

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The .NET_logo is either a registered trademark or trademark of Microsoft Corporation in the
United States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks
or trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Scribner, Kenn.
Effective REST services via .NET : for .NET Framework 3.5 / Kenn Scribner, Scott Seely.

p. cm.
ISBN-13: 978-0-321-61325-7 (pbk. : alk. paper)
ISBN-10: 0-321-61325-2 (pbk. : alk. paper) 1. Web services. 2. Representational state

transfer (Software architecture) 3. Web site development. 4. Internet programming. 5.
Microsoft .NET Framework. I. Seely, Scott, 1972- II. Title.
TK5105.88813.S32 2009
006.7’882—dc22

2009002859

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-61325-7
ISBN-10: 0-321-61325-2

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing April 2009

Foreword

SOAP has been with us for the better part of ten years now, but few would
argue that it has lived up to its promise. It works, and it has been used to
tie together thousands of services and service consumers. But if you
believe simpler is better, SOAP falls short. XML is verbose, WS-* is com-
plex, and interoperability is elusive. SOAP may be the right tool for the job
when it comes to composing an SOA symphony from disparate enterprise
servers, but for the vast majority of today’s consumer-oriented applica-
tions, SOAP is not only overkill, it’s too slow and too complex to merit
honest consideration.

Enter REST. Fast becoming the most important Web service protocol on
the planet, REST is everything SOAP isn’t. Want to dress up an application
with real-time weather data? How about firing off an HTTP request to
http://www.contoso.com/weather/98052 and parsing a few bytes of
XML returned in the response? You don’t need elaborate tooling support
to consume WSDL contracts and generate Web Service proxies, nor do you
need SOAP libraries to generate and digest hundreds of lines of message
headers. A few lines of code and an XML parser will do. Moreover, you
might not even need the parser; REST services can return data in any for-
mat they want. With REST, the wire format is driven by the requirements
of the application, not by the protocol that the application uses.

This is why the world seems to have settled on REST as the simplest
and most effective means for publishing data and services to consumer-
oriented applications. Flickr exposes a REST API for searching its massive
store of photographs; Amazon offers a REST API for searching its product

xix

http://www.contoso.com/weather/98052

catalog; Google and Yahoo provide REST APIs for search, traffic data, geo-
graphical data, and more; and Digg makes news stories, videos, and more
available via REST. The list could go on and on, but the upshot is that
REST is the language spoken by the most “interesting” public-facing serv-
ices today and is likely to be used to expose even more interesting stuff in
the future. When you publish data the REST way, you’re in good company.
And understanding REST is the key to building content-rich applications
that draw from resources outside your own application domain. You prob-
ably don’t have access to your own Doppler weather radar, but somebody
else does—and if they’re willing to share that information through REST,
then you, too, can incorporate real-time weather data into your UI.

Microsoft’s Web stack offers a number of ways for developers to build
RESTful services. You can implement them using IIS, ASP.NET, ASP.NET’s
MVC framework, WCF, and even Azure and .NET Services. Under-
standing the programming models is a key first step in architecting and
implementing REST services and clients. Should you author services using
WCF or ASP.NET? Should data be encoded as XML or JSON? Which
model delivers the best balance of performance and ease of implementa-
tion, which one provides the best support for unit testing, and what
should I know about best practices before I start?

I can’t think of anyone better or more qualified to answer these ques-
tions than Kenn Scribner and Scott Seely. I’ve had the privilege of working
with both of them in recent years, and besides being passionate about the
subject, both are world-class presenters with a knack for breaking down
complex information and presenting it in understandable, bite-sized
chunks. Both have real-world experience building Web Services and Web
Service clients on Microsoft platforms. And both possess the perspective
needed to present a fair and balanced view of REST development, sharing
with you not only the hows but the whys—and in some cases, the
why-nots.

I can’t promise you that REST won’t be displaced in a year or two by
something sexier. In fact, I can guarantee that it will be replaced someday,
perhaps sooner rather than later; such is the nature of our industry. But for
the time being, REST is where the action is, and becoming REST-literate is

Forewordxx

one of the smartest things a developer can do to sharpen his or her skill
set. Join Kenn and Scott as they take you on a RESTful journey through the
Microsoft technology stack; and most of all, sit back and enjoy the ride!

Jeff Prosise
Knoxville, TN
February 2009

Foreword xxi

Preface

Kenn’s Thoughts: The Road to REST, an Engineer’s Tale

It was the spring of 2008, and I had just completed some work for Justin
Smith, a senior engineer and connected systems expert at Microsoft. The
work involved developing two related Web sites that would consume
services offered by a third Web application that would be hosted in some-
thing known as the “cloud.” After six weeks of iterative development, we
had a set of Web applications that were designed to demonstrate nearly all
the ways Web applications can communicate using .NET technologies.

I’d heard about REST, of course, having been fortunate enough to work
with Dino Esposito on several of his ASP.NET and AJAX books. Dino is a
huge REST proponent. But I admit my background was more along the
lines of the SOAP protocol, and I looked at Web services more as remote
method calls than creatures of the Internet ecosystem. It didn’t bother me
that I needed fancy proxies to communicate with XML-based (and not
JSON-based) Web services. I truly hadn’t consciously considered the
notion that remote procedure call (RPC) style messaging wasn’t quite
architecturally in harmony with the Internet itself.

But I’d had this nagging concern for some time. SOAP and XML-RPC
services were becoming very complex, and it seemed that at every turn we
were trying to solve some problem that the basic architecture of the
Internet presented. Security, streaming large binary objects, browser-based
proxies (for AJAX), and so forth were leading to an ever-increasing

xxiii

number of new specifications, each designed to layer more complexity on
to what had started as a simple concept. And in most cases, we were try-
ing to bypass the basic workings of the Internet rather than using them to
our advantage.

After working with Justin, and after building a very detailed and fully
functional set of Web applications that were primarily based on RESTful
principles, I found I had drunk from the RESTful Kool-Aid pitcher, and I
was stunned by what I had overlooked all of these years. I can remember
the epiphany…I literally sat up in my chair, stunned by what I had
realized.

What I had overlooked was the simplicity and elegance of the Web’s
architecture and design. I had been overcome by the glamour of XML and
serializing binary information for transmission in response to requests for
actions. I had lost sight of the Internet’s most basic capability of asking for
and receiving a resource’s representation. The simplicity and elegance of
the Internet struck a new chord with me that day. Even though I had been
working with Internet-based technologies for nearly ten years, I found I’d
suddenly rediscovered programming for the Internet.

And the simple truth is this is not a bad thing, nor is it uncommon. REST
as an architectural concept is precisely in line with the architecture of the
Web itself. Any tool you have that can build Web applications can be used
to build RESTful services. If you have access to the HTTP method—���,
����, and so forth—and if you have access to the HTTP headers and entity
body, you have all you need to create a RESTful service. Anything else is
there only to make creating RESTful services easier by hiding some of the
detail. I haven’t had the pleasure of meeting Dr. Roy Fielding, but based on
his doctoral dissertation that introduces us all to the concept of REST, I’d
hazard a guess that he’d prefer you understand REST at its lowest level
before using frameworks that mask the underpinnings. When you do,
REST makes perfect sense and things become very clear. Or at least I felt so.

Scott’s Thoughts: REST Is Best

From 2000 until the middle of 2006, I worked at Microsoft on Web serv-
ices. For four of those years, I worked on Windows Communication

Prefacexxiv

Foundation (WCF)—that amazing, transport-agnostic, messaging-
unification machine. When WCF finally came out, it supported WS-* and
some very basic REST/POX messaging. A few folks on the team were hard
at work adding first-class REST support in the form of URI templates and
extra functionality for HTTP-hosted services that were later released in
.NET 3.5. Why this focus on REST? REST was starting to get very popular,
thanks to Roy Fielding’s dissertation. Like many in the Web service com-
munity, I read his dissertation many times, trying to really understand
what made the Web scale as well as it did. When the WCF 3.5 bits started
coming out as previews, I checked out the greatly improved REST sup-
port. I was getting excited by what I was seeing and learning. In the
broader community and at work, I was finding that people were getting
more and more comfortable using HTTP as a communication medium to
create, retrieve, update, and delete resources.

I also started seeing the value in easy-to-type URLs. Furthermore, I
found that the architecture and code just makes sense to developers.
During 2006, I taught several multiday classes on WCF and gave presen-
tations on WCF at a few conferences across the country. My talks on REST
were well received. My talks on WCF internals weren’t. People appreci-
ated the elegance of what WCF can do. They just did not see the value in
the steep learning curve one had to traverse to master the technology. The
thing that pushed me over to REST was the realization of why people were
flocking to REST over WS-*. In general, developers used Web browsers
and built Web applications long before they ever had to add a service of
any kind. REST development builds on what Web developers already
know, so there is less to learn. WS-* might be elegant and cover many sce-
narios, but it does not build on what most developers in most shops across
the globe already know.

In the summer of 2008, I joined the development team at MySpace as
an architect. Guess what architectural style one of the world’s largest .NET
sites uses to handle access to Friends, photo albums, and other resources.
Yes, it’s REST. The platform is, first and foremost, a Web platform. REST
holds more value for HTTP base endpoints than a WS-* one ever will.
REST integrates well with so many other platforms without a whole lot of
effort. It doesn’t impose structure on the payload contents—only on the

Preface xxv

payload metadata. REST is a model that novice developers understand
and that expert-level developers can easily manipulate. I love the fact that
it is penetrating so much of service development. My day job involves
working on OpenSocial—already one of the most successful REST APIs
ever developed. Through my work with OpenSocial, I have seen that
HTTP and REST compose well with many different security mechanisms.
I find it interesting that WS-* protocols compose well with other XML
mechanisms. REST composes with other HTTP mechanisms. After spend-
ing so many years working with SOAP and other RPC mechanisms, I like
what REST has to offer.

How This Book Approaches REST

Today, we use this stuff. We build solutions based on this stuff. We like this
stuff. And we’re truly glad to have this book in our hands as architects and
developers. Both authors and the entire team behind this book hope you
will find it informative and useful as well.

One thing we didn’t want was a 1,000-page monster. When you under-
stand REST, the concept is actually simple, and applying .NET technolo-
gies to create RESTful solutions becomes a relatively easy task. If it can’t
be explained in a few pages, something’s not right.

The first couple of chapters introduce you to the concepts involved
with REST. In a sense, you’re taken back to the earliest days of the Internet
to rediscover how the Internet works and how the architectural concept
known as REST fits into the Internet ecosystem so well. The first chapter,
“RESTful Systems: Back to the Future,” addresses REST itself, and you
learn what it means to be RESTful and how to identify behaviors that are
not RESTful. Chapter 2, “The HyperText Transfer Protocol and the
Universal Resource Identifier,” is devoted to HTTP and the URI. These are
the two fundamental tools you’ll work with when developing .NET-based
solutions.

Chapters 3 and 4 dig into the client side of the equation. RESTful serv-
ices are there to serve a client’s needs, and there is no better way to begin
to use REST than to consume RESTful services from a client’s perspective.
There you learn what works and what doesn’t, with the lessons you learn

Prefacexxvi

translating to design principles when you create RESTful services your-
self. Chapter 3, “Desktop Client Operations,” shows you how to access
RESTful services from desktop applications (both authors believe that the
desktop is not a dead platform but is instead enhanced by Internet data
and service access), and Chapter 4, “Web Client Operations,” shows you
how to access RESTful services from Web-based applications, including
Silverlight 2.0. For consistency, both chapters access a single REST service.
Later chapters build individual services unique to each chapter to increase
the breadth of exposure to different RESTful service implementations.

After you have a feel for how a client might use your service, it’s time
to dive into server-side programming. Here the book starts with the basics:
what Internet Information Services (IIS) is, how it is put together, and how
you use it to implement RESTful services. Chapter 5, “IIS and ASP.NET
Internals and Instrumentation,” leads you through the most foundational
server-side technology: Microsoft’s premier Web server. Clearly this is one
technology that supports nearly all the other .NET Web-based technolo-
gies, RESTful or otherwise, and understanding how it works is crucial to
building effective REST services.

Chapters 6 though 8 then use higher-order .NET technologies to imple-
ment RESTful services. Chapter 6, “Building REST Services Using IIS and
ASP.NET,” uses what you learned in Chapter 5 to create a Web blog serv-
ice using only traditional ASP.NET constructs. Chapter 7, “Building REST
Services Using ASP.NET MVC Framework,” introduces you to the
ASP.NET MVC framework and shows how implementing a RESTful serv-
ice might differ from traditional ASP.NET when you have the MVC frame-
work to rely on. Of course, no .NET book discussing RESTful technologies
would be complete without digging into the nuts and bolts of WCF, and
Chapter 8, “Building REST Services Using WCF,” does just that.

The final chapter, Chapter 9, “Building REST Services Using Azure
and.NET Services,” shows how you would combine cloud computing
with RESTful services to accomplish tasks that otherwise would be nearly
impossible. In this case the sample application demonstrates a comment
service you can execute from behind your firewall on your private net-
work. Your service will reach out and allow other people over the Internet
who are working behind their firewalls to work with your service.

Preface xxvii

We then provide three appendixes we hope you’ll find helpful. The
first, Appendix A, “.NET REST Architectural Considerations and
Decisions,” discusses some of the architectural aspects and why you might
choose a particular .NET technology over another. Appendix B, “HTTP
Response Codes,” discusses each of the possible HTTP response codes and
in particular what they mean to RESTful services and clients. And, finally,
Appendix C, “REST Best Practices,” tries to provide some concise guid-
ance for creating RESTful services.

Let’s face it. When it comes to writing effective software, the more you
know, the more effective your software will be. Although we don’t assume
that you’re the world’s foremost expert on writing ASP.NET applications,
we do believe you’ll have some real-world .NET experience before read-
ing this book. We’re going to be working at some of the lowest levels of
HTTP, IIS, and even ASP.NET, so some familiarity with each of these is a
plus. But neither is this book a 1,000-page monster, so if there are bits and
pieces you’re not so familiar with, there should be plenty here to introduce
you to concepts and techniques you’ll find useful in your daily work.

