many challenges along the way. The
chapters in this part are a guide to meeting these challenges.

Although this is a starting place for agile game development, it is by no
means the end. There are great books about Scrum, Extreme Programming,
lean, kanban, user stories, agile planning, and game development. These books
will provide all the detail desired on the path of continual improvement.

Developers for iPhone, PC, and massively multiplayer online games use
the practices described here. I share many stories based on my technical back-
ground, and indeed there are more existing practices for the agile programmer,
but the book applies to the entire industry. There are stories and experiences
shared from many people from every discipline, genre, and platform.

235

chapter 12

Agile Design

when I first started working on games professionally in the early nineties,
the role of designer was being instituted throughout the industry. Following the
mold of prominent designers such as Shigeru Miyamoto and Sid Meier, design-
ers were seen as directors of the game, or at least the people who came up with
many of the ideas. The role required communication with the team on a daily
basis but not much written documentation.

As technical complexity, team size, and project durations grew, the role
of the designer became more delineated. Some projects had teams of design-
ers who specialized in writing stories, scripting, tuning characters, or creating
audio. Hierarchies emerged to include lead, senior, associate, or assistant design-
ers, among others.

The overhead of communication with large teams and the cost of longer
development efforts led to a demand for certainty from the stakeholders. Large
detailed design documents attempted to create that certainty, but at best they
only deferred its reckoning.

This chapter examines how agile can help reverse this trend.

VIeWPOInT
“Designers are the chief proponents for the player. This has not changed in
20 years of game development. Though titles and roles have changed, designers
look out for gameplay and quality of the product from a player’s perspective.

“When teams were small—with ten or less people—this could be done
easily; it was a series of conversations while textures were created and code
was written. The design was natural and organic as it emerged from the team.
‘Horse swaps’ could easily occur. For example, trading a very difficult-to-build
mechanic for an easy one that still achieved the same gameplay vision was
relatively simple.

“However, in the past ten years, teams have begun to balloon, first to
the 30- to 50-person teams of the nineties and then finally to the occasional

Chapter 12 Agile Design236

several-hundred-person monstrosities of the 2000s. A single designer could
not have all the conversations that needed to happen (even several designers
have problems). As a result, documentation began to surface that outlined the
product as a whole, from the very high level to the very granular. Although this
paints the initial vision of the title, it does away with one of the most important
facets of any type of product development: the dialogue.

“Scrum addresses this. Five- to ten-person cross-discipline Scrum teams
usually include a designer. Each of these designers is entrusted by the lead
designer to understand the key vision elements and speak to the team.”

—Rory McGuire, game designer

the Problems
What are some of the problems that face developers on large projects? The
two most common problems are the creation of large documents at the start
of a project and the rush at the end of the project to cobble something
together to ship.

Designs Do not create Knowledge
Originally when designers were asked to write design documents, they rebelled.
Writing a design document seemed like an exercise to placate a publisher or
commit the designers to decisions they weren’t ready to make. Over time this
attitude toward documentation has changed. Writing design documents has
become the focus for many designers. It’s felt that this is the easiest way to com-
municate vision to both the stakeholders and a large project team.

Designers need to create a vision, but design documents can go too far
beyond this and speculate instead. Once, on a fantasy shooter game I worked
on, the designers not only defined all the weapons in the design document but
how many clips the player could hold and how many bullets each clip con-
tained! This level of detail didn’t help the team. In fact, for a while, it led them
in the wrong direction.

the game emerges at the end
At the end of a typical game project, when all the features are being integrated,
optimized, and debugged, life becomes complicated for the designer. This is
the first time they experience a potentially shippable version of the game. At
this point it typically bears little resemblance to what was defined in the design
document, but it’s too late to dwell on that. Marketing and QA staffs are ramp-
ing up, and disc production and marketing campaigns are scheduled.

Designing with Scrum 237

The true performance of the technology begins to emerge, and it’s usually
less than what was planned for during production. This requires that budgets
be slashed. For example, waves of enemy characters become trickles, detailed
textures are decimated, and props are thinned out.

Because of deadlines, key features that are “at 90%” are cut regardless of
their value. As a result, the game that emerges at beta is a shadow of what was
speculated in the design document. However, it’s time to polish what remains
for shipping.

Designing with Scrum
Successful designers collaborate across all disciplines. If an asset doesn’t match
the needs of a mechanic, they work with an artist to resolve the issue. If a tun-
ing parameter does not exist, they work with a programmer to add it. They also
accept that design ideas come from every member of the team at any time. This
doesn’t mean that every idea is valid. The designer is responsible for a consistent
design vision, which requires them to filter or adapt these ideas.

COPS AnD rOBBerS
In the late nineties, while we were developing Midtown Madness, I was playing
“capture the flag” after-hours in the game Team Fortress. One day it occurred
to me that a version of “capture the flag” for our city racing game might be fun.
I raised this idea with the game designer, and he suggested a creative variation
called “cops and robbers.” In it, one group of players are robbers, while the
other group are cops. The robbers try to capture gold from a bank and race to
return it to their hideout. The cops try to stop the robbers and return the gold.
This feature was a big hit with online players and seemed to be even more
popular than racing! Good ideas can come from anywhere!