Finally, we’ve set up a Web page in addition to the publisher’s page
where you can send comments and questions directly to us. If anyone
(gasp!) finds…inconsistencies…in our sample software, we’ll post
updated code there for you to download. Interesting and informative tid-
bits might find their way there as well, time permitting. Both authors earn
their living writing software just as you do, and we’re every bit as busy as
you are making ends meet with the world economy the way it has been in
the latter part of 2008. But both authors love this architectural concept and
are committed to helping you understand and use it as well. So if interest-
ing and informative things come up, we’ll put them on the book’s Web
page:

www.endurasoft.com/rest.aspx

Prefacexxviii

www.endurasoft.com/rest.aspx

7
Building REST Services Using
ASP.NET MVC Framework

I N CH A P T E R 6 we created a basic RESTful service using bare-bones
ASP.NET techniques such as implementing an HTTP handler that rep-

resents our service. Interestingly, this isn’t far from what happens with the
ASP.NET MVC framework, but we don’t look at it quite that way. More-
over, we gain some niceties revolving around URL routing and controller
action invocations.

The ASP.NET MVC Framework

In mid-2007 or so, Microsoft introduced a new way to build ASP.NET appli-
cations that is based on the classic model-view-controller (MVC) design
pattern. Although we could argue whether it fits the true MVC pattern or
the more contemporary front controller pattern, the idea is that the tradi-
tional Web Forms method of creating Web pages is replaced by a frame-
work that is actually based on RESTful principles. If you’ve not tried the
ASP.NET MVC framework, it is available for download from this URL:
http://www.asp.net/mvc

245

http://www.asp.net/mvc

Traditional Web pages are rooted in disk files, and the representation
they offer is the rendered HTML that comes from either the HTML stored
in the file or, in the case of ASP.NET, the page offered up by the ASP.NET
��!���':
�/P�.�&/+. Consider what happens when you enter a URI such
as the following:

)�����<<<�.&'�&�&�.&	���C��
����,

Here, ASP.NET receives the incoming request and shuttles it to the
��!���':
�/P�.�&/+. ��!���':
�/P�.�&/+’s job is to locate the compiled
code that represents the requested page. This code, based on 1�����':
�/,
then passes through a series of what amounts to workflow steps to render
the HTML that is ultimately returned to the client. In the end, though,
whether the client requests an HTML page or an ASP.NET page, the URI
they use targets a resource that (typically) resides in a specific file on disk.
And if you’re using ��!���':
�/P�.�&/+, the representation the client will
receive is HTML or some dialect of HTML, like XHTML.

The ASP.NET Web Forms model uses two files most of the time. The first
file is a markup file that contains basic HTML and ASP.NET-specific
markup that indicates which controls the page handler will instantiate and
otherwise manipulate. The second file is called the “code-behind” file (or
sometimes “code-beside”), and it contains programming logic in your
choice of .NET language. As far as it goes, this page mechanism is fine and
it works. But there is a tight coupling that exists between the markup and
the logic that drives the page since the markup and code-behind pages are
closely related. This doesn’t separate the view from the logic behind the
view, which causes difficulties when considering such things as automated
unit testing or test-driven design, or even when trying to inject standard
practices like separation of concerns. Although much can be done by devel-
opers to mitigate this tight coupling, in practice most development teams
don’t (or can’t) make the investment because it is not self-evident, and it
requires planning, training, and code review to ensure consistent imple-
mentation. Ironically, these techniques involve separating the data, the user
interface, and the manipulation of that user interface—which in itself is a
form of MVC.

Moreover, ASP.NET had received negative comments from time to time
from some in the developer community due to the way the Web Forms

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework246

page is rendered. These developers consider the Web Forms page render-
ing process to be “heavy,” meaning it takes too long and requires too much
server resource to render a simple page. Authoring and rendering ASP.NET
controls isn’t a simple process either, and at times scalability can be
impacted. In addition, the Web Forms model is inherently stateful, using
information caches such as view state, control state, and even the easy-
to-access session state. It’s entirely too easy to get yourself into trouble
when implementing a Web site with more complexity than simple content
pages.

The ASP.NET MVC Framework 247

NOTE

It isn’t my intention to argue the merits or demerits of either ASP.NET
platform here. In my opinion both Web Forms and ASP.NET MVC are
good and have beneficial uses. To me it’s more a matter of selecting the
proper tool for the job. Web Forms are more resource-centric whereas
ASP.NET MVC is more action-centric. Web Forms give you some pro-
gramming niceties, because view state isn’t necessarily a bad thing at
times, whereas ASP.NET MVC allows you to program “closer to the
metal.”

I also found the MVC framework to be a wonderfully RESTful plat-
form, but I understand Microsoft doesn’t necessarily agree with this
sentiment, preferring for developers to instead use Windows Com-
munication Foundation services. The ASP.NET MVC framework is a
terrific platform on which to build RESTful solutions using the very
constructs the framework itself provides, but I also understand
Microsoft’s position. In practice, I think you should decide for yourself
based on your application’s requirements. I wouldn’t hesitate to create
a RESTful solution based on ASP.NET MVC if that best fit my applica-
tion’s needs.

The ASP.NET MVC framework was created to address these issues, and
you can download the framework as well as learn much more about it at
http://asp.net/mvc. The ASP.NET MVC framework is built using a mod-
ified version of the venerable model-view-controller pattern, the original
concept for which is shown in Figure 7.1. Although you won’t find this fig-
ure in the original source material, the idea Figure 7.1 embodies comes from

http://asp.net/mvc

the original source, which you can find at http://heim.ifi.uio.no/
~trygver/1979/mvc-1/1979-05-MVC.pdf. I used the word “modified” only
because when creating a new ASP.NET MVC project, you’re given sample
views and controllers. However, any model creation is up to you, so imple-
menting the feedback to the view is therefore also up to you to implement
should you choose to do so.

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework248

View

Controller

Model

User interacts
with the view

Invoke action
on controller

Perform task,
interact with
Model

New View?
Create new
model-view-
controller set

Notify view of
changes

Figure 7.1: Original model-view-controller pattern

NOTE

If you’re wondering about the feedback line on the right side of the
diagram (as I was for a long time), it comes from the definition of the
view in the aforementioned reference. Other patterns, like the model-
view-presenter (and more contemporary patterns based on MVC, like
the front controller pattern of which the ASP.NET MVC framework is
built around) often seek to address things such as this direct model-
view feedback or provide for other pattern optimizations.

http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf

The model-view-controller pattern was revolutionary in the sense that it
clearly separated the user interface–specific rendering (the view) from the
logic that drives what is shown. User actions, such as button clicks, are
passed from the view to the controller, which will either create a new
model-view-controller set (such as when redirecting to a different Web
page) or interact with the model, which is where both the application logic
and the data access reside.

The ASP.NET MVC framework relies on the ;/
�&��3'!$&:�
� to
shuttle Web server requests to the $5.�����':
�/, which then interprets
the requested URL and activates the appropriate controller. Controller acti-
vation is therefore ultimately based on the URI, and a controller action
(method) is activated instead of directly targeting a disk-based resource. At
its very core, the ASP.NET MVC framework is based on RESTful principles!

In fact, think back to the preceding chapter. Remember the virtual
nature of the service I created? The A
&!��/53.��didn’t actually exist as a
���, or ���), file but rather was created and registered through the use
of ;/3��	
�����F
�. By adding items to the ;/3��	
�����F
� and then
later checking the incoming URI against the preregistered URIs the service
would accept, the service could discern valid URIs, at least from the serv-
ice’s point of view. It could then also dispatch the processing of those URIs
along with matched information, such as the parsed F
&!1�.

This is very similar to the mechanisms I just described when looking at
the ASP.NET MVC framework. The framework provides a more
programmer-friendly and standardized way to execute your own code (the
A
&!��/53.� is fully custom, after all), but the process for accessing
resources is very, very similar in both cases. Let’s now look at some MVC
framework details.

URL Routing
The URL routing module is driven by “mapped routes,” which are URIs
you specify and couple to a specific controller. This process is much like
setting up the ;/3��	
�����F
� in the preceding chapter. Here is the
route map for the default route when you create a brand-new MVC Web
application:

The ASP.NET MVC Framework 249

/&�����$��&���7
?��C��
�?�
?H.&'�/&

�/J�H�.�3&'J�H3:J?�
'�<�H�.&'�/&

�/�0�?�&	�?���.�3&'�0�?1':�,?��3:�0�??�J

8-

��C��
� is the name of the route, and you can imagine that this is used as
a key in a route table (undoubtedly a dictionary object). The value H.&'�
�/&

�/J�H�.�3&'J�H3:J is the “designed” URI, which essentially says this
mapped URL will be activated like so:
http://servername/virtualdirectory/controller/action/id
If no controller is specified, it will default to �&	�%&'�/&

�/. The MVC
framework will take the value placed in the route map, �&	�, and auto-
matically concatenate the word %&'�/&

�/ to look up the appropriate con-
troller class in the %&'�/&

�/� folder, which in this case is �&	�%&'�/&

�/.
If no action is specified, the MVC framework will examine the �&	�%&'�
�/&

�/ class for a method named 1':�,. However, if the URI
http://servername/virtualdirectory/Home/About
is used, then the MVC framework will invoke the F&�� method contained
within the �&	�%&'�/&

�/.

In both sample URLs there was no 3: value. None was specified in the
URL, and the 1':�, and F&�� methods contained within the �&	�%&'�
�/&

�/ have no parameters to deal with it since none is expected for those
actions. However, if you created a blog and provided an action that listed
pages in your blog, the 3: value could become the page number:

�F
3.� .�3&'����
����!�71'�#��3:8
H

���
J

In this case, the URL for page 3 of your blog would be this:
http://servername/virtualdirectory/Home/Page/3
The �&	�%&'�/&

�/’s ��!� method would be invoked and passed the
value # as the 3: parameter. You’d then process the page number using
whatever logic makes sense for locating and displaying the desired view.

There is a special case this chapter’s service takes advantage of when it
registers the RESTful service URI with the URL routing framework, and
that is the parameter wildcard. If your application has the specific pattern

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework250

the default route maps for you, which is controller, action, and then ID, the
default route works fine. But if your application might have a URI that
varies, you could map your route using the wildcard and decide what to do
when your controller is invoked. Here’s an example:

/&�����$��&���7
?9�/3�F
�;�1?�
?H$+%&'�/&

�/J�HN.&'��'�;/3J?�
'�<�H�.&'�/&

�/�0�?$+%&'�/&

�/?���.�3&'�0�?��/53.��������?�J

8-

This URI is registered using the 9�/3�F
�;�1 name, but it can be acti-
vated using an infinite number of URIs, all of which map to $+%&'�/&

�/’s
��/53.�������� action method. The remainder of the URI is provided to
the ��/53.�������� method as a string parameter. You’d use this if you
simply can’t define the URI for all possible client invocations or your URI
will vary. Later in the chapter I’ll show you how to register a new route in
the route map.

Controller Actions
Note that the ��!� method shown previously returns something known as
an .�3&'����
�. You might imagine an .�3&'����
� returning some ren-
dered HTML value, but in fact an .�3&'����
� is simply an abstract class
defined as such:

�F
3.��F��/�.��.
���� .�3&'����
�
H

/&��.��:� .�3&'����
�78-

�F
3.��F��/�.��5&3:��,�.�������
�7%&'�/&

�/%&'��,��.&'��,�8-
J

Several concrete .�3&'����
� classes are shipped with the ASP.NET MVC
framework, including 93�<����
�, which is returned from the controller’s
93�< method (I’ll discuss this in a bit more detail in a following section),
��:3/�.��&�&�������
�, and ��/�3�
93�<����
�. Of course, nothing says
you can’t create your own, and I did exactly that when creating the REST-
ful service for this chapter. (And of the six cases the service handles, only
one of those cases returns HTML to the client.)

The ASP.NET MVC Framework 251

As I alluded to earlier in the chapter, URIs are mapped to controller
actions (not disk files as with traditional ASP.NET). Controller actions are
implemented by methods hosted by your controller classes that return
 .�3&'����
� values. The behavior of the controller action in most cases
would be to spin up a ���, page (the view), but though this is common,
it isn’t required. Your controller can take other actions, depending on your
application’s needs.

Accepting HTTP Methods
A nice feature of the ASP.NET MVC framework is the capability to sepa-
rate controller actions based on HTTP method. That is, you can specify one
controller action for HTTP ��� and another for ����, �;�, ��(���, or what-
ever. Coupled with this concept is the capability to overload the naming of
the methods from the framework’s point of view. This is a great feature for
RESTful services in which you generally support more than HTTP ���.

Let’s look at an example. Here is a valid URI for this chapter’s sample
service, %&:���%:

)��������/5�/'�	��53/���
:3/�.�&/+�%&:���%

You can imagine %&:���% as a simple-minded source code repository. If a
client accessed this URI, to determine what to do, you would need to exam-
ine the HTTP method. If it was �� �, you would do one thing. If it was ���
or ����, you would do another. To accomplish this, you would probably
write code that used a switch statement using the HTTP Method to decide
what to do:

�F
3.� .�3&'����
��1':�,78
H

�<3�.)�7�)3�����%&'��,�������������$��)&:��&(&<�/788
H

.����?)��:?�
����&�������� �
/���/'��3���.)���:78-

.����?!��?�
����&���������
/���/'��3���.)���78-

.����?��?�
����&�������;�
/���/'��3���.)���78-

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework252

.����?&��?�
����&����������
/���/'��3���.)�&��78-

.����?:�
���?�
����&��������
���
/���/'��3���.)��
���78-

:�C��
��
���;'K'&<'�	��)&:��/&.�����//&/
F/��K-

J

����/&.�����//&/
�3���.)�//&/$��)&:6&�

&<�:78-

J

In fact, this is precisely what you saw in the preceding chapter. It’s another
example of a dispatch table in which the appropriate service handler is
invoked based on HTTP method. It’s also very much “boilerplate” code
that could be rolled into a framework, and that’s exactly what was done in
ASP.NET MVC.

But then we have an issue. We can’t have identically named methods
with identical method signatures. If the framework can route actions to a
controller based on HTTP method, then there has to be some way to over-
load the name of the method so that we don’t have syntactical errors. That
is, we can’t have this situation:

���������� �>
�F
3.� .�3&'����
��1':�,78
H

���
J

�����������>
�F
3.� .�3&'����
��1':�,78
H

���
J
���
����������(���>
�F
3.� .�3&'����
��1':�,78
H

���
J

The ASP.NET MVC Framework 253

Clearly this won’t compile, but this is exactly the situation we would
have since a single URI serves all HTTP methods (keeping the original serv-
ice URL in mind: https://servername/virtualdirectory/CodeXRC).

It’s for this reason the ASP.NET MVC framework coupled the ability to
handle different HTTP methods with different controller actions using an
aliased name. The ..��9�/F� and .�3&'6�	� attributes cleanly disam-
biguate the HTTP method and aliased name:

���������� �
Q ..��9�/F�7?�� �?8R
Q .�3&'6�	�7?1':�,?8R
�F
3.� .�3&'����
���/&.������:78
H

���
J

�����������
Q ..��9�/F�7?���?8R
Q .�3&'6�	�7?1':�,?8R
�F
3.� .�3&'����
���/&.������78
H

���
J
���
����������(���
Q ..��9�/F�7?��(���?8R
Q .�3&'6�	�7?1':�,?8R
�F
3.� .�3&'����
���/&.�����
���78
H

���
J

In this case I’ve rewritten the previous example to show the proper tech-
nique. From a URI perspective, the controller action is always 1':�,. But
the true controller action to be invoked will depend on the HTTP method
used to invoke the action. If the HTTP ��� method is used, the �/&.������
action is invoked, and so forth.

This chapter’s sample RESTful service makes heavy use of this new fea-
ture, and I’d expect that many services will do so over time as well.

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework254

https://servername/virtualdirectory/CodeXRC

Views
Although this book isn’t about building Web sites using ASP.NET MVC, I
thought a paragraph or two that describes how the views are handled is
appropriate since I’m introducing the framework.

The ASP.NET MVC Framework 255

NOTE

You’ll find that I didn’t make use of the view capability in the chapter’s
sample application. Perhaps I should have. I certainly could have. I
just found it more convenient to take the notion of a controller “action”
literally and have the controller address the service request. The point
was not to render a “view” but to respond to a call for action, even if
that action results in rendered HTML. Had I been building Web pages,
I would have done things differently. (If you disagree with my imple-
mentation, that’s fine. When you build your own services, by all means
follow your own interpretation of the pattern.)

The ASP.NET MVC framework uses a folder (conventionally) named
93�<� to contain all the views, with views associated with a particular con-
troller in a subfolder named after the controller. Views associated with the
�&	�%&'�/&

�/, for example, are found in the �&	� folder, which is a child
folder of 93�<� in the main application directory. If all you ever do is invoke
the view associated with the action, the MVC framework will automatically
select the view named for the action. For example, the default �&	�%&'�
�/&

�/ has an F&�� action that invokes the F&�� view in the �&	� folder
of the 93�<� Web application directory. This code does that job, with the
MVC framework’s help:

�F
3.�.
�����&	�%&'�/&

�/���%&'�/&

�/
H

���
�F
3.� .�3&'����
�� F&��78
H

93�<����Q?�3�
�?R�0�? F&�����!�?-

/���/'�93�<78-
J

J

The F&�� action returns a 93�<����
� from the controller’s base 93�<
method, which implements the algorithm I mentioned for locating the
default view for the action. And as you recall, 93�<����
� is derived from
 .�3&'����
�.

However, you might want to use another view, and as it happens the
controller’s base 93�< method is overloaded, allowing you to select other
views based on name. One I find myself using a lot is this overloaded
version:

/&��.��:�3'��/'�
�93�<����
��93�<7��/3'!�53�<6�	���&FO�.��	&:�
8-

With this overloaded version, you provide the name of the view you would
rather invoke as well as some page-specific data the view can access
through its 93�<���� property (specifically 93�<�����$&:�
). Perhaps you
have one view that’s based on a data grid and another based on a chart.
Using this overloaded 93�< method, you can select the most appropriate
view based on your application’s needs.

You also can redirect to another page entirely. The simplest way is to use
the controller’s ��:3/�.� method, which returns a ��:3/�.� .�3&' object.
But other redirect methods exist, such as ��:3/�.��& .�3&' and ��:3/�.��

�&�&���. Of course, these allow you to redirect to a different controller
action or mapped route.

The Model
In MVC terms, the model is where you place your data access layer and any
application-specific business logic. When you create a brand-new ASP.NET
MVC Web application, the project wizard creates controllers and views for
you as starter code. But no model is created—only a subdirectory is created
for you within which you place model code. Nearly all the %&:���% serv-
ice functionality is implemented in classes that are housed in the model
folder, and you’ll find this is typical for MVC-style applications.

ASP.NET MVC Security
ASP.NET MVC incorporates the notion of an ��)&/3L� attribute and the
 ..&�'�%&'�/&

�/ class. Imagine a controller that looks something
like this:

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework256

�F
3.�.
����$+%&'�/&

�/���%&'�/&

�/
H

���
Q ��)&/3L�R
�F
3.� .�3&'����
���&�&	��)3'!78
H

���
J

J

The ��)&/3L� attribute causes the ASP.NET MVC handler to look for a
controller named ..&�'�%&'�/&

�/ and invokes its (&!3' action. The
(&!3' action, and the ..&�'�%&'�/&

�/ for that matter, are designed to
work with the ASP.NET Forms Authentication module. Therefore, (&!3'
and ��!3���/ generate an authentication cookie, (&!&�� destroys the
cookie, and everything else the account controller does favors the Forms
authentication process in ASP.NET.

After seeing the additional work ASP.NET MVC offered, which was to
wrap access to the Forms authentication services (or at least a couple of
them) behind a custom interface, I thought it would be useful to try to work
the HTTP Basic Authentication module from the preceding chapter into the
MVC framework. But the simple truth is that given the module from the
preceding chapter, the entire concept behind the ..&�'�%&'�/&

�/, or at
least the Forms authentication parts of it, aren’t needed.

With Forms authentication, navigating between secured pages is accom-
plished using the ASP.NET security cookie. The Forms Authentication
module looks for the cookie, and if it’s present and valid when accessing
secured resources, the Forms Authentication module allows the secured
page to render. The ��)&/3L� attribute controls which actions are secured.

HTTP Basic Authentication, however, doesn’t use a cookie. In fact, this
is what makes it so appealing to RESTful services. The client needs to cache
the credentials and offer them to the Web server each time access to a
secured resource is desired. Modern Web browsers all do this for you, and
most (if not all) of the sample desktop applications in this book will also
cache the credentials for you if you choose so that each service access
doesn’t force reauthentication.

In the end, I simply copied the module from the preceding chapter into
this chapter’s sample application, changed the namespaces involved, and

The ASP.NET MVC Framework 257

made the necessary adjustments to the <�F�.&'C3! file, and the HTTP Basic
Authentication worked tremendously well. Since I didn’t require the
 ..&�'�%&'�/&

�/, I deleted it and the views associated with it, knowing
that the browser itself would query me for my credentials—I don’t need a
“login” page for that. True, I also then dismissed the registration and pass-
word change request pages, but there is some merit for brevity when pro-
ducing chapter samples.

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework258

NOTE

I also can’t use the spectacular ��)&/3L� attribute, but I found I didn’t
need it with the custom authentication module. If I were producing a
traditional MVC Web application, one based on views, I’d embrace
these new ASP.NET MVC tools—the account controller and security
attribute—but for a truly RESTful service that requires HTTP Basic
Authentication, I discovered they’re just not the right tools for the job.

Building an MVC RESTful Service—�	��-/�

With this understanding of the basic ASP.NET MVC framework, it’s time to
actually build a RESTful service that relies on the framework for basic oper-
ations. This service, unlike the blog service in the preceding chapter, won’t
create an �����':
�/ to service the RESTful requests but will instead be
based on controller actions that are activated by the specific service URI
mapped in the URL routing table.

To show a service that did more than produce “Hello, World!” I decided
to implement the basis of a source code vault, or perhaps a cloud-based file
system. The idea behind this is that you select files on your local hard drive
and store them in this secured service. This is an aggressive service for the
schedule I had to work with, but though it was becoming more complex the
further I got into development, I was more convinced it made for a great
chapter sample because it addresses many interesting RESTful concepts.
These will be evident when I discuss the URI design.

I named the service %&:���%, the “XRC” part having no particular mean-
ing except it isn’t copyrighted as far as I could tell. (I don’t want to upset the
publisher’s legal staff.) The URIs for the service are designed like so:

• Add/update a project: �;� to �%&:���%

• Add/update a project (alternate): �;� to �%&:���%�H/&O�.�J

• Add/update a project folder: �;� to �%&:���%�H/&O�.�J�HC&
:�/J

• Add/update a file: �;� to �%&:���%�H/&O�.�J�HC&
:�/J�H�,�J�

HC3
�J

• Delete all projects: ��(��� to �%&:���%

• Delete a project: ��(��� to �%&:���%�H/&O�.�J

• Delete a folder: ��(��� to �%&:���%�H/&O�.�J�HC&
:�/J

• Delete files by extension: ��(��� to �%&:���%�H/&O�.�J�HC&
:�/J�

H�,�J

• Delete a file: ��(��� to �%&:���%�H/&O�.�J�HC&
:�/J�H�,�J�

HC3
�J

• Get all projects (high level): ��� to �%&:���%

• Get a project (all folders/files): ��� to �%&:���%�H/&O�.�J

• Get a folder: ��� to �%&:���%�H/&O�.�J�HC&
:�/J

• Get files by extension: ��� to �%&:���%�H/&O�.�J�HC&
:�/J�H�,�J

• Get a file: ��� to �%&:���%�H/&O�.�J�HC&
:�/J�H�,�J�HC3
�J

• Get statistics/headers: �� � to a valid service URI

Building an MVC RESTful Ser vice—�	��-/� 259

NOTE

Although not provided with this chapter’s sample application, the
ASP.NET MVC framework is perfectly suited for creating test-driven
design (TDD) applications. Creating applications using test-driven
techniques tends to reduce the number of latent bugs and increases
code maintainability.

This complex-looking set of URIs really amounts to simulating a file sys-
tem using REST (see Figure 7.2).

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework260

Folder

Folder

Folder

FolderProject

File

…

File

File

File

Folder

Figure 7.2: %&:���% project storage

The files are stored on the server’s file system in the hierarchy shown in
Figure 7.2, but there is also a database associated with the service to main-
tain ownership of the projects and files as well as foreign key relationships
for searching and deletion. Users are registered using a process not pro-
vided with the service, but when they’re registered their account informa-
tion is stored in the typical ASP.NET tables contained within the database.
Projects are owned by the registered users and are identified by their user
ID, which is a ��3:. Roles are also maintained: View, Insert, and Delete. At
present the service allows you to access only your own projects, but it
would be a relatively easy extension to add View capabilities to projects not
your own.

Creating the URL Mapping
With the URI set defined for the service, the place to start is with the URL
routing table and mapping. To do this, you open the �
&F�
����,�.� file
and look for the ��!3���/�&���� method. There, you’ll see the default route
mapped into the route table (this is created for you by the Visual Studio
MVC application wizard). Add this code just before the default route:

�����!3���/��)������C�
���/53.��;�1����'&����)3��N$;��N
���.&	��F�C&/���)��:�C��
��;�1�	�3'!�&/�+&�Z

������3'
���I�I��//&/��3C��)��;�1�:&��'Y��	��.)��)��:�C��
�
���	�3'!�
/&�����$��&���7

?%&:���%?�
?%&:���%�HN.&'��'�;/3J?�
'�<�H�.&'�/&

�/�0�?%&:���%?���.�3&'�0�?��/53.��������?�J

8-

Of course, this looks a lot like the mapping I discussed previously in the
chapter, and given the variable nature of the URI set, you can probably see
why I opted for the wildcard approach.

Building an MVC RESTful Ser vice—�	��-/� 261

NOTE

You could individually map each URL segment and apply a default, as
is done with the Default URL route map, but I chose to simplify the
action signatures and parse the URI manually.

When requests come into the server designated for the %&:���% service,
the %&:���%%&'�/&

�/ will be called on to take the appropriate action. As
is proper for the ASP.NET MVC framework, the %&:���%%&'�/&

�/ is
located in the Web application %&'�/&

�/� folder.

The �	��-/��	
� 	""�
The %&:���%%&'�/&

�/ contains four actions, one for each HTTP method
the service handles: HTTP �� �, ���, �;�, and ��(���. Each action is
adorned with the appropriate ..��9�/F� and .�3&'6�	� attributes. The
�� � action is shown in Listing 7.1.

Listing 7.1: The %&:���%%&'�/&

�/ HTTP �� � action

Q ..��9�/F�7?�� �?8R
Q .�3&'6�	�7?��/53.��������?8R
�F
3.� .�3&'����
�����:�������7��/3'!�.&'��'�;/38
H

���P3
��/��)�����/+���/3'!��':�/�	&5���'+��/�3
3'!�Y�Y��&
���<��:&'Y��)�5���'��,�/���//�+��
�	�'��
.&'��'�;/3�0�P3
��/;/37.&'��'�;/38-

continues

Listing 7.1: Continued

�����5���)��;�1��/�	���/�
��/3'!QR�:3/�.�35���0�'�

-
3C�7S��/3'!�1�6�

�/�	�+7.&'��'�;/388
H

:3/�.�35���0�.&'��'�;/3��
3�7Y�Y8-
J

����������&�����	&/�/+���/��	
$�	&/+��/��	���/	�0�'�<�$�	&/+��/��	78-
�)3�����%&'��,��1��	�� ::7?�������/��	?����/	8-

�����':
���)��/������
%&:���%�����/53.��/���
��0�'�<�%&:���%�����/53.�7:3/�.�35�����/��8-
/���/'�/���
�-

J

In Listing 7.1 you can see that the controller action is named ���:�
�������, but because I applied the .�3&'6�	� attribute, the ASP.NET MVC
framework will route the action as if it were named ��/53.��������, which
matches the name of the action I registered in �
&F�
����,�.�. And since
the ..��9�/F� attribute lists only HTTP �� � as the accepted HTTP
method, this action is called only for �� � requests.

The parameter .&'��'�;/3 will contain anything on the query string
past the controller name. That is, if the client issued a request to the URI
http://servername/AspNetMvcRestService/CodeXRC/Project1/Folder2/
cs/CodeFile3
the .&'��'�;/3 parameter would contain the string �/&O�.���P&
:�/��.��
%&:�P3
�#.