A Designer for every team?
A designer should be part of every cross-discipline Scrum team working on a
core gameplay mechanic. They should be selected on the basis of the mechanic
and their skills. For example, a senior designer should be part of the team
working on the shooting mechanic for a first-person shooter. If the team is
responsible for the heads-up display (HUD), then a designer with a good sense
of usability should join the team.

Chapter 12 Agile Design238

the role of Documentation
When designers first start using Scrum, they’ll often approach a sprint as a
mini-waterfall project; they’ll spend a quarter of the sprint creating a written
plan for the work to be done during the remainder. Over time this behavior
shifts to daily collaboration and conversation about the emerging goal. This is
far more effective.

This doesn’t mean that designers shouldn’t think beyond a sprint and never
write any documentation. A design document should limit itself to what is
known about the game and identify, but not attempt to answer, the unknown.
Documenting a design forces a designer to think through their vision before
presenting it to the rest of the team. However, a working game is the best way
to address the unknown.

A goal of a design document is to share the vision about the game with the
team and stakeholders. Relying solely on a document for sharing vision has a
number of weaknesses:

Documents aren’t the best form of communication:●● Much of
the information between an author and reader is lost. Sometimes I’ve
discovered that stakeholders don’t read any documentation; it’s merely
a deliverable to be checked off!

Vision changes over time:●● Documents are poor databases of
change. Don’t expect team members to revisit the design document
to find modifications. Recall the story of the animal requirement
for Smuggler’s Run; that was a case of failed communication about
changing vision.

Daily conversation, meaningful sprint and release planning, and reviews are
all places to share vision. Finding the balance between design documentation
and conversation and collaboration is the challenge for every designer on an
agile team.

“STAY The %#&$ OUT!”
One designer at High Moon Studios had a difficult time shifting his focus away
from documentation when he joined his first Scrum team. At the start of every
four-week sprint, he locked himself in an office for a week to write documen-
tation for the sprint goal. The team didn’t want to wait and pestered him with
questions during this time. The constant interruptions led the designer to post
a note on his door that read “Stay the %#&$ out! I’m writing documents!”
Eventually, the team performed an “intervention” of sorts with the designer to
get him to kick the documentation habit!

Designing with Scrum 239

Parts on the garage Floor
Agile planning practices create a prioritized feature backlog that can be revised
as the game emerges. The value of features added is evaluated every sprint.
However, many core mechanics take more than a single sprint to demonstrate
minimum marketable value. As a result, the team and product owner need a
certain measure of faith that the vision for such mechanics will prove itself.
However, too much faith invested in a vision will lead teams down long, uncer-
tain paths, which results in a pile of functional “parts” that don’t mesh well
together. I call this the “parts on the garage floor” dysfunction.

We saw one such problem on a project called Bourne Conspiracy. In this
third-person action-adventure game, the player had to occasionally prowl
around areas populated with guards who raise an alarm if they spot the player.
This usually resulted in the player being killed. In these areas, the designers
placed doors that the player had to open. At one point, a user story in the prod-
uct backlog read as follows:

As a player, I want the ability to pick locks to get through
locked doors.

This is a well-constructed story. The problem was that there were no locked
doors anywhere. This resulted in another story being created:

As a level designer, I want to have the ability to make doors
locked so the player can’t use them without picking the lock.

This story is a little suspect. It represents value to a developer, but it doesn’t
communicate any ultimate value to the player. Such stories are common, but
they can be a symptom of a debt of parts building up.

The parts continued to accumulate as sprints went by:

As a player, I want to see a countdown timer on the HUD
that represents how much time is remaining until the lock is
picked.

As a player, I want to hear lock-picking sounds while I am
picking the lock.

As a player, I want to see lock-picking animations on my char-
acter while I pick the lock.

This continued sprint after sprint; work was being added to the lock-
 picking mechanic. It was looking more polished every review.

Chapter 12 Agile Design240

 All of these lock-picking stories were building the parts for a mechanic
that was still months away from proving itself. The problem was that lock pick-
ing made no sense. The player had no choice but to pick the locks. Nothing
in the game required the player to choose between picking a lock or taking a
longer route. Ultimately, the vision was proven wrong, and lock picking was all
but dropped from the game despite all the work dedicated to it.

Figure 12.1 illustrates this problem of “parts on the garage floor.”
The figure shows many parts, developed over three sprints, finally coming

together in the fourth. This represents a debt that could waste a lot of work if
it doesn’t pay off. It also prevents multiple iterations on the mechanic over a
release cycle, because the parts are integrated only in the last sprint.

Ideally, each sprint iterates on a mechanic’s value. Figure 12.2 shows the
parts being integrated into a playable mechanic every sprint or two.

Story

Story

Story

Story

Story Story

Story

Story

Integration

Sprint 1 Sprint 2

Release

Sprint 3 Sprint 4

Figure 12.1 Integrating a mechanic at the end of a release

Designing with Scrum 241

StoryStory

Story

Story

Story

Story Story

Integration

Story

Integration

Story

Integration

Sprint 1 Sprint 2

Release

Sprint 3 Sprint 4

Figure 12.2 Integrating a mechanic every sprint

The approach changes the stories on the product backlog:

As a designer, I want doors to have a delay before they open.
These doors would delay the player by a tunable amount of
time to simulate picking a lock while the danger of being seen
increases.