To decide what parameters are present, the .&'��'�;/3 string is split
using the slash as the delimiter. However, I filter the string first to remove
a trailing slash. This prevents a phantom entry in the resulting string array.
That is, this URI would result in three parameters after the string split:
http://servername/AspNetMvcRestService/CodeXRC/Project1/Folder2/
In reality, though, only two parameters are present: �/&O�.�� and P&
:�/�.
The third entry in the string array would be an empty string, present only
because of the trailing slash. By removing the slash, the service doesn’t
need to check for empty parameter elements in the parameters string array.

In the case of HTTP �� �, the service will perform all the normal ���
processing. However, the stream the information is written to will differ for

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework262

the other HTTP methods. For example, ��� will use the actual output
stream, thus sending a response to the client. �� � will use a temporary
stream, allowing the service to determine the size of the stream so that the
appropriate %&'��'��(�'!�) header can be returned to the client. The out-
put stream to use is assigned a slot in the ���%&'��'� 1��	� collection so
that it won’t need to be passed around as a separate method parameter in
all the internal processing methods.

The request is handled by a class that derives from .�3&'�������:
%&:���%�����/53.�. As you might imagine, there are corresponding serv-
ice classes for �;� and ��(��� as well. Since ��� and �� � are closely related,
a single service class handles both HTTP methods. Something to keep in
mind is that the response output stream is not seekable, meaning we can’t
query its length. It would have been nice to simply write to the appropri-
ate stream and just query the stream length, but unfortunately the response
output stream throws an exception when you access its (�'!�) property.
This means you have to ask the question “Is this a �� � request?” If so, then
(and only then) should you access the stream’s (�'!�) property and create
the %&'��'��(�'!�) header. I use the stream’s %�'���K property for that.

In contrast, the HTTP �;� method service controller action is shown in
Listing 7.2.

Listing 7.2: The %&:���%%&'�/&

�/ HTTP �;� action

Q ..��9�/F�7?�;�?8R
Q .�3&'6�	�7?��/53.��������?8R
�F
3.� .�3&'����
������������7��/3'!�.&'��'�;/38
H

���P3
��/��)�����/+���/3'!��':�/�	&5���'+��/�3
3'!�Y�Y��&
���<��:&'Y��)�5���'��,�/���//�+��
�	�'��
.&'��'�;/3�0�P3
��/;/37.&'��'�;/38-

�����5���)��;�1��/�	���/�
��/3'!QR�:3/�.�35���0�'�

-
3C�7S��/3'!�1�6�

�/�	�+7.&'��'�;/388
H

:3/�.�35���0�.&'��'�;/3��
3�7Y�Y8-
J

����������&��)���/���/��&'�����/��	
�)3�����%&'��,��1��	�� ::7?�������/��	?�

�)3�����%&'��,�����&'����������/��	8-

Building an MVC RESTful Ser vice—�	��-/� 263

continues

Listing 7.2: Continued

�����':
���)��/������
%&:���%�����/53.��/���
��0�'�<�%&:���%�����/53.�7:3/�.�35��8-
/���/'�/���
�-

J

I’ve included the ���������� method here only to highlight the differ-
ences: the HTTP method it accepts is �;�, the controller action is actually
��/53.�������� even though the controller method is called ����������,
the stream to be used for the response is the true output stream (versus a
temporary one), and the �;� behavior is exhibited by the %&:���%���
��/53.� class. Otherwise, the request handling for each HTTP method is
similar at the controller level.

�	��-/��Service Classes
All the %&:���% service classes use .�3&'����
� as their base class. In fact,
there is a single %&:���% service base class, %&:���%��/53.�A���, that is
used to maintain instances of the URI parameters (which I called “direc-
tives” because they direct the service), the data access component, and an
auxiliary component that sports helper methods for supporting error
responses and such. This base class is shown in Listing 7.3.

Listing 7.3: The %&:���%��/53.�A��� class

�F
3.�.
����%&:���%��/53.�A������ .�3&'����
�
H

/&��.��:�%&:���% �,��/53.���G��,�0�'�<�%&:���% �,��/53.��78-
/&��.��:�%&:���%���� ..����G:�
�0�'�<�%&:���%���� ..���78-
/&��.��:���/3'!QR�G:3/�.�35���0�'�<���/3'!Q�R-

�F
3.�%&:���%��/53.�A���78
H
J

�F
3.�%&:���%��/53.�A���7��/3'!QR�:3/�.�35��8
H

���(���/�
&!3.�:��':��&'��)3��'&��F�3'!
���'�

��5�'�3C�3��)���'&��
�	�'���
3C�7:3/�.�35���S0�'�

8
H

��� ��3!'�5�
��
G:3/�.�35���0�:3/�.�35��-

J

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework264

J

�F
3.��F��/�.��5&3:��,�.�������
�7%&'�/&

�/%&'��,��.&'��,�8-
H

����3��

&<�F����3	
�	�'���3&'���'&���+&��.�'Y��	�K�
����)3���F��/�.���3'.���)3��.
����3��3���
C�:�/35�:��':
����)3��	��)&:�&5�//3::�'�
�)/&<�'�<�6&�1	
�	�'��:�,.��3&'7
?\&��	����&5�//3:���)��F�����,�.�������
��3	
�	�'���3&'�?8-

J
J

Since all the derived classes need to use the data access component, the
auxiliary helper method component, and the directives, it made sense to
collect that in a base class.

Returning HTML, XML, and JSON

The services themselves are broken out into “get,” “put,” and “delete” ver-
sions, each handling the respective HTTP method. Each service method
handler also overrides the .�3&'����
� �,�.�������
� method. The
%&:���%�����/53.� implementation is shown in Listing 7.4. The other
implementations are similar.

Listing 7.4: %&:���%�����/53.���,�.�������
� method

�F
3.�&5�//3:��5&3:��,�.�������
�7%&'�/&

�/%&'��,��.&'��,�8
H

���������)�����/Y��./�:�'�3�
�
3C�7.&'��,�����%&'��,��;��/�1�1'�&
�7?93�<?88
H

�/+
H

3C�7.&'��,�����%&'��,���������� ..���+���%&�'�78�@��8
H

���(&&��)/&�!)��)��.&

�.�3&'�&C��..���:��+���
����)��C3/���&'��<��)3��<���':�/���':����K��3����
C&/��.)�7��/3'!��+��3'

.&'��,�����%&'��,���������� ..���+��8
H

�<3�.)�7�+���&(&<�/788
H

.����?��,��)�	
?�

.����?N�N?�
��':�/��	
7.&'��,�8-
/���/'-

Building an MVC RESTful Ser vice—�	��-/� 265

continues

Listing 7.4: Continued

.����?��,��,	
?�
��':�/�	
7.&'��,�8-
/���/'-

.����?�
3.��3&'�O�&'?�
��':�/V�&'7.&'��,�8-
/���/'-

:�C��
��
����/+�'�,��&'����
F/��K-

J
J

���%&�
:'Y���..����'+�/�������:��+�
G��,���':�/�//&/6&� ..���F
����7.&'��,�8-

J
�
��
H

���%&�
:'Y���..����'+�/�������:��+�
G��,���':�/�//&/6&� ..���F
����7.&'��,�8-

J
J
.��.)�7�,.��3&'��,8
H

���%&�
:'Y���..����'+�/�������:��+�
G��,���':�/�//&/1'��/'�
�//&/7.&'��,����,��&��/3'!788-

J
J
�
��
H

���;��/�C&/F3::�'
G��,���':�/�//&/P&/F3::�'7.&'��,�8-

J
J

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework266

NOTE

I am a fervent believer in application tracing, and for any Web appli-
cation I write, I put as much tracing into the code as possible. However,
for demonstration purposes here, I’ve omitted such code to focus
instead on the functional nature of the service itself. Tracing is critical
to debugging deployed Web applications and I heartily recommend
using it.

In Listing 7.4 you can see that the code begins by checking the client’s
role (the client was authenticated or this method wouldn’t be executing).
If the client has the appropriate role credentials, the method then checks the
desired return type: HTML, XML, or JSON. The default content type, N�N,
will return HTML. This allows browsers to view the contents of a project, as
shown in Figure 7.3. The chapter’s sample client will always provide the
service with an ..�� header containing just one accepted content type,
but because browsers often include many requested content types, the loop
allows the service to check the list of content types for the first one the serv-
ice has the capability of supporting.

Building an MVC RESTful Ser vice—�	��-/� 267

Figure 7.3: Browser REST service access

If you use the chapter’s Windows Forms sample client, you can interact
with the service in a greater variety of ways, including asking for the proj-
ect contents as XML, as shown in Figure 7.4.

After the desired return content type is determined, the code in Listing
7.4 then invokes the appropriate rendering method. Listing 7.5 shows you
how XML is rendered. I won’t show all the supporting methods because
there are many, and they often are recursive (and therefore complex) since
the methods often need to traverse directory structures. They’re also not
important to demonstrate how to create RESTful services using the

ASP.NET MVC framework, so I’ll leave spelunking their inner workings to
you. They’re just business logic, so to speak, and as such you’ll find them
all in the $&:�
� folder of the �6��$5.������/53.� Web application.

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework268

Figure 7.4: CodeXRC project contents as XML

Listing 7.5: The ��':�/�$(method

/35����5&3:���':�/�	
7%&'�/&

�/%&'��,��.&'��,�8
H

�����

��)�����/Y��1����)3��<&/K��)�/���3'.��<�Y/����3'!��)��
����X(�F���:�	�	F�/�)3�/&53:�/�
$�	F�/�)3;��/����/�0
$�	F�/�)3����;��/7.&'��,�����%&'��,��;��/�1:�'�3�+�6�	�8-

��3:�&<'�/1��0�7��3:8���/��/&53:�/;��/��+-

.&'��,�����%&'��,�����&'���%&'��'��+��0�?��,��,	
?-
�<3�.)�7G:3/�.�35���%&�'�788
H

.������
:�C��
��

���(3����

�/&O�.���C&/����/�
���)�����H)&��J�H5:3/J�%&:���%
��':�/�	
�/&O�.�(3��7.&'��,���&<'�/1�8-
F/��K-

.������
���(3�����.3C3.�/&O�.��C&/����/�
���)�����H)&��J�H5:3/J�%&:���%�H/&O�.�J
��':�/�	
�/&O�.�7.&'��,���&<'�/1���G:3/�.�35��Q�R8-
F/��K-

.������
���(3�����.3C3.�C&
:�/�C&/����/�
���)�����H)&��J�H5:3/J�%&:���%�H/&O�.�J�HC&
:�/J
��':�/�	
P&
:�/7.&'��,���&<'�/1���G:3/�.�35��Q�R�
G:3/�.�35��Q�R8-

F/��K-

.����#�
���(3���C3
���F+��,��'�3&'�C&/����/�
���)�����H)&��J�H5:3/J�%&:���%�H/&O�.�J�HC&
:�/J�H�,�J
��':�/�	
P3
��A+�+�7.&'��,���&<'�/1���G:3/�.�35��Q�R�
G:3/�.�35��Q�R��G:3/�.�35��Q�R8-

F/��K-

.����I�
�������/'���.3C3.�C3
���&����/�
���)�����H)&��J�H5:3/J�%&:���%�H/&OJ�HC&
:�/J�H�,�J�HC3
�J
��':�/�	
P3
�A+6�	�7.&'��,���&<'�/1���G:3/�.�35��Q�R�
G:3/�.�35��Q�R��G:3/�.�35��Q�R��G:3/�.�35��Q#R8-

F/��K-
J

��� ��3!'��)��.&'��'��
�'!�)��F���&'
+�3C��� ��
��/��	���/��	�0�.&'��,�����%&'��,��1��	�Q?�������/��	?R������/��	-
3C�7��/��	�S0�'�

�EE���/��	�%�'���K8
H

.&'��,�����%&'��,�����&'������:�/�Q?%&'��'��(�'!�)?R�0
���%&'��'�(�'!�)7.&'��,�8��&��/3'!78-

J
J

The methods to render HTML and JSON are similar. Actually, rendering
XML and JSON is easy using the ����%&'�/�.���/3�
3L�/ and ����%&'�

�/�.�V�&'��/3�
3L�/ objects, respectively. But the HTML is rendered by
hand (again, one could perhaps use a view for this or augment the XML
output with an XSLT reference, but I chose to keep the service logically con-
tained, for right or wrong). After the content is rendered, the stream is
examined for its length if the HTTP method was �� �.

An important aspect of returning a resource representation is creating
the links (remember hypermedia as the engine of application state). When
representations are created, a special class is used to generate the appro-
priate links, which are shown in Listing 7.6.

Building an MVC RESTful Ser vice—�	��-/� 269

Listing 7.6: The %&:���% link builder class

�F
3.�����3.�.
����%&:���%(3'KA�3
:�/
H

�F
3.�����3.���/3'!�A�3
:�/&O�.�(3'K7%&'�/&

�/%&'��,��.&'��,��
��/3'!�/&O�.�6�	�8

H
�����'�/�����)��
3'K�7/�	�	F�/�� ��� �8
��/3'!�C�

;/
�0�.&'��,�����%&'��,����������;/
��&��/3'!78-
��/3'!�F���;/
�0�C�

;/
���F��/3'!7���C�

;/
�1':�,�C7
.&'��,�����%&'��,����������
3.��3&'���)88-

/���/'���/3'!�P&/	��7?H�JH�J�%&:���%�H�J?��F���;/
�
.&'��,�����%&'��,����������
3.��3&'���)��/&O�.�6�	�8-

J

�F
3.�����3.���/3'!�A�3
:P&
:�/(3'K7%&'�/&

�/%&'��,��.&'��,��
��/3'!�/&O�.�6�	��
��/3'!�C&
:�/6�	�8

H
�����'�/�����)��
3'K�7/�	�	F�/�� ��� �8
��/3'!�C�

;/
�0�.&'��,�����%&'��,����������;/
��&��/3'!78-
��/3'!�F���;/
�0�C�

;/
���F��/3'!7���C�

;/
�1':�,�C7
.&'��,�����%&'��,����������
3.��3&'���)88-

/���/'���/3'!�P&/	��7?H�JH�J�%&:���%�H�J�H#J?��F���;/
�
.&'��,�����%&'��,����������
3.��3&'���)�
/&O�.�6�	���C&
:�/6�	�8-

J

�F
3.�����3.���/3'!�A�3
:P3
�(3'K7%&'�/&

�/%&'��,��.&'��,��
��/3'!�/&O�.�6�	��
��/3'!�C&
:�/6�	��
��/3'!�C3
��,��'�3&'�
��/3'!�C3
�6�	�8

H
�����'�/�����)��
3'K�7/�	�	F�/�� ��� �8
��/3'!�C�

;/
�0�.&'��,�����%&'��,����������;/
��&��/3'!78-
��/3'!�F���;/
�0�C�

;/
���F��/3'!7���C�

;/
�1':�,�C7

.&'��,�����%&'��,����������
3.��3&'���)88-
/���/'���/3'!�P&/	��7?H�JH�J�%&:���%�H�J�H#J�HIJ�H2J?��F���;/
�
.&'��,�����%&'��,����������
3.��3&'���)��/&O�.�6�	��
C&
:�/6�	���C3
��,��'�3&'��C3
�6�	�8-

J
J

The link builder class simply encapsulates the logic in a single place
that’s necessary to build valid URIs for the various resources.

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework270

Creating Resources with XML

The only representation the %&:���% service accepts for creating new
resources is XML, and the %&:���%�����/53.� �,�.�������
�method code
is shown in Listing 7.7.

Listing 7.7: %&:���%�����/53.� �,�.�������
� method

�F
3.�&5�//3:��5&3:��,�.�������
�7%&'�/&

�/%&'��,��.&'��,�8
H

���������)�����/Y��./�:�'�3�
�
3C�7.&'��,�����%&'��,��;��/�1�1'�&
�7?1'��/�?88
H

���D�Y

��..���&'
+��$(�C&/�./���3'!��:��3'!��
���/��&�/.���D��.&�
:��..���V��6����3
+��F����)3�
���3��)&<�+&�Y:�
3	3��3'�����&�����.3C3.��+��
3C�7.&'��,�����%&'��,����������%&'��'��+���&(&<�/78�00

?��,��,	
?8
H

���%/������)��3':3.���:�/��&�/.�
%/�������&�/.�7.&'��,�8-

J
�
��
H

���D��'Y���$(���
G��,���':�/�//&/6&� ..���F
����7.&'��,�8-

J
J
�
��
H

���;��/�C&/F3::�'
G��,���':�/�//&/P&/F3::�'7.&'��,�8-

J
J

The �,�.�������
� in this case checks for the appropriate role as well as
XML as the content type, but only to return an error if the indicated type
isn’t appropriate. Therefore, there is only one “create resource” method,
which is shown in Listing 7.8.

Listing 7.8: %&:���%�����/53.� %/�������&�/.� method

/35����5&3:�%/�������&�/.�7%&'�/&

�/%&'��,��.&'��,�8
H

�����

��)�����/Y��1����)3��<&/K��)�/���3'.��<�Y/����3'!�
����)���X(�F���:�	�	F�/�)3�/&53:�/�
$�	F�/�)3;��/����/�0

Building an MVC RESTful Ser vice—�	��-/� 271

continues

Listing 7.8: Continued

$�	F�/�)3����;��/7.&'��,�����%&'��,��;��/�1:�'�3�+�6�	�8-
��3:�&<'�/1��0�7��3:8���/��/&53:�/;��/��+-

.&'��,�����%&'��,�����&'���%&'��'��+��0�?��,��)�	
?-
�<3�.)�7G:3/�.�35���%&�'�788
H

.������
:�C��
��

���%/�������/&O�.��C&/����/�7<3

�F������.3C3.�/&O�.�8�
���)�����H)&��J�H5:3/J�%&:���%
%/�����/&O�.�7.&'��,���&<'�/1�8-
F/��K-

.������
���%/�������.3C3.�/&O�.��C&/����/�7�

�.)3
:�C&
:�/�
����':�C3
��8�
���)�����H)&��J�H5:3/J�%&:���%�H/&O�.�J
%/�����/&O�.�7.&'��,���&<'�/1���G:3/�.�35��Q�R8-
F/��K-

.������
�����
������.3C3.�C&
:�/�7�

�.)3
:�C&
:�/���':�C3
��8�
���)�����H)&��J�H5:3/J�%&:���%�H/&O�.�J�HC&
:�/J
%/����P&
:�/7.&'��,���&<'�/1���G:3/�.�35��Q�R�
G:3/�.�35��Q�R8-

F/��K-

.����#�
�����
����C3
���F+��,��'�3&'�3'���.3C3�:�C&
:�/�
���)�����H)&��J�H5:3/J�%&:���%�H/&O�.�J�HC&
:�/J�H�,�J
%/����P3
�A+�+�7.&'��,���&<'�/1���G:3/�.�35��Q�R�
G:3/�.�35��Q�R��G:3/�.�35��Q�R8-

F/��K-

.����I�
�����
������.3C3.�C3
��
���)�����H)&��J�H5:3/J�%&:���%�H/&OJ�HC&
:�/J�H�,�J�HC3
�J
%/����P3
�7.&'��,���&<'�/1���G:3/�.�35��Q�R��G:3/�.�35��Q�R�
G:3/�.�35��Q#R�M�?�?�M�G:3/�.�35��Q�R8-

F/��K-
J

J

The code in Listing 7.8 is somewhat similar to the code for retrieving a
resource representation in Listing 7.5. The URI is examined and the appro-
priate resource is created. Of course, there is no need to return a content

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework272

length, so that code is missing from Listing 7.8. The code to handle HTTP
��(��� is similar to the code shown in Listing 7.8, so I won’t show that here
either.

Returning Error Information

In the preceding chapter, error information was returned according to the
application’s error handling configuration. For this service, I chose to return
explicit error information as HTML I create at the point where the exception
is caught. The %&:���% �,��/53.�� class provides several error response
methods, with an example being the HTTP I�#� 7P&/F3::�'8 response
shown in Listing 7.9.

Listing 7.9: The %&:���% �,��/53.�� ��':�/�//&/P&/F3::�' method

�F
3.�5&3:���':�/�//&/P&/F3::�'7%&'�/&

�/%&'��,��.&'��,�8
H

.&'��,�����%&'��,�����&'���������%&:��0
71'�#�8���������%&:��P&/F3::�'-

.&'��,�����%&'��,�����&'���%&'��'��+��0�?��,��)�	
?-
��3'!�7��/��	D/3��/�<�/�0
'�<���/��	D/3��/77��/��	8.&'��,�����%&'��,��1��	�Q?�������/��	?R88
H

��/3'!A�3
:�/��F�0�'�<���/3'!A�3
:�/78-
�F� �':7?=)�	
@=)��:@=�3�
�@%&:���%=��3�
�@=�)��:@=F&:+@?8-
�F� �':7?\&���/��'&�����)&/3L�:��&��..�����)��/��&�/.��+&��?8-
�F� �':7?/�������:�=F/�@=�F&:+@=)�	
@?8-
<�/�D/3��(3'�7�F��&��/3'!788-
<�/�P
��)78-
<�/�%
&��78-

J
J

Other errors are handled in a similar manner.

The �	��-/� Data Access Layer

The service’s data access is provided by the %&:���%���� ..��� class. I per-
sonally generally prefer to provide data access service through an interface
and use a strategy pattern to load the appropriate data access component,
but here I keep the example simple and just deal with data access directly.

Listing 7.10 contains the data access code used to read the database and
return all the user’s projects.

Building an MVC RESTful Ser vice—�	��-/� 273

Listing 7.10: The %&:���%���� ..��� (3���/&O�.�� method

�F
3.�(3��=�/&O�.����@
(3���/&O�.��7%&'�/&

�/%&'��,��.&'��,�����3:�&<'�/1�8

H
������/3�5���

�/&O�.��
%&:���%����%
���������%&'��,��:���%&'��,��0
'�<�%&:���%����%
���������%&'��,�78-

5�/�/&O�.�X��/+�0�C/&	��3'�:���%&'��,���/&O�.��
&/:�/F+���/&O�.�1�
<)�/����<'�/1��00�&<'�/1�
��
�.��-

(3��=�/&O�.����@�/&O�.���0�'�<�(3��=�/&O�.����@78-
C&/��.)�75�/�/&O�.��3'�/&O�.�X��/+8
H

���%/������)��'�<�/&O�.��3��	
�/&O�.�����/&O�.�1��	�0�'�<��/&O�.����7/&O�.�8-
/&O�.�1��	�(3'K�0�%&:���%(3'KA�3
:�/�A�3
:�/&O�.�(3'K7
.&'��,���/&O�.���3�
�+6�	�8-

/&O�.��� ::7/&O�.�1��	8-
J
/���/'�/&O�.��-

J

As you can see from Listing 7.10, I make heavy use of LINQ to SQL, and
you’ll find this throughout the data access code. The LINQ to SQL context
is shown in Figure 7.5.

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework274

Figure 7.5: The %&:���% LINQ data context

The foreign keys shown in Figure 7.5 make it easier to query for specific
entities. The data access code also creates the folders and files, and when it
does, it stores the local directory or file paths in the LocalStorage column for
later recall. The service stores all folders and files within the G���� sub-
directory, but you could easily change this if you prefer. I selected it sim-
ply because the service didn’t require any changes to file system
permissions to read, write, and delete files in that location.

The data is conveyed to the client using data transfer objects (DTO). I’ve
shown the �/&O�.���� in Listing 7.11, but the other DTOs are similar.

Listing 7.11: The project data transfer object

Q����%&'�/�.�76�	���.��0�?)�����<<<��':�/��&C��.&	������6���?�
➥ 6�	�0?�/&O�.�?8R
�F
3.�.
�����/&O�.����
H

�F
3.��/&O�.����78
H
J

�F
3.��/&O�.����7�/&O�.��:F�/&O�.�8��
�)3�78

H
���%&+�/&�/�3��
�)3���/&O�.�1��0�:F�/&O�.���/&O�.�1�-
�)3���3�
�+6�	��0�:F�/&O�.���3�
�+6�	�-

J

�F
3.��/&O�.����7�/&O�.��:F�/&O�.���P&
:�/���QR�C&
:�/�8��
�)3�7:F�/&O�.�8

H
���%&+�C&
:�/�
�)3��P&
:�/��0�C&
:�/�-

J

Q����$�	F�/R
�F
3.�1'�#���/&O�.�1��H�!��-����-�J

Q����$�	F�/R
�F
3.���/3'!��3�
�+6�	��H�!��-����-�J

Q����$�	F�/71�����3/�:�0�C�
��8R
�F
3.���/3'!�(3'K�H�!��-����-�J

Q����$�	F�/71�����3/�:�0�C�
��8R
�F
3.�P&
:�/���QR�P&
:�/��H�!��-����-�J

J

Building an MVC RESTful Ser vice—�	��-/� 275

Each DTO provides several constructors, including a copy constructor
that accepts the corresponding LINQ entity. (Note that another way to
approach this is to create extension methods and keep the DTOs in a sepa-
rate assembly, which has advantages from a code-separation standpoint,
and the DTOs wouldn’t have to reference LINQ.) The client has similar
DTOs I created using the same technique described in the preceding
chapter—I queried the service for the appropriate XML and used ,�:��,�
to create a corresponding C# class. I then removed the �	
��/3�
3L�/
attributes and replaced them with ����%&'�/�.���/3�
3L�/ attributes.
This is cheating a little since I had unfair knowledge as to how the XML was
generated, but you could use either serializer as long as you faithfully
re-create the XML the service requires.

The �	��-/� Service Client
Even though this service will return HTML, to demonstrate creation and
deletion of projects, folders, and files, I created a Windows Forms client you
can use to experiment with the various aspects of the service. The client
won’t exercise all aspects of the service. It only adds projects, whereas the
service will accept folders and files as well (but keep in mind you’ll need
to provide correct foreign keys, which is typical of many RESTful services
when updating resources).

The basic user interface you’ve already seen in Figure 7.4. The client also
uses a similar authentication dialog box as the preceding chapter’s client,
so I won’t repeat that as well. However, adding a new project does merit
some description. The dialog box for this is shown in Figure 7.6.

The Create Project dialog box appears only when XML is selected as the
content type, �;� is selected as the HTTP method, and you click the Execute
button. Other content types for �;� display an error dialog box; and other
HTTP methods don’t involve resource creation, so no error is necessary.

After you provide a project name, you can select folders or files. If you
choose to add folders, you’ll be presented with the dialog box shown in
Figure 7.7.

After you select a folder, the child folders and files will be added to the
tree view control shown in the Create Project dialog box. From this tree con-
trol you can remove files and folders simply by selecting them and pressing
the Delete key.

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework276

Figure 7.6: The %&:���% .
3�'� Create Project dialog box

Building an MVC RESTful Ser vice—�	��-/� 277

Figure 7.7: The %&:���% .
3�'� folder browser dialog box

If you instead decide to add files directly to the project, the client cre-
ates a virtual folder, with the same name as the project, and adds the files
to that. The service doesn’t add files directly to a project, but this is simply
an implementation detail you could change fairly easily if you wanted. I
kept this as a business rule simply to have the rule in play. My reasoning
was that projects and folders aren’t the same in the service I implemented
even though a project is implemented as a folder on disk. Figure 7.8 shows
the Create Project dialog box when files are added to the project directly.

Figure 7.8: Adding files directly to a project

In all cases the files are read as binary files and converted into Base64
strings for transmission over the network. Base64, on average, introduces
a 30% (or so) increase in size, but it’s the only safe way to send binary infor-
mation over a network using XML. The client will convert the files into
Base64 and the service will convert them back into their original binary
form for storage; but the client is limited in the sense that it cannot recall the
files. I’ll leave the implementation of that to you to complete, but the basic
conversion logic is already present in the service itself. The service will
return to the client the XML representation of a created project, but this is so
you could cache the foreign keys if you chose to do so. The contents of the
files are wiped from the representation to conserve bandwidth.

Where Are We?

This chapter introduced the ASP.NET MVC framework and how you could
create classes based on .�3&'����
� to handle RESTful actions and
responses. The ASP.NET MVC framework is based on the model-view-
controller design pattern, or more accurately on the contemporary front
controller pattern. The actions you create are directly mapped to URIs you
design and provide to the URL routing subsystem the framework provides.
This is a bit different from traditional ASP.NET, in which URLs are mapped
directly to disk-based files.

Chapter 7: Building REST Ser vices Using ASP.NET MVC Framework278

The MVC framework has the capability to differentiate controller
actions based on HTTP method by judicious application of the ..��9�/F�
attribute, and you can disambiguate the action method names using the
 .�3&'6�	� attribute.