Notice that this story expresses some fundamental value to the player,
which communicates a vision to both stakeholders and developers.

As a designer, I want to have guards simulating patrols past the
locked doors on a regular basis so the timing opportunity for
the player to pick the lock is narrow.

As a player, I want to unlock doors in the time that exists
between patrols of armed guards to gain access to areas I need
to go.

The first few stories are infrastructure stories, but they describe where the
game is headed. They build the experience for the player in increments and

Chapter 12 Agile Design242

explain why. The value emerges quickly and enables the product backlog to be
adapted to maximize value going forward. This is in stark contrast to building
parts that assume a distant destination is the best one. Iterating against a fixed
plan is not agile.

CreATInG FUn IS ITerATIVe AnD COLLABOrATIVe BY
nATUre
One year I took my family to Colorado to spend Christmas in a cabin. After a
large snowstorm, my sons wanted to sled on the side of a small hill. So, I went
to the local hardware store but could only find a couple of cheap plastic sleds.
At first, the snow was too thick and the hill was too small for the sleds, so we
packed down a path in the snow and built a starting ramp for speed. The sleds
kept running off the track, so we packed snow on the sides. To increase speed,
we poured water on the track to ice it—it began to look like a luge track!

After a few hours we had a great track. The boys would speed down on their
sleds. They built jumps and curves and even a few branches into the track.

My oldest son said, “It’s lucky that you bought the perfect sleds!” I hadn’t
done that, so we talked about it. The sleds weren’t perfect; we had merely iter-
ated on the track to match their characteristics. We added elements, such as
the sides to the track, to overcome the sled’s lack of control. We added other
features, such as the ramp and track ice, to overcome the limitations of the thick
snow and low hill. The sleds were the only thing that couldn’t be changed.

I couldn’t help comparing this to game development. We created an expe-
rience by iterating on things we had control over and adapted for things we
didn’t. In this case, design was entirely constrained to working with the level
(the track) and not the player control (the sled), and we were still able to “find
the fun”!

Set-Based Design
When a project begins, the game we imagine is astounding. Players will experi-
ence amazing gameplay and explore incredible worlds where every turn reveals
a delightful surprise. However, as we develop the game, we start to compromise.
Imagination hits the limits of technology, cost, skill, and time. It forces us to
make painful decisions. This is a necessary part of creating any product.

Identifying and narrowing down the set of possibilities is part of plan-
ning. For example, when we plan to create a real-time strategy game, we
eliminate many of the features seen in other genres from consideration (see
Figure 12.3).

Designing with Scrum 243

First Person
Shooter

Massively
Multiplayer

Online

Real-time
Strategy

Game Genre Possibilities

Figure 12.3 Narrowing the game to a specific genre

Planning continues to narrow down the set of possible features. Following
a high-level design, many developers refine discipline-centric designs. Design-
ers plan the game design possibilities, programmers plan the technical design
possibilities, and artists plan the art design possibilities. These possibilities do not
perfectly overlap. For example, the designers may want large cities full of thou-
sands of people, but the technology budget may only allow a dozen characters
in linear levels. Figure 12.4 shows how the union of design, art, and technical
possibilities overlap to create a set of features that all disciplines agree upon.

As mentioned earlier, the project starts with an area quite large in scope. As
time goes by, the project staff gains more knowledge of what is possible, and the
range of possibilities shrink, as shown in Figure 12.5.

Design Possibilities

Technical Possibilities

Game
Possibilities Art Possibilities

Figure 12.4 The set of possibilities at the start of a project

Chapter 12 Agile Design244

Design Possibilities

Technical
Possibilities

Game
Possibilities Art Possibilities

Figure 12.5 The set of possibilities as the project progresses

This refinement of scope slowly happens through iteration and discovery. It
requires cross-discipline collaboration to find a common ground so that effort
is spent on a rich set of features possible for everyone to succeed.

Problems occur when the disciplines branch off from one another and plan
in isolation. If the disciplines refine their set of possibilities too early or in isola-
tion, then it greatly reduces the set of overlapping options for the game. This
approach is called point-based design in which a single discipline design is
refined in isolation (usually the game design). The set of design options have
been narrowed so much that the overlapping game feature set has been vastly
reduced, as shown in Figure 12.6.

Design Possibilities

Technical Possibilities

Game
Possibilities

Art Possibilities

Figure 12.6 Narrowing game design too soon

Designing with Scrum 245

This is the reason for cross-discipline planning. It keeps options open and
the union of all sets as large as possible, so when more is learned, the project has
a wider range of options.

An example of the problem with a point-based design was with a level-
streaming decision made early on a game called Darkwatch. Early in develop-
ment the designers decided that contiguous sections of levels had to be streamed
off the game disc in the background during gameplay so that the player felt the
game was taking place in one large world. The decision was made although no
technical or art tool solutions for such streaming existed.