The service logic itself is considered model code. The model in MVC
terms is where the data access and business logic for your Web application
is properly placed. I elected not to use a view to generate the HTML the
service returned, but you certainly could if you chose to do so.

It’s at this point you might notice a pattern emerging. When working
with pure ASP.NET, you need to provide quite a bit of infrastructure and
“glue” logic. With the MVC framework, quite a bit of the infrastructure is
provided for you. It’s more a matter of understanding what the framework
provides and how to best fit your service into that framework.

The next chapter, however, shows you how to use the Windows Com-
munication Foundation (WCF) to implement RESTful services, and by
using WCF you implement even less boilerplate infrastructure, allowing
you to concentrate nearly entirely on the core service functionality. WCF is
also very much more configurable, allowing you to tailor your service’s
behavior even after it has been deployed.

Where Are We? 279

Index

413

Symbols
100 Continue, 391
101 switching protocols, 392
1xx information codes, 391-392
200 OK, 391-392
200-level codes, 50
201 Created, 392
202 Accepted, 392
203 non-authoritative information, 392
204 No Content, 393
205 Reset content, 393
206 Partial content, 393
2xx success codes, 392-393
300 multiple choices, 393
300-level codes, 50
301 Moved permanently, 394
302 Found, 394
303 See other, 394
304 Not modified, 395
305 Use proxy, 395
306 Unused, 395
307 Temporary redirect, 395
3xx redirection codes, 393-395
400 Bad request, 391, 396
400-level codes, 50
401 Unauthorized, 396
402 Payment required, 397
403 Forbidden, 397-398

404 Not found, 391, 398-400
405 Method not allowed, 400
406 Not acceptable, 400
407 Proxy authentication required, 400
408 Request timeout, 401
409 Conflict, 391, 401
410 Gone, 391, 401
411 Length required, 401
412 Precondition failed, 402
413 Request entity too large, 402
414 Request URI too long, 402
415 Unsupported media type, 403
416 Requested range not satisfiable, 403
417 Expectation failed, 403
4xx client errors, 396-398, 400-403
500 Internal server error, 391, 404,

408-411
500-level response codes, 50
501 Not implemented, 404
502 Bad gateway, 405
503 Service unavailable, 405
504 Gateway timeout, 406
505 Http version not supported, 406
5xx server errors, 403-411

A
Accept, HTTP headers, 51
Accept*, 409

Accept-Encoding, HTTP headers, 51
Accept-Language, HTTP headers, 51
accepting HTTP methods, ASP.NET

MVC (model-view-controller),
252-254

account management, Azure, 377-378
AccountController, 257
AcquireRequestState, 181
ActionName attribute, 262
ActionResult, 251
AddImages method, 119-120
addressability

RESTful services, 23
URI and, 65-68

addresses, Web addresses, 283-284
schemes, 283

ADO.NET Data Services
defining, 311-315
metadata, 315-316
overview, 310-311
service endpoints, 316-325

AJAX (Asynchronous JavaScript and
XML), 125

AnonymousAuthenticationModule, 199
anti-patterns, 59

caches, misusing, 62
cookies, 62
GET tunneling, 59-60
hypermedia, lack of support, 63-64
misused content types, 60-61
POST tunneling, 60
self-descriptions, lack of, 64
status codes, 61-62

application state, RESTful services, 24
application tracing, 266
application-based clients, .NET Services

Access Control Service, 367-371
client application code, 371-376

ApplicationHost, ASP.NET, 208
approval process, Azure Comments

Service, 351
ASP.NET, 205-206

ApplicationHost, 208
hosting in console applications,

206, 209

HttpHandler, 210-211
BlogService handler, 216-228
designing blog services, 211-214
service security, 215-216
Web.config, 228-229

integrating with WCF (Windows
Communication Foundation),
295-298

Main method, 208
PageHandlerFactory, 246
RESTful clients, 229-230
RESTful services, 35
sample .aspx files, 208
ScriptManager, 143
securing services, 231-232
security

AuthorizationManager, 240-242
HttpApplication class, 237-239
provider model, 232-236

security and, 199-202
URI, 228

ASP.NET MVC (model-view-
controller), 245

CodeXRC, 258-260
CodeXRC service classes, 264-273
CodeXRC service clients, 276-278
CodeXRCController, 261-264
URL mapping, 260-261

controller actions, 251-252
HTTP methods, accepting, 252-254
model, 256
security, 256-258
URL routing, 249-251
views, 255-256

ASP.NET REST architectural
considerations, 381-388

ASP.NET XML Web Services (.asmx),
JavaScript, 142

.aspx files (sample), 208
AsyncCallbackException, 114
Asynchronous JavaScript and XML

(AJAX), 125
asynchronous methods, Silverlight, 149
asynchronous programming

techniques, WinForms, 110

Index414

asynchronous response handling, 114
ATOM (Atom Syndication Format), 18

Azure Comment service atom
feed, 368

ATOM feed listings, 363
Atom feeds, supporting with WCF

(Windows Communication
Foundation), 302-310

Atom Syndication Format, 375
ATOM, 18

attributes
DataContractSerializer, 107
System.Xml.Serialization, 103

AuthenticateRequest, 180, 237

authentication
HTTP Basic Authentication, 33
HTTP headers, HTTP Basic

Authentication, 57-59
RESTful services, 31-33

authentication modules, 199
authentication tokens, 345
AuthenticationType, 235
authority, 70
authorization, 201

HTTP headers, 51
RESTful services, 31-33

AuthorizationManager, ASP.NET
security, 240-242

Authorize attribute, 257-258
AuthorizeRequest, 180
Azure, 340-341

account management, 377-378
CardSpace, 349
cookies, 350
credential requests, 365
.NET Services. See .NET Services

Azure Access Control Manager, 378
Azure Comment service atom feed, 368
Azure Comments Service, 351

approval process, 351
channel definition, 352
CommentModel, 356-357

configuring, 361-362
DTOs, 353
GetAllComments, 353-354
GetAllCommentsFormatter, 354-355
GetSyndicatedComment, 355
hosting, 359-361
implementing, 352
PUT, 352
SaveComment, 357-358

B
Basic Authentication, HTTP headers,

57-59
BasicAuthenticationModule, 199
BeginGetRequestStream, Silverlight, 154
BeginRequest, 180
Berners-Lee, Tim, 3
best practices for REST, 407
binding, 282
bindings, WebHttpBinding, 288-290
blog services, designing, HttpHandler

(ASP.NET), 211-214
BlogEntryItem, 225
BlogService handler, HttpHandler

(ASP.NET), 216-228
BlogService handler method, 218
BodyStyle property

(WebMessageBodyStyle), 290
browser-based clients, .NET Services

Access Control Service, 363-367
Bustamante, Michelle, 282

C
.cache, 186
cache modules, 182
Cache-Control, HTTP headers, 51
CacheItem, 184
cacheLock, 187
caches, misusing caches (anti-

patterns), 62
CacheStream, 184

Index 415

caching HTTP headers, 53-56
CardSpace, 349-350
CardSpace manager, 366
CertificateMappingAuthentication-

Module, 200
CGI (Common Gateway Interface), 3
channel definition, Azure Comments

Service, 352
choosing ASP.NET REST architectural

considerations, 381-388
classes

BlogEntryItem, 225-226
CacheItem, 183
CacheStream, 184
CodeXRC link builder, 270
CodeXRCServiceBase, 264
CommentModel, 356
DataServiceKeyAttribute, 315-316
HttpApplication, 237-239
ImageItem, 284-285
ImageUser, 311-312, 315
OperationContractAttribute, 286-287
ServiceContractAttribute, 286-287
ServiceIdentity, 236
ServiceUser class, 235-236
TraceSource, 330-334
TransportBindingElement, 288
UserDataService, 313-315
WebGetAttribute, 289
WebInvokeAttribute, 289
WebOperationContext, 293
WebScriptServiceHostFactory, 295
WebServiceHostFactory, 295

client access, .NET Services
programming model, 350

client application code, application-
based clients (.NET Services Access
Control), 371-376

clientaccesspolicy.xml, 162
clients

ASP.NET, 229-230
service clients. See service clients

closing streams, 155
cloud services, 340

CLR (Common Language Runtime), 149
CodeXRC, 256-260

CodeXRCController, 261-264
service classes, 264-276
service clients, 276-278
URL mapping, 260-261
XML, 268

CodeXRC client, 276-278
CodeXRC link builder class, 270
CodeXRCAuxServices

RenderErrorForbidden method, 273
CodeXRCController, 261-264
CodeXRCDataAccess LlistProjects

method, 274
CodeXRCGetService ExecuteResult

method, 265-266
CodeXRCPutService CreateResource

method, 271-272
CodeXRCPutService ExecuteResult

method, 271
CodeXRCServiceBase class, 264
CollectionDataContractAttribute, 107
COMException, 114
Comment Model InsertComment

method, 356
CommentModel, Azure Comments

Service, 356-357
Common Gateway Interface (CGI), 3
Common Language Runtime (CLR), 149
Common Object Request Broker

Architecture (CORBA), 7
Community Technology Preview

(CTP), 340
conditional GET, HTTP headers, 53-56
configuring

Azure Comments Service, 361-362
TraceSources, 331-332
WCF message logging, 336

connecting RESTful services, 31
content negotiation, 28-29
content types, misused content types

(anti-patterns), 60-61
Content-Encoding, HTTP headers, 51
Content-Language, HTTP headers, 51

Index416

Content-Length, HTTP headers, 52
Content-Type, HTTP headers, 52
Content-Type headers, 29
contracts, 284
Control.Invoke, 114
controller actions, ASP.NET MVC,

251-252
cookies

anti-patterns, 62
ASP.NET MVC, 257
Azure services, 350
RESTful services, 26-27

CORBA (Common Object Request
Broker Architecture), 7

CreateRequest method, 118
credential requests, Azure, 365
credentials, WebRequest, 117
Critical traces (WCF), 332
cross-domain, 410
cross-side scripting (XSS), 141
CTP (Community Technology

Preview), 340

D
data, reading, 90-92

DataContractSerializer, 106-109
XDocument, 99-102
XmlDocument, 93-99
XmlSerializer, 102-106

data access layer, CodeXRC, 273-276
data transfer objects (DTO), 275
DataContract, 108

Silverlight, 153
DataContractAttribute, 107
DataContractJsonSerializer, Silverlight,

153, 157
DataContractSerializer, 106-109

attributes, 107
Silverlight, 159

DataMemberAttribute, 107
DataServiceKeyAttribute class, 315-316
DCOM (Distributed Component Object

Model), 7
debugging Visual Studio, 190-191

defining ADP.NET Data Services,
311-315

DELETE
WinForms, 121
XHR, 138-139

DELETE method, HTTP, 45
dereferencing, 69
deserialization, 91
designing blog services, HttpHandler

(ASP.NET), 211-214
desktop applications, 87
DHCP (Dynamic Host Configuration

Protocol), 342
diagnostics

failed request tracing, 195-199
HttpContext.Trace, 192-193
System.Diagnostics, 193-195
Visual Studio, 190-191
WCF (Windows Communication

Foundation) diagnostics
event logs, 328
message logging, 334-336
performance counters, 325-327
tracing, 330-334
WMI (Windows Management

Instrumentation), 328-330
DigestAuthenticationModule, 200
DispatchAddBlogItem method, 222
DispatchAddBlogList method, 222
DispatchGetBlogList method, 220
Dispose, implementing HTTP

modules, 180
Distributed Component Object Model

(DCOM), 7
DNS (Domain Name Service), 343
DTOs (data transfer objects), 275

Azure Comments Service, 353
Dynamic Host Configuration Protocol

(DHCP), 342

E
EndGetRequestStream, Silverlight, 154
EndRequest, 181

Index 417

EntryLink property, 227
EnumMemberAttribute, 107
error information, returning with

CodeXRC, 273
Error traces (WCF), 332
ETags, 390

HTTP headers, 52-56
event logs in WCF (Windows

Communication Foundation), 328
Execute button handler, 375
ExecuteResult, 271
$expand query string, 312

F
fabric, 340
failed request tracing, 195-199
failedCallback, 145
FailedRequestTracing module, 195
Fielding, Roy, 7-9
FileAuthorization, 201
Filter, 184
$filter query string, 312
Firebug, JSON content, 155
Flash policy files, 410
FormsAuthentication, 200
fragments, 70
framing bits, 167

G
GenerateETagValue, 55
GET method

conditional GET, 53
HTTP, 42

GET tunneling, anti-patterns, 59-60
GetAllComments, Azure Comments

Service, 353-354
GetAllCommentsFormatter, Azure

Comments Service, 354-355
GetImageHead method, 291-293
GetImagesForUser method, 296-297
GetImagesForUserHead method,

291-292

GetRequestStream, 149
GetSyndicatedComment, Azure

Comments Service, 355
guiding principles for RESTful services,

20-21

H
HEAD action, CodeXRCController,

261-262
HEAD method, HTTP, 44
headers

Content-Type, 29
HTTP content type headers, 29
HTTP headers, 50

Accept, 51
Accept-Encoding, 51
Accept-Language, 51
Authorization, 51
Cache-Control, 51
caching, 53-56
conditional GET, 53-56
Content-Encoding, 51
Content-Language, 51
Content-Length, 52
Content-Type, 52
ETag, 52-56
Host, 52
If-Match, 52
If-Modified-Since, 52
If-None-Match, 52
If-Range, 52
If-Unmodified-Since, 52
Last-Modified, 52
Location, 52
User-Agent, 53
WWW-Authenticate, 53

hierarchical identification, URI, 70-71
Host, HTTP headers, 52
hosting

ASP.NET in console applications, 209
Azure Comments Service, 359-361

HTML
render methods, 269
Silverlight, 158

Index418

HTTP (Hyper Text Transfer Protocol), 5,
39-40, 283

content type header values, 29
messages, 40
REST, 23

HTTP Accept header, 409
HTTP Basic Authentication, 33, 57-59

securing services, ASP.NET, 231
WinForms, 116

HTTP Digest Authentication, 57
HTTP handlers, implementing in IIS

messaging pipeline, 173-180
HTTP headers, 50

Accept, 51
Accept-Encoding, 51
Accept-Language, 51
Authorization, 51
Cache-Control, 51
caching, 53-56
conditional GET, 53-56
Content-Encoding, 51
Content-Language, 51
Content-Length, 52
Content-Type, 52
ETag, 52-56
Host, 52
HTTP Basic Authentication, 57-59
If-Match, 52
If-Modified-Since, 52
If-None-Match, 52
If-Range, 52
If-Unmodified-Since, 52
Last-Modified, 52
Location, 52
User-Agent, 53
WWW-Authenticate, 53, 57-59

HTTP Location header, 409
HTTP methods, 42

accepting in ASP.NET MVC, 252-254
DELETE method, 45
GET method, 42
HEAD method, 44
idempotency and, 43-44

OPTIONS method, 42
POST method, 46-47

idempotency, 48-49
POST responses, 47-48

PUT method, 45
RESTful interpretations, 41
safety and, 43-44

HTTP modules, implementing in IIS
messaging pipeline, 180-190

HTTP response codes, 49-50
HTTP status codes, 389

1xx informational codes, 391-392
2xx success codes, 392-393
3xx redirectopm codes, 393-395
4xx client errors, 396-403
5xx server errors, 403-406
setting, 390-391

http.sys, 34, 166-169
HttpListener, 35

HttpApplication class, ASP.NET
security, 237-239

HttpApplication instance, 180
HttpCfg.exe, 169
HttpContext, 176
HttpContext.Trace, 192-193
HttpExerciser, 82-84
HttpHandler, ASP.NET210-211

blog services, designing, 211-214
BlogService handler, 216-222, 224-228
service security, 215-216
Web.config, 228-229

HttpListener, 35, 80-81
HttpModule, 238
HttpRequest, 176
HttpResponse, 176
HttpStatusCode.Accepted, 392
HttpStatusCode.Ambiguous, 393
HttpStatusCode.BadGateway, 405
HttpStatusCode.BadRequest, 391, 396
HttpStatusCode.Conflict, 391, 401
HttpStatusCode.Continue, 391
HttpStatusCode.Created, 392

Index 419

HttpStatusCode.ExpectationFailed, 403
HttpStatusCode.Forbidden, 397-398
HttpStatusCode.Found, 394
HttpStatusCode.GatewayTimeout, 406
HttpStatusCode.Gone, 391, 401
HttpStatusCode.HttpVersionNot-

Supported, 406
HttpStatusCode.InternalServerError,

391, 404
HttpStatusCode.LengthRequired, 401
HttpStatusCode.MethodNot-

Allowed, 400
HttpStatusCode.Moved, 394
HttpStatusCode.Moved-

Permanently, 394
HttpStatusCode.MultipleChoices, 393
HttpStatusCode.NoContent, 393
HttpStatusCode.NonAuthoritative-

Information, 392
HttpStatusCode.NotAcceptable, 400
HttpStatusCode.NotFound, 391, 398-400
HttpStatusCode.NotImplemented, 404
HttpStatusCode.NotModified, 395
HTTPStatusCode.OK, 391-392
HttpStatusCode.PartialContent, 393
HttpStatusCode.PaymentRequired, 397
HttpStatusCode.PreconditionFailed, 402
HttpStatusCode.ProxyAuthentication-

Required, 400
HttpStatusCode.Redirect, 394
HttpStatusCode.RedirectKeepVerb, 395
HttpStatusCode.RedirectMethod, 394
HttpStatusCode.RequestedRangeNot-

Satisfiable, 403
HttpStatusCode.RequestEntityToo-

Large, 402
HttpStatusCode.RequestTimeout, 401
HttpStatusCode.RequestUriToo-

Long, 402
HttpStatusCode.ResetContent, 393
HttpStatusCode.SeeOther, 394
HttpStatusCode.Service-

Unavailable, 405

HttpStatusCode.SwitchingProtocol, 392
HttpStatusCode.Temporary-

Redirect, 395
HttpStatusCode.Unauthorized, 396
HttpStatusCode.UnsupportedMedia-

Type, 403
HttpStatusCode.Unused, 395
HttpStatusCode.UseProxy, 395
HttpSysCfg.exe, 203
Hyper Text Transfer Protocol. See HTTP
hypermedia, 3

lack of support for hypermedia, anti-
patterns, 63-64

hypermedia links, 63

I
ICommentService, 353
idempotency

HTTP methods and, 43-44
POST, 48-49

identification, URI, 69-70
hierarchical identification, 70-71

Identity property, 234
IETF (Internet Engineering Task

Force), 389
If-Match, 402

HTTP headers, 52
If-Modified-Since, HTTP headers, 52
If-None-Match, 402

HTTP headers, 52
If-Range, HTTP headers, 52
If-Unmodified-Since, 402

HTTP headers, 52
IHttpHandler, 173-175
IIdentity property, 234
IImageService interface, 285-286
IIS (Internet Information Server 7.0), 34,

165-167
integrating with, 170-171

IIS messaging pipeline, 171-172
IIS messaging pipeline. See IIS

messaging pipeline

Index420

resource for more information, 202-203
security and, 199-202

IIS messaging pipeline, 171-172
HTTP handlers, implementing,

173-180
HTTP modules, implementing, 180-190

IIS worker process, 170
iis.net, 202
IISCertificateMappingAuthentication-

Module, 200
ImageItem, 89

reading data, 90-92
XHR, 136

ImageItem class, 284-285
ImageManager, XHR, 138
ImageManager service, building

ADO.NET Data Services
defining, 311-315
metadata, 315-316
overview, 310-311
service endpoints, 316-325

ASP.NET integration, 295-298
Atom support, 302-310
IImageService interface, 285-286
ImageItem class, 284-285
ImageUser class, 311, 315
JavaScript files, 293-294
OperationContractAttribute class,

286-287
RSS support, 302-310
ServiceContractAttribute class, 286-287
URL rewriters, 298-301
UserDataService class, 313-315
WCF REST stack

GetImageHead method, 291-293
GetImagesForUserHead method,

291-292
WebHttpBinding binding, 288-290
WebOperationContext class, 293

images
LookupImages, XHR, 133-135
Photo Client’s DeleteImage and

DeleteResponse, 121-122

retrieving
with Silverlight, 160
with XHR, 132-133

ImagesResponse, Silverlight, 152
ImageUser class, 311-315
impersonation, 170
Information level traces (WCF), 333
infoset, XML, 94
init, implementing HTTP modules, 180
installing Photo Service, 110
instrumentation, 192-193
integrating with IIS, 170-171

IIS messaging pipeline, 171-173
interfaces, IImageService, 285-286
Internet Engineering Task Force

(IETF), 389
Internet Protocol (IP), 167
Invoke, 114
invoking JavaScript methods, from

Silverlight, 161
IP (Internet Protocol), 167
IP addresses, 167
IPSec (IP Security), 31
IPv6, 343
IsReusable, 173

J-K
JavaScript

calling existing JavaScript with
Silverlight, 161-162

WCF, 142-148
page level handlers, 145
ScriptManager, 143
ScriptManagerProxy, 144

xxx, 145
JavaScript files, generating with WCF

(Windows Communication
Foundation), 293-294

JavaScript methods, invoking from
Silverlight, 161

JQuery, 139

Index 421

JQuery UI, 139
JSON (JavaScript Object Notation), 90

designing blog services, HttpHandler
(ASP.NET), 213

render methods, 269
Silverlight, 153-158

JsonImageService, 151

L
Language Integrated Query (LINQ), 99
Last-Modified, HTTP headers, 52
linking RESTful services, 31
LINQ (Language Integrated Query),

99-100
listings

AddImages method, 119-120
Asynchronous response handling, 114
Azure Comment service channel

definition, 352
BlogEntryItem class, 225-226
BlogService AuthModule basic

HttpModule implementation, 238
BlogService primary handler

methods, 216
BlogService Web.config

handler/module settings, 229
BlogService’s DispatchAddBlogItem

method, 222-224
BlogService’s DispatchGetBlogList

method, 220
BlogService’s TemplateTable property,

217-218
BlogService’s/Blog handler

method, 218
BlogService’s/Blog/{BlogID} handler

method, 219-220
Browser-independent XHR

instantiation, 129-130
CacheItem class, 183
CacheStream, 184
Calling MusicBrainz service, 19

Calling the NDFD ZIP Code
conversion service, 13

The client application Execute button
event handler, 373-374

The client application
PushCommentItem method, 376

The client application
QueryAuthenticationToken,
371-372

CodeXRC link builder class, 270
CodeXRCAuxServices

RenderErrorForbidden
method, 273

CodeXRCController HTTP HEAD
action, 261-262

CodeXRCController HTTP PUT action,
263-264

CodeXRCDataAccess ListProjects
method, 274

CodeXRCGetService ExecuteResult
method, 265-266

CodeXRCPutService CreateResource
method, 271-272

CodeXRCPutService ExecuteResult
method, 271

CodeXRCServiceBase class, 264
Comment data transfer object, 353
The Comment service host application

configuration, 361-362
Comment service SaveComment

method implementation, 357-358
CommentModel InsertComment

method, 356
CreateRequest method, 118
GetAllComments implementation, 354
GetAllCommentsFormatter helper

method, 354
GetSyndicatedComment helper

method, 355
The host console application’s Main

method, 359-360
Hosting ASP.NET in a console

application, 206

Index422

HTTP Response to ZIP Code
conversion for code 20004, 10

ImageItem class, 91
ImageItem serialized as JSON, 90
ImageItem serialized as XML, 90
ImageItem with data contract

attributes applied, 108
ImageItem with XML serialization

attributes applied, 105
Initiating the JSON-based “my

images” service request, 156
Initiating the JSON-based “upload

photo” Service request, 160
Interpreting the JSON-based service

response, 157-158
Invoking a JavaScript method from

Silverlight, 161
The Model class’s QueryBlog

method, 225
OnAuthenticateRequest method

implementation, 238
Photo Client asynchronous user

account creation, 113
Photo Client Login button click

handler, 117
Photo Client’s ReadResponse

method, 120
Photo Client’s ShowImages method

(WPF version), 123
Photo Client’s WCF-based

LookupImages method, 146
Photo Client’s WCF-based SaveData

method, 147-148
PhotoWebXHR Delete method, 139
PhotoWebXHR SaveData method, 140
Populating UriTemplateTable, 175-176
Preparing image files for transmission

to the photo service, 159
The preserialized ImageItem

resource, 92
Process Service OutputProcessList and

OutputProcessInfo, 177-178
Process Service ProcessRequest

method, 177

ProcessCacheModule ASP.NET
module implementation, 186

ProcessInfoBasic and ProcessInfo, 174
The project data transfer object, 275
Reading and consuming XML using

XDocument and XLINQ, 100
Reading and consuming XML

using XDocument and XLINQ
failover, 101

Reading and consuming XML using
XMLDocument and XPath, 97-98

RenderXML method, 268
ResolveRequestCacheHandler

method, 187-188
Retrieving a single photo instance, 160
Sample .aspx page, 209
SerializationSampler Main method, 92
ServiceIdentity class, 236
ServiceUser class, 235-236
Silverlight application’s

ImagesResponse, 152
Silverlight application’s Load Friend

button click, 152
Silverlight application’s Load My

Images button click handler, 154
Simplified UriTemplate use, 73
Simplified UriTemplateTable use, 76
UpdateRequestCacheHandler

method, 188
Using UriBuilder, 79
XHR OnReadyStateChange event

handling, 136-138
LoadFriend_Click method, 151
Location, HTTP headers, 52
logging, 192

in WCF (Windows Communication
Foundation)

event logs, 328
message logging, 334-336

login button click handler, 117
LogRequest, 181
LookupImages, 132

WCF, 146
XHR, 133-135

Lowy, Juval, 282

Index 423

M
Main method

ASP.NET, 208
hosting Azure Comments Service, 359

MapRequestHandler, 181
MD5 (Message Digest 5), 200
MemoryStream, 184
Message Digest 5 (MD5), 200
message logging in WCF (Windows

Communication Foundation),
334-336

messages, HTTP, 40
metadata, adding, 315-316
methods

GetImageHead, 291-293
GetImagesForUser, 296-297
GetImagesForUserHead, 291-292

Microsoft AJAX (MS-AJAX), 127
Microsoft Message Queue (MSMQ), 12
model-view-controller (MVC). See

ASP.NET MVC
models, ASP.NET MVC, 256
modules

authentication modules, 199
authorization modules, 201
FailedRequestTracing module, 195
HTTP modules, implementing in IIS

messaging pipeline, 180-190
Moonlight, 149
MS-AJAX (Microsoft AJAX), 127
MSMQ (Microsoft Message Queue), 12
MusicBrainz, 16-19, 63-64

calling the service, 19
MVC (model-view-controller). See

ASP.NET MVC
mvolo.com, 202

N
NAT (network address translation), 343

.NET Services, 347
NDFD (National Digital Forecast

Database), 9-10

NDFD ZIP Code conversion service,
calling, 13

.NET
http.sys, 34
HttpListener, 35
schemas, 103
XML markup, 91

.NET 3.5, LINQ, 99

.NET Access Control Service, 344-346

.NET Service Bus, 346-347

.NET Services, 340-344
.NET Access Control Service, 344-346
.NET Service Bus, 346-347
.NET Workflow Service, 347
programming model, 347-348

client access, 350
service initiation, 349

.NET Services Access Control Service,
service clients, 363

application-based clients, 367-376
browser-based clients, 363-367

.NET Workflow Service, 347
network address translation. See NAT
NetworkCredentials, 350
notepad.exe, process information, 179
NTLM (Windows NT LAN

Manager), 233
NullReferenceException, 149

O
OAuth tokens, 142
OnAuthenticateRequest, 238
OpenFileDialog, Silverlight, 158
OpenSocial, 142
OperationContractAttribute class,

286-287
OPTIONS method, HTTP, 42
$orderby query string, 312
Outlook, 87
Outlook Web Access, 87
OutputProcessInfo, 177-178
OutputProcessList, 177-178
Ozzie, Ray, 341

Index424

P
page level handlers, WCF

(JavaScript), 145
Page method, 250
PageHandlerFactor, 246
PartialContent, 393
paths, 70
performance, WCF, 383-384
performance counters (WCF), 325-327
Photo Client, WinForms, 110-122

authentication, 116
CreateRequest method, 118
DELETE, 121
WebRequest, 117

Photo Service, installing, 110
photos, REST services and, 89
PhotoWebXHR, 132
plain old XML (POX), 18
plug-ins, Firebug (JSON content), 155
populating UriTemplateTable, 175-176
POST method, HTTP, 46-47

Idempotency, 48-49
POST responses, 47-48

POST responses, 47-48
POST tunneling, anti-patterns, 60
PostAcquireRequestState, 181
PostAuthenticateRequest, 180
PostAuthorizeRequest, 180
PostLogRequest, 181
PostMapRequestHandler, 181
PostReleaseRequestState, 181
PostRequestHandlerExecute, 181
PostResolveRequestCache, 181
PostUpdateRequestCache, 181
POX (plain old XML), 18
PreRequestHandlerExecute, 181
PreSendRequestContent, 182
PreSendRequestHeaders, 182
project data transfer objects, 275
process information for

notepad.exe, 179
ProcessCacheModule, ASP.NET

module, 186

ProcessInfo, 174
ProcessInfoBasic, 173-174
ProcessRequest, 173

implementing HTTP handlers, 177
programming models, .NET Services,

347-348
client access, 350
service initiation, 349

protocols
DHCP, 342
HTTP, 283
IP (Internet Protocol), 167
SMTP, 12
SOAP. See SOAP
switching protocols, 101, 392
TCP (Transmission Control

Protocol), 167
wire protocols, 4-5

provider model, ASP.NET security,
232-236

PushCommentItem method, 376
PUT

Azure Comments Service, 352
CodeXRCController, 263-264
HTTP, 45

Q
queries, 70
query strings, 312
QueryAuthenticationToken, 373
QueryAuthenticationToken method,

371-372

R
ReaderWriterLock, 186
reading data, 90-92

DataContractSerializer, 106-109
XDocument, 99-102
XmlDocument, 93-99
XmlSerializer, 102-106

ReadResponse method, 120

Index 425

readyState, XHR, 135-138
realms, WWW-Authenticate, 57
relay, .NET Service Bus, 346
RelayChannel, 347-348
ReleaseRequestState, 181
RenderXML method, 268
Representational State Transfer.