Entire level designs were created based on the assumption that the technol-
ogy and tool set would be created and that artists would be able to author the
streaming levels efficiently. Unfortunately, these assumptions were proven false.
The effort required to implement the full streaming technology left no time to
create the tools necessary for the artists to manipulate the levels. As a result, the
levels were “chopped up” into small segments, and these segments were loaded
while the player waited. The gameplay experience suffered greatly from this.

Another approach to narrowing multidiscipline designs, called set-based
design, is used to keep design options alive as a number of solutions are
explored and the best design is converged upon. Set-based design has been
shown to produce the best solutions in the shortest possible time (Poppendieck
and Poppendieck 2003).

A set-based design approach to such a problem as the streaming level
example is different from a typical point-based design. Instead, a number of
options are explored:

A full level-streaming solution●●

A solution that streams portions of the levels (props and textures)●●

No streaming at all●●

As each option matures, knowledge is built to enable a better decision to
be made before level production. Potential solutions are dropped as soon as
enough is learned about cost, risk, and value to show that they weren’t viable.
Although developing three solutions sounds more expensive, it is the best way
to reduce cost over the course of the project.

Making decisions too early is a source of many costly mistakes. This is dif-
ficult to combat since such decisions are often equated with reducing risk or
uncertainty. In point of fact, early decisions do not reduce risk or uncertainty.
The delay of the level design decision in the set-based design approach is an
example of postponing a decision as long as it can be delayed and no longer.
This is an essential part of set-based design.

Chapter 12 Agile Design246

lead Designer role
The lead designer’s role is similar to other lead roles; they mentor less-
 experienced designers and ensure that the design role is consistent across mul-
tiple Scrum teams. Lead designers meet with the other project designers on a
regular basis (often once a week) to discuss design issues across all teams (see
Chapter 8, “Teams,” to learn about communities of practice).

Scrum demonstrates—through sprint results—whether the project has
enough designers. Scrum teams challenge designers who cannot communicate
effectively. A benefit of Scrum is in exposing these problems so that a lead
designer will step in to mentor less-experienced designers.

Designer as Product owner?
Many game development studios using Scrum make the lead designer the
product owner for a game. This is often a good fit since the product owner role
creates vision, and when we think of visionaries, we often think of successful
designers such as Miyamoto, Shafer, Wright, and Meier. Lead designers make
excellent product owners for the following reasons:

Designers represent the player more than any other discipline.●●

The product vision is driven primarily by design.●●

Design is highly collaborative. Experienced designers should be expe-●●

rienced in communicating vision to all disciplines.

On the other hand, designers often lack experience for some product
owner responsibilities:

Responsible for the return on investment:●● Most designers I’ve
known often need to be reminded of the cost implications of their
designs! A product owner needs to carefully evaluate costs against the
value for each feature.

Project management experience:●● Teams accomplish many, but
not all, of the duties traditionally assigned to someone in a project
manager role. Many requirements or resources that have long lead
times require a long-term management view.

Avoiding a design bias:●● Product owners need to understand the
issues and limitations for all disciplines. They cannot assume that
everything outside the realm of design “can be handled by others.”

Additional Reading 247

For these reasons, it’s often beneficial to have a senior producer support
the “designer as product owner.” A producer can be a voice of reason and cost
management.

Summary
Agile reverses the trend of isolation of disciplines. This trend sees designers
turning more to long-term plans and documentation to communicate with
teams that are ever increasing in size. Scrum practices require the designers to
collaborate and communicate face-to-face on small, cross-discipline teams.

In reversing this trend, designers need to embrace the benefit of emergent
design. No designer has a crystal ball about any mechanic. The limitations of
what is possible prevent this. Instead, they need to ensure that their vision is
communicated and open to all potential ideas.

Additional reading
McGuire, R. 2006. Paper burns: Game design with agile methodologies. www.

gamasutra.com/view/feature/2742/paper_burns_game_design_with_.php.

www.gamasutra.com/view/feature/2742/paper_burns_game_design_with_.php
www.gamasutra.com/view/feature/2742/paper_burns_game_design_with_.php

329

Index

95 mile-per-hour art, 143, 228

A
Abnormal termination. See Sprint resets
Accuracy, of estimations, 113
Agile

about, 13, 210–220
agile manifesto, 13
art and audio, 223–233
benefits for game development, 20–28
bibliography, 32, 221, 233, 247, 263
budgets, 231
collaboration, 232
concerns about, 225
contracts, 293–300
debugging, 216
design, 235–247
distributed teams, 183–187
leadership, 226
“not done yet” syndrome, 230
planning, 107–124
postmortems, 14–20
problems, 205–209, 223, 236
production, 259–262
projects, 28–31
publishers, 283, 289
QA, 228, 249–259
values applied to game development,

24–28
Analogy, in estimations, 114
Apprentice stage, Scrum adoption,

302–306
Apprentice teams, sprints, 307, 311
Arcade games, game development

process, 5
Architecture, changing, 209
Art, agile, 223–233

Assault specialists, role, 97
Asset baking, 192
Asset hot loading, 193
Asset production pipelines, kanban

boards, 139
Asset size, cycle time, 148
Asset validation, 196
Atari, arcade game development, 5
Audio, agile, 232
Automated play-through tests, 197

B
Backlogs, See also Product backlogs;

Sprint backlogs
burndown trends, 70
product backlogs, 323
release backlogs, 120
sprint backlogs, 62

Batch size, cycle time, 148
Batches, reducing or eliminating, 149
BDUF (big designs up front)

agile methodologies, 21
feature creep, 17

Beachhead teams, Scrum, 317–320
BHAGS (big hairy audacious goals)

about, 118
teams, 120

Bibliography, 327
agile, 32, 124, 221, 233, 247, 263
game development, 12
iterations, 201
planning, 124, 155
publishers, 300
Scrum, 57, 282, 324
sprints, 84
teams, 188
user stories, 105

Index330

Black box testing, 251
Boards. See Task boards
Boats, as a metaphor for lean thinking, 151
Bottlenecks, pair programming, 214
Budgets

adhering to, 219
agile, 231
balancing, 129
controlling, 291
production, 229
project leaders, 166

Buffers, shown on a kanban board, 149
Bugs

bug databases, 217
discovery rate in agile projects, 252
discovery rate in waterfall projects, 250

Build configuration testing, 196
Build iterations, 194–201
Builds, defined, 76
Burndown charts

sprints, 69
using, 83

Burndown trends, 70
Burndowns, crunches, 280

C
Cards. See Index cards; Task cards
Cargo Cult Scrum, 277
Challenger project disaster, 271
Change

architecture, 209
communicating, 87
cultural, 275
goals, 82
handling in agile projects, 28
last-minute, 285
practices, 316
Scrum, 274
team membership, 315
testing, 195–198
vision, 238

Charts. See Burndown charts
Chickens and pigs story, Scrum, 55

CIS (continuous integration server), 211
Coaches, Scrum coaches, 321
Coaching, cross-team coaching, 319
Collaboration

agile, 232
contracts, 286
publishers, 260, 285
teams, 168–173, 183, 315
versus contract negotiation, 27

Collecting, user stories, 100–103
Collocation, teams, 308
Columbia project disaster, 271
Commitment, teams, 158
Commits, 195
Communication, See also

Documentation
about testing, 199
change, 87
large teams, 174
teams, 158, 187

Communities of practice, teams, 180
Concepts

creating, 130
defined, 131
Scrum, 133

Conditions of satisfaction. See CoS
Consistency, monkey example, 273
Constraints, sprint planning, 61
Continual improvement

advantages, 147
master stage, 314
Scrum, 276
ScrumMaster, 49

Continuous build tests, 197
Contracts

agile, 293–300
negotiation versus collaboration, 27
scope of, 285
time and materials form, 28

Conversations
user stories as placeholders for, 94
versus documentation, 87

Core experts, master stage, 314

Index 331

CoS (conditions of satisfaction)
about, 91
user stories, 90

Cost
game development, 8
key factor in game development, 22
prioritizing product backlogs, 109
production cost estimates, 135

Creative tension, 227
Creativity, within strict frameworks, 150
Critical chain management, 260
Cross-discipline teams

about, 160
art, 225, 227–232
budgets, 231
feature teams, 169
Scrum, 159

Cross-team coaching, 319
Crunches, Scrum, 279
Cultural change, Scrum, 274, 275
Culture, master stage, 315
Customers

collaboration versus contract
 negotiation, 27

feedback, 65
Scrum, 54

Cycle time, 145–148

D
Daily build tests, 197
Daily scrums

about, 40
challenges, 304
replacing, 305

Databases, bug databases, 217, 256
Dates. See Ship dates
Debt

defined, 127
postponing, 297
resulting from features, 129
technical debt, 208
waterfall projects, 312

Debugging
agile, 216
bug databases, 256

Deliverables
features, 295
milestones, 286

Demo done, defined, 100
Demos, See also Magazine demos
Dependencies

managing, 259
teams, 181, 183

Deployment
build iterations, 199
Scrum, 321–323

Design
documentation, 238
lead designer, 246
lead designer role, 246
prioritization, 239–242
product owner, 246
project leaders, 166
Scrum, 237–247
set-based, 242–245

Design documentation. See
Documentation

Details
disaggregating stories, 90
in stories, 94
user stories, 88

Developers, See also Project staff; Teams
agile, 283
collaboration, 25
load balancing, 138
pair programming, 215
play-testing, 257
postmortem example, 15, 16

Development, Scrum, 269
Directors, role of, 168
Disaggregating

in estimations, 114
stories to add details, 90

Distributed teams, 183–187

Index332

Documentation
Scrum, 238
Smuggler’s Run example, 86
user stories, 104
versus conversation, 87
writing it down, 21

“Done”
defining, 99, 257, 297, 303, 322
sprints, 122

Durations. See Length

E
Embedded QA versus pools, 254
Emergence, defined, 40
Emergent requirements, about, 17
Empiricism, defined, 40
Employees. See Developers
Engineers, role, 97
Environment. See Work environment
Epics

balancing the budget, 129
defined, 89
identifying, 101

Estimable attribute, INVEST, 95
Estimating

production costs, 135
size of user stories, 112–117
tasks, 62–65

Expert opinion, in estimations, 114
Experts, master stage, 314
External dependencies, tracking, 260
Extreme programming (XP), 210–220