See REST
representations of resources, RESTful

services, 27
content negotiation, 28-29
URI design, 29-30

RequestFormat property
(WebMessageFormat), 290

reservations, 166
ResolveRequestCache, 181, 185
ResolveRequestCacheHandler method,

187-188
resources, 408

creating wtih XML, 271-273
representations of resources, 27

content negotiation, 28-29
URI design, 29-30

URIs, 23, 408
ResponseFormat property

(WebMessageFormat), 290
REST (Representational State Transfer),

1, 8, 14-15, 386
best practices, 407-411
HTTP, 23
SOAP versus, 385
URLs, 16

RESTful services, 20
addressability and the URI, 23
connecting, 31
cookies, 26-27
guiding principles for, 20-21
linking, 31
MusicBrainz, 16-19
representations of resources, 27

content negotiation, 28-29
URI design, 29-30

resources for, 21-22

security, 31-33
types of states, 23-26

retrieving images with Silverlight, 160
returning error information with

CodeXRC, 273
RFC 2616, 407
RFC 2626, 53
RFC 3986, URIs, 68
RPC (remote procedure calls), 5
RPC method serialization, 6
RSS feeds, supporting with WCF

(Windows Communication
Foundation), 302-310

S
SaaS (Software as a Service), 346
safety, HTTP methods and, 43-44
SAML (Security Assertion Markup

Language), 345
SaveComment, Azure Comments

Service, 357-358
SaveData

WCF, 147-148
XHR, 140

schemas, 70, 283
.NET, 103

ScriptManager, 143
ScriptManagerProxy, 143

JavaScript, 144
Scripts, 143
SDDLParse, 203
Secure Sockets Layer (SSL), 31
Secure Token Service (STS), 344
securing services (ASP.NET), 231-232
security

ASP.NET, 199-202, 256-258
AuthorizationManager, 240-242
HttpApplication class, 237-239
provider model, 232-236

authorization, authorization
modules, 201

IIS, 199-202

Index426

RESTful services, 31-33
services, HttpHandler (ASP.NET),

215-216
XHR and, 141-142

Security Assertion Markup Language
(SAML), 345

self-descriptions, anti-patterns, 64
service classes, CodeXRC, 264-273

data access layer, 273-276
returning error information, 273

service clients
CodeXRC, 276-278
.NET Services Access Control

Service, 363
application-based clients, 367-376
browser-based clients, 363-367

service endpoints, adding, 316-325
service initiation, .NET Services

programming model, 349
service response, JSON-based, 157
service versioning, 408
ServiceContractAttribute class, 286-287
ServiceIdentity class, 236
Services, 143
services

Azure Comments Service. See Azure
Comments Service

cloud services, 340
ImageManager, building

ADO.NET Data Services, 310-325
ASP.NET integration, 295-298
Atom support, 302-310
IImageService interface, 285-286
ImageItem class, 284-285
ImageUser class, 311, 315
JavaScript files, 293-294
OperationContractAttribute class,

286-287
RSS support, 302-310
ServiceContractAttribute class,

286-287
URL rewriters, 298-301

UserDataService class, 313-315
WCF REST stack, 288-293
securing (ASP.NET), 231-232

security, HttpHandler (ASP.NET),
215-216

ServiceUser class, 235-236
session state, RESTful services, 24
ShowImages method, WPF version,

123-124
Silverlight, 127, 149

asynchronous methods, 149
BeginGetRequestStream, 154
calling existing JavaScript, 161-162
DataContract, 153
DataContractJsonSerializer, 153, 157
DataContractSerializer, 159
EndGetRequestStream, 154
HTML, 158
ImagesResponse, 152
invoking JavaScript method, 161
JSON, 153-158
JsonImageService, 151
Load Friend button click handler, 152
Load My Images, 154
NullReferenceException, 149
OpenFileDialog, 158
retrieving images, 160
UI, 150
XmlImageService, 151

Silverlight files, 410
Simple Mail Transfer Protocol

(SMTP), 12
Simple Object Access Protocol

(SOAP), 4
$skip query string, 312
Smith, Justin, 282
SMTP (Simple Mail Transfer

Protocol), 12
SOAP (Simple Object Access Protocol),

4-7, 385
REST versus, 385

Software as a Service (SaaS), 346

Index 427

solution names, 346
SSL (Secure Sockets Layer), 31
startup screen, WinForms, 111
states, RESTful services, 23-26
status codes

anti-patterns, 61-62
setting, 390-391

Stream, 184
streams, closing, 155
STS (Secure Token Service), 344
succeededCallback, 145
switching protocols, 101, 392
System.Diagnostics, 193-195
System.Diagnostics.TraceSource, 193
System.Net.WebRequest, 112, 149

WinForms, 109
System.Web.UI.ScriptManager-

Proxy, 143
System.Xml.Ling.XDocument, 91
System.Xml.Serialization, attributes, 103
System.Xml.XmlDocument, 91

T
TCP (Transmission Control

Protocol), 167
TemplateTable property,

BlogService, 217
text/plain, 61
text/xml, 60
ThreadPool, 119
threads, 119
$top query string, 312
TraceListeners, 193
TraceSource class, 330-334
tracing, 194, 266

failed request tracing, 195-199
in WCF (Windows Communication

Foundation), 330-334
transcription, URI, 68-69
Transmission Control Protocol

(TCP), 167

Transport Security Layer (TSL), 31
TransportBindingElement class, 288
TSL (Transport Security Layer), 31
tunneling

GET, anti-patterns, 59-60
POST, anti-patterns, 60
URI, 66

txt/html, 60

U
UDDI (Universal Description Discovery

and Integration), 66
UI (user interface), 88

Silverlight, 150
WinForms, 109

Uniform Resource Identifier. See URI
Uniform Resource Locator. See URL
Unity, 8
Universal Description Discovery and

Integration (UDDI), 66
Universal Resource Name (URN), 65
UpdateRequestCache, 181, 185
UpdateRequestCacheHandler

method, 188
URI (Uniform Resource Identifier),

39, 64
addressability and, 65-68
ASP.NET, 228
hierarchical identification, 70-71
resources, 408
RESTful services, 23
RFC 3986, 68
separating identification from

interaction, 69-70
transcription, 68-69
tunneling, 66
UriBuilder, 79-80
UriTemplate, 71-74
UriTemplateMatch, 71-74
UriTemplateTable, 74-79

URI design, representation of
resources, 29-30

Index428

UriBuilder, 79-80
UriTemplate, 71-74
UriTemplate property (String), 290
UriTemplateMatch, 71-74
UriTemplateTable, 74-79

Populating, 175-176
URL (Uniform Resource Locator), 64
URL encoding, 19
URL mapping, CodeXRC, 260-261
URL rewriters, adding with WCF

(Windows Communication
Foundation), 298-301

URL routing, ASP.NET MVC, 249-251
UrlAuthorization, 201
UrlAuthorizationModule, 201
UrlRoutingModule, 249
URN (Universal Resource Name), 65
user interface (UI), 88
User-Agent, HTTP headers, 53
UserDataService class, 313-315

V
Verbose traces (WCF), 333
views, ASP.NET MVC, 255-256
Virtual Private Network (VPN), 31
Visual Studio, 190-191
Volodarsky, Mike, 202

W
W3SVC (World Wide Web Publishing

Service), 166
Warning traces (WCF), 332
WAS (Windows Process Activation

Service), 166
WCF (Windows Communication

Foundation), 36
addresses, 283-284
bindings, 282

WebHttpBinding, 288-290
contracts, 284

diagnostics
event logs, 328
message logging, 334-336
performance counters, 325-327
tracing, 330-334
WMI (Windows Management

Instrumentation), 328-330
ImageManager service, building

ADO.NET Data Services, 310-325
ASP.NET integration, 295-298
Atom support, 302-310
IImageService interface, 285-286
ImageItem class, 284-285
ImageUser class, 311, 315
JavaScript files, 293-294
OperationContractAttribute class,

286-287
RSS support, 302-310
ServiceContractAttribute class,

286-287
URL rewriters, 298-301
UserDataService class, 313-315
WCF REST stack, 288-293

JavaScript, 143-148
page level handlers, 145
ScriptManager, 143
ScriptManagerProxy, 144

LookupImages method, 146
.NET Services, 347
overview, 281-282
performance, 383-384
SaveData method, 147-148

WCF channels, 347
Web addresses, 283-284

schemes, 283
Web Service Description Language

(WSDL), 4, 385
Web services, 9-14

introduction to, 88-90
NDFD. See NDFD

Web.config, HttpHandler (ASP.NET),
228-229

WebException, 113

Index 429

WebGetAttribute class, 289
WebHttpBinding binding, 288-290
WebHttpRelayBinding, 362
WebInvokeAttribute class, 289
WebOperationContext class, 293
WebRequest, Credentials, 117
WebRequest.Create, 112
WebResponse, WinForms, 109
WebScriptServiceHostFactory class, 295
WebServiceHost, Azure Comments

Service, 359-361
WebServiceHostFactory class, 295
wildcard paths, 179
Windows CardSpace manager, 366
Windows Communication Foundation.

See WCF
Windows Forms (WinForms), 87
Windows Management Instrumentation

(WMI), 328-330
Windows NT LAN Manager

(NTLM), 233
Windows Presentation Foundation.

See WPF
Windows Process Activation

Service, 165
Windows Process Activation Service

(WAS), 166
Windows XP SP3, http.sys, 168
WindowsAuthentication, 200
WindowsAuthenticationModule, 201
WinForms

asynchronous programming, 110
Photo Client, 110-116, 119-122

authentication, 116
CreateRequest method, 118
DELETE, 121
WebRequest, 117

startup screen, 111
System.Net.WebRequest, 109
UI threads, 109

wire protocols, 4-5
WMI (Windows Management

Instrumentation), 328-330
World Wide Web Publishing Service

(W3SVC), 166

WPF (Windows Presentation
Foundation), 9, 87, 122-124

ASP.NET Rest client applications, 229
ShowImages method, 123-124

WS-*, 4, 7
WS-I Monitor Tool Specification, 335
WS-I.org Monitor Tool, 335
WSDL (Web Service Definition

Language), 385
WSDL (Web Service Description

Language)4
WWW-Authenticate, 57-59

HTTP headers, 53

X-Y-Z
X-MS-Identity-Token, 350, 369
XDocument, 99-102
XDocumentAlternate, 92
XHR (XMLHttpRequest), 127-132

capabilities for, 130-131
DELETE, 138-139
ImageItem, 136
ImageManager, 138
LookupImages, 133, 135
readyState, 135-138
retrieving images, 132-133
SaveData, 140
security and, 141-142

xhr.onreadystatechange, 135-138
XLINQ, 99
XML, 4

Atom Syndication Format, 375
CodeXRC, 268
infoset, 94
reading data, 92

DataContractSerializer, 106-109
XDocument, 99-102
XmlDocument, 93-99
XmlSerializer, 102-106

resources, creating, 271-273
XML LINQ (XLINQ), 99
XML Schema Document, 103
XML serialization, 92
XmlArrayAttribute, 104

Index430

XmlArrayItemAttribute, 104
XmlAttributeAttribute, 103
XmlDocument, 93-99
XmlElementAttribute, 103
XmlEnumAttribute, 103
XmlHttpRequest objects, 7
XMLHttpRequest. (XHR), 127-132

capabilities for, 130-131
DELETE, 138-139
ImageItem, 136
ImageManager, 138
LookupImages, 133, 135
readyState, 135-138
retrieving images, 132-133
SaveData, 140
security and, 141-142

XMLHttpRequest.setRequestHeader
method, 139

XmlIgnoreAttribute, 103
XmlImageService, 151
XmlNodeReader, 96
XmlReader, 96
XmlRootAttribute, 103
XmlSerializer, 102-106
XmlTypeAttribute, 103
XPath, 95
XSS (cross-side scripting), 141
xxx, JavaScript, 145

Index 431

	Foreword
	Preface
	7 Building REST Services Using ASP.NET MVC Framework
	The ASP.NET MVC Framework
	URL Routing
	Controller Actions
	Accepting HTTP Methods
	Views
	The Model
	ASP.NET MVC Security

	Building an MVC RESTful Service—CodeXRC
	Creating the URL Mapping
	The CodeXRCController
	CodeXRC Service Classes
	The CodeXRC Service Client

	Where Are We?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