F
Failure notifications, 198
Failures, handling in sprints, 80–84
Feature creep, 17
Feature teams, cross-discipline teams, 169
Features, See also User stories

deliverables, 295
introducing, 209
planning, 107, 128
production, 154

“Federal and state laws” in managing
studio projects, 165

Feedback
customers, 65
gameplay, 148
production feedback, 148
velocity feedback, 149

Fibonacci series, estimating size of user
stories, 116

First-party problems, 287
Fixed ship dates, agile contracts, 295–298
Forecasting, agile planning, 110
FUD (fear, uncertainty and doubt),

Scrum, 269–273
Fun

iterative and collaborative, 242
key factor in game development, 22
teams, 158

Functional teams, 170

G
Game development, 3–12

arcade games, 5
bibliography, 12
crisis point, 10
history, 4–9

Gameplay
feedback and asset size, 148
required hours, 130

Goals, See also Objectives
in agile projects, 29
BHAGs, 118
changing, 82
dropping, 83
pre-production metrics, 292
Scrum teams, 162
sprints, 43, 70, 120, 305
user stories, 88

Green lights, 299

Index 333

H
Hand-to-hand combat systems, planning,

102
Handoffs, reducing waste, 151
Hardening sprints, 123, 310
Hardware

capabilities of, 4
implications for game development

methodologies, 6
History

game development, 4–9
Scrum, 36–38

Hit-or-miss model of game develop-
ment, 7–9

Hourly build tests, 197

I
Impediments

about, 48
daily scrum meetings, 74

In sourcing, pool teams, 173
Independent attribute, INVEST, 92
Independent sprints, 179
Index cards, user stories, 92
Information radiators, 309
Innovation

crisis in game development, 10
effect of cost and risk on, 10
at factory level, 37

Inspect and adapt principle, about, 29, 31
Integration teams, 173
Intensity, sprints, 67
INVEST, 92–97

Independent, 92
Negociable, 93
Valuable, 95
Estimable, 95
Sized appropriately, 96
Testable, 97

Iterative development, 189–201
bibliography, 201
build iterations, 194–201
distributed teams, 183, 187

improving, 313
measuring and displaying, 191
overhead, 190
personal iterations, 193
publishers, 287

J
Japan, industrial expansion after World

War II, 37
Journeyman stage, Scrum adoption,

307–313

K
Kanban boards

showing buffers, 149
with sprint swim lane, 154
visualizing flows, 140

The Karate Kid movie, 301
Kill-gate model, 24
Knowledge

art knowledge, 229
key factor in game development, 21

L
Laws, “federal and state laws” in

managing studio projects, 165
Lead designer, Scrum, 246
Leadership

art, 226
master stage, 314
stakeholder role, 55
teams, 159, 165

Lean production, 139–153
Length

sprints, 65–68, 272
story points, 114

Level loads tests, 197
Leveling

flows, 144–146
production flow, 142

Lightweight methods, 13

Index334

Lines of communication, large teams, 174
Lockdowns, 271
Lookahead planning, 182

M
Magazine demos, 122
Management

project leaders, 166
Scrum, 270

Managers, role in industrial production
processes, 37

Manifesto, agile manifesto, 13
Market

used games, 11
video gaming trend, 8

Marketing
concepts, 130
importance of, 55

Master stage, Scrum adoption, 314–316
Meetings

release planning, 117
Scrum, 74, 272
sprint planning meetings, 38, 59
sprint prioritization meetings, 59
sprint retrospectives, 40, 79

Mentoring, project leaders, 166, 167
Metrics, pre-production, 292
Michelangelo, Sistine Chapel, 223
Microprocessors, number of transistors, 4
Midnight Club story, 127
Midtown Madness game, 157
Milestone deliverables, 286
Milestone payments, 285
MMOs (massively multiplayer online

games), release dates, 130
Monitoring progress, 48
Monkey example, consistency, 273
Moore, Gordon, on microprocessor tran-

sistor counts, 4

N
Near-shippable state, defined, 44
Negotiable attribute, INVEST, 93
Negotiable stories, about, 94

Negotiation, contract negotiation versus
collaboration, 27

Ninjas, defined, 56
Normalization of deviance, 272
“Not done yet” syndrome, agile, 230
Notifications, failure notifications, 198

O
Objectives, See also Goals

agile planning, 108
Optimization, agile, 217–220
Outsourcing

about, 152
support for, 260

Overhead, iterations, 190
Overtime, Scrum, 279
Owners. See Product owners
Ownership

about, 47
distributed teams, 187
master stage, 314

P
Pair programming, 212–215
Parallel development model, 66
“Parts on the garage floor example”,

239–242
PBIs (product backlog items), See also

User stories
about, 38
dropping, 83
prioritization, 41, 60
task boards, 72
tasks, 62–65

Personal iterations, 193
Pigs and chickens story, Scrum, 55
Pirates, defined, 56
Planning See also Production, 127–155

in agile projects, 29
bibliography, 124
estimating size of user stories, 112–117
feature sets
hand-to-hand combat systems, 102
iterating against plans, 294

Index 335

lookahead planning, 182
Midnight Club story, 127
overhead required for, 67
product owner role, 53
project leaders, 166
publishers, 291
releases, 117–122, 181
sprints, 59–68
stages, 130–134
subsets of, 45
transition planning, 321
why agile, 107

Planning meetings, sprints, 38
Planning Poker, estimating size of user

stories, 115
Platform smoke tests, 197
Play-testing, about, 256
Play-throughs tests, 197
Point-based design, 244
Poker, Planning Poker, 115
Pool teams, 172
Pools versus embedded QA, 254
Portfolios drive dates, 287
Post-production

about, 131
pair programming, 216
Scrum, 134

Posting, sprint retrospective meeting
results, 80

Postmortems, agile, 14–20
Pre-production

about, 19
agile, 298
budget, 229
defined, 131
measuring production debt, 135
metrics and goals, 292
Scrum, 134

Pre-production done, defined, 100
Predictability, importance of, 19
Price, of video games, 9
Prioritization

agile, 108, 297
defined, 41
product backlogs, 109
Scrum, 160, 239–242

sprints, 60
stories and agile planning, 110
teams, 162
tracking and communicating, 87

Processors. See Microprocessors
Product backlog items. See PBIs
Product backlogs

about, 38, 41
agile planning, 108–112
debugging, 217
establishing, 323
product owner role, 53

Product owners
defining “done”, 122
designer as, 246
example of importance, 269
producer as, 261
publishers, 289
release plans, 121
Scrum, 51–54
spikes, 96
teams, 177

Production, 134–155
about, 19, 131
agile, 232, 259–262
art, 225
budget, 229
features, 154
feedback and asset size, 148
lean production, 139–153
leveling flow, 142
postmortem example, 16
publishers, 292
scheduling, 134
Scrum, 134, 136–139, 153
sprints, 153

Production streams, Scrum, 136
Production teams, 171
Profit

cost and quality, 22
of video games, 5, 9

Programming, agile, 210–216
Project leaders, role, 166
Project planning. See Planning
Project staff, See also Developers; Teams

defined, 46

Index336

Promotion, project leaders role, 166
Prototypes

done, 100
postmortem example, 15

Publisher-producer role, defined, 54
Publishers, 283–300

agile, 283, 289
bibliography, 300
collaboration, 285
contracts, 293–300
fears, 288, 292
first-party problems, 287
iterations, 287
milestone payments, 285
portfolios drive dates, 287
product owners, 289
production, 292
project planning, 291
sprint reviews, 77

Q
QA (quality assurance)

agile, 249–259
art, 228
play-throughs tests, 197

Quality
defining in contracts, 286
key factor in game development, 22

R
Reasons, user stories, 88
Refactoring, TDD, 211
Reference assets, 230
Regression tests, 253
Release backlogs, usefulness of, 120
Release cycles, 308
Release dates

controlling, 291
MMOs, 130

Release plans
defined, 119
distributed teams, 184, 186
Scrum teams, 162

Release states, in iterative development
process, 29

Releases
about, 31, 43
planning, 117–122, 181
product owner role, 53
sprints, 322
stages, 132

Requirements, See also User stories
in user stories, 94
versus user stories, 103

Resets. See Sprint resets
Resource allocation. See Budgets
Responsibilities, ScrumMasters, 46
Retrospectives

meetings, 79
sprints, 78

Return on investment, product owners,
246

Reviews
project leaders role, 166, 167
sprints, 75–78

Risk
management of, 260
prioritizing product backlogs, 109
waterfall-style methodologies for

reducing, 6
ROI (return on investment), product

owner role, 52
Roles

lead designer, 246
producer, 259–262
QA, 252–259
Scrum, 44–54
user roles, 88
users roles in user stories, 97

Roll outs, release planning, 120
Rooms. See War rooms

S
Sagas, defined, 89
Sales, video games, 7

Index 337

Scaling
Scrum, 56
teams, 173–187

Scheduling
aligning sprint dates, 178
producers, 259
production, 134
task estimation, 18

Scope, controlling, 291
Scrum, 35–57, 267–282, 301–324

about, 36, 267
adoption stages, 301–316
adoption strategies, 317–323
apprentice stage, 302–306
asset production pipelines, 139
beachhead teams, 317–320
bibliography, 57, 282, 324
Cargo Cult Scrum, 277
challenges, 273–281
chickens and pigs story, 55
coaches, 321
components, 38, 41–44
customers, 54
deployment, 321–323
design, 237–247
documentation, 238
FUD, 269–273
history, 36–38
journeyman stage, 307–313
lead designer, 246
master stage, 314–316
pair programming, 216
principles, 40
prioritization, 239–242
product owners, 246
production, 136–139, 153
releases, 133
roles, 44–54
scaling, 56
set-based design, 242–245
stakeholders, 54
task boards, 136
teams, 159–168, 173–187

ScrumMasters
about, 44, 46–51
changing goals, 82
producer as, 260
reporting to, 304

Self-management
project leaders, 166
teams, 159, 161

Self-organization
defined, 41
master stage, 314
teams, 159, 161–163

Semidaily build tests, 197
Sequential development model, 66
Set-based design, 242–245
Shared infrastructure teams, 171
Shared vision

product owner role, 52, 178
teams, 158, 183

Ship dates
agile, 130
fixed, 295–298, 298
postmortem example, 15

Shippable done, defined, 100
SI teams, 171
Sistine Chapel, Michelangelo’s experi-

ence with, 223
Size, teams, 164, 174
Sized appropriately attribute, INVEST,

96
Smuggler’s Run, 85
Snipers, role, 97
Special forces, role, 97
Spikes

about, 96
prioritizing product backlogs, 109

Split-and-reform method, 319
Split-and-seed method, 318
Sprint backlogs

debugging, 217
defined, 38

Sprint dates, teams, 178
Sprint goals, release planning meetings,

120

Index338

Sprint planning meetings, 59
Sprint prioritization meetings, 59
Sprint resets, about, 81
Sprint retrospectives, defined, 40
Sprint spacing, 303
Sprints, 59–84

about, 38, 42
apprentice teams, 307, 311
bibliography, 84
done, 122
goals, 305
handling failures, 80–84
length, 272
meetings, 74
“parts on the garage floor” example,

240
planning, 59–68
product backlogs, 110
production, 153
production streams, 137
releases, 322
retrospectives, 78
reviews, 75–78
staggered and synchronized, 179
tracking, 68–73
uncertainties, 279

Stage-gate model, 298
Stages

planning, 130–134
Scrum adoption, 301–316

Staggered sprints, 179
Stakeholders, See also Publishers; Studios

communicating with teams, 49
defined, 43
length of sprints, 68
Scrum, 54

“State and federal laws” in managing
studio projects, 165

Stories, See also User stories
chickens and pigs story, 55

Story points
agile planning, 110
estimating size of user stories, 114, 116

Studio culture
master stage, 315
postmortem example, 15

Studios, sprint reviews, 78
Support, role, 97
Synchronized sprints, 179

T
Takt time, about, 146
Task boards

Scrum, 136
sprints, 72

Task cards, sprints, 69
Tasks

debugging, 217
estimation and schedules, 18
PBIs, 62–65
project leaders role in creating and

managing, 166
TDD (test driven development),

210–212
Teams, See also Developers; Project staff,

157–188
about, 158
agile, 289
apprentice teams, 307
BHAGS, 120
bibliography, 188
build iterations, 200
collaboration, 168–173
collocation, 308
communicating with stakeholders, 49
communities of practice, 180
cross-discipline, 160, 227–232
daily scrums, 305
dependencies, 181
distributed, 183–187
experience, 66
functional teams, 170
handling failure, 81
integration teams, 173
leadership, 165
load balancing, 138
master stage, 315
pool teams, 172
product owners, 177
production teams, 171
scaling, 173–187
Scrum, 44–46, 155, 159–168, 173–187

Index 339

self-management, 161
self-organization, 161–163
shared infrastructure teams, 171
size, 164, 174
sprint dates, 178
sprint reviews, 75, 76
testers, 252, 255
tool teams, 172

Technical debt, 208
Testable attribute, INVEST, 97
Testers, teams, 252, 255
Testing, See also QA

black box and white box, 251
changes, 195–198
play-testing, 256
regression tests, 253
testers on teams, 252, 255
versus QA, 251
in waterfall designs, 7

Themes, defined, 89
Time, tracking, 62
Time and materials contracts, 28
Timeboxes

about, 142–144
defined, 40, 41

Tool teams, 172
Tracer bullets. See Spikes
Tracking

dependencies, 260
Scrum, 275
sprint retrospective meeting results, 80
sprints, 68–73
tasks, 259
time, 62

Transfer time, reducing, 199
Transition planning, 321
Transparency, importance of, 152
Trends. See Burndown trends
Trust, contracts, 286

U
Uncertainty, range of, 17
Units tests, 196
Updating, release plans, 120
Used games market trends, 11
User roles, defined, 88

User stories, See also Features; PBIs;
Requirements, 85–105

about, 28, 87
bibliography, 105
collecting, 100–103
completing, 99
conditions of satisfaction, 90
estimating size of, 112–117
index cards, 92
INVEST, 92–97
levels of detail, 88
QA, 252
Smuggler’s Run, 85
user roles, 97
versus written requirements, 103

V
Valuable attribute, INVEST, 95
Value, See also Fun

creating with agile methodologies, 26
crisis in game development, 10
master stage, 314
postponed, 311
prioritizing product backlogs, 109
Scrum, 275
teams, 158
of video games to the consumer, 10

Velocity
agile planning, 110–112
feedback, 149
measuring, 274

Vision, changes, 238

W
War rooms, sprints, 73
Waste

cycle time, 148
eliminating, 24
reducing, 150

Waterfall methodologies
bugs, 250
debt, 312
origin of, 6
responses to, 13
uncertainty, 18

Index340

White box testing, 251
Work environment, crisis in game devel-

opment, 10

X
XP (extreme programming), 210–220

Y
YF-23 jet fighter project, 35

Z
Zones, 149

	FOREWORD
	PREFACE
	12 Agile Design
	The Problems
	Designing with Scrum
	Summary
	Additional Reading

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

